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ABSTRACT

Whitham's results for slowly varying wavetrains are
generalized to include (i) explicitly the effect o% modal
dependence, (ii) the effect of low-order linear or ﬁonlinear
nonconservative terms and their role in modifying the basic
competition between frequency and amplitude dispersion,
(1ii) the effects of moving media, rotational or irrotational,
and space-time inhomogeneities, and (iv) the effect of
high-order dispersive or diffusive modifications to the low-order
implitudo and phase equations, A "modal law"” is also derived
which, when integrated over the cross-space, leads to a
generalized Whitham action law modified by a source term that
is introduced by nonconservative effects; the use of complex
frequencies here is avoided, thus enabling linear and nonlinear
problems to be treated on an equal basis, A solf-cgnsistent
perturbation method is presented that leads to gencéalizations
and extensions of those ideas due to Whithanm, Hayos.kDavey.
Stewartson, Bretherton and Garrett, Taylor, Landahl, and
others, and shows how each of these generalized subsets appears
as a specific limit of a broader theory. A number of examples
illustrating the basic ideas are presented and which lead to
simple formulas that can be used in many direct applications
of the general theory. Some qualitative ideas on the basic e

effect of the derived high-order terms are given, especially 1‘i;:i3i(
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basic relationships with other high-order theories, for example,
Stewartson and Stuart’'s parabolic diffusion equation for wave
amplitude, and a particular nonlinear Schrocdingerisquation
that arises in studies of high-order wave dispersioh; are also
discussed.,

Based on the above results, some new ideas on wave
stability are presented., One particularly importanf example
discusses Landahl's focusing, trapping and amplification
mechanism for waves riding on inhomogeneous flows in light of
an analogy with the instability'of transonic nozzle flows, and
some speculative ideas on kinematic shock formation are given,
The discussion essentially parallels the simple arguments
originally put forth by Kantrowitz in gas-dynamics but in the
wave-mechanical context; however, detailed mathematical analysis
of the entire instability mechanism is. not pursued in the
present paper. Pprsuod in some detail here, howeve;. is the
study of wave-mechanical discontinuities (which are presumed
to arise out of some wave-like instability), both with and
without the effect of mean flow, Some.simple calculations are
given for gravity and capillary waves that illustrate the
general approacﬁ ﬁndortakon. and a general theory is also
presented that deals with wave-mechanical shock stability as
would be influenced by low-order nonlinoarities.and inhomogeneities
in the médium; the theory essentially sets the foundation for
a general wave-mechanical approach that closely parallels

analogies developed from nonlinear acoustics. Other examples
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treated include simple generalizations of instability theories
due to Whifhan, Taylor, and others, and a newly discovered (and
somewhat speculative) anti-cascading phenomenon arising from

the idea of high-order "negative wave diffusion”,

I. Introduction.

Perhaps the most exciting area in applied mathematics
research today is in the field of nonlinear wave mechanics and
its application to the wave stability of continuum systems, |
The greatest recent advances can be found in the mid-1960's,
as we shall see, and many of the initial advances and applications
were spearheaded by Whitham and his coworkers., The subject, as
it stands today, is founded on the contributions of many
investigators, among them Hayes, Stewartson, Stuart, Davey,
Bretherton and Garrett, Landahl, Lighthill and others; the
cumulative body of knowledge developed by these authors
is capable of handling low-order frequency and amplitude
dispersion, modal effects, wave damping, high-order wave diffusion
and dispersion, and other simultaneous effects. However, it was
often the case that various of the particular theories were
devised specifically to deal with particular problems and their
extension to include higher-order effects and additional
physical features could not be made, The broad generality of
an idea could sometimes not be readily perceived, this situation

leading to many rather specialized and sometimes conflicting

e cr——————




theories, .Tho basic purpose of the present paper is to
reconsider.anew the general problem of describing a slowly
varying wavetrain by constructing a broader unifying theory

that bear{ as few limiting assumptions as the physics permits
and which reduces, in specific limits, to those theofies referred

to above,

Numerous applications of more or less "standard™ nonlinear
techniques (e,g., multiple scaling methods, averaging methods,
etc,) have been made in recent years to problems 1nvoiving wave
motions in continuous media and an extensive survey of these
studies appears in Chin (1976). These applications are mainly
based on several fundamental papers and we will here summarize
and discuss the basic ideas and fheories. Probably the first
application of WKB averaging in fluid mechanics appears in
Whitham (1962), in which (for finite depth gravity waves) the
fluid-dynamical conservation laws were phase-averaged so as to
produce the modulation equafiona governing coupled large-scale
changes in the wave and mean flow variables, In this averaging
the Ansatz consisted of the related uniform wave solution, and
one additional postulate, that of wave conservation, was
introduced., This averaging method was later used in
Whitham (1965a) to find slowly varying wave solutions of nonlinear
equations in general and there the analogous role of the bdasic
uniform golutlon as compared to that of the sinusoidal wave in
linear stationary phase theory was advanced, Whitham (1965b)

in a further development showed how the same modulation




equations for a system of given equations could be derived by
ovnluating.the related Lagrangian density with the uniform

wave solution (the slowly varying solution is assumed to behave
locally like the planar wave), phase-averaging, and then taking
appropriate variations with respect to the wave and mean flow
parameters (which, during the averaging, are held constant).
The power of the method is seen in its simplicity. For example,
in its application to finite-depth gravity waves (Whithanm, 196?)
the averaging reproduced in a simple way the concepts of
“radiation stress"” and the results of Longuet-Higgins and
Stewart (;961) obtained on the basis of detailed asymptotic
analysis, Whitham also showed how, for sufficiently deep
water, the competition between amplitude and frequency dispersion
led to an ill-posed initial value problem which'in a sense
implied instability: the modulation equations were elliptic.

For shallow water the governing equations were hyperbolic, and
implied a "splitting” of the basic wave envelope, These ideas
are quite general and apply as well to other applications of
the Whitham theory. We add, in summarizing this paragraph,

that Whitham's results and his "average Lagrangian method"” can
be derived and justified by multiple-scaling techniques, for
example, as discussed in Luke (/%6 ) and in Whitham (1970).

7 Whilq Whitham's variational theory was successful in
describing both frequency and amplitude dispersion, it was not
able.to incorporate the effects of weakly nonconservative
terms, such as wave damping., This failure stemmed from the lack

of a suitable variational formulation and thus precluded the




npplicatioq of Whitham's ideas to many practical problems (some
recent modifications of the theory (Jimenez and Whitham, 1976)
now permit the treatment of such effects, but the description
is confine@ to low-order changes and does not aﬁpear to be as
general as the theory to be presented). Moreover, Whithan's
method could not be generalized so as to produce the high-order
dispersive terms obtained by other 1nvestigator$ using

direct multiple-scaling methods, For example, a WKB technique
applied to the study of slow modulations of a Stokes wavetrain
showed that higher order terms representing modulation rates
and not nonlinearity must be added to extend thé validity of
Whitham's equations (Chu and Mei, 1970), The same ideas were
reemphasized by Davey (1972), who suggested some heuristic
modifications to Whitham's theory, and by Davey and

Stewartson (1974), who considered thre;-dimensional wave
packets in water wave applications, The apparent discrepancies
in the two approaches could not be found; as noted in Hayes (1973).
Por example, direct multiple-scaling methods led to a nonlinear
Schroedinger equation for a certain complex wavé amplitude, and
this high-order equation embodies Whitham's low-order results
(céntered wavenumber expansions, however, are required in its
usual derivation, so that the competing effects between
amplitude and frequency dispersion are not accounted for).
Furthermore we note that Whitham's method, as it presently
stands, d;es not describe high-order diffusive effects of the
kind described in Stewartson and Stuart (1971), which are
certainly important in any large-time description, Thus one

has in addition to low-order frequency and amplitude dispersive
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terms, thosé terms responsible for the high-order competition
between wave dispersion and wave diffusion, (Recently
Yuen and Lake (1975) showed how the average Lagrangian method
could be mo&ified so as to produce the required high-order
dispersive corrections, however.'but certain implied assumptions
are made in their analysis with regard to the relative rates
of change between wavenumber and wave amplitude.) A formalism
is presented in the present paper that generalizes Whitham's
theory to include high-order dispersive and diffusive effects
and which extends Landahl’'s (1972) modification of the basic
action equation for linear nonconservative effects to fully
nonlinear ones,
Two additional references can be cited in the context of
the present discussion, Bretherton (1969) was able to show
how, for linear, nondissipative prcblems, the phase-averaged
Lagrangian density integrated over modal cross-épace. satisfies
_Whitham's action law, thus extending its applicability to

wave motions in waveguides., Under the stated restrictions
Bretherton's theory was extendable to higher order, and in
principle, the high-order dispersive correctioﬁs as previously
discussed are reproducible, Bretherton's low-order modal
results were generalized to include nonlinear effects by
Hayes (1970b), who in addition postulated a local conservation
law in th; cross-space divergence operator, However, in
addition to its restriction to purely conservative problems,

Hayes' formalism relied on certain “"well-known" variational




identities -which cannot be extended to svstems of arbitrary
order, In the analysis to be presented, both Bretherton's

and Hayes' generalizations of Whitham's ideas too are

extended so that they appear as Specific subsets of a broader
unifying theory. The mathematical approach taken considers

a general variational principle of arbitrary order in which the
explicit presence of modal, propagation space and time
coordinates is accounted for, in addition to that of the work
function describing general nonconservative effects., Slowly
varying wave solutions are sought in the form of a Luke ( /946)
transformation modified for modal dependence, and generalized
phase and amplitude equations are derived from existence and
secularity arguments. A number of specific applications are
made, leading to a number of formulas useful in direct
applications of the general thebry, and in the case of weakly
nonlinear waves, the structure of the high-order dispersive
and diffusive terms is determined from a pseudo-analytic
continuation method, This general theory describing the
dynamics of kinematic waves completes the first part of the
paper, and in the second part, some new ideas in hydrodynamic
(and general wave) stability are discussed, The physical
bases behind some of these ideas are discussed in detail using
various analogies from gasdynamics, but because of obvious
difficul «ties, detailed calculations are not pursued in the
present paper, Some of the ideas, admittedly, are speculative,

but it is the author's hope that the discussions presented
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" herein stimulate further investigation and study. In a sense,
the second part of the present paper deals with novel ideas
that hopefully would be received with the same enthusiasm
as were Whitham's (1967) ideas on "elliptic instability" and
wave group "splitting”.

The analysis that follows essentially summarizes the
main results of a doctoral thesis by the present author
(Chin, 1976) presented at the Massachusetts Institute of
Technology. Further papers are planned and the reader is
urged to refer to that work for details of ideas and
calculations briefly discussed here., Among the subjects planned

for future discussion are theories detailing the wave

» back-interaction on inviscid shear flows, the structure of
foci that result from wave trapping due to inhomogeneities, and

other aspects of wave stability,
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II. The Géneral Theory. Low-Order Results,

Let us suppose that the physical system under ‘onsideration
is derivable from the variational principle as givég“in Eq. (1),
with Lagrangian density L and dissipation functional F, We
consider variational principles (as opposed to specific
equations) so that results common to all systems can be obtained,
Also let the small parameter &€ characterize an appropriate slow
variation which, in addition.his proportional to the weak

influence of nonconservative effects,

bﬂ"'ﬁ"'x ~ *

—————— + - .
& | Cony T 4 e Pl (1)

e (5",3, Et’ u, u«x,;{,)’g)
Fod S

«x,pt, xs U

< +p+Y
ex,p,x iy ')

In Eq, (1) sums over various «, X} p's are understood, x and

y being the propagation and modal coordinates, and t being the
| time, The symbols «, @, § indicate the respective order of
partial differentiations over x, t and y, Further, it is

assumed that for F = 0 the system admits propagating waves, We

now attempt an asymptotic solution in the form

P —
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wxyt) = U(8X,T,y;e) (2)
X=ax Teet 0(x,t) ~ ¢0(X,T)
WX, T)=-0,=-8,= -D(X,T)  K(X,T)=0,=08y -

In the above, X and T are stretched space-time coordinates
chosen to account for 0(l) variations in U over large scales,
O is the phase function for periodic behaviour, and K and W
are wavenumber and frequency satisfying the condition of wave
conservation, We shall neglect any exponentially small

reflections and, in addition, for brevity neglect high-order

g scaling variables and multiple-phases (which, as will be seen,
can be easily incorporated into the present approach)., The key

to a general analysis is the definition of the operator H in
the space B6,X,T

o +f

i X ol
CH=YK 5+ e K ey (3)
)'“" B.up-l
e KK S+ e’ KKy 35

)2 « YU ) B.Gp
+1epe- K S+ P ST

Thus, neglecting terms of 0(¢?), the Euler equation specified

in Eq, (1) can be rewritten as
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e«,p.v'% Wi + 1" = W Flu.) (b)

Por reasons which will later be apparent, we express Eq, (4)

in the alternative form

b

e e L
T ¢ 5 WH(L) 5 (L)(W H(U)>e mAa e U,F(U) (5)
where L* has been eliminated using the identity.
oL % o ¥
3% - L'U, +L(5pHW), (6)
This form of the Euler equation leads to a convenient derivation

for a "generalized action law" which, as will be seen, follows

as a necessary condition for the existence of assumed asymptotic

- solutions in the form given in Eq, (2)., Now, twice application
of the differential identity

% [ 7] +ef £ L

to Eq., (5), first with primes denoting O derivatives (where

~

g = Uo and f = ny
y-derivatives leads directly to

) and second, with primes denoting

!

|

3

!

