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L* Introduction 1

1. Introduction

L* 1s a system for building software sysiems. It 1s a tool for the profcssional
programmer, and was originally intended for use in constructing artificial intelligence
systems. Its most important use, however, has been in providing the basic software
support for experimental computer systems. Under development at CMU since 1969,
operational versions of L* have existed since 1970 and have been in experimental use
by a small community. However, only a short description of the system ard the design
philosophy that underlies it has been published (Newell, Freeman, McCracken, and
Robertson 1971). The system, its philosophy, and our experience with it have now
reached a sufficiently mature state so that a general exposition of it seems useful.

L#’s roots lie in the series. of IPLs, the original list processing languages (Newell
and Shaw 1957; Newell, Tonge, Feigenbaum, Green, and Mealy 1964). As experience
mounted with IPL-V and with LISP about the nature of system building in artificial
intelhgence, it seemed appropriate to make a fre«<h start with the emphasis on system
implementation rather than on the language aspccts. L6 (Knowlton 1966) had shown
that efficient low level systems could be built using list structures as a data type. An
eariy attempt to understand the lessons of L6 resulted in a similar macro-based system
on the IBM 360 called *1 (Newell, Earley, and Haney 1967). An attempt to understand
the nature of a flexible dynamic user interface resulted in a system call BIP (Basic
Interface Package, Newell and Freeman 1968), embedded within IPL-V. All these
systems can be taken as the direct precursors to L+

Familiarity with two basic, albeit informal, notions is assumed throughout this
paper.

(1) A software system is an integrated collection of programs and data
which provides the diverse functions necessary to an operating
environment: communication with users, resource nrahagement,
debugging aids, behavior monitoring aids, archiving, communication
with other software systems, as well as the main problem solving
functions for the task (though no particular subset seems to be
essential). Typical examples are operating systems, large Al programs,
and airline reservation systems.

(2) An implementation system is a specialized set of software tools
used to create software systems. Typical examples are BCPL
(Richards 1969), BLISS (Wulf, Russel, and Habermann 197!), ECL
(Wegbreit 1971), and XPOP (Halpern 1964). The concep! of an
implementzation system has arisen more or less concurrently with an
awareness of the severity of software production problems and with
the discipline of software engineering devoted to coping with these
problems.

To understand the relationship between L* and other implementation systems, it
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2 Introduction L*

is useful to look at the basic forms that implementation systems have taken. Roughly
speaking there have been three paths of development:

Macrosystems: The assembly language has always been the courl of
last resort for creating any programming structure. The addition of
macro facilities has been the main vehicle for adding facility to
assemblers. This has led to the development of systems that take the
macro facility as the central device in an implementation system. XFOP
is a good example.

High level language systems: The desire to use high level languages
for sysiem implementation has existed for a long time. These
languages make system implementation and maintenance easier by
making system structure more apparent. Until recently, their use has
been limited because of the relative inefficiency of code produced by
their compilers. This has changed, with several languages being used
effectively, notably BLISS11 (Wulf, Johnsson, Weinstock, Hobbs, and
Geshchke 1975) and BCPL.

List processing systems: List processing systems offer interaclive and
symbol manipulation capabilities not generally found in either
macrosystems or traditional high level languages. Their use has been
primarily in building large artificial intelligence systems, which have
many of the same properties as general soffware systems although
they tend to be experimental in nature. The most commonly used list
processing language is LISP (McCarthy, Abrahams, Edwards, Hart, and
Levin 1962).

Implementation systems always involve a language of some sort and this often
serves as a shorthand for denoting the system. But an implementation system is always
much more; it is the total set of facilities that are provided to create software systems.
These include all the usual functions that typically show up in a software sysiem itself
(e.g., an operating environment and debugging facilities).

We will assume general familiarity with these notions. Further elaboration can be
found in Freeman (1975).

In Section 2 we will present the design philosophy of L%, to make clear
where it stands in the space of implementation systems. In Section 3 we will
describe the structure of the system that makes possible the realization of these
design principles. Section 4 discusses the results of some expericnce with L.
Section 5 concludes with a general discussion of the open issues and some
comparisons with other specific implementation systems.
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2. Design Philosophy

In this section, we will describe the design characteristics of L¥, and compare
them with design characteristics of other implementation systems. The design
philosophy of L+ can be described in terms of a number of dimensions (vr issues) on
which implementation systems must take a stand. For these issue-dimensions there
rarely exists a complete characterization of the alternatives, but only a few points that
have been adopted by various systems. To help place L*, we will also indicate the
position along these dimensions of typical high level language (HLL) systems and of
LISP. Detailed comparison of Lx with specific systems (e.g., BLISS or LISP) will be
postponed to the end of the paper, since our purpose in this section is to describe L=.

Figure 1 lists the issue-dimensions vertically, with a column for each of the
three systems. The entries are explained in the subsection on each particular
dimension.
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L* Design Philosophy 5

Symbols. What capabilities exist for symbolizing and representing within the
implementation system entities in the object system, and for manipulating these
representalions? L* abides by the following principle:

Universal symbol sxstgni: There should exist a single homogeneous
system of symbols which can be used to represent any aspect of the
object system.

This requirement is a stringent one that, in the current art, almost forces an
implementation system to contain a symbol manipulation language. Thus, LISP also
satisfies this principle. But BLISS does not. Instead, it has limited (though powerful)
symbolic' capabilities fixed in advance by the design of the system (e.g., for
instructions, for blocks of memory space, for addresses and for integers). The
requirement for a more general symbolic capability has been recognized, for instance,
in Alphard (Wulf 1974), a language scheme under development, which has as one goal
the ability to represent arbitrary levels of abstraction.

Interaction. What type of interaction cccurs between the object system designer and
the evolving object system? Alternatively, what is the interaction rate between
designer and operational object system? Lz abides by the following principle:

Full Interaction : The designer should operate interactively with the
implementation system in all aspects of object system creation.

Most implementation systems, either high level or macro systems, are compilers.
The mode of operation with them is essentially batch: code, compile, run, debug and
repeat. The loop is quite long with substantial coding often taking place between
compiling steps. Some other languages, especially LISP, operate as full interactive
languages where the loop is very short, and many incremental changes are closely
interwoven with small running steps.

Production Mode. How should the implementation system:construct the object system?
Should the object system be grown from within the implementation system or
deposited (as an object file is deposited by a compiler)? Should the object system be
produced as one entity or as a series of modules? What kind of run time support is
required if the object system is deposited? Ls abides by the following principle:

Crowth of object systems: The object system should be created
within the implementation system by adapting and adding to the
existing facilities.

There are two basic possibilities: deposit the object system, or grow it. It has
been praclically taken for granted that the implementation system -- the assembler,
compiler or macrosystem -- should produce the object system as a body of code
independent of itself (i.e., as a module). Thus, HLL systems all deposil thcir object
systems. Only with fully interactive systems has the alternative of growing the object
system emerged. Thus LISP, as well as L#, grows its systems. The tradeoff is clear.
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On the one hand, the object system may bear little relation to the implementation
system; there is simply no reason why it should be mixed. On the other hand, large
numbers of mechanisms can be imported from the implementation system and adapled;
furthermore, a functioning system can exist at all times. With the choice of growing the
object system, the problem of excess mechanism is a real one in many operaling
environments, so that contraction of the system is an important function.

Flexibility (Extensibility). What aspects of the system should be flexible (i.e., should
be capable of extension or contraction)? The issue applies both to the implementation
system itself and to the object systems that are to be constructed (though different
positions may be taken for each). L# abides by the following principle:

Total flexibility : All aspects of a software system should be subject
to modification and extension.

The principle may be stated in another way:

No designer’s prerogative : The system designer should avoid design
choices that cannot be later modified by a user of the system.

Perhaps the issue should have been called extensibility, since much of the
relevant work has occurred under that label. But, following a suggestion of Krutar
(1976), we prefer the term flexibility since we need to be as concerned with
contraction and modification as with extension. Thus, when we refer to flexing a
particular aspect of a system, we refer to the act of making it different in response to
some demand.

Programming languages are in essence devices for flexing a computer. In so
doing they set up a number of conventions which force the object system to be
structured or to be specified in fixed ways. Attempts to relieve these rigidities can be
classified under a number of headings: syntax, data-types, control, and name
conventions. In Figure | we scparated out these categories, since the progress in
obtaining flexibility has moved through them. (Some categories, such as flexibility of
the lexicon and flexibility of the procedures, are common to all programming systems
and need not be listed.) We have added contraction as an additional category, simply as
a reminder that aimost no systems permit easy contraction, as opposed to extension.

L+ takes it as central that flexibility should be present in every aspect of a
system. This applies equally to both implementation and object system since in Lx they
are one and the same. i

Accessibility. What parts of the programming system and the underlying machine are
accessible from within the system for purposes of modification and exploitation? L«
abides by the following principle:

Total occessibility : All aspects of the system and the machine should
be available for manipulation.
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Despite the apparent desirability of such notions as total accessibility, there are
alternative views that have equal plausibility. The main one is that a software system
(especially an operating system) takes a machine and converls il 1o another more
suitable machine, which is then what the user sees. The user is not supposed to have
access to the underlying machine. This view, which is essentially thal adopted by
systems such as LISP, as well as by most operating systems, produces a sharp
distinction between users of a system and system designer-maintainers. Only the latter
deal with the guts of a system, which is a different world in terms of its conventions
and flexibilities from that which the user experiences.

This alternative view produces two distinct issues of accessibility: (1) total
accessibility of the underlying machine and (2) accessibility within the sheil provided
by the underlying system. Thus, LISP has complete accessibility within the system, but
not to the basic machine. L#%, on the other hand, attempts to provide complete
accessibilily to the underlying machine, while at the same time providing a world of the
same interactive convenience as LISP.

Efficiency. What is the efficiency of the system with respect to the various vital
resources: processor cycles, memory space, and i/o channels? Efficiency issues arise
independently for the object system and for the implementation system, and with
respect to the latter for initial construction and for modification. L* abides by the
following principle:

Selective optimization : Efficiency is ta be achieved by the dotection
of the critical constraints in a running version and their selective
removal.

The programming languages initially used in L* are interpretive, thus trading
time efficiency for fiexibility. This contrasts with compiler-based implementation
systems, which endeavor to produce relatively efficient code. In the limit, as with
BLISS11, very efficient code is produced at once for an entire object system. Since
efficient systems are ultimately required, L+ has to obtain the efficiency somehow. It
attempts to do this by selective compilation, reorganization, data compaction, and
microcoding.

Language Form. What linguistic forms does the designer use to communicate with the
implementation system? This pertains only to the implementation system; presumably
it is possible to construct object systems with any desired linguistic characteristics. L#
abides by the following principle:

Dynamic interface : The linguistic interface with the user should be
dynamically adaptable.

There are two normal forms for implementation languages. The first is that of a
higher level language, namely, an Algol-like language with expressions, procedures,
functions, and infix operators. The second grows out of the form of assembly
language; namely, a sequence of operator-argument forms that retains some cequential
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correspondence to the internal memory space (this carries over to most of the macro
languages). LISP represents yet another path, retaining the expression form combined
with a uniform prefix notation. As we will sce, the form of L+'s language (which is
postfix with no syntactic structure at all) grows out of its interprelatior. principle,
which is determined on independent grounds.

Integration. How is the total set of facilities used by the designer organized? L=
abides by the following principle:

Complete integration : All of the facilities to be used in constructing
a system are to be available as subparts of a single uniform world.

