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La is a system for building software systems. The design of La stresses features
not found in many other implementation languages or systems: it is interactive rather
than compiler based, it has a symbol manipulation language embedded in it , it is highly
extensible, and it allows for total accessibility to both the underlying hardware and the
L* system itself. This paper describes the design philosophy of La, the mechanisms
used to implement it, the experience we have had u.ing it , and some unresolved issues
it still presents.
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La Introduction 1

1. Introduction
La is a system for building software systems. It is a tool for the professional

programmer , and was originally intended for use in constructing arti f icial intelli gence
systems. Its most important use, however, has been in providing the basic software
support for experimental computer systems. Under development at CMU since 1969,
operational versions of La have existed since 1970 and have been in experimental use
by a small communit y. However, only a short description of the system &r4 the design
philosophy that underlies it has been published (Newell, Freeman, McCracken, and
Robertson 1971). The system, its philosophy, and our experience with it have now
reached a sufficientl y mature state so that a general exposition of it seems useful.

La’s roots lie in the series- of IPLs, the original list processing languagcs (Newell
and Shaw 1957; Newell, Tonge, Feigenbaum, Green, and Mealy 1964). As experience
mounted with IPL-V and with LISP about the nature of system building in artificial
nte lhi~~nce, it seemed appropriate to make a f re~ h ~~~~~~ w ith ttii~ ernphi~isis on system
implementation rather than on the language aspccts. L6 (Knowlton 1966) had shown
that efficient low level systems could be built using list structures as a data t ype. An
eariy attcmpt to understand the lesson&of L6 resulted in a similar macro-based system
on the IBM 360 called *1 (Newell, Earley, and Haney 1967). An attempt to understand
the nature of a flexible dynamic user interface resulted in a system call EJIP (Basic
Interface Package, Newell and Freeman 1968), embedded within IPL-V. All these
systems can be taken as the direct precursors to La.

Familiarity with two basic, albeit informal, notions is assumed throughout this
paper .

(1) A softwar e sys tem is an integrated collection of programs arid data
which provides the diverse functions necessary to an operating
environment: communication with users, resource meP~agement ,
debugging aids, behavior monitoring aids, archiving, comt~iunication
with other software systems, as well as the main problem solving
functions for the task (though no particular subset seems to be
essential). Typical examples are operating systems, large A! programs ,
and airline reservation systems.

(2) An implementation system is a specialized set of software tools
used to create software systems. Typical examples are BCPL
(Richards 1969), BLISS (Wult , Russet, and Habermarin 1971), FCL
(Wegbreit 1971), and XPOP (Halpern 1964). The concept of an
imp lcment2tion system has arisen more or less concurrently with an
awareness of the severity of software production problems and with
the discipline of software engineering devoted to coping with thr ’c
problems.

To understan d the relationship betwesn La and other implementation systems , it
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is useful to look at the basic forms that implementation systems have tai~en. Poughlyr speaking there have been three paths of development:

Macrosystems: The assembly language has always been the courl of
last resort for creating any programming structure. The addition of
macro facilities has been the main vehicle for adding facility to
assemblers. This has led to the development of systems that take the
macro facility as the central device in an implementation system. XPOP
is a good example.

~~~ level language systems: The desire to use high level languages
for system implementation has existed for a tong time. These
languages make system implementation and maintenance easier by
making system structure more apparent. Until recently, their use has
been limited because of the relative inefficiency of code produced by
their compilers. This has changed, with several languages being used
effectivel y, notably BLISS 1 1 (WuIf , .iohnsson, We instock, Hobbs, and
Geshchke 1975) and BCPL.

LL~1 processing systems: List processing systems offer interactive 
;ind

symbol manipulation capabilities riot generally found in either
macrosystems or traditional high level languages. Their use has been
primarily in building large artificial intelligence systems, which have
many of the same properties as general softwar e systems although
they tend to be experimenta l in nature . The most commonly used list
processing language is LISP (McCarthy, Abrahams, Edwards, Hart , and
Levin 1962).

Implementation systems always involve a language of some sort and this often
serves as a shorthand for denoting the system. But an implementation system is always
much more; it is the total set of facilities that are provided to create software systems.
These include all the usual functions that typically show up in a software system itself
(e.g., an operating environment and debugging facilities) .

We will assume general familiarity with these notions. Further elaboration can be
found in Freeman (1975).

In Section 2 we will present the design philosophy of La, to make clear
where it stands in the space of implementation systems. In Section 3 we will
describe the structure of the system that makes possible the realization of these
design principles. Section 4 discusses the results of some experience with La.
Section 5 concludes with a general discussion of the open issues arid some
comparisons with other specific implementation systems.

-r - - - _ _  -.
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2. Design Philosophy
In this section, we will describe the design characteristics of La, and compare

them with design characteristics of other implementation systems. The design
• philosophy of La can be described in terms of a number of dimensions (or issues) on

which implementation systems must taks a stand. For these issue-dimensions there
rarely exists a complete characterization of the alternatives, but only a few points that
have been adopted by various systems. To help place La, we will also indicate the
position along these dimensions of typical high level language (HLL) systems and of
LISP. Detailed comparison of La with specific systems (e.g., BLISS or LISP) will be
postponed to the end of the paper, since our purpose in this section is to describe La.

Figure 1 lists the issue-dimensions vertically, with a column for each of the
three systems. The entries are explained in the subsection on each particular
dimension.
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4 Design Philosophy La

HLL LISP La

Symbols Identifiers Symbols Symbols

Interaction Batch interactive Interactive

Production Mode. External Internal Internal

Flexibility
Data-types Some None Total
Control Little None Total
Sy~iiax Little None Total
Contraction None None Little

Accessibility Partial Partial Total
Addresses No Yes Yes

Efficiency Uniform Selective Selective

Language Form
Algebraic Yes No No
Ooerand syntax Infix,function Function Postfix
Variables Yes Yes No

Inte~ ra~j~~ No - Complete Complete

User Community Universal Dialect Personal

Maintainability Centralized Dispersed Local(self)

Design St rate~v Structured Iterative Iterative

Figure 1. Design Philosophy Characteristics
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Symbols. What capabilities exist for symbolizing and representing within the
implementation system entities in the object system, and for manipulating these
representa lions’ La abides by the following pri rv i ç i lc. :

Untversal s ,mb~L s ,stC,T~.: There should exist a single homogeneous
system of symbols which can be used to represent any aspect of the
object system.

This requirement is a stringent one that, in the current art , almost forces an
implementation system to contain a symbol manipulation language. Thus, LISP also
satisfies this principle. But BLISS does not. Instead, it has limited (though powerful)
symbolic capabilities fixed in advance by the design of the system (e.g., for
instructions, for blocks of memory space, for addresses and for integers). The
requirement for a more general symbolic capabilit y has been recognized, for instance,
in Alphard (WuIf 1974), a language scheme under development , which has as one goal
the ability to represent arbitrary levels of abstraction.

Interaction. What type of interaction occurs between the object system designer and
the evolving object system? Alternatively, what is the interaction rate between
designer and operational object system? La abides by the following principle:

Fu ll J ttter acr~o,%: The designer should operate interactively with the
implementation system in all aspects of object system creation.

Most implementation systems , either high level or macro systems, are compilers.
The mode of operation with them is essentially batch: code, compile, run, debug and
repeat. The loop is quite long with substantial coding often taking place between
compiling steps. Some other languages, especially LISP, operate as full interactive
languages where the loop is very short , and many incremental changes are closely
interwoven with small running steps.

Production Mode. How should the implementation system construct the object system?
Should the object system be grown from within the implementation system or
deposited (as an object file is deposited by a compiler)? Should the object system be
produced as one entity or as a series of modules? What kind of run time support is
required if the object system is deposited? La abides by the following principle:

Growth t( ob ject :vsrvns: The object system should be crested
within the implementation system by adapting and adding to the
existing facilities.

There are two basic possibilities: deposit the object system, or grow it. It has
been practically taken for granted that the implementation system -- the assembler ,
compiler or macrosystem -- shouk~ produce the object system as a body of code
independent of itself (i.e., as a module). Thus, HLL systems all deposit their obj ect
systems. Only with fully interactive systems has the alternative of growing the object
system emerged. Thus LISP, as well as La, grows its systems. The tradeoff is clear.

4 -
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On the one hand, the object system may bear little relation to the implementation
system; there is simply no reason why it should be mixed. On the other hand, large
numbers of mechanisms can be imported from the iripk~mentation system and adapted;
furthermore , a functioning system can exist at all times. With the choice of growing the
object system, the problem of excess mechanism is a real one in many operating
environments, so that contraction of the system is an important function.

Flexibility (Extensibility) . What aspects of the system should be flexible (i.e., should
be capable of extension or contraction)? The issue applies both to the implementation
system itself and to the object systems that are to be constructed (though different
positions may be taken for each). La abides by the following principle:

Tot ’&L f lexthiL:~~~ All aspects of a software system should be subject
to modification and extension.

The principle may be stated in another way:

~~ des~~,ter’s prero~atwe: The system designer should avoid design
choices that cannot be later modified by a user of the system.

Perhaps the issue should have been called extensibility , since much of the
relevant work has occurred under that label. But , following a suggestion of Krutar
(1976), we prefer the term flexibility since we need to be as concerned with
contraction and modification as with extension. Thus, when we refer to flexing a
particular aspect of a system, we refer to the act of making it different in response to
some demand.

Programming languages are in essence devices for flexing a computer. In so
doing they set up a number of conventions which force the object system to be
structured or to be specified in fixed ways. Attem pts to relieve these rigidities can be
classified under a number of headings: syntax , data-types , control , and name
conventions. In Figure 1 we separated out these categor ies , since the progress in
obtaining flexibility has moved through them. (Some categor ies , suc h as flexibility of
the lexicon and flexibility of the procedures, are common to all programming systems
and need not be listed.) We have added contraction as an additional category, simply as
a reminder that almost no systems permit easy contraction , as opposed to extension.

La takes it as central that flexibility should be present in every aspect of a
system. This applies equally to both implementation and object system since in La they
are one and the same. -

Accessibilit y . W hat parts of the programming system and the underlying machine are
accessible from within the system for purposes of modification and exploitation? La
abides by the following principle:

Toto.L occ~.ssth.Lity : All aspects of the system and the mac hine should
be available f or manipulation.

_____________________ 
p 

-- — --- —--- — —.~~~- — —--— — -—-----——--- -
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Despite the apparent desirability of such notions as total accessibility , there are
alternative views that have equal plausibility. The main one is that a software system
(especiall y an operating system ) takes a mac hii~c ~nd con”crls it to another more
suitable machine , which is then what the user sees. The user is not supposed to have
access to the underlying machine. This view , which is essentially that adopted by
systems such as LISP, as well as by most operating systems , produces a sharp
distinction between users of a system and system designer -mainta iners. Only lhe latter
deal with the guts of a system, which is a different world in terms of its conventions
and flexibilities from that which the user experiences.

This alternative view produces two distinct issues of accessibilit y: (1) total
accessibility of the underlying machine and (2) accessibilit y within the shell provided
by the underlying system. Thus, LISP has complete accessibility within the system, but
not to the basic machine. La, on the other hand, attempts to provide complete
accessibility to the underlying machine, while at the same time providing a world of the
same interactive convenience as LISP.

Efficiency. What is the efficiency of the system with respect to the various vital
resources: processor cycles, memory space, and i/o channels? Efficiency issues arise
independently for the object system and for the implementation system, and with
respect to the latter for initial construction and for modification. La abides by the
following principle:

Selectwe o~timizat&p,t efficiency is to be achieved by the detection
of the critical constraints in a running version and their selective
removal.

The programming languages initially used in La are interpretive , thus trading
time efficiency for flexibility. This contrasts with compiler-based implementation
systems , which endeavor to produce relativel y efficient code. In the limit , as viith
BLI SS1I , very efficient code is produced at once for an entire object system . Since
efficient systems are ultimatel y required, La has to obtain the efficiency somehow . It
attempts to do this by selective compilation, reorganization, data compaction , and
microcoding.

Langyage Form. What linguistic forms does the designer use to communicate with the
implementation system? This pertains only to the implementation system; presumably
it is possible to construc t object systems with any desired linguistic characteristics. La
abides by the following principle:

Dyaarni c ~‘uer face: The linguistic interface with the user should he
dynamically adaptable.

There are two normal forms for implementation languages. The first is that of a
higher level language, namely, an Algol-like language with expressions , procedures,
functions , and infix operators. The second grows out of the form of assembly
language; namely, a sequence of operator-argument forms that retains some sequential

_ _ _  --- ---- — -



8 Design Philosophy La

c orrespondence to the internal memory space (this carries over to most of the macro
languages). LISP represents yet another path, retaining the expression form combined
w ith a uniform prefix notation. As we will si:e , the form of L* ’s language (which is
postf ix with no syntactic structure at all) grows out of its interpretat ior principle,
w hich is determined on independent grounds.

Integration. How is the total set of facilities used by the designer organized? La
abides by the following principle:

Ce,npkte intefiratLon.: All of the facilities to be used in constructing
a system are to be available as subparts of a single uniform world.

The situation normally faced by the designer of a system is that he has a set of
distinct facilities —— such as languages, editors, debuggers, timing packages , and cross-
reference programs. Each of these is created with a separate set of linguistic and
interactive conventions. There is integration only at the level of the underl y ing
operating system , seen by the user-designer as a single uniform command language.
On the other hand, general interactive systems f rom JOSS (Shaw 1965) onward have
adopted the other position by integrating all the facilities with the main language
system. LISP, APL and La belong in this lat ter category, along with a less well -known
system called LCC (Perlis, Mitchell, and VanZoeren 1968). Though at heart a JOSS-like
system, LCC has many of the features of a standard HLL, and thus represents a rather
unique marriage of HLL constructs with the philosophy of complete ritegration.

