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\I ABSTRACT

A stat i s t i c a l  a n a l y s i s  was made of the 00 and 12 GMT

surface wind analysis prepared by Fleet Numerical Weather

Central (FIIUC) during 1 975 to describe the synoptic storm

activi ty over the North Pac i f i c  Ocean. Temporal variance

of the surface w i n d  components at each i n d i v i d u a l  g rid-

point was “band passed” (approxima te’y 2.5-6 days) using

the f i l t e r i n g  procedure of Blackmon (1976). Both the

ori g i nal winds and the time — f i l t e r e d  wind components were

used to cal culate the cube of the friction velocit y and the

wind stress curl. Monthly mean maps of u~
3 from the f i l —

tered wind components show clearly the location and inten-

s it y of the monthly mean synoptic storm a c t i v i t y  during t h i s

period . Also , th is measure of the synoptic storm a c t i v i t y

was q u a l i t a t i v e l y related to the monthl y mean sea surface

temperature (SST) anomalies as analyzed by Nam ias .~
ç
~~

~~ A somewhat surprising resul t was that the mont hl y mean

wind stress curl from the filtered wind components did not

appear to have a well organized spacial pattern and did not

appear to play a si gnificant part in the generation of SST

anomalies. Prior to the study, some type of relationsh i p

was thought to be probable in view of the known proportion-

a l i t y  of wind stress curl to the Ekman pump ing mechanism.
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I . I NTRODUCTION

In s tudies of air— s e a  interaction , there  have been a

numbe r of attempts to describe the r e l a t i o n s h i p between

anomal ous synoptic-scale atmospheric c i r c u l a t i o n  and

pa tterns of anomalous sea surface tem perature (SST). Synop-

tic scale c i r c u l a t i o n  appears to be w e l l  chosen in that

Simpson (1969) showed that for the m i d d l e  l a t i t u d e s , a

si g n i f i c a n t part of air-sea exchange is due to synopt i c

scale d isturbances. E l s b e r r y  end Camp (1977) have also

shown thi s  to be true us i n g  da ta f rom Pac i f i c Ocean  wea t he r

s tations. The choice of an i n d i c a t o r  of surfac e circula-

tion has us u a l l y been in the form of sea level p r e s s u r e

(SLP) o r upper a i r  pressure hei ghts fro m which surface

wind s have been derived or inferred. Namias (1972) for

exa m p le , has u s ua l l y employed 700 mb h e i g h t  data as an

in d i c a t o r  of seasonall y averaged surface c i r c u l a t i o n , w h i l e

Dav is (1976) has inves t i gat ed the r e l a t i o n s h i p between

mon thl y mean anomalies of SLP and SST through emp i r i c a l

or thogonal functions. Da v i s  (1976) concludes that the

choice of SLP for a d escription of atmospheric c i r c u l a t i o n

may be unfortunate because other atmospheric v a r i a b l e s  may

S how a greater influence on SST. lie goes on to suggest

that variables such as cloud cover , p rec i p t i a t i o n , s t a b i l i t y , -

or storminess may show a greater re l ationship to SST than

does SLP .
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The pr imary purpose of t h i s  study has been to de t e r m i n e

if a m e a n i n g f u l  descri p t i o n  of the monthl y mean storminess

could be der i v e d  from the tota l w i n d  f i e l d .  Using the 00

a n d 12 ~MT g l o b a l  ba n d s ur f ace  a n a l y s i s p repa re d by F l e e t

Nu m e r i c a l  Weather Central (FNWC) du r i i g  1975 , t em po r a l

var i ance of the surface u (zonal ) and v ( m e r i d i o n a l )  w i n d

components at each i n d i v i d u a l  g r i d  p o i n t  were “band pass ed”

(approximatel y 2.5 - 6.0 days ) usi n g the procedure of

B lackmon (1976) . Th i s f i l te r i n g p r o c e s s  w as des i gned to

extract the c i r c u l a t i o n  due to mo v i n g  s y n o p t i c  systems from

the total c i r c u l a t i o n .

