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ABSTRACT -

Whitham’s results for slowly varying wav.traina are

g.n.ralized to include C i )  erplicit].y the effect of modal
dep.nd.nci, (ii) the eff.ct of low-order linear or honlinear

nonconservative terms and their rol, in modifying th. basic

competition between frequency and amplitud, dispersion,

(iii) the effects of moving media, rotational or irrotational,

and space-time inhomogeneities, and (iv) the eff.ct of

high-order dispersive or diffusive modifications to the low-order

amplitude and phase equations. A “modal law” is also derived

which, when integrated over the cross-space, leads to a

generalized Whitham action law modified by a source term that

is introduced by nonconservative .ffects~ the us. of complex

frequencies hers is avoided, thus enabling linear and nonlinear

problems to be treated on an equal basis. A self-consistent

perturbation method is presented that leads to generalizations

and extensions of those ideas due to Whithaai, Hayes, Davey,

St.wartson. Br.th.rton and Garrett, Taylor, Landahi , and

oth.re, and shows how each of these g.neraliz.d subsets appears

as a specific limit of a broader theory . A number of examples

illustrating the basic ideas ar. presented and which lead to

simple formulas that can be used in many direct applications

of the general th.ory. Some qualitative ideas on the basic

effect of the derived high-order terms are given , especially ~~~~‘ - I
~ .-t Sccr.~ ~

with regard to th. question of kinematic shocks , and their 
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basic relationships with other high-order theories , for example ,

Stewarteon and Stuart’s parabolic diffusion equation for wave

amplitude, and a particular nonlinear Schro.dinger~~quation

that aris.e in studies of high-order wave dispersion, are also

discussed.

Based on the above results, some new ideas on wave

stability are pr.s.nted. One particularly important example

discusses Landahl’s focusing, trapping and amplification

mechanism for waves riding on inhomogeneous flows in light of

an analogy with the instability of transonic nozzle flows, and

some speculative ideas on kinematic shock formation are given.

The discussion essentially parallels the simple arguments

originally put forth by Kantrowitz in gas-dynamics but in the

wave-mechanical context~ however, detailed mathematical analysis

of the entire instability mechanism is. not pursued in the

present paper. Pursued in some detail here, however, is the

study of wave-mechanical discontinuities (which are presumed

to arise out of some wave-like instability), both with and

without the effect of mean flow. Some, simple calculations are

given for gravity and capillary waves that illustrate the

general approach undertaken, and a general theory is also
presented - that deals with wave-mechanical shock stability as

would be influenced by low-order nonli~earities and inhonogeneities

in the n~dium; the theory essentially sets th. foundation for

a general wave-mechanical approach that closely parallel.

analogies developed from nonlinear &C OUSt iCIe  Other examples f

r
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treated includ, simple generalizations of instability theories

due to Whitham, Taylor, and others, and a newly discovered (and
somewhat speculative) anti-cascading phenomenon arising from

the idea of high-order “negat iv, wave diffusion” .

I. Introduction.

Perhaps the most exciting area in applied mathematics

research today is in the field of nonlinear wave mechanics and

~.ts application to the wave stability of continuum systems.

The greatest recent advances can be found in the mid-1960’s,

as we shall see, and many of the initial advances and applications

were spearheaded by Whitham and his coworkers. The subject, as

it stands today, is founded on the contributions of many

investigators, among them Hayes, Stewartion, Stuart, Davey,

Bretherton and Garrett, Landahi, Lighthill and others; the

cumulative body of knowledge developed by these authors

ii capable of handling low-order frequency and amplitude

dispersion, modal effects, wave damping, high-order wave diffusion

and dispersion , and other simultaneous effects. However, it was

often the case tha t various of the particular theories were

devised specifically to deal with particular problems end their

extension to include higher-order effects and additional

physical features could not be made. The broad generality of

an idea could sometimes not be readily perceived , this situation

lead ing to many rather specialized and sometimes conflicting
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theories. The basic purpose of the present paper is -to

reconsider anew the general problem of describing a slowly

varying wavetrain by constructing a broader unify ing theory

that bears as few limiting assumptions as the physics permit s

and which reduces, in specific limits, to those theories referred

to above.

Numerous applications of more or less “standard” nonlinear

techniques (e.g., multiple scaling methods, averaging methods,

etc.) have been made in recent years to problems involving wave

motions in continuous media and an extensive survey of these

studies appears in Chin (1976). These applications are mainly

based on several fundamental papers and we will here su.’~~rize

and discuss the basic ideas and theories. Probably the first

applicat ion of WKB averaging in fluid mechanics appears in

Whitham ( 1962), in which ( for finite depth gravity waves) the

fluid-dynamical conservation laws were phase-averaged so as to

produce the modulation equations governing coupled large-scale

changes in the wave and mean flow variables. In this averaging

the Ansatz consisted of the related uniform wave solution, and

one additional postulate, that of wave conservation, was

introduced. This averaging method was later used in

Whitham (1.965a ) to find slowly varying wave solutions of nonlinear

equat ions in general and there the analogous role of the basic

uniform solution as compared to that of the sinusoidal wave in

linear stationary phase theory was advanced. Whitham (1965b)

in a further development showed how the same modulation

I-—---
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equations for a system of given equations could be derived by

evaluating the related Lagrarigian density with the uniform

wave solution (the slowly varying solution is assumed to behave

locally like the planar wave), phase-averaging, and then taking

appropriate variations with respect to the wave and mean flow

parameters (which, dur ing the averaging, are held constant).

The power of the method is seen in it. simplicity. For example,

in tti application to finite-depth gravity waves (Whithas, 1967 )

the averaging reproduced in a simple way the concepts of

radjation stress” and the results of Longuet-Higgin. and

Stewart (1961) obtained on the basis of detailed asymptotic

analysis. Whitham also showed how, for sufficiently deep

water, the competition between amplitude and frequency dispersion

led to an ill-posed initial value problem which in a sense

implied instability. the modulation equations were elliptic.

For shallow water the governing equationa were hyperbolic, and

implied a “splitting” of the basic wave envelope. These ideas

are quite general and apply as well to other applications of

the Whitham theory. We add, in summarizing this paragraph,

that Whitham ’s results and his “average Lagrangian method” can

be derived and justified by multiple-scaling techniques, for

H example, as discussed in Luke ( / %~~) and in Whitham (1970).

Whil. Whitham ’s variational theory was successful in

describin ; both frequency and amplitude dispersion, it was not

able to incorporate the effects of weakly nonconservative

terms, such as wave damping. This failure stemmed from the lack

of a suitable variational fo rmulation and thus precluded the

“-p -

-- - -
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application of Whitham ’s ideas to many practical problems (some

recent modifications of the theory (Jimenez and Whitham, 1976 )

now permit the treatment of such effects, but the description

is confined to low-order changes and does not appear to be as

• general as the theory to be presented). Moreover, Whitham’s

method could not be generalized so as to produce the high-order

* dispersive terms obtained by other investigators using

direct multiple-scaling methods. For example, a WKB technique

applied to the study of slow modulations of a Stokes wavetrain

showed that higher order terms representing modulation rates

and not nonlinearity must be added to extend the validity of

Whitham’s equations (Chu and Mci, 1970). The same ideas were

reemphasized by Davey (1972), who suggested some heuristic

• modifications to Whitham’s theory, and by Davey and

Stewartson (19711), who considered three-dimensional wave

packets in water wave applications. The apparent discrepancies

in the two approaches could not be found, as noted in Hayes (1973),

For example, direct multiple-scaling methods led to a nonlinear

Schroedinger equation for a certain complex wave amplitude, and

this high-order equation embodies Wh~.tham’s low-order results

(centered wavenumber expansions, however, are required in its

usual derivation, so that the competing effects between

amplitude and frequency dispersion are not accounted for).

Furthermore we note that Whitham’s method , as it presently

stands, does not describe high-order diffusive effects of the

k ind described in Stewarteon and Stuart (1971), which are

certainly important in any large-time description. Thus one [
has in addition to low-order frequency and amplitude dispersive

ii .
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terms, those terms responsible for the high-order competition

between wave dispersion and wave diffusion. (Recently

Tuen and Lake (1975) showed how the average Lagrangian method

could be modified so as to produce the required high-order

dispersive corrections, however, but certain implied assumptions

are made in their analysis with regard to the relative rates

of change between wavenumber and wave amplitude.) A formalism

is presented in the present paper that generalizes Whitham ’s

theory to. include high-order dispersive and diffusive effects

and which extends Landahl’s (1972) modification of the basic

action equation for linear nonconservative effects to fully

nonlinear ones.

• Two additiDna]. references can be cited in the context of

the present discussion. Bretherton (1969) was able to show

how, for linear, nondissipative prcblems, the phase-averaged

Lagrangian density integrated over modal cross-space, satisfies

Whitham’s action law, thus extending its applicability to

wave motions in waveguides. Under the stated restrictions

Bretherton’s theory was extendable to higher order, and in

principle, the high-order dispersive corrections as previously

discussed are reproducible. Bretherton’s low-order modal

results were generalized to i~c1ude nonlinear effects by -

Hayes (1970b), who in addition postulated a local conservation

law in the cross-space divergence operator. However, in

addition to its restriction to purely conservative problems,

Hayes ’ formalism relied on certain “well-known” variational
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identities-which cannot be extended to systems of arbitrary

order. In the analysis to be presented , both Bretherton’s

and Hayes’ generalizations of Whitham’s ideas too are

extended so that they appear as specific subsets of a broader

unifying theory. The mathematical approach taken considers

a general variational principle of arbitrary order in which the

explicit presence of modal, propagation space and time

coordinates is accounted for, in addition to that of the work

function describing general nonconservative effects. Slowly

varying wave solutions are sought in the form of a Luke (/f~~)

transformation modified for modal dependence, and generalized

phase and amplitude equations are derived from existence and

secularity arguments. A number of specific applications are

made, leading to a number of formulas useful in direct

applications of the general theory, and in the case of weakiy

nonlinear waves, the structure of the high-order dispersive

and diffusive terms is determined from a pseudo-analytic

continuation method. This general theory describing the

dynamics of kinematic waves completes the first part of the

paper, and in the seôond part, some new ideas in hydrodynamic

(and general wave) stability are discussed. The physical

bases behind some of these ideas are discussed in detail using

various analogies from gasdynamics, but because of obvious

difficul sties, detailed calculations are not pursued in the

present paper. Some of the ideas , admittedly, are speculative,

but it is the author’s hope that the discussions presented

— — - ——.  —I, ~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- —
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herein stimulate further investigation and study. In a sense,

the second part of the present paper deals with novel ideas

that hopefully would be received with the same enthusiasm

as were Whitham’s (196-7) ideas on “elliptic instability” and

wave group “splitting”. -

The analysis that follows essentially summarizes the

main results of a doctoral thesis by the present author

(Chin, 1976) presented at the Massachusetts Institute of

Technology . Further papers are planned and the reader is

urged to refer to that work for details of ideas and

calculations briefly discussed here. Among the subjects planned

for future discussion are theories detailing the wave

• back-interaction on inviscid shear flows, the structure of

foci that result from wave trapping due to inhomogeneities, and

other aspects of wave stability.

V 
r~~~~~~~~~~~~ -~ -
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II. The General Theory. Low-Order Results.

Let us suppose that the physical system urtder ‘~onsideration

is derivable from the variational principle as give.~ in Eq. (1),

with Lagrangian density L and dissipation functional F. We

consider variational principles (as opposed to specific

equations) so that results common to all. systems can be obtained.

Also let the small parameter E characterize an appropriate slow

variation which , in addition, is proportional to the weak

influence of nonconservative effects, 
-

~ .1

V 

e. , _ p ~—c L + L = e F(u ,...) (1)

L — L ~~~~~ ct , u., ~~~~~~~~

- 

L L* = L~ ~~~ ~ 
(_ )

1PC+P *Y

In Eq. (1) sums over various o(, ~, p’s are understood , x and

y being the propagation and modal coordinates, and t being the

time. The symbols o(, ~~~ indicate the respective order of

part ial different iations over x , t and y. Further, it is

assumed that for F “ 0 the system admits propagating waves. We

now attempt an asymptotic solution in the form

_ - -~~~~~~~~ ~~~—~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --
.. -- —
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tt(x,~~) L U(e,x,T,~ ; ~
) (2)

~~~ T~ ± 9(x ,±)
.4.)(X,T) _ 6

*~
I
~
_ O T * —i)(X ,T) K( X,T)* OX~~~)( 

-

In the above , X and T are stretched apace-time coordinates

chosen to account for 0(1) variations in U over large scales,

- 0 is the phase function for period ic behaviour , and K and Ui

are wavenumber and frequency satisfying the condition of wave

conservation. We shall neglect any exponentially small

reflections and, in addition, for brevity neglect high-order

V scaling variables and multiple-phases (which, as will be seen,

can be easily incorporated into the present approach). The key

to a general analysis is the definition of the operator H in

the space e,x,T

H V ~K~~~~ 
+ (3 )

.(.1.~~— l

+ k ecq~-J) ~ K’2  K
~ 

-
~?~

r ÷ £o~~~~
’K~ K,1 ~~~

+

Thus , neglecting terms of 0(t 2), the Euler equation specified

in Eq. (1) can be rewritten as

V • 

* 
_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-- - -

~~ 
- -

~~~~~~~~~
*-

~~~~~~
—-
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~~~ ~~~~ 
H(t ) + £ F(1J ,...) C’)

• For reasons which will later be apparent, we express Eq. (11 )

in the alternative form

e~ 1U - ~~~t(t) _ (t)(~ rH(U))9
4 

~ U9 J)

where L~ has been eliminated using the identity

• 
÷ (6)

This form of the Euler equat ion leads to a convercient derivation

for a “generalized action law” which , as will be seen , follows

as a necessary cond ition for the existence of assumed asymptotic

- solutions in the form given in Eq. (2 ) .  Now , twice applicat ion

of the differential ident ity

~ 
~ ~~ K+I 

f
(fl K) (K i) (-~ -F 

8
01) - 

(7)
K 1

to Eq. ( 5), first with primes denoting 0 derivat ives (where

g a Ue and f ;y 
) and second , with primes denot ing

• y-derivatives leads directly to

_ _ _ _ _  

. 

. C TEl ~~~~~~~~



£Ue F(Tj) 
-2 

(8)

• + E ~~~~~~ L1l.#~s1,e,~ 
+ ~c~or? 

~ 
L

• L U~, (.c+p)i,T ~~ K
”
~K.rP L ) J(,1,,) e, y~

* 

~~~ £ J ~c K*hl) P tX ~~~~ + cc ~c-i) K~ K1)/ t~~~Pft)., r3
1 +~~(‘~~3.)~ 1_ 

~~~~~~~~~~~ 
+x~K~’V’~~tU

-K’~i { L( 1J~.~s~+s)~ L(H)~li~It+,,I,e,~ +.- I
4 E~K’~)./ { ~~~~~~~~ 9I(~ )y1 (•g4~)~~ _I

+(—I) - 

+

+ e { L(1l)~lJ~s,)e ~ L(y..2)~U(u~.~)e,3 f _) X

- 

- 

. 
~~~ K~

2KX))’+ ~~Q KK1tZ~ +~~~ k,,J’J

where

~ ~~~~~~~~~ L~3 (d.~.j):U0e +...} 

•

~~ 
(9)

2) 
~,(u(’$-2)cX 9 1~,(”+ø

3)5,X •8 *

+ t~ K”1)~
’ (1 2)~1lU~ —t 

~g,(.tPO.3)e,? ~ — I
+ ~~~~~~~~ K’~’K7)i~1- ~~~~~~~~ X

{ t ~,(1~$~4)~1J9 L ~ ,(,(4~3)eUee + •..
~~

— . — ----—- 
- 

— - 
— 

-~~~~~~~~ 
___________

V V V 
- 

V
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We now expand the variables L, ‘Z, U and ~ in series like

V i” 
~IP~(0,X,’T) 

* (10 )
I1”Q

and introduce the resulting expressions in Eq. (8). By equating

coefficients in the varying powers of &, the leading terms give

~~~~~~~~~ e,,,,1r) ~ iC’v’-o~ U ~~~~ -t X-2)~~~~~ft~~~.1 ~ -

V Averaging over phase, we obtain the “cross-space conservation law”

- 4 ~~~~~~~~ { L(1 )~ ~~~~~~~~~~ i4 c10] 0 
- 

(12)

a genera lization of Hayes’ (1970) result. The bracketed quantity

above can be interpreted as an energy-like density that varies

slowly in time t and space x. Since L and U both depend on x

and t, Eq. (12 ) can be thou ght of as a kind of modal energy

r.dietribu tion law, the exact nature of which will depend on

the dynamics of the propa gat ing wave , Expansion of Eq. (8) and

• retention of 0( a ) terms gives

. r~.