~~~~ Community. What is the communit y over which the object system is to be fixed?
La abides by the following principle: -

Per:onaüj atton.: The system is to be adapted to the particular
circumstances of machine, system builder, and task.

This issue poses a genuine tradeoff. Fixing the properties of a programming
system (either an implementation or an object system) increases the communicability
and portability of whatever programs are created within it. On the other hand,
features of the particular computer or preferences and insights of particular designers
and users cannot be fully exploited. The need tor complets adaptation is greater when
the available resources must be exploited to the limit , less when tasks do not press the
art or the resources. Adaptation , and thus idiosyncracy, is more acceptable when the
systems or tasks are unique in other ways, so that there is little to be gained from
standardization in any event .

Maintainability. How is a system to be maintained, meaning both the removal of bugs
and the gradual evolution towards increased capability? This applies both to the
implementation system and to the object systems produced. La abides by the following
principle:



La Design Philosophy- \ 9

Local lna&ntcnanc e : Maintenance should be total ly within the
purview of the users of the system (~nci hence their resp onsibility) .

Design Sirategy. How shall the designer proceed in creating a new obj ect system? La
abides by the following principle:

Iteratlue design: A system should be created by a series of
successive approximations in the form of operational systems.

This issue of design strategy is usually referred to as “design philoscphy”, but
we need to distinguish it from the design philosophy of La, which we are i~i he midst
of describing. Iterative design is to be contrasted with a top-down, structured
programming design philosophy, in which a hi gh premium is put on prL ducing careful
specif icat i ons, and even in proving t hat the algorithm being programmec is corre ct .  It
must be noted that none of the systems in Figure 1 actuall y dictate a design
philosophy along the dimension of concern here. They only predispose towards one or
the other. Implementation systems s uh  as BLISS are consonant with the structured
approach.

There is a subsidiary principle that we use with La as a guide in designing
object systems:

No excess generalit y; No par ameterizations should be created
without concrete evidence that variation will actually be exercised .

Excess generality exists in almost all large systems and often in tmmens~quantities. Such generalit y always costs time and memory and is a prime contributor to
what one might call “system bloat”. The above principle can be adhered to , of course ,
only if it is easy to introduce new generality whenever it becomes appropriate .
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3. Mechanisms
Having in the prior section- laid out a s~ I of desi~ ii principles that ch~iracterize

La, in this section we descr ibe the main structural mechanisms that permit their
realization. Most of the principles permeate the structure of the entire system.
Drawing the mapping explicitl y between principles and mechanisms leads to much
redundant exposition and will not be attempt i il. The way those mechanisms dovetail
with the princip les is quite apparent at a surface level. The deeper evaluation 0f wha t
unanticipated consequences the mechanisms bring with them, and whether the
principles themselves yield good system implementations cannot be seen from a
descrip tion of mechanisms alone. Some of these issues will be addressed in Section 4
on experience with La.

3.1. Facilities

We describe first the scheme whereby an L* system is organized. This is not a
crit ical mechanism , but will permit the descr iption of the mechanisms to fall into place.
We will return to the overall organization later .

La is organized as a collection of facil it ies. A facility is an increment of code and
data that provides a collecti on of interrelated functional capabilities to the system.
Since the basic style is that of growing a system , a facil ity is not a self—contained
module, but makes use of facilities existing at the time of its addition to the system.
Thus, there is a graph of dependencies among fac ilities , since any facil ity requires that
certain others already exist in the system for it to operate successfully.

The facil i ty as an organizational unit is responsive to the principle of no
designer ’s prerogative. The concept of module (Parnas 1972) implies in existing
machine ar chitectures that a base be provided to support the module structure. This
designer-posited base is not itself a module and cannot be modified without destroy ing
the system. No such base exists for La; we envision La systems being regrown from
scratch with arbitrary modification and redesign.

3.2. Syribol System

The notion of a symbol system is widespread, al though seldom (orm~.li~ed. It
c onsists of a set of symbols and a set of data-t ypes (symbolic structures ) in which
tokens of these symbols can occur. Besides the usual operations on the data-types
(which create , manipulate and modify them), the essential operation is that of an
ass ociation between symbol tokens and entities called their referents . 1 The associat ive

E l )  Within th. sy mbo lic sys ~sm thi s. irs siwsy . to dii. s tr uctur es which r.pr...rt in s ome ~.ner.l wsy

the •nI, l,es .c(ueii y referred to

-~ - . . - - - .Th- -- - . .
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relation is one of access: given the symbol token , access is had to its referent
(representation). Sometimes there is a single such association (often called
assignment), but systems can permit many such associations .

The decisi on to admit a uniform class of symbol so that any sort of entity could
be referred to , coup led with the requirement for total accessibility , led to the
following:

Symbols j~ ~~ 
are identified 

~~~ 
addresses: All symbols are addresses

and all addresses are symbols.

This has far-reaching consequences. On the positive side, wi thin the symbol
structures that are basic to La, any address can occur without causing some operation
(such as printing, erasing or searching) to misbehave. One can build structures that
refer to obiects such as operating stacks , basic machine code, and even the reqisters
of the underlying mac hine.2 Furthermore, simplicity wi ll be fostered , since the symbolic
structures in the system will be as simply constructed as possible.

On the negative side, there is a limit to the number of symbols in the system,
namely the size of the address space. But much more important , the mapping of a
symbol to its referen t is fixed by the hardware (i.e., a symbol refers to a fixed location
in the address space , whe t her physical or virtual). Thus the freedom to assign
symbols to referents , and especially to reassign them, bec omes restricted. This is a
genuine restric tion, and one we will return to at several points; it has been accepted
as the price for the benefits above.

Notice that symbols are internal to the comouter . They can iust as easily be
created internally as by a user ex ternally; in fact many are defined a priori .’1 For the
user to work with any of these symbols he must attach an external name (e.g., in
ASCII). We will treat this at length below , but it is important to note the difference
between names and symbols: names are external character strings associated with
par ticular internal symbols.

A Symbol Facility provides the basic capabilities for creating and
erasing symbols, and for doing the primitive operations that can be
defined for symbols independent of what they refer to . These
operations are tests of equality and inequality, and incrementing and
ciecrementing.4

[2] If th ey are with,n 1k. user s sddr. ,s spac e , is the y s r. on the POP 10.

[3) E~ • ,n the POP 10 the re~~st.rs and the so-cal led ,*b lit, area (wher e the monitor ;t.,rn~ ucor job—
dependent ,nf ormsl io n) ir, both w~t hrn the user s sddr.ss epic.

[4) Th. slu r .w,st because symbols are addr ess es , and would not b. m.anin~ful ,f symbol. hid been d&,n.d
is sn abs t rsc t set.
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A comp lete capability for symbol manipulation requires also a f lex ible data-t ype
f or symbolic expressions. Not all data— ty pc~.. in a sysleni will rlIIOW symbolic
express ions , but there must be one such, and it wi lt play a fundamenta l role in the
system. It will be the medium used for all representational tasks which cannot be
accomplished by other more specialized means. In L* this basic data-type is the linked
list of symbols.

A ~~j  Facility provides the processes proper to manipulating l ists:
getting the next cell, getting the symbol in a cell , inserting, deleting ,
copying, and erasing.

A single designative rela tion (here, be tween . addresses arid the addressed
memory locations) is sufficient for all purposes, but quite cumbersome. La thus
provides a general mechanism for attribute-value associations. Given any two sym bols,
say X and Y, it is possible t o create an association (along some attribute symbol , say A)
from X to Y. Then given X and A one can directly retrieve the symbol Y. There can be
as many associations (and as many different attribute symbols) as desired. This is an
example of the positive benefit of choosing symbols to be addresses. Assoc iations are
permitted on any symbols, hence on any addresses.

Associations are realized by a hashing scheme. A noteworthy feature is that
each attribute has its own hashing tabie , t hus allowing the sizes of these tab lec to be
irdependently determined and dynamically adjusted. This allows control over the
space—time tradeoff. For example , if access is rare for some particu lar attribute , its
hash table can be made small -- resulting in slower access but reducing the wast e of
empty table slots.

An Association System Facility provides the capabilities for creating
associati on symbols, crea ting, re trieving and deleting associations , ~rnci
otherwise manipulating the association structures.

3.3. Universal Type System

All the data within La is of some ~~~ and there is a symbr.l that des ignates each
data- t ype (called the type symbol). Given a symbol, the type ol the data structure it
designates can he determine d. Similarly, when a symbol is defined, its data-type must
be ~pecificd (though this can be done by the system rather than the user). New data-
t ypes can be created at will. Figure 2 lists the data—t ypes that are defined in the
initial system , w ith the external names of their type symbols. This initial set is  neither
a comp lete set nor a minimal set; rather , it is what is necessary and sufficient for the
se t of initial facil it ies.



La Mechanisms 13

TIT Type type
T/M Type machine (code)
T/W Type word (also integer)
T/L. Type list
14’ Type program list
T/J Type stack
TA( Type character
TA(S Type character string
1/A Type attribute (hash table)
T/AL Type attribute list (conflict list)

Figur. 2. Initial data—typos

Data-types serve three important functions. First , they permit type dependent
processes. A print routine can print any input structure appropriately by firs t
accessing its type, t hus relieving the user of always knowing what type of structure is
being printed. Second, space can be managed by aata-type (and the initial system
does so). Thus there may be several data-types which are identical in structure but
are distinguished in order to manage the space they occupy (e.g., several areas all with
lis ts, but of separate types, TILl, T/LZ ..., to keep them segregated). This
management can be seen as just more type-dependent processing (copying and
erasing), and the implementation does in fact operate that way, but space management
by data-type is still worthy of special note. Third, the interpretation of programs is
totall y t ype-dependent. This fact has very widespread ramifications for the basic
programming language used within La, which we treat in the next section.

Four requirements on the type system have emerged from the discussion so far:

(1) Every symbol, hence every address, must have a type (thus a
process must exist which, for every symbol, delivers its type).

(2) Types must be dynamically creatable.

(3) Types are to be used in the interpretation of the programming
language (thus th. process for finding types must be very fast) .

(4) Types of symbols must be dynamically changeable.

We have not indicated the relative frequencies of ex.cuting type dependent processes
(such as print , erase , copy), of new type creation, and of changing the type of an
existing symbol. It is clear , however , that all these will be very much esr frequent
t han type interpretation, and thus they do not dictate the design of the type system.

_ _ _  
- - - - _ -
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This is an exceeding ly hard set of requirements to meet on a predetermined
archite cture (e.g., PDPIO, POP1 1, IBM 360). For instance , storing a type symbol for
each symbol (i.e., address > in t he address spacc t~ kc” on the order of half the memory.
Further , making the t ype access fast requires a simple algorithm. Since the type must
be found given only the symbol (address), the type must be either a simple function of
the .~address or else stored at a place accessed via the address. Extracting the type
fr om the address makes type creation difficult , and changing types nearly impossible.
Alth oug h the type may be considered as just an association from the symbol, this is
not a possible implementation since all symbols in the association structure must
t hemselves have types; nor is it clear that a hash table scheme is fast enough for
requirement (2).

In the current version we compromise requirement (4) on changing types , but
not the other three. We assign types in contiguous blocks (128 locations on the
PDPIO) by using a type table with one entry for each block (2048 entries on the
PDPIO). Access to this table can be made directly fr om the symbol (address) in two
POP1O instructions , w hich becomes the basic type access time. Changing types is
effect ively stymied because the types of a whole block of symbols are tied together
and cannot be changed independently.

Actua lly, we have created a faci lity for dynamic types by exception , in which a
block can be declared dynamic to allow each symbol in the block its own type.
However , experience has shown that such facilities are not much used, probably
because of their high cost rather than a lack of desirability.5

A Type Facility provides processes for getting the type and testing
types of symbols. It contains subtaci lities for creating new types and
f or creating dynamic types.

3.4. PL*: The Programming Language

Often the preferred strategy for creating a complex program is to create a
special problem-oriented language whose structure reflects the unique assumptions
about tl,e task. To maximize the number of application areas, La anticipates the
existence of many programming languages within it. The initial La system , however ,
contains just two languages: a form of machine language (called ML*) and a gE’rieral list
processing language for manipulating the symbolic expressions (PLa). PL* is, in some
sense, the La language, but we emphasize that other languages and syste m s grown
within La are not necessarily built on top of PLc . Often, they begin that way and are
converted to MLa under the press of selective optimization. MLs and PLc (and other
languages like them) are to be distinguished from the language through which the user

(5] The cost is h u h  •iilr . sp ice for each sywibol whose type us an e*cept io n lo the block ’s type , end “ Ira
time f or acc .se ’n5 the typ. of every symbol ,n the block.
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at a terminal interacts with the system. This latter is called ELa, and will be di~.cussed
later .

PLa was designed to be the simplest possible list processing language. The
basic data-type is the list. Normally, in the design of a programming language , the
language itself is a unique and complex data-type, radically different from the types of
the data structures on which it operates. List processing languages, on the other hand,
have been able to use a single data-type for both program and data , thus providing a
unif ication not possible in standard languages. This unification has quite real effects
when it comes to programs that  create programs.

Coalescing of data and program is not achieved simply by deciding to do so. The
most fundarriental property of a programming languageS is that it determines what data
and operations are t o be brought together , and when (and if) they will bc executed.
All programming languages must therefore have some way of distinguishing operands
from operators (or functi ons). In a standard programming language this distinction has
no counterpart in the data structures. Thus, the program data-t ype, in ter m s of its
most basic requirements , threatens to be unmappable in any natural way into the other
data-t ypes . A list , for instance , is a homogeneous sequence of symbols without
anything t o distinguish operators from operands.

The solution adopted by LISP is to employ one of the natural features of the list
(that it has a first symbol) to make the distinction between operator and operand: the
first symbol in a list is to be the operator and all others the operands. This makes the
program data-type different, but easily assimilable into the gener al list dat~i-type.
Indeed, it f i ts  with a common encoding of data in which the first symbol on the list is
taken as a “tag ” or data identifier , with the remaining symbols in the list fitting the
conventions determined by the tag.

The solution adopted by La is to retain the homogeneous character of the list , so
that the interpretation of every symbol is to be the same. Then the distinction
between operand and operator cannot be given by the structure of the program (the
syntax) , it must be given by the nature of the symbols themselves (the semantics ) . This
distinction is taken to reside in the type of the symbol. Thus for each type there is an
interpreter , which is to be executed whenever a symbol of its type is encountered. We
can express tl,is in a principle:

EL~ 
mn t~ rpr etaf ion ~~ ~~~~ A list of symbols (Sl 52 ... ) is to he

interp reted by successively interpreting each of its symbols, SI , 52,
and so on. A symbol Si is to be interpreted by executing the
interpreter associated with the type of Si.

With this interpretation rule there is a distinct data-type for P1* (called T/P, for
type program list) , but it is structurally identical to the list dat a— type (T/L). The
difference in the two rests in their associated interpreters; the T/P intcrprcter treats
the list as a program, while the T/L. interpreter treats the list as data. There wil l, of
course, bc interpr eters associated with each of the types of Figure 2, and indeed wi th
all types that are creatid.
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The interpretation principle does not completel y determine the char acter of the
language; it depends intimatel y on the details of the individual interpreters. 6 Given that
an interpreter has access to the data structures Of the operating environment and to
the program structure itself , there is wide freedom to specify further the character of
the language through the actions of the interpreters .

The interpreter set for PLc abides in so far as possible by the following
principle:

Context independence: The interpretation of a symbol in a program list
does not depend on the part of the program list not yet interpreted.

This principle, in conjunction with the one above, almost comp letely det ermines
the characte r of the language. It has three general effects: (1) there are rio
incomplete expressions; (2) symbols establish a state within which the following
symbols can be interpreted; and (3) operator-like symbols cannon be taken as
operand-like symbols (for if they had to be u,tcrpretod in isolation, their interpretation
would have been operator-like). These imply the following structural features of the
PLa language:

Post-fix: Operand-like symbols must come before operator-like
symbols.

Stack communication: Operand-like symbols must have somewhere to
wait until the operator-like symbols come along, and they must do this
without knowledge about the operator-like symbol.

Goto-less control structure: Goto operators take operator-like symbols
as operands, which violates the rule.

Condition signal: A test must occur before conditional action based on
it is possible; hence the effect of the test must be statisized.

Explicit quote: There must be some way of obtaining an operator-like
symbol as operand. Thus, some violation of the context independence
principle must occur. A quote operator focalizes this as muc h as
possible.7

The fundamental reason for adopting the context independence principle is to
make PLc simple to understand in terms of its underiying mechanism. There can be no
complex actions that cannot be resolved into a sequence of simple ones . Equally, in

(6) Th. u nter p re t s ts o n principle does , however , easeri tia lly determin , the inte rprete r fo r T/ P

(73 1., the quote opera tor is a symbol that is interpreted pr ior t o its operand and wh ,ch •cq u,r.s its
operand without in t e rpretation ,

_ _ _
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terms of inte raction , the interpretation of the langui~ge can be brokers at any point and
additional processes inserted or executed. 8

In terms of language design, we have long been interested in undcrst.~mnding the
extent to which a strong context independence assumption is compatible with a
language whose surface appearance is still very much that of a higher level language.

The ~~~ Facility provides the operating environment for PLa along
with the control processes to be used in PLc programs.

There is also an Interpreter Facility which provides the set of
interpreters used in PLa.

Some examples of PLc coding will tie down these various design decisions and
also reveal the surface form of the language. Figure 3 shows a list named Li defined
to have three elements A, B and C. In terms of the underlying linked list
representation , there are three memory cells Li, L2 and L3, each of which holds a
symbol (A , 0 or C respectivel y) and a link to the next cell. We consider a program,
called TBL, which tests if the symbol B is in the list. This program has a single input (
the list to be searched), but is specific to the symbol B. The various component
processes are listed in the figure. Verticall y below the program list we have shown
graphically the data stack (called 2); we have written a * at the bottom to indicate an
indefinite number of other symbols that will not enter into the processing of TBL
Directly above the stack we indicate the condition signal (+ if true or succeed, - if

- false or fail).

(8] Th. esphc,t quote is an e*cept ion.
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TOL -- Test if symbol B is in list

TBL : ((P S B =S ,+ N F ,R i.) ,— U)

Example list input on stack: Li: (A B C)

Internally: L1:[ A L2] L2:( B 1.3] L3:( C NIL]

Processes used in TBL (all T/ll -- machine code routines)

P Push top symbol on data stack (2)
S Get f irst symbol in list

5 Test if two symbols are identical
+ Exi t  if signal +

N Get next location in list ( t a i l )
F Find list (set + if continues, else — and pop)
,R+ Repeat if signal +, else no-op
• — Exit if signal —
U Pop data stack (2)

TBL: ( ( P S B S .+ N  F •R+ ) • U )

+ + + + + — — - +
Li Li Li A B Li Li L2 L2
* * Li Li A * * * *

* * Li -

*

+ + + + + + + +
L2 L2 B B L2 L2 L2 *

* L2 L2 B * * *
* * L2

*

Fi gur . 3. Exampl. of a simple PL* routiri.

_ _  

_ 
H

— *— - — - - -- —
~~~ 

-— - - - -.— — — —.—-- -.- — -
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Z originall y holds Li, the operand for TBL TBL is a T/P list of three elements ,
the first being of T/P itself and given in extension as the sequence (P ...
Interpretation of this list leads to interpreting i ~~h of 1; cIc. mcnt~.. Tlic f ir~.t symbol is
P. This is a T/M symbol , which is to say machine code, and the T/M iriterprele r simply
makes a subr outine call to the machine code routine. The effect of this is to push Z,
resulting in tw o instances of Li. The interpretation proceeds sequentiall y. S gets the
symbol in the cell Li (i.e., A); B is a data symbol and its interpreter pushes it onto the
stack; S is the test for symbol equality, which sets the condition signal — since A and
B are not the same (note that processes in general consume their inputs); • + is a
conditional exit , which is a no-op here since the signal is —; N gets the next cell after
Li (i.e., L2); F sets the signal + to indicate the list actuall y continues (N might have
pr oduced the end of a list); • R+ is a conditional repeat , which moves contr ol back to
the fr ont of the list if the signal is +.

The sec ond loop thr ough the sublist continues as before (the second line of
trace in Figure 3). This time S gets a positive result , since it has found tl,e symbol, so
that the exit is taken. Hence, the next symbol interpreted is ,— (a no-op hero since
the signal is +). The final symbol is U, which pops the stack removing the temporary
working symbol L2 (the moving pointer into the list).

The post-fix character of PLa is evident. Processes simply operate on the
operands that have been developed in the stack. To use TBL on a different list , say
L7, one would write:

L7 TBL

L7, being a data symbol, would be pushed on the 2 stack and then TL3L , being
T/P, would be executed on it , just as above. The goto-less character is evident in the
control operators , ,+, • — and • R+. Note in particular that looping is handled in a way
t hat is symbolicall y not much diff erent from giving a superordinate command (e.g.,
(REPEAT ... ) ), but conforms to the requirement that it be a context independent
action. It is apparent from the example that the language is a mixture of high level
and low level constructs. For instance, stack management is explicitly the
responsibility of the program.

Some variations on this simp le routine will convey some additional aspects of the
language. One would like to write TBL simply as:

TBL: (P S B zS • + N F Ri)

The additional ,— and U are required for cleaning up the stack , which is done
automaticall y by F at the end of the list , but not by , + on the positive ex it. The
following additional contro l primitive is definod in PLs (and is indeed required for
completeness):

• —H -- Exit on — , else remove the next higher level
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A primitive such as • — H is required because i t  must be possible to control for a
given program level the continuation of levels above.9 Using • —H one can recode TBL
as:

TBL: (P S B =S (.—H U) N F •~~ +)

Thus we have localized the code for exiting and cleaning up the stack. If we

wish we can introduce a new control routine:

• U+: (,—H U) —— Exit if +, popping st ack

With  this we can rewrite TOL once more as:

TBL: (P S B =S • U + N F • R+)

Actually, the routine is incorrect in its handling of empty l is ts , since it goes
thr ough the motions of testing the “firs t symbol” of the empty list bef ore quitting. 10

Another variation can be written that handles this correctly by moving F to the sta r t :

TBL: (F • — P S B =S ,U+ N • R)

The language also admits recursion, so that yet another alternative form for TBL
is:

TBL: (F • — P S B =S • U+ N TBL)

TBL has been written with a single argument , the list. it i5 more appropriatel y
writte n with two arguments. Let us then define another program:

TSL —— Test if symbol (0) is on list (1)

where (0) (1) ... designate position on the 2 stack. hen we obtain:

TSL: (20 I (F ,— P S 20 S =S • U+ N ,R) 20 D)

where I inserts (1) into list (0), and D deletes the top of list (0).

We have used a cell 20 (T/L) to hold the symbol to be tested. Thus we must
insert the symbol from the 2 stack onto 20 at the beginning, and again delete it fr om
ZO at the end. To access the symbol from 20 for the test , we input 20 to the stac k arid

(9) Beside, -14, th ere also .x ,aI .14, and .H (unconditional remov al of the next h,~her level) , sim ,inriy thor. -

exist R, P. and P-, -, -. and - - -

(10] The routine works correctl y on emp ty Iis$~ because S on an empty list morely dei,vi,rs ihe .ymboi NH..
a. output.

_ _ _ _  - ---- - — - -
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then c,xccute S on it. Otherwise TSL is just the same as TBL. We can collapse these
operations on ZO by defining some additional routines:

120: (20 1) SZO : (20 S) 020: (20 0)

TSL: (IZO (F • — P 5 S20 eS .U+ N ,R) 020)

If we wanted to generalize TSL further to take as input a generalized test ,
rather than just symbol equality, we might define:

TXL -- Test if there is a symbol on list (1) satisfying test (0)

TXL: (120 (F ,— P S SZO • X • U+ N .R) 020)

where • X executes (0).

One of TXL’s inputs is now a process; to use TXL we must use the quote
process. We can illustrate this by reconstructing TBL from TXL:

TOL : (.0 (B :S) TXL)

The quote, .0, is a T/M routine that puts the next symbol in the program list
(here the subprogram (B ~S) ) into the stack and advances interpretation past it.
Thus TXL will be the next symbol interpreted after the .0.