if the f i l t e r e d  data cou ld be shown to ad equate l y de-

scribe monthl y mean “storm i ness ” , then the next step was to

see if  t h i s  measure of storminess ~as at l east q u a l i t a t i v e l y

related to SST anomai ies d u r i n g  1975 . F rom both the f i l t e r e d

and the u n f i l t e r e d  w i n d  data • the v e r t i c a l  component of the

c url of the w i n d  stress (curi
~~
T) and the f r i c t i o n  v e l o c i t y

cubed (u~~
3) were compu ted and compared w i t h  anomalous SST

f i e l d s  in the North P a c i f i c .  These q u a n t i t i e s  were selected

to be computed because of the w e l l — k n o w n  r e l a t i o n s h i p bet ween

c u r l
zr a nd Ekman conver gence and divergence , and the relation-

sh i p be tween u
~~
3 and the mechanica l m i x i n g  of the sea by the

o v e r l y ing atmosphere.

A secondary purpose of t h i s  study was to see if the

qual ity and r e s o l u t i o n  of the FNWC g l o b a l  b a n d w i n d da ta

over  the Nor th  P a c i f i c  was  s u f f i c i e n t  to  w a r r a n t  i t s  use in

fur the r inv esti ga tions of th i s type .
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The remainder of this paper is devoted to describing the

proc edures used in data processing and s t a t i s t i c a l  anal ysis ,

and to int erpret the r e s u l t i n g  patterns of u .~
3 and cur l zT in

ti ght of the monthl y mean SST anomalies. Any i nfere n ces of

a ir-sea related a c t i v i t y  must be q u a l i t a t i v e  because only

on e y ear ’ s data has been considered. Al s o , the SST a n a l y s i s

is expressed es an o m a l i e s  from a 20—year mean (1947—1966),

genero usl y supp lie d  b y Dr . J. Nam ias. There exists no long

term m o n t h l y  mean values of band—pass f i l t e r e d  u~~
3 or cur l

~~
T

f rom which to determine whether any months of 1975 were

norma l or anomalous in these q u a n t i t i e s .  In s p i te of these

l i m i t a t i o n s , it is hoped that t h i s  study w i l l  have provided

enoug h c l u es as to wh et her or no t t h i s co u r s e  of ac ti on i s

wor th y of further pursuit.
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I I . DATA AN D S T A T I S T I C A L  A N A L Y S I S

A . DATA AND DATA PROCESSING

The 1975 g lobal band su rface w i n d  a n a l y s i s  which is de-

scr ibed in the U. S. Nava l Wea ther Service Numerica l Environ-

me ntal °rod ucts Manual (1975) was ob tained from FNWC where

i t had b ee n p laced in a chronological synoptic series on

mag ne t i c  tape. Als o , 15 da te/time groups (7 1/2 days) at

the end of 1971. and a t the beg i n n i n g  of 1976 were obtained

to accommod ate the f i l t e r i n g  process (to be exp lained later).

From these data , u and v w ind components were extracted from

g rid p oints on the global band from 60°N to the equ~~tor and

from lOO °E to 100°W (North P a c i f i c  Ocean area). The FNWC

global band anal ysis is performed on a Mercator projection

true at 22 1/2° N. Th e east—west g r d  spacing is 2.5 degrees

long itude w h i l e  the north-south gr i d  spacing varies from

2.5° a t the equator to 1 .25 degrees at 6O °~~. There were 13

date/ time groups m i s s i n g  which were interpolated l i n e a r l y

f rom preceding and succeeding map times. After these inter-

polat i ons , there were 760 successive u and v wind component

f i e l d s  s ta r t i n g  at 1200 GMT 21. uec 1974 and end i n g  at 0000

GtI T 8 Jan 1976. The data were then transposed from a space

represen tation at every synoptIc time to a 380 day, twice

da i l y time series at each of the 3l~c65 g r i d  po ints w i t h i n

the Nor th Paci f i c  area. In order to be certain that no



errors were made in of the data processing, representa-

tive dat a were verifi e d  against ori g inal synoptic maps

throug hout the yea r and were found to agree exactly.