- V~_~ 
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~V
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C’)
— 

~rF
(W’

~
) (13

+ ~~“.v”E ~
./1J,(.C4~)9,l’‘p (wq)~,)~,

• K ’2
~l
t’
~:).~ 

÷~~ K~ K,p”r’~ u”
~-vøh ~ (Q

O~K’~
’ 

(
~7r~~• ~ L~ ~~~~~~~ K’~YL L’1~~l(+~)9~~

~ (.I 
C.)

• t.+(&~l)K 2Kx)/C~U +øp K ’lJ ’l3~ L(‘(~0)’,~~

~ ~-t ‘““ ir”) %.(i) C.)
- i — L,, (X-2)j  U(*+p)8,~j ~~~ —}

.(-I P~ 
‘“~~‘~ ~r”) ._“ ~ i c 1,+oc K 1J 1~ ~~~~ (“+p)I ~~~ (4t.pg)e,~ 

+_.)

+(~$)
1 4. + {a.~~~~~I) K’

~
2KXI + ~~

I)
K

lc P.zv + K ~KI.1.t1JX
~~ ,ç~~ ~~~~~

V {t(~~v(~f,)0-L(~.l)3 (~t4O)I,~~~~ ’~

~~~~~ (I) ~-vcs) (9)

_ K d
2/{

(i_(1u,1LP041)e + L(1~) U~ ,,,),I

(t~ ~j  °‘ 
cci) \

(1-2)3 ( .+~+‘)f,~ (1-2)3 4+Ø+’.~,~ 
) +

In the above the bracketed quantities are arranged so that the

first contains time derivatives only and the second contains

propagation space derivatives. By introduc ing an “average-

Lagr angian” with the definition

ri’
t - ~J, L( X,T, ~,U,H(UQ) 4e (1k) 

_ _ _ _  iir~.p

- V V
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Eq. (13 ) takes on a particularly simple form on phase and

cross-space averaging. Assuming zero work interaction at the

boundary (y1
,y2

), we obtain 
-

2.1 12.

h £~ — = 

~~ J~ f~.. u~’ Far’°’) dy do (15)

where we have denoted

~— 4 L d y 
- - (16)

It follows that Eqs. (11) - (15) are the basic governing laws

V * 
when solutions of Eq. (1) ar sought in the form expressed

by Eq. (2) .  These results are easily generalized to higher

dim.naiona by taking ( )y~~ ”~~V~ ( L~~—”- V~. , snd

introducing the wave irrotationality requirement that

V~ X i~
’ :o  in addition to K.t + ‘7~w :0, Eq. (15) is

V precisely Whitham’s act ion law when 7 0 and y—depend.nces are

suppressed. For such “local” waves, Whitham (1970) has shown

(using L L( u ,ut ,u
~

))  that wave action conservat ion is V

“absolute”, i.e., correct to all orders in £ .  On this basis ,

Eq. (15 ) ‘would be true with superscripts removed. Quite often

this “absoluteness” has been taken for granted for systems of

arbitrary order, But this move is not altogether clear, and

U- _ .
. 

_

•

V
VVJ

- V _~~_ V_V~V V** V~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~:~~~~~
‘-
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for this reason , “local” waves are reexamined here, V

If in Eq. (1) y-dependencea are suppressed by setting

0, a tedious but straightforward extension of the above

• analysi. shows that , in general , *
- ?;.1t1)7- ~ThLK~ ~~~~~ 

- -
~~ f0~~ude ( 17)

Thus , wave action conservation is not “absolute” for systems of

arbitrary order. However , when the “order ” of the system is

two , it is, because the derivat ives L v , , etc. , vanish

identically. In fact if we denote by A the wave action L~~ in

Eq. (17), one can demonetr;te the existence of high-order

• dispersive corrections like Axxx that mod ify the low-order action

equation of Whitham’s theory, and for dissipative systems,

high-order Burgers ’ type diffusive terms that involve A
~~ 

(this

will be shown later in Section III) . The above equation can

also be obtained in a more powerful way by extend ing some of

Whitham’s ideas. Let us consider the three-variable variat ional

principle

• ~Jfl L(x ,’1u,H(U )de~xcn’ - ~~~~ ~(lJ) Su~edX~T -  0 (18 )

for the three-variable function U( 9 ,X ,T) .  Here U and it.

~~~~~
I
~~~~~~~~~~~~~~~~~~~~~~ V V V V V V E~~~~~~ V V 

V~ V V 
•
~ 1~
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variat ions are assumed to be periodic in 6 , and variat ions in V

U vanish on the boundary R. Variation of U gives, after some

manipulation , the two-timed Euler equat ion , Eq. ( 4 )  with 3’: 0.

Thus, the two-timed form of the Euler equation, Eq. (1), is

• precisely the Euler equation obtained from the two-timed

variational principle. It follows that Eq. (18) is exact because

it contains the whole expansion and, in addition, it is already

the averaged variational principle. We now introduc. an amplitude

measure “a” so that the solution for U( O ,X,T;E ) depends

explicitly on th. two parameters “a” and 9 •  They,, since

• sff EdX~T ~~~~~~~~~~~~~~~~~ 
- 

(19)

must hold, “a” variations lead to

— 
~~J~t~FW)do - 0 20

and 8 variations lead to Eq. (17). Equations (17)-(20) are

then the r.quired “generalized action and phase relations”.

For low-order solutions the choice U( 8,X,T PE ) = U~
’
~(a,8)

• where U~~,(a ,O ) is the uniform wave solution to Eq. (1) suffices,

as shown by Whitham (1970), But for proper account of high-order

effects , it is in general necessary to assume

I
:~~~‘t~ 

-- 

~~~~V * V ~~~~~~~~~~~~~~~~ . -~ •
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tT(e,X,’i’~) ~~
. ~~~~~~~~~~~ e,w, K,...) (21)

in view of the work by Then and Lake (1975). This point will be

discussed more fully in Section III. The proper choices for

V the functions U~~ are, in general, unclear. This difficulty

is in addit ion compound ed by the fact that variational principles

are not uniqu e - a concern that does not arise in the low—order

problem becaus e the phase and action equations are unaffected.

If Eq. (21) i. chosen correctly, though, the analysis carried

to the appropriate level of approximation does produce high-order

dispersive terms (as are modelled in recent studies by a certain

nonlinear Schroedinger equation) and , in addition, high-order

diffusion terms that can be important near kinematic shocks.

Now to leading order, the evolutionary equations are

- 

~ L’ (22)

— o u(e,X ,1;~) 1J~ (a ,o) V

and it is Ia~own (Whitham , 1967) that the physical properties of

the solution vary markedly according to the type of the governing

system , For example, Benjamin-Feir or Whitham-type modulational.

- ~~~~~~~~~~~~~~~~~~ ~~~~~~—
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instabilities are encountered for elliptic systems. For V

hyperbolic systems, the perturbation “splits” and propagates

at two different speeds. And in the linear (parabolic) case

• the modulation equations uncouple, and the wavenumber field

is determined independently of the wave amplitude. In this

case, Eq. (22) shows that the concept of group velocity is still

relevant to weakly nonconservative processes. It is still V

defined by

C — t~ / L~ ~ow/~ K 123)

V 

since the phase relation can be written in the form

: a2~~ (W ,K,X,T) 0, To this order, the kinematics are

independent of the functional F, agreeing with the fact weakly

nonconservative effects affect the phase only to 0(~2). (A more

- explicit formula showing the general nature of high-order

dispersive and diffusive corrections to Eq. (22) will be given

later in Section III.) Wave action is still defined, and again,

in terms of the associated conservative system,

A 
r(°)
L~ 

(24’)

but it is dissipated, in general, with strengt h U~~ . The rays

f 

V

:

_ _ _ _ _ _ _ _ _ _  

• H
-~ 

—
~
----—-

~
—-

~~~
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are still determined by the “real group velocity”, where we have

avoided the inconsistencies of the complex-frequency approach.

These results apply to fully nonlinear waves as well.

In practice it is sufficient to choose for U~ the uniform

wave solution to the associated conservative system. However

the presence of the right-side integral of Eq. (22) in nonlinear

systems ~~~ possibly alter the structure of the fundamental

conservative solution in a significant way. This point is

especially important in bifurcational and transitional studies.

We may also note that by considering ~i/a~ and aI/~~x instead

of )I~~e in Eq. (6), one obtains for local or modal waves the

following leading order results,

~r(wt~ —V ”) - ~~(wL~ ) -t~ ~wW’F(u”) 25

-~~(Kt~) -
~~(Kt~ -L”~)=L~ 

+~~~~~~u 09 (26 )

These identify Ue as the appropriate weighting function for F.

The above equations are equivalent to Eq. (22), except that

different energy-like norms are now examined along different

rays. As for Eq. (22), the superscript zeroes may be removed
V for second order systems, but for high-order systems, additional

terms must be incorporated. If we identify Eq. (1) with

V 
Hamilton’s principle, we see that the above represent energy

- 

-— ~~~~~ ~~~~~~~~~~~~~~~~~ - ~ * V V V _ V_ _ _ ~~~~
;

~~ 
~~~~- : ~~~~~ 
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and momentum laws respectively. This follows for, in a

mathematical sense , energy is that quantity conserved when the

correspond ing variational principle is invariant with respect

to translations in time. The conservat~~n laws for momentum

and act ion , for example , f ollow from considering translations

in space and in phase. The right sides of Eqs. (25) and (26)

show explicitly the role of inhomogeniety and dissipation. -

For example , the inhoinogeniety can be prescribed (as would be

the case in linear theory) or can be the result of wave-induced

modifications to a given mean state. In linear theory the

velocities for action, momentum , energy and wavenuznber are

identical, of course, since the average Lagrangian is homogeneous

in a2.
V 

~~ is important to recapitul at e several ideas fundamental

to the above analysis. The first is that no assumptions have

been mad e regarding the orders of the conservat ive and

nonconservative operators in Eq. (1), the variability of their

coefficients, or their linearity or nonlinearity. Secondly,

the general expansions introduced in Eq. (2) include a strong

modal dependence , as opposed to those used by Luke ( l~~ ) or

Whitham (1970). One observes that when Eq. (10) is introduced

in Eq. (8) pvith ~S: 0, the left side of the resulting 0(E )

equation ~contains functions of both U~°~and U~~while the right

side contains U~°~exclusively . A solution uniformly valid in

0 requires U , and hence each to be periodic in 0 with

___ V
V ___

~~~~~~~~~~~~~~~~ • - V V V~~• ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V  
~~~ •V ~~•V_ 
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period 2JC • This uniform validity is possible only if the

integral of the right side with respect to 0 over a period

is zero. This , together with the definition given in Eq. (14’),

leads to the action law (Eq. (15)) directly as straightforward

manipulations show. In other words, wave action conservat ion

follows as a secular condition (in the sense of Cole (1968))

when solutions of Eq. (1) are sought in the form specified by

Eq. (2). For the treatment of modal effects and high-order

corrections, secularity alone is not sufficient, but phase

averages can still be conveniently carried out via the

two-timing introduced in Eq. (2).

It is crucial that Eq. (22) holds for equations of any

order, but that the order of the system becomes important only

when higher order effects are to be calculated. For

second—order systems, however, Eq. (22) is exact because

derivatives of frequency and waveriumber vanish identically, and
- 

superscripts may be dropped. Thus, Whitham ’s (1970) comments

on the absoluteness of action conservation (in nondissipative

media) apply only to these degenerate cases. Action conservation

here turns out to be the appropriate adiabatic invariant for

linear or nonlinear wave propagation in inhomogeneous dissipative

systems. In nonlinear processes, this is especially important

because qnergy cannot play too fundamental a role - it is easily

transferred between component frequencies. For solutions to

practical problems it is necessary to amend Whitham ’s (1970)

• • V . V  :. V V V V S e . _V  V _~~~~~•VVVVVVV __ V ~~~~~~~~~~~~~~ ~‘ V __V VV_ _ _ V _

—~ V . .-
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algorithm. In linear problems, for example, the uniform wave

solution ~~~~ asinG led to an average Lagrangiart hr’~ogeneous

in a2 this is true only in the lowest approximatio t. Since

is really a function of the slow variables X and T , O(~2 )

corrections to the average Lagrangian must be incorporated

that will involve space-time derivatives of wavenumber and

amplitude, 0( ~ ) effects having vanished by orthogonality . The

existence of such high-order terms suggests a new treatment for

“kinematic shocks” . There thu s exist high-order diffusion

terms that can possibly smooth out discont inuitiee that appear

in considering the low-order solution alone or , for example ,

high-order dispersive terms that may suppress shock formation.

The dispersive corrections mentioned here (as will be po inted

out more clearly later) resolve the inconsistencies pointed out

by Chu and Mel (1970) regarding the apparent loss of certain

high-order modulation terms in the Lagrangian formulation by

showing that such terms are accounted for by the variational

method . It is only that through the above inconsistency that

the discrepancy arises.

Our approach also bypasses the conventional use of complex

frequencies in treating dissipative problems. For example, it

is not necessary to determine the group velocity from the real

part of a~ complex frequency, and then , to introduce heuristically

into the energy equation a damping based on the imaginary

frequency. In many nonlinear problems where the use of complex

• ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - —V - — -
-

~ 

~~~~~~~~~~~~~~~ 
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frequencies is inappropriate , Eq.. (22)  seems to provide the

only practical alternative. Both local and modal wr vea , of

course, wer~e considered under the same formalism. ~t tere is

still another interesting po int to be noted . For nonlinear

waves we can eliminate amplitude from the argument space of

4 and £,,~, using the dispersion relation. The action equation

then becomes an elkonal one, from which an equation for a

perturbation phase could be developed. For this system it turns

out that boundary -conditions cannot be satisfied it spatial

growth is not assumed, for initial values applied at x 0.

