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differential equations, not necessarily self-adjoint, with
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tial differential equations. The corresponding eigenvector
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A Minimum Principle for the Principal Eigenvalue
for Second Order Linear Elliptic Equations

*
With Natural Boundary Conditions

Charles J. Holland

Courant Institute of Mathematical Sciences
and
Purdue University

1. Introduction

In this paper we give a new characterization of the principal

eigenvalue A¥ for the eigenvalue equation

(1) -V o (uxa.)+uxb +cu = \pu in QO

with the natural boundary condition u.an = 0 on 3N. Above a is
a positive definite matrix for each xe€(Q, b is a vector, and the
functions a,y, by, ¢, p are functions of class c2(@) with p >0
in Q. In Theorem 1 we establish that A\* satisfies

(2) A* = min | max ¢ a¢T +c¢2 +bT(4a)']‘b¢2+¢¢ bdx
beo VeCl(O){‘(/)‘ s 3

- %f [(2&)-lb - Vi]T(2a)[ (25.)'lb-. Vzléedx}
Q

where ® is the set of functions ¢ of class c?(Q) nc(@) with ¢2 >0
in O and f‘p¢2 = 1l. If b = 0 the operator defined by (1) is self-

O
adjoint and (2) reduces to Rayleigh-Ritz. If not, then the
expression (2) can be considered as a generalized Ray;eigh—Ritz

expression.




Recently, using different methods, Donsker-Varadhan [1]
have derived a similar expression in the case of zero Dirichlet
boundary conditions and p = 1. 1In Section 3 we outline our
approach to the Dirichlet case.

Finally, in Section 4 we made some remarks concerning a
possible numerical scheme for computing approximations to A¥ and
the corggsponding normalized eigenfunction u*. This scheme does
not use (2), but instead involves the solution of a set of
nonlinear difference equations. These equations result from a
discretization of equation (5) below. The difference equations

are then related to a stationary stochastic control problem.
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2. Natural boundary conditions

THEOREM 1. Assume, in addition to the above, that the functions

2(5) and that O is a domain of class C2.

aij’ bi’ c are of class C

Then (2) is true.

Proof: Equation (1) can be written in the form

(-3) - trace au  + ux(b+d) +cu = Apu

for an appropriate vector function d. As a consequence of the
Krein-Rutman theory of positive operators and the maximum principle,
we let u* denote an eigenfunction corresponding to the principal

eigenvalue A* such that u*>0 in Q a.ndf p(x)u*(x)edx=1. We now
Q
make the change of variables u* = exp (-¥) obtaining

T

(4) trace ay -y, 89,

'V’x(b"'d) +c = A%p .

We have adopted the convention that all vectors are column vectors
except gradients which are row vectors. We now rewrite (4) in the

form

(5) tr awxx+m:;n [y, v+ (b+d+w)T(ha)'1(b+d+w)+ c] = 2%

whefe the min in (5) is for each x taken over vectors w € R". MNote

this minimum is obtained for

(6) W = -b-d -2(&xa.)T

or #
(7) w = -b-d +2(u*)"H(uja)T . !

The boundary condition for y become y. an = 0 on 3N.




Now let 9 denote the set of functions w of the form
W o= -b--d+2(u)'1(uxa)T for some smooth positive function u in O
such that\/ﬁﬂ(x)uz(x)dx =1l., For any w ¢ Y we have the inequality
0

(8) tr ay  +y W+ (b+d+w)T(4a)'l(b+d+w)-+c > 2 *p .

Define for each w € 7V: the operator L by
(9) Lp = Vo (p,a) -V o((d+w)p) = 0 .
Then the equation Lp = O in (O with the boundary condition
(10) [p,a -p(d+w)T]°n =0 on N

has a smooth solution P, which is positive in QO and satisfies the

normalizing condition‘/\p(x)pw(x)dx = 1. The existence of the

®
positive solution P, follows from the Krein-Rutman theory and the

maximum principle. The Krein-Rutman theory gives that the eigen-
value equation Lp = Ap with boundary condition (10) has a positive
solution in () when A is the principal eigenvalue. Integrating the
equality Lp = Ap over the domain (), one obtains that A = 0 and
hence Lp = O has a positive solution in 0. Positivity on the
boundary follows from (10) with use of maximum principle.