8. DATA FILTERI NG

W ith the data in time series at each gr i d  poi nt , a 3 1—

poin t band pass f i l t e r  described by Blackmon (1976) was

app li ed . The equation for the f i l t e r  is

15
C n m (t i

)a aoC n m (t i )+~~ a p
[C

n ,m
(t j+p )+C n m (t i ...p

) ]

where C n m (t
i
) represe nts the u or v w i n d  component at the

g r i d  p o int (n ,m ), at the time t~~, a n d a~ are the coefficients

for the f i l t e r .

This f i l t e r  is s e n s i t i v e  to frequencies in the range

0 .17 < f < 0.45 days
1 

(or per iods 2.5 < T 6.0 da y s), and

thus is desi gned to extract events of the synoptic time

scale. The response of the f i l t e r  is shown in fi gure 1 , and

the coeff i cients are as fo llows :

0.2776877534
— 0.1433496840

a’ —0.1020097378
a’ —0.1947701551
a’ —0.0923237264
a. 0.0283041151
a. 0.0419335013
øe 0.1XU3466748
4. 0.0041073537
a. 0.0328072034
a’. 0.0304306715
at ’ —0.0020017146
at, —0.0191709641
at. —0.0096723016
atE —0.0001341773
4., —0.0030384837
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C. CALCULATION S

Ca l c u l a t ions of k i n e t i c  energy (KE), u~~
3 , and cu rl

~~
T

were made twice da i l y at every grid point using both the

un f i l t e r e d  and f i l t e r e d  w i n d  components. Equations used

for the calculations were:

KE 
~~~~ 

+

( 2 + 
— 2 1 1/2

3 
— 

/ 
~3/2U~~ L 

~~ 
i

a

curl
~~
t — 

~~~~~~ 
(.~1 - •

~
;. (cos~ ~~

wher e T
A 

‘. PaCd (~~
2 

+ ~2)l/2 ~

+ 2) h /2 ~

Here the ai r  dens ty, 
~a ’ 

was taken as a consta nt 1.3 x

gm cm 3 , C d the non—dimensional drag coefficient as

1 .25 x lO ~~~, ~~ and are the zonal and me r i d i o n a l  stress

compon ents , and ~ and ~ are the filtered wind components.

Monthly means were computed from the twice da i l y computa-

tions in the standard way . Ca l c u l a t i o n s  us i ng the unfiltered

winds were accomp lished in the same manner excep t u and v

were used in l i e u  of ~ and ~~. In the f i n i t e  difference

~~~ approx i ma tions used to calculate cur 1
~~

r, centered differences

on a staggered grid were used. If 
~ 

and ~~~~. . are de-
,J I ,J

fine d on the array i — l ,...IM and j.1 ,...J M , then cur I
~~

r is

- 
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def ined on a staggered gr i d  by

cur l
~~
T
~~~ 

- 
cos~~.+~ os~~.~~1 ~~~~~~~~~~~~~~~~a ( 2 ~

- ~~~~~~~~~~~~~~~~ ~~ (cos,~~~1 (
Ai EJ +l

2
X
~~~

l PJ+ l )

- cos~~.(
Au IJ

2~~~~~~~
J)]

where the range of i ,j is i — I , . ..IM— l and jal ,.. .JM— l.