The situation normally faced by the designer of a system is that he has a set of
distinct facilities -- such as languages, editors, debuggers, timing packages, and cross-
reference programs. Each of these is created with a separate set of linguistic and
interactive conventions. There is integration only at the level of the underlying
operating system, seen by the user-designer as a single uniform command language.
On the other hand, general interactive systems from JOSS (Shaw 1965) onward have
adopted the other position by integrating all the facilities with the main language
system. LISP, APL and L% belong in this latter category, along with a iess well-known
system called LCC (Perlis, Mitchell, and VanZoeren 1968). Though at heart a JOSS-like
system, LCC has many of the features of a standard HLL, and thus represents a rather
unique marriage of HLL constructs with the philosophy of complete 'ntegration.

User Community. What is the community over which the object system is to be fixed?
L* abides by the following principle: -

Personalization : The system is to be adapted to the particular
circumstances of machine, system builder, and task.

This issue poses a genuine tradeoff. Fixing the properties of a programming
system (either an implementation or an object system) increases the communicability
and portability of whatever programs are created within it. On the other hand,
features of the particular computer or preferences and insights of particular designers
and users cannot be fully exploited. The need tor complete adaptation is greater when
the available resources must be exploited to the limit, less when tasks do not press the
art or the resources. Adaptation, and thus idiosyncracy, is more acceptable when the
systems or tasks are unique in other ways, so that there is little to be gained from
standardization in any event.

Maintainability. How is a system to be maintained, meaning both the removal of bugs
and the gradual evolution towards increased capability? This applies both to the
implementation system and to the object systems produced. L* abides by the following
principle:
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Local maintenance : Maintenance should be totally within the
purview of the users of the system (and hence their responsihility).

Design Strategy. How shall the designer proceed in creating a new object system? Ls#
abides by the following principle:

Iterative design: A system should be created by a series of
successive approximations in the form of operational systems.

This issue of design strategy is usually referred to as “"design philosaphy", but
we need to distinguish it from the design philosophy of L, which we are inn ‘e midst
of describing. Iterative design is to be contrasted with a top-down, structured
programming design philosophy, in which a high premium is put on producing careful
specifications, and even in proving that the algorithm being programmea is correct. It
must be noted that none of the systems in Figure 1 actually dictate a design
philesophy along the dimension of concern here. They only predispose towards one or
the other. Implementation systems such as BLISS are consonant with the structured
approach.

There is a subsidiary principle that we use with L* as a guide in designing
object systems:

No excess generality : No parameterizations should be created
without concrete evidence that variation will actually be exercised.

Excess generality exists in almost all large systems and often in immense
quantities. Such generality always costs time and memory and is a prime contributor to
what one might call "system bloat". The above principle can be adhered to, of course,
only if it is easy to introduce new generality whenever it becomes appropriate.
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3. Mechanisms

Having in the prior section laid out a sel of design principles that characterize
L%, in this section we describe the main structural mechanisms that permit their
realization. Most of the principles permeate the structure of the entire system.
Drawing the mapping explicitly between principles and mechanisms leads to much
redundant exposilion and will not be attemptcd. The way these mechanisms dovetail
with the principles is quite apparent at a surface level. The deeper evaluation of what
unanticipated consequences the mechanisms bring with them, and whether the
principles themselves yield good system impilementations cannot be seen from a
description of mechanisms alone. Some of these issues will be addressed in Section 4
on experience with L*.

3.1. Facilities

We describe first the scheme whereby an Lx system is organized. This is not a
critical mechanism, but will permit the description of the mechanisms to fall into place.
We will return to the overall organization iater.

L* is organized as a collection of facilities. A facility is an increment of code and
data that provides a collection of interrelated functional capabilities to the system.
Since the basic style is that of growing a system, a facility is not a self-contained
module, but makes use of facilities existing at the time of its addition to the system.
Thus, there is a graph of dependencies among facilities, since any facility requires that
certain others already exist in the system for it to operate successfully.

The facility as an organizational unit is responsive to the principle of no
designer’s prerogative. The concept of module (Parnas 1972) implies in existing
machine architectures that a base be provided to support the module structure. This
designer-posited base is not itself a module and cannot be modified without destroying
the system. No such base exists for L¥; we envision Lx systems being regrown from
scratch with arbitrary modification and redesign.

3.2. Symbol System

The notion of a symbol system is widespread, although seldom formalized. It
consists of a set of symbols and a set of data-types (symbolic structures) in which
tokens of these symbols can occur. Besides the usual operations on the data-types
(which create, manipulate and modify them), the essential operation is that of an
association hetween symbol tokens and entities called their referents.! The associative

(1] Within the symbolic system these are always to data structures which represent in some general way
the entitios actually referred {o
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relation s one of access: given the symbol token, access is had to its referent
(representation). Sometimes there is a single such association (often called
assignment), but systems can permit many such associations.

The decision to admit a uniform class of symbol so that any sort of entity could
be referred to, coupled with the requirement for total accessibility, led to the
following:

Symbols in L* are identified with addresses: All symbols are addresses
and all addresses are symbols.

This has far-reaching consequences. On the positive side, within the symbol
structures that are basic to L#, any address can occur without causing some operation
(such as printing, erasing or searching) to misbehave. One can build structures that
refer to objects such as operating stacks, basic machine code, and even the registers
of the underlying machine.2 Furthermore, simplicity will be fostered, since the symbolic
structures in the system will be as simply constructed as possible.

On the negative side, there is a limit to the number of symbols in the system,
namely the size of the address space. But much more important, the mapping of a
symbol to its referent is fixed by the hardware (i.e., a symbol refers to a fixed location
in the address space, whether physical or virtual) Thus the freedom to assign
symbols to referents, and especially to reassign them, becomes restricted. This i1s a
genuine restriction, and one we will return to at several points; it has been accepted
as the price for the benefits above.

Notice that symbols are internal to the computer. They can just as easily be
created internally as by a user externally; in fact many are defined a priori.”’ For the
user to work with any of these symbols he must attach an external name (e.g. in
ASCII). We will treat this at length below, but it is important to note the difference
between names and symbols: names are external character strings associated with
particular internal symbols.

A Symbol Facility provides the basic capabilities for creating and
erasing symbols, and for doing the primitive operations that can be
defined for symbols independent of what they refer to. These
operations are tests of equality and inequality, and incrementing and
decrementing.

[2] 1f they are within the user's address space, as they are on the PDP10.

[3] Eg, in the PDP10 the rogisters and the so-callod job data area (whore tho monilor stores ucer job-
dependen! information) are both within the user's address space.

[4] The latter exist bocause symbols are addresses, and would not be meaningful if symbols had been dofined
as an absiract set

e ———————— -
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A complete capability for symbol manipulation requires also a flexible dala-type
for symbolic expressions. Not all data~types in a sysiem will aliow symbolic
expressions, but there must be one such, and it will play a fundamental role in the
system. It will be the medium used for all representational tasks which cannot be
accomplished by other more specialized means. In L this basic data-type is the linked
list of symbols.

A List Facility provides the processes proper to manipulating lists:
getting the next cell, getting the symbol in a cell, inserting, deleting,
copying, and erasing.

A single designative relation (here, between-addresses and the addressed
memory locations) is sufficient for all purposes, but quite cumbersomc. L% thus
provides a general mechanism for attribute-value associations. Given any two symbols,
say X and Y, it is possible to create an association (along some attribute symbol, say A)
from X to Y. Then given X and A one can directly retrieve the symbol Y. There can be
as many associations (and as many different attribute symbols) as desired. This is an
example of the positive benefit of choosing symbols to be addresses. Associations are
permitied on any symbols, hence on any addresses. 2

Associations are realized by a hashing scheme. A noteworthy fealure is that
each attribute has its own hashing tabie, thus allowing the sizes of these tables to be
irdependently determined and dynamically adjusted. This allows control over the
space-time tradeoff. For example, if access is rare for some particular attribute, its
hash table can be made small -- resulting in siower access but reducing the wastc of
empty table slots.

An Association System Facility provides the capabilities for creating
association symbols, creating, retrieving and deleting associations, and
otherwise manipulating the association structures.

3.3. Universal Type System

All the data within L* is of some type and there is a symbe! that desighates each
data-lype (called the type symbol). Given a symbol, the type oi the data structurc it
designates can be determined. Similarly, when a symbol is defined, its data-type must
be specified (though this can be done by the system rather than the user). New data-
types can be created at will. Figure 2 lists the data-types that are defined in the
initial system, with the external names of their type symbols. This initial set is neither
a complete set nor a minimal set; rather, it is what is necessary and sufficient for the
set of inilial facilities.
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T/T Type type

/M Type machine (code)

T/M Type word (also integer)

T/L Type list

T/P Type program list

T/J Type stack

T/K Type character

T/KS Type character string

T/A Type attribute (hash table)
T/AL Type attribute list (conflict list)

Figure 2. Initial data-typas

Data-types serve three important functions. First, they permit type dependent
processes. A print routine can print any input structure appropriately by first
accessing its type, thus relieving the user of aiways knowing what type of structure is
being printed. Second, space can be managed by data-type (and the initial system
does so). Thus there may be several data-types which are identical in structure but
are distinguished in order to manage the space they occupy (e.g., several areas all with
lists, but of separate types, T/L1, T/L2, .., to keep them segregated). This
management can be seen as just more type-dependent processing (copying and
erasing), and the implementation does in fact operate that way, but space management
by data-type is still worthy of special note. Third, the interpretation of programs is
totally type-dependent. This fact has very widespread ramifications for the basic
programming language used within L*, which we treat in the next section.

Four requirements on the type system have emerged from the discussion so far:

(1) Every symbol, hence every address, must have a type (thus a
process must exist which, for every symbol, delivers its type).

(2) Types must be dynamically creatable.

(3) Types are to be used in the interpretation of the programming
language (thus the process for finding types must be very fast).

(4) Types of symbols must be dynamically changeable.

We have not indicated the relative frequencies of executing type dependent processes
(such as print, crase, copy), of new type creation, and of changing the type of an
existing symbol. It is clear, however, that all these will be very much less frequent
than type interpretation, and thus they do not dictate the design of the type system.
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This is an exceedingly hard set of requirements to meet on a predetermined
architecture (e.g., PDP10, PDP11, IBM 360). For instance, storing a type symbol for
each symbol (i.e., address) in the address space takes on the order of half the memory.
Further, making the type access fast requires a simple algorithm. Since the type must
be found given only the symbol (address), the type must be either a simple function of
the_address or else stored at a place accessed via the address. Extracting the type
from the address makes type creation difficult, and changing types nearly impossible.
Although the type may be considered as just an association from the symbol, this is
not a possible implementation since all symbols in the association structure must
themselves have types; nor is it clear that a hash table scheme is fast enough for
requirement (2).

In the current version we compromise requirement (4) on changing types, but
not the other three. We assign types in contiguous blocks (128 locations on the
PDP10) by using a type table with one entry for each block (2048 entries on the
PDP10). Access to this table can be made directly from the symbol! (address) in two
PDP10 instructions, which becomes the basic type access time. Changing types is
effectively stymied because the types of a whole block of symbols are tied together

~and cannot be changed independently.

Actually, we have created a facility for dynamic types by exception, in which a
block can be declared dynamic to allow each symbol in the block its own type.
However, experience has shown that such facilities are not much used, probably
because of their high cost rather than a lack of desirability.

A Type Facility provides processes for getting the type and testing
types of symbols. It contains subfacilities for creating new types and
for creating dynamic types.