The examp les above illustrate the simplicity of the PL* langu-~ e. To summarize ,
PL* is interpreted by type, maintains context independence (no syntactic structure ), is
post-fix , and uses a stack for operand communicat ion. Let us now examine the other
initial programming language embedded in La, the MLa machine language.

3.5. ML*, the Machine Language, and Stacks

3.5.1 ML*: Machine Language

The use of machine language must remain integral to La , since it is the means
through which the machine is ultimately controlled. One shields the implemcntcr-user
from access to macl,ine language only by committing a maj or act of designer ’s
prer ogative -- of deciding that the forms of access determined by the original
sof tware desi gners (here the La designers) co.istitute the only means by wh,th the
machine will be utilized. But time and space effic iencies are of the essence -- that
computational completeness remains available to the user does riot suffice. This is
especiall y true for an implementa tion system , whose users will create still
undetermined object systems. 

—- -~~~~~~~~~~ - -- - - - 
Th -
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Access to the machine language does not imply that an initial compoi’icnt of La
mus t be an assemb ler of some form. In fact , La acinp is ~ Spe( iitc . pr iru Ip lr~:

Machine access: Access to the basic machine is to be obtained ‘,ia
symbolic structures created within the system itself.

Thus, though there are assemblers and comp ilers in La, they are not avai lable as
primi tive facil i t i es , but are constructed by means of PLa programs and data structures.
What must be guaranteed (though it is not difficult ) is the possibility of obtaining f u l l
control of the machine ultimately. This occurs by having the word be a basic data-
type (1/W ) with primitive operations that include the standard arithmetic , boolean , and
shifting operations. Given that words with arbitrary bit content can be easil y
fashioned, it is strai ghtforward to construct , within PLa, simple assemblers , macro
assemblers and comp ilers.

This principle, with the implied delay in obt aining faci l i t ies for assembling and
comp iling, rests solidly on the design goals of La. To make such facil it ies part of the
initial system poses an almost impossible tradeoff between initial simp licit y and
ultimate facilit y and flexibi lity. Assemblers , as a genre, are deficient in the facil i t ies
they pr ovide (compared to , say, LISP or PL/1) precisel y because they are “ initial ”
systems. Sucl, systems are not only lean, they are inflexible. HLLs solve this problem
by creating a large initial system (the HLL itself , e.g., PL/1). This at least obtains
facil it y, thoug h it doesn’t obtain flexibility.

Basicall y, the computer itself dicta tes the machine language. However , using
machine language within a syst em requires various conventions that con’~ti lute , in
essence, a particular sublanguage. Thus, ML. is the machine language plus a set of
conventions:

The operating environment consists of three stack s~ (1) a control
stack , holding the current instruction; (2) an operand stack; and (3) a
test condition stack.

All tanguage systems will use a common operating environnient , if
possible. In particular , ML., PLa, ELa use the same operating
envir onment.

The three-stack operating environment is dictated by the requirements of
common machine language and PLa use, these being the initial language systems.
However , it is als o an appropriate environment for realizing a wide variety of higher
level languages (like LISP or Algol). The major restraints on the machine language
programming are: (1) All argument-passing must use the operand stack (spec ifically,
reg isters may not be used); (2) Signal communication must use the test condition stack
(e.g., no skip returns may be used to return a signaJ ); (3) Working register usage is
limi ted to those not required to provide the three-stack operating environment .

_ _ _ _ _ _ _ _ _  ------- .-—-..-- —- .-- —--- - ___
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The communality of use over language systems is primaril y an ef t ic eiicy issue.
Wi t hout this , passage of control across a lang~ a~e houndary also requires ~h’j f 1lin~ of
data, in addition to the transfers required ~y t Ie  basic inecriaii,c.s of the calling
sequence. The c osts involved are substantial. In the initial PDPIO system s thr ugh
L*(G) we explored a number of variations on mechanisms that kept the operating
environments separate, and the tradeoffs are quite clearly in favor of commun ality on
standard computer architectures.

An important consequence of these conventions is that there is only a sing le
routine for a single function. For examp le, consider the function of inserting a symbol
in a list; this is needed in both language env ironments , PLa and ML. (and others as well
perhaps). There is a process named I (itself written in MLa) which is to be used
within both ML. and PL* programs to carry out the insertion function. Thus, there
does not have to be any dup lication of function across the two language environments.
This is in fact ar-i extremely strong contributor to simplicity in the La structure. As for
executing PLa programs from within ML., designer ’s prer ogative by the hardware
archi tects prohibited this from happening as it should. The PLa call must be
surrounded wi th a small machine language cliche. 11 Except for this, the situation is
symmetrical. Mos t interpreted language systems are hierarchical , with the interpreted
code ly ing “above ” a machine code base. The La language structure is not hierarchical.
Many PLS routines are called from with in ML..

3.5.2 Stacks

The abstract data—type called a stack is an extreme ly useful data str ucture in
sof tware systems , wherever there is interruption and return in the use of resources
(viewed quite abstractly ) . Phrase-s tructured languages, interrup t service , subroutine
hierarchies, and variable-binding hierarc hies are only a few examples. Thus an
implementation system nee& a stack data-type , both f or its internal use and to employ
in object systems. There are literally dozens of stacks in use in a typical L* system , at
all levels of system organization.

Stacks can be implemented in many ways. The most familiar is a sequential stack
occupying a continuous interval of the address space , in which push and pop are
acc omplished by incrementing and decrementing addresses. But in a system which
already has list processing, a quite natural choice is to map stacks onto l ists —— a
subset of the list primitives are isomorphic to the standard stack operations. Using the
notation in PLa:

(11] W h’ch puts the Pt.. symbol on the Z stack and then cat li , t ho Pt.. nte r prster .
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List $tac k
S Gd symbol in cell Read tnp ~‘iii bo l
R Replace symbol in cell Replace top symbol
I Insert symbol at front Push new symbol on top
I C Insert copy at fr ont Push (double top symbol)
0 Delete Pop

General advantages of lis t stacks include the immunity to ove rflow (since they
are not con ti guous blocks) and the availability of the more powerful list operations
when needed (insertion , deletion and reading other than the top entry). When used for
the operating environment of PLa , l ist stacks allow easy exp loration and modification of
that environment (e.g., in the coding of new control operations which directl y
manipulate operating stacks). In the PLa environment stack s hold symbols (i.e.,
addresses , which occupy half-words on the PDPIO); hence space and time costs are
about equal between lis t stacks and sequential stacks (usually considered the most
ef f ic ient  imp leme ntati on). All of our initial versions of La (throug h L~

( G)) used list
s t acks 12

The machine language operating environment mus t be realized with sequential
stacks in current standard architecture. Designer ’s prerogative by the hardware
arch i tec t s  has been exercised in the subroutine ca ll and return functions to make all
other choices for s tack implementation prohibitive. Thus , a choice of list s tacks  for PLa
(producing homogeneity there) produces a sp lit between the operat ing environments
of PL* and ML* , w ith the negahve consequences discussed above.

The current La systems have adop ted the other choice. Stacks are rcal izcd as a
distinct data-type , T/J 13. Then the PLa operating environment is identified with the
ML. environment , as above, wi th the consequent simplicity arid speed increase.

Stacks are now a general data-type providing func tions which partially duplicate
list functions. Corresponding to the processes or-i lists (S N R I D F ...) there are
processes on stacks (SJ NJ RJ IJ DJ FJ ...). Stacks are realized with a pointer
structure that keeps lower and upper stack bounds plus the actual pointer . The stack
memory area is a separate block , whic h can be relocated in memory to provide
expanded or contracted memory space. An important advantage in having stacks is
their preferrea use in object systems which do not wish to import list processing.

By providing an efficient stack data-type and a machine language (ML.)
integrated with the res t of the La system , we have provided mechanisms for achieving
tota l  accessibilit y to t h e  underly ing machine and for aiding selective optimization . ML.
and PLa are the two initial programming languages provided in La, but neither has any

[1 2) Not e  t hat the e’ca nip l,s in (h is paper us. list stack , (e g, for 20 acid ZQ); Ihoy could hi ,ve ua.d
s.qui~nt,iil ,tack~ 

-

[13) J fc i r  nothint , but think of the item of he J a; the o tac k ,.nd tho cup a; th o ov o ~ f low l o s t
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privilcg cd status. Other programming languages may be added at the same “level” as
ML’ or f’La. Now , let us describe the language ijc~~d to comm unicate between the user
at a terminal and the La system, EL..

3.6. EL*: The External Language

La treats PL. as an internal language -- a set of data structures in men~ory that
can control processing . It would treat similarly any number of other languages, such as
LISP . The human user , of course , resides outside the computer system at a terminal ,
and he communicates with La through some other language, or at least through some
notation for the internal languages. We call this external language EL’.

EL. must meet several requirements that separate it sharply from the se t of
internal languages:

Names vs. symbols: EL. is written as a sequence of characters
(assuming text , not graphic , input devices). Hence correspondences
must be made between sequences of characters and internal syiiibols.
We use the term name for a character sequence that maps into an
internal symbol.

Exte rnal fidelity : It should be possible to make the external language
- 

isomorphic to any given internal system (this follows from the
requirement f or simplicity).

Total accessibilit y : All internal symbols and structure must be
representable within EL. (i.e., ML., PLa , and all languages to be
subsequently crea ted).

Growth int o object systems: It must be possible to transform EL~ into
a problem-oriented language f or an object system , with an operatinr,
environment sealed off fr om the total L* environment. (The full range
of standard notational and linguistic devices must be easil y created
within EL..)

Dynamic modification arid simplicity : EL. must be capable of being
modified interactively by someone working within EL.. (This also
implies a simple mapping between EL. arid internal structures. )

The requiremen ts for fidelity and total accessibility for all internal Ian~uages
imply that EL. cannot simply be another language, analogous to PLa , wit h- i a pait icu lar
data-type arid set of interpreters. Thus EL., though a language functionally, must be
conceptually orthogonal to the other languages in the system.

We first disc uss EL. considered as a sequence of symbols, assuming the mapping

-C-- . -
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fr om character  strings to names to symbols has already taken place. This ~ the leve l
of syntax , but also includes the higher levels oh cpmanti cc and action . Thcn we will
return t o consider the lexical processing tha t proouces the symbois .

3.6.1 Syntax , Semantics , and Action

Standard syntax schemes imply the existence of a grammar arid a parser
between the user (i.e., the creator of ELa surface structure ) and the corresponding
in ternal data structure. Given the requirements for syntactic power , such a scheme
w ould seem to interpose a veil of complexity at odds with the desired tiocl ity and
simplicit y of the total system. -

The central feature of a solution to these multip le requirements lies in taking a
“process-view ” of syntactic interpretati on (Newell and Freeman 196S). Nari-icly , the
interpretat ion of an EL. sequence of names is to be carried Out as a cequent ia l
process. Some names will correspond to processes whose immediate executio n will
carry out the analysis of the input stream , t o convert it into a sequen’ e of internal
actions or structures. Other names will correspond to lexical items and will become the
internal symbolic data.

Let us capture this in a definition:

Sequential Process Grammar: A linear sequence of symbols, each of
which is either active or passive; active symbols are in(erprctcd
immediately in an operating environment that includes access to the
language stream. The active symbols are called syntax actions.

For EL., the stream of characters mus t be converted into a sequence of names ,
and these names must be mappe d into their corresponding internal symbols . Then
interpretat ion imp lies, as usual , ex ecution of the associated interpreter according to
type. Of necessity, then, the operating environment will be the same operating
environment used by these interpreters.

It remains to show the extent to which such a scheme can realize appropriate
surface structure. Though we do not know of any other programming language tha t
takes exac t l y this course , the scheme is closely related to the ori~ iri~ l form ula
translat ion schemes introduced tong ago by Sarnelson and Bauer (1960), and to the
pushdown ~chemes of Floyd and Evans (Evans 1~ 64). EL., however , does not form a
closed system , but opera tes within the environment of internal computation.

EL. is to be used for realizing context dependent surface syntax of all kinds; in
doing so there is no reason to adhere to the context independence principle adopted
f or PLi . On the othe r hand, a sequential pr ocess grammar , with its executi on of
independent syntax acti ons, lends itself to a str i c t adherence to the principte.~ This is
important in realizing an external isomorph of Pt.., but is also useful more widely in
interactive pr ogramming.

___ -~~~~-- - - - -——-- - - - .-. - - --- 
~~.— ~ - - -
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Some simple examples will make the scheme concrete. Figure 4 lays out a
scheme to define a simple list , (A B C). Each of the five character strings . “ (“ , “A”,
and so on, is a name. Thcre is no distinction bel~vc~ i idcnl ifi~ r~ and syntact ic  marks.
More accuratel y, the dis tinction is encoded into whether a symbol is active or passive
(as indicated in the figure by a and ~~~

). However , as we shalt see, any syrobol can be
active or passive and this state can be changed dynamically .