On the other hand, initial values applied at t 0 require

V temporal growth. This extends in a simple way Gaster’s (1965)

result that Orr-Sominerfeld waves (generated from a vibrating

ribbon fixed in space) on a boundary layer grow spatially. It

also reduces to Taylor ’s (1962 ) results for temporally growing

waves. -

In applying Eq. (15 ) to specific problems , the choice of

the basic solution (or Ansatz) is crucial. From the linear

results to be presented (Example 1), the uniform solution of

the associated conservative system appears to suffice as a

general rule because the dissipation is weak, This model can

be extended to nonlinear and modal problems as well, For

example, ,if Luke’s (1966) nonlinear Klein-Gordon equation were

modified to include dissipation, one would evaluate Eq. (15)

by the uniform conservative solution he obtained. Finally

- - 
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - -- - V~~~~~~~~- — - 

• 
V

- -~ -~~ ~~~~~~~~~~~
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note how the conserved density in Eq.. (12) takes on a much

more complex structure than the ana lysis of Hayes (1970) would

suggest, but reduces to his in the appropriate limit . This

co~~ ent applies to the modal law Eq. (13) as well, noting that

neither Bretherton’ s ( 1969 ) nor Hayes ’ theories are valid for

dissipative wave flows. The evolutionary equat ions derived

have a two-fold use. First , they can be used to describe

the mathematical properties of wave-like solutions to specific

equations and this is the usual application. The second is to

make certain physical assumptions about the functional form of

the Lagrangian, for example, that it represents Hamilton’s
V 

principle and then, obtain alternative descriptions for physical

conservation laws. This approach is pursued later in an example,

One of the aims of the present paper is a systematic re-derivation

and extension of both existing high and low-order theories of

wave motion from one general, self-consistent approach. Before

considering in detail the high-order theory, we discuss several

applications of the low-order theory.

V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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V 

Example 1. Linear “Local” Waves.

First, one can obtain specialized results for rather

general linear systems. Consider “local waves ” , that is, waves

• without a modal cross-structure. We examine

• * .(+~

ct (Ex ,t t)  £ ~~~~~~~ b~ (~x,~t) ~~~
—j r

~~~~i (27 )

where the sums are taken over combinations of oc+fl even

and ~~4 odd. The coefficients a and b are assumed to

be weakly dependent on x,t and to be sufficiently “well-behaved” ,

The conventional approach assumes a solution proportional to

exp i(Kx-wt), where ~) : W,.~ LW L is complex and W1/W,. O( ~ 
).

Meglection of 0(~ t )  terms in the complex dispersion relation gives

2~ a~ (-‘)‘f~
’K” [w~+ I

~ 
C4w~ J = b ( t ) -~~~

’
K 

TWr~ (28)

Equating real and imaginary parts we find the relations

~~

~~~~LZ (-1) ~ K W~ 0 (29 )

*1

W~ k~,. (~O
1 L~~~K Wr

— ~~ — — .‘~~
- o(l) (30)

cZ,~ (-I)’ L
(+P+1

,K
m g~4

f t /

— -  - 

*
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Solutions corresponding to the neglected roots of Eq. (28) have

been discarded because they are associated with rapidly varying,

or alt :natively, highly damped solutions. Thus, if we are

looking for slowly varying wavetrains in which dissipation plays

a modest role, Eq. (28) must suffice, Eq. (29) can be interpreted

as a dispersion relation, consistent with that in Eq. (22) in

the sense that it is not affected by weakly nonconservative

effects, On the other hand , Eq. (30) provides a compact

expression for the “exponential growth rate”. Now,- assume that

the left side of Eq. (27) is derivable from a lagrangian density,

so that

* 

~~~~~~~~ ~ L~
- ~ ~~~~~~~~~~~~~~ (31)

Since the term a0 0(X,T) does not alter the analysis we make,

without loss of generalization, the normalization a00 1.

Then the Lagrangian must take the form L ~~~~~~~~~~~~~ , this

“fixed” term enabling us to keep track of the entire conservative

operator throughout the averaging. From this it follows that

Z3 ~~~ (32)

when I, is evaluated with the uniform “conservative” wave

• solution U~’~ a(X ,T)ein B • Thus unlike convent ional methods

- - - -  • - --— ~~~~~~~~~~~~~~~~~~~~~~~ - . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~ -
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in which dissipation is separately accounted for in a complex

phase, the “a” in our approach contains both conservative and

slightly nonconservative effects. Evaluating the right side

of Eq. (27) with this solution gives, successively,

= ~~~~~~~~~~~~~~~~~~~~~ (33 )

- L~2fl ~~L~~~’K’V~
.r+Y-I q

~ 
K 

— 
~~~~ 2L”±~

~~ OL.~ ~

• —t.)

In terms of the wave action A L~ and the group velocity
—C’) ,—t )  -

Cg ¼”w we have

V 

.j ~A ~~~C3A 2(~9A C~~~Wr/~K

which describes th. long term effects of locally weak dissipation.

It is essential here that the basic group velocity (which

determines the kinematics) remains, to lowest order, unaffected

by dissipation. The above equation has been used by Landahl (1972)

and by Davey (1972). Complex frequencies , again, are unnecessary

* in the present approachs the purpose of Eq. (3k ) is to relate A

to the more common “W i”.

~L

• 

• 

•

— 
- — -  — 
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Example 2. Linear “Modal” Waves.

Modal waves are those that involve a cross-structure

orthogonal to the propagation direction. A simple model is

.iL+~~~
b’

Z2~. Lt (Lx,It,~) ~~~~~~~~~ 6, ,;U,~) 
~~

‘

i:j~~! (35)

where the left aide is conservative and the right side is

dissipative. Now define the auxiliary system

~~~~~ 
~~~~~~~~~~ 

� 1 L  € 1 1
~r,~,i~°’°’~P ~~~~~~

j _ _
~ 

(36)

• having the eigensolution 
‘

~~~~~ 

Cf 5(y) exp i(Kx- wt) with mode

number “s” , where 9’5(y) is determined from the solution to

~~~~~r (o,~~
) ~~~~~~~ ~~6~, J 5  (37)

and Its appropriate homogeneous boundary conditions, The right

hand sides of the above may be dropped if the resulting undamped

system is free of critical layers. Then, the extension to

• Whitham’s. basic algorithm suggests an Ansatz of the form

tJ5~°ko,X,T,j) Si’~O (38)

-- 
•~~~~~~V~ 

• 

~~~~~~~~

•

- 
- — —  
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This type of assumption is reminiscent of Stuart ’s (1958)

“shape assumption” , and appears to be justifiable or physical 
-
~~

grounds (provided that the medium is, indeed , slowly varying).

• 

i V
•

_ _ 
• _

--______ 
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Example 3. Waves in Moving Media s Irrotational Mean Flows,

The evolutionary equations as given in Eq. (22; do not

impose any restrictions on the background medium , ex .ept that

it is slowly varying. We will, consider flu id-dynamical

problems in which waves ride on slowly varying mean eurrents

that vary slowly in time and in the propagation direction only.

Both wave and mean flow interact nonlinearly through a radiation

stress that transfers energy from mean flow to wave (and vice

versa), In addition, the slow variation of the medium introduces

small local changes to the dispersive properties characteristic

of the wave. The cumulative effects of these changes may be

significant.

Let us assume that the waves under consideration propagate

in a direction parallel to the mean flow U = U ( X , T). This base

flow is irrotational because there is no dependence on the

shear coordinate y. Then if superscript primes refer to a

coordinate system S’ moving with the mean flow U and unprimed

symbols refer to ground-fixed coordinates S, the principle of

Galilean invariance implies, to leading order,

.1~~ X,T,w,K) — .C~°’(X ’,’T’, W — UK , K) - 
(39 )

What enters in Eq. (39) is the expected Doppler shift, as can
be derived by applying Eq. (2) and its primed counterpart to

- any system of equations written for both S and S’ (Chin, 1976).

—- — 
—~~~~------ --- -
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The key po int in the analysis that follows is a re-interpretation V

of the fictitious forces experienced in S’ as equi~ tlent Reynolds

stress effects as observed from S. This principle ~as first

enunciated by Whitham (1962) in the context of gravity waves.

It may have been suggested by the fact that the fluid-dynamical

equations linearized about a constant U are identical with the

same equations written in moving coordinates, but the analogy

is not quite complete. With the above interpretation simple

results are available on defining energy densities E’

and E ~ u.~;L (which are valid for fully nonlinear waves), as

suggested by Eq. (25). Now because wave action is invariant

under Galilean transformation, that is, .Z~, ct
~~’ 

, we can

write (to leading order) (E’ I’l’ )/w ’ = (E +L )/ w  :1
For linear systems, ~~~‘ 0 since the difference between

phase-averaged kinetic and potential energy densities vanishes.

If the resulting expression for is substituted in Eq. (22)

and Eq. (33 ) is used for the dissipation V
~erm . we are led to

(on dropping primes)

~~~
+

~~~
(U+flK) E =  EJflt f2,~ Kfl~U~ +2W~] (kO )

where we i have denoted ..,Q(K,X ,T) : w’ and set W U(X,T)K +fl~

in the wave conservation law. The group velocity here is

simply Cg U+flK. It is easy to see that the right-side

term in Eq. (IsO), aside from the W~ , represents the effects

. - . .

-

. • - .
. 

.
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of rad iation stress. For example , progressive waves on deep

water satisfy J~~ gK+T 0K3/p where g is the accel€~-ation due

to gravity, T0 is the surface tension , and p is the fluid

density. Since 
~~t 

:J 2
~ 

0 it follows that the radiation

stress R (l+3Z)E/(2+2Z ) where z T0K
2
/p g. For pure gravity

waves (Z 0) R:~E, and for pure capillary waves (Z ~ 
)

R 3E/2, reproducing the results of Longuet-~-!iggins and

Stewart (196k) in a simple way. For gravity waves in water of

finite depth h(X,T ) ,  the intrinsic frequency is 12: (gKtanh Kh)~ .

In this case •~‘l~ and are nonz ero , Expanding these terms

out and simplifying with ht 
+ (hU )

~~ = 0 produces the interaction

term (~~+ 2Kh/sinh 21Q~)E in Eq. (kO), which again agrees with the

results of detailed perturbation methods, These results are

not altogether surprising in view of the physical ideas underlying

Eq. (39). Eq. (L~0), of course , is valid for non-fluid-dynamical

problems as well. We simply set U 0 to arrive at the interaction

term E fl~/fl

In contrast spat ial , as opposed to temporal, inhomogertieti~s

are responsible for changes in wave momentum . The mathematical

basis for this is implied by Noether’s theorem (Courant and

Milbert, 1953). A wave momentum law analogous to Eq. (kO )

can be easily derived. For linear systems, this is accomplished

by noting that E .(~A and M KA for the wave quantities.

• Thus E/J2 z M/K which, together with action and wave conservation,

leads to

• 

•
- ~~~~~~~—-- ~~~—
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—M {~~~+~~ - 2wJ (Isi)

It is also possible to extend Eq. (k O)  to completely nonlinear

flows, This is accomplished by applying Eq. (39 ) to Eq. (25),

with the result that

~ ÷ u - ~~~~ )E =
~~~~

)
~~ ~~~~~~~~~~~~~ (k2)

where now E is the wave energy density. One may have

anticipated Eq. (Ls2) in retrospect. For example, the right-side

terms are for radiation stress, since K.4~ -L is a mome i-tum

flux (see Eq. (26)). The momentum analogue to Eq. ( Is 2 )  is

just as easily derived by combining Eqs. (39) and (26). The

result is simply

_ _ _  

~ ~~~~~~~~~~~ (k3 )

The above laws are, of course, coupled to the dynamics of the

mean flow. For further details, the reader is referred to

Whitham (1967). Three propagation velocities, those for action,

energy and momentum , can be defined. The~’ are, respectively,

_ _ _  
• 

•

— 
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(() -i I,
C ~~U~~

.l.,K /.t rL (Ilk)

U s2
~ K/(r~~~

-L)

= U + - KL~)/K4~

In the linear case these reduce to U 
~ 

11K since the Lagrangian

vanishes. Note also that the nonlinear wave kinetic energy K

satisfies exactly = I(E+~~ ) ~ WA -~ ( W/ K) ( K A ) ~C~M

where C~ is the phase velocity. This identity is based on E

being the sum of kinetic and potent ial energies and ~ being the

difference. It was first given by Levi-C ivita (192k) for finite

amplitude gravity waves in water of finite depth. But its

applicability seems to extend to much more general systems. In

the linear case , energy equipartition implies E 2 and so,

E = C~M~ a result familiar in surface waves,

General results like Eqs. (42) and (43) were made possible

by the assumed dependence of U on X,T only, that is, ther e is no

y-dependence. Thus the dispersive properties of the wave are

unmodified by the presence of the mean flow except to the extent

of the expected Doppler-shift. For many problems, however, the

assumption U = U(x,T) is not very realistic. In deep water, for

example, the nonlinear coupling between wave and mean flow

disappears ( Whitham , 1967) so that, effectively , the mean flow

is unaffected by wave growth or decay as induced by radiation

stresses. Surfaces changes in U can only be accounted for by

_  _ _ _

•

. 
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incorporating a y-dependence. Obviously , the above approach

using Eq. ( 39) is no longer applicable, and a theory for

the y-coupling must be separately developed . This ‘ill be

outlined in the next example.

At this point we can make som e remarks on wave packet

growth. Usually stability theory centers on the idea of temporal

growth or decay , for example, the time behaviour of a norma l

mode is studied in parallel flow models . Wave-like disturbances,

however, propagate downstream in reality, and pass through

various regions which may be stable or unstable on the basis of

normal mode analysis. Not only is the space-time evolution of

the wave energy density important , but its int egral , the overall

wave packet growth in defining stability. In general, the

stability (or instability) of one does not imply the same for

the other. Consider the integral Z(t) of E(x,t) over dx

between two rays x1(t) and x2(t). ~~(t) is a net energy in

some sense , with time playing a parametric role. Differentiation

leads to

rXz ~E x ±) d dZ i~ 
-