3.4. PLx: The Programming Language

Often the preferred strategy for creating a complex program is to create a
special problem-oriented language whose structure reflects the unique assumptions
about the task. To maximize the number of application areas, L% anticipates the
existence of many programming languages within it. The initial L* system, however,
contains just two languages: a form of machine language (called ML#) and a general list
processing language for manipulating the symbolic expressions (PLx). PL#* is, in some
sense, the Lx language, but we emphasize that other languages and systems grown
within L*x are not necessarily built on top of PLx. Often, they begin that way and are
converted to ML* under the press of selective optimization. ML% and PL* (and other
languages like them) are to be distinguished from the language through which the user

[5] The cost is high: extrs space for each symbol whose type is an exception to the block's type, and extra
time for accessing the typo of every symbol in the block.
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at a terminal interacts with the system. This latter is called EL*, and wiil be discussed
later.

PL*x was designed to be the simplest possible list processing language. The
basic data-type is the list. Normally, in the design of a programming lanquage, the
language itseif is a unique and complex data-type, radically different from the types of
the data structures on which it operates. List processing languages, on the other hand,
have been able to use a single data-type for both program and data, thus providing a
unification not possible in standard languages. This unification has quite real effects
when it comes to programs that create programs.

Coalescing of data and program is not achieved simply by deciding to do so. The
most fundamental property of a programming language- is that it determines what data
and operations are to be brought together, and when (and if) they will be exccuted.
Ali programming languages must therefore have some way of distinguishing operands
from operators (or functions). In a standard programming language this distinction has
no counterpart in the data structures. Thus, the program data-type, in terms of its
most basic requirements, threatens to be unmappable in any natural way into the other
data-types. A list, for instance, is a homogeneous sequence of symbols without
anything to dislinguish operators from operands.

The solution adopted by LISP is to employ one of the natural fealures of the list
(that it has a first symbol) to make the distinction between operator and operand: the
first symbol in a list is to be the operator and all others the operands. This makes the
program data-type different, but easily assimilable into the general list data-type.
Indeed, it fits with a common encoding of data in which the first symbol on the list is
taken as a "tag" or data identifier, with the remaining symbols in the list fitting the
conventions determined by the tag.

The solulion adopted by L% is to retain the homogeneous character of the list, so
that the interpretation of every symbol is to be the same. Then the distinction
beiween operand and operator cannot be given by the structure of the program (the
syntax); it must be given by the nature of the symbols themseives (the semantics). This
distinction is taken to reside in the type of the symbol. Thus for each type there is an
interpreter, which is to be executed whenever a symbol of its type is encountered. We
can express this in a principle:

PL# interpretation by type: A list of symbols (S1 S2 .. ) is to be
interpreted by successively interpreting each of its symbols, S1, $2,
and so on. A symbol Si is to be interpreted by executing the
interpreler associated with the type of Si.

With this interpretation rule there is a distinct data-type for PL# (called T/P, for
type program list), but it is structurally identical to the list data-type (T/L). The
difference in the Iwo rests in their associated inlerpreters; the T/P intcrpreter treats
the list as a program, while the T/L interpreter treats the list as data. There will, of
course, be interpreters associated with each of the types of Figure 2, and indecd with
all types that are created.

.
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The interpretation principie does not completely determine the character of the
language; it depends intimately on the details of the individual in(erpreters.6 Given that
an inlerpreter has access to the data structures of the operaling environment and to
the program structure itself, there is wide freedom to specify further the character of
the language through the actions of the interpreters.

The interpreter set for PL*% abides in so far as possible by the following
principle:

Context independence: The interpretation of a symbol in a program list
does not depend on the part of the program list not yet interpreted.

This principle, in conjunction with the one above, almost completely determines
the character of the language. It has three general effects: (1) there are no
incomplete expressions; (2) symbols establish a state within which the following
symbols can be interpreted; and (3) operator-like symbols cannon be taken as
operand-like symbols (for if they had to be interpreted in isolation, their interpretation
would have been operator-like). These imply the following structural features of the
PL* language:

Post-fix: Operand-like symbols must come before operator-like
symbols.

Stack communication: Operand-like symbols must have somewhere to
wait until the operator-like symbols come along, and they must do this
without knowledge about the operator-like symbol.

Goto-less control structure: Goto operators take operator-like symbois
as operands, which violates the rule.

Condition signal: A test must occur before conditional action based on
it is possible; hence the effect of the test must be statisized.

Explicit guote: There must be some way of obtaining an operator-like
symbol as operand. Thus, some violation of the context independence
principle_must occur. A quote operator localizes this as much as
possible.

The fundamental reason for adopting the context independence principle is to
make PLx simple to understand in terms of its underiying mechanism. There can be no
complex actions thal cannot be resoived into a sequence of simple ones. Equally, in

[6] The interpretation principle does, howevar, essentially determine the interpreter for T/P.

[7] le, the quote operator is » symbol that is interpreted prior to its operand and which acquires its
operand without interpretation
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terms of interaction, the interpretation of the language can be broken at any point and
additional processcs inserted or executed.

In terms of language design, we have long been interested in understanding the
extent to which a strong context independence assumption is compatible with a
language whose surface appearance is still very much that of a higher level language.

The PLtx Facility provides the operating environment for PLx along
with the control processes to be used in PL* programs.

There is also an |[nterpreter Facility which provides the set of
interpreters used in PLs.

Some examples of PLx coding will tie down these various design decisions and
also reveal the surface form of the language. Figure 3 shows a list named L1 defined
to have three elements A, B and C. In terms of the underlying linked list
representation, there are three memory cells L1, L2 and L3, each of which holds a
symbol (A, B or C respeclively) and a link to the next cell. We consider a program,
called TBL, which tests if the symbol B is in the list. This program has a single input (
the list to be searched), but is specific to the symbol B. The various component
processes are listed in the figure. Vertically below the program list we have shown
graphically the data stack (called 2); we have written a * at the bottom to indicate an
indefinite number of other symbols that will not enter into the processing of TBL.
Directly above the stack we indicate the condition signal (+ if true or succeed, - if
- false or fail).

[8] The explicit quote is an exception.

D e T
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TOL -- Test if symbol B is in list

TBL: ((P S B =S ,+NF ,R+) .- )
Example list input on sfack: L1: (A B C)
Internally: L1 A]L2] L2{B|L3] L3{C|NIL)
Processes used in TBL (all T/M -- machine code routines)

Push top symbol on data stack (2)

Get first symbol in list

Test if two symbols are identical

Exit if signal +

Get next location in list (tail)

Find list (set + if continues, else = and pop)
.R+ Repeat if signal +, else no-op

.- Exit if signal =

U Pop data stack (2)

MEZ* BV
+ 0

TBL: ( ( P S B =8 ,+ N F ,.R+) = U )

+ + + + + - - - +
LI LI L1 A B £ L1 2 L2
~ w L1 L1 A * * " ®

® % L1
*
T HREIE LA SRR L + O+ o+
k2 L2 B B8 L2 L2 L2 «
® L2 L2 B = * %
% * L3
*

Figure 3. Example of a simple PL# routine
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Z originally holds L1, the operand for TBL. TBL is a T/P list of three elements,
the first being of T/P itself and given in extension as the sequence (P .. ,R+).
Interpretation of this list leads to interpreling cach of ils clemenls. The first symbol is
P. This is a T/M symbol, which is to say machine code, and the T/M interpreler simply
makes a subroutine call to the machine code routine. The effect of this is to push Z,
resulting in two instances of L1. The interpretation proceeds sequentially. S zets the
symbol in the cell L1 (i.e., A); B is a data symbol and its interpreter pushes it onto the
stack; =S is the test for symbol equality, which sets the condition signal = since A and
B are not the same (note that processes in general consume their inpuls); ,+ is a
conditional exit, which is a no-op here since the signal is =; N gets the next cell after
L1 (i.e.,, L2); F sets the signal + to indicate the list actually continues (N might have
produced the end of a list); ,R+ is a conditional repeat, which moves control back to
the front of the list if the signal is +.

The second loop through the sublist continues as before (the second line of
trace in Figure 3). This time =S gets a positive result, since it has found the symbol, so
that the exit is taken. Hence, the next symbol interpreted is ,= (a no-op here since
the signal is +). The final symbol is U, which pops the stack removing the temporary
working symbol L2 (the moving pointer into the list).

The post-fix character of PL* is evident. Processes simply operate on the
operands that have been developed in the stack. To use TBL on a different list, say
L7, one would write:

- LT TOL .

L7, being a data symbol, would be pushed on the Z stack and then TBL, being
T/P, would be exccuted on it, just as above. The goto-less character is evident in the
control operators, ,+, .= and ,R+. Note in particular that looping is handled in a way
that is symbolically not much different from giving a superordinate command (e.g.,
(REPEAT .. ) ), but conforms to the requirement that it be a context independent
action. It is apparent from the example that the language is a mixture of high level
and low level constructs. For instance, stack management is explicitly the
responsibility of the program.

Some variations on this simple routine will convey some additional aspccts of the
language. One would like to write TBL simply as:

TBL: (P S B =S ,+ NF ,R+)

The additional ,= and U are required for cleaning up the stack, which is done
automatically by F at the end of the list, but not by ,+ on the positive cxit. The
following additional control primitive is defined in PL* (and is indeed rcquired for
completeness):

+=H =- Exit on =, else remove the next higher level

S e e - - —
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A primitive such as ,=H is required because it must be possible to control for a
given program level the continuation of levels above.? Using ,=H one can recode TBL
as:

TBL: (P S B =S (,-H U) NF ,R+)

Thus we have localized the code for exiting and cleaning up the stack. If we
wish we can introduce a new control routine:

LU+t (,-H U) --Exit if +, popping stack
With this we can rewrite TBL once more as:
TBL: (P S B =S ,U+ NF ,R+)
Actually, the routine is incorrect in its handling of empty lists, since it goes
through the motions of testing the “first symbol” of the empty list before quitting.10
Another variation can be written that handles this correctly by maving F to the start:

TBL: (F ,- P S B =S ,U+ N ,R)

The language also admits recursion, so that yet another alternative form for 8L

TBL: (F ,- P S B =S ,U+ N TBL)

TBL has been written with a single argument, the list. It is more appropriately
written with two arguments. Let us then define another program:

TSL -- Test if symbol (0) is on list (1)
where (0) (1) ... designate position on the 2 stack. Then we obtain:
TSL: (20 1 (F ,- P S 20 S =S .U+ N ,R) 20 D)
where I inserts (1) into list (0), and D deletes the top of list (0).
We have used a cell 20 (T/L) to hold the symbol to be tested. Thus we must

insert the symbol from the Z stack onto 20 at the beginning, and again delete it from
20 at the end. To access the symbol from 20 for the test, we input 20 to the stack and

[9] Besides -H, there also exist +H, and H (unconditional removal of the next higher level); similarly thore
exist R, R+ and R-, , + and - .

[10] The routine works correctly on empty lists because S on an ompty list morely delivers the symbol NIL
as outpul.
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then c¢xecute S on it. Otherwise TSL is just the same as TBL. We can collapsc these
operations on 20 by defining some additional routines:

120: (20 1) S20: (20 S) DZ20: (20 D)
TSL: (120 (F ,- P S S20 =S ,U+ N ,R) D20)

If we wanted to generalize TSL further to take as input a generalized test,
rather than just symbol equality, we might define:

TXL -- Test if there is a symbol on list (1) satisfying test (0)
TXL: €120 (F .- P § S20 .X .U+ N ,R) D20)
where , X executes (0).