!
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§) = ¢U,F(U) (8)

g-17 « B2
v ¢ JEKY  Talleaneysy 860K 2, LU,y 5,
[ i - | &
+pK‘» L ny’(‘+')‘,1‘ +“5 K K;rv' ' L U(*.’) e, YS

ae(L*e‘" 4

e, -2 B
«K*'DP LxU@.m, vy o @-1) K™K )) LUE“W’ vy
«- 5

+¢

o-| P
taxK LU‘S «+9)8, X “FK )-B(LU(«-M)O vy

\
8
K‘ v {L“"),'l (< +g+)8 L(x-z)sv(ap*-)’.y +"'}

EFK )) {LT (x')y (l(")O LT,“'»!U("*'),’S*'*}

) 2 o -1 |
3 { » 8“K ) { LI,("‘HQ*’”’ Lx’(t_z)ﬂl)(’&#‘)ﬂ.y*’“}
i e{ L(x.g)svén;)e ‘t(’l-z)gv;-t’f)%j +"‘-} X
& ¥ o o=l §-l
{xtaye ’le)’ﬂ"—(%'-QK D'.ZDT +ogK Ko }J
where
‘ ~
B (Lt L amaitin® -} (9)

+ § T
£ K )) { L '5!(‘*"2).)x'0—e 7 L gs,(dﬁﬁ‘-!)%x lj;’ + .-}
o Y
+ !ﬂ KV { L xy,(dﬂ-l)o,'l've - L YYy(atp-3)0,T UOO » '}
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We now expand the variables L, i, U and ¢ in series like

Y = Z 2 \Pw 8, X, T) : (10)

n=o

and introduce the resulting expressions in Eq. (8)., By equating
coefticiénts in the varying powers of £, the leading terms give

()

/.09 (0 -—3_ ol ‘_x ~ (%) ) _v )
.3%(" +e4,',‘(§ ) 33 K D ( ') {L(,.,,‘,U(-(m.)o L(x-z)"v’(d.-rpﬂ)d,j -’"'} (ll)

Averaging over phase, we obtain the "cross-space conservation law"

2% , ,
\ y @ y© E
s[ﬁ'g KD {L(t-a)g (urp o Lu-ns @rp0e,y ) ‘-'19] (12)

‘a generalization of Hayes' (1970) result, The bdbracketed quantity
above can be interpreted as an energy-like density that varies
slowly in time t and space x, Since T and U both depend on x
and t, Eq, (12) can be thought of as a kind of modal energy
redistribution law, the exact nature of which will depend on

the dynamics of the propagating wave, Expansion of Eq. (8) and

retention:of 0( ¢ ) terms gives

e PRI ) o e

el
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(13)
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/

In the above the bracketed quantities are arranged so that the

first contains time derivatives only and the second contains

propagation space derivatives, By introducing an

lagrangian* with the definition

& ' rALS
[ = %), LCXT, U H(U) do

"average.

(1%)

e il S TR
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BEq. (13) takes on a particularly simple form on phase and
cross-space averaging, Assuming zero work interaction at the

boundary (yl.yz). we obtain

0) el o (,
300 - 200 =&l LU dydo as)

"R

where we have denoted

g .
i"j Ldy | (16)

A

It follows that Eqs. (11) - (15) are the basic éoveming laws
when solutions of Eq, (1) are sought in the form expressed
by Eq. (2). These results are easily generalized to higher
dimensions by taking ( )y 55 V? PR )x i V'x' , and

introducing the wave irrotationality requirement that

V; X ¥ =70 in addition to 'ﬁt + V-iw = 0, BEq. (15) is
precisely Whitham's action law when F = 0 and y-dependences are
suppressed, For such "local" waves, Whitham (1970) has shown
(using L = L(u.ut.ux)) that wave action conservation is
“absolute”, i.e,, correct to all orders in €. On this bvasis,
Eq. (15) 'would be true with superscripts removed., Quite often
this *absoluteness” has been taken for granted for systems of

arbitrary order, But this move is not altogether clear, and

o,

e

S
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for this reason, "local” waves are reexamined here,
If in Eq., (1) y-dependences are suppressed by setting
X: 0, a tedious but straightforward extension of the above

analysis shows that, in general,

2T +a[ -_)_1..[ -_i[ -...Z-[ + ’-‘Lgrl’ d
Mov 3X k" ATl AT Ky OX'bky = ¥ AL (17)

Thus, wave action conservation is not "absolute" for systems of
arbitrary order, However, when the "order* of the system is

two, it is, because the derivatives EZ}T " E&T , etc,, vanish

identically, In fact if we denote by A the wave action'iu, in
Eq. (17), one can demonstrate the existence of high-order
dispersive corrections like Ay, y that modify the low-order action
equation of Whitham's theory, and for dissipative systems,
high-order Burgers' type diffusive terms that involve Axx (this
“will be shown later in Section III)., The above equation can
also be obtained in a more powerful way by extending some of
Whitham's ideas. Let us consider the three-variable variational

principle
éj”:'L(X,T,U,H(U))AGJXc\T - agf;(U) SUdedXdT = 0 (18)
- :

for the three-variable function U( 6 ,X,T). Here U and its

o
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variations are assumed to be periodic in 9. and variations in

U vanish on the boundary R, Variation of U gives, after some
manipulation, the two-timed Euler equation, Eq, (4) with ¥ = 0,
Thus, the two-timed form of the Euler equation, Eq. (l'). is
precisely the Euler equation obtained from the two-timed
variational principle, It follows that Eq., (18) is exact because
it contains the whole expansion and, in addition, it is already
the averaged variational principle, We now introduce an amplitude
measure "a" so that the solution for U( §,X,T; € ) depends

explicitly on the two parameters "a" and 6. Ther, since
e " w
s{f TdXdT = ig{iﬂ; FQ) (.88 +U $0) 6} dXdT e

must hold, “a" variations lead to

e A 27
b %L%- 53(!_%*... “ei'ifqu(v)de %0 (20)

and O variations lead to Eq. (17), Equations (17)-(20) are
then the required "generalized action and phase relations”,

For low-order solutions the choice U( §,X,T,& ) = U"’(a, 8)

where U®”(a, 0 ) is the uniform wave solution to Eq. (1) suffices,
as shown by Whitham (1970), But for proper account of high-order

effects, it is in general necessary to assume
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UEXTe) =2 U “q, Aoy Ly ory 8, W5 Kyor ) (21)

n=o ,

in view of the work by Yuen and Lake (1975), This point will be
discussed more fully in Section III. The proper choices for

the functions U(")are. in general, unclear, This difficulty

is in addition compounded by the fact that variational principles
are not unique - a concern that does not arise in the low-order
problem because the phase and action equations are unaffected,

If Eq. (21) is chosen correctly, though, the analysis carried

to the appropriate level of approximation does produce high-order
dispersive terms (as are modelled in recent studies by a certain
nonlinear Schroedinger equation) and, in addition, high-order
diffusion terms that can be important near kinematic shocks,

Now to leading order, the evolutionary equations are

- et wm ¢
Ple - 510 = &L UWIFWU s = ¢ (22)
LY=0 U©,X,T;e) = U“(a,0)

)

and it ia known (Whitham, 1967) that the physical properties of
the solution vary markedly according to the type of the governing
system, For example, Benjamin-Feir or Whitham-type modulational i
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instabilities are encountered for elliptic systems, For
hyperbolic systems, the perturbation "splits" and propagates

at two different speeds, And in the linear (parabolic) case
the modulation equations uncouple, and the wavenumber field

is determined independently of the wave amplitude, In this
case, Eq, (22) shows that the concept of group velocity is still

relevant to weakly nonconservative processes, It is still

defined by
C=-L)/Ly = dw/aK (23)

since the phase relation can be written in the form

1? = a2 (w,k,X,T) = 0, To this order, the kinematics are

independent of the functional F, agreeing with the fact weakly

nonconservative effects affect the phase only to 0(¢*)., (A more
- explicit formula showing the general nature of high-order

dispersive and diffusive corrections to Eq., (22) will be given

later in Section III,) Wave action is still defined, and again,

in terms of the associated conservative system,

A=TLD (24)
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are still determined by the "real group velocity”, where we have
avoided the inconsistencies of the complex-frequency approach,
These results apply to fully nonlinear waves as well,

® the uniform

In practice it is sufficient to choose for U
wave solution to the associated conservative systeh. However
the presence of the right-side integral of Eq, (22) in nonlinear
systems may possibly alter the structure of the fundamental
conservative solution in a significant way. This point is
especially important in bifurcational and transitional studies,
We may also note that by considering d1L/3T and 3L/ 3X instead
of 2L/20 in Eq. (6), one obtains for local or modal waves the

following leading order results,

Z(Wl-1") - F(wly) =-L7 *w"F(v™) (25)
-H(KLD) - &KLY -17)- LS * KB F(rY (26)

These identify Ug as the appropriate weighting function for F,
The above equations are equivalent to Eq, (22), except that
different energy-like norms are now examined along different
rays. As for Eq, (22), the superscript zeroes may be removed
for second order systems, but for high-order systems, additional
terms must be incorporated, If we identify Eq., (1) with
Hamilton's principle, we see that the above represent energy

#ar g .
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and momentuﬁ laws respectively. This follows for, in a
mathematical sense, energy is that quantity conserved when the
corresponding variational principle is invariant with'respect
to translations in time, The conservation laws for momentum
and action} for example, follow from considering translations
in space and in phase, The right sides of Eqs., (25) and (26)
ghow expiicitly the role of inhomogeniety and dissipation.

For example, the inhomogeniety can be prescribed (as would be
the case in linear theory) or can be the result of wave-induced
modifications to a given mean state, In linear theory the
velocities for action, momentum, energy and wavenumber are
identical, of course, since the average Lagrangian is homogeneous
in a%,

- It is important to recapitulate several ideas fundamental
to the above analysis, The first is that no assumptions have
been made regarding the orders of the conservative and
nonconservative operators in Eq., (1), the variability of their
coefficients, or their linearity or nonlinearity, Secondly,
the general expansions introduced in Eq, (2) include a strong
modal dependence, as opposed to those used by Luke (/94 ) or
Whitham (1970), One observes that when Eq, (10) is introduced
in Eq, (8) with ¥ = 0, the left side of the resulting 0(€ )
equation contains functions of both 0@and UV while the right
side contains U“oexclusively. A solution uniformly valid in

©® requires U, and hence each Uq) to be periodic in O with
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period 2@, This uniform validity 1is possible only if the
integral of the right side with respect to O over a period

is zero. This, together with the definition given in Eq. (1%),
leads to the action law (Eq. (15)) directly as straightforward
manipulations show., In other words, wave action conservation
follows as a secular condition (in the sense of Cole (1968))
when solutions of Eq, (1) are sought in the form specified by
Eq. (2). For the treatment of modal effects and high-order
corrections, secularity alone is not sufficient, but phase
averages can still be cqnveniently carried out via the
two-timing introduced in Eq. £2),

It is crucial that Eq, (22) holds for equations of any
order, but that the order of the system becomes important only
when higher order effects are to be calculated, For
second-order systems, however, Eq., (22) is exact because
derivatives of frequency and wavenumber vanish identically, and
superscripts may be dropped. Thus, Whitham's (1970) comments
on the absoluteness of action conservation (in nondissipative
media) apply only to these degenerate cases, Action conservation
here turns out to be the appropriate adiabatic invariant for
linear or nonlinear wave propagation in inhomogeneous dissipative
systems, In nonlinear processes, this is especially important
because energy cannot play too fundamental a role - it is easily
transferred between component frequencies, For solutions to

practical problems it is necessary to amend Whitham's (1970)




algorithm, In linear problems, for example, the uniform wave
solution U= asin® 1led to an average Lagrangian hcmogeneous
in a2 ; this is true only in the lowest approximatio i, Since
"a" is really a function of the slow variables X and\f. 0(g*)
corrections to the average Lagrangian must b; incorpqrated

that will involve space-time derivatives of wavenumber and
amplitude, O( & ) effects having vanished by orthogonality, The
existence of such high-order terms suggests a new treatment for
"kinematic shocks”, There thus exist high-order diffusion
terms that can possibly smooth out discontinuities that appear

in considering the low-order solution alone or, for example,

k high-order dispersive terms that may suppress shock formation,
The dispersive corrections mentioned here (as will be pointed
out more clearly later) resolve the inconsistencies pointed out
by Chu and Mei (1970) regarding the apparent loss of certain
high-order modulation terms in the Lagrangian formulation by

showing that such terms are accounted for by the variational

method, It is only that through the above inconsistency that
' the discrepancy arises.

Our approach also bypasses the conventional use of complex
frequencieg in treating dissipative problems, For example, it
is not necessary to determine the group velocity from the real
part of a complex frequency, and then, to introduce heuristically
into the energy equation a damping based on the imaginary

frequency. In many nonlinear problems where the dso of complex
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frequencies.ia inappropriate, Eq. (22) seems to provide the
only practical alternative, Both local and modal wrves, of
course, were considered under the same formalism, T .ere is
still another interesting point to be noted, For noﬁiinear
waves we can eliminate amplitude from the argument space of
i‘ and iw using the dispersion relation, The action equation
then becomes an eikonal one, from which an equation for a
perturbation phase could be developed. For this system it turns
out that boundary -conditions cannot be satisfied if spatial
growth is not assumed, for initial values applied at x = 0.