For each w € # we multiply (8) by p, and integrate over O
obtaining

(11) f [(b+d+w)T(l$a.)'l(b+d+w)+ c]pwdx bt i
0O

Equality in (11) holds only when w is given by (7). Thus we have




(12) min \/ [(o+d+w)T (4a) L (b+dsw) +c]p ax = A* .
weW w
QO
The proof of the theorem consists in reformulating (12) by dis-
covering the relationship between w and j

We break the proof into three cases.

Case 1. b = 0 (the self-adjoint case). For any
w = (-d +2(u)'1(uxa)T) &% . D, is given by u2. Simply check that
u® satisfies L(u®) = O and the boundary condition (10).
Substituting w and p_ into (12), one obtains that (12) can be
rewritten as
(13) A = min [k/‘u auT~+cu2dx] .
N
ued
Q
Equation (13) is also (2), and (13) is the standard Rayleigh-Ritz

expression.

Case 2. (2a)'1b is a gradient. Let k be such that k= (2a)—1b.
(This is the case when the original equation could have been made
self-adjoint by multiplying the equation by ed for an appropriate
function q.) Now any control w € % of the form

W= -b-d-+2¢’l(¢xa)T can be rewritten as w € % where

(14) ¥ = -d+2u"t(ua)’

with u = c¢ek for an appropriate constant c. Thus we need only
2

use "controls" of the form (14). Recall that p_ = u“. Substitu-
: W
ting into (12) we obtain




o nin

(@)

T =
(15) A = min \/‘[uxaux+-cu2 +bT(Ma) lbue-l»uuxb]dx

ued 0

which is (2) for this case.

case 3. ((2a) ‘b is arbitrary).

We wish to write each control

(16) W = -b-a+z¢'1(¢xa)T W

in the form

(17) w = -d+2u”

‘\,A L). + 2z

X

for smooth functions u, z such that u > 0 infs,d[ p(x)uz(x)dx = 1,

2

and Py = U where P, is the solution to pr

condition (10). Moreover we require that z

0O
0 with boundary

-b-+2(wxa)T for some

function W. Iet us show that this is possible.

First, for any ¢ given in

(16) we must have that u = ¢e'w.

From the equation Lp = O with boundary condition (10) we see that

u, z must satisfy

V’O(u?z)
(18)

if p  for w given by (17) is to

u = ¢e'w'we obtain the equation

O iIn O

0 on 0

be p = u?. Using the condition

(19) ve (4% (v +2(w.a)T) =0 inq

with boundary condition

(20) (-bTi-Q(Wxa))-n =0 on 3N




which must e solved for W for each ¢. The equations (19), (20)

have a solution provided the equations

|
(@)

v o ($2Gb +¢2(Gxa)T) -0 fn 0,

(21)
(-$°%abT + $°6_a)+n

Il
o

on N

have a positive solution G. The solution of (19), (20) is obtained

from (21) through the substitution G = 9_2J. Now (21) has a positive
solution by a repetition of the earlier argument concerning the
existence of a positive solution to Lp = 0 with boundary condition

(10).

Thus every control of the form (16) can be written in the

form

(22) w=-a+ 20 ua) + (-b+ 2(ua))

with P.- u and u, W satisfy
Vo(ug(—b+2(wxa5r) =0 in Q,

(23) 4
(-b -+2(Wka)).n =0 onadN .

Before evaluating the cost of using controls of the form (22),
(23) we need to observe the following. For any smooth u > 0 in Q

consider the problem of minimizing
(2l) 1(v) = [ ((2a) - vT)T(28)((2a) 2 - vT)ulax
O

over the class of smooth functions V. Then W given by (23)

minimizes (24) and moreover




(25) fQX(-b+ 2(wxa)T)u2dx =0
@
for any smooth function Q. The proof of (24), (25) is a simple
exercise in the calculus of variations. We will use (25) below
when Q = gn u and Q = W.
Iet us now use a control of the form (22). Then the left

hand side of (11) can be written as the sum of four terms

(26) \/ [uxaui-Fcu2+-bT(Ma)_lbu2+-uqu]dx
O

'*J[ [(-Ea)'lb-+W£]Ta[(-2a)-lb-sz]uedx

(v 20 u)(-b+2(Wa)")uldx

T)u2dx "

+ [ bT(2a) " (-b + 2(W, a)

0% D% O

The third term is zero by virtue of (25). Using (25) we can add
s T, 2
0 -f-wx(-b+ 2(wxa) Ju©dx

to the fourth term to obtain -2 times the second intcgral in (26).
Therefore the sum of the second, third and fourth integrals can

be written as

(27) 3 %f [(2a)"1b -w;f]T(ea)[(ea)‘lb-wz]uzdx 3
0

Using the definition of the minimum problem for I(V) and the fact

that W minimizes I(V), one can rewrite (27) as




N\
C

nf =

(28) max - '\/‘[(Qa)-lb —Vi]T(2a)[(?a)_1b-Vz]uzdx -
vecl@) o

Substituting this into (26) completes the proof of the theorem.

