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A Minimum Principle for the Smallest Eigenvalue

for Second Order Linear Elliptic Equations

with Natural Boundary Conditions

Charles J. Holland
Purdue University

August 1978

Accompanying Statement

In this paper we give a new characterization of the

smallest eigenvalue for second order linear elliptic partial

differential equations, not necessarily seif—adjoint,  with

both natural and Dirichiet boundary conditions, and also give

a new alternative numerical method for calculating both the

smallest eigenvalue and corresponding eigenvector in the case

of natural boundary conditions. The smallest eigenvalue , if

• appropriate sign changes are made , determines the stability of

~ equilibrium solutions to certain second order nonlinear par—

tial differential equations. The corresponding eigenvector

enables one to determine the first  approximation of the solu—

tion of the nonlinear equation to variations of the initial

condition from the equilibrium solution. These nonlinear equa-

tions are important in the applications. For these reasons it

is important to have these characterizations of the smallest

eigenvalue and eigenvector .

Our method converts the determination of the eigenvalue

and eigenvector to determining the solution of a stationary
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stochastic control problem. This latter problem is solved and

from it a numerical scheme arises naturally. This method

appears to have applications in solving other problems.
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A Minimum Principle for the Principal Eigenvalue

for Second Order Linear Elliptic Equations
*

With Natural Boundary Conditions

Charles J. Holland
Courant Institute of Mathematical Sciences

and
Purdue University

1. Introduction

In this paper we give a new characterization of the principal

eigenvalue 2* for the eigenvalue equation

(i) -v o (u
~
a) + u

~
b + Cu = Apu in C)

with the natural boundary condition u
~
an = 0 on ~O. Above a is

a positive definite matrix for each X €  0, b is a vector, and the

functions aj j~ ~~~ C, p are functions of class with p > 0

in 0. In Theorem 1 we establish that 7~ satisfies

(2) ~~~ = miii L• max ~~f4 xa+~~÷c+2 +b T a)_ 1
b+

2
÷ + + xbdx

~~ vcc1(o) o

- ~f [(2aY ’b _ V ~ ]T( 2 a) [ ( 2 a )_ lb _  v~]+ 2
dx}

where • Is the set of functions + of class C2 (o) nc (F~) with +
2 

> o
in ~5 and = 1. If b — 0 the operator defined by (1) is self—

0
adjoint and (2 )  reduces to Rayleigh-Ritz. If not , then the

expression ( 2 ) can be considered as a generalized Rayleigh-Ritz

expression.
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Recently, using different  methods , Donsker-Varadhan [1]

have derived a similar expression in the case of zero Dirichiet

boundary conditions and p = 1. In Section 3 we outline our
approach to the Dirichiet case.

Finally, In Section 4 we made some remarks concerning a

possible numerical scheme for computing approximations to ?~ and

the corresponding normalized etgenfunction u~. This scheme does

not use (2), but instead involves the solution of a set of

nonlinear difference equations. These equations result from a

discretization of equation (5) below. The difference equations

are then related to a stationary stochastic control problem.



2. Natural boundary conditions

THEOREM 1. Assume, In addition to the above, that the functions

ajj~ ~~ c are of class c2 (F5) and that C) is a domain of class C2.

Then (2) is true.