On the other hand, initial values applied at t = 0 require
temporal growth, This extends in a simple way Gaster's (1965)
result that Orr-Sommerfeld waves (generated from a vibrating
ribbon fixed in space) on a boundary layer gfow spatially, It
also reduces to Taylor's (1962) results for temporally growing
waves, _ }

In applying Eq, (15) to specific problems, the choice of
the basic solution (of Ansatz) is crucial, From the linear
results to be presented (Example 1), the uniform solution of
the associated conservative system appears to suffice as a
general ru;e because the dissipation is weak, This model can
be extended to nonlinear and modal problems as well, For
example, if Luke's (1966) nonlinear Klein-Gordon equation were
modified to include dissipation, one would evaluate Eq. (15)

by the uniform conservative solution he obtained.' Finally

—s A
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note how the conserved density in Eq, (12) takes on a much

more complex structure than the analysis of Hayes (1970) would
suggest, but reduces to his in the appropriate limit, This
comment applies to the modal law Eq, (13) as well, noting that
neither Bretherton's (1969) nor Hayes' theories are valid for
dissipative wave flows, The evolutionary equations derived

have a two-fold use, First, they can be used to describe

the mathematical properties of wave-like solutions to specific
equations, and this is the usual application, The second is to
make certain physical assumptions about the functional form of
the Lagrangian, for example, that it represents Hamilton's
principle, and then, obtain alternative descriptions for physical
conservation laws, This approach is pursued later in an example,
One of the aims of the present paper is a systematic re-derivation
and extension of both existing high and low-order theories of
wave motion from one general, self-consistent approach. Before
considering in detail the high-order theory, we discuss several

applications of the low-order theory;

- s e
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Example 1. ?Linear "local" Waves,

Pirst, one can obtain specialized results for rather
general 1iriear systems., Consider "local waves", that is, waves

without a modal cross-structure, We examine

'“‘ v+Y

Z; a (ex,tﬂ—%g;;? . izz b, ((ext) %f‘a%ﬁ (27)

where the sums are taken over combinations of x+f = even

and v+ 9% = odd, The coefficients a and b are assumed to
<, ¥

be weakly dependent on x,t and to be sufficiently "well-behaved",
The conventional approach assumes a solution proportional to

exp i(Kx-wt), where W=w+iW; is complex and W;/wW, ~0(¢& ).
Neglection of 0(g?) terms in the complex dispersion relation gives

bt o 1 "ﬂ’ v r
zga#(-l)x “lwl+igw, “‘J“ZZ WMONAN o (28)

Equating real and imaginary parts we find the relations

b.atp « §
Z; &N K uw =0 (29)
, « 1 4
W  TZh KW
< +i+! ol o |
;;aqc-a) 7 4K W,

PR,
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Solutions cbrresponding to the neglected roots of Eq, (28) have
been discarded because they are associated with rap’dly varying,
or alt :na{ively. highly damped solutions., Thus, if.we are
looking for slowly varying wavetrains in which dissiﬁﬁtion plays

a modest role, Eq, (28) must suffice. Eq, (29) can be interpreted
as a dispersion relation, consistent with that in Eq: (22) in

the sense that it is not affected by weakly nonconservative
effects, On the other hand, Eq. (30) provides a compact
expression for the "exponential growth rate®, Now, assume that

the left side of Eq. (27) is derivable from a Lagrangian density,

8o that
a-c-ffu » 5 atL

\
\

Since the term ao.o(x.T) does not alter the apalysis we make,
without loss of generalization, the normalization ao.o = 1.

Then the Lagrangian must take the form L = veet ...+ 2% , this
"fixed" term enabling us to keep track of the entire conservative

operator throughout the averaging. From this it follows that

* | | . - ,
L5 (60,d) = 0 23 4, iK™ (2)

Y

when L is evaluated with the uniform “"conservative" wave

. solution u“= a(X,7)sin® , Thus unlike conventional methods




30

in which di.ssipation is separately accounted for in a complex
phase, the "a" in our approach contains both conservative and
slightly nonconservative effects, Evaluating the right side
of Eq. (27). with this solution gives, successively,

yA §
T 0) ( o), (9] LR |
F 1 aXL‘ =27l 22 boylh Vieeno K 2 0 (33)
= ___a’ 22 bTx -v-r-t |KT))x
=9 ZZ b ﬂ" 'Kvl)x o

ki | B 2[_ > W
g; a“: “) ﬂ K"w, ‘.‘ ;

o)
In terms of the wave action A = |, and the group velocity

Cc g = -i;’/f‘: we have

FA+ZCA 2PN o= /K (3

which describes the long term effecté of locally weak dissipation.
It is essential here that the basic group velocity (which
determines the kinematics) remains, to lowest order, unaffected

by dissipation, The above equation has been used by Landahl (1972)
and by Davey (1972), Complex frequencies, again, are unnecessary
in the pé;sent approach; the purpose of Eq, (34) is to relate A

to the more common " W;".
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Example 2, Linear "Modal" Waves,

Modal waves are those that involve a cross-structure

orthogonal to the propagation direction. A simple model is

.nﬁ* 4 “1:4-3

T3 onst) SECUL - TITk (it Sty 09

T by a"at! 3y %%

where the left side is conservative and the right side is
dissipative, Now define the auxiliary system

a-cl'fﬂ' "-FF"!
& i i ._._.———— (36)
% a“;h)'(o’o’j) éx"affay‘ Zﬁ b"ﬁts % ’ﬂ) ox ot 9J

having the oigensolutiongs = Gfs(y) exp i(Kx-wt) with mode

number “s", where gPs(y) is determined from the solution to

¥ o A
Z ad ,,x(°’°’3) §0¥s(g)(t|<)*(-cw) = ez_!b“;qq‘j)gp!ﬁ)(uo (-(w) (37)

and its appropriate homogeneous boundary conditions, The right
hand sides of the above may be dropped if the resulting undamped
system is free of critical layers, Then, the extension to

Whitham's: basic algorithm suggests an Ansatz of the form

U6, X,T,4) = & (X,T),(y) sine (38)

S e A
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This type of assumption is reminiscent of Stuart's (1958)
“ghape assumption”, and appears to be justifiable or physical

grounds (provided that the medium is, indeed, slowlj‘varying).

— L i
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Example 3, Waves in Moving Medias Irrotational Mean Flows,

The evolutionary equations as given in Eq, (22: do not
impose any restrictions on the background mediunm, egugpt that
it is slowly varying. We will consider fluid-dynamical
problems in which waves ride on slowly varyling mean currents
that vary slowly in time and in the propagation direction only.
Both wave and mean flow interact nonlinearly through a radiation
stress that transfers energy from mean flow to wave (and vice
versa), In addition, the slow variation of the medium introduces
small local changes to the dispersive properties characteristic
of the wave, The cumulative effects of these changes may be
significant.

Let us assume that the waves under consideration propagate
in a direction parallel to the mean flow U = U(X,T). This base
flow is irrotational because there is no dependence on the
shear coordinate y, Then if superscript primes refer to a
coordinate system S' moving with the mean flow U and unprimed
symbols refer to ground-fixed coordinates S, the principle of

Galilean invariance implies, to leading order,

<o) ¢ /(’) ’ ’
LT wK) =L (X T, w-UK, K) (39)
What enters in Eq, (39) is the expected Doppler shift, as can
be derived by applying Eq., (2) and its primed counterpart to
. any system of equations written for both S and S* (Chin, 1976).
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The key point in the analysis that follows is a re-interpretation
of the fictitious forces experienced in S' as equi\' 1lent Reynolds
stress effects as observed from S, This principle ‘.J_as first
enunciated by Whitham (1962) in the context of gravity waves,

It may have been suggested by the fact that the fluid-dynamical
equations linearized about a constant U are identical with the
same equations written in moving coordinates, but the analogy

is not quite complete, With the above interpretation simple
regsults are available on defining energy densities E' =w',[‘;l-i’
and E =wiw-£ (which are valid for fully nonlinear waves), as
suggested by Eq. (25). Now because wave action is invariant
under Galilean transformation, that is, .{w = 4",;,, » We can
write (to leading order) (E'+Z’ )/ w' = (E+L)Vw =JZ, .

For linear systems, .ﬂ = i' = 0 since the difference between
phase-averaged kinetic and potential energy densitieg vanishes,
If the resulting expression for ‘fw is substituted in Eq, (22)
and Eq. (33) is used for the dissipation term, we are led to

(on dropping primes)

%% +53;(U+.QK)E - E[Q"+Uﬁ; _ kiU + zw‘-] (40)

where we:have denoted () (K,X,T) = w' and set W= U(X,T)K+L
in the wave conservation law, The group velocity here is
simply Cg = U+()g. It is easy to see that the right-side

" term in Eq, (40), aside from the W; , represents the effects
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of radiation stress, For example, progressive waves on deep
1 »
water satisfy LI= gK-FT°K34p where g is the accele ~ation due

to gravity,-T_ is the surface tension, and 4 is thé.fluid

0
density. Since (), = /2, = 0 it follows that the radiation
stress R = (1+ 32)E/(2+2Z) where Z = Toxz/p g. For pure gravity
waves (2 = 0) R=%4E, and for pure capillary waves (2 = & )

R = 3E/2, reproducing the results of Longuet-Higgins and

Stewart (1964) in a simple way, For gravity waves in water of
finite depth h(X,T), the intrinsic frequency is 1 = (gKtanh Kh)é.
In this case _flx and .flt are nonzero, Expanding these terms

out and simplifying with h, * (hU)x = 0 produces the interaction
term (% + 2Kh/sinh 2Kh)E in Eq, (40), which again agrees with the
results of detailed perturbation methods, These results are

not altogether surprising in view of the physical ideas underlying
Eq., (39). Eq. (40), of course, is valid for non-fluid-dynamical
problems as well, We simply set U = 0 to arrive at the interaction

term E !lt/ﬁfl £

In contrast spatial, as opposed to temporal, inhomogenieties
are responsible for changes in wave momentum, The mathematical
basis for this is implied by Noether's theorem (Courant and
Hilbert, 1953). A wave momentum law analogous to Eq., (40)
can be easily derived, For linear systems, this is accomplished
by noting'that E=/2A and M = KA for the wave quantities,

Thus E/f2 = M/K which, together with action and wave conservation,
leads to
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o EU ﬂx
%‘M' 5—(U+12K)M -u[ % - 2u; ) (41)

L4

-

It is also possiblé to extend Eq, (40) to completely.honlinear
flows, This is accomplished by applying Eq. (39) to Eq. (25),

with the result that !

E
'g"]" +§a}f( -ni i)E (xZ, i)a‘)’( -(1,7ULy) +Q}’ (42)

where now E fld—a JL is the wave energy density., One may have
anticipated Eq. (42) in retrospect. For example, the right-side
terms are for radiation stress, since K.ZK -i is a mome.itum
flux (see Eq. (26)). The momentum aﬁalogue to Eq. (#2) is

just as easily derived by combining Egqs. (39) and (2§). The

result is simply ‘

St k(U =M = 4, -M 5 + oK ¥ (43)
203

The above laws are, of course, coupled to the dynamics of the

mean flow, For further details, the reader is referred to

Whitham (1967). Three propagation velocities, those for action,

]
energy and momentum, can be defined, They are, respectively,

‘M’ ey e - .
" “ T —— ——————
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C“ ~U-L /L, (b4
¢ =U-aL/al,-1) ,
C™ =U +(L-kL /KL, .

In the linear case these reduce to U-*J?K since the ﬁagrangian
vanishes, Note also that the nonlinear wave kinetic energy'K
satisfies exactly X = 2(E +& ) = 2wa = HW/HAK)KA) = iCpM 4
where Cp is the phase velocity, This identity is based on E
being the sum of kinetic and potential-energies and £ being the
difference, It was first given by Levi-Civita (1924) for finite
amplitude gravity waves in water of finite depth. But its
applicability seems to extend to much more general systems. In
the linear case, energy equipartition implies E = 2 ¥ and so,

E = CpM. a result familiar in surface waves, ‘

General results like Eqs, (42) and (43) were made possible
by the assumed dependence of U on X,T only, that is, there is no
y-dependence, Thus the dispersive properties of the wave are
unmodified by the presence of the mean flow except to the extent
of the expected Doppler-shift, For many problems, however, the
assumption U = U(X,T) is not very realistic. 1In deep water, for
example, the nonlinear coupling between wave and mean flow
disappears (Whitham, 1967) so that, effectively, the mean flow
is unaffe;ted by wave growth or decay as induced by radiation

stresses, Surfaces changes in U can only be accounted for by
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incorporating a y-dependence, Obviously, the above approach
using Eq. (39) is no longer applicable, and a theory for
the y-coupling must be separately developed., This-'ill be
outlined in the next example. s

At this point we can make some remarks on wave packet
growth, Usually stability theory centers on the idéa of temporal
growth or decay, for example, the time behaviour of a normal
mode is studied in parallel flow models, Wave-like disturbances,
however, propagate downstream in reality, and pass through
various regions which may be stable or unstable on the basis of
normal mode analysis, Not only is the space-time evolution of
the wave energy density important, but its integral, the overall
wave packet growth in defining stability. 1In general, the
stability (or instability) of one does not imply the same for
the other, Consider the integral Z. (t) of E(x,t) over dx :
between two rays xl(t) and xz(t). S (t) is a net energy in

gome sense, with time playing a parametric role, Differentiation

leads to

. X
5 =Jx| B)Et(x,t) E(Xz,'t)dxz E(xl,t)dx‘

or,

> ’L { aai(”) + 5% (4E) } dx
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If q is identified with the group velocity U"JIK , then

2 =dZ /dt is simply the time rate of change of total energy
between two. rays, If we introduce Eq., (40) we find that

X,6)
dZ@) _ [ Qe 1UN, — KR Uk ]
oT——'t X“)E(x’f) ;) + Zw" dX (45)

which, in non-fluid-dynamical problems, takes on U = 0, If

the inhomogeniety and the dissipation vanish, Eq, (45) shows
that the energy between two rays is a constant equal to the
initial energy. In general, the coefficient of E in Eq. (45)

is a complicated function of K, X and T that is not known

until the kinematics are completely de'germined. However if

ﬂt =y = W; = 0 (as in inviscid deep-water wave problems)

Eq, (45) automatically implies wave energy growth whenever Ux< 0

since K fly/f1 > o,
Consider, for example, the quantity

Q4 +UN - KU 2Kh
Q= ST gy = <[5+ Hn ]V

for gravity waves, If Q ? 0 everywhere, instability is implied,
but if Q € 0 there is total stability. The energy of a wave
packet thus grows or decays if, relative to the wave, U, is
negative or positive, a fact in agreement with observation,

Flow inhomogenieties play a dual role in affecting both energy
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density and total energy. For example, an energy singularity
can develop within a wave packet while the total energy decreases,

Now, let Q... and Q.. denote the maximum and minimum values of

x,(t) X, @)
- Q in (x,,x,), so that EQ dx £ QmaxZ and EQ dx 2 Qpin Z .
X,(¢) X

Hence, substitution in Eq, (45) shows that Qmax and Qmin can be
interpreted as upper and lower bounds for total energy
amplification. 1In linear theory these bounds are prescribed in
the sense that U(X,T) is specified beforehand, Since U is slowly
varying the growth rates Q are 0(¢ ), however, events occurring

within the wave packet can be quite sudden.