One of TXL's inpuls is now a process; to use TXL we must use the quote
process. We can illustrate this by reconstructing TBL from TXL:

TBL: €.Q (B =§) TXL)

The quote, ,Q, is a T/M routine that puts the next symbol in the program list
(here the subprogram (B =S) ) into the stack and advances interpretation past it.
Thus TXL will be the next symbol interpreted after the ,Q.

The examples above illustrate the simplicity of the PLx language. To summarize,
PLx is interpreted by type, maintains context independence (no syntactic structure), is
post-fix, and uses a stack for operand communication. Let us now examine the other
initial programming language embedded in L*, the ML* machine languasze.

3.5. MLx, the Machine Language, and Stacks

3.5.1 ML*: Machine Language

The use of machine language must remain integral to L, since it is the means
through which the machine is ultimately controlied. One shields the implemcnter-user
from access to machine language only by committing a major act of designer’s
prerogative -- of deciding that the forms of access determined by the original
software designers (here the L* designers) constitute the only means by which the
machine will be utilized. But time and space efficiencies are of the essence -- that
computational completeness remains available to the user does not sutfice. This is
especially true for an implementation system, whose users will crcate still
undetermined object systems.

s g pem P ——
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Access to the machine language does not imply that an initial component of L#
must be an assembler of some form. In fact, Lx adopls a specific principle:

Machine access: Access to the basic machine is to be obtained via
symbolic structures created within the system itself.

Thus, though there are assemblers and compilers in L%, they are not available as
primitive facilities, but are constructed by means of PLx programs and data structures.
What must be guaranteed (though it is not difficult) is the possibility of oblaining full
control of the machine ultimately. This occurs by having the word be a basic data-
type (T/W) with primitive operations that include the standard arithmetic, boolean, and
shifting operations. Given that words with arbitrary bit content can be easily
fashioned, it is straightforward to construct, within PL*x, simple assemblers, macro
assemblers and compilers.

This principle, with the implied delay in obtaining facilities for assembling and
compiling, rests solidly on the design goals of L¥x. To make such facilities part of the
initial system poses an almost impossible tradeoff between initial simplicity and
ultimate facility and flexibility. Assemblers, as a genre, are deficient in the facilities
they provide (compared to, say, LISP or PL/1l) precisely because they are "inmitial"
systems. Such systems are not only lean, they are inflexible. HLLs solve this problem
by creating a large initial system (the HLL itself, e.g., PL/1). This at Iecast obtains
facility, though it doesn’t obtain flexibility.

Basically, the computer itself dictates the machine language. However, using
machine language within a system requires various conventions that constitute, in
essence, a particular sublanguage. Thus, ML#* is the machine language plus a set of
conventions:

The operating environment consists of three stacks: (1) a conirol
stack, holding the current instruction; (2) an operand stack; and (3) a
test condition stack.

All fanguage systems will use a common operating environment, if
possible. In particular, ML%, PL¥, EL* use the same operating
environment.

The three-stack operating environment is dictated by the requirements of
common machine language and PL* use, these being the initial language systems.
However, it is also an appropriate environment for realizing a wide variety of higher
level languages (like LISP or Algol). The major restraints on the machine language
programming are: (1) All argument-passing must use the operand stack (specifically,
registers may not be used); (2) Signal communication must use the test condition stack
(e.g., no skip returns may be used to return a signal); (3) Working register usage .is
limited to those not required to provide the three-stack operating environment.

—_— e e A ———— e et et
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The communahty of use over language systems is primarily an efficiency issue.
Without this, passage of control across a language boundary also requires shuffling of
data, in addilion to the transfers required by the basic mechanics of the calling
sequence. The costs involved are substantial. In the initial PDP10 systems through
L*(G) we cxplored a number of variations on mechanisms that kept the operating
environments separate, and the tradeoffs are quite clearly in favor of communality on
standard computer architectures.

An important consequence of these conventions is that there is only a single
routine for a single function. For example, consider the function of inserting a symbol
in a list; this is needed in both language environments, PL* and ML* (and others as well
perhaps). There is a process named [ (itself written in MLx) which is to be used
within both ML* and PL* programs to carry out the insertion function. Thus, there
does not have to be any duplication of function across the two language environments.
This is in fact an extremely strong contributor to simplicity in the L* structure. As for
executing PL*x programs from within ML%, designer’s prerogative by the hardware
architects prohibited this from happening as it should. The PL*x call must be
surrounded with a small machine language cliche.!} Except for this, the situation is
symmetrical. Most interpreted language systems are hierarchical, with the interpreted
code lying "above" a machine code base. The L* language structure is not hierarchical.
Many PL* routines are called from within ML*.

3.5.2 Stacks

The abstract data-type called a stack is an extremely useful data structure in
software systems, wherever there is interruption and return in the use of resources
(viewed quite abstractly). Phrase-structured languages, interrupt service, subroutine
hierarchies, and variable-binding hierarchies are only a few examples. Thus an
implementation system needs a stack data-type, both for its internal use and to employ
in object systems. There are literally dozens of stacks in use in a typical Lx system, at .
all levels of system organization.

Stacks can be implemented in many ways. The most familiar is a sequential stack
occupying a continuous interval of the address space, in which push and pop are
accomplished by incrementing and decrementing addresses. But in a system which
already has list processing, a quite natural choice is to map stacks onto lists -- a
subset of the list primitives are isomorphic to the standard stack operations. Using the
notation in PLx:

[l 1] Which puts the PL. symbol on the Z stack and then calls the PL« interpreter.
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List Stack
S Get symbol in ccll Read lop svnibol
R Replace symbol in cell Replace top symbol
I Insert symbol al front Push new symbol on top
IC Insert copy at front Push (double top symbol)
D Delete Pop

General advantages of list stacks include the immunity to overflow (since they
are not contiguous bliocks) and the availability of the more powerful list operations
when needed (insertion, deletion and reading other than the top entry). When used for
the operating environment of PLx, list stacks aliow easy exploration and modification of
that environment (e.g., in the coding of new control operations which directly
manipulate operating stacks). In the PL¥ environment stacks hold symbols (i.e.,
addresses, which occupy half-words on the PDP10); hence space and time costs are
about equal between list stacks and sequential stacks (usually considered the most
efficient implementation). All of our initial versions of L% (through L*(G)) used list
stacks 12

The machine language operating environment must be realized with sequential
stacks in current standard architecture. Designer’s prerogative by the hardware
architects has been exercised in the subroutine call and return functions to make all
other choices for stack implementation prohibilive. Thus, a choice of list stacks for PL*
(producing homogeneity there) produces a split between the operating environments
of PLx and ML, with the negative consequences discussed above.

The current L* systems have adopted the other choice. Stacks are realized as a
distinct data-type, T/J13, Then the PL# operating environment is identified with the
ML#* environment, as above, with the consequent simplicity and speed increase.

Stacks are now a general data-type providing functions which partially duplicate
list functions. Corresponding to the processes on lists (S NR I D F ..) there are
processes on stacks (SJ NJ RJ IJ DJ FJ ..). Stacks are realized with a pointer
structure that keeps lower and upper stack bounds pius the actual pointer. The stack
memory area is a separale block, which can be relocated in memory to provide
expanded or contracted memory space. An important advantage in having stacks is
their preferred use in object systems which do not wish to import list processing.

By providing an efficient stack data-type and a machine language (ML*)
integrated with the rest of the L* system, we have provided mechanisms for achieving
total accessibility to the underlying machine and for aiding selective optimization. ML*
and PL* are the two initial programming languages provided in L%, but neither has any

[12] Note {hat the examples in this paper use list stacks (eg, for 20 and 2Q): they could have used
sequential stacks '

[13] J for nothing, but think of the stem of the J as the stack and tho cup as tho overflow fost
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privileged status. Other programming languages may be added at the same “level” as
ML#* or PL*. Now, let us describe the language used to communicate between the user
at a terminal and the L* system, EL*.

3.6. ELx: The External Language

L* treats PL* as an internal language -- a set of data structures in memary that
can control processing. It would treat similarly any number of other languages, such as
LISP. The human user, of course, resides outside the computer system at a terminal,
and he communicates with L* through some olher language, or at least through some
notation for the internal languages. We call this external language EL=.

EL* must meet several requirements that separate it sharply from the set of
internal languages:

Names vs. _symbols: EL* is written as a sequence of characters
(assuming text, not graphic, input devices). Hence correspondences
must be made between sequences of characters and internal symbols.
We use the term name for a character sequence that maps into an
internal symbol.

\

External fidelity: It should be possible to make the external language
isomorphic to any given internal system (this follows from the
requirement for simplicity).

Total accessibility: All internal symbols and structure must be
representable within EL* (i.e, ML#, PL*, and all languages to be
subscquently created).

Growth into object systems: It must be possible to transform EL# into
a problem-oriented language for an object system, with an operating
environment scaled off from the total L+ environment. (The full range
of standard notational and linguistic devices must be easily created
within EL*.)

Dynamic modification and simplicity: EL* must be capable of beino
modified inleractively by someone working within EL*. (This also
implies a simple mapping between EL* and internal structures.)

The requirements for fidelity and total accessibility for all internal languages
imply that EL# cannot simply be another language, analogous to PLx, with a particular
data-type and set of interpreters. Thus EL#, though a language functionally, must be
conceptually orthogonal to the other languages in the system.

We first discuss EL* considered as a sequence of symbols, assuming the mapping
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from character strings to names to symbaols has already taken place. This i« the level
of syntax, but also includes the higher levels of semantics and action. Then we will
return to consider the lexical processing that proouces the symbolis.

3.6.1 Syntax, Semantics, and Action

Standard syntax schemes imply the existence of a grammar and a parser
between the user (i.e., the creator of EL# surface structure) and the corresponding
internal data structure. Given the requirements far syntactic power, such a scheme
would seem to interpose a veil of complexity at odds with the desired ficgelity and
simplicity of the total system. .

The central feature of a solution to these multiple requirements lies in taking a
"process-view" of syntactic interpretation (Newell and Freeman 13968). Namecly, the
interpretation of an EL* sequence of names is to be carried out as a sequential
process. Some names will correspond to processes whose immediate cxecution will
carry out the analysis of the input stream, to convert it into a sequence of internal
actions or structures. Other names will correspond to lexical items and will beccome the
internal symbolic data.

Let us capture this in a definition:

Sequential Process Grammar: A linear sequence of symbols, each of
which is either active or passive; active symbols are inlerpreted
immedialely in an operating environment that includes access to the
language stream. The active symbols are called syntax actions.

For ELx, the stream of characters must be converted into a sequence of names,
and these names must be mapped into their corresponding internal symbols. Then
interpretation implies, as usual, execution of the associated interpreter according to
type. Of necessity, then, the operating environment will be the samc opcrating
environment used by these interpreters.

It remains to show the extent to which such a scheme can realize appropriate
surface structure. Though we do not know of any other programmingz language that
takes exactly this course, the scheme is closely related to the original formula
transiation schemecs introduced long ago by Samelson and Bauer (1960), and to the
pushdown schemes of Floyd and Evans (Evans [964). EL*, however, does not form a
closed system, but operates within the environment of internal computation.