Proof: Equation (i) can be written in the form

• (-3 ) - trace au~~
+u

~
(b+d)+cu = 1~pu

for an appropriate vector function d. As a consequence of the

Krein-Rutman theory of positive operators and the max imum principle,

we let u~ denote an elgenfunction corresponding to the principal

eigenvalue ?~ such that u~ > 0 in 0 and
f 

p(x)u*(x)2dx =1. We now

make the change of variables u~ = exp (-i’) obtaining

+ (4) trace a*~~ 
- 

~~~~~~ 
- *~ (b .f-d ) + c =

We have adopted the convention that all vectors are column vectors

except gradients which are row vectors . We now rewrite (4) in the

form

(5) tr a*,~~ +m in [*~w+ ( b÷ d +w )T (4aY 1(b+d+w ) + c~

where the mm in (5) is for each x taken over vectors w € R’1. 8ote

this minimum is obtained for

w — -b-d 2(*xS’) T 
.

• 

•

. 

(7) w — -b -d+2 ( u ’Y 1(u~a) T 
.

The boundary condition for 
~~‘ 

become ~~an — 0 on SC) .

• • - —~~— 

. -
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Now let •)y~ denote the set of functions w of the form
w = -b-d +2 (uy

~~
(u
~
a)T for some smooth positive function u in C)

such that fC) ( x ) u2 ( x ) d x  = 1. For any w c ‘)Ywe have the inequality

(8) t r  a
~ +* w+ (b+d~i~w) T (4a )_ l (b+d+w ) + c >

Define for each w c W, the ope rator L by

(9) Lp = V o (p~
a) -v o ( ( d + w ) p )  =

Then the equation Lp = 0 in C) with the boundary condition

(10) 1p x
a _ ~~~~~~~) T1.n = 0 on ?jc)

has a smooth solution which is positive in C) and satisfies the

normalizing condition
f 

p(x)p~(x)dx = 1. The existence of the

positive solution p
~ 

follows from the Krein-Rutman theory and the

maximum principle. The Krein-Rutman theory gives that the eigen-

value equation Lp = ?~p with boundary condition (lo ) has a positive

solution in C) when X is the principal eigenvalue. Integrating the

equality Lp = 2,p over the domain C), one obtains that 2 = 0 and

hence Lp = 0 has a positive solution in C). Positivity on the

boundary follows from (io ) with use of maximum principle-.

For each w € we multiply (8) by 
~w and integrate over C)

obtaining

(11) f  [(b+d+w )T(4a)_ l(b+d+w ) + c]p dx ~~

Equality in ( i i )  holds only when w is given by (7).  Thus we have

Is
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(12 ) mm J [(b+d+w )T(4a)_l (b+d+w ) +c~p dx =
WE~~Y Q 

w

The proof of the theorem consists in reformulating (12) by dis-

covering the relationship between w and p~ .

We break the proof into three cases.

Case 1. b = 0 (the seif-adjoint case). For any

w = (-~ +
2(u)_i(uxa)

T
) ~ ~

y’, p is given by U
2
. Simp ly check that

u2 satisfies L(u2) = 0 and the boundary condition (10).

Substituting w and into (12), one obtains that (12) can be

rewritten as

(13) = mm If u~au
~ 

+ cu2dx]
UE.~~ L C) J

Equation (13 ) is also (2), and (i~~) is the standard Rayleigh-Ritz

expression.

Case 2. (2a~~
1b is a gradient. Let k be such that k

~ 
= (2a)~~b.

(This is the case when the original equation could have been made

seif-adjoint by multiplying the equation by ~~ for an appropriate

function q.)  Now any control w c ‘W’ of the form

w = _ b _ d + 2 +
~~~(+~ a) T can be rewritten as c W where

(14) = -d +2u
~~
(u
~
a)T

with u = c+ek for an appropriate constant c. Thus we need only

use “controls” of the form (i4). Recall that p = u2. Substitu-

ting into (12) we obtain

I
a

a

• 
-
~~~

•
‘ 

-•-

• - ,
~~~~ ,--;v~~

- - -.

~ 

- ~~~~~~~~~:• -~~~~~ •- —



(15) = mm f [u~au~ + Cu2 +bT(4a)_lbu2 +u~~b~dxUE~

which is (2) for this case.

Case 3. ((2a)~~b is arbitrarj). We wish to write each control

(16 ) w = _ b_ d+ 2
~~
’(4~

a)T 
~~~