B We can also examine wave momentum., The total wave momentum
X (t)
M = 4.“)?'1(&‘.:) dx following a wave group is governed, in

linear theory, by the equation

X, (£)

%) U ﬂx-
%‘f M- 5% - T +2uw; ] dx (46)

X&)

where xl'z(t) are determined by integration of the wave
conservation law, For simplicity consider waves in inviscid,

deep water, where .ﬂx = W;= 0, Then, the inequality

X, X X3
(U = U, [ M < MCtR ¢ <‘UJWLWX “(U),, M

follows, identifying the maximum and minimum of -U, as the
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upper and lower bounds for the momentum(?mplification. For the
Xt

wave action density A, one has d/dt J[ A(x,t) dx = 0 in a
)

X

conservative system., For linear or nonlinear problems, we have

&Av kfx“” .
’f/l(x,t)d = | A0 dx = A 4
A jJostndx =) A : (47)

where 04; is the total initial action., With dissipation,

Eq., (47) is no longer true, but rough estimates for upper and
lower bounds on the decay rates are easy to obtain, Consider
the case _flx = .fla = 0, If we denote

Ky= Max K(x,0) > K = Min K(x,0)> 0 and ¥ =Max(-U,) > ¥ =Min(-U )
it is clear, from wave conservation, that along all rays

: Iut :
Kye M &£ kg ¢ Kye i Since ;= -2 K? in deep water, where

Y is the kinematic viscosity, it follows that

X @) X
d 2 2 Xy
SpSe x,-t = A = - 2
dt x.(t)A( ) dx ZLMAdx 423‘&. K A dx (48)
and hence, for any t = to s that

ute ¥mto
okt ™™ < L ind < -4oK €

Thus, bounds for the total action decay (or growth) can be

readily formulated in terms of initial conditions and streamwise
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parameters, In the linear results given above it is posaible
for the total energy or momentum of a wave packet to grow
without bound., In this case the effect of nonlinearity must

be included by, say, expanding the average Lagrangian'in powers

of wave action. For further details, the reader is referred

to Chin (1976).

S —
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Example 4, Waves in Moving Media: Mean Shear Flows,

The previous example dealt with mean flows constant across
the modal cross-space, DBecause the local mean speed was unique
over y we invoked the principle of Galilean invarianée. and
this led to general results, This invariance is, however,
inapplicable to the case of mean shear flows, At first, the
situation appeared to be additionally complicated by the lack of
a suitable variational formulation for the inviscid Rayleigh
equation, This latter point was dismissed for, although a
variational principle does not exist in the linearized problem,
it does for the complete nonlinear one, With this settled, we
opted to equivalently average over phase and modal cross-space
directly the fluid-dynamicai conservation laws for total mass,
total momentum and total energy. The formal procedure parallels
Whitham's (1962) treatment for irrotational gravity waves (of
energy density E and wavenumber K) in water of finite depth
h(X,T) and speed U(X,T), the latter two variables of which, on
account of O(E) wave-induced effects, cannot be assumed as known
a priori, E and K in addition are taken as slowly varying
functions of x,t and the waves are assumed to be locally
sinusoidal in the averaging., The resulting modulation equations
(although £2 terms are not explicitly present) describe the
nonlineaf wave back-interaction on the mean state over scales
large compared to a typical period or wavelength, The consequences

of the theory can be found in Whitham (1967).




Qur theory, however, departs from Whitham's by recognizing
that the U here, in addition to experiencing "magnitude changes”
of the Whitham type, experiences "shape changes" due to the action
of Reynolds stresses, This consideration does not arise in the
irrotational case by virtue of Kelvin's theorem: an irrotational
flow stays irrotational, What 18 needed to extend the above

ideas is thus a suitable (phase-independent) Ansatz for the mean

flow in the phase-modal averaging, so that within the limitations
imposed by WKB theory, the simultaneous wave back-interaction
process is properly described, A simple model can be constructed
by observing that waves truly slowly varying in space can be
described locally by the usual normal mode theory. The given
laminar flow Ul(y) corrected for wave-induced distortions

of 0(E) as introduced by the Rayleigh equation then can be put

in the form (Chin, 1976)

U(y,E) = Uty + E UILUI Cp’;l, o (50)

where ¢N(y.l{) is the Rayleigh eigenfunction suitably
normalized, and E includes the initially exponential temporal
growth, This result agrees with that in Landahl (/973).

The key jdea is to assume a slowly varying mean flow in the form

UGy X.T) = U<XT)[U()+EW a5 LI

(51)
|U,-¢l”

s T ey
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where U, is a reference speed, Thus, in this model, the local
normal mode solution for the corrected mean flow determines the
form of a large-scale (wave-dependent) shape structure convected
with the mean flow, This assumption is physically sound provided
the waves are slowly varying. The above Ansatz reduces to
Whitham's when Ul = constant, since q; = 0, Second-order changes
in mean pressure, of course, also must be accounted for in the
averaging. When the final averaged equations are combined with
the kinematic requirement for wave conservation we arrive at a
system of modulation equations which, in Whitham's (1967) sense,
can be hyperbolic or elliptic depending on the value of Kh,

These imply a splitting of the initial wave packet or a type of
modulational instability. However, the new theory generalizes
Whitham's by the inclusion of velocity profile curvature, and
this introduces a host of new effects, The new theory can be
considered as complementing the viscous one of Stewartson and
Stuart (1971) by dealing with essentially inviscid flows that

are not in “near-equilibrium*, A defailed treatment for surface
waves and channel/jet - type flows is planned in a separate
paper, but a preliminary account of the main results is available
in Chin (1976).
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Example S, Taylor's Waves.

The Lagrangian theory leads to simple generalizations
for "Taylor waves.," The effect of nonuniform currents with
constant horizontal divergence on a train of gravity Qaves
whose amplitude and length are constant in space but variable
in time was first discussed by G.I. Taylor (1962), Such
space-independent waves can be expected to exist for constant
Ux = o if there are otherwise no other inhomogenieties in the
medium, and Taylor has shown how these can be experimentally
realized, We thus consider "deep-water" problems, If we denote

by A the wave action, the nonlinear governing equations on

taking Kx = Ax = 0 become

3 | :
stk = - | (52)
FIA = - (53)

which integrate to

K=K, e (54)

A=A e (55)
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where K i{s the initial wavenumber and /4, is the initial wave
action, Now A = AOK/K° and we can expand the wave energy as
E = Af(K) T iAzg(K). Thus the nonlinear solution for energy

becomes
2
E = £ kf) + 3 (%) K00 (56)

For deep-water gravity waves, f(K) = goi Ké and g(X) = K3

where &, is the acceleration due to gravity, as can be shown

from the results of Whitham (1967). Eq. (56) specializes to

A.a* | (AeN 5
s S aCRER | (57

-3/4
For linear waves E = i-ﬁ goa2 implies that a ~ A, reproducing

Taylor's result, For capillary waves with surface tension T,

f s Ti K3/2 and g = -K3/8 (Chin, 1976). In this case,
£ - /&14h Ki& -'l-(fbjth
16 \ Ke

K, (58)

which, for small amplitudes, gives E ~ ):5/2.
We éan also formulate the above ideas somewhat differently.
The energy equation as given in Eq, (42) is simplified by

expanding the average lagrangian in powers of A, If we assume

e mtl i




that @ = UK+ f + Ag, the equation satisfied by (the nonlinear

definition of) E is, to O(E 1s '

(e). ¥ K4, kqf.-gf -kT9e 1 2
%(C E'["E-;c-ﬁ-o-Ez g zg-fs . 3x | (59)

Assuming Ex = KJt = 0 as before, we can equivalently write

~AL g 6o
where
£ kF
5“("’“ w’ po ™ _ X g';; = %%’ (61)

\

\

For pure capillaries the coefficients are ,81= -5« /2 and

By = -5a /(327), while for pure gravity waves ,6’12 -3e¢/2 and

32 = 7l(zo< /l&go. In linear theory equilibrium amplitudes cannot
exist for « < 0, But in the nonlinear case, a possible
equilibrium energy E = £,/ /4, exists. Thus it exists for
capillaries (E = 16T) but it does not, to this order, for gravity
waves, Eq. (60) can be integrated for constant p's. giving

1% Bl oy ' (62)
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where § i; related to the initial energy. (For more
complicated problems in which the /?'s are time-dependent,
integration in closed form is possible using Bernoul ' i-type
integrals.) >

This result is reminiscent of the amplitude equation first
given by Stuart (1958) in nonlinear boundary layer sfability.
Essentially, if (1) ,@l 20, 32 > 0 an equilibrium energy
exists, (ii) g, > 0, g, < 0 an equilibrium energy doesn't
exist, and (iii) fl<o 5 /2<0 the disturbance takes on an
equilibrium energy Ejat t 2 -m however, the equilibrium is
unstable, If the energy density is less than Eo’ the disturbance
decays to zero, whereas if it is greater than Eo. the disturbance
grows, Thus, Stuart's equation describes a broader class of
temporally varying problems, In other problems in which the waves
are not purely steady in space and time, the modulations balance
according to Eq. (22). Thus the lLandau coefficients in Eq. (62)
are now functions of space and time as determined from the wave
kinematics, Implicit also in Eq, (22), of course, is
Gaster's (1962) theorem relating temporal and spatial growth
rates via the group velocity; the relationship is much more

complicated in the nenlinear case,
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Example 6, A Weakly Nonlinear Instability.

To examine the basic effect of nonlinearity on linear
wave flows, consider homogeneous, conservative media and
in Eq. (22) with P = 0, let us eliminate the explicit dependence
of ‘iw and ‘fK on A by using the dispersion relation, This
leads to

2
;‘{Iw(w,K) '%ix(w’K) Bl (63)

which can be written as the following eikonal equation for the

phase function 8 (x,t).

20
Iww(wK) ot Z.f,,,K axat ixx’ai'* e (64)

We can specialize our discussion to wavemakers, In linear

theory the wave frequency is fixed on prescribing the wavenumber,

But in nonlinear theory this alone is not sufficient since

something about the amplitude distribution must be known, We

can, of course, equivalently modulate the frequency and take

K=K and @= Ww,- € exp(i« x) as initial conditions, where

€ and o« are prescribed constants, Then the perturbation phase
function ¢ = 8 - KX + w,t satisfies ‘*x = 0and ¢, = gexp(iex)

at t=0 as well as the differential equation above, Nonlinear
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perturbations to the basic system thus satisfy, approximately,

1. ™ 3’-¢
i (wo,K) At Z:Cw,(,, xat ‘I k0 = (65)

The solution to this is simply the real part of

done
Ax(x* — ‘('-} sinh it
0=KXx-wt tee ——'f_—- (66)
2
where, if fw.f“. iw‘,. =0

j= = (Lo Liwo - i:m,o )'/1-
- -

(67)

The instability implied by Eq. (66) arises from the solution of

_an elliptic Cauchy problem, It is essentially Whitham's (1967)

i{ngtability and, for example, can be realized by gravity or
capillary waves on deep water, One obvious question is the
effect of inhomogeniety (e.g., a slowly varying current

U = U(X,T) ) and dissipation in the medium. To explore this
issue let us follow Hayes (1970) and expand the average
Lagrangian L in the form Lthw . H(K,A,X,T). This
representation is a canonical one since the only amplitude
measure that appears is the wave action A = £, itself, The

modulation equations as expressed in Eq, (22) become
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2A 2K
'r+wx +HKK ax +H i y (68)

2K K A,
aT Tk Y T 3x tWyg = © , (69)

where the frequency W 1is determined from JLA = 0, that is,

w = H, (K,AX,T) (70)

!

Since w-{w ~ZL is an energy density (see Eq. (25)), the
function H can be interpreted as a Hamiltonian energy function,
In the present case (as in Eq, (22)) the frequency is again
real; nonconservative effects app;ar idrectly in Eq. (68).