EL* is to be used for realizing context dependent surface syntax of all kinds; in
doing so there is no reason to adhere to the context independence principle adopted
for PLx. On the other hand, a sequential process grammar, with its exccution of
independent syntax actions, lends itself to a strict adherence to the principle.- This is

‘irmportant in realizing an external isomorph of PL%, bul is also useful more widely in

interactive programming.
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Some simplc examples will make the scheme concrete. Figure 4 lays out a
scheme to definc a simple list, (A B C). Each of the five character strings, “(", "A",
and so on, iIs a name. There is no distinction Lelween idenlifiers and syntaclic marks.
More accurately, the distinction is encoded into whether a symboi is active or passive
(as indicated in the figure by a and p). However, as we shall see, any symbol can be
active or passive and this state can be changed dynamically.

The first symbol ( is active; being a PL* program it 1s executed. The result is to
put a symbol into the stack to act as a floor. This symbol should be forever unnamed,
so it is simply held in cell called FLR. We call the symbol address 97, just to call it
something. The next name A maps into a passive symbol; it is pushed onto the stack,
which is the fate of all passive symbois. Thus, the symbols corresponding to the
names B and C also end up in the stack. Finally ) corresponds to an active symbol
which also designates a PLx program. It creates a new symbol (via the CR process)
and goes into a loop transferring symbols from the stack onto the list, while looking
for the floor in the stack as a signal that it has finished. The symbol for the hst is held
in cell 20 and all the inserts are made to the front (by I), so that the order is the
same as that initially written. The symbol for the list (called here 632) is output to the
stack.

Typed at the terminal: (A B C)

a P P P a a = active, p = passive

* a7 A B (o 632
* 97 A B *
* 97 A
® 97
*
“"( ¢ (FLR S)

") ¢+ (T/LCR 120 (P FLR S =S ,U+ S20 I ,R) S20 DZ0)

Figure 4. Defining list structures
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The scheme of Figure 4 suffices for any list structure. Tracing throuzh the
example below will show how each list is crealed as a symbol and becomes part of its
embedding list:

(A (B (CC) D CEF) G HN

To add the syntax for assigning the symbol for a list (:) we can proceed as
shown in Figure 5. The & is a binary operator and cannot complete its own operation
until both of its operands are complete. In particular, ! must delay until its right
operand is complete, which will not happen until after it has itself been interpreted. A
natural device for this is to create a delayed process that fires when the operand s
complete. In the present context, only ) will know this, so it must be aiven the
responsibility for executing the delayed process. As Figure 5 shows, : leaves L1 in
the stack and puts a process on another stack, 2Q. ) is modified to execute what is on
the ZQ stack after building the list. It does this by a routine ,XQ, which we discuss
below. The delayed action cxchanges the first cell of the list {o be that associated with
the specificd first symbol, L1, rather than the createc symbol used by ) (using RW).
The stack manipulations shown (V is reverse, Pl is push second element) are to
preserve 632 (the un-named list structure) until the end so it can be erased (erasing Is
done explicitly in the basic L* system).

o o ———- s g - ~—
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L1 : ( A B C )

* L1 L1 97 A B c *
* * L1 97 A B
* i1 97 A
* L1 97
* L1
*

(.Q (VP1LRWE) ID

“C : (FLR S) .
"y ¢+ (T/L CR 120 (P FLR S =S ,U+ S20 I ,R) SZ0 D20 .XQ)
.XQ ¢ (sQ X DQ)

sQ : (2Q S) IQ :+ (22 I pQ : (2Q D)

Figure 5. Defining a named list

\

Qur purpose of presenting this much detail is to show how syntax can be built
up with little effort. In the 2Q stack and ,XQ we have essentially all that is needed to
add the full complement of binary operations (e.g., relations and arithmetic). In the
actual system, matters are somewhat more complicaled, because one must handle
multiple types and redefinition of structures.

L* is a fully interactive language, so that there is the possibility of arbitrary
immediale execution as well as delayed execution. The analysis of the [CL# input
stream already implies immediate execution of active symbols; to obtain immediate
execulion of passive symbols there exists a process called ! (itself active, of course).
The process | is actually identical to the execute process ,X (except lhat ,X is not
active); | interprets (executes) the symbol on the top of the Z stack. Hence, in the
following {yped in sequence, the first two names put L1 and TSL respeclively on the
stack and | executes TSL on input L1, just as we saw in Figure 3.

-~ L1 TSL |}

U
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This example should help emphasize that not all (or even most) Pl programs
are active. Most are passive and are treated in EL* simply as additional data 1o be put
away in ncwly constructed programs.

EL* uses the same processes as are used in PL* (or whatever language 15 being
worked with). It achieves the desired isomorphism provided that the external syntactic
structure can be realized by means of syntax actions that build isomorphic structures,
which in general is possible. Conversely all of the processes that are available in EL*
must aiso be available internally. This can be appreciated, for example, in copying a
list. Suppose we wanted to copy a known list, L1:

CL1 -- Copy list L1

Then an obvious way to do this, in analogy to the way lists are buiit externally,
would be (schemalically):

CL1: ( <contents of L1> )

Since ( and ) are simply symbols that designate PL* programs, we can use
these internally as well as externally. All we need fo do is treat ( and ) passively. An
actual routine along these lines is:

CLls € "C L2 "W ") )

The quote ' is an active symbol that passivates the following EL* symbol. Thus
the outer ( ) define the list CL1, just as always. The inner '( .. ') are the same
two processes, but they exist internally as part of the process CL1. The process «L
dumps the contents of a list into the stack; since it happens to be active as well as (
and ), it must also be passivated with 114

We can provide one last illustration by writing the code for «L, as it might have
been defined:

"L t (F ,-PSVN.,R «L ACT!
The character ¢ happens to already exist as a name, so it is necessary o use "
before the name +L to prevent it from being mis-recognized as ¢ followed by L.15
Then follows the PL# program, made up of the usual primitives. This defines «L, which
is now simply a routine, like TSL. To make it active we input it, input the activating
process ACT and do an immediate execution with |. From that point on «L is aclive.

[14] 1tis of course possible to passivate ' itself by writing ' .

[15] The operation of “ will be explained more fully in the following section.

e Dodane —— e ———————
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3.6.2 Lexical Recognition System

We have assumcd above that EL* can be rcpresented as a sequence of symbols.
In one respect this already differs from standard practice, in that all syntactic marks
(e.g., ( or : ) correspond to symbols in the same way as what are usually termed
“identifiers”. We now need to show how the character stream is segmented and
converted into a sequence of names, which then become associated with internal
symbols.

Two requirements are particularly pressing for a lexical recognition sy«lem:

Flexibility: It must be able to encode a great variety of segmentation
and classification ruies, to support the growth of object systems from
within. (In particular, it must handle punctuation and syntactic mark«
in a way homogeneous with other lexical items.)

Efficiency: It must be highly efficient -- time efficient since it sits in
the basic interactive loop of the system, and space efficient since
users can be expected to use many names. (Systems with thousands
of names must be practicable.)

The central recognition system is composcd of two-way symbol tables, cailed
dictionaries (i.e., name-symbol and symboi-name correspondences). A diclionary
scheme requires further specification. (1) What class of names will be admitted to a
dictionary? First, call a |lexical recognition point a point in the character stream such
that the prior scquence of characters has been completely segmented and recognized
and the following sequence is unanalyzed. (2) What dictionary appiies at a point (if
several exist)? (3) What candidate names gect submitted to the dictionary for
recognition at a point? (4) Giverr that more than one dictionary entry is saticfied at a
point, how s the ambiguity resolved? Standard practice is to do rule-based
segmentation of the character stream to determine a single candidate, such that
ambiguity cannot arise, admitting to the dictionaries only such names as are consistent
with the segmentalion rules. Multipie dictionaries in the form of nested block structure
are also standard.

The flexibility requirements imply a different approach. EL* adopts the following
principle:

Lonsest-recognizable: That name will be recognized which is the
longest name that matches, starting at a recognition point (from within
the applicable dictionaries).

Some examples will clarify the principles (where we always take the recognition
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point to be at the far left). Under Text are exarapie inputs, each resulting in the
recognition under Recognize when the names under Entries already exist in the
dictionary:

Input Text Dictionary Entries Recognize
. +H ot JHH «+H
L\ABC ABC L\ L\

(B B ( (B

<= <= < <=

The principle of the longest-recognizable is a semantic segmentation scheme
which couples segmentation to the contents of the appiicable names. It pcrmits one to
have overlapping notations, not restricted by a set of artificial segmentation rules.
The phrasc “artificial” is used advisedly, since it appears to informal observation that
humans operate perceptually closer to the longest-recognizable principle than to any
other segmentation scheme in common use.

A typical example of the use of this principle within L* can be seen in the
problem of building lists of different types. Parenthecses, ( ... ), will build a list, but do
not specify its type (e.g, T/L, T/P ). This is done by defauit, properly enough.
However, a notation is required to declare the type specifically:

€ ) Build a list of default type
L\(C ..) Build a list of T/L
P\C ...) Build a list of T/P

The longest-recognizable principle recognizes L\( as a whole in preference to
segmenting before the (. Given that we had defined a new list type, say T/Q, we
would of course face the problem of getting Q\( into the dictionary in the first place.
This is accomplished by the double quote:

“a\( ¢ ¢ T/2 '\()

Double-quote is a symbol just like any other; it exists in the dictionary and is
active. It signals the recognition system to recognize all characters up to lhe next
space as a new name. Notice in this that the general routine \( also exists which will
take any type symbol as input and start a list structure of that type; it 15 normally
active, so it had to be passivated to get it incorporated into the routine. In fact, we
could have not bothered to define Q\( and instead simply written:

T/a\C .. )

The longest-recognizable principle would have segmented T/@ (which is in the
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dictionary), and then \(.16

The question of putting new names into the cichionary requires additional design
decisions. In general, EL* avoids declarations (a design decision generally favored by
interactive languages and not by batch languages). In cases of ambiguily, as above, a
declaration (via ") is unavoidable. But generally if a symbol is mentioned and not
recognized, then it is an implicit declaration of a new entity.

Implicit declaration poses a problem for a semantic segmentation scheme. At
what point is a newly input name complete? To identify termination points for
recognizable input names, lhe character set is divided inlo several classes: name
characters, digit characters, boundary characters, and participating boundary
characlers. The name characters generally include all alphabetic characters and some
of the special characters. Boundary characters act as rigid boundaries for recognition,
and include characters like space, tab, carriage-return and line feed. MNamcs do not
contain rigid boundary characters. Participating boundary characters act as conditional
boundaries for name recognition and can be part of names. They gencrally include
most of the special characters. For example, if &, (, and ) are participating boundary
characters and space is a rigid boundary, then:

ABC: (AB CD)

would be parsed so that recognition would be attempted on ABC: (AB, ABC: (, ABC:,
and finailly ABC. If none of these possible names is found in any of the relevant
dictionaries, then the Jast will be implicitly declared. The class assighments for
characters is under control of the programmer to allow maximum flexibility.

The final decision at this level in the recognition system is what sort of name
contexts are available. EL* permits an indefinite set of dictionaries. An ordered list of
these is available at a given recognition point. Normally this is block structured, but
can as ecasily provide sealed off lower contexts which do not have access to higher
ones. This latter scheme serves the growth of object systems which should exist in an
isolated world as far as the user is concerned.

3.6.3 The Dictionary Mechanisms

The description so far does not provide the fundamental mechanisms out of
which the dictionary shall be built. Principles, such as longest-recognizable, are of
course only a particular (useful) design choice. The fundamental scheme must permit
the crecation of name segmentation and dictionary schemes of arbitrary variety.