The first symbol ( is active; being a PLs program it is executed. The result is to
put a symbol into the stack to act as a floor. This symbol should be forever unnamed,
so it is simply held in cell called FLR. We call the symbol address 97, just to call it

something. The next name A maps into a passive symbol; it is pushed onto the stack ,
which is the fate of all passive symbols. Thus, the symbols corresponding to the
names B and C also end up in the stack. Finally ) corresponds to an active symbol
which also designates a Pt.. program. It creates a new symbol (via the CR process)
and goes into a loop transferring symbols from the stack onto the list , white looking
for the floor in the stack as a signal that it has finished. The symbol for the list is held
in cell ZO and all the inserts are made to the front (by 1), so that the order is the
same as that initially wri tten. The symbol for the list (called here 632) is output to the
stack .

Typed at the terminal: (A B C)

( A B C )

a p p p a a ac t ive, p — passive

* 37 A B C 632
* 97 A B *

* $7 A
* 97

*

(FLR S)

(T/L CR IZO (P FLR S =S ,U+ SZO I .R) SZO OZO)

Figur. 4. Defining list structures

_ _ _ _  
—C--- - ~~--- ~~~~~~~ - . -
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The scheme of Figure 4 suffices for any list structure. Trac tn~ throii~jh the
example below wilt show how each list is created as a symbol and becori- ics part of it~
embedding list:

(A (0 ((C) D (E F) G 10))

To add the syntax for assigning the symbol for a list ( :) we can proceed as
shown in Figure 5. The is a binary operator and cannot complete its own operat ion
until both of its operands are complete. In particular , : must delay until its right

operand is comp lete , which will riot happen until after it has itself been interpreted. A
natural device f or this is to create a delayed process that fires when the operand is

complete. In the present context , Only ) will know this , so it n-iust be given the
responsibility for executing the delayed process. As Figure 5 shows , : leaver Li. in
the stack and puts a pr ocess on another stack , ZQ. ) is modified to execute w hat is on

the ZQ stack after building the list. It does this by a routine .XQ, which we discuss
below. TI-ic delayed action exchanges the first cell of the list to be that associated with
the specified first symbol, Li, rather than the creatco symbol used by ) (using RW ).
The stack manipulations shown (V is reverse , P1 is push second element) are to
preserve 632 (the un-named list structure ) until the end so it can be erased (erasing is
done explicitl y in the basic La system).
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Li ( A B C )

p a a p p p a

* Li Li 97 A B C *

* * Li 97 A B
* Li 97 A

* Li 97
* Li

*

“ : : (.0 (V Ri RW E) 10)

( : (FLR S)

‘.) : (1/I.. CR 120 (P FLR S S .11+ SZ0 I .R) SZO DZ0 .XQ)

• XQ : (SQ .X DO)

SQ (20 S) 10 z (ZQ I) DO : (ZQ 0)

Figure 5. Definin g a named list

Our purpose of presenting this much detail is to show how syntax can be built
up wit h little effort.  In the 20 stack and ,XQ we have essentially all t hat is needed to
add the full complement of binary operations (e.g., relations and arithmetic) . In the
actual system , matters arc somewhat more complicated, because one must handle
multiple types and redefinition of structures.

La is a fully interactive language, so that there is the possibilit y of arbitrary
immediate execution as well as delayed execut ion. The analysis of the EL* input
stream already implies immediate execution of active symbols; to obtain tirirriediate
execution of passive symbols there exists a process called (itself active , of course).
The process is ac tually identical to the execute process ,X (except that ,X is not
active); I interprets (executes ) the symbol on the top of the 2 stack. Hence, in the
following t yped in sequence, the first two names put Li and TSL respectively on the
stack and execu tes TSL on input Li, just as we saw in Figure 3.

... L1 TSL 1

- _ _ _ _
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This example should help emphasize that not alt (or even most ) PI.* programs
are act i ve. Most are passive and are treated in EL. simply as additional data to be put
away in newly cons tructed programs.

EL. uses the same processes as are used in Pt.. (or whatever language is being
worked with) . It achieves the desired isomorphism provided that the ex ternal syntactic
structur e can be realized by means of syntax actions that build isomorphic struc tures,
which in general is possible. Conversely all of the processes that are available in ELa
muGt also be available internally. This can be appreciated , for example , in copying a
list. Suppose we wanted to copy a known list , Li:

CLI, -- Copy list Li 
-

Then an obvious way to do this, in an a l ogy t o the way lists are built externally,
would be (schematically ): 

-

CL1: ( <contents of Li> )

Since ( and ) are simp ly symbols that designate PLa programs , we can use
these internally as well as externally. All we need to do is treat ( and ) passively. An
actual routine along these lines is:

CL1: ( ‘( Li ‘s4.. ‘) )

The quote ‘ is an active symbol that passivates the following EL. symbol. Thus
the outer ( ) define the list CL1, just as alwa ,~.. I h~ inncr ‘( ... ‘) are t he same

two processes , but they exist internally as part of the process CL1. The process 4-1..
dumps the contents of a list into the stack; since it happens -to be active as well as (
and ), it must also be passivated with ,~14

We can provide one last illustration by wr iting the code for 4-L, as it might have
been defined:

~ 4. : (F • — P S V N .1?) ~L. ACTI

The character ~ happens to already exist as a name, so it is necessary to use
before th~ name ‘-L to prevent it from being mis-recognized as 4 followed by L.’5
Then follows the Pt.. program, made up of the usual primitives. This defines 4-L, which
is now simply a routine, like TSL. To make it active we input it , input the activating
process ACT and do an immediate execution with I. From that point on ~-L. is active.

(14] Ii ,e of cou ros po,,èl. to p.s.svst . ‘ ti s if by w~it~n~ 
‘

(15) Th, oper .t,on of • will b. .xpl.,n.d mor. fully ,n h i s  fo l iowin~ s.ct io n.