~~~~~ 
dx + E(x2, ±)~~ — E(K 1,~)

or,

f ~ ~E(X ,t) 
+ ~ (q~ E) J dx

I 

• 

_

— 

—. - -—— ~_V_~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V 
~~~~~~~~~ V
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If q is identified with the group velocity U 4 J 2 ,~ , then

Z d~~~/dt is simply the t ime rate of change of total energy

between two. rays. If we introduce Eq. (40) we find that

x~(t)j • ~~~YJ2X 
- K tT~ -t 2 w~] dx (45 )

which, in non-fluid-dynamical problems, takes on U 0. If

the inhomogeniety and the dissipation vanish, Eq. (45 ) shows

that the energy between two rays is a constant equal to the

initial energy. In general, the coefficient of E in Eq. (45)

is a complicated function of K, X and T that is not known

until the kinematics are completely determined. However if

t C’)1 = 0 (as in inviscid deep-water wave problems)

Eq. ( 11.5) automatically implies wave energy growth whenever 0

since K J ?.K/ f 2.  > 0.

Consider , for example, the quantity

Q~ 
12t W1.~~Ki2KU,( +2w ~ 

=

for gravity waves. If Q ) 0 everywhere, instability is implied ,

but if Q ~ 0 there is total stability, The energy of a wave

packet t}~us grows or decays if, relative to the wave, U~ ~
negat ive or positive , a fact in agreement with observation.

Flow inhomogenieties play a dual role in affecting both energy
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density and total energy. For example, an energy singularity

can develop within a wave packet while the total energy decreases.

Now, let umax and denote the maximum and minimum values of
x~t) x tV

Q In (x1, x2) ,  so that f EQ dx 
~ ~max~~ 

and f EQ dx

Hence , substitution in Eq. (45 ) shows that Q and 
~mjn 

can be

interpreted as upper and lower bounds for total energy

amplification. In linear theory these bounds are prescribed in

the sense that U ( X ,T ) is specified beforehand. Since U is slowly

varying the growth rates Q are 0(E ) ,  however , events occurring

within the wave packet can be quite sudden.

We can also examine wave momentum. The total wave momentum

Jt i= ~~~~M(x,t) dx following a wave group is governed , in

linear theory, by the equation

_ _  - ÷2 W~J dx (46 )

where x1,2(t) are determined by integration 
of the wave

conservation law. For simplicity consider waves in inviscid ,

deep water, where .1). 
~ 

0. Then, the inequality

(-1~)~~C = (- L~~~~ fMdx ~ SM ~U~) dx

follows, identify ing the maximum and minimum of -U~ as the

- - V~ 

— —

~~~~
-- -

~~~~~ 

—- - .
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upper and lower bounds for the momentum amplification. For therXz(~
)

wave action density A , one has d/dt J A ( x , t )  dx 0 in a

conservative system . For linear or nonlinear problems, we have

X1(Q X~
(O)

c4 ~ fi1(Xit)dx f A (X,O)a!x IL~~~
4 (47 )

where is the total initial action. With dissipation,

Eq. (47) is no longer true, - but rough estimates for upper and

lower bounds on the decay rates are easy to obtain. Consider

the case ‘2x = ‘2a 
z 0. If we denote

Max K(x, 0) > Km Mm K(x 0))0 and 3t
M
_Max (_UX) >~~m

Mth (_Ux)

it is clear, from wave conservation, that along all rays

~
‘mt KMt 2K~e ~ K ~~ 

KMS .
‘ Since Ch~~ -2~~K in deep water, where

~ is the kinemat ic viscosity , it follows that

2fw1Adx ~4~ J K
2A dx (48 )

and hence , for any t = to , that

_4p K~~e
2
~~ ~ ~

Thus, bounds for the total action decay (or growth) can be

• readily formulated in terms of initial conditions and streamwise 

V~~~~~ •V ~~ 

_ V~_~_V_ •__VV_ ._ _
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parameters. In the linear results given above it is possible

for the total energy or momentum of a wave packet to grow

without bound, In this case the effect of nonlinearity must

be included by, say, expanding the average Lagrangiari in powers

of wave action. For further details, the reader is referred

to Chin (1976).

_ _ _  
_ _ _ _ _ _  

_ _ _ _ _ _ _ _ _ _ _ _  V - - V 

.
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Example 4. Waves in Moving Media; Mean Shear Flows.

The previous example dealt with mean flows constant across

the modal cross-apace. Because the local mean speed was unique

over y we invoked the principle of Galilean invariance , and

this led to general results. This invariance is, however ,

inapplicable to the case of mean shear flows. At first , the

situation appeared to be additionally complicated by the lack of

a suitable variational formulation for the inviscid Rayleigh

equation. This latter point was dismissed for, although a

variational principle does not exist in the linee.rized problem,

it does for the complete nonlinear one. With this settled, we

opted to equivalently average over phase and modal cross-space

directly the fluid-dynamical conservation laws for total mass ,

total momentum and total energy. The formal procedure parallels

Whitham ’s (1962) treatment for irrotational gravity waves (of’

energy density E and wavenumber K) in water of finite depth

- h(X, T) and speed U(x,T ) ,  the latter two variables of which, on

account of 0(E) wave-induced effects, cannot be assumed as known

a priori. E and K in addition are taken as slowly varying

functions of x,t and the waves are assumed to be locally

sinusoidal in the averaging. The resulting modulation equations

(although ~
2 terms are not explicitly present) describe the

nonlinear wave back-interaction on the mean state over scales

large compared to a typical period or wavelength. The consequences

of the theory can be found in Whitham (1967).

— ~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~ ~:-~_ -~ .--- —• - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - V V 
- - — —

V 
•- - a ~~ -
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Our theory, however, departs from Whitham s by recognizing

that the U here, in addition to experiencing “magnitude changes”

of the Whitham type, experiences “shape changes” due to the action

of Reynolds stresses. This consideration does not arise in the

irrotational case by virtue of Kelvin’s theorem ; an irrotational

flow stays irrotational. What is needed to extend the above

ideas ts thus a suitable (phase-independent) Ansatz for the mean

flow in the phase-modal averaging, so that within the limitations

imposed by WKB theory, the simultaneous wave back-interaction

process iii properly described. A simple model can be constructed

by observing that waves truly slowly varying in space can be

described locally by the usual normal mode theory. The given
V laminar f1o~s U~(y) corrected for wave-induced distortions

of 0(E) as introduced by the Rayleigh equation then can be put

in the form (Chin, 1976)

- 

1J(5,E) 
= + E _ _ _ _ _ _ _  

- 

(50)

where 9’N(y,K) is the Rayleigh eigenf’unction suitably

normalized, and E includes the initially exponential temporal

growth. This result agrees with that in Landahi ( / 9 73) .
The key ~dea is to assume a slowly varying mean flow in the form

U(,yJ. T) ~~~~~~~~~~~~~~~~~~~~~ (51)

______________ -- _
~~~

_ - ___---.___ ._
~~-- - .- .— •

-  
- 

- ~~~~~~~~~~~~~~~~~~~~ - - —____



where U0 is a reference speed. Thus , in this model, the local

normal mode solution for the corrected mean flow determines the

form of a large-scale (wave-dependent ) shape structure convected

with the mean flow. This assumption is physically sound provided

the waves are slowly varying. The above Ansatz reduces to

Whitham ’s when U
1 

constant , since uj’ 0. Second-order changes

in mean pressure, of course , also must be accounted for in the

averaging. When the final averaged equations are comb ineci with

the kinematic requirement for wave conservation we arrive at a

system of modulation equations which, in Whithain’s (1967) sense,

can be hyperbolic or elliptic depending on the value of Kh.

These imply a splitting of the initial wave packet or a type of

modulational instability. However, the new theory generalizes

Whitharn ’s by the inclusion of velocity profile curvature, and

this introduces a host of new effects, The new theory can be

considered as complementing the viscous one of Stewartson and

Stuart (1971) by dealing with essentially inviscid flows that

are not in “near-equilibrium”. A detailed treatment for surface

waves and channel/jet - type flows is planned in a separate

paper , but a preliminary account of the main results is available

in Chin (1976).

I

V - 
-. — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —V 

-
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Example 5. Taylor’s Waves.

The Lagrangian theory leads to simple generalizations V

for “Taylor waves.” The effect of nonuniform currents with

constant horizontal divergence on a train of gravity waves

whose amplitude and length are constant in space but variable

in time was first discussed by G.I. Taylor (1962). Such

space-independent waves can be expected to exist for constant

= ~~~~
- if there are otherwise no other inhomogenieties in the

medium , and Taylor has shown how these can be experimentally

realized. We thus cons ider “deep-water” problems. If we denote

by A the wave action, the nonlinear governing equations on

taking K
~ 

= A~ 0 become

(52)

(53)

which integrate to

K K0

A~ A0e~’

- 

—r - 
~~~ .—.—-——--—- - 

_________
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where K0 is the init ial wavenumber and A. is the initial wave
action. Now A A01c/K0 and we can 

expand the wave energy as

E Af ( K )  1~ ~A
2g(K). Thus the nonlinear solution for energy

becomes

E ~~ K f(K) + (56)

For deep-water gravity waves, f ( K )  = g
0~ K~ 

and g(K) K3

where g0 
is the acceleration due to gravity , as can be shown

from the results of Whitham (1967). Eq.. (56) specializes to

E ~~~~~~~~~~~~~ Kill + 
~~~~~~~~~~~ 

K5 
- 

(
~~

)

-3/4
For linear waves E ~ p g~,a2 implies that a 2... , reproducing

Taylor ’s result. For capillary waves with surface tension T,

T~ K
3~
’2 and g -K3/8 (Chin, 1976). In this case,

E* ~~tT K 5
~’
l — - ~-~~~

t
K~ 

V

K, 6U(./ (58)

which, for small amplitudes , gives E ‘-~~ A
5
~
/2
.

We can also formulat e the above ideas somewhat differently.

The energy equation as given in Eq. (142) is simplified by

expanding the average Lagrangian in powers of A . If we assume

VV ~~~~~~~~~~t~~~~~~~~~~~~~~~~~~~~~~~ VV V T ~~~~~ 
--  

- - -~ -~~~~
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that W UK + f ~ Ag, the equation satisfied by (the nonlinear

definition of) E is, to 0(E2), V

= [-
~~ 

+E
1 Kgf g~~-K~g~

1 
~~

Assuming E
~ 

K
~ 

= 0 as before , we can equivalently write

I
flE E -~~E (60)

where

= - ( l  . _ _ _ _ _ _ _ _ _  61/ a x .  flu
\

For pure capillaries the coefficients are ,8l 
-5~~/2 and

‘2 
_5~&/(32T), while for pure gravity waves ~~ 

-3o~/2 and

7K20</L1.g0. In linear theory equilibrium amplitudes cannot

exist for o<. < 0. But in the nonlinear case, a possible

equilibrium energy E fl1/ fl2 exists. Thus it exists for

capillaries (E l6T) but it does not, to this order , for gravity

waves. Eq. (60) can be integrated for constant i’s. giving

-

= (62)

Pt

- - V 

— V :
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where S is related to the initial energy. (For more

complicated problems in which the fl’s are time-dependent ,

integration in closed form is possible using Bernoul i—type

integrals.)

This result is reminiscent of the amplitude equation first

given by Stuart (1958) in nonlinear boundary layer stability.

Essentially, if Ci) fl1 Y 0, 
~2 

> 0 an equilibrium energy

exists, ~~ j )  
~ l 

> o~ 192 < 0 an equilibrium energy doesn’t

exist , and (iii) fi(O  , flZ
< O the disturbance takes on an

equilibrium energy E0 at t -~ ~ however , the equilibrium is

unstable. If the energy density is less than E0, the disturbance

decays to zero, whereas if it is greater than E0, 
the disturbance

grows. Thus, Stuart ’s equation describes a broader class of

temporally varying problems. In other problems in which the waves

are not purely steady in space and time, the modulatIons balance

according to Eq. (22). Thus the Landau coefficients in Eq. (62)

are now functions of space and time as determined from the wave

kinematics. Implicit also in Eq. (22), of course, is

Gaster’s (1962) theorem relating temporal and spatial growth

rates via the group velocity; the relationship is much more

complicated in the nonlinear case.

-
- 

-V--c —-.-—— -- --V - - -
.
~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~
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Example 6. A Weakly Nonlinear Instability.

To examine the basic effect of nonlinearity on linear

wave flows, consider homogen eous, conservative med ia and

in Eq. (22) with P = 0 , let us eliminate the explicit dependence

of ~~ and on A by using the dispersion relation. This

leads to

~~~~~~~ ~~LK~ 4K) (63)

which can be written as the following elkonal equation for the

phase function O ( x , t ) .

- 2L~ ~x~t ~ KK ~~~~~~~~ 
= o (6)4.)

- 

We can specialize our discussion to wavemakers. In linear

theory the wave frequency is fixed on prescribing the wavenumber.

But in nonlinear theory this alone is not sufficient since

something about the amplitude distribution must be known. We

can , of course, equivalently modulate the frequency and take

K = and W:  W.~~ E exp(io~x) as initial conditions, where

~ and ~ are prescribed constants. Then the perturbation phase

function 
~ 

- K~,x + w0t satisfies 0 and E- exp(iø x)

at t~0 as well as the differential equation above, Nonlinear

— ... , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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perturbations to the basic system thus satisfy, approximately ,

— 

~~~~ ~~t ~~~ 5? = 0 (65 )

The solution to this is simply the real part of

.‘~K •  \ si~,h 1~&& K, x - wt -
~ ~~ e — r  (66 )

wher e, if ~WW,.cK ,. — > ~

t ‘/2.

= ~~ ~~~~~~ 
) 
— (67)

-

The instability implied by Eq. (66) arises from the solution of

an elliptic Cauc hy problem. It is essentially Whitham ’s (1967)

instability and , for example , can be realized by gravity or

capillary waves on deep water. One obvious question is the

effect of inhomogeniety (e.g., a slowly varjing current

U U(X, T) ) and dissipation in the med ium. To explore this

issue let us follow Hayes (1970) and expand the average

Lagrangian £ in the form Z~- A w - H ( K ,A ,XI T). This

repreeent’ation is a canonical one since the only amplitude

measure that appears is the wave action A L~ itself. The

modulation equations as expressed in Eq. (22) become

V ~~~~~

- -

~~~~~~~~ 

- -V - - - _____— 

~~~~~~

—V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~~~ ~A
~~i WK~~

+H
~K~~

+H
~x (68 )

(69 )

where the frequency W is determ ined from 0, that is,

‘I) = HA , A ,X ,T)  (70)

Since ~~~~ -L is an energy density (see Eq. (25)), the

function H can be interpreted as a Hamiltonian energy function.

In the present case (as in Eq. (22)) the frequency is again

realj nonconservative effects appear idrectly in Eq. (68).

As in the discussion leading up to Eq. (65) we consider weakly

nonlinear perturbations to a uniform state (denoted by zero

- subscripts) and linearize Eqs. (68) and (69) about the constants

K0 and A .  If we introduce new coordinates ~ : t and

I x - C0t where C0 is the “mean velocity”

the perturbation problem for A’ (where A’ A-A 0 and K’ K—K0)

can be put in the form

= 2E (w~-U) ~~4 (71)

q’(t )

~ -H~,0 K ( 1 ,~~o) ~ ~(1)

V 

-

~~~~~~~~

- - —  V - 

~~~~~~~~~ T -



53

where ( ~~ - U )  i~ taken as constant locally. If E is cmall

we can writ e, approximately,

~ w~-1fltA’(J,t) ~ e ~ 
~ ~TJ1AO HKK,O ~~~) 

(72)

In the hyperbolic case the solution to the “conservat ive part”

B satisfies

~
tB

~~~~ .(1A,O H KK,D iP 
= 0 

(73 )

B(t,t.io) B~(1,t~o) çl’(~)

and is given by D’Alembert ’s formula , that is ,

B(L-c) ~~~~~~~~~~~~ ~~~~~~~~~~~~~ t ) J 
( 1 4 )

~F _.j~

Eq. (74) shows how the perturbation “splits” ; it also illustrates

the interplay, between ~~ , i1(, initial conditions and

norJ.inearity. The latter is stabilizing in thesense that small

perturbations remain small.