,

in the form

(17 ) w = - :  2 ’
~
u
~

t)
~ 

z

for smooth functions u, z such that u > 0 ~n 
~~~
, f p(x)u2(x)dx = 1,

and p
~, 

u where P~ 
is the solution to Lp

~ 
= 0 with boundary

condition (io). Moreover we require that z = -b +2(Wxa)
T for some

function W. Let us show that this is possible.

First, for any 4 given in (16) we must have that u =

From the equation Lp = 0 with boundary condition (10) we see that

u, z must satisfy

Vo (u2z )= O  in C)

(18 )
z .n = O on &)

if for w given by (17) is to be p~ 
= U2

. Using the condition

u = 4e
_ W 

we obtain the equation

(19) Vo (42e 21”(_ b÷2 (W
~
a)T) = 0 m O

with boundary condition •

(20 ) (_ b T + 2 ( W ~a ) ).n  = 0 on

• 
. 

__________________________________



which must e solved f or W for each 4) . The equat ions (19), (20)
*

have a solut ion prov ided the equations

v o ( 4 )2Gb + 4 )2 (G a) T ) = ~ 
i 

C)

(21)
(_4~

2GbT +4)
2Gxa).n = 0 on ~C~)

have a positive solution G. The solution of (19), (20) is obtained

fr~m (21) through the substitution G ~-2W Now (21) has a posit ive

solution by a repetition of the earlier argument concerning the

existence of a positive solution to Lp = 0 with boundary condition

(10)

Thus every control of the form (16) can be written in the

form

— J  
(22 ) w = —d + 2u~~ (u ~

a) T + ( -b+  2(W xa) T )

2with p~ = U and u, W satisfy

Vo(u2(_b+2 (W
~
a5”) 0 in C),

(23)
(_b T+2 (Wxa)).n = 0 on~~Q

Before evaluat..ng the cost of using controls of the form (22),

(23 ) we need to observe the following. For any smooth u > 0 in C)

consider the problem of minimizing

(24) 1(v) =f ((2a)~~~~~V~)T(2a)((2ay lb~~V~)u
2dx

over the class of smooth functions V. Then W given by (23)

minimizes (24) and moreover

I
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_____________ • •~~~~
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( 25) J QX
(_ b+2 (W a)T)u2dx = 0

for any smooth function Q. The proof of (24), (25 ) is a Simp hJ

exerc ise in the calculus of’ variations . We will use (25) below

when Q =  £n u and Q =  W.

Let us now use a control of the form (22). Then the left

hand side of (ii) can be written as the sum of four term s

(26) f {u~au~ + Cu2 + bT(4a)_ ibu2 + uu~b]dx

f [ (_ 2 a ) _ l b + W ~ ] Ta [(_ 2 a Y lb * W ~ ]u2dx

+ f (v £n u)(-b + 2(W a)T)u2dx

+Ib
T(2ay 1(_ b+2 (Wxa)

T)u2dx

The third term is zero by virtue of’ (25). Using (25) we can add

0 =f_W x
(_ b+2 (Wxa)

T)u
2dx

to the fourth term to obtain -2 times the second int~ gral in (26).

Therefore the sum of the second, third and fourth integrals can

be written as

(27) - [ ( 2 a)  b _ W ~ ] T (2 a ) [( 2 ay 1b _ W ~ ]u2dx

Using the definition of the minimum problem for i(v) and the fact

that w minimizes i(v), one can rewrite (27) as

• • ~~~~~---~~• .• 

-



9

(28 ) max - ~f {(2aY~~b ~V~)T(2a)[ (2ayib~~V
T
~u
2dx

V€C (
~

) C)

Substitutin~ this into (26) comDletes the proof of the theorem.

Remarks. Although we have given a proof that avoids the explicit

use of probabilistic ideas, we were motivated by probabilistic

concerns . Take p = 1, then (5) with the boundary condition

—
~ C~ ~s th~ ‘ vC ~~~~~~~~~ ~~j a ~: ; n ” f:~ a sta~~~:~~irv s~ o—~h~±sttc

control pioblem . With each Lipschitz function w associate the

Ito stochas t ic dif ferent ial equat ion

(29) d~ = w(~jdt +/~ ~(~jdb (t) , = a

b = b rown ian motion , with reflection in the interior of 0 in the

direction -an where n is the outer normal. Then 
~~ 

given by (9),

(10) is the invariant density of the process. . Associate with each

“control” w the cost

(30) C(w) =f [(b+d+w )T(4a)~~~(b+d÷w)+cIpwdx
Using equation (5) and the Ito stochastic differential rule one
obtains that the minimum of C (w) over Lipschitz control function

is given by ?~~~. Using the approach one can derive the alternative

representation (recall p = 1)

(31) ?~* = mm 
1 

mm $~f ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
zcC (o)nc(~~)

v o ( 4 2z) =o m n C)
z.n=0 on ac~

+f{(z
T(4a)_1z + z T(2a)_1b)4~

2+cH~xz]dx}

— 
—-
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3. Dirichiet boundary conditions

As we have previous ly remarked , Donsker-V~t ra-~han [1) have

considered this case when p = 1. Therefore let us only outline

how our approach p roce ed s for  the general Dirichiet case with

smooth p > 0 arbitrary to yield the conclus ion (40) below. Let

us assum e in this sect ion that the coef f i c ients 
~~~ 