- -- - -. —-— - . .  --
~~~~~~~ - _ _ _ _
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3.6.2 Lexical Rcco~nitson System

We have assumed above that EL. can be rcprcsented as a sequenc e of symbols.
In one respect this already differs from standard practice , in that all cyn tac l i c  marks
(e.g., ( or : ) correspond to symbols in the same way as what are usuall y termed
“identifiers”. We now need to show how the character stream is se~.rnerited and
converted into a sequence of names , w hich then become associated w it l- i internal
symbols.

Two requirements ar e particularly pressing for a lexical recognition sy .tein:

Flexibility: It must be able to encode a great variety of segnientation
and classificati on rules , t o support the growth of object sy~tcms tro r~within. (In particular , it must handle punctuation and syntactic mar k’:
in a way homogeneous with other lexical items.)

Effi c iency: It must be highly efficient —— time efficient since it si ts in

the basic interactive loop of the system, and space efficient since
users can be expected to use many names. (Systems wi th thousai,ds
of names must be practicable. )

The central recognition system is composed of two-way symbol tables , called
dictionaries (i.e., name—symbol and symbol-name correspondences ) . A dictionary
schcmc requires further specification. (1) What class of nan-ies wil l be ad,ritted to a
dictionary ? First , call a lexical recognition 22&!2! a point in the character ¶ 1  ream such
that the prior sequence of characters has been completel y segmented and recognized
and the fo llowing sequence is unanalyzed. (2) What dictionary applies at a point (if
several exist )? (3) What candidate names get submitted to the dictionary for
rec ognition at a point? (4) Given’ that more than one dictionary entry is sat i’ - f ied at a
point, how is the ambiguity resolved? Standard practice is to dO rule-based
segmentation of the character stream to determine a single candidate , such that
ambiguity cannot arise, admit ting to the dictionaries only such names as are consist ent
with the segmentati on rules. Multiple dictionaries in the form of nested block structure
are also st.rndard.

The flexibility requirements imply a different approach. EL. adopts the following
principle:

Longest- recogniza :~~~ That name will be recognized which is the
longest name that matches , starting at a recognition point (from within
the applicable dictionaries).

Some examp les will clarif y the principles (where we always take the recognition

_ _____ ——.~~~~~~~ — .  - -
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point to be at the far left). Under Text are exa i -nple inputs , each result ing in the
rec ognition under E~~o 7 i  when the names under Entries already exi~-t in the
dictionary;

j~.put Text Dictionary Entries Recop~nize
,+ • +N

L\AflC ABC L\ L\
(B (B ( (B

<= <

The princip le of the longest-recognizable is a semantic segmentatio n scheme
which c ouples segmentat ion to the contents of the applicable names. It pcrm;ts one to
have overlapping notations , not restricted by a set of arti f icial scgme ntat on rules.
The phrasc “artif icial ” is used advisedly, since it  appears to informal observat ion that
nuinans operate perceptuall y closer to the longest-recognizable principle than to any
other segmont ’tion scheme in common use.

A typical example of the use of this principle within Li can be seen in the
pr oblem of building lists of different types. Parentheses, ( ... ), will build a list , but do

not specify its type (e.g., 1/i., T/P ). This is done by default , properly enough.
However , a notati on is required to declare the type specifically:

( ... ) Build a list of default type
L\( ... ) Build a list of T/L

) Build a list of T/P

The longest-recogniza ble principle recognizes L\( as a whole in preference to
segmenting bcf orc the (. Given that we had defined a new list type , say T/Q, we

would of course face the problem of getting Q\( into the dictionary in the first place.
This is acc omplished by the double quote:

“ Q\( : ( T/Q ‘\( )

Double-quote is a symbol just like any other; it exists in the d ictionary and is
activ e. It signals t h e  recognition system to recognize all characters up to the next
space as a new name. Notice in this that the general routine \( also exists which wil l
take any type symbol as input and start a list structure of that type; it is normall y
active , so it had to be passivated to get it incorporated into the routine. In fact , we
could have not bothered to define Q\( and instead simply wr itten:

)

The longest-recognizable principle would have segmented T/Q (which is in the

- _ _  - -
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dict io nary ) , and then \( 16

The question of putting new names int o ~~ . c  II n;i / i cquire’. .vklilional dcsign
decisions. In general , EL. avoids decla rations (~ i design decision genera ll y f avored by
interact ive languages and not by batch languages). In cases of ambiguity, as above, a
declaration (via “ )  is unavoidable. But generally if a symbol is mentioned and not
rec ognized, then it is an implici t declaration of a new entity.

Implicit declaration poses a problem for a semantic segmentatio n scheme. At
what point is a newly input name complete? To identif y terminati on points for
recognizable input names, the character set is divided int o several classes: name
characters , digit characters , boundary characters , and participat ing boundary
characters. The name characters generally include all alphabetic characters and some
of the special characters. Boundary characters act as rigid boundaries for reco- ~nition,
and include charac ters like space , tab , carriage-return and line feed. t’~arrics do not
contain rigid boundary cha racters. Participating boundary cha racters act as conditional
boundaries for name recognition and can be part of nan~’c. They generally include
most of ~hc special charact crs. For example , if ;, (, and ) .~re participating boundary
characters and space is a rigid boundary, then:

ABC: (AB CD)

would be parsed so that rec ognition would be attempted on ABC: (AG , A BC:(, ABC: ,
and finall y ABC. If none of these possible names is found in any of the relevant
dict iona r ies , then the last will be implicitly declared. The class assignments for
characters is under control of the programmer to allow maximum flexibi l ity.

The final decision at this level in the recognition system is what sort of name
contexts are available. EL. permits an indefinite set of dictionaries. An ordered list of
these is available at a given recognition point. Normally this is block structured, but
can as easi ly provide sealed off lower contexts which do not have access to higher
ones. This latte r scheme serves the growth of obj ect systems which should ex ist in an
isola ted world as far as the user is concerned.

3.6.3 The Dictionary Mechanisms

The description so far does not provide the fundamental mechanisnis out of
which tl,c dictionary shall be built. Principles , such as longest-recognizable , are of
course only a particular (useful) design choice. The fundamental scheme mus t permit
the creation of name segmentation and dictionary schemes of arbit rary var iet y.

(16) Th,~ •nou’n.o that T /Q\ and I/O’i( are not defined (‘a , setniontation depends on ti,. It ’,nen~u a , wl~,ch is
to say on tt~a actu al 1st of name s bs,~i~ used)

— - — .  - - - - - — — - -
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The problem is analogous to that faced by EL. for the higher level s-~r itax , and
the solution adopted is fundamentall y the same -- namel y, to t ake  a “proces s v iew ” of

rec ognition:

$equent ial Process Recoviizer: A linear sequence of characters , eac l~
of which designates a symbol , which is interpreted immediately in an
operating envir onment that includes access to the characte r stream.
(The symbols are called character acti ons.)

The function of accessing a dicti onary is dis tributed to the collective actions of
the charac ters starting at the recognition point. The interpretation of syntax actions
occurs immediatel y as they become recognized. From one point of view there is only
the interpretat ion of a sequence of character actions . In general , there cannot be
separate levels of processing that create first a representation of a character
sequence , then a represen tation of a name sequence , then a representation an ELi
symbol sequence , then an internal parsed structure , which~ is then executed.
Subsequent processing at all levels (including that of characters ) can depend on the
processing at all higher levels.

It remains to be shown how to realize various dictionary schemes by such a
mechanism. Such detail is beyond this paper . We have constructed by thec.e means
multiple linear tab le dictionaries , discrimination net dict i onaries , hashing table
dictionaries , arid others -— representing a wide var iation of space and t in e tradeoff s .

There is nothing inherent in the Sequential Process Recognizer that restr icts i t
t o o ict ionary hookups. For instance , it is used f or conversion of digit sequences to
numbers. More generally, a user interface where all the syntax is conveyed by
punctuation marks could he realized by character actions rather than by syntax
actions. Indeed the same act ions could be used, simply associatin g them to the
characters rather than to the names. 17 EL. renounces this possibility in order to
pr ovide the ability f or syntax to reside in arbitrary character strings (e.g., < ) .

3.7. The L* Kernel

Li is gr own from a kernel. That is , there is a small body of code and data which
constitutes a system that is suff icient to run. From that point on, all of the additional
facilit ies are added t o the system using its own mechar.isrn:.

The kernel of Li is usually measured by the amount of machine lai~gijage it
requires , for this somehow measures how much basic mechanism has been def ined. The
size of the kernel , measured this way, is given f or several implementations in Figure

(17) In fa c t , various command actions (.~~, in the edi tor )  are as soc i ated with standard con t ro i  char acters
such a. car r ,a~e-ri t urn . line-feed, or ai tmods
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6. It is about 1600 words on the PDPIO and 2500 woros on the PDP 1 I standalone
(either a simple PDPII or C.mmp, a multiprocessor (Wu If and Bell 1972)) . The types
which are represented in Figure 6 account for r~~~.l c t the ~.p~ic. c in ~~~h ~.ystein. The
MLx language is composed of machine code, or type T/t1. The PLi language is
composed of interpreted programs of type TIP. The 1/W data include buffers , tables ,
stack w ork space , and single word constants and variables. The T/L, T/A, and T/AL
data are symbolic lists and associations. The T/KS data are character strings for the
names in the system. The L.A (A-level) system is the complete basic Li system that
most users use. Note that the 8080 version is described in terms of 16 bit words
instead of 8 bit bytes.

The sizes for t he systems are fairly constant (in terms of bits) except for two
cases: L*(I) is broken into two segments, with the high segment (the numbers in
parentheses) only loaded on demand; and L*C(D), which contains facilities for
multipr ocessing and for dealing with overlayed pages in its address space. It is
interesting to note that the existence of an underlying operating system does not
greatl y affect how much machine code is required in the kernel .

Machine PDPIO PDP1O PDPI1 C.mmp ALTO 8080
Word size (hit s) 36 36 16 16 16 16
Qpcratinq 9y~ TOPS-b TENEX None Hydra None None
Li Version L*(I) L*WX L*11(H) LiC.(D) L*ALTO L*8080

Kernel

Machine code 1.6 1.6 1.8 5.7 2.5 2.5
T/P 6.6(1.6) 7.8 4.0 6.7 6.0 5.0
T/W data 6.1(1.2) 7.2 5.0 10.0 5.8 4.2
T/L. 4.1(0.4) 4.5 1.0 1.1 0.7 0.6
T/A , 1/AL 1.0 0.9 - 0.3 0.6 0.8 1.1
1/KS 1.5(0.4) 1.9 - 4.8 2.3 2.3

LeA (A-level) 25(+10) 32 13 32 18 16

Figure 6. Sizes of various L* v•rs ions in thousands of words

The machine code in the kernel alone does not produce a self-suf f icie nt system .
Some PLa programs and data are required as welt to make a minimal self-suff icient
sy’.tern. In the A-level system, the PL. programs account for about five timc~. the size
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of the machine code, and the data accounts for about nine times. The I~~r~~e pioport ion
of data is largel y due t o the space needed for names (characte r s t r ing s )  and
ass ociations between names and symbols.

There are important reasons for Li to have a small kernel . First , i t  l imits the
amount of basic system that must be understood by a user (i.e., a sys tem implementer ) .
Thus , it contributes substantially to the total accessibilit y of the system . Size atone
does not determine how accessible the kernel is -- if it were a single entity, then even
1600 words could be formidable. In fact , the kernel consists of a highly rationalized set
of routines. all built ar ound the same operating environment. Thus in a typica l kernel
there are about 130 routines , mos t of which are small, independent language
operations (e.g., S, N, . + ). There are about iS routines larger than 20 instructions ,
and the largest is about 80 instructions. The hierarchy among these routines is
shallow , with calls that nest deeper than two being rare.

The fac t that there is only a single routine for accomplishing any function , as
described in Section 3.5 on MLi, is an impor tant contributor to the simplicit y of t h e
t~erriel. Alth ough there are routines that the user does riot normally look at (e.g., t h ose
in the space management or interface facil it ies ) , there is no special subsystem of
internal nousekeeping routines. There is nothing hidden under the floor -- arid indeed
no floor at all .

A second reason for having a small kernel is that Li is constructed to be
repeatedl y gr own into an object system . Such a growth process is not just
augmentation , but can involve modificati on and replacement of existing f aci l i t i es .  (For
examp le , a new dicti onary scheme , or a type system wi th  added feature s ) . Regrowth is
of ten the s t ra tegy  of choice in suc h cases , backing down to a minimal system and
putting the new versi on together from scratch. The smaller the kernel , the easicr such
a process wilt be. Indeed if the kernel is small enough and simple enough (as we
believe the Li kernels are), even revisi ons of the kernel are possible without too much
diff iculty.

Third, with a small and simp le kernel it is much easier to produce a comp ete ly
debugged basic system , such that most errors encountered can be assumed to reside
in newly-added code. This has indeed proved to be case -- Li itself is highly stable.

Fourth, portabilit y from one envir onment to another and from one machine to
another is made much easier . We did not have portabil ity explicitly among the major
design goals of L., but it is clearly important . Arid indeed, we have brought up versi ons
of Li on several different computer systems.

Additi onal benefits derive from the small kernel , but they af fect  mostl y the basic
system des igners themselves. Thus, it has been possible to carry out a si.ibstan tial
number of i terat ions of the basic Lx system. Each of the iterations has experimented
with radicall y different solu tions to the various basic system problems. T l’i~ would
surel y not have been possible if the system itself were as large, say, ns a compiler for
a higher-level language.
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3.8. Cornplcto Facilities

In Section 3.1 we said that Lx was organized by facil ity. Throug hout the section
we have noted that the various mechanisms we have discussed were included in such
and such a facility.

The design goal of pr oducing a complete operating environment is to be realized
by providing a comp lete set of facilities. In creating an object system the user should
find available as facilities all the software tools of whatever kind that he needs. Since
all facil it ies exist within the same sys tem, and since this also includes the object
system as well , several consequences f ollow:

All sof tware tools will be evoked and used within the same set of
conventions.

All software tools can be modified, examine d and debugged (for even
much -used systems experience an occasional bug) in a common way.

To the extent that new tools are required, they can be added within
the same framework and in real time.

To make this concrete , Fi gure 7 lists all of the facil i t ies in the so called A_ i evel
system. This is a stage of growth (starting from the kernel) where enough faci l i t ies
have been added t o provide what any beginning implementer wants. It is the version
normally ev oked at the monitor level on the PDP1O -- what you find in the standard
documentation.

_ _ _  - _J___ - .
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Systc m .support f~ici l i t ic ~ ~~~~ 
c i ’ i r r .inr~c’ri t (cont. t

Interpreter ELt
Intcr prctcr . stc p Recognition
Fast. interprc te- Character .action (T/K~

Type (T/T ) Executive
Dynamic.t ype Name.context
New.t ype Local. riame

Symbol Fast. name
Space.maniagemer i t Type.recognition

Block.space.management tJndef ined.symbol
Externa l .inter face Name.assi g n m e nt
Extended .systern Print

System.init ializ .it ion Pnint.machine.code
Save
High.segment Utility f aci l i t ies

Dc bugg i r
Error.detection .and.recovery

Data .stru c ture f? c i l i t i es  Undefined.T/P
List (T/L, T/P Tracing

Ltst .structure PL* .step
Pair .list (1/AL) PLi.breakpoint
Block MLx .breakpoint
Stack (T/J) GeneraLbreakpoint
Cha racter.str i ng (T/KS Symbol.monitor

Stririg.conversion File
Bytc.string File.read

Word (T/W ) File.v,rite
Association.system Fiie.ppns

A ss oc iat i on.list (1/AL) List.edit
At t r ibute (1/A) Assembl y

Machine.opcoces
Machine. instruct ion.assembl y

Languag~’.enivironment faci l i t ies Macro.assemb l y
ML (T/M) General.word.assern bly

Systcm.mac ro Machine.opcodes.comp lete
PLs (T/P ) Translation

Opcrating.state Trans lation.update
Control Space.accounting

Iter ative.contro l Time.accou nting

Figure 7. Facilities of the A- lovo l L*(I) system

- - -— -----
~ 
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We rIo not enumerate the contents of the~.e fa ci l i t ies because they are the
faci l i t ies to be expected in any total  prograiriming environment: editors , dr-buggers ,
corripi ler~., assemblers , accounting systems. The i~ . nr t l - i n~ ~.iirrpa ahoul he ex cict set.
It re f l ec ts  ~ uniprocess or with a non—Li operating system -- other fa ci l i t ies show up in

stand-alone vers i ons of Li. Likewise various multiprocessing and over lay rr,anar~ement
faci l i t ies show up in Lss that inhabit C.mmp. There arc some notable oiriissions from
the set of faci l i t i es in Figure 7, reflecting priorities and existing al ternat ive c’~’stem s in
our CMU environment . For instance , no documentation facili ty appears , nor does a
text—editor faci l i t y (which does exist in other versions), a structured programming
faci l i ty , or an optimization subfaci lity of the translation (compiler > fac i l i ty .  These are
riot missing as matters of principle; all should be there , and will be eventuall y.

As noted earlier , faci l i t ies are not self-contained modules. An important reason
f or this is the very large amount of function that is represented in rigure 7. Each
fac i l i t y  should add only a minimal amount of coding to accomplish the incremental
function. In pract ice , this means there are strong dependencies bctv.’een faci l i t ies:
faci l i ty Y requires the existence of facilities XI , X2, ... in order to operate. Normall y,
this ta Kes the f orm simply of the growth order from the kernel -- assu m ing, of course ,
t h a t  any  f ac i l i ty  can use any pre-existing facilit y.

An important characterist ic of the facility organization is its avoidance of
designer ’s prer ogative. There is no artificial boundary in the system between what
the Li designers pr ovided, and what is provided by users (or even by a set of
advanced syste m designer-users who might provide more tools , or by object-system
implemenlers down the line). Although the kernel consists of a particula r set of
facil it ies , arid othe rs get added to produce the A-leve l system , there is no way of
distinguishing such facil i t ies from others added later except in terms of the substant ive
dependencies. The object-system implementer can regr ow the system with aitcrnat ive
faci l i t ies , or replace a basic facilit y that underlies much else (say the Space
Management facil i ty ) .

An important extens ion of this characteri stic occurs because the ohje t system s
are grown within the im plementation system. Thus, it is not necessary to distinguish
implementalion tools from software that is seen as part of the object systei-r , (say for
monitoring of the running object system). Because all of the tools reside in ore
environment , augmeritations of the implementation system and augmentat ions of the
object system merge to become a single activi ty.

- - - - - -- 
~~~~~~~~~- - --
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4. Experience
Any proposed implementation system , certa in l y including Lx , requires evaluati on

of how well it meets its desi gn goals , and indeed of how well these design goak. attain
the ultimate goal of producing good software systems. Evaluation of :vrr~ c omplex
systems is not easily acc omplished, a fac t generall y acknowledged, and vie have no
special miracles t o make it easy. Furthermore , systems such as Li are not s t a t i c  but
continue to adapt. Thus Lx provides a moving target that tends to overcome
deficiencies revealed in earl y evaluations. This is especiall y true of a language with
the f lexibi l i t ies of Lx

An immense number of aspects need to be assessed. How fast can so f tware  be
produced wi th L~? How efficient are the systems so produced, in space and in time?
How maintainable and modifiable? How portable? How long does it take to bring up a
new Lx system on a new machine? What is the perfor vanc e of L w i th  vari at ion in size
and comp lexity of object system? With variations in the experience and quality of
programmers? How long does it take to learn Li? As laid out in Figure 1. Lx embodies
many specif ic elements of design philosophy: their specific contribution to these
evaluative dimensions must be assayed. The mechanisms in Lx that realize these
elements must be analyzed in their own right , since failures in Lx performance may be
due to imperfect mechanisms ra ther than inappropriate philosophy. Mechanisms will
also exist in Lx that do riot seem to serve any stated design philosophy, and these
need to be identified and their contribution (positive or negative) determined.