The elliptic initial value problem is solved by analytic

continuation into the complex 
~ 

- plane. The formulat ion for B

as given in Eq. (73) still holds, but to indicate explicitly

that f
~L AH

~~ 
< 0 , we will introduce the barred variables

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- 
~~~~~~~~~~~
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denoted by J/ ( - f 2 AH~~
)
~ and ~ V .  This leads to

_ _ _ _ _ _  —f ~~~Z. - 0 t~ - o  (75 )

~ 3~(1 ,~~o)

As suggested in Garabedian (1964), we introduce the complex

variable ~ I + i~ and assume that the functions q( ~ 
)

and 
~
.l’ ( () are analytical functions of ~ . We can then write

B(1,~~~
) = B(f*(~7, t), ~~~~~~~ 0) .i’#i?~ )

and B~( 1,~~~ O) 1÷~:~j )  (,b1(j) where , for each valu e

orf, B( t~~
) satisfies

0 (76 )

Because Eq. (76) is formally hyperbolic , the solution

B( ~ , j
’+i~ ) can be determined in a stable manner from initial

conditions. However, this is a solution for comp1~~ ~ The

physical solution is obtained in the limit ‘i-’ 0 after an

explicit formula for B( I , ~~) is obtained. Again, the D’Alembert

formula applies, giving

= 
*V#c~ i-)~

-
~~~~~~ - --- VV - —- -V- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where the semicolon above refers to the parametric dependence

‘on~ i (t he physical solut ion implies the limit I c f) .  As a

simple example cons ider the situation where the initial

wavenumber variations are zero so that çb1( 
~7 ) 0. Since

Eq. (76) is linear it suffices to consider a Fourier component

B(t 0, ~ ) o< sin~4’1 of the initial action disturbance, that

~~~• 9~i(’t
) cc~.sin~~(f+i)V), In this case, the physical

solution is

~~~ — i,~,t 
~~~~~~~~~~~ o( Slh

~~~I 
CO SJ~ 17. (78)

The appearance of the CO8hfl~ in addition to the growth rates

U.)~ and U~ already in Eq.. (72) enable a simple definition for an

“ effective ct).”.

In applying D’Aleinbert’s formula and Garabedian’s method

of imaginary characteristics certain conditions on smoothness and

analyticity, of course, are implicitly assumed. These are

in addition to those calling for slow variation, as indicated in

Eq. (2). Sufficiently non-smooth Cauchy data also possess real

eo1utioi~e, but solutions to these problems are not likely to

be slowly varying, and hence, are not likely to be described by

the present theory.

— -~~ 
V - - - V — —

V~~~~~ V V~V~ ~-VVV ~~ - — - - —
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4 -.III. High-Order ~ffects.

The low-order formulat ion discussed in Section II

gives results which , strictly speaking , are invalid over

space/time scales greater than o((’). They are , of course,

valid in the sense under which they were derived , but to deal

more accurately with large-scale effects, high-order modulations

as described in Eqs. (17) and (20) must be considered .

Lighthill (l965a), as an example , traced the progress of gravity

wave packets on deep water and showed how , on the basis of

low-order Whitham theory, cusp-like energy redistribiitions

within the packets would asympto t ically result. However , the

inclusion of high-order dispersive terms (Yuen and Lake, 1975)
V 

actually suppresses the Lighthill singularity~ the end result

is a train of solitons. Another situation where high-order

dispersive and diffusive corrections are likely to be important

is in the formation of so-called “kinematic shocks”. These are

essentially wave-mechanical discontinuities which , on the basis

of low-order theory , are assum ed to conserve various fluxes,

for example, momentum or energy. Their probable existence was

first speculated upon by Whitham (1965). However , the true

nature and stability of these shocks, of course , canno t be

studied without considering the structure of the high-order terms.

It is entirely possible that sufficiently strong dispersive
- effects in the high-order correction terms can suppress their

ever forming. On the other hand if the corrections are

________  -
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• essentially diffusive , as in gas-dynamic shocks , the low-order

results would be meaningful in the sense that the solution is

“properly embedded” within the high-order one. More on this

will be said in Section IV.

For many applications in continuum physics the basic wave

solution is weakly nonlinear, and hence , expandable via Fourier

series in powers of amplitude squared. For these cases the

structural form of the high-order modulation terms depend s

only on the primary harmonic , that is, the basic linear wave

solution. In this physical limit one can obtain a more

transparent but completely equivalent re-expression of

Eqs. (17) and (20), in which the corrections to low-order theory

depend only on the real and imaginary frequencies 12(K) and

JT(K) cori~espond ing to the uniform wave solutiân. To

facilitate the discussion, let us first consider purely linear

problems without flow inhomogenie ties, so that Fourier super-

position is valid . The mathematical approach is a simple one.

Expansions about a center wavenumber K0 and a real frequency k)~
for the modulations are introduced as, for example, in

Davey (1972), but unlike D~vey the series solution is no-t,

truncated -to a finite number of terms, The full seri es solution

is then resunimed in a type of analytic continuation to produce

solutions valid for all wavenumbers that are consistent with the

• Lagrangian approach. The technique used is analogous to , for

example , identifying the series ~~ x~ with (1-xY
1 , which

f l— 0

has a wider range of convergence. We now consider the linear

V _ _  , 

,

~~~~~~~~~
- -

~~~~~~
-— - - - —:-

~ 
—

~~~~~~~~~~~~~
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superposition of monochromatic wave components exp i(Kx-~~t),

each satisfying the complex dispersion relation

• w~~~(K) — (79)

Here K is a real wavenumber with f2~ and J l being respectively

the real and imaginary parts of Jl(K). In the neighborhood of

the cent er wavenumber K0, Taylor expansion gives the series

W~~~Ø flhu2flK (KO)(K KQ) . If Jf~c / f~J 0 (€ ) ~< 1 we can , as

in Lighthill (1965b), Fourier sup erpose elementary solutions

and arrive at the more general solution

i (KX- w~)
F(x,±) ~~~~CK) e ( 80)

The function B(K) is proportional to the Fourier transform of

the initial condition and it exists when the initial disturbances

are localized. Without loss of generality let us re-express

Eq.. (80) in the form

1(K.X -J 2~~J
F(x,~) ~‘(x,~) e (81)

j f  (K-K.)X -(.tl-Jl .5t3
• ç1’~~j B(&) e J ~~dK (82)

0 0 r ~1
-_-— -~~~ V V~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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so that F(x ,t) consists of a purely periodic part and an

amplitude function çb (x,t) that includes dissipative effects.

This ’follows the approach introduced in Section II. Applying

1((k-K.)x-(w-~t2,~)-~ Jthe operator J_~, ... 3(r) e dK to the

Taylor-expanded dispersion relation (which holds for any

component wave) and noting that ~ ~~ f01, (w—i2~’) fr
and (~i)”~~~~ = J~, (k ~ k ,) ~~ dK leads to the following

ident ity for cu

0 • f l

I = cii,çI’ + 2 :  J2 f l K,O ~~~~ (8:3)

- Nex t , as in Eq. (2), we seek WKB solutions of the form 
V

I’,
• £9(X,’t)çL~’ ~(X,T) e (84 )

where ~ is the perturbation phase function , that is,

O~ :K..K0 =~~~(X,T) and —~~~: W-f 2 ~ Z l 7 (X ,T) .  Now the multiple-

scaling introduced in Eq. (2) implies that, for any function

u(x , t)  U( ~~,X T ) ,

.,
~~~~~

-
~~~~~~—.---- - V V~~~~~~~~~ _~ •~~V~ V V  ‘ V -~~~~~ 

V V ‘ 
-

~

V

•

~ 
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~~U~g (85)

+ 2

)i-2. p~(~~-~)(~~~2) 
~~‘~~~-t7 1

T~~~ ~ n-z)~,XX ~~~~~~~~
+ n(n-i)(fl-2)~’13) •?•“

~~~ V~
.L~. A- (n 2 )9

~~~~~~~~~~~~~~~~~ 1J 
-

~~ ~~XX (n-i )0

r~~ 
, r

K ~ )~ 1!
12. —

~ ~x~ XX V(n 3)0

~ n(fl-J)( ~?-Z)( ~2 p- 7 r

~ 
1
~xx L1~~~~ X
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as can be readily shown by induction. L~t us expand the

function çL’ ( 9,X ,T) in Eq. (84) following Eq. (85) and substitute

the results into Eq. (83), remembering that j2fl K o

satisfiec., /SL~~,/fL~~,j” 1. One sees that to obtain O(Et)

corrections to the linear phase relation only 0(~~~t) terms in

Eq. (85) need to be retained. But to obtain O (E~ ) corrections

to the low-order amplitude equation (modified to include the

effects of dissipation) we must retain the 0(E3 ) terms in

Eq. (85). Equating real and imaginary parts in the equation

just obtained gives, respectively ,

= ~~~

, ~~7” [i” c”’ ‘~ 
÷ ~~ a 3 (86)
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The first equation describes the perturbation phase

corresponding to the slowly varying wavetrain and the second one

describes amplitude. However, since we expect our results to

extend to all wavenumbers, we sum the above series. This leads

to a phase relation of the form

_____ 

___________________ 
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W — .i2 •
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After some manipulation the amplitud e equation , in X-T

variables , becomes V

1,i2. ~ 
2. i. 

-

~9’
”- ~~~~~~~~~~~ LT~~ (89 )
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Because fl 1
/ f f~-~

. O (  
~. ) all high-order corrections to the

• basic low-order phase are O ( E ~~) ,  as would be expected for

weakly nonconservative waves that are truly slowly varying.

(This is also consistent with the approximate ‘Fourier superposit ion
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used. )  In the Lagrangian approach , the vanishing of 0(E )

- 
terms would be attributable to the orthogonality of the

trigonometric func tions , and identical results (Chin, 1976 )

can be obtained by extending the method of Example 1 in the

manner of Yuan and Lake (1975), the  latter of which will be later

discussed. Similarly , all high-order corrections to the

low-order amplitud e equation with damping are 0(~~t)• In general,

the indicated corrections involve coef f ic ien ts  that depend only

on high-order wavenumber der iva t ives  of ft and J l , which are

in turn defined by the planar monochromatic wave solution for a

particular problem.

The above results show how , in a simple way , the complex

dispersion relation of the monochromatic wave completely

determines the dynamics of the slowly varying one , as would be

expected from the physics of the problem. The high-order terms

in Eqs. (88) and (89) based on J2~( K )  and its wavenumber

derivatives are , of cours e, directly related to the high-order

Lagrangian terms in Eqs. (17) and (20); those based on 12’
appear on account of the dissipation functional F. But the

Fourier integral approach given here provides a much more

transparent indication of the structure of the high-order

dispersive and diffusive effects than does the equivalent

variational one ; the results derived here are much simpler to

use and do not bear the limiting assump tions cer~tral to other

approaches employing centered wavenumber expansions. Let us

V 
_ _ _  _

- 
— -- —

~~~
- —
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now consider the effect of weak nonlinearity. As previously

-discussed the high-order modulation terms for a weakly nonlinear

system are determined from the primary harm onic , that is , they

are as given in Eqs. (88) and (89). Thus, nonlinear Stokes-type

corrections can be incorporated in the above results in a

simple “add itive” manner. For simplicity let us first deal

with conservative problems. The low-order amplitude equation

is just

~~~~~ (90)

where (A) :. J2 (K) is the linear dispersion relation. For

moderately small amplitudes a Stokes expansion implies that

w = ffQc) -4- (91)

and the wave conservation condition V a ic / a t  * ? w/ax 0 can

be expanded out to give

~~+f ~~ (K) +~~~~~~~~~~~(K)~~~~~~~~~
J ~~ ~ (K) ~~ 

a o ( 92)

- ~~~~~~~~~ 

- — ~VV V 
V ~~~~~ - _ _ _  - V V
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The important coupling arises in f2( K )  ~a
2/&x since it implies

an 0(a) correction in the characteristic velocities . The other

new term merely corrects the coefficient of the existing term

in ~~K/
’c3x and contributes only at the 0(a2) level. Similarly ,

the nonlinear corrections to Eq. (90) would be various terms

• of 0(a4) provid ing relative corr ections of 0(a 2) to the

coefficients of the existing terms in ~ a
2/~~x and aK/~~x.

Thus, in the f i r st assessment of nonlinear effec ts , we can

retain Eq. (90) and use the new dispersion relation as given

• .
in Eq. (91), dropping the nonlinear correction tO _Il

k 
in

Eq. (92). This is, in essence , Whitham ’s (1967) approximation.

But since high-order modulation effects arising from linear

terms must eventually interact with the nonlinearity, Whitham ’s

V approximation should be modified to describe this effect.

As is clear from the above discussion , the leading high-order

currections will modify only the phase. Bearing in mind that

for near-linear problems the corrections are “additive” in the

sense previously discussed we have , on assuming that wavenumber

variations ar e less rapid than t hose in amplitude (or , if

-~
‘2 3K ‘~~~#K ... can be neglected ) the following approximation

R R
w a 12 (K) + -ç(K) ctt - j £212 KK ~~~~ 

(93)

wh-~~ih must be solved together with Eq. (90). These equations,

again , hold only for homogeneous , conservative media.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~— --- —-~~~- .—- — — V V ~~~~~~~~~~~~ - ___ V 

- ---5 ---— - -- — —-
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To understand the qualitative nature of the above

approximation , let us re-expand Eqs. (90) and (93) about
- K I(~ , say , consistently wi th  our assumption of slow wavenumber

variations. Again considering the conservative case we have ,
R

with C0

(a.t)~ ÷ 
~~~~~~~

CO~~~~
fl

~~~~K O  ~~~~~~~) 
a~) 

= o (94 )

w-w0 = C, (K- K.) + 
~~ ~~~~ 

(KK . )
t 

~ 
- (95 )

Using the notation ~~~ = ae~~ , these equat ions combine to give

• ~(ç~ ÷C ç1~) -!-
~~fL~~O c4A K.)f~’/

1ç/~ (96)

This “nonlinear Schroedinger equa tion ” has been derived in a

number of contexts by various authors using d iffer ent techniques,

But our discussion shows that it is really nothing more than a

specialized form of Eqs. (17) and (20). This, in fact, will

be clearly illustrated in Example 7.