b
~
, c are of

class c~~(~ ) . We shall n~ te below where we use this assunrntion.

~~ again i:~ike th~ change of variabie~ u~ = ‘ obt aining squation~

(5) - (8). However, now the boundary condit ion is

= -tn u*(x) —‘ +co as x -~~~ ~0. This fact causes the Dirichiet

case to be somewhat more diff icult and necess itates a slightly

different approach than in the proof of Theorem 1.

Let 4) be any positive function in C) such that

(32) 4)
2
(x)/d (x) —, 0 as x

where d (x) is the distance of x to ~0, anaf 
p(x)4)

2
(x)dx = 1. For

such 4) let z be any smooth function such that V ° (4)2z)  = 0 in C)

and let

(33 ) w = _d+241l(4)xa)
T + z  .

For such w, = 4,2 satisfies Lp
~ 

= 0 with the boundary condition

= 0 on ~O. The operator L is the seine as in the proof of

Theorem 1.

Multiplying (5) by 
~~ 

and Integrating by parts one obtains

•
~7

•• ‘~~~
~.
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(34) f ~~~~ + c4)~ + 4)4)b + bT(4aY~~b4)
2dx

0 -

+fz
T(4a) z4)

2 +zT(2a)~~ b4
2
+4)4 zdx >

Condition (32) has been used to eliminate certain terms when

integrating by parts.

For each 4) we choose z = _b+2 (W
~
a)T where w minimizes 1(v)

ach i(v) is as in the pr oof of Theorem 1. A simple exercise shows

that

dlv (4 2z)  = 0

and

f QD~(-b + 2 ( W  a) T )4,2dx = 0

for any smooth Q. Therefore we can rewrite (34) in the form

(35) m m  max 

~
f [4)~a4)’~+c4)2÷ 4)4)xb+b T(4_ l

4
2

1~~
v~c (o) C)

- 

~f 
{(-2a~~

1b+ V~]
T(2a)[ (~2aY

1b+V~]4
2
dxJ ~

where 4’ Is the set of 4, such that 4, > 0 in C), 4,
2/d —

~~ 0 as x

andfp(x)42(x)dx = 1.

To complete our representation we wish to show that equality

is obtained in (35 ) for some 4’c4’. We wish to show that

(36) _d_b+2(u*)~~ (u~a)
T 

= _d+24,~~(4xa)
T+ (_ b÷2 (W

~
a)T)

with 4,c ~ and W minimizes 1(v). As in the proof of Theorem 1 we 
•

see that 4,, w must satisfy 4, = u*e~~tl. Since u~ satisfies (1) with

- • -

. 

1 _ I:,
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u > 0 in 0, u~ = 0 on ~ç), then u ~ 0 on ~0 and conse quently

there exists positive constants c1, c2 such that

c1d(x) 
< u*(x)  < c2d(x). Thus (u*)2/d _.0 as x— ~~c), Hence If

4) = u*e
_W
, then 4)

2/d — 0 as x —~~ 0 and moreove r 4,2 
> c in n.