As in the discussion leading up to Eq. (65) we consider weakly
nonlinear perturbations to a uniform state (denoted by zero
subscripts) and linearize Egqs, (68) and (69) about the constants

Ko and Ao. If we introduce new coordinates T = t and

i = x - C,t where C, is the "mean velocity" (W HAK(Ko’Ao'X'T)'

K

the perturbation problem for A‘ (where A* = A-A  and K' = K-Ko)
can be put in the form

A o A
Tt ﬂ,H“,, at = 2e(w-1;) 35‘% (71)

A'(8,7-0) = ¢ (D)
B (1,120) % ~Hygo K} (1,700) = Y()
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&« where ( W, - Ux) is taken as constant locally, If € 1is cmall

_we can write, approximately,
= g(w;-U )T
A'(j,t) = e X B(iiJﬂA,onx,o 'G) (72)

In the hyperbolic case the solution to the "conservative part"

B satisfies

2'B 2'B
- 4 -ﬂA,OHKK,D-a—{{ o (73)
B(l,T=0) = (1)  Bi(1,T=0) = §(1)
E and is given by D'Alembert's formula, that is,
B3, 7) = H{e( 0 e ©) * @G- e T ) s
\ 1+ ﬂA,OHKK,o T

+_______-——

2112, Mex,s Pen 47

i' JQA,O“KK,O T

Eq. (74) shows how the perturbation "splits"; it also illustrates
the interplay between U, , W¢, initial conditions and
nonlinearity, The latter is stabilizing in thesense that small

perturbations remain small,

The elliptic initial value problem is solved by analytic
continuation into the complex } - plane, The formulation for B
as given in Eq. (73) still holds, but to indicate explicitly
that JIAHKK < 0, we will introduce the barred variables
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% denoted by -{ 3 1/(-_{'ZAHKK)} and T = T . This leads to

~B¢B<i:€.) atB

P

o i ¢ SR ¢ T2zo (75)
B(i,T=0) = @(i) B-(1,T=0) = Y(i)

As suggested in Garabedian (1964), we introduce the complex
variable §= 1+ iy and assume that the functions ¢( ’i_)

—

and ¢(T) are analytical functions of {. We can then write
B(f-f) = B(f+iy,T), B(}],Tz0) = @I+ ) = .?1(71)

and B?( {,T=0) = w(fﬂ'?l) = ¢1()Z) where, for each value

)
? of T, B( {.'-f) satisfies
e T O (76)

Because Eq, (76) is formally hyperbolic, the solution

B(T ,f+(%7 ) can be determined in a stable manner from initial

| conditions, However, this is a solution for complax -5_. The
physical solution is obtained in the limit 7 = 0 after an
explicit formula for B( ;-, f) is obtained. Again, the D'Alembert

formula applies, giving

) z il 7+T
B(n%,7) = LAZAWE 4 (7 g ) (72)
7-T

Lam |
wl G B e — - e e gt
e . -
- N -
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where the semicolon above refers to the parametric dependence
on I (the physical solution implies the limit ?-=f). As a
simple example consider the situation where the initial
wavenumber variations are zero so that ¢&(7 ) = 0, Since

Eq. (76) is linear it suffices to consider a Fourier component
B(T =0, f) = & sin/f of the initial action disturbance, that
is, gﬂl(‘?Z) = «s8in g(.f*f?L). In this case, the physical

solution is

B(1,7) = fimt ZETANED o o sing cosh g7 (78)
n»o

The appearance of the coshgZ in addition to the growth rates
Ww; and U, already in Eq, (72) enable a simple definition for an
“effective w,",

In applying D'Alembert's formula and Garabedian's method
of imaginary characteristica certain conditions on smoothness and
analyticity, of course, are implicitly assumed. These are
in addition to those calling for slow variation, as indicated in
Eq, (2), Sufficiently non-smooth Cauchy data also possess real
solutions, but solutions to these problems are not likely to
be slowly varying, and hence, are not likely to be described by
the present theory.

oy A ——
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III. High-Order Effects.

-—._ The low-order formulation discussed in Section II

gives results which, strictly speaking, are invalid over
space/time scales greater than 0(84). They are, of course,
valid in the sense under which they were derived, but to deal
more accurately with large-scale effects, high-order modulations
as described in Eqs, (17) and (20) must be considered,

Lighthill (1965a), as an example, traced the progress of gravity
wave packets on deep water and showed how, on the basis of
low-order Whitham theory, cusp-like energy redistributions
within the packets would asymptotically result, However, the
inclusion of high-order dispersive terms (Yuen and Lake, 1975)
aétually suppresses the Lighthill singularity: the end result

is a train of solitons, Another situation where high-order
dispersive and diffusive corrections are likely to be important
is in the formation of so-called "kinematic shocks"., These are
essentially wave-mechanical discontinuities which, on the basis
of low-order theory, are assumed to conserve various fluxes,

for example, momentum or energy. Their probable existence was
first speculated upon by Whitham (1965), However, the true
nature and stability of these shocks, of course, cannot be
studied without considering the structure of the high-order terms,
It is entirely possible that sufficiently strong dispersive
effects in the high-order correction terms can suppress their

ever forming., On the other hand if the corrections are

e TR e
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essentially diffusive, as in gas-dynamic shocks, the low-order

results would be meaningful in the sense that the solution is

;ffoperly embedded” within the high-order one., More on this
will be said in Section IV,

For many applications in continuum physics the basic wave
solution is weakly nonlinear, and hence, expandable via Fourier
series in powers of amplitude squared, For these cases the
structural form of the high-order modulation terms depends
only on the primary harmonic, that is, the basic linear wave
solution, In this physical limit one can obtain a more
transparent but completely equivalent re-expression of
Egqs. (17) and (20), in which the corrections to low-order theory

R
depend only on the real and imaginary frequencies _fZ(K) and

.,!)}(K) corresponding to the uniform wave solution. To

facilitate the discussion, let us first consider purely linear
problems without flow inhomogenieties, so that Fourier super-
position is valid., The mathematical approach is a simple one.
Expansions about a center wavenumber K, and a real frequency AUB
for the modulations are introduced as, for example, in

Davey (1972), but unlike Davey the series solution is not
truncated to a finite number of terms, The full series solution
is then resummed in a type of analytic continuation to produce
solutions valid for all wavenumbers that are consistent with the
Lagrangian approach, The technique used is analogous to, for
example, identifying the series jii x?  with (l-x)'l, which

n=0
has a wider range of convergence, We now consider the linear
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superposition of monochromatic wave components exp i(Kx-wt),

each satisfying the complex dispersion relation

W= = nf+in' (79)

R {
Here K is a real wavenumber with JZ and 2 Dbeing respectively
the real and imaginary parts of _() (K). In the neighborhood of

the center wavenumber Ko' Taylor expansion gives the series

- -J
[ n :
JU‘;;,?Q"K(K,)<K-K,> v a3 [ﬂ‘/ﬂkl ~ 0(€¢) << 1 we can, as
in Lighthill (1965b), Fourier superpose elementary solutions

and arrive at the more general solution

& g i(Kx-wt)
Fopt) =< [_Boe™ " ak (80)

The function B(K) is proportional to the Fourier transform of
the initial condition and it exists when the initial disturbances
are localized, Without loss of generality let us re-express

Eq., (80) in the form

- i[Kx-0}e]
Fixt) * ¢(x,t) £ E (81)

- i[k-k)x ~(-05)¢ o
¢'[¢B<K)em i )Jdk | Gax (82)

- -

lm——v — A i , e e —
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so that F(x,t) consists of a purely periodic part and an
amplitude function ¢(x.t) that includes dissipative effects,
.This follows the approach introduced in Section II. Applying

» [k, )x-(w-28)¢ 7
the operator J_; e KD etf dK to the

Taylor-expanded dispersion relation (which holds for any
s B T
component wave) and noting that ( 9—% = [w (w-sz) G 4K

and (-() gx f (k-k ) G dK leads to the following
identity for tﬂ 5

(-c) P) (’

=/
Next, as in Eq. (2), we seek WKB solutions of the form

(6(X,E)

Y=a(XT)e (84)

~

where & 1is the perturbation phase function, that is,

é; =K-Ko = K (X,T7) and -Oj:= W-ﬂ’:: W (X,T). Now the multiple-
scaling introduced in Eq., (2) implies that, for any function
u(x,t) = U(6,x1),




60

u. (Xt) . K Une

S

+s

+E

-.Un ,)gx n(n nn-i) Kn—zK Un,)e]

~1)(N- -3 n-4 -7
+ 2R KRy Vvt

- -2
& TRt nin \)(" ) K Kxx-l)—(n-z)e

l. nin-n(n- z)(n-s)(n -4) n-5
3 K K Ho i

n(n-:)(n -2)(n-3)
. K U;n’s)o", X

n(n-l)(n -2)(n-3) K» +K

(ﬂ—3)6 XX
+53 ) 3 :
n(n-l)(h-z n-
? K U(n-s)s XXX
nn-1)(n-2)(N-3) "+
o )2* i KxxxU(n -3)§
n(n-N-2)(1-3)1-4) > n-5 ;
= P K Kx U(n-m,x
n(n-1)(n-2)(n-3)(n-4)(N-5) _-n-6 . 3 .
: A A A
i 48
+ .
+"U

nX

n-) o2 n(n-N(1-2) "3 oo
(n<2 K U;n-z)s,xx g ra K KXU;n-z)o,x

(85)




61

as can be readily shown by induction. Let us expand the

function ;ﬂ(é’.x,r) in Eq, (84) following Eq. (85) and sul'ostitute
\t-}ie results into Eq. (83), remembering that ﬂ,,,(,,"ﬂsg',*[ﬁ;go
satisfiec [_QL,‘K’. /ﬂ:"‘,[« 1. One sees that to obtain 0(£")
corrections to the linear phase relation only 0(t¢*) terms in

Eq. (85) need to be retained., But to obtain 0(¢*) corrections

to the low-order amplitude equation (modified to include the
effects of dissipation) we must retain the 0(¢3) terms in

Eq. (85). Equating real and imaginary parts in the equation

just obtained gives, respectively,

= nin-i) n-2
K" gy + 3 £ Eye]

aw = g Z -Q';)lx’o

n=

aK" i

R

s N
+ nK,o nn-1) on-2 n(n-l)("'Z) n-3 )
-Z. n "(; K aXX+ z K dex

- -)(n-2)(n-3) -4 12
£ +n(n|)('!a n K K-Xa' ?

L & n(n-;ég( n-2) Kn-stx 1
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el =0, 4 -eZ n""’[nK"' "‘"')K“K a] (87)

¢ n
oF Ly ak

SR o -2 n¢n-)(n-2) -n-3
uZl n! -a‘{ﬂ%")K_" (lxx*—’i")K dex

nin-1x(n-2)(n-3) -4 -)(W-2) > n-3
e s G ST RE ) ot ¢

E n(n- r)(n-zxn-a)(n -4) -n-5
K | 5% ¢

. n-s) -1)(n-2)
+n(nl)('7é’.)( ) K a +n(nn)m K d.

$S Dpeo nn-1)(n-2)(n~3)
+ ¥ -~
e”Zq - 7 e 4 <Axx

n(n-«)(n Z)(n_) Kn & K

XXX

nn-1(m-2)(n-3)(n-4) v n-5
+ nam) g ha

+ N=n(-2)(N-3)X(N-4)(n-5)

n-é6 -3
48 K de

The first equation describes the perturbation phase
corresponding to the slowly vﬁrying wavetrain and the second one
describes amplitude, However, since we expect our results to
extend to all wavenumbers, we sum the above series, This leads

to a phase relation of the form

—— s




63

_ L a (o ot R
Ww=AL" +elly -}" ""i‘KxﬂKK zszﬂxx T (88)

zx“xK 1 20k y2 _1 .2k

After some manipulation the amplitude equation, in X-T

variables, becomes

B, ket all A '
A H5xf 4 =2%Fa (89)
g+ Y i
- K L3k
3 aaxx 5 +gaxKX :
ttatpt Dag 12 M3k
4_a. K +S& KXX :

3 Allyyy Ny *3K y@yy D

2| *FAGK L S0, 5 @ Kpyy L2,
5 a’KXKXXﬂSK wdKe g, g
L e K)B('QZK

+E

J

¢ AR
Because J) /f) ~0(& ) all high-order corrections to the
bagsic low-order phase are o(e*), as would be expected for
weakly nonconservative waves that are truly slowly varying.

(This is also consistent with the approximate Fourier superposition
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used,) In the Lagrangian approach, the vanishing of 0(g& )

_terms would be attributable to the orthogonality of the

trigonometric functions, and identical results (Chin, 1976)

can be obtained by extending the method of Example 1 in the
manner of Yuen and Lake (1975), the latter of which will be later
discussed, Similarly, all high-order corrections to the
low-order amplitude equation with damping are 0(81). In general,
the indicated corrections involve coefficients that.depend only
on high-order wavenumber derivatives of Jlﬁ and _flt. which are
in turn defined by the planar monochromatié wave solution for a
particular problem.

The above results show how, in a simple way, the complex

dispersion relation of the monochromatic wave completely

determines the dynamics of the slowly varying one, as would be
expected from the physics of the problem. The high-order terms
in Eqs, (88) and (89) based on JQF(K) and its wavenumber
derivatives are, of course, directly related to the high-order
Lagrangian terms in Eqs. (17) and (20); those based on le
appear on account of the dissipation. functional F, But the
Fourier integral approach given here provides a much more
transparent indication of the structure of the high-order
dispersive and diffusive effects than does the equivalent
variational one; the results derived here are much simpler to
use and do not bear the limiting assumptions central to other

approaches employing centered wavenumber expansions, Let us

‘?,_-— - R L ———— B
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now consider the effect of weak nonlinearity. As previously

.discussed the high-order modulation terms for a weakly nonlinear

system are determined from the primary harmoniec, that is, they
are as given in Eqs. (88) and (89). Thus, nonlinear Stokes-type
corrections can be incorporated in the above results in a

simple "additive" manner. For simplicity let us first deal
with conservative problems., The low-order amplitude equation

is just

N TN
5t Ka =o (90)

R
where W =_J7,(K) is the linear dispersion relation., For

moderately small amplitudes a Stokes expansion implies that
P + f 3
W= 1K)+ 5k & (91)

and the wave conservation condition 2K/9t + 2 w/9x = 0 can

be expanded out to give

oK oK >
et {0+ f 0] 5 HH0 5 -0 (52
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The important coupling arises in fZ(K) aaz/kax 8ince it implies
an 0(a) correction in the characteristic velocities, The other
new term merely corrects the coefficient of the existing term
in 2K/ 90 x and contributes only at the 0(a%) level. Similarly,
the nonlinear corrections to Eq. (90) would be various terms

of O(au) providing relative corrections of O(az) to the
coefficients of the existing terms in Baz/ dx and 2K/ ox.
Thus, in the first assessment of nonlinear effects, we can
retain Eq. (90) and use the new dispersion relation as given

in Eq. (91), dropping the nonlinear correction to_ﬁli in

Eq. (92), This is, in essence, Whitham's (1967) approximation,
But since high-order modulation effects arising from linear
terms must eventually interact with the nonlinearity, wWhitham's
approximation should be modified to describe this effect.