Recitation of this litany is not meant to overwhelm, or to let ourselves of f the
hook. We do believe that answers to such questions should be activel y soug ht , bo th
f or Lx and for other implementation systems. (Ar id we believe that the lac k .of such
data on exist ing imp lementation sys tems approaches the scandalous.) We provide here
the few fac ts  we curr ently have; the issues discussed in the next section give some
indication of what our future data-gathering will focus on.

A few of the facts required for an assess ment can come from measu rement of
s tat ic systems -- of the ar,iounts of code and data that make up Lx or Li-produced
object systems. Most , however , mus t come from data on performance. We have
endeavored to obtain some data by means of what we ca ll sof t w are experiments
(Robertson, Newell , and McCracken 1974). A software experiment involves the
recording of at least certain minimal da ta on a actual software—produc ing event. That
minimum includes objective times on the total ef fort  involved and the amounts dev oted
to various activit ies , with objec tive measurements on the amount and t ype of outputs
produced (usually code and data) . It includes some minimal description of the
programming talent involved and the computing environment within which the event
occurred.

The scientific yield of suc h software experiments is crude indeed. V iewed from
the hilltop of good experimentation , suc h experiments are wildly out of control. But
the numbers are not thereby devoid of significance. They are infinitel y superior to
having no objective numbers at all, however much they need to be qualified by
subsequent anal ysis .



Lx Experience 41

4.1. General Use

Lx ha~ been in use for several years , but by a very small user com munity . One
s ty le of use , the original one envisioned, has been to construct one-man experimental
A! programs (Freeman 1970; Newell 1972; Moore 1971). These systems range
anywhere from 50K 36-bit words to the maximum capacit y of the target machine , are
run largely in interpretive mode, are modified repeatedly, and becom e highl y
personalized. Most such systems , of which there are probably a few hundred per year
pr oduced in the U.S., are currently produced in LISP. No hard facts arc available on
any of these systems. A comparison of the functional design features of LISP and Lx in
Figure 1 suggests that they would not differ significantly in their suitability for this
task ; casual observati on supports t h is.

Lx has been used for a varie ty of interactive systems. For instance , it has been
used for a sequence of production systems called PSG (Newell 1972; Newell and
McDermott 1975) and OPS (Forgy and McDermott 1976). which can be viewed as
programming languages, fr om the viewpoint of Lx application. Some of these
applications have a subs tantia l component of low-level system programniing. For
example , ZOG (Newell , Simon , Hayes, arid Gregg 1972), a system t o aquaint users naive
to the PDPIO with a collection of large Al programs and to guide them in their use of

I

- 
these programs , interposed itself between the users and the PDPIO operat iiv~ ~.ystem ,
handling many of the command level functions for the users. A second genei ..tinn ZOG
(Robertson, Newell , and Ramakrishna 1977) is exploring man-machine cor ,iniunicatton
issues, and is also being implement ed in Lx .

Li has begun t o be used as an implementation system on experimenta l computer
systems. A good example is its use on an experimental version of Hearsay-I! , a speech
understanding system, brought up on C.mmp. Hearsay-Il is coded in SAIL on the
PDPIO. SAIL was not available on C.mmp, though BUSSII was (and wa s the basic
implementation sys tem). The selection of Li (over BLISSI1 or bringing up SAIL) rested
str ongly on t l,e claim of providing a complete operating environment. C.mmp, being a
one-of-a-kind experi m ental system just beginning  its operational life , offe red a lean
software environment. This was a matter of great concern to the Hearsay dc vclopcrs.
That Li would provide essentially all the tools and facilities of a complete software
environment as soon as it became operational on C.mmp made it a quite at t ract ive
alternative .

Tw o other trials of this same type are currently in progress. Li has been made
availa ble as the system on a standalone minicomputer (with graphics) to support an
experimental psychological laboratory, to be used for stimulus display and
experimental contr ol. A gain , one reason for its attracti veness is the tota l environment
it presents. Li is also to be used on a microcomputer based system (a vw two rk of Intel
8080’s). Again, a strong component of tho appeal is the need to obtain a friendly user
sof tware  environment on a system that is experimenta l and one-of-a-kind , and which
poses st i f f  barriers to obtaining that enviro nment in the usual way througl, the
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accre t ion  of many individual pr ograms. Even the fact  that C.mnip use’; PDPI 1
process ors , hence has acces s to existing PDPI 1 programs , only helps a l i t He , since the
imposed multiprocessor structure makes the i r - ip i t t . i t io i ’ i  of s u h  progr~’ii.v. non-trivial.
Both these tr ia l  cases are still in an earl y stage. .

4.2. Softwarc Exporimcnts

A brief description of some of the sof tware experiments we have performed
with Lx will give some further indication of its use. Comments on some of the data
fr om these experiments appears after the descriptions.

W ILE. The basis of the first experiment was an experiment al programming language
designed by Wile (1974) . The language was exploring some novel control structures ,
but was not implemented. Taking familiarit y w i t h  Wile ’s study as a start ing condition,
we implemented it within Lx. This involved design, coding , debugging and testing. We
kept a record of progress along the way, the amounts of code produced, and
difficulties enc ountered -- from bugs to design errors. The t otal ef for t  was done by
three expert programmers (the present authors) in a single 17 hour session, wi t h
another dozen hours of follow-up maintenance. The surface structure of the language
was essentia lty identical to the notation used in the ori ginal study. The language was
fully inte ractive wi th displays of par tial computations , so that convenient exploration
was possible. We sought to make the point that it was possible to create experimental
languages in reas onably short order.