16



I I I .  DISCUSS IO~l AND RESULTS

A. D E F I N I T I ON OF STOR M TRACKS

It w i l t  be shown in this section that a representation

of monthl y mean storminess has been captured by calculating

and p lotting monthl y mean values of u~
3 from the filtered

wind components. This quantity was used because i t is a

measure of the mechanical m i x i n g  in the ocean due to the

overlying atmospheric c i rcula t i o n , and this study has been

directed at answering questions of air—sea interaction.

That the paths of monthl y mean storm activity have been

captured through the f i l t e r i n g  of the u and v wind components

and the subsequent mapping of monthly mean values of u
~
3 can

be seen , for examp le , by comparing fi gures 2 , 4, and 6 with

fi gures 3, 5, and 7. In fi gures 2 , 1., and 6 , as in a l l  the

u~
3 maps prepared from filtered wind data , there are no hi g h

values of u~
3 in the trade wind region (South of 20°N) where

winds are known to be quasi-steady with a m i n i m u m  of di stur-

bance activity. Fi gures 3, 5, and 7, on the other hand ,

which were calculated from the unfiltered wind data do indeed

reflect the relative trade wind maximum located between lO °N

-20 N . The trade wind maximum lies south of a re l t i v e  m i n imum

a r ea , wh i ch Is In turn ref l ect ive of the mean location of the

su btrop ica l r i d ge. This shows that areas which are generall y

known to conta in a m i n i m u m  of storminess have small mean values
-1 •

~
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of u~
3 when calculated from the filtered wind data. On the

other hand , by comparing areas of maximum monthl y mean u~~
3

values in the tropics with tropical cyclone paths documented

by the Joint Typh 3r Warning Center , Guam , it is clear that

these relative maximums of u~
3 have been preserved from the

ori g inal data. This can be seen in Fi g. 20 and Fi g. 22 where

the paths of Typ hoons Floss ie and E l s i e  in October and the

paths of June and Ida in November have been plo tted. Maxi-

mum u~
3 areas in the trop ics in Fi gs. 1 1., 16 and 18 also

reflect documented trop ical cyclone activ i t y  in Jul y, August

and September. Although specific extratrop ical cyclones

were not p lotted and compared in the same manner , it is

reasonable to infer that if the f i l t e r i n g  procedure has dc -

fined synoptic scale cyclone act i v i t y  in these tropical cy-

clone cases that it has also defined ex tratrop i cal cyclone

a c t i v i t y ,  wherever it exists in the synoptic wind analysis.

Continuing with a comparison of u~
3 patterns in m i d — l a t i -

tudes calculated from filtered and u n f i l t e r e d  wind data ,

spac i al differences during some months are quite pronounced.
- 

. 
For example , in February the u ,~

3 maximum in the m i d d l e  North

Pacific from the filtered winds (Fi g. 4) is located several

degrees north of the u~
3 maximum based on unfiltered winds

(Fi g. 5). It shou ld be noted that the hand ana l ysis of

maximum values of u ,~
3 come from a more detailed computer

drawn p lot than shown , and that the maxima analysis was done

a s objectively as pos sible. The maximum u4
3 area over north-

western North America In FIg. 5 Is removed In FI g. 4,

18



i n d i c a t i n g  this th is maximum does not result from mi grating

cyclone ac t i v i t y ,  but from a comparatively steady wind.

Differences such as this exist in each mon thly comparison.

How the storm tracks are related to SST is addressed later

in this paper.

B. CURL~ I

The objective of cal c u l a t i n g  cur l
~~
t from the fil tered

wind data was to see if there was a contribution to E kman

pump ing related solely to the mean loca tion of cyclone propa-

gation . Maps of the monthly mean curl zt , calculated from

the filtered wind data , are shown in Fi gs. 26 , 28 , 30 and 32.

Typi c a l l y the positive and negative area s indicate a smaller

space scale and quite a different orientation which is more

north-south than those resultin g from the use of the unfil-

tered data shown in Fi gs. 27 , 29, 31 and 33. Also there is

l i t t l e  month -to-month spacia l consistency of positive and

negative areas in the case where filtered winds were used ,

but there is in the case where the unfiltered winds were used.