[16] This assumes that T/Q\ and T/Q\( are not defined (io, scgmontation depends on the semantics, which is
to say on the actual set of names being used)
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The problem is analopous to that faced by ELx for the higher level syntax, and
the solution adopted is fundamentally the same -- namely, to take a "process view" of
recognition:

Sequential Process Recognizer: A linear sequence of characters, each
of which designates a symbol, which is interpreted immediately in an
operating environment that includes access to the character stream.
(The symbols are called character actions.)

The function of accessing a dictionary is distributed to the collective actions of
the characters starting at the recognition point. The interpretation of syntax actions
occurs immediately as they become recognized. From one point of view there is only
the interpretation of a sequence of character actions. In general, there cannot be
separate levels of processing that create first a representation of a character
sequence, then a representation of a name sequence, then a representation an ELx
symbol sequence, then an internal parsed structure, which’ is then executed.
Subsequent processing at all levels (including that of characters) can depend on the
processing at all higher levels.

It remains to be shown how to realize various dictionary schemes by such a
mechanism. Such detail is beyond this paper. We have constructed by theze means
multiple linear table dictionaries, discriminalion net dictionaries, hashing table
dictionaries, and others -- representing a wide variation of space and titme tradeoffs.

There is nothing inherent in the Sequential Process Recognizer that restricts it
to dictionary lookups. For instance, it is used for conversion of digil sequences to
numbers. More generally, a user interface where all the syntax is conveyed by
punctuation marks could be realized by character actions rather than by syntax
actions. Indecd the same actions could be used, simply assogciating them to the
characters rather than to the names.17 ELx renounces this possibility in order to
provide the ability for syntax to reside in arbitrary character strings (e.g., <=).

3.7. The Lx Kernel

L* is grown from a kernel. That is, there is a small body of code and data which
constitutes a system that is sufficient to run. From that point on, all of the additional
facilities are added to the system using its own mechanismz.

The kernel of L* is usually measured by the amount of machine language it
requires, for this somchow measures how much basic mechanism has been defined. The
size of the kernel, measured this way, is given for several implementations in Figure

[17] In fact, various command actions (eg, in the editor) are associated with standard control characters
such as carriage-refurn, line-feed, or altmode
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6. It 1s about 1600 words on the PDP10 and 2500 words on the PDP1l standalone
(either a simple PDP11 or C.mmp, a multiprocessor (Wulf and Bell 1972)). The types
which are represented in Figure 6 account for raosl ¢i the space in each system. The
ML#* language 15 composed of machine code, or type T/M. The PL#* language is
composed of interpreted programs of type T/P. The T/W data include buffers, tables,
stack work space, and single word constants and variables. The T/L, T/A, and T/AL
data are symbolic lists and associations. The T/KS data are character strings for the
names in the system. The LA (A-level) system is the complete basic Lx system that
most users use. Note that the 8080 wversion is described in terms of 16 bit words
instead of 8 bit bytes.

The sizes for the systems are fairly constant (in terms of bits) except for two
cases: Lx¥(]) is broken into two segments, with the high segment (the numbers in
parentheses) only loaded on demand; and L*C.(D), which contains facilities for
multiprocessing and for dealing with overlayed pages in its address space. It is
interesting to note that the existence of an underlying operating system does not
greatly affect how much machine code is required in the kernel.

Machine PDP10 PDP10 PDP11 C.mmp ALTO 8080
Word size (bits) 36 36 16 16 16 16
Opcrating Sys TOPS-10 TENEX None Hydra None None
L* Version Lx(I) L*(I)X L=11(H) L*C(D) L=*ALTO L*3080
Kernel
Machine code 1.6 1.6 1.8 5.7 25 25
T/P 6.6(1.6) 7.8 4.0 6.7 6.0 5.0
T/HW data 6.1(1.2) 7.2 5.0 10.0 5.8 4.2
T/L 4.1(0.4) 45 1.0 i.1 0.7 0.6
T/A, T/AL 1.0 0.9 - 0.3 0.6 0.8 1.1
T/KS 1.5(0.4) 1.9 - 4.8 2.3 2.3
L*A (A-level) 25(+10) 32 13 32 18 16

Figure 6. Sizes of various Lx versions in thousands of words

The machine code in the kernel alone does nct produce a self-sufficient system,
Some PL* programs and data are required as well to make a minimal self-sufficient
sy«tem. In the A-level system, the PL* programs account for about five times the size
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of the machine code, and the data accounts for about nine times. The large proportion
of data is largely due to the space needed for names (character sirings) and
associalions between names and symbols.

There are important reasons for Lx to have a small kernel. First, it limits the
amount of basic system that must be understood by a user (i.e., a system implementer).
Thus, it contributes substantially to the totai accessibility of the system. Size alone
does not determine how accessible the kernel is -- if it were a single entity, then even
1600 words could be formidable. In fact, the kernel consists of a highly rationalized set
of routines, all built around the same operating environment. Thus in a typical kernel
there are about 130 routines, most of which are small, independent language
operations (e.g.,, S, N, ,+ ). There are about i5 routines larger than 20 instructions,
and the largest is about 80 instructions. The hierarchy among these routines is
shallow, with calls that nest deeper than two being rare.

The fact that there is only a single routine for accomplishing any function, as
described in Section 3.5 on MLx, is an important contributor to the simplicity of the
ternel. Although there are routines that the user does not normally look at (e.g., those
in the space management or interface facilities), there is no special subsystem of
internal housekeeping routines. There is nothing hidden under the floor -- and indeed
no floor at all.

A second reason for having a small kernel is that L* is constructed to be
repeatedly grown into an object system. Such a growth process is not just
augmentation, but can involve modification and replacement of existing facilities. (For
example, a new dictionary scheme, or a type system wilh added features). Regrowth is
often the strategy of choice in such cases, backing down to a minimal system and
putting the new version together from scratch. The smaller the kernel, the easicr such
a process will be. Indeed if the kernel is small enough and simpie enough (as we
believe the L* kernels are), even revisions of the kernel are possible withoul too much
difficulty.

Third, with a small and simple kernel it is much easier to produce a compietely
debugged basic system, such that most errors encountered can be assumed to reside
in newly-added code. This has indeed proved to be case -- L# itself is highly stable.

Fourth, portability from one environment to another and from one machine to
another is made much easier. We did not have portability explicitly among the major
design goals of Lx, but it is clearly important. And indeed, we have brought up versions
of L* on several different computer systems.

Additional benefits derive from the small kernel, but they affect mostly the basic
system designers themselves. Thus, it has been possible to carry out a substantial
number of iterations of the basic L* system. Each of the iterations has experimented
with radicaily different solutions to the various basic system problems. This would
surely not have been possible if the system itself were as large, say, as a compiler for
a higher-level language.
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3.8. Complete Facilities

In Section 3.1 we said that Lx was organized by facility. Throughout the section
we have noted that the various mechanisms we have discussed were included in such
and such a facility.

The design goal of producing a complete operating environment is to be realized
by providing a complete set of facilities. In creating an object system the user should
find available as facilities all the software tools of whatever kind that he needs. Since
all facilities exist within the same system, and since this also includes the object
system as well, several consequences follow:

All software tools will be evoked and used within the same set of
conventions.

All software tools can be modified, examined and debugged (for even
much-used systems experience an occasional bug) in a common way.

To the extent that new tools are required, they can be added within
the same framework and in real time.

To make this concrete, Figure 7 lists all of the facilities in the so called A-level
system. This is a stage of growth (starting from the kernel) where enoush facilities
have been added to provide what any beginning implementer wants. It is lhe version
normally evoked at the monitor level on the PDP10 -- what you find in the standard
documentation. !

—————————————— . - - ———— - —— e ———
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Syslem.support facilitics

Interpreter
Interpreter.step
Fast.interpreter

Type (T/T)
Dynamic.type
New.type

Symbol

Space.management
Block.space.management

External.inlerface

Extended.system
System.initialization
Save
High.segment

Data.structure facilities

List (T/L, T/P)
List.structure

Pair.list (T/AL)

Block

Stack (T/J)

Character.string (T/KS)
String.conversion
Byte.string

Word (T/W)

Association.system
Association.list (T/AL)
Attribute (T/A)

Languacge.environment facilities

ML#* (T/M)
System.macro
PL+ (T/P)
Opcrating.state
Control
Iterative.control

Lang usmc.e vwironment (cont)

ElLs

Recognition
Character.action (T/K)
Executive
Name.context
Local.name
Fast.name
Type.recognition
Undefined.symbol
Name.assignment

Print
Print.machine.code

Utility facilities

Debugging
Error.detection.and.recovery
Undefined.T/P
Tracing

PLt.step
PL*.breakpoint
MLx*.breakpoint
General.breakpaoint
Symbol.monitor

File
File.read
File.write
Fiie.ppns

List.cdit

Assembly
Machine.opcodes
Machine.instruction.assembly

Macro.assembly
General.word.assermbly
Machine.opcodes.complete

Translation
Translation.update

Space.accounting

Time.accounting

Figure 7. Facilities of the A-lavel L#(I) system
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We do not enumerate the contents of these facilities because they are the
facilitics to be cxpected in any total prograimming environment: editors, drbuggers,
compilers, assemblers, accounting systems. The ¢ . nathing <acred aboul lhe exact set.
It reflects a uniprocessor with a non-L* operating system -- other facilitiecs show up In
stand-alone ver<ions of L+. Likewise various multiprocessing and overiay manacement
facilitics show up in L¥s that inhabit C.mmp. There are some notable omissions from
the set of facilities in Figure 7, reflecting priorities and existing alternative systems in
our CMU environment. For instance, no documentation facility appears, nor coes a
text-editor facility (which does exist in other versions), a structured programming
facility, or an optimization subfacility cf the translation (compiler) facility. These are
not missing as matters of principle; all should be there, and will be eventually.

As noted earlier, facilities are not self-contained modules. An important reason
for this is the very large amount of function that is represented in Figure 7. Each
facility should add only a minimal amount of coding to accomplish the incremental
function. In praclice, this means there are strong dependencies between facilities:

facility Y requires the existence of facilities X1, X2, ... in order to operate. Normaiiy,
this takes the form simply of the growth order from the kernel -- assuming, of course,

that any facility can use any pre-existing facility.

An important characteristic of the facility organization is its avoidance of
designer’s prerogative. There is no artificial boundary in the system belween what
the L* designers provided, and what is provided by users (or even by a set of
advanced system designer-users who might provide more tools, or by object-system
implementers down the line). Although the kernel consists of a particuiar set of
facilities, and others get added fo produce the A-level system, therc is no way of
distinguishing such facilities from others added later except in terms of the substantive
dependencies. The object-system implementer can regrow the system with aiternative
facilities, or replace a basic facility that underlies much else (say the Space
Management facility).

An impartant extension of this characteristic occurs because the object systems
are grown within the implementation system. Thus, it is not necessary to distinguish
implementalion tools from software that is seen as part of the object systemn (say for
monitering of the running object system). Because all of the tools reside in one
environment, augmentations of the implementation system and augmentations of the
object system merge to become a single activity.

e e e e e —




- ]

40 Experience Lx

4. Experience

Any proposed implementation system, certainiy including L%, requires cvaluation
of how well il meets its design goais, and indecd of how well these design goals« attain
the ultimate goal of producing good software systems. Evaluation of cuch complex
systems is not easily accomplished, a fact generally acknowledged, and we have no
special miracles to make it easy. Furthermore, systems such as L* are not static but
continue to adapt. Thus L* provides a moving target that tends to overcome
deficiencies revealed in early evaluations. This is especially true of a language with
the flexibilities of L*.