Now 4,
2, w must also satisfy the equation

(37) V o ( 4 )2 (~ b + 2 ( W ~ a) T ) = 0

hence we must have

(38) Vo ((u*)2e
_2T

~(_b+2(W xa)
T)) = 0

Thus if the equation

(39) V o ( (u*)2(_bG + (Gxa)
T) 0

has a positive solution G in 0, then the change of variables

G = e_2W defines a solution W to (38). If we can find the solution

W, then we can employ equation (36). This gives us equality in

(5) and hence (35). Therefore we would have the desired result

(40) ~~ = mm max {f +~a4~ + c4,2 + 4,4,~
b +b T (4 a )~~~b4,

2dx
4,e4’ Vcc1(C)) C)

- 

~f 
[(_2a)_1b +V~]

T(2a)[(_2aY1b÷V~]+
2
dx}

Thus it remains to establish the existence of a positive

solution G m U  to (39). No boundary conditions are imposed

with (39 ); thIs is to be expected since (u*)2 vanishes on ~O.
Because of this last fact we employ a different approach to •
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establish the existence of W. For this we shall utilize the

* smoothness of ~~~ ~~~ c although this assumption could

possibly be weakened.

Consider the Ito stochastic differential equation

(4i) d~ = 2u*(u a)T+ (u*)
2
(b+K)dt +~/~ u~~db

~i i~~re a, = ~~~ ~~~~~~
-_ (a~~ ), wi th  arbitrary initial data

= x c 0. We wish to show that equation (41) generates a

unique ergodic measure in 0 with probability density of class

CW (C)) given by G. To do this we use some results of Khasminski [3).

Consider a connected domain D c 0 such that ~D ~ ?ic~ and if

x ~ D then 0 < u*(x) < 1/2. Then for h sufficiently large the

function T(x) = -h £n u*(x) satisfies in D the inequality

trace (u*)2aT~~~+T [(u*)2(b+K)+2(u*)(u*a)T)+1 ~ o

From standard results on Ito equations this implies that the

process 
~~
(t) with initial condition x in D never reaches ~C) and

moreover hits ~D-&) in finite mean time. Since the coefficient

a does not vanish in C), then results of Khasminski imply the

existence of a unique finite ergodic measure . Equation (39) is

the equation governing the density of the ergodic measure. Since

the coefficient matrix (u*)2a appearing in the trace (u*)2aG~~
term in (39) is positive definite in 0, then the invariant measure

has a positive density cG in C), for an appropriate constant c,

of class c~~(o). See [21, p. 248 . This last tact utilizes the

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
• —.—-

- -~~• ‘~~~~~~~~ •
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smoothness assumptions on the coefficients a1~~ bi, c. Hence

there is a positive solution G and the outline of the derivation

of (4o) is concluded.
For the Donsker-Varadhan analogue of (4o) in the Dirichiet

case with p = 1, see equation (3.7) in [1) and note that a/2

instead of a is used in their version of (1).
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14~ UL~rnerica1 r:~ th Js

Let us nropose a nsmerical method for computing approxima-

t ions to the smallest cigenvalue ~~ and the correspon ding elgen-

func tion  u~ for  the Ireur n ann problem and also for the periodic

problem which was not considered in Sections 1-3 . For details in

a simple case, see Holland [6). The method consists in applying a

finite difference approximation to the nonlinear equation (5) and

the corresponding boundary condition . If p = 1, the resulting non-

linear difference equations can be given an interpretation as the

equations for optimal stationary control of a Markov chain .

We have employed a method due to White for solution of the

Markov chain problem. White ’s method was suggested by Kushner as

a possible method, see Kushner [5), pp. 156-157 for a description

of the method. Preliminary results show that this approach is

satisfactory for obtaining ?~ and u* for the periodic and Neumann

problems. Our present numerical work includes periodic problems

in 2 spatial dimensions and Neumann problems in 1 spatial

dimension. Some preliminary numerical work on the Dirichlet

problem also indicates that either the formal approximation

suggested in [6] is invalid or the rate of convergence is so slow

that the method is not useful.

We have not yet justi~ied the validity of this discretiza-

tion process. Kushner has justified this approach for other

problems , see [4] for a summary.
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