Now in “self-focusing” problems , Zakharov and Shabat (1972)

have shown that for initial conditions which approach zero

sufficiently rapidly as 1x 1 ’ ° °  (corresponding to “pulses~ ) ,

• Eq. (96) can be solved exact]~y by the inverse scattering

~~~~~~~~~~
i

V~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :1: .

--- _ _ _ _ _
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technique. They discovered that an initial wave envelope

pulse of aruitrary shape will eventually disintegrate into a

number of solitons and an unsteady oscillatory “tail” interpreted

as noise. The number and structure of these solitons and the

structure of the tail are completely determined by the initial

conditions. But the tail is relatively small and unimportant

for pulse-type initial conditions ; it disperses linearly,

resulting in a amplitud e decay. Each of the resulting

solitons is a permanent progressive wave characterized by

(four) parameters in amplitude, speed , posi t ion and phas e , but

unlik e the solitary wave solutions of the KdV equation for

shallow water , the amplitude and speed parameters bear no

V direct relation to each other except that they arc the imaginary

and real parts of 
V
an assoc iated scattering problem. It is

important, though , that these solitons are stable in the sense V

that they can survive interactions w~ th each other without

permanent enange , exc ept a possible shif t in ( the parameters

for)  position and phase. The time scale for the soliton

formation was found to be in direct proportion to the length of

the pulse and in inverse ~.roportion to the amplitude of the pulse.

The above result shows that the end product of unstable

“elliptic” modulations, unlike Lighthill ’s (1965a ) low-order

cusp solution, is a train of solitons. The exact behaviour

depends on the relative magnitudes of 
~~~~K o  and f2(K 0). .~ut

the same qualitative features can be expected for unstable

- V 
V — —~~~~~~~~~ - -- -

~~~~-~~ — -
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gravity and cap illary waves , or for that matter , all waves

that are “elliptically unstable ” in Wh itham ’s (1967) sense. To

show that the approximation underlying Eqs. (90) and (93), in

fact, can be obtained by Lagrangian techniqu es , it suffic.~s for

our purposes to present one illustration.

Ex~ pple 7. Gravity Waves in Deep Water.

We quote the example considered by Yuen and Lake (1975),

who chose for the basic Ansatz (corresponding to Eq. (21)) the

wave solution, correct to 0( E

= 
~Z(EX ,~ t) Cos ~ ~~~ K’Z

Z 
Cos 29 + (97)

wg K)f

~ -
~
— e sir, o + ~~- cos e ÷ -

~~
- ((-Ky)cos °Je ~ +jw~z

L
e si’i 28 “ ... (98 ) 

V

The Lagrangian density is just the pressure, that is,

L - [q•~+fcçct +~,t) #yJ J dj (99 )

where ~~(x ,t) is the free-surface position , y is the modal

coordinate, ~ (x,y,t) is the velocity potential
, g is the

acceleration due to gravity , with the fluid density being unity.

Then, the average Lagrangian, correct to 0(~
t,K2a

2) ,  is

::r • V~~~~~~~~
j  -

~~~ 

V 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - __— - - VV
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w~cz~ ~a~
t 

~~ ~ ~~~~~ cZ~~= — 
4- 1< +K ~ 1K (100)

V -i.! ~~~~~ ~
. 

~~ ~u
taaxx .~~1- ~~ 8 K3 8

and we may note that, in this approximation, space-time

• derivatives of frequency and wavenumber do not appear. After

some algebra, they found that 0 variations ga. e

- o 
(

~~~~

)

lf~Z 

(101)

while “a” variations gave , on simplifying, the phase relation

w = J ~K [ 1 K ~~~~ ~j~iJ (102)

Now this is precisely the approximation deduced in

Eqs. (90) and (93), To see this, simply note that the Stokes

solution gives f2(K) 
~ 
g~ x

5~
’2 while = -* g~ K..3

~’2

from the linear part of tt~ dispersion relation. The above

results were also derived by Chu and Mei (1970) using multiple-

scaling me hods directly from the governing equations. AU

these results, of course , are really special cases of

Eqs. (88) and (89) modified for weak nonlinearity , which do not

bear the limitations imposed by “centered wavenumber” expansions.

T V  _V - - VV__V_•___V~__VV ~VV_ ~______V_ V -

_
_ _ _ _ _
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Thi8 is especially important for, in analyses of the latter

kind , one implicitly assumes (in some nondimensional sense) that

amplitude variations dominate those in wavenumber - otherwise

the expansions are meaningless. In another sense, the

generalized modulation equations derived are useful because

it is not even clear that a “cent ered wavenuznber ” stays

constant on the scale over Which the high-order modulation

terms become important. It is crucial to note the equivalence

between Eqs. (20) and (17) and. Eqs. (88) and (89). They

remain applicable for large values of K
~

(X ,T).

To the above results for conservat ive and homogeneous

media we now add the effects of dissipation. The same line of

reasoning that led to Eq. (93) in the nondissipative case now

requires t hat we retain in Eq. (88) the term , which

balances the dispersion term , both being o(~~), At the same

t~.ae the low-order damping term Z4fr in Eq. (89), first

suggested in Landahi (1972), must be kept (see Example 1).

The first of these corrections seems to have appeared in a

number of studies in hydromagnetic waves, accor d ing to

Malkus (1976), though in a less general form. In the next

approximation, high-order corrections to the “simply-damped ”

amplitude equation involve the diffusion terms

etc., and the dispersion terms fr~3p~O-~t~c)c x , etc., in Eq. (89),

and the remaining terms in Eq. (88). The etc. ’s here generally

refer to terms involving higher differentiations of j’2~~ and ii ’

with respect to wavenumber and the appearance of the terms

— ~~~~~~~ -• V—••--—----—• -~~~~-.•-— --— ~~~-
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Kx , and Kxxx (which would have been omitted in the centered
- wavenumber approach). Thus the appearance of these terms

depends, in a sense , on “how dispersive” or “how dissipative”

the original uniform wavetrairi is. For example , the vanishing

of J2.~K would leave only diffusive corrections to Eq. (89)~ the

phase relation, though , would still bear the effects of

high-order dispersion. In this kind of limit, the most obvious

effect of diffusion would appear to be a gradual decay of the

solitons as are produced in the Za]tharov and Shabat (1972)

solution. No general conclusions are available, at this point,

for Eqs. (88) and (89) with (or without ) their nonlinear

corrections. Some future studies are planned , however , to test

V the separate effects of’ strong dispersion and strong diffusion

for various kinds of waves, Howev er some speculation is possible

on what types of “strange” behaviour might be expected. For

example the “diffusion coefficient” in Eq. (89) in the

case of deep-water surface waves is just the kinematic

viscosity (Lamb, 1932 ) which is positive , as expected . This

positivity is also apparent from existing numerical studies in

boundary layer and vortex instability; to the author’s

knowledge, the plot of J’
~ (K ) aga inst K has always appeared

concave down. A surprising result, however , is found in warm

electron plasma waves. Classically the waves are Landau-damped ,

that is , Jl (K) ~ 0 , so that according to the low-order form

of Eq. (89), the waves always decay. However, d irect calculat ion

- —~~~~~
— -  — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V V V V  — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
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of shows that there exists a range of wavenumbers

bearing negative diffusion. Thus , on a large time scale , there

may occur a transfer of energy back into certain of the formerly

decayed waves. The possibility of sign variations in _J2
~~

is of fundamental importance, especially from the viewpoint of

developing deterministic wave models of turbulent shear

flow (C hin , 1976); it allows, for example , energy transfer by

classical cascading and by reverse-cascad ing.

We also mention , in context, the “nonlinear instability

burst” found by Stewartson and Stuart (1971), who studied the

stability of wave systems in plane Poie euille flow. They

considered an infinitesimal centered disturbanc e impos ed on a

fully developed plane Poiseullie flow at a Reynolds number R

slightly greater than the critical value R0 for instability,

The disturbance was assumed as a wave modulated in space and

t ime , wh~..se amplitude “a” satisfied a nonlinear parabolic

equation. For finite values of (R-R 0)t , Hocking , Stewartson

and Stuart (1972) showed that the amplitud e develops an infinite

peak at the center of the wave group. This result also appears

a~ a special limit of’ the present theory , although the number

of assumptions required seems somewhat restrictive. In

Stewartson ’s approach , center wavenumber expansions for K = K0
are taken about a po int of “ maximum growth” , that is,

J2~ (K 0 ) 0. If we further assume that the waves are weakly

dispersive (J2~cjç(K0) ~ 0) the phase relation become s W ‘
~~ 
J2 (K)

and the amplitude equation reduces to

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - V~~~~~~~~ ~~~~~~~ 

- ____  ____  V~~~~V V~~~~~~ ----—--- -
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- T (103)

Stewartson then determined the coefficients of “a” and its

derivatives on the basis of linear stability theory and added

0(a3) nonlinear corrections to the growth rate J2~(K ) by

expanding the production term in powers of amplitude. This led

to a nonlinear parabolic equation, whose solution was obtained

by matching to the stationary phase solution of linear

theory (assuming zero disturbances far from the wave center).

The present author’s own view Is that Stewartson’s theory

(as generalized here) is overly restrictive in the sense that

th e kinematic coupling between wavenumber and wave amplitude is

not considered . This may be correct in the initial stage, but

it is certainly not so in the latter stages during which the

amplitude singular ity appears. We mention in passing that the

structure of Landahl’g (1972) focus (based on the effects of

ray focusing due to inhornogenieties using Whitham ’s equations

modified for dissipation) was also obtained in Chin (1976).

Matched asymptotic expansions were used to connect the “inner ’

focal structure (based on a modified form of Eq. (89) allowing

for inhomogeniety) where diffusive effects would be important

to an “outer ” solution based on Whitham’s equations mod ified

to account for nonconservative effects. The waves were assumed

(1) to be only weakly dispersive, (2) to have - J 2 ~~ approximately

constant, and (3) to satisfy (dA/A)/(dK/K)>> 1 near the focus.

~~~~

- - 

~~~~~~~~~ 
—-— 

- 
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As was expected , the effect of diffusion was a smoothing of

the amplitude peak. The thickness of the region over which

diffusive effects are likely to be irnportnat was found to

be of 0(~~~ ) in unscaled 
x-space. This thickness decreases

with decreasing viscosity 2 , as would be expected on physical

grounds. In contrast , Stewarteort’s “nonlinear instability

burst” for channel flows occupies a length of 0 (lJDj~~!/
/t
)

which increases with decreasing viscosity. The details of’ the

above study will be presented in a separate paper.

‘~~~ :
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IV, Discontinuous Solutions.

Perhaps the most fascinating area of nonlinear wave

mechanics is the study of shocks and their formation. The

possible existenc e of these wave mechanical d iscont inuities

was first suggested by Whitham (1965) and a good discussion

on the subject appears in Chapter 15 of Whitham (197L,~).

However there is little experimental evidence as to their actual

existence. The observability of the shocks suggested by

Whitham ’s low-order theory may , in practice , be somewhat

obscured by the effect of high-order dispersive and diffusive

terms as were previously derived in Section III and the effects

of low-order Inhomogeniety, which are certain to affect their

stability. The first type of shock considered by Whitham deals

with the question of “breaking” and arises when the low-order

modulation equations are hyperbolic. The dependence of the

characteristic velocities on the modulation variables introduces

the usual hyperbolic distortion, and “compr essive” modulations

in a simple wave solution will develop multivalu ed regions.

It is possible , Whitham notes, that these solutions actually

represent superpositions of two or more wavetrairis with different

ranges of K and “a”. The solutions, though , would not be

correctly described by Eq. (2); some type of muJ.tiphase

generalization would be needed . Whitham compares this situation

to that in linear theory where the group vel-~city Cg(K) decreases

toward the front. Then, since values of K propagate with

— —— — —- —-—-~~-~—-— — —~~
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velocity Cg( K )~ some kind of overlapping would occur. In the

- 
linear case the complete process is described by Fourier

integrals; presumably , in the nonlinear case , some type of

nonlinear superposition would hold . There does , however ,

exist the possibility that higher order terms become important

near breaking and prevent the development of inultivalued

solutions. This is certainly the case if the only o(~~)

corrections kept are the dispersive ones , that is , those

dependent on Jf(K) as shown in Eqs. (88) and (89). The

resulting equations then become similar in form to the Boussinesq

and Korteweg-deVries equations, and by analogy , breaking would

be suppressed. This behaviour would most likely apply to

small symmetric modulations , as noted by Whitham (1974), and

eventual development into series of solitary waves would occur,

as would be suggested by the solution of Zakharov and Shabat (1972)-.

On the other hand , strong unsymmetrical modulations may break

in some sense. If the high-order diffusion terms indicated in

Eqs. (88) and (89) are more dominant than the dispersive ones ,

th e resulting amplitude equation resembles a modified Burgers’

equation. In the narrow “breaking region” where diffusion

balances inertial effects, the “ -
-

~~~~~~~~~~~~~~~~~~~~~~~

“ term can be expected

to produce a continuous shock structure. It is interesting to

note that relative effects between high-order diffusion and

dispersion will in general be different for different wavenumbers.

Thus, the situation will be much more complicated than the

_ _ _ _ _ _ _  - .-~~~~~.---—-=—-~~.-.- .— - — - — - - -.r•
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analogous case of gasdynamic shocks. There is still another

important difference. Provided - ~~~ is nonz ero , it is

always possible to define a diffusion coefficient — even for

a perfectly inviscid system. For surface waves on deep water

there is no difficulty ; the d iffusion coef ficient so defin ed

is just the kinematic viscosity. But for waves on inviscid

shear flows , wave diffusion will be present in general. It is

even possible for this diffusion to be nega tive in a cer tain

range of wavenumbers (as was the case for waves on warm electron

plasmas). Then the gasdynamic analogy calling for a smooth

shock structure would not hold. It is not clear, though , what

would happen; but the high-order equations derived in Section III

(suitably modified for nonlinearity ) can , in principle, be

considered numerically as initial value problems.

The second class of shocks posed by Wh itham arises in the

search for weak solutions to the modulation equations , For

problems in which a mean background state does not enter

(e.g., gravity waves in deep water), the only dependent variables

are those for the wavenumber K and the wave amplitud e “a”.

The values of “a” and K upstream and downstream of’ the discontinuity

would be connected by postulated jump conditions , for example ,

those conserving energy flux, momentum flux, frequency , etc.