Assuming the data an~i the f i l t e r i n g  procedure have been

satisfactory in d e f i n i n g  the wind fie l d  due to synoptic scale

storms , the rather random appearing patterns of cur l
~~
r from

month to month in Fi gs. 26 , 28, 30 and 32 may indic a te that

the part of curl zt is not important as a consistent atmospheric

forcing mechanism. Another p o s s i b i l i t y ,  of course , is that

the mean wind stress curl produced by synoptic storm actIvity

is important , but that the 2 1/2 degree horizontal resolution

-



or the twice d a i l y  time resolution of the FNWC wind anal ysis

is not fine enoug h to measure It. The consistency and

larger scale of cur l
~~

T calculati ons a r i s i n g  from the use of

unfiltered wind data would indicate that the total surface

ci r c u l a t i o n  is important in r e s u l t i n g  con sistent synoptic

scale Ekman pumping in the ocean. These patterns from the

total wind data are typical of those compu ted and published

independentl y in the Anomal y Dynamics Study Report (1977)

for 1976.

C. RELATIONSHIP BETWEEN u
~
3 AND SST

I gnoring other influences such as u p w e l l i n g  or advec ti on ,

shortly - after and at the same location where there is a

max imum/minimum of win d  m i x i n g ,  the SST is expected to be a

minimum/maximum. As was stated ea r l i e r , attempts to make

correlations must be quite subject ive. A goal of future

studies of this type would be to see if there i s a relation-

shi p between anomalies from a computed long term mean of

monthl y mean storm a c t i v i t y  and anomalies of SST. The monthl y

mean SST anomalies provided by N amias are computed for the

North Paci f i c  from 20-60°N and are shown in Fi gs. 34 through

45. Also on these figures , the axis of the maximum of u4
3

from filtered wind data is shown . in sp it e of the l imi t a-

tions on this analysis mentioned above , some interesting

observations can be made from these maps.

The orient a tion of the major axis of the warm SST anomaly

whIch existed in the m i d - P a c i f i c  for almos t every month nearly 0

of u~,
3 calculated from the filtered



winds (compare Fi gs. 34 through 45 with the even numb ered

Fi gs. 2 through 24). This would indicate that the pr opensity

of cyclones to track in a more zonal direc t i o n  rather than

m e r i d i o n a l l y in a given month may be an impor tant factor in

e s t a b l i s h i n g  the monthly mean SST anomalies. Some other ob-

servations may be made by comparing the u~
3 maximums and

anomalous SST patterns. The u~
3 paths of storminess for the

mos t part overlie cold SST anomalies , and , in general , have

a tendency to p a r a l l e l  the major axis of the cold an omalies.

This looks p a r t i c u l a r l y  good in some m onths such as June ,

Jul y, August . November and December and not qui t e  as good

in September for example over the western Pacific. I f the

long-term climato l og ica l values of u
~
3 were known , the hypo-

thesis that band pass filtered values are a major contri-

bution to SST anomalies could be tested more f u l l y .

0. RELATIONSHIP BETWEEN CURL zT AND SST

The horizontal scale of positive and negative areas of

curl z r from the filtered winds are not onl y smaller than those

from the u n f i l t e r e d  winds , but also smaller than the scale

of the SST anomalies , at least in 1975. This is perhaps

more evidence that , as discussed e a r l i e r , curl t from mi grat-

ing systems alone is perhaps unimportant to large-scale Ekman

pump ing. Al thoug h four fi gures of monthly mean values of

cur l
~~

r from the to tal wind fie l d  have been i ncluded in this

paper , it ha s not been the purpose of this study to relate - - -

curl
~~

r from the total wind fie l d  to SST. This is being inves-

ti gated by the Anomaly Dynamics Study (ADS) group who have

21 - 
—



rece ntl y p u b l i s h e d  results on thi s  subject in the ADS Repor t

(1977). Suffice it to say at this point , monthl y mean val ues

of wind stress curl from the total wind and SST anomalies

are of the same general si ze so a r e l a t i o n s h i p  m ay be indi-

cated in view of this evid ence.