As is clear from the above discussion, the leading high-order
currections will modify only the phase, Bearing in mind that
for near-linear problems the corrections are "additive" in the
sense previously discussed we have, on assuming that wavenumber
variations are less rapid than those in amplitude (or, if

R R
—{LBK ,JQ4K y s«es can be neglected) the following approximation

R Rxx
w=128K) + hrat -3 e 7%(‘“ (93)

wn@yh must be solved together with Eq, (90), These equations,

again, hold only for homogeneous, conservative media,
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To understand the qualitative nature of the above
approximation, let us re-expand Eqs. (90) and (93) about
R= K° , say, consistently with our assumption of slow wavenumber
variations, Again considering the conservative case we have,

R
With CO - ﬂK.O 9

@%), + CCaly B8, =o (9%)

nk

K,0 dxx

w-w, = C,(K-K,) *%ﬂiK,o(K-K.)z +£(K)a* -3 (95)

Using the notation ¢9= aeia , these equations combine to give

G+ * 7 e Yox =K 1YY (96)

This "nonlinear Schroedinger equation" has been derived in a
number of contexts by various authors using different techniques,
But our discussion shows that it is really nothing more than a
specialized form of Egs. (17) and (20)., This, in fact, will
be clearly illustrated in Example 7,

Now in "self-focusing" problems, Zakharov and Shabat (1972)
have shown that for initial conditions which approach zero
sufficiently rapidly as |x|—e (corresponding to "pulses"),

Eq. (96) can be solved exactly by the inverse scattering
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technique, They discovered that an initial wave envelope

pulse of arbitrary shape will eventually disintegrate into a
‘humber of solitons and an unsteady oscillatory "tail" interpreted
as noise, The number and structure of these solitons and the
structure of the tail are completely determined by the initial
conditions, But the tail is relatively small and unimportant
for pulse-type initial conditions; it disperses linearly,
resulting in a t'i amplitude decay. Each of the resulting
solitons is a permanent progreséive wave characterized by

(four) parameters in amplitude, speed, position and phase, but
unlike the solitary wave solutions of the KdV equation for
shallow water, the amplitude and speed parameters bear no

direct relation to each other except that they are the imaginary
and real parts of an associated scattering problem, It is
important, though, that these solitons are stable in the sense
that they can survive interactions with each other without
permanent change, except a possible shift in (the parameters
for) position and phase, The time scale for the soliton
formation was found to be in direct proportion to the length of
the pulse and in inverse proportion to the amplitude of the pulse,
The above result shows that the end product of unstable
"elliptic” modulations, unlike Lighthill's (1965a) low-order
cusp solution, is a train of solitons. The exact behaviour
depends on the relative magnitudes of JQRKK,O and fz(Ko). -ut

the same qualitative features can be expected for unstable
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gravity and capillary waves, or for that matter, all waves
that are "elliptically unstable" in Whitham's (1967) sense., To
show that the approximation underlying Eqs. (90) and (93), in
fact, can be obtained by Lagrangian techniques, it suffices for

our purposes to present one illustration,

Example 7. Gravity Waves in Deep Water,

We quote the example considered by Yuen and Lake (1975),
who chose for the basic Ansatz (corresponding to Eq. (21)) the

wave solution, correct to 0( € ,Ka),

7] = A(ex,et) Cos 6 +Z-’Ka7'Cos 20 ¥, (97)

K a wd K
7= Fe Tsing +[ gtcoso * ;%(!-Ky)cvw]c" +iud'e Vsin26+..  (98)
The lagrangian density is just the pressure, that is,
- f”' Lieab sea® ]
L=) la+icg+g® *59] 4 (99)

where % (x,t) is the free-surface position, y is the modal
coordinate, ¢ (x,y,t) is the velocity potential, g is the
acceleration due to gravity, with the fluid density being unity.

Then, the average Lagrangian, correct to Of a",Kzaz). is




70
t T £
f=- wa*, gat % . Witely , WA, Ay
+K 4+ 4K +K* 4 2K (100)
4 3B WAAxt , 3 wradxx ﬂklﬂ4
- 4 K* 8 K3 8

and we may note that, in this approximation, space-time
derivatives of frequency and wavenumber do not appear, After

some algebra, they found that & variations ga:e

T W e S
7% TaxG% "0 C.

v
J'ZI('/%) ’ A (101)

while "a" variations gave, on simplifying, the phase relation
: [ + AT, + a-xx
w=.ng | +2Ka” + g ] (102)

Now this is precisely the approximation deduced in
Eqs., (90) and (93). To see this, simply note that the Stokes
solution gives fz(K) = 4 gé KS/Z while ‘/LKKK = -2 g} K'3/2
from the linear part of tha dispersion relation., The above
results were also derived by Chu and Mei (1970) using multiple-
scaling methods directly from the governing equations, All
these results, of course, are really special cases of
Eqs, (88) and (89) modified for weak nonlinearity, which do not

bear the limitations imposed by "centered wavenumber” expansions,
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o This is especially important‘for, in analyses of the latter
kind, one implicitly assumes (in some nondimensional sense) that
.amplitude variations dominate those in wavenumber - otherwise
the exparsions are meaningless., In another sense, the
generalized modulation equations derived are useful because
it is not even clear that a "centered wavenumber" stays
constant on the scale over which the high-order modulation
terms become important. It is crucial to note the equivalence
between Eqs. (20) and (17?) and Eqs. (88) and (89). They
remain applicable for large values of Kx(X.T).

To the above results for conservative and homogeneous
media we now add the effects of dissipation. The same line of
reasoning that led to Eq. (93) in the nondissipative case now
requires that we retain in Eq. (88) the ejli g;i term, which
balances the dispersion term, both ?eing 0(£*). At the same
tine the low-order damping term Z-—%‘a" in Eq. (89), first
suggested in Landahl (1972), must be kept (see Example 1),

The first of these corrections seems to have appeared in a
number of studies in hydromagnetic waves, according to

Malkus (1976), though in a less general form, In the next
approximation, high-order corrections to the "simply-damped"
amplitude equation involve the diffusion terms -e"'%‘ffddxx,
etc,, and the dispersion terms %ﬁtﬂgxa aXXX , ete,, in Eq. (89),
and the remaining terms in Eq. (88). The etc.'s here generally
refer to terms involving higher differentiations of IZR and.fzz

with respect to wavenumber and the appearance of the terms
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K K and K

X ' Mxx XXX (which would have been omitted in the centered

. wavenumber approach), Thus the appearance of these terms

depends, in a sense, on "how dispersive" or "how dissipative"
the original uniform wavetrain is., For example, the vanishing
°fJ1§K would leave only diffusive corrections to Eq. (89); the
phase relation, though, would still bear the effects of
high-order dispersion, In this kind of limit, the most obvious
effect of diffusion would appear to be a gradual decay of the
golitons as are produced in the Zakharov and Shabat (1972)
solution, No general conclusions are available, at this point,
for Eqs, (88) and (89) with (or without) their nonlinear

corrections, Some future studies are planned, however, to test

the separate effects of strong dispersion and strong diffusion

for §arious kinds of waves, However some speculation is possible
on what types of ;strange" behaviour migﬁt be expected, For
example the "diffusion coefficient” -EJZ;K in Eq., (89) in the
case of deep-water surface waves is just the kinematic
viscosity (Lamb, 1932) which is positive, as expected. This
positivity is also apparent from existing numerical studies in
boundary layer and vortex instability; to the author's
knowledge, the plot of JQf(K) against K has always appeared
concave down, A surprising result, however, is found in warm
electron plasma waves, Classically the waves are Landau-damped,
that is, .fli(K) < 0, so that according to the low-order form

of Eq. (89), the waves always decay. However, direct calculation
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¢
of -_flKK shows that there exists a range of wavenumbers
bearing negative diffusion. Thus, on a large time scale, there

.ﬁay occur a transfer of energy back into certain of the formerly

4

KK
is of fundamental importance, especially from the viewpoint of

decayed waves, The possibility of sign variations in - _p7

developing deterministic wave models of turbulent shear
flow (Chin, 1976); it allows, for example, energy transfer by
classical cascading and by reverse-cascading.

We also mention, in context, the "nonlinear instability
burst” found by Stewartson and Stuart (1971), who studied the
stability of wave systems in plane Poiseuille flow, They
considered an infinitesimal centered disturbance imposed on a
fully developed plane Poiseuille flow at a Reynolds number R
slightly greater than the critical value Rc for instability,

The disturbance was assumed as a wave modulated in space and
time, whouse amplitude "a" satisfied a nonlinear parabolic
equation, For finite values of (R-Rc)t. Hocking, Stewartson
and Stuart (1972) showed that the amplitude develops an infinite
peak at the center of the wave group. This result also appears
ar a special limit of the present theory, although the number
of assumptions required seems somewhat restrictive. 1In
Stewartson's approach, center wavenumber expansions for K = Ko
are taken about a point of "maximum growth", that is,

.JZQ(KO) = 0, If we further assume that the waves are weakly
dispersive (ﬂxm{(l{o) ¥ 0) the phase relation becomes W T ﬂR(K)

and the amplitude equation reduces to
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‘

WA, ), 2 (K,) (2 Sl (k) 22
3T+ﬂK(K-)3X g daes yclteg; 1. "§ oX*2 (103)

Stewartson then determined the coefficients of "a" and its
derivatives on the basis of linear stability theory and added
0(&3) nonlinear corrections to the growth rate ./f(K) by
expanding the production term in powers of amplitude., This 1led
to a nonlinear parabolic equation, whose solution was obtained
by matching to the stationary phase solution of linear

theory (assuming zero disturbances far from the wave center),
The present author's own view is that Stewartson's theory

(as generalized here) is overly restrictive in the sense that
the kinematic coupling between wavenumber and wave amplitude is
not considered, This may be correct in the initial stage, but
it is certainly not so in the latter stages during which the
amplitude singularity appears, We mention in passing that the
structure of Landahl's (1972) focus (based on the effects of
ray focusing due to inhomogenieties using Whitham's equations
modified for dissipation) was also obtained in Chin (1976).
Matched asymptotic expansions were used to connect the "inner"
focal structure (based on a modified form of Eq. (89) allowing
for inhomogeniety) where diffusive effects would be important
to an "outer” solution based on Whitham's equations modified

to account for nonconservative effects., The waves were assumed

(1) to be only weakly dispersive, (2) to have - /2°  approximately

KK
constant, and (3) to satisfy (dA/A)/(dK/K)> 1 near the focus.

i e IR RSO 5 s —— : R — b
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As was expected, the effect of diffusion was a smoothing of

- the amplitude peak. The thickness of the region over which
diffusive effects are likely to be importnat was found to

be of 0(E¢3) in unscaled x-space., This thickness decreases
with decreasing viscosity €, as would be expected on physical
grounds., In contrast, Stewartson's "nonlinear instability

1%

which increases with decreasing viscosity. The details of the

burst" for channel flows occupies a length of 0(11@2

above study will be presented in a separate paper,
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IV, Discontinuous Solutions.

-—._ Perhaps the most fascinating area of nonlinear wave
mechanics is the study of shocks and their formation. The
possible existence of these wave mechanical discontinuities

was first suggested by Whitham (1965) and a good discussion

on the subject appears in Chapter 15 of Whitham (1974),

However there is little experimental evidence as to their actual
existence, The observability of the shocks suggested by
whitham's low-order theory may, in practice, be somewhat
obscured by the effect of high-order dispersive and diffusive
terms as were previously derived in Section III and the effects
of low-order inhomogeniety, which are certain to affect their
gtability, The first type of shock considered by Whitham deals
with'the question of "breaking" and arises when the low-order
modulation equations are hyperbolic. The dependence of the
characteristic velocities on the modulation variables introduces
the usual hyperbolic distortion, and "compressive" modulations
in a simple wave solution will develop multivalued regions,

It is possible, Whitham notes, that these solutions actually
represent superpositions of two or more wavetrains with different
ranges of K and "a”, The solutions, though, would not be
correctly described by Eq. (2); some type of multiphase
generalization would be needed, Whitham compares this situation
to that in linear theory where the group velncity Cg(K) decreases

toward the front, Then, since values of K propagate with




77

velocity Cg(K). some kind of overlapping would occur., In the
_}inear case the complete process is described by Fourier
iﬁtegrals; presumably, in the nonlinear case, some type of
nonlinear superposition would hold., There does, however,

exist the possibility that higher order terms become important
near breaking and prevent the development of multivalued
solutions, This is certainly the case if the only 0(g*)
corrections kept are the dispersive ones, that is, those
dependent on JCf(K) as shown in Eqs, (88) and (89). The
resulting equations then become similar in form to the Boussinesq
and Korteweg-deVries equations, and by analogy, breaking would

be suppressed, This behaviour would most likely apply to

small symmetric modulations, as noted by Whitham (1974), and
eventual development into series of solitary waves would occur,
as would be suggested by the solution of Zakharov and Shabat (1972).
On the other hand, strong unsymmetrical modulations may break

in some sense, If the high-order diffusion terms indicated in
Eqs. (88) and (89) are more dominant than the dispersive ones,
the resulting amplitude equation resembles a modified Burgers'
equation, In the narrow "breaking region" where diffusion
balances inertial effects, the "-_{szaxx" term can be expected
to produce a continuous shock structure, It is interesting to
note that relative effects between high-order diffusion and
dispersion will in general be different for different wavenumbers,

Thus, the situation will be much more complicated than the
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analogous case of gasdynamic shocks, There is still another

. important difference. Provided - f);x is nonzero, it is

always possible to define a diffusion coefficient — even for
a perfectly inviscid system. For surface waves on deep water
there is no difficulty; the diffusion coefficient so defined

is just the kinematic viscosity. But for waves on inviscid
shear flows, wave diffusion will be present in general, It is
even possible for this diffusion to be negative in a certain
range of wavenumbers (as was the case for waves on warm electron
plasmas)., Then the gasdynamic analogy calling for a smooth
shock structure would not hold, It is not clear, though, what
would happen; but the high-order equations derived in Section III
(suitably modified for nonlinearity) can, in principle, be
considered numerically as initial value problems,

The second class of shocks posed by Whitham arises in the

search for weak solutions to the modulation equations, For

problems in which a mean background state does not enter

(e.g.y gravity waves in deep water), the only dependent variables
are those for the wavenumber K and the wave amplitude "a",

The values of "a" and K upstream and downstream of the discontinuity
would be connected by postulated jump conditions, for example,

those conserving energy flux, momentum flux, frequency, etc.