The actual choice of jump conditions is open to question ,

however. One can argue that energy and momentum are conserved in

the detailed description for the variable u ( see Eqs. (1) and 

.-
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(2)) and should therefore be retained in the slowly varying

approximation. These shocks would therefore represent a source

of oscillations and involve jumps in the adiabatic invariants,

“If, on the other hand ,” quoting Whitham (1974), “the

discontinuities are supposed to represent phenomena not

cov ered by the original equa tion , but covered by some even

more detailed d ?scription involving dissipation of some kind ,

then the choice would be different. Although momentum would

probably be conserved , energy presumably would not.” Action

flux is not likely to be conserved , “but one could make a case

for frequency. With dissipation smooth osctllatory changes

between different constant states may be constructed in

dispersive models .” The constant end states referred to above

would be the result of dissipation dampening out the oscillations

on the two sides of t he trans ition region. The qualitat ive

effects of diffusion were considered in Whitham (1974, p. 482)

using a simple model. There he added a Burgers type term to

the KdV equation to produce a simple model for the structure of

bores. The actual terms , of course , are given in Eqs. (88)

and (89) if the system is weakly nonlinear. The dissipation

term is really -J2~~~ 
a~~ , suggesting that the un3teady

formation and resulting shock structure (not attempted here)

is much more complex that Whitham’s model would suggest .

although his results are qualitatively correct. The actual

results, of course , would be highly wavenumber dependent. The

existenc e of the above shocks , at this point, is specula tive.

_______________ .
~~

— ---—— — ‘ - — - ———a__ _
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But they would correspond to the low-order weak solutions

of the full equations (in the appropriate conservation

form ) with the dissipation functional F set identically to ze~
at the outset. The high-order terms in Eqs. (88) and (89~

do provid e the answers as to the structure of the transition

region if the above shocks indeed exi st , They also lay the

groundwork for a first-cut phase plane analysis.

-
- 
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A strong reason , perhaps , for study ing d iscontinuous

solutions of the above kind is suggested by an analogy with

- gasdynamics. Consider the propagation of one-dimensional

unsteady disturbances in a transonic decelerating channel flow ,

It is possible to trace the evolution of expansion and compression

pulses originat ing downstream of a linearly decelerat ing sonic

region by examining the equations for one-dimensional unsteady

iaentropic flow. Kantrowitz (1947) was first to show that such

disturbances are deformed as they propagate upstream , and that

the disturbances tended to collect in the sonic region. The

deforma tion of the pulse shape actually cau ses weak shock waves

to form , either at the head front or the rear of the pulse;

expansion pulses, which terminate in shock waves at their rear ,

are subsequently “consumed” by their own shock waves, while

compreGsion pulses, which have shock fronts, grow in strength

as their shock fronts progress into the supersonic region.

Ul timately , in a real channel, they would destroy th~ supersonic

flow , converting it into subsonic flow. This simple ex~’mp1e

suggests the existence of flows which cannot support arbitrary

infinitesimal perturbations , but which must break down locally

into finite amplitude initially small-scale oscillations.

Instabilities of the above kind are “catastroph ic ” in nature ,

but they ar e not restricted to transonic flows. One can

speculate that similar highly unsteady , nonlinear physical

mechanisms might be responsible for other “strong ”

fluid-dynamical instabilities, for example , as in hydraulic

,~jump formation , vortex breakdown , and perhaps the sudden 

--
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transitions observed in boundary layer instability. The

transonic analogy leads us to envision art initially (essentially

- linear) phase during which selected self-excited secondary

waves focus on a larger scale inhomogerteous primary wavetrain.

Subsequent trapping and continued wave growth in the absence

of dissipative effects would then pr ecipitate a rapid , almost

d iscontinuous , and certainly a strongly nonlinear readjustment

of the mean flow in order to satisfy certain global constra ints

(for example, conservation of total mass, momentum or energy).

This type of’ breakdown should be a distinct possibility for any

irthomogeneous continuum system which can support propagating

waves of scale small relative to the scale of the inhomogeneities

The “ initial ~ iase” (as described above ) is amenable to general

linear analysis using recently developed ideas in kinematic

wave theory , and first results pursued along these lines have

been given by Landahi (1972). (Kinematic wave theory is

developed using phase averages , but identical results can be

derived using equivalent averages over phase shift; in this case

the averaging i8 one over a random superposition of linear

waves and is, perhaps, more relevant to the physical situation),

In his linear analysis, Landahl used the modified action equation

accounting for weakly nonconservative effects, as given in

Eq. (34.). The actual kinematics are therefore describable (to
(~) ~R)this order) by the “real” dispersion relation X2 

~~~~ft (K , €x , €t),

and the equation for wave conservation can then , within the

context of linear theory , be used to predict when space/time

singularities in the wave trajectories can be expected to occur.

-

~

- -
~~~~

-
~~~ ~~~~~ ::~ . :.:. 
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In fact, some manipulation shows that (Landahi, 1972) focusing

occurs whenever

(i’) 
- 

+J2~~~~~~
J -

~~~~~~~~~~~~~~~~
J2

~~~~~12 
~~ 

- - 
—

~~~
-——--

~~~~~
--

~~
-

~~
--— -

~~ o
+JL KX ~‘KK c9)(

~R) (
~)

is satisfied , where C0 is the critical velocity

In the steady case , the critical condition reduces to the

approach toward a zero in the linear group velocity (Landahi’s

linear theory does not account for the nonlinear response of

the supporting medium). This condition in itself implies

increased wave amplitudes on account of “wave tube” convergence.

If this slowing down is additionally accompanied by trapping ,

self-excited waves (as determined from a local application of

conventional normal mode theory ) would then sur ely amplif y

for ever , at least on the basis of linear theory (details are

given in Landahl, 1972). One would then surmise that the sudden

onset of this kind of strong instability would precipitate a

highly nonlinear, unsteady readjustment of the mean flow, in

much the same way that wave trapping and amplification in

transonic nozzles lead to shock formation and chokir.g. Of course ,

Landahl ’s analysis is a linear one and therefore does not account

for the nonlinear response of the mean flow. But the physics of

the present study is in the same sp irit of Kantrowitz ’s classic

analysis, in which the small-perturbation isentropic equations

are used to d escribe the onset of the instability mechanism,
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only because the general unsteady , nonlinear problem is

intractable. Then , as in Kantrowitz (1947), if the model in

1~act describes the true hypothesized instability process, one

can therefore proceed to study the properties of the shocks

that are fox-med in the latter stages. (Of course, one can study

shocks for their own sake, but it is oft en helpful to envision

some physical generating mechanism. Some of the ideas proposed

here might be tested by numerical integration of the complete

system of unsteady , nonlinear, high-order modulation equations

subject to appropriate initial conditions. Extreme care in the

analysis must be taken , however , since the r esults depend

sensitively on the delicate balance between high-order wave

d ispersion and d i ffusion , not to mention the artificial dispersive

and diffusive effects of truncation errors.)

The idea of a hypothetical instability mechanism possibly

lead ing to a final configuration with d iscont inuous end states

is not new, and some inferences can at least be drawn from

hydraulic jump format ion and , in vortex breakdown , they are at

least suggested by the “finite transition” or “conjugate flow”

theories of Benjanin ( 1’7~2 ) .  This latter analysis was first

to demonstrate the possibility of an infinitesimal transition

from a superoritical state which cannot support standing waves,

to a subcritical state which can (but the theory does not offer

an explanation as to the origin of the discont inui ty) ;  the

theory essentially postulates in an ad hoc manner the physical

necessity for th e existence of waves on the subcritical side , so
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as to maintain the continuity of total momentum flux, We can

improve on Benjamin’s theory by considering final end states

that are essent ially inviscid and essentially “organized” in the

sense that a wave description is still applicable; the end

state of the “downstream” portion would consist of a highly

enhanced wave riding on a mean flow of reduced energy , formed

from an “upstream ” port ion whos e wave is initially infinitesimal

in amplitude and which rides on a more energetic mean flow, We

can modif y Benjamin ’s conjugate flow approach (which, in effect,

considers only the mean flow in developing the discont inuou s

solutions) by connecting the end states through the introduction

of two more free parameters , a wavenumber K and a wave energy

density E of a superimposed wave system (however small), in

addition to the man velocity and the mean cross-sectional

distance. In the context of hydraulic jumps (which are here

treated for simplicity), the proposed model would connect

E, K, the mean height h and the mean speed U by conserving across

the discontinuity total energy , total momentum , total mass and

waves (i.e., we fix the frequency, for a total of four jump

conditions). This model thus augments Benjamin’s by

systematically accounting for the presence of a wave however

small , and through the nonlinear coupling, establi’sh es whether

or not conjugate solutions do, in fact , exist for all parameter
A

ranges. Let U be the depth-independent “mass transport

velocity” , as given in Phillips (1969), which already accounts

for the mass flow induced by the wave. For simplicity , we
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examine the shallow water case, so that the wavenumber K does

not explicitly appear in the conservation laws for total mass,

momentum or energy. The results we are to derive , of course,

are valid in quasi-steady problems in which the local coordinates

move with the shock. In these steady coordinates, the governing

equations for total mass, momentum arid energy integrate to , for

a flat bottom ,

f
hU~~~t

p h b ~
+
~~E F’

~ °hu3 4O~7u/~ ~~~~~~Jih E +~ E~z

1%/

where in, P and Q are the prescribed (total) mass , momentum

and energy fluxes , p is the fluid density , h is the mean
I A

depth and U is the rela~ive velocity U-U3 (U 3 being the shock

speed). Let us introduce the nondimensional variables

h/ ( ~~
) 
~ u/( ~

) 
~

= E/ ( ~~ ~~~ ~
so that the above conservation laws beco me , respectively ,

17 t~ 
— 

/ (104)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_ _  

I:
~~~~~~~~~~~~~~~~~~~~ 

-
~~~-
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~~~-/-~~+E ~~~~~~~~~~~~~~~~~~~~~~ ~~P > o  (105 )

> 0  ( 106 )

If E 0 (bars have been dropped for convenience) and Eq. (106)

is deleted , one obtains the classical hydraulic jump formulation

in which mean flow mass and mom entum fluxes are fixed

(Lamb , 1932). However, let us eliminate u from Eq. (105 )

using Eq. (104) to produce an equation for E (in terms of h

and P ) which, in turn , is used in Eq. (106) to give an equation

for it. Setting H h~ , a ninth order equation is obtained as

H ? _
~r2H~~PN 5 +!2QH ~~ -

~ J2 p~~2 ÷~
?rz 0 (107 )

where P, Q and H are positive and all roots obtained must be

such that E ~~0 to qualify as physically realistic conjugate

solutions, A rough idea for the type of’ jumps typical of

Eqs. (104-106) is obtained by comparison with the results of

the classical formulation. We denote by “1” and “2” the

upstream and downstream states respectively , and require

> h1 in the usual way. For the case P 2.12 (corresponding

to a Froude number of ) we hav e h 2/h1 2 , h1 0,55 and

h2 = 1.10. The mean flow energy flux (in the classical case)

______________________________________________________________________

~~~~~~~~~~~~~~~~~~~~~~ 
- — —~ --~-~~~~~~~~—--~~~ — -
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hu 3 4- 4uh2 4h+h 2 is 5.50 upstream and 5.23 downstream ,

the deficit ratio being 5.23/5.50 = 95,0%. The wave theory we

propose gives similar results, but here the loss in mean flow

energy is made up for by the presence of radiating waves. For

comparison ’s sake , set P = 212 and Q = 5.50. The conjugate

depths are now obtained as h1 0,55 arid h2 1,03, and

calculations show 0.0 while E2 0.084. In other words , the

waves are practically nonexistent on Side “1” , but on Side “2”

they acquire a sudden visibility. The ratio of downstream to

upstream mean ener3y flux is 92.1% (as opposed to 95.0% before),

and the rest goes into waves. The phase velocity can be shown

to decrease across the jump so that , since the frequency is

fixed , the wavenuruber increases, The sudden visibility of the

wave is enhanced by both increased wave amplitude and wavenumber;

the classical mean flow results as described in Lamb (1932)

are, in fact, qualitatively reproducible by the above wave

model without special appeal to turbulent dissipation.

More general results are obtained by examining po sitive E

solutions of Eq. (107). There is a simple way to construct the

entire family of solutions, and this is seen by rewriting

Eq. (107) in the form

~r zH~ _ _ _ _ _ _ _ _ _ _V = _— Q ÷
K~

÷
~ j~fl

1 0

Thus , every value of the positive parameter H defines a

I—, 

-

_ _ _ _ _ _ _ _ _ _ _ _  _ _ _  _ _ _ _ _ _  _ _ _ _ _ _
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straight line in the P-Q plane. The intersection of two lines

(or more ) at a point (P0,Q0) shows that there exists two (or

more) conjugate values of H at that point. This interpretation

r equires ~s only to study the slope and P—intercept functions

of Eq. (108); not every point on a straight line in the P-Q

plane is physically significant , though , since it is necessary

for the correspond ing wave energy to be positive. The simplest

criterion for this is found from Eq. (105), that is ,

Thus , for E ~ 0, it is necessary that P � P” H4 -~
- W 2. A

useful presentation of some results is shown in Figure 1.

Various sets of K1,H2 are considered such that h2/h1 2,25,

so that we in fast assume (H1,H2) to be a conjugate pair,

Then, each H determines a straight line in the P—Q plane , with

the intersection po int P0,Q0 det erm ined from the solut ion of

two simultaneous linear equations derived from Eq. (108).

Repeating the process for various h’s generates different

solutions, as shown in Figure 1 (different values of h2/h1 wer e

also considered , and the same qualitative results were

obtained). The results show that every point along the solid

portion of the line determines two conjugate solutions ; the

jump in h from h1 to h2 is always accompanied by an increase in

the wave energy density and a decrease in the mean flow energy

flux 
~~ 

previously defined , again agreeing qualitatively with

— _______ 

—~ — — — ——— — 

~
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classical theory , but without appeal to turbulent dissipation.

Each point along the solid curve here possesses two roots H

with positive E ’s, while the dashed portion indicates the

existence of one negative root; in this latter case the solution

is unique and conjugate solutions are not possible. It follows

that conjugate solutions , at least in the case of shallow

water gravity waves , are possible only for suff iciently large

P’s or Q’s.