- 22 
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IV. CONCLUSIONS

By temporal f i l t e r i n g  of the 1975 FNWC g lobal band su r-

face wind a n a l y s i s  and through subsequent compu tations for

monthl y mean values of u~
3 and curl 1 , two reasonabl y con-

cl u s i v e  results have been shown .

Fir s t , t he band pass f i l t ered u~~
3 patterns have been

shown to be a measure of m i d - l a t i t u d e  synoptic d i s t u r b a n c e

a c t i v i t y .  In r e l a t i n g  t h i s  storminess or lack of it to

a nom alousl y cold or warm SST p a tt erns , ther e a p p e a r s  t o be

a rela ti on shi p betwe en t h e major ax i s of t he SST anomal y

patterns and the isop leths of band pass f i l t e r e d  u
~
3 . Th i s

suggests that both the location and the i n t e n s i t y  of synop-

tic storm a c t i v i t y  d u r i n g  a month are important factors in

deter m i n i n g  SST anomalies.

The second reasonabl y conclusive result is that the

monthl y mean w i n d  stress curl , due to storm a c t i v i t y  alone ,

shows l i t t l e  or no r e l a t i o n s h i p  to SST anomalies. if Ekman

pumping contributes to anomal ous values of SST , then the

con t r i b u t i o n  must be related to the stress produced by the

monthl y mean total surface c i r c u l a t i o n .

The result s of this study are consistent wi t h  a p icture

of the atmosphere forcing the ocean and not the other way

around. Maximum monthl y mean storminess (band pass f i l t e r ed

u 3 ) tended to o v e r l i e  the cold SST anomalies. If the ocean

I _ _ _ _ _ _  
_ _ _ __ _ _ _ _
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were forci n g th e a tmosp here , one m i g h t expect that the maxi-

m um s tormi n ess , in m i d — l a t i t u d e s , would l i e  in the region of

maximum baroci i n i t y  in the SST f i e l d  w h i c h  w ould be between

the warm and cold SST. These new results are th erefore simi-

l ar to the SST/SLP co r r e l a t i o n  study conduc ted by Davis (1976)

in w h i c h  it was g e n e r a l l y co ncluded that w i n d s  associated

w i t h  monthl y mean SLP anomalies in the atmosp here forced

monthl y mean SST anomal ies in the ocean. What was not con-

cluded by D a v i s  was whether th i s  forcin g resu l ted from onl y

v e r t i c a l  m i x i n g  and anomalous heat fluxes , or whether it re-

sulted from advection or Ekman pump i n g ,  or some c o m b i n a t i o n

of processes. The approach used in t h i s  study for d e f i n i n g

monthl y mean storminess through monthl y mean values of band

pass f il t e r e d  u
~~
3 i n d i c a t e s  that t h i s  q u a n t i t y  may be a good

i nd i ca to r of ano m alous v al ues of SST , and thus t h i s  approach

may m e r i t  further study. If a lon g-term mean of band pass

f i l t e r e d  u~~
3 we re developed , then monthl y a n o m a l i e s  of th i s

q u a n t i t y  co uld be compared d i r e c t l y w i t h  a nomalies of SST.

Since u~,
3 is a measure of the mechanical s t i r r i n g  of the

upper ocean by the atmosphere , one could then perhaps better

deduce the proportion of the monthl y mean SST anomal y that

is due solel y to storm- induced v e r t i c a l  m i x i n g .

Another conclusion of thi s  study is that FNWC g lobal

band surface winds are an adequate source to define m i d - l a t i -

tude storminess over the North Pacific Ocean. Some effort has

already begu n at FNWC to comp i le som e 20 years of surface

wi n d  data on the synoptic time scale. Monthl y means of band

pass f i l t e r e d  u~~
3 could be es t a b l i s h e d  from t h i s  data source.