The actual choice of jump conditions is open to question,

however, One can argue that energy and momentum are conserved in

the detailed description for the variable u (see Eqs, (1) and
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(2)) and should therefore be retained in the slowly varying
~approximation, These shocks would therefore represent a source
éf oscillations and involve jumps in the adiabatic invariants,
“If, on the other hand," quoting Whitham (1974), "the
discontinuities are supposed to represent phenomena not
covered by the original equation, but covered by some even
more detailed description invelving dissipation of some kind,
then the choice would be different, Although momentum would
probabiy be conserved, energy presumably would not.," Action
flux is not likely to be conserved, "but one could make a case
for frequency. With dissipation smooth oscillatory changes
between different constant states may be constructed in
dispersive models.” The constant end states referred to above
Awould be the result of dissipation dampening out the oscillgtions
on the two gides of the transition region, The qualitative
effects of diffusion were considered in Whitham (1974, p. 482)
using a simple model, There he added a Burgers type term to
the KdV equation to produce a simple model for the structure of
bores, The actual terms, of course, are given in Egs, (88)

and (89) if the system is weakly nonlinear. The dissipation
term is really -'(2£KK a,, » suggesting that the unsteady
formation and resulting shock structure (not attempted here)

is much more complex that Whitham's model would suggest,
although his results are qualitatively correct, The actual
results, of course, would be highly wavenumber dependent, The

existence of the above shocks, at this point, is speculative,
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But they would correspond to the low-order weak solutions

~of the full equations (in the appropriate conservation

f&rm) with the dissipation functional F set identically to ze:
at the outset, The high-order terms in Egqs. (88) and (89)

do provide the answers as to the structure of the transition
region if the above shocks indeed exist, They also lay the

groundwork for a first-cut phase plane analysis.
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A strong reason, perhaps, for studying discontinuous
solutions of the above kind is suggested by an analogy with
. gasdynamics, Consider the propagation of one-dimensional
unsteady disturbances in a transonic decelerating channel flow,
It is possible to trace the evolution of expansion and compression
pulses originating downstream of a linearly decelerating sonic
region by examining the equations for one-dimensional unsteady
isentropic flow, Kantrowitz (1947) was first to show that such
disturbances are deformed as they propagate upstream, and that
the disturbances tended to collect in the sonic region, The
deformation of the pulse shape actually causes weak shock waves
to form, either at the head front or the rear of the pulse;
expansion pulses, which terminate in shock waves at their rear,
‘are subsegquently "consumed" by their own shock waves, while
compfession pulses, which have shock fronts, grow in strength
ags their shock fronts progress into the supersonic region.
Ultimately, in a real channel, they would destroy thg supersonic
flow, converting it into subsonic flow, This simple éxample
suggests the existence of flows which cannot support arbitrary
infinitesimal perturbations, but which must break down locally
into finite amplitude initially small-scale oscillations,
Instabilities of the above kind are "catastrophic" in nature,
but they are not restricted to transonic flows, One can
speculate that similar highly unsteady, nonlinear physical
mechanisms might be responsible for other “strong”
fluid-dynamical instabilities, for example, as in hydraulic

jump formation, vortex breakdown, and perhaps the sudden

R at” o
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transitions observed in boundary layer instability, The

transonic analogy leads us to envision an initially (essentially

-linear) phase during which selected self-excited secondary

waves focus on a larger scale inhomogeneous primary wavetrain,
Subsequent trapping and continued wave growth in the absence

of dissipative effects would then precipitate a rapid, almost
discontinuous, and certainly a strongly nonlinear readjustment
of the mean flow in order to satisfy certain global constraints
(for example, conservation of total mass, momentum or energy).
This type of breakdown should be a distinct possibility for any
inhomogeneous continuum system which can support propagating
waves of scale small relative to the scale of the inhomogeneities
The "initial whase" (as described above) is amenable to general
linear analysis using recently developed ideas in kinematic

wave theory, and first results pursued along these lines have
been given by Landahl (1972). (Kinematic wave theory is
developed using phase averages, but identical results can be
derived using equivalent averages over phase shift; in this case
the averaging is one over a random superposition of linear

waves and is, perhaps, more relevant to the physical situation),
In his linear analysis, Landahl used the modified action equation
accounting for weakly nonconservative effects, as given in '
Eq, (34). The actual kinematics are therefore describable (to
this order) by the "real" dispersion relation ,(2(2 ﬂ_(R()K. £X; gt),
and the equation for wave conservation can then, within the

context of linear theory, be used to predict when space/%ime

singularities in the wave trajectories can be expected to occur.




83

In fact, some manipulation shows that (Landahl, 1972) focusing

occurs whenever

(R) (R) H(R) (R) A (R)
_{2(K) ¥ _{2K% 4LﬂZK~fzxx ‘JQ;H<J2,x
£ "G ® 2K - O
—Qxx KK oX

is satisfied, where C, is the critical velocity -(aﬂik)/ﬁ>/(af2(z}/9)(),
In the steady case, the critical condition reduces to the

approach toward a zero in the linear group velocity (Landahl's

linear theory does not account for the nonlinear response of

the supporting medium), This condition in itself implies

increased wave amplitudes on account of “wave tube" convergence,

If this slowing down is additionally accompanied by trapping,

gself-excited waves (as determined from a local application of

-cbnventional normal mode theory) would then surely amplify

forever, at least on the basis of linear theory (details are
given in Landahl, 1972). One would then surmise that the sudden
onset of this kind of strong instability would precipitate a
highly nonlinear, unsteady readjustment of the mean flow, in

much the same way that wave trapping and amplification in
transonic nozzles lead to shock formation and choking. Of course,
Landahl's analysis is a linear one and therefore does not account
for the nonlinear response of the mean flow, But the physics of
the present study is in the same spirit of Kantrowitz's classic
analysis, in which the small-perturbation isentropic equations

are used to describe the onset of the instability mechanism,

5k Whe SRR
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only because the general unsteady, nonlinear problem is
intractable, Then, as in Kantrowitz (1947), if the model in
fact describes the true hypothesized instability process, one
can therefore proceed to study the properties of the shocks

that are formed in the latter stages, (0f course, one can study
shocks for their own sake, but it is often helpful to envision
some physical generating mechanism, Some of the ideas proposed
here might be tested by numerical integration of the complete
system of unsteady, nonlinear, high-order modulation equations
subject to appropriate initial conditions, Extreme care in the
analysis must be taken, however, since the results depend
sensitively on the delicate balance between high-order wave
dispersion and diffusion, not to mention the artificial dispersive
and diffusive effects of truncation errors,)

The idea of a hypothetical instability mechanism possibly
leading to a final configuration with discontinuous end states
is not new, and some inferences can at least be drawn from
hydraulic jump formation and, in vortex breakdown, they are at
least suggested by the "finite transition" or "conjugate flow"
theories of Benjamin (/762.). This latter analysis was first
to demonstrate the possibility of an infinitesimal transition

from a supercritical state which cannot support standing waves,
to a subceritical state which can (but the theory does not offer
an explanation as to the origin of the discontinuity); the

theory essentially postulates in an ad hoc manner the physical

necessity for the existence of waves on the subcritical side, so

J’
|

——
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as to maintain the continuity of total momentu& flux, We cah
improve on Benjamin's theory by considering final end states
that are essentially inviscid and essentially "organized" in the
sense that a wave description is still applicable; the end

state of the "downstream" portion would consist of a highly
enhanced wave riding on a mean flow of reduced energy, formed
from an "upstream" portion whose wave is initially infinitesimal
in amplitude and which rides on a more energetic mean flow, We
can modify Benjamin's conjugate flow approach (which, in effect,
considers only the mean flow in developing the discontinuous
solutions) by connecting the end states through the introduction
of two more free parameters, a wavenumber K and a wave energy
density E of a superimposed wave system (however small), in
addition to the man velocity and the mean cross-~-sectional
distance, In the context of hydrauiic jumps (which are here
treated for simplicity), the proposed model would connect

E, K, the mean height h and the mean speed U by conserving across
the discontinuity total energy, total momentum, total mass and
waves (i.e,, we fix the frequency, for a total of four jump
conditions)., This model thus augments Benjamin's by
gsystematically accounting for the presence of a wave however
small, and through the nonlinear coupling, establishes whether
or not conjugate solutions do, in fact, exist for all parameter.
ranges, Let G be the depth~independent "mass transport
velocity”, as given in Phillips (1969), which already accounts

for the mass flow induced by the wave, For simplicity, we
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examine the shallow water case, so that the wavenumber K does
not explicitly appear in the conservation laws for total mass,
momenfum or energy. The results we are to derive, of course,

are valid in quasi-steady problems in which the local coordinates
move with the shock, 1In these steady coordinates, the governing
equations for total mass, momentum and energy integrate to, for

a flat bpottom,

phu = m

//,u7—+z’ﬂ7/,z+§g = P
Lehid +pgub® + [k E +2Eu = G

P4 ~
where m, P and Q are the prescribed (total) mass, momentum

and energy fluxes, /9 is the fluid density, h is the mean
A

depth and u is the relative velocity U-Ug (Us being the shock

speed), Let us introduce the nondimensional variables

W(GE)" = Wh, Z=u/(5)" -

1y \ /.
£/ ) i e/e

—

h

i\

so that the above conservation laws become, respectively,

hu =/ (104)




hut+ 4" +E = e =F >0 (105)
: 3 Y YL .-____.ZN -
Aﬂ '/‘4&/) 'f'j'fz-/l E+3fu —f//ouo3 *Q =0 (106)

If E = 0 (bars have been dropped for convenience) and Eq, (106)

is deleted, one obtains the classical hydraulic jump formulation
in which mean flow mass and momentum fluxes are fixed

(Lamb, 1932)., However, let us eliminate u from Egq, (105)

using Eq. (104) to produce an equation for E (in terms of h

and P) which, in turn, is used in Eq. (106) to give an equation

for h., Setting H = hﬁ , 2 ninth order equation is obtained as

: |
H -frH°-PH*+30aH 4 -2aPH* +37 =0 o

where P, Q and H are positive and all roots obtained must be
such that E 2 0 to qualify as physically realistic conjugate
solutions, A rough idea for the type of jumps typical of
Eqs., (104-106) is obtained by comparison with the results of
the classical formulation., We denote by "1" and "2" the

upstream and downstream states respectively, and require

h, > h; in the usual way, For the case P = 2,12 (corresponding
to a Froude number of 3é ) we have hz/hl s 2, hl = 0.55 and |
h, = 1,10, The mean flow energy flux (in the classical case)

« Nl iy Sk
-
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Q, = hu3-+ l+uh2 = 4bh+h-? is 5.50 upstream and 5,23 downstream,
the deficit ratio being 5.23/5.50 = 95,0%., The wave theory we
propose gives similar results, but here the loss in mean flow
energy is made up for by the presence of radiating waves, For
comparison's sake, set P = 2,12 and Q = 5.50, The conjugate
depths are now obtained as hl =10,55 and h2 = 1,03, and
calculations show E, = 0.0 while E, = 0,084, 1In other words, the
waves are practically nonexistent on Side "1", but on Side "2"
they acquire a sudden visibility. The ratio of downstream to
upstream mean energy flux is 92.1% (as opposed to 95.0% before),
and the rest goes into waves, The phase velocity can be shown
to decrease across the jump so that, since the frequency is
fixed, the wavenumber increases, The sudden visibility of the
wave is enhanced by both increased wave amplitude and wavenumber;
the classical mean flow results as described in Lamb (1932)
are, in fact, qualitatively reproducible by the above wave
model without special appeal to turbulent dissipation.,

More general results are obtained by examining positive E
solutions of Eq, (107). There is a simple way to construct the
entire family of solutions, and this is seen by rewriting

Eq, (107) in the form

I LR e
P o Hs"‘%ﬁﬁz H5+2_ﬁ—//‘ | (108)
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straight line in the P-Q plane. The intersection of two lines
(or more) at a point (P,,Q,) shows that there exists two (or
mgfe) conjugate values of H at that point, This interpretation
requires us only to study the slope and P-intercept functions
of Eq, (108); not every point on a straight line in the P-Q
plane is physically significant, though, since it is necessary
for the corresponding wave energy to be positive, The simplest

eriterion for this is found from Eq. (105), that is,

P
E=P-#-;, 20

Thus, for E 20, it is necessary that P > P* = H* + H=2, A
useful presentation of some results is shown in Figure 1,
Variogs sets of Hl'Hz are considered such that hz/'hl 2 2,25,
‘so that we in fact assume (Hl’HZ) to be a conjugate pair,
Then, each H determines a straight line in the P-Q plane, with
the intersection point Po'Qo determined from the solution of
two simultaneous linear equations derived from Eq. (108),
Repeating the process for various h's generates different
golutions, as shown in Figure 1 (different values of h2/'hl were
also considered, and the same qualitative results were
obtained), The results show that every point along the solid
portion of the line determines two conjugate solutions; the
jump in h from h, to h2 is always accompanied by an increase in
the wave energy density and a decrease in the mean flow energy

flux Q, previously defined, again agreeing qualitatively with
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" classical theory, but without appeal to turbulent dissipation.
Each point along the solid curve here possesses two roots H

with positive E's, while the dashed portion indicates the
existence of one negative root; in this latter case the solution
is unique and conjugate solutions are not possible, It follows
that conjugate solutions, at least in the case of shallow

water gravity waves, are possible only for sufficiently large
P's or Q's.