An immense number of aspects need to be assessed. How fast can software be
produced with L+? How efficient are the systems so produced, in space and in time?
How maintainable and modifiable? How portable? How long does it take to bring up a
new L* system on a ncw machine? What is the performance of L= wilh variation in size
and complexity of object system? With variations in the experience and quality of
programmers? How long does it take to iearn L¥? As laid out in Figure 1, L* cmbodies
many specific elements of design philosophy: their specific contribution to these
evalualive dimensions must be assayed. The mechanisms in L* that realize these
elements must be analyzed in their own right, since failures in L¥ performance may be
due to imperfect mechanisms rather than inappropriate philosophy. Mechanisms will
also exist in L* that do not seem to serve any stated design philosophy, and these
need to be identified and their contribution (positive or negative) determined.

Recitation of this litany is not meant to overwhelm, or to let oursclves off the
hook. We do believe that answers to such questions should be actively sought, both
for L* and for other implementation systems. (And we believe that the lack of such
data on existing implementation systems approaches the scandalous.) We provide here
the few facts we currently have; the issues discussed in the next section give some
indication of what our future data-gathering will focus on.

A few of the facts required for an assessment can come from measurement of
static systems -- of the amounts of code and data that make up L* or L¥-produced
object systems. Most, however, must come from data on performance. We have
cndeavored to obtain some data by means of what we call software experiments
(Robertson, Newell, and McCracken 1974). A software experiment invoives the
recording of at least certain minimal data on a actual software-producing event. That
minimum includes objective times on the total effort involved and the amounls devoted
to various activities, with objective measurements on the amount and type of outputs
produced (usually code and data). It includes some minimal description of the
programming talent involved and the computing environment within which the event
occurred.

The scientific yield of such software experiments is crude indeed. Viewed from
the hilitop of good experimentation, such experiments are wildly out of control. But
the numbers are not thereby devoid of significance. They are infinitely superior to
having no objective numbers at all, however much they need to be qualitied by
subsequent analysis.
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4.1. Genceral Use

L* has been in use for several years, but by a very small user coramunity. One
style of use, the original one envisioned, has been to construct one-man experimental
Al programs (Freeman 1970; Newell 1972; Moore 1971). These syslems range
anywhere from 50K 36-bit words to the maximum capacity of the target machine, are
run largely in interpretive mode, are modified repeatedly, and become highly
personalized. Most such systems, of which there are probably a few hundred per year
produced in the U.S., are currently produced in LISP. No hard facts arc available on
any of these systems. A comparison of the functional design features of LISP and L¢ in
Figure 1 suggesls that they would not differ significantly in their suitability for this
task; casual observation supports this.

L* has been used for a variety of interactive systems. For instance, it has been
used for a sequence of production systems called PSG (Newell 1972; Newell and
McDermott 1975) and OPS (Forgy and McDermott 1976), which can be viewed as
programming languages, from the viewpoint of Lx application. Some of these
applications have a substantial component of low-ievel system programnung. For
example, ZOG (Newell, Simon, Hayes, and Gregg 1972), a system to aquaint users naive
to the PDP10 with a collection of large Al programs and to guide them in their use of
these programs, interposed itself between the users and the PDP10 operating system,
handling many of the command level functions for the users. A second gener~tion ZOG
(Rober{son, Newell, and Ramakrishna 1977) is expioring man-machine communicalion
issues, and i1s also being implemented in Lx.

L* has begun to be used as an implementation system on experimental computer
systems. A good example is its use on an experimental version of Hearsay-II, a speech
understanding system, brought up on C.mmp. Hearsay-il is coded in SAIL on the
PDP10. SAIL was not available on C.mmp, though BLISS11 was (and was lhe basic
implementation system). The selection of L* (over BLISS11 or bringing up SAJL) rested
strongly on the claim of providing a complete operating environment. C.mmp, being a
one-of-a-kind experimental system just beginning its operational life, offered a lean
software environment. This was a matter of great concern to the Hearsay dcvclopers.
That L* would provide essentially all the tools and facilities of a complete software
environment as soon as it became operational on C.mmp made it a quilc attractive
alternative.

Two other trials of this same type are currently in progress. L* has been made
available as the system on a standalone minicomputer (with graphics) to support an
experimental psychological laboratory, to be wused for stimulus display and
expcrimental control. Again, one reason for its attractivencss is the total environment
it presents. L* is also to be used on a microcomputer based system (a network of Intel
8080’s5). Again, a strong component of the appeal is the need to oblain a friendly user
software environment on a system that is experimental and one-of-a-kind, and which
poses stiff barriers to obtaining that environment in the usual way through the
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accretion of many individual programs. Even the fact that C.mmp uses PDPL1
processors, hence has access to existing PDP11 programs, only helps a little, since the
imposed multiprocessor structure makes the irpartation of such programs non-trivial.
Both these trial cases are still in an early stage.

4.2. Softwarc Experiments

A brief description of some of the software experiments we have performed
with Lx will give some further indication of its use. Comments on some of the data
from these expcriments appears after the descriptions.

WILE. The basis of the first experiment was an experimental programming language
designed by Wile (1974). The language was exploring some novel control structures,
but was not implemented. Taking familiarity with Wile's study as a starting condition,
we implemented it within L*. This involved design, coding , debugging and tcsting. We
kept a record of progress along the way, the amounts of code produced, and
difficulties encountered -- from bugs to design errors. The total effort was done by
three expert programmers (the present authors) in a single 17 hour sescion, with
another dozen hours of follow~up maintenance. The surface structure of the language
was essentially identical to the notation used in the original study. The language was
fully interactive with displays of partial computations, so that convenient exploration
was possible. We sought to make the point that it was possible to create experimental
languages in rcasonably short order.

APR74. A version of Lx (L*C(A)) was brought up on an early version of C.nmp to
provide a demonstration of real-time speech signal acquisition, segmentation, labelling
and display for an IEEE Speech Recognition Conference (CMU Speech Group 1974).
The L* software cxperiment involved creating the Lt system on C.mmp, providing the
operating system and multiprocessing features necessary for the standalone
application, and integrating the pieces into a running system. The speecch programs
were coded in BLISS11, so this involved embedding BLISS11 into L%. C.mmmp was al a
very early stage of development at the time, so the environment was extremely raw in
terms of reliability and software facility. The entire experiment took 30 calendar days
against the hard deadline of the conference, and produced a running system that was
demonstrable but imperfect (it ran fully the next day). The point of the L* experiment
was that total system facility was made available on a raw machine, with extreme
flexibility to meet the unexpected demands of such a complex system programming
situation.

SOS. The standard line editor for the PDP10 is called SOS. An L* software experiment
was performed to produce a version for C.mmp. This was a slightly limited version (no
justification or contextual searching commands), but was to be totally to specificatians,
since it was inlended for production use by programmers who use SOS daily on the
PDP10. The experiment took 30 man days.
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L*ALTO and L*8080. Two software experiments were performed to test the
transportability of Lx. The first was the construction of an Lx for the ALTO, a 16 bit
minicomputcr. This took 70 man days to complele (ior one man). The task involved
some graphics support and microcode support not found in other L* systems. The
second was the construction of an L* for the Intel 8080, an 8 bit microcomputer.
L*8080 is much closer to the other L* systems, and took 28 man days (for one man).

Most of our experimental data concerns programmer productivity when working
with L*. As noted, this is not the only important quantitative measure of the worth of
an implementation system, but it is a critical one.

Figure 8 gives several productivity measurements for L#* with a few
measurements from the literature (Wolverton 1974) for calibration. For the software
experiments mentioned above, the numbers are accurate, since we have precise code
counts and numbers of hours worked. For the other L* situations, the code counts are
accurate, but lhe time estimates are somewhat less exact. For the measurements from
the literature, the information does not seem very reliable.

The measure used is number of debugged instructions per man-day, where a
day is taken as an 8 hour period (working round the clock produces 3 man-days per
calendar day, as in the WILE experiment). The instruction count is taken on the final
system at the end of the period. The number of instructions is measured by the code
and associated data in the computer, it is not measured in the source language.
Counling associated data (not input data) properly handles some program/data
tradeoffs, but care must be taken with programs that use large simple tables. This
puts all languages on one common footing, but leaves open the relation of source
language to ultimate machine code size. It is well known that poor compilers produce a
larger code+data size than do optimizing compilers, thus making the poor ones appear
more productive. This has to be handled through additional measurements of these
ratios. Wilh L%, each symbol resides in one cell, so that in effect one can count
instructians in the memory by counting symbols (code+data) in the listing.

e — e
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Syslem Language ize Instructions/man/day
L=(1) Assembly + L= 30K 375
SOS-C.mmp L+ 5K 310
Indusiry average - very simple task 167
L*ALTO Assembly + Lx + BCPL 9K 136
L*8080 Assembly + L* 3K 107
WILE L* 0.8K 96
APR74 L* + Blissll + Assembly 3.7K 51
Industry average - simple task 50
L* Assembly + L* 50K 30
SL= L* 2K 25
Hearsay-C. L 5K 21
Industry average - moderately complex 16.7
Industry averagc - complex 8.3

Figure 8. Productivity data for L*

There are several important points to natice about the L* data. The
programmers were all experienced programmers, but not all were experienced in the
use of L* (particularly in the case of SL* and Hearsay-C.). These figures arc all based
only on new code generated (e.g., L¥8080 is an 18K system, but only 3K of it had to be
written from scratch).

With all the caveats stated, the productivity numbers are very high. Some
things can be said about specific numbers. The SOS numbers are possibly high because
of the peculiar decomposition of an editor (i.e., a large number of commands, cach with
an isolated bit of code). The relatively low figures for Hearsay-C. almost surely
express programmer differences, plus losses inherent in the transfer of the incomplete
system from one programmer to another. This data suggests that programming with Lx
increases programmer productivity. More software experiments are needed to further
substantiate that claim,

B
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Not all that can be said about L* i1s positive. We have faced up to many problems
throughout the long series of design iterations; but there still remain serious unsoived
problems at the frontiers, some of which have surfaced only with extended experience.
We will now discuss several of the negative issues, and at the same time take the
opportunity to draw some contrasts between Lx and two specific alternative systems:
BLISS and LISP.

5.1. Sufficient efficiency

Aimost without exception, efficiency (both of time and space) 1s a prime
requirement for object systems. Even one-of-a-kind experimental systems, which will
never reach wide-spread usage, cannot ignore efficiency altogefher. Thus, it 1s
undeniable that Lx must permit flexibility to be cashed in for efficiency whenever it
becomes appropriate, and to whatever degree is necessary. If an L+ Object system
cannot match closely the performance of an equivalent BLISS systevn1°. then all the
advantages of Lx may largely go by the boards. On the other hand, very high
efficiency is not always necessary, especially during the period a system is undergoing
development and experimentation. Thus implementation systems which are able to
delay the optimization until it becomes crucial (i.e., systems such as LISP, ECL and Lx%)
can enjoy the benefits of flexibility when they are most needed.

A Time.accounting Facility exists in L* to help find the bottlenecks in a running
system. Once thecy have been located, it is usually possible to obtain some initial
speedup merely by minor reorganization and recoding. There are several documented
cases where large factors (e.g.,, ten to twenty) were obtained in subcompanents of a
system in this manner.