APR74. A version of Lx (LxC.(A)) was brought up on an early version of C.mmp to
provide a demonstration of real-time speech signal acquisition , segmentation , labelling
arid disp l a y  for an IEEE Speech Recognition Conference (CMU Speech Group 1974).
The Lx sof tware experiment involved crea ting the Lx system on C.mmp, providing the
operating system and multiprocessing features necessary for the standalone
application , and integrating the pieces into a running system. The speech programs
were coded in BLISSII , so this involved embedding BLISS11 into Li. C.mmp was at a
very earl y stage of development at the time so the environment was extrcmc ly raw in
terms of reliabilit y and s of tware facility. The entire experiment took 30 calendar days
against thc hard deadline of the conference , and pr oduced a running systc r i i that was
demonstrable but imperfect (it ran fully the next day). The point of the Lx experiment
was that total sys tem facility was made available on a raw machine , with extreme
flexibili ty to meet the unexpected demands of such a complex system programming
situation.

~~~ 
The standard line editor (or the PDPIO is called SOS. An Li software experiment

was perf ormed to produce a version for C.mmp. This was a sl igh t l y limited version (no
just if icat i on or contextual searching commands), but was to be totally to s peci f icatr ~ns,
since it was intended for production use by programmers who use SOS daily on ~he
POP 10. The experiment took 30 man days. 

—~~~~~-~ - -- --~~~~~~ -- _ _ _ _
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LiALTO and L*8080. Two software experiments were performed to test the
transportabil i t y of Lx . The first was the construction of an Lx for the ALTO, a 16 bit
minicomputer. This took 70 man days to com~ lele ( for  one man). The task involved
some graphics support and microcode support not found in other Lx systeri-is. The
second was the construction of an Lx for the Intel 8080, an 8 bit microcomputer.
L*8080 is much closer to the other Lx systems, and took 28 man days (for one man).

Most of our experimental data concerns programmer productivity when working
with Li. As noted, this is not the only important quantitative measure of the worth of
an implementation system, but it is a critical One.

Figure 8 gives several productivity measurements for Lx, with a few
measurements fr om the literature (Wolverton 1974) for calibration. For the sof tware
experiments mentioned above, the numbers are accurate , since we have precise code
counts and numbers of hours worked. For the other Lx situations , the code counts are
accurate , but the time estimates are somewhat less exact. For the measurements from
t he literature , the information does not seem very reliable.

The measure used is number of debugged instructions per man-day, where a
day is taken as an 8 hour period (working round the clock produces 3 man-days per
calendar day, as in the WILE experiment). The instruction count is taken on the final
system at the end of the period. The number of instructions is measured by the code
and associated data in the computer , it is not measured in the source language.
Counting associated data (not input data) properly handles some program/data
t radeof f s , but care must be taken with programs that use large simple tables. This
puts all languages on one common footing, but leaves open the relation of source
language to ultimate machine code size. It is well known that poor comp ilers produc e a
larger code+data size than do optimizing compilers , thus making the poor ones appear
more productive. This has to be handled through additional measurements of these
rati os. With Li, each symbol resides in One cell, so that in effect one can count
instructions ri the memory by counting symbols (code+data ) in the listing.
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$y~ tem Language Instruct ,ons/man/d a- ,’

Li(I) Assembly + Lx 30K 375
SOS-C.mmp Lx 5K 310
Industry average - very simple task 167
LiALTO Asse mbly + Li + BCPL 9K 136
Li8080 Assembly + Lx 3K 107
WILE Lx 0.8K 96
APR74 Lx + E3lissl I + Assembly 3.7K 51
Industry average - si m ple task 50
Lx Assembl y + Lx 50K 30
SLi Lx 2K 25
Hearsay -C. Li~ 5K 21
industry average - moderately complex 16.~Industry average - complex 8.3

Figure a. Productivity data for L*

There are several important points to notice about the L* data. The
programmers were all experienced programmers , but not all were exper ienced in the
use of Lx (particularly in the case of SLi and Hearsay-C.). These figures arc all based
only on new code generated (e.g., L*8080 is an 18K system, but only 3K of it had to be
wri tten from scratch ) .

With all the caveats stated , the productivity numbers are very hig h. Some
things can be said about specific numbers. The SOS numbers are possibly high because
of thc peculiar decomposition of an editor (i.e., a large number of commands , each with
an isolated bit of code). The relatively low figures for Hearsay -C. almost surel y
express programmer differences , plus losses inherent in the transfer of the incomp l e te

system from one programmer to another. This data suggests tha t programming w i th  Lx
increases progra m m er productivity. More software experiments are needed to further
substantiate that claim.

__________________ -~~~~~~
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5. Issues
Not all that can be said about La is positive. We have faced up to many  problems

throughout the long series of design iterations; but there sti ll remain serious unsolved
problems at the frontiers , some of which have surfaced only with extended experience .
We will now discuss several of the negative issues , and at the same time take the
opportunity to draw some contrasts between Li and two specific alternative systems :
BLISS and LISP.

5.1. Sufficicnt efficiency

Almost without exception , efficiency (both of time and Space ) ~ a prime
requirement for object systems. Even one-of -a-kind experimental syste ms , whic h will
never reach wide-spread usage, cannot ignore efficiency altogether . Thus , it is
undeniable that Lx must permit flexibi lity to be cashed in for efficiency whenever it
bec omes appropriate , and t o whatever degree is necessar y . If an Lt obiect system
cannot match closel y the performance of an equivalent BLISS system ’°. then all the
advantages of Lx may largel y go by the boards. On the other hand, very high
efficiency is 

~~! 
always necessary, especially curing the period a system is uncicrgoing

development and experimentation. Thus implementation systems which arc able to
delay the optimiza tion until it becomes crucial (i.e., systems such as LISP, ECL and Lx)
can enjoy the benefits of flexibility when they are most needed.

A Time.accounting Facility exists in Li to help find the bottlenecks in a running
system. Once they have been located , it is usually possible to obtain some initial
speedup merel y by minor reorganization and recoding. There are several documented
cases where large fact ors (e.g., ten to twent y) were obtained in subcomponents of a
sys tem in this manner. ’9

A Translation Facility in Li compiles PLi programs into MLx code , w h i c h
essentially eliminates the type-acce ss and PLa interpreter cycle for eac t- i symbol in the
program .2° A Cycle .accountinq Facility enables one to monitor a running sy s tem to
obtain a list of every PLx routine that was called, ranked by the t otal number of
interpreter cycles spent j ust inside each. A t ypical result might show twenty routines
above the 1 7 rank (i.e., each of the twenty claimed more than 1 7 of the total
interpreter cycles) and these routines would then he an appropriate choice for

(18) Wi th ULISS th. eff iciency is pr.niedst.t~d, and thus v,rtuaiiy onaur.d

(19) Most oft.~ th. r.cod ~n~ ak.. th. for,,, of ID.cieIizing lb. us, of an op ,rst,o n which w as ov .ri y
g.n.rai trw ib. psr i,culii r cai.

(20) To n.,nla,n so ,,,. f i.iub.iily, th. P1. v,r.,on of a comp ,lad pro$ram is sav ed so that it nay at., b.
•dit.d and reco mpi led if

_ _ _ _  
—-- - - - -.---
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compilation. The cycle—cou nting aria com pilation process can then he repeated , but w i th
significantl y diminished gain since the d ist r i~ ulion f , .~t te i , , oul quic iy.  Since an
uncompiled Lx sy~ tem typicall y spends half to two-th irds of its t u ne in~ idr the PLi
interpreter , speedup factors of up to two or three can be realized oy com pi latio n .

A t ypical next phase in the optimization process is the hand-cooing in MLx of
certain cri t ical  routines. (A g ai n , the Time.accounting fac i t ity  is a valuabie aid to intuiti on
for identif ying the critical routines). A comp l e t e l y integra ted Assembly fac i l i t y  with in
Lx allows the ML* code to be loaded and interfaced with other ML* and PL’ routines
very conveniently. Hand-coding can achieve s ignificant improvements by removin~ the
overhead of calls to small subroutines (both in terms of contro l and argument-passing
on the 2 stack ) , and through more extensive use of the machint -~ gisle rs tcr
tem porary st orage. Speedup factors of two to three can be expected for typical
r outines.

One final optimization step is microcoding, although it is possible on only two
existing Lx systems , and has actually been accomplished on Only one of them (LtALTO ) .
Thc niic roc odcd version of LiALTO used 900 wo rds of microcode to recode 51 Lx
kernel routines (e.g., the  PLa interpreter , type access , stack operations ) , arid achieved
a factor of 3.2 speedup over the non-microcodcd versio n.

Although the approach to selective optimization just outlined seems ri~~rit to us,
the mechanisms t o support that approach have never been full y developed. Als o,
there are areas where the approach breaks down; most notably, when dcal ir~ v.’itl, the
tradeoff  between generality and efficiency. The most often cited case ir the file
reading mechanism in Lx , which is about six times slower than the corresponding
mechanism in LISP. About half of t hat difference is due to code which is interpreted in
Lx versus~ hand wr i t t en  machine code in LISP. That part of the dif fe renre can be
approachdd wit h selective optimization. However , the other half of the difference is
due to the extensible nature of the Lx mechanism, and cannot be easil y removed by
se lective optimization. Whether or not the selective optimization approach will succeed
in Lx is still an open question.

5.2. Contraction

Although contraction could have been discussed in the previous subsection (i.e.,
contract ion — se lective spac e efficiency), it is important enough to rate a sub’ection of
i ts own. In fact , its importance is greatly magnified for Lx due to the integration of
implcmcntation system arid object system. Without a cont raction capability, an Li
object system would of necessity contain all the imp lementation tools used to construct
it —-  a quite unworkable situation.

One common paradi gm for contract ion is to somehow mark the unwanted
structure s (e.g. , in Lx by erasing them —- putting them on the available space list) and
then relocate struc tures within the address space in such a way that a st r i ct  pa rt i t i on
is created , w ith all unwanted structures at the high end of the address space. It is t hen

- --~~~~ -- -~~~~~
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normall y a simple matter to eliminate the unwanted structures by chopping of f  lhc top
of the space . However , this approach has st r~r , ~ il ~ I~~. L i a i c e d (cii L~ due to the
apparent impossibility of building a f oolproof structure relocator. With the great
f lex ibility and accessibility that an Li user exercises , it is all t oo easy to imagine ways
in which a relocating program could be inadvertantl y f ooled in its memory sca~ch for
references to a symbol.2’

It is easy enough in Lx to erase structures that are rio longer needed, bu t the
resulting available space will almos t surely be scattered throughout memory; thus the
system will have a greater capacity for growth within its current memory size , but i t
cannot be truly contracted without relocation.

in L*(I) we have developed a partial solution to the contraction problem by
taking advantage of a feature of the DEC TOPS-b monitor which allows independent
control over the two halves of the users 2561< address space (called the low and ~ gji
segments ). Within Lx(i), available space lists are maintained independently for the tw o
segments so that the user may control the segment in which new structures are to be
created. By convention, the high segment is used frir utilities (e.g., the editor ,
debugging tools , compiler) and other facilities that are expected to be used relativel y
infrequentl y. This means that the system can normall y run with just the low segmen t ,
and onl y load the high segment (which ~s read into memory fr om a drum) when access
is needed t o the facilities there.22

This scheme is reasonably effective , allowing the A-level Lx(I) system to be
c ontracted from a total size of 35K to a low segment size of 25K with no noticeable
degradation in resp onse due to high segment swapping. The main difficulties with the
scheme are: ( 1) the choice of the segment in which to place a structure must be made
in advance , and is then f or all practical purposes fixed; and (2) knowledge about cross-
segment rcfc rcnces must be explicitly represented, and thus bugs caused by
references to an unloaded high segment are a problem. Given a better underlying
operating system , this basic idea could be more effectively exploited.

5.3. Higher order language

Some user feedback has suggested that Li is a low or medium level language. In
f a c t , there are features f ound in most high level languages which are not found in Lx ,
and vice-versa. In this section, we will ex amine those differences. It should be
pointed out that Li is a high level language in terms of expressive power (i .e., the  size
of an Li program to perform a particular task is as small as a program wr i t ten  in other
high level languages to perform the same task).

[21] The, 5a’nc~ t ,c prn ,ca i dif fic ul ty is probabl y respo ns ible for the fact that no $ar baCe-cc .ii cc ti o n faci l ity h..
yel b..n built for  1..

[22] 1oadin~ of t he hig h sot mont is not autoinelic •— thus tho sy s t em must anti c ip ate all accenoi’ o to th.
h u h  s .Sm.n t with an .api ,cut load operation
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ihe most obvious dif ference between L.~ and other high level far ~~~~~~~~ t hat
Lx is neither an al gebraic nor an expression l anc uaqe. In an al~ e hra ic or .v prcs.~.ion
language, what one w r i tes  are expressions wh L i i  w~.iu.de to a locdliled v~ liii~ (exce pt
in the case of side ef fects , which are rare). These languages arc ah~o phrase
structured (i.e., a symbol may be replaced by an expression ) for operands in ~eneral ,
while most are not phrase structured for operators. PLs does permit phr .asc
s tructuring of both operands and operators. However , values are not loca lized ~nd are
not the result of evaluation of expressions. Instead, values are generall y placed in the
central data stack .

A second difference is that Li has no variab les. This came about fro m a
c onscious choice to always deal with symbols , and not their values. There are
mechanisms in Lx that allow variables to be easily implemented , but variables are not
part of the basic system.

Third, Lx does not provide symbol contexts (i.e., there are no local variables ,
everything is global). Lx does provide name contexts which can be used to gain the
same kind of protection that local variables offer , but at the name level instead of the
symbol level .

Fourth, Lx is postfix , while most languages provide infix for a r it l i rw t i c  and
boofean express ions . This is not considered a major problem, however , s ince infix
syntax can be easil y constructed in Lx (a one page program can provide inf ix and
functi on notation) .

And finally, Lx uses the machine as the model instead of extern a l e~ prcssions.
This was necessary in Lx to provide the kind of accessibility to the underl ying machine
that we dcsired. Because of it , Li may be thought of as a high order machine
language , although its expressive power argues that it is more than just that.

5.4. H~bitabiIity

One of the negative aspects of our experience with Lx has been the s lowness
with which its usage has spread, even within the local envir onment. Some of th is is no
doubt due t o our casual attitude toward promotion , but there is neverthe less an
accumulating body of experience with new Lx users that strong ly suggests a
habitability pr oblem with Lx . While we do not yet have a good understanding of the
reas ons for this problem, we have formed a few plausible c onjectures with the help of
user feedback.

The first conjecture is t hat total accessi bil ity produces apparent complc ~ t y from
the relative simplici ty of the Lx system by exposing large masses of detail which are
irrelevant t o a beginning user. An A-level Lx system has around 900 names (which is
significantl y more than a new LISP or BLISS user sees ; e.g., LISP 1.5 presents about
150 names to a new user), wi th no good way to differentiate the relevant from the
(f or the time being) irrelevant. One possible simple solution (but one which we have

_ _ _ _ _  • -
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not yet t r ied)  would be to introduce into the system a discrimin;t ioui nI th r siri~ ll
subset of essential names from the great masses . For example , Iwo ‘.~ par.il name
contexts might he used to provide the disc rin i~’i~ ii~ .i. his dp~~Io~ Ch u~~. ‘ r omuc.ing
since users tend to operate most effectively in sma il worlds that they ~.now ana
control .

Another conjecture f or the cause of the habitabilit y problem is thn use of
concise names. Short names (e.g., S, N, I, and 3 for the common list opc ’ ra t io rv ) have
the advantage of economy of expressi on, which is especiall y important fo r a highl y
interactive system. However , feedback fr om new L* users indicates t~ at the short
names form a real stumbling block to learning the language. This problem is
aggravated by the failure tc produce a self-docume nting system (a feature ~~pfored in
L*(H) but rejec ted because of high space costs ) . A considerable amount of i teration
has gone into the design of the names, which a~e based on a set of standard
abbreviations with fairl y consistent conventions. Users report that after they learn
thus set of conventions, the shor t names do provide the intendea economy of
expression.

5.5. Symbols and addresses

As discussed earlier , one of the essential design principles of Lx is the universal
symbol system. Althoug h that princi ple has never been in question, the mechanism of
equating symbols and addresses t o achieve a universal symbol system has. As noted
earlier , thus mechanism has distinct advantages. It assures that all add rcsscs will be
valid in symbolic expressions. It also simplif ies the design by equalin~ address
arithmetic and symbol ari thmetic.

However , equating symbols and addresses has seri ous disadvant ages . First , it
limits the number of symbols to the address space of the underlying machine. With
most hardware architecture , t his poses no problem . But if the address space is smaller
than the physical memory and some kind of rel ocation or overlay mechanism is
available to ta ke advantage of that additional memory (as on C.mmp), then the limit
bec omes real and serious.

Second, binding symb ols to addresses makes reassignment of symbols difficult.
If all references to a symbol cannot be located , then the symbol cannot be moved; it
must remain as a place holder and pointer to the new symbol. Thus problem , combined
with the fact that symbols can and are st ored in arbitrary structures , mal n~. ~eneral
rel ocation essentiall y impossible. This in turn makes contract ion and automatic garbage
collect ion di f f icul t  to implement.

Finally, along the same f ines , reassignment of the t ype of a syiiihol -. more
diff i cult if sy m bols a-e equated with addresses. If symbols were separate structures ,
their t ype woulci be part of that struct ure and therefore easil y changed. The only w a y
to achieve the same flexibilit y with types in the current system is to usc h.,lf of tho
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memory to hold types for the other half (a scheme that was actua ll y uscd in an ea rl y
version of Ls)

Creating a new var iant of Lx in which ~ynibOi.~ are not identif ied with ~~c ires ses
seems clearl y indicated. However , it is unclear where the balance ~if t radcofl  will lie
when such a system is completed.

Li~~ — ________ —
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6. Conclusions
in this paper , we have discussed the design, imp lementation , and some

exper ience with Lx . T h e  key difference between L~ and other implementation systems
(like BLISS or ECL) is that Lx is an interactive symbol manipulation system (f eatures
skared with LISP). It also provides a total operating environment (like LISP) which has
all the necessary t ools for program development from within (e.g., edit ors and
debuggers). The system also stresses selective rather than global op timiz~ilion . The
key dif ferences be tween Lx and LISP are that Lx is highly ex tensible and ai lows total
acc essibil ity.

The key mechanisms used to implemen t Lx include a universal symbol and type
system , a simple interpreted list processing language , a flexible external language , and
a kernel approach to building the system.

The experience to date has been with a small user communit y and has been
generally posit ive. A series of software experiments has been init iated , and the  data
gathered suggests that programmer pr oductivit y is hi~ h. Are as of continuing concern
include time and space efficiency, the low tevei nature ul parts of the system , and the
diff icult y new users experience in learning to use the system. More ~of~ dare
exper iments are needed to analyze and c orrect these problems. The onl y design
principte that has been brought into serious quest ion by the pyi~pripricp has been total
access ibil i ty. Although total accessibility has been used to advantage in a number of
so f tware  projects , it seems to be a real contributor to the habitabilit y pr oblem.
Several mechanisms used to imp lement the L* ph i l osoph y have been brought into
question by our experience. Perhaps the most cri t ical is the realization of a universal
symbol sys tem by equating symbols and addresses. On the whale, however , the
exper ience has indicated that the basic design philosophy is an interesting and v iable
al ternat ive t o that of more traditional implementation systems.
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