A second kind of discontinuous solution is typified by the
flow of gravity waves over infinitely deep constant speed
currents, Because the current in this overly simplified model
does not vary with depth, jumps in the mean speed U, must be
disallowed, for they would otherwise imply infinite changes in

‘mean énergy. The wave in this sense decouples froﬁ the mean

flow and the only discontinuities that form are those in the

wave parameters themselves (jumps in Un for y-dependent mean
flows can conceivably be analyzed in terms of jumps in G as

given in Eq., (51), but it is unclear as to whether the corresponding
shape function remains invariant across the discontinuity). By
varying the parameter U, 2 family of related conjugate solutions
can be obtained and these solutions will form the present focus
of attention. It will be helpful here to envision surface or
.plasma waves in steady flow and, for reasons previously indicated,
discontinuities across which frequency ( MQ )‘and momentum

flux (v, ) are fixed (the modifications needed to consider wave
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breaking are not considered here). Some analysis shows (this
will be verified later) that when the (real) frequency is

expanded in the wave action density A, that is,
UK + F(K) *AG(K) = w,

the corresponding expression for momentum flux becomes

U.KA +AKF, +7AY(6*KG,) = m,
Solutions can be readily obtained by eliminating Um between
these two equations, tabulating A as the wavenumber K is varied,
then solving for Uu from either of the above equations, and

finally solving for the momentum velocity C,. . defined by

G B2E 234 )

The resulting equations are valid for both waves advancing and
receding with respect to the mean flow, of course, provided
appropriate sign changes in F(K) and G(X) are made, Only real
solutions of A with A 7> 0 are admissible, and hence, multivalued
solutions may or may not exist for all values of the parameter

U For illustrative purposes let us consider two weakly

-0
nonlinear irrotational examples, first gravity waves and second,
capillary waves, In the case of gravity waves, the appropriate
dispersion functions F = giKi and G = K> where, again, g is the

acceleration due to gravity. The barred nondimensional variables
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are introduced, and we shall assume without loss of generality,
that u/o > 0 throughout. Figure 2 shows the complete family of
p,C 2 0 "positive moving" waves consisting of both waves
advancing and receding with respect to the mean flow, while
Figure 3 shows the complete solution for "negative moving"
waves with p,a £ 0, For instance, from Figure 2, only one

wave solution exists when U<< -1 but three solutions exist for
v » 0, say, corresponding to a given flux p., PFigure 3 shows how
for positive'ﬁ. two wave solutions can be found for a given
negative flux p < 0 (corresponding to a "strong" high-amplitude
and a "weak" low-amplitude solution across which energy flux
decreases), but solutions for sufficiently negative U's cannot
be found (this may point to the importance of unsteady effects),
The *“singular point" occurring at T T -1 approximately
corresponds to the position determined from linear theory as
that producing a zero in the linear group velocity. For
capillary waves (where F = ’I’,)%'K3/2 and G = -K3/B) the (barred)

nondimensional variables

TARNS 4 Y . " o A
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with surface tension To and nondimensional momentum flux
s = m /T  can be defined. Let us here assume aé <0
throughout, For various specified values of positive s, the
complete solutions (consisting of both waves advancing and
receding with respect to U ) are plotted in Figure 4; negativs
moving solutions with s < 0 are shown in Figure 5, Fronm
Figure 4 for positive moving waves, multivalued solutions
corresponding to various fixed values of s exist for sufficiently
negative U's, but for positive U's the solutions are single-
valued; similar considerations hold for negative moving waves,
as is evident from Figure 5. Again, the U position about which
the multi-valued/single-valued character of the problem pivots
is determined approximately by the value of U for which the
linear group velocity is zero. On Figures 2-5 the nondimensional
wavenumber distributions are also shown, .

In practice the jumps discussed above are formed on
currents that vary slowly in space and time, and it is
important here to note that the above results are applicable
as well in quasi-stationary coordinates moving with the shock,
One questiop of fundamental importance concerns ?he observability
of the hypothesized shocks, and this can be answered in part by
examining their stability with respect to self-induced
disturbances, In the simple analysis that follows, high-order
modulation terms (that in reality allow or disallow the shock
formation) will be ignored; we in effect assume the existance of
a shock and study its stability as would be affected by low-orde:

inhomogeneities in the medium, Two types of shocks can be
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general treatment, and they have already been introduced
in the above analyses, Type A shocks, like those just treated,
_conserve wave momentum and waves, while the wave energy flux
décreases across the discontinuity, The mean flow here enters
only parametrically and it formally uncouples from the wave
syatem, Type B shocks are defined as those in which the mean
flow responds dynamically to changes in the wave parameters,
for example, as in the generalized hydraulic jumps considered
previously for water of finite depth; these by definition invoke
the constancy of total mass, total momentum, total energy and
frequency. )

We shall consider first Type A shocks., It is convenient
to assume a perturbation Lagrangian éflin the form Jngfl-H(K.A)
as viewed from a coordinate system moving with the mean flow
'Um ¢ henceforth all subscript m's will be deleted, (Previously
we assumed an expanded H function written in powers of A, with
H = AF(K) + }AZG(K). The frequency following the flow U was
thus determined from 2&}- 0as ()= F+ AG, implying a
ground-fixed frequency of the form W = UK+ P+ AG. ‘The
corresponding momentum flux was determined from UKA*'ZS’ -KJZ;.)
To begin the analysis, we note that an unsteady shock with
speed Us = U.(T) satisfies the conditions for frequency and

momentum flux continuity in the following respective forms

(U-UDK *+H (K, A) = (U)K, +H,(K;,Ay) (109)

(U-U;) A,K, +A;HA(K/,I41> +K, HK(KI,A,)'H(K”A.) i T (110)
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where the "1" and "2" subscripts refer to upstream and

. downstream portions of the discontinuous solution. Let us
c&nsider the basic problem in which a stationary shock is
displaced a small amount i. A, K and U can thus be expanded
by Taylor series about the steady solution corresponding

to {- 0, noting that the shock speed US(T) f f(T) is a
quantity of 0( i ). For example, the suggested expansions give
AT A,+AL] and for eny function S(A), S(A) ¥ S(A)+s, (A )Ag 1.

To 0(1) we have the following frequency and momentum flux jump

conditions
U;,oK,’o +HA"° = Uz,oKl,O +HA,, , ‘ (111)
.,oﬂ.,.K,,, s, +Kl.H 'H,, ,,,A,’,K,, A H K,,H e H (112)

the weakly nonlinear forms of which were used in the previous
two examples, "o" subscripts here indicating the basic mean

state, The 0O( {) equations lead to the equations

¢ (U%: Kz’. 5 U;':‘ ‘:' = HM 2,0 A;s‘ i HAK:,O K‘:" )
2 . (S CU;,: Kn,o +v;,o Kn:o s HM,’, A|:. b2 HAK.,. Ku,: )

KO’KI,O : !

(113)

and

g3 ot
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P’ { [fZ,O AZ,O 1:0 2 U;,O AI:O Kl’o . (fl,: Az,p Kl,o +A1,p Hﬁl’,. A;’.
* AZ,O HAK,’. Kt,lo + Kl,a HKAI,,AZ:o - Kz,o HKK;,. Kl’ol

~ {U;'A’,’ ’;: +, U';’A':’K'," 2 U;.:AI,OKI,; +/4/,o H/M,,. A/’,, } (11%)
*A p HAKI,-K’)I' +K’" Hm/,: A /yl' " Kl,o Hkx,, . kl,o,

Al)’ (2:’ 2 A':" k’}’

ok
;

where primes denote i derivatives. As in Kantrowitz (1947), a
number of growth rates exist, each of which corresponds to
various permissible values c¢f the shock speed Us. and are to

be separately investigated, Equations (113) and (114) can be
simplified by invoking wave and action conservation on either
.gide of the discontinuity (but not across it). ‘On this basis
one finds that each of the bracketed quantities in Eq. (113)
separately vanishes, implying a neutrally stable sh9ck solution,
The second solution, obtained from Eq. (114), is remarkably
simple:

? i = ‘Asz,o Uz:g . Al,o Kl,o U;,: i (llj)
Now the mean speed U(X,T) in the pfescnt quél is prescribed,

and to fulfill the slowly varying assumption, the derivative
(with respect to X in a steady coordinate

U0

0'2.0 ;. Ui.O

IR s Yt
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system) must be continuous. Thus, Eq., (115) reduces to

i= -Uz 0) { ., exactly the same condition for shock stability

.in transonic nozzles! A shock is therefore stable or unstable

accordingly as U'(°)> 0 or U.(O) < 0, this simple criterion

showing how the shock stability is wave amplitude and wavenumber
independent, Resul%:s for Ué.o 7= Ui,o can also be discussed, of
course, but this would appear to be of limited usefulness

since the slowly varying assumption would require continuity

of second derivatives of U as well, In a uniform medium, the
shocks considered here would be neutrally stable,

Type B shocks (which allow for the dynamic response of the
mean parameters) can be treated by considering in addition to
(A,W ,K) the triad (P.X.,g ). In water waves, for example,

P and ﬂ v_vould be the mean height and mean speed, respectively,
and ¥ = ¥( /.P.A.K) would be a Bernoulli-type "dispersion

relation” for the présaure. We take the Lagrangian in the form

L = Aw +P¥ -H(K,A,8 FA) (116)

following Hayes (1973), where A = A (X,T) descéibes the
inhomogeneity. The total energy of the system is H =w/,,,+)’4f ¢ '.f
and ‘ZA = 0 defines the dispersion relation w= HA' A second
dispersion relation arises from taking oi = 0; that is,

P
Y = Hy « Thus there remains four unknowns, for which we invoke

the conservation laws for waves, total mass, total energy and

% 7705 sy
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total momentum, They are, respectively,

K L w
w0 (117a)
p)
Si':ix ";%-tp * 0 (118a)
F(wdt1l-L) - & (udtidy) = -4, (1192)
2 3 :
at(Kiw"'ﬂix) “'ax(i'l(ix‘ﬂ,) - X (120a)

In a coordinate system moving with the shock, the respective

jump conditions become

HA(K,A,K,HP,.A) - U;K = constant (117v)
Hy - UsP ’ACons‘i’au‘t | (118b)
Hy + Hpllg = UsH = constant | - (119b)
MyePHyH+KH gy U (KAgT) =cmstat  Cazom)

As before, a basic steady discontinuous solution is assumed,
and the effect of slightly displacing the discontinuity is
examined, An analysis similar to that just completed for
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P Type A shocks leads to, for the o(1) heirarcﬁy of equations,
the jump conditions for the basic steady flows

HA.,O- H‘z,o (117¢)
™ Hh,. (118¢)
HA,’,HK,’, "'HP“H,"f HA;,. Ko +HP,,.H(1,. (119¢)
. 'HAl,o*ﬁv’ H’n,o'H'r’ +KQ'H‘|.0+KI,0H,|,0 e Fa—
while the 0( §) equations are.. respectively,
¢ ( )z -{ )l
Smloe &, - i (1174)
C ) = HuK +HaA +Hpg g +H? Haa A !
f - (=) { (1184)

?z,o'? *

A H,KK,"'H“A' *H”,/-*H"T’ +H(AX
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- O ( );‘( )
b 1 4o HA(HKKKI+HKAA,+H“51+HK?F/+ Hia X))
*Hy (HacK” +Hpu A" + b eHaeP + 1y, X)

+ Hp(HgrK' +Hgpt" + Hggh’ +HpP 5 0)

+Hy (tpK' +HpuA" + Hpg g +HopP +HpyX)

i (119d)

i o ( )a. ) | )n
(KZ,A;,.*FJ;.) '(K',oA'-°+?s-R,-)

(120d)

() = AQHNK +H A +HygB +H P+ H 2
*+ P(Hp K™+ HepA” + Heg +Hpp 77+ HpaX')
+K (Hek” +Hiah” + Higg b +Hp P+ X)
HFB(HpcK +HgA’ +HygB +HepP +Hg )
- HAX
The bracketed quantities in Eqs. (117d), (118d4), (119d) and
(120d4), of course, can be simplified by applying the steady

differential equations (for example, the wave action equation

altx/ax = 0, the wave conservation law QHA/:x 3 b. PHI/ax =

for mass conservation, and the consistency equation
2/2t+37/3x = 0or 3H, /2 x =0 ). On substitution, the
amplification rates in the first three equations can be shown to
be identically zero, implying neutral stability. However, the
result for Eq., (120d) is nontrivial and leads to

0

—
T e &N -
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L R A
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% & —HAZ’°1,2,0 + H;\"OA,,’O

. (121)
(Kz'. A1,.+pz,.1;”> & (KI’nAI,O +KI,¢ E,o )

Thus, if the inhomogeneity 23° vanishes, the shock is neutrally
stable, Some applications of this formula can be found in
Chin (1976), but the qualitative results are similar to those
obtained for Type A shocks. A

The basic ideas behind the‘instability theory advanced
in this section can be briefly summarized: an infinitesimally
small disturbance wave riding on a slowly varying mean flow, on
account of space-time inhomogeneities, becomes trapped in a
;égion that on the basis of local normal mode theory is unstable.
The rapid gnplification of the trapped wave then precipitates
a sudden nonlinear, unsteady read justment of the mean flow that
is locally viewed as a "generalized hydraulic jump” involving
both mean flow and wave parameters, The actual observability
of the hypothesized "shock" mechanism would, of course, depend
to a great extent on the all-important effect of high-order
dispersive and diffusive terms as well as on the effect of
low-order shock stability., These ideas on the origin of
"catastrophic transitions" are at the present time speculative

in ntture.‘but they do appear to be motivated by plausible

N P

physical arguments and by gas-dynamical analogies; they

explain the formation of the discontinuities assumed in, for
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example, the classical treatment of hydraulic jumps and
Benjamin's conjugate flow theory for vortex breakdown, Because
~£ﬁé nonlinearities of a physical system are particularly
important in its detailed description, the possibility of
deducing general results seems remote., Application of the
generalized high-order Whitham theory developed in this

paper, for example, to hydraulic jump formation, vortex
breakdown or boundary layer transition in this regard would be
extremely interesting., One immediate need, perhaps, is a
nonlinear wave trapping theory paralleling Landahl‘'s for
linear flows; some initial work has been carried out in

Chin (1976), but much more work needs to be done,

V. Summary.

A theory has been constructed for the descripvion of
wavetrains slowly modulated in space and time and which includes
the effects of high-order diffusive and dispersive corrections,
modal terms, nonconservative terms, and amplitude and frequency
dispersion. A number of evamples have been considered leading
t0o many formulas useful in dirdct applications of the theory,
and various new ideas in stability have been discussed.

Mg " -
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