A Translation Facilily in L* compiles PL* programs into ML+ code, which
essentially eliminates the type-access and PLx interpreter cycle for eacihh symbol in the
program.?‘o A Cycle.accounting Facility enables one to monitor a running system to
obtain a hst of every PL* routine that was called, ranked by the tolal number of
interpreter cycles spent just inside each. A typical result might show twenty routines
above the 17 rank (i.e, each of the twenty clamed more than 17 of the total
interpreter cycies) and these routines would then be an appropriate choice for

[18] With BLISS the efficiency is premeditated, and thus virtually ensured

[19] Most often the recoding fakes the form of specializing the use of an operation which was overly
general for the particular case

[20] To maintan some flexibility, the PL. version of a compiled program is saved so that it may later be
edited and recompilod if necossary.
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compilation. The cycie-counting and compilation process can then be repeated, but with
significanlly dimimished gain since the distribulion flallens oul quickiy. Since an
uncompiled L* sy<tem typically spends half to two-thirds of its tune inside the PLx
interpreter, specdup factors of up to two or three can be reaiized by compiiation.

A typical next phase in the optimization process is the hand-coding in ML* of
certain critical routines. (Again, the Time.accounting facility is a valuable aid to intuition
for identifying the critical routines). A completely integrated Assembly facility within
L* allows the ML* code to be loaded and interfaced with other ML* and PL# routines
very conveniently. Hand-coding can achieve significant improvements by removing the
overhead of calls to small subroutines (both in terms of control and argument-passing
on the Z stack), and through more extensive use of the machine -zgislers tor
temporary storage. Speedup factors of two to three can be expected for typical
routines.

Onc final optimization step is microcoding, aithough it 1s possible on only two
existing L* systems, and has actually been accomplished on only one of them (L¥ALTO).
The microcoded version of L¥ALTO used 900 words of microcode to recode 51 L*
kernel routines (e.g., the PLx interpreter, type access, stack operations), and achieved
a factor of 3.2 spcedup over the non-microcodcd version.

Although the approach to selective optimization just outhined seems riaht to us,
the mechanisms to support that approach have never been fully developed. Also,
there are arcas where the approach breaks down; most notably, when dealina with the
tradeoff between generality and efficiency. The most often cited case is the file
reading mechanism in L%, which is about six times slower than the corresponding
mechanism in LISP. About half of that difference s due to code which is interpreted in
L* versus‘. hand written machine code in LISP. That part of the difference can be
approached with selective optimization. However, the other half of the difference is
due to the extensible nature of the Lx mechanism, and cannot be easily removed by
selective optimization. Whether or not the selective optimization approach will succeed
in L% is still an open question.

5.2. Contraction

Although contraction could have been discussed in the previous subsection (i.e.,
" contraction = selective space efficiency), it is important enough to rate a subsection of
its own. In fact, its importance is greatly magnified for L* due to the integration of
implemcntation system and object system. Without a contraction capability, an Lx
object system would of necessity contain all the impiementation tools used to construct
it -- a quite unworkable situation.

One common paradigm for contraction is to somehow mark the unwanted
structures (e.g., in Lx by erasing them -- putting them on the available space list) and
then relocate structures within the address space in such a way that a strict partition
is created, with all unwanted structures at the high end of the address space. Il is then
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normally a simple matler to eliminate the unwanted siructures by chopping off the top
of the space. However, this approach has scercd ta be barved for Lo due to the
apparent impossibility of building a foolproof structure relocator. With the great
flexibility and accessibility that an L* user exercises, it is all too easy to imagine ways
in which a relocating program could be inadvertantly fooled in its memory secarch for
references to a symbol.

It is easy enough in L* to erase structures that are no longer needed, but the
resulting available space will almost surely be scattered throughout memory; thus the
system will have a greater capacity for growth within its current memory size, but it
cannot be truly contracted without relocation.

In L%(I) we have developed a partial solution to the contraction problem by
taking advantage of a feature of the DEC TOPS-10 monitor which allows independent
control over the two halves of the users 256K address space (called the low and high
segments). Within L#(]), available space lists are maintained independently for the two
segments so that the user may control the segment in which new structures are to be
created. By convention, the high segment is used for utilities (e.g., the editor,
debugging tools, compiler) and other facilities that are expected to be used relatively
infrequently. This means that the system can normally run with just the low segment,
and only load the high segment (which is read into memory from a drum) when access
is needed to the facilities there.

This scheme is reasonably effective, allowing the A-level Lx(I) system to be
contracted from a total size of 35K to a low scgment size of 25K with no noticeable
degradation in response due to high segment swapping. The main difficulties with the
scheme are: (1) the choice of the segment in which to place a structure must be made
in advance, and is then for all practical purposes fixed; and (2) knowledge about cross-
segment references must be explicitly represented, and thus buzs caused by
references to an unioaded high segment are a problem. Given a better underlying
operating system, this basic idea could be more effectively exploited.

5.3. Higher order language

Some user feedback has suggested that L is a low or medium leve! lancuage. In
fact, there are features found in most high level languages which are not found in Lx,
and vice-versa. In this section, we will examine those differences. It should be
pointed out that L+ is a high level language in terms of expressive power (i.e., the size
of an L+ program to perform a particular task is as small as a program writlen in other
high level languages to perform the same task).

[21] This same technical difficulty is probably responsible for the fact that no garbage-colicction facility has
yet been built for L+

[22] Lonading of the high segment is not automatic -- thus tho sysiom must anticipate all accenses to the
high segment with an explicit load operation.
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The most obvious difference between L= and other high level languages is that
L* is neither an algebraic nor an expression laneuage. In an aleehraic or cvpresaion
language, what one writes are expressions which cvauate 10 a localized value (except
in the case of side effects, which are rare). These languages arc ailsuo phrase
structured (i.c,, a symbol may be replaced by an expression) for operands n general,
while most are not phrase structured for operators. PL*x does permit phrase
structuring of both operands and operators. However, values are not localized and are
not the result of evaluation of expressions. Instead, values are generally placed in the
central data stack.

A second difference is that Lx has no variables. This came about from a
conscious choice to always deal with symbols, and not their values. There are
mechanisms in L* that allow variables to be easily implemented, but variabies are not
part of the basic system.

Third, L*¥ does not provide symbol conilexts (i.e., there are no local variables,
everything is global). Lx does provide name contexts which can be used to gain the
same kind of protection that local variables offer, but at the name level instead of the
symbol level.

Fourth, Lx is postfix, while most languages provide infix for arithraetic and
bociean expressions. This is not considered a major probiem, however, since infix
syntax can be easily constructed in L* (a one page program can provide infix and
function notation).

And finaily, L* uses the machine as the model instead of externai exprcssions.
This was necessary in L*x to provide the kind of accessibility to the underlying machine
that we decsired. Because of it, L¥ may be thought of as a high order machine
language, although its expressive power argues that it is more than just that.

5.4. Habitability

One of the negative aspects of our experience with L has been the slowness
with which its usage has spread, even within the local environment. Some of this is no
doubt duc to our casual attitude toward promotion, but there is nevertheless an
accumulating body of experience with new L* users that strongly suggests a
habitability problem with L*. While we do not yet have a good understanding of the
reasons for this problem, we have formed a few plausible conjectures with the help of
user feedback.

The first conjecture is that total accessibility produces apparent complexity from
the relative simplicity of the L* system by exposing large masses of detail which are
irrclevant to a beginning user. An A-~level L¥ system has around 900 names (which is
significantly more than a new LISP or BLISS user sees; e.g.,, LISP 1.5 presenls about
150 names to a new uscr), with no good way to differentiate the relevant from the
(for the time being) irrelevant. One possible simple solution (but one which we have
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not yet tried) would be to introduce into the system a discrimination of the small
subset of essential names from the great masses. For example, lwo «eparalc name
contexts might be used to provide the discrinunaiion. |lus approach looks nromising
since users tend to operate most effectively in smail worlds that lhey wnow and
control.

Another conjecture for the cause of the habitability problem is the use of
concise names. Short names (e.g.,, S, N, [, and D for the common list operations) have
the advantage of economy of expression, which is especially important for a highly
interactive system. However, feedback from new L* users indicates thal the chort
names form a rcal stumbling block to learning the language. This problem is
aggravated by the failure tc produce a self-documenting system (a feature =xplored in
L*(H) but rcjected because of high space costs). A censiderable amount of iteration
has gone into the design of the names, which are based on a sel of sltandard
abbreviations with fairly consistent conventions. Users report that after they learn
this set of conventions, the short names do provide the intended economy of
expression.

5.5. Symbols and addresses

As discussed earlier, one of the essential design principles of L+ is the universal
symbol system. Although that principle has never been in question, the mechanism of
equating symbols and addresses to achieve a universal symbol system has. As noted
earlier, this mechanism has distinct advantages. It assures that all addresscs will be
valid in symbolic expressions. It also simplifies the design by equalint address
arithmetic and symbol arithmetic.

However, equating symbols and addresses has serious disadvantages. First, it
limits the number of symbols to the address space of the underlying machine. With
most hardware architecture, this poses no problem. But if the address space 1s smaller
than the physical memory and some kind of reiocation or overlay mechanism is
available to take advantage of that additional memory (as on C.mmp), then the limit
becomes real and serious.

Second, binding symbols to addresses makes reassignment of synibols difficult.
If all references to a symbol cannot be located, then the symbol cannat be moved; it
musl remain as a place holder and pointer to the new symbol. This problem, combined
with the fact that symbols can and are stored in arbitrary structures, makes general
relocation essentially impossible. This in turn makes contraction and automatic garbage
collection difficult to implement.

Finally, along the same lines, reassignment of the type of a symbol is more
difficult if symbols are equated with addresses. If symbols were separate siructures,
their type would be part of that structure and therefore easily changed. The only way
to achieve the same flexibility with types in the current system is to usc haif of the
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memory to hold types for the other half (a scheme that was actually uscd in an carly
version of Lx).

Creating a new variant of L in which symbols are not identified with addresses
seems clearly indicated. However, it is unclear where the balance of tradecoft will lie
when such a system is completed.
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6. Conclusions

In tius paper, we have discussed the design, implementation, and some
experience with Lx. The key difference between L+ and other implementation systems
(like BLISS or ECL) 1s that Lx is an interactive symbol manipulation system (fcatures
shared with LISP). It also provides a total operating environment (like LISP) which has
all the necessary tools for program development from within (e.g., editors and
debugsgers). The system also stresses seiective rather than global optimization. The
key differences between Lx and LISP are that Lx is highly extensible and ailows total
accessibility.

The key mechanisms used to impiement L* include a universai symbol and type
system, a simple interpreted list processing language, a flexible external language, and
a kernel approach to building the system.

The experience to date has been with a small user community and has been
generally positive. A series of software experiments has been initiated, and the data
gathered suggests that programmer productivity is high. Areas of continuing concern
include time and space efficiency, the low level nalure of parts of the system, and the
difficuity new users experience in learning to use the system. More soflware
experiments are needed to analyze and correct these problems. The only design
principle that has been brought into serious question by the experience has been total
accessibility. Although total accessibility has been used lo advanlage in a number of
software projects, it seems to be a real contributor to the habitability problem.
Several mechanisms used to implement the Lx philosophy have been brought into
question by our experience. Perhaps the most critical is the realization of a universal
symbol system by equating symbols and addresses. On the whole, however, the
experience has indicated that the basic design philosophy is an interesting and viable
alternative to that of more traditional implementation systems.
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