A second kind of discontinuous solution is typified by the

flow of gravity waves over infinitely deep constant speed

currents. Because the current in this overly simplified model

does not vary with depth , jumps in the mean speed Urn must be

disallowed , for they would otherwise imply infinite changes in

mean energy. ‘The wave in this sense decouples from the mean

flow and the only discontinuities that form are those in the

wave parameters themselves (jumps in Urn for y-depertdent mean
A

flows can conceivably be analyzed in terms of jumps in U as

given in Eq. ( 5 1 ) ,  but it is unclear as to whether the corresponding

shape function remains invariant across the discontinuity). By

varying the paraMeter U~ a family of related con jugate solut ions

can be obtained and these solutions will form the present focus

of attention. It will be helpful here to envision surface or

plasma waves in steady flow and , for r easons pr eviously indicated ,

discont inuities acro ss which fr equ ency ( Cd0 ) and momentum

flux (Vfl,, ) are fixed (the modifications needed to consider wave

I

p 
-. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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breaking are not considered here). Some analysis shows (this

will be verified later) that when the (real) frequency is

expanded in the wave action density A , that is,

~~K +  F(K) tAG ( ~) =

the corresponding expression for momentum flux becomes

U~KA ~AKF +±A
1(G + KG K) =

Solutions can be readily obtained by eliminat ing U rn between

these two equations, tabulat ing A as t he wavenum ber K is varied ,

then solving for Urn from either of the above equat ions, and

finally solving for the momentum velocity Cmom defined by

- c~~= ~~~F

The resulting equations are valid for both waves advancing and

reced ing with respect to the mean flow, of cours e , provided

appropriate sign changes in F(K) and G(K) are made. Only real

solutions of A with A > 0 are admissible , and hence, multivalue d

solutions may or may not exist for all values of the parameter

U
~
. For illustrative purposes let us consider two weakly

nonlinear irrotational examples first gravity waves and second ,

capillary waves, In the case of gravity waves, the appropriate

• dispersion functions F g~K~ and G K3 where , again , g is the

acceleration due to gravity. The barred nondimensional variables

~~~~~~~~~~~~ 
.— -—~ 

- -—--——-- -
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— 12.8

- 

~ z - ~1 K~ A

C = g~!Wo l C~ 7~~25G -~~r

are introduced , and we shall assume without loss of generality,

that (A) > 0 throughout. Figure 2 shows the complete family of

p,C > 0 “positive moving” waves consisting of both waves

advancing and receding with respect to the mean flow, while

Figure 3 shows the complete solution for “negative moving”

waves with p,C < 0. For instance, from Figure 2, only one

wave solution exists when ‘U~~< -l but three solutions exist for

u >.~ 0, say , corresponding to a given flux p. Figure 3 shows how

for positive U , two wave solutions can be found for a given

negative flux p ~ 0 (corresponding to a “strong ” high-amplitude

and a “weak” low-amplitude solution across which energy flux

decreas es ) ,  but solutions for suf ficiently negative V’ s cannot

be found (this may point to the importance of unsteady effects),

The “singular point” occurring at U -l approximately

corresponds to the position determined from linear theory as

that producing a zero in the linear group velocity. For

capillary waves (where F = T0~K3h
/’2 and G -K3/8) the (barred)

nondimension.al variables

g = , 3 K  
~
T

/ T/I/3 ~~~777#/;

.—-—-—-— — — - _ _ _ _ _ _
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wit h surface tens ion T0 and nondimensional momentum flux

s = m0/T0 can be defined. Let us here assume UI < 0

throughout. For various specified values of positive s, the

complete solutions (consisting of both waves advancing and

receding with respect to U ) are plotted in Figure 4; negative

moving solutions with S ‘~ 0 are shown in Figure 5. From

Figure 4 for positive moving waves , mult ivalued solutions

corresponding ‘to various fixed values of s exist for sufficiently

negative U’s, but for positive U’s the solutions are single-

valued; similar considerations hold for negative moving waves,

as is evident from Figure 5. Again , the U position about which

the multi-valued/single-valued character of the problem pivots

is determined approximately by the value of U for which the

linear group velocity is zero. On Figures 2-5 the nondimensional

wavenumber distributions are also shown.

In practice the jumps discussed above are formed on

currents that vary slowly in space and time , and it is

important here to note that the above results are applicable

as well in quasi-stationary coordinates moving with the shock.

One question of fundamental importance concerns the observability

of the hypothesized shocks, and this can be answered in part by

examining their stability with respect to self-induced

disturbances. In the simple analysis that follows , high-order

modulation terms (that in reality allow or disallow the shock

formation) will be ignored ; we in effect assume the existenc’ c’f

a shock and study its stability as would b” affected by ~ow-~.

inhomogeneities in the mediur,~. Two types of shocxs can
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general treatment, and they have already been introduced

in the above analyses. Type A shocks, like those just treated,

- 
conserve wave momentum and waves, while the wave energy flux

decreases across the discontinuity. The mean flow here enters

• only parametrically and it formally uncouples from the wave

system. Type B shocks are defined as those In which the mean

flow responds dynamically to changes in the wave parameters,

for example, as in the generalized hydraulic jumps considered

previously for water of finite depth; these by definition invoke

the constancy of total mass, total momentum , total energy and

frequency.

We shall consider first Type A ahocks. It is convenient
dl /

to assume a perturbation Lagrangian .C in the form ~Z =Ai2-H (K,A )

• as viewed from a coordinate system moving with the mean flow

U
~ 

$ henceforth all subscript in’s will be deleted. (Previously

we assumed an expanded H function written in powers of A , with

H AF(K) + 1~A
2G(K). The frequency following the flow U was

thus determined from 0 as J1= F+ AG, implying a
ground-fixed frequency of the form LA) UK+ P1-AG . The

corresponding momentum flux was determined from UXA+X ( _K ç.)

To begin the analysis, we note that an unsteady shock with

speed U5 - U (T) satisfies the conditions for frequency and

momentum flux continuity in the following respective forms

( U-t~)K1 ~HA (K2 , Aa) ( 109 )

(tHT,)A ,k’, +A ,HA (K,,4,) +K,HK (K,,4)
~

H(
~
,,A l) ... ( 110)

_ _ _ t
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where the “1” and “2” subscripts refer to upstream and

downstream portions of the discontinuous solution. Let us

consider the basic problem in which a stationary shock is

• displaced a small amount ~,. A , K and U can thus be expanded

by Taylor series about the steady solution corresponding

to j - 0, noting that the shock speed U5(T) 
~ 1(T) is a

quantity of o( 1). For example, the suggested expansions give

A ~~

‘ A0~~ A~, ~~, and for any function S(A), S(A) ~ S(A0)+ SA (A o)AQ 14

To 0(1) we have the following frequency and momentum flux jump

conditions

• V,0 K~0 + HA 1,0 = 

~~ K ,0 + HA ,  (111)

lJ~oAç.~
’i,, ~~~~~ KI,.HK,, 111,o A~K2,.÷A~H4 l(2,,I1,~,~ H1,0 

( 112 )

the weakly nonlinear forms of which were used in the previous

two examples, “0” subscripts here indicating the basic mean

state. The o( ~ ) equations lead to the equations

Cu,~2,. ÷tT~,J~. +HM;,A ,O ~ HAK2 1 K2.)

= Cv,’ ç ~u1,0 K. ~ UM,,, A~ 
4- HAK ,, K,~

) (113)

K1,.-K ,,.

and
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~ tç~. A,,. K2~ ÷ ~~~ K,,, + 
~~ ,, ~~~~~~ A,.

~~ He,,. K ,’, K2,. HKA,,D AZ.  -

~~ K,,, MKK,,, K2,,’

— ~~~~~ ~tç.A, K1,. + v~:4,,,K,,. +4,,, /I A, 4,,. A,,”. 
~~~ 

(1111.)

= 

( +A
~O HAK,.K,:, +K,, HM,,A,.,’. K,,, IIK~,, 

K,,~ J
I A;e~,o -Á,,/ ç.

where primes denote I derivatives. As in Kantrowitz (19i1.7), a

number of growth rates exist, each of which corresponds to

various permissible values of the shock Bpeed U8, and are to

be separately investigated. Equations (113) and (l.Vi.) can be

simplified by invoking wave and action conservation on either

side of the discontinuity (but not across it). On this basis

one finds that each of the bracketed quantities in Eq. (113)

separately vanishes, implying a neutrally stable shock solution.

The second solution, obtained from Eq. (lli~), is remarkably

simple, 
-

i — 
-A~K21 U2,’. ~~~~~~ ( 115 )

• A~ K,, —A ,,4
Now the mean speed u(X,T) in the present model I. prescribed,

and to fulfill the slowly varying assumption, the derivative

= ~1,0 9~ 
(with respect to X in a steady coordinate

- 

—~~~~~ ~~~~~~~~~~~ -
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system) must be cont inuous. Thus , Eq. (115) reduces to• 
I = 

~9O) ~ 
, exactly the same condition for shock stability

- in transonic nozzles: A shock is therefore stable or unstable

accordingly as 
90) > 0 or 90) ~ 

0, this simple criterion

showing how the shock stability Is wave amplitude and wavenumber

• independent . Results for U~ ~~ U ’ can also be discussed, of
l,o

course, but this would appear to be of limited usefulness

since the slowly varying assumption would require continuity

of second derivatives of TI as well. In a uniform medium, the

shocks considered here would be neutrally stable.

Type B shocks (which allow for the dynamic response of the

mean parameters) can be treated by considering in addition to

• (A ,W ,K) the triad (P . 
~
‘ , fl). In water waves, for example,

P and fi would be the mean height and mean speed, respectively,
• and ~ ~~~(f,P,A ,K) would be a Bernoulli-type “dispersion

relation” for the pressure. We take the Lagrangian in the form

(116)

following Hayes (1973), where ~~~ = ,).. (X ,T) describes the

inhomogeneity. The total energy of the system is H = W.t
~~
1tIt ~

and ~ 0 defines the dispersion relation UI: HA . A second

dispersion relation aris.s from taking ~ 0, that is,

g • Thus there remains four unknowns, for which we invoke

• the conservation laws for waves , total mass , total energy and

• 

• fr i
i~L~ _ _ 

— 
~~ ____________ 

— 

— ___IJ-
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P total momentum. They are, respectively .

— 4. —•— = 0 (ll7a)

~ (ll8a)

• ~ (w 4+�’4-1) 
~ (w1,~ Y~~) 

= —4 (119a)

?~(Ki~+~~~) 
‘1-~~(L K2Ki.~,) 4 (120a)

In a coordinate system moving with the shock, the respective

jump conditions become

t fl~CK,A ,~,P,A) — l J K cns’ta~t

H~ T JP c.,,,f~.t 
(ll8b)

HA 0k ~ ~~ 
H~ 

- g fi C or 5#~ ~~~t 

• 

(ll9b)

AI4A +PHr fl ~ KHK~/h’, if, (KA t~P) - 
0 

(lZOb )

Aa before , a basic steady discontinuous solution ii assumed ,

and th. effect of slightly displacing the discontinuity is

examined. An analysis similar to that just completed for

rW~~~~~~~~~ !~~~~~~~~ 4~~
00 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~



Type A shocks leads to. for the 0(1) heirarchy of equations,

the jump. condit ions for the basic steady flows

• ~~~~ ‘~A1,, 
( ll7c )

• Fl1 II (ll8c)

• 

M
:
;

~~~ K~~, ~~~~~~ H4, 0HK,, ~
H?,~

H,IO 
( 119c )

A,,, HA 1~ ~~~~ ff7 
— H 1,. -f ~~~ 

H~ + H1 ... (12 Oc)

while the 0( 1) equations are, respectively,

— 
C )2 -(

~~
) L

~1 — 

( — K . 

( ll7d )

C )  = HAIc K~~~HMA •‘•
~IAf E~ 

P’-t f l~,,) .’

— 
c_ )

~ 
— ( 2~ ~ 

( ll8d )
2,0 1’,,.

( )
~~ ~~~~~~~~~~~~~~~~~~~~ 

0

- 
0~~ .

•

•0
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0 _ _ _ _ _

• ~ H -11 (ll9d)z,• ,,.

( )

• +HK(UA K K’ *~~ A’ +~A~
’ 

~~AT?* ~~~~~
)

+ N!(H~lC~ ~ H~A A + F~~’ +H,~P’-f-H ,~~’)
• 

+ H1 (~ ?Ic K 4
~FAA ~ I4~fl ’ ÷H~pT’÷H7~X)

—

~~~~~~~~ £ (l2Od )
-( ~~~~~~~

( ) = A (H ~
)c’+

~AA A’ .t
~ A,~

3’ 
~~‘A~~

’ 
~

+ P( H~ ~~~~~ 
HrAA’ + H~ 1’ ~HpT’~!4~’)

• 

• ~
K (H K~K’ +~~ A’ -4- 

~~~~~~
‘
~

1K~t 
k’)

• 1- f( ~~ K’ ÷ H1A i~’ + H11 ~~
‘ -~ H~71’ 

‘

~~ H,~X)

The bracketed quantities in Eqs. (ll7d), (ll8d), (ll9d) and

(120d), of course, can be simplified by applying the steady

differential equations (for example • the wave act ion equation

= 0, th. wave conservat ion law ?H A/~~
x 0, ~~H / ? x  0

for mass conservation, and th, consistency equation

~ ?t/dx • 0 or ~X~,/’a x = 0 ). On substitut ion. tt.

amplification rates in the first three squationa can be shown to

be identically aero , implying neutral stability. However , the

result for Eq. ( 120d ) is nontrivial aid lead s to

0 

•

_______  

__________________ ‘ 

_____ — - -

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~



0 101

Pt
/ ,• — H ~ 

)
~ + H ~ A ,

0 
~~~~ 

2,. i,o ,0 
- (121)

(I,1.A2,.÷ •1~,) 
- (K ,,.A,,, ~~~~

Thus, if the inhomogeneity ~~~‘ vanishes, the shock ii neutrally

stable. Some applications of this formula can be found in

Chin (1976), but the qualitat ive results are similar to those

obtained for Type A shocks.

The basic ideas behind the instability theory advanced

in this section can be briefly summarized s an infinitesimally

small disturbance wave riding on a slowly varying mean flow , on

account of space-time inhomogeneities , becomes trapped in a

• region that on the basis of local normal mode theory is unstable ,

The rapid amplification of the trapped wave then precipitates

a sudden nonlinear , unsteady readjustment of the mean flow that

is locally viewed as a “generalized hydraulic jump” involving

both mean flow and wave parameters. The actual observability

of the hypothesized “shock” mechanism would, of course, depend

to a great extent on the all-important effect of high-order

dispersive and diffusive terms as well as on the effect of

low-order shock stability. These ideas on the origin of

“catas trophic transitions ” are at the present t ime speculative 
0

in nature , but they do appear to be motivated by plausible

physical arguments and by gas-dynamical analogiesi they

explain the formation of the discontinuities assumed in, for

~0_ •,•
~~~

•—- _____  -
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example, the classical treatment of hydraulic jumps and

Benjamin’s conjugate flow theory for vortex breakdown. Because

the nonlinearities of a physical system are particularly

• important in its detailed description, the possibility of

deducing general results seems remote. Application of the

generalized high-order Whitham theory developed in this

paper, for example, to hydraulic jump formation, vortex

breakdown or boundary layer transition in this regard would be

extremely interesting. One immed iate need , perhaps, is a

nonlinear wave trapping theory paralleling Landahl’ a for

linear flows; some initial work has been carried out in

Chin (1976), but much more work needs to be done.

• V. Summary ,

A theory has been constructed for the description of

wavetrains slowly modulated in apace and time and which includes

the effects of high-order diffusive and dispersive corrections ,
0 

modal terms, nonconservative terms, and amplitude and frequency

dispersion. A number of e~amplee have been considered leading

to many formulas useful in direct applications of the theory ,

and various new ideas in stability have been discussed.
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FIGURE 4
Nonlinear Capillary Waves , ~
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<0 and ~~~0•
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Wavenumber Distribution Plotted on Curve .
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FIGURE 5
Nonlinear Capillary Waves , W0< 0 and ~< 0. 0

• Wavenumbor distribution plotted on curve.
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