Remarks. Although we have given a proof that avoids the explicit
use of probabilistic ideas, we were motivated by probabilistic
concerns. Take p = 1, then (5) with the boundary condition

an = 0 is the "verification equation" for a stationary stochastic

control problem. With each Lipschitz function w associate the

Ito stochastic differential equation
(29) dt = w(€)dt +/2 o(£)ab(t) , oo’ =a,

b = brownian motion, with reflection in the interior of O in the
direction -an where n is the outer normal. Then Py given by (9),
(10) is the invariant density of the process.. Associate with each

"control" w the cost

(30) c(w) = [ [(orarw) (k)™ (orar) +clp,dx .
0

Using equation (5) and the Ito stochastic differential rule one
obtains that the minimum of C(w) over Lipschitz control function
is given by s 5 Using the approach one can derive the alternative

representation (recall p = 1)

GAF A mate . 8in { (4,287 + 42 + b4 b+ bT(4a) Lo¢?] ax
be® e cla)nc@) f b 5
Vo ($%2)=0 in O
Zen =0 on 90

'*d/’[(ZT(ua)-lz +zT(2a)'lb)¢2+ ¢¢xz]dx} .
0

5
(a...——mecmnﬂ~’ "
b
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3. Dirichlet boundary conditions

As we have previously remarked, Donsker-Varadhan [1l) have
considered this case when p = 1. Therefore let us only outline
how our approach proceeds for the general Dirichlet case with
smooth p > O arbitrary to yield the conclusion (40) below. Let
us assume in this section that the coefficients aij’ bi’ ¢ are of
class Cca(ﬁ). We shall note below where we use this assumption.
We again make the change of variables u* = e“v obtaining equations
(5) - (8). However, now the boundary condition is
¥(x) = -gn u*(x) -+ as x - 3N. This fact causes the Dirichlet
case to be somewhat more difficult and necessitates a slightly

different approach than in the proof of Theorem 1.

Let ¢ be any positive function in () such that

(32) $°(x)/d(x) = 0 as x =30,

where d(x) is the distance of x to 90, andf p(x)¢2(x)dx = l. For
such ¢ let z be any smooth function such that V’°(¢22) =0 in O
and let

(33) w=-a+24" ($a)T 4z .

For such w, p_ = ¢2 satisfies Lp, = O with the boundary condition
MR 0 on ). The operator L is the same as in the proof of
Theorem 1.

Multiplying (5) by p, and integrating by parts one obtains

e Ve, Jgwsaihes bR L -




31X

(54) [ 4,a8%+ 4+ 4o, 0 + b7 (ka) TogPax
A |

+‘/‘zT(ua)_lz¢2-FZT(Qa)’lb¢2+-¢¢xzdx » iyl
O

Condition (32) has been used to eliminate certain terms when
integrating by parts.
For each ¢ we choose z = -b+2(wxa)T where W minimizes I(V)

and I(V) is as in the proof of Theorem 1. A simple exercise shows

div ($%z) = 0
and

f Q (-b +2(wxa)T)¢2dx = 0

for any smooth Q. Therefore we can rewrite (34) in the form

(35) min max {f [¢xa¢i+c¢2+ ¢¢xb+bT(4a)'lb¢2]dx
€® vect@) L

- %f [(-2a) "o+ vI1T(2a)[(-2a)" b+V§]¢2dx} g,
O

where ® is the set of ¢ such that ¢ > 0 in (O, ¢2/d — 0 as x =+ 3N
a.ndf p(x)cbe(x)dx = 1.
0
To complete our representation we wish to show that equality

is obtained in (35) for some ¢e ®. We wish to show that

(36)  -d-b+2(u*) H(uka)T = —ar2b7H(4,0)TH (o r2(wa)T)

with ¢€ ® and W minimizes I(V). As in the proof of Theorem 1 we

see that ¢, W must satisfy ¢ = u*e ¥, Since u* satisfies (1) with

=" R -
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u>0in 0O, u* = 0 on 30, then u; # 0 on 80 and consequently

there exists positive constants c ¢, such that

e g
cld(x) < ut{x) < ced(x). Thus (u*)g/d — 0 as X =+ 3. Hence if
¢ = u*e'w, then ¢2/d — 0 as X — 3N and moreover ¢2 > 0 in Q.

Now $°, W must also satisfy the equation
(37) v e ($?(-v+2(wa)) =0,
hence we must have
(38) vo ((u*)2e‘2W(~b+2(wxa)T)) T
Thus if the equation |

(39) v o ((u*)?(-bG + (6,2)T) = 0

has a positive solution G in (), then the change of variables

8w e-2W

defines a solution W to (38). If we can find the solution
W, then we can employ equation (36). This gives us equality in

(5) and hence (35). Therefore we would have the desired result

(40) A* = min  max $ e +cd>+ b +bT (4a) ‘véZa
deo Vecl(o){}[ ot 5 : :

s %f [(-2a) b+ Vi1 (2a)[(-2a) b+ V;I(‘]‘tadx} .
0

Thus it remains to establish the existence of a positive
solution G in O to (39). No boundary conditions are imposed
with (39); this is to be expected since (u*)2 vanishes on 93Q0.

Because of this last fact we employ a different approach to
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establish the existence of W. For this we shall utilize the
c® (Q) smoothness of 8y 5 b,, ¢ although this assumption could
possibly be weakened.

Consider the Ito stochastic differential equation

(41) ag = 2u*(u¥a)T+ (u*)2(v+K)dt +/2 u*odd
Jshere s &, K. = : 3 (a,.), with arbitra initial data
wiere o = » l J= WJ- ij ) S VY ¢ £ 4 I‘y 114

gx(o) = X € 0. We wish to show that equation (41) generates a

unique ergodic measure in () with probability density of class

Ca’aj) given by G. To do this we use some results of Khasminski [3].
Consider a connected domain D ¢ () such that dD o 30 and if

x € D then 0 < u¥(x) < 1/2. Then for h sufficiently large the

function T(x) = -h gn u*(x) satisfies in D the inequality
trace (u*) aTxx-fo[(u )5 (b+K) + 2(u )(uxa) ]+1<0.

From standard results on Ito equations this implies that the
process ex(t) with initial condition x in D never reaches 30 and
moreover hits dD- ) in finite mean time. Since the coefficient

¢ does not vanish in (O, then results of Khasmiﬁski imply the
existence of a unique finite ergodic measure. Equation (39) is
the equation governing the density of the ergodic measure. Since
the coefficient matrix (u*)2a appearing in the trace (u*)eaGxx
term in (39) is positive definite in (), then the invariant measure
has a positive density cG in (O, for an appropriate constant c,

& of class C®(0). See [2], p. 248. This last fact utilizes the

— e ————
At

.y
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smoothness assumptions on the coefficients aij’ bi’ ¢. Hence
there is a positive solution G and the outline of the derivation
of (40) is concluded.

For the Donsker-Varadhan analogue of (40) in the Dirichlet
case with p = 1, see equation (3.7) in [1] and note that a/2

instead of a is used in their version of (1).

e
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4, Numerical methods

Let us propose a numerical method for computing approxima-
tions to the smallest eigenvalue x* and the corresponding eigen-
function u* for the Neumann problem and also for the periodic
problem which was not considered in Sections 1-3. For details in
a simple case,see Holland [6]. The method consists in applying a
finite difference approximation to the nonlinear equation (5) and
the corresponding boundary condition. If p = 1, the resulting non-
linear difference equations can be given an interpretation as the

equations for optimal stationary control of a Markov chain.

We have employed a method due to White for solution of the
Markov chain problem. White's method was suggested by Kushner as
a possible method, see Kushner [5], pp. 156-157 for a description
of the method. Preliminary results show that this approach is
satisfactory for obtaining A¥ and u* for the periodic and Neumann
problems. Our present numerical work includes periodic problems
in 2 spatial dimensions and Neumann problems in 1 spatial
dimension. Some preliminary numerical work on the Dirichlet
problem also indicates that either the formal approximation
suggested in [6] is invalid or the rate of convergence is sO Slow
that the method is not useful.
We have not yet justified the yalidity of this discretiza-
tion process. Kushner has justified this approach for other

problems, see [4] for a summary.
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