24
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I t wo u ld a p p ear to be a log ica l  c o n c l u s i o n  to proceed w i t h

this work for the purpose of further study in the relation-

sh ip of atmospheric forcing to va ry ing values of SST. As

a caution , one shortcoming of t h i s  type of approach is the

basic assumption that the anomalous atmospheric forcing is

the onl y im p o r t a n t  factor. Surel y the oceanic therma l

s tructure (or anomalous structure ) ~nd even the seasonal

e v o l u t i o n  of the oceanic thermal structure d e t e r m i n e  the

oceanic response as w e l l .  E l s b e r r y  and Camp (1977) have

shown that the same atmospheric forcing produces a much

lar ger SST response in September than it does in December ,

and t h i s  is no doubt true in other months as w e l l .  The ADS

group is now in v o l v e d  in r e s o l v i n g  t h i s  thermal s t r u c t u r e

through the processing of increased data coverage in the

m i d d l e  P a c i f i c .  Throu gh t h i s  new data , perhaps the effects

of atmospheric forcing and oceanic thermal structure can be

combined to further resolve the i n t e r r e l a t i o n s h i p s of these

var i a b l e s  and SST.

25

-. 

_ _  _ _ _



1.0

.~

.f

.4

.2

.2 .4 . .~~ 1’.O
f(days 

~~)

Fig u r e  1. The ampl i t u d e  of the 3 1 p o i n t  band
pass f i l t e r  as a function of frequency.
F rom B l ackmon (1976) .
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JAN Uj (FILTE RED WINDS)
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~~~~~~~~~~ 
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Fi gure 2. Mo nthl y mean f r i c t i o n  v e l o c i t y  cubed (u
~~

3)
fro m band pass fi I tered u and v w i n d  com-
ponents. S o l i d  heavy l i n e s  denoted m i d -
l a t i t u d e  m axim ums . Cont 9ur values are .25,
.5 ,  1 . ,  2., 3. x io ’

~ (cm/ sec)
3 .

JA N U.3

_ _ _

5 .25

- • . - -
-

(lao i~o 40

Fi gure 3. Monthly me an f r i c t i o n  veloci ty cubed (u
~
3)

from u n f i l t e r e d  u and v w i n d  components.
Sol i d  heavy li n e s  denote m i d - l a t i t u d e  maxi-
mums. Contour value s are .25, .5, 1., 2.,
3 ., . . .x lO~ (cm /sec)3 .
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Fi gu re 4. Same as Fi g. 2 except for February 1975 .
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Fi gure 5. Same as Fi g. 3 except for February 1975 .
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Figure 6. Same as Fi g. 2 except for March 1975 .
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Fi gure 7. Same as Fi g. 3 except for March 1975 .
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• APR U 3 (FILTE RED WIND S)
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Fi gure 8. Same as Fi g. 2 except for A p r i l  1975 .
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Fi gure 9. Same as Fig. 3 except for A p r i l  1975 .
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MAY UII~(F ILTERED WINDS )
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Fi gure 10. Same as Fi g. 2 except for May 1975 .
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Fi gure I l .  Same as Fi g. 3 except for May 1975 .
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JUN U ~ (FILTERED WiNDS)
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Fi gure 12. Same as Fig. 2 except for June 1975 .
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Fi gure 13 . Same as Fi g. 3 except for June 1975.
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F igure 14. Same as Fi g. 2 excep t for J u l y 1975 .
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Figure 15 . Same as Fi g. 3 except for Ju l y  1975.
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AUG y ~ (FIL~TERED W IND~
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Fi gure 16. Sa me as Fi g. 2 exce pt for August 1975.
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Fi gure 17 . Same as Fi g. 3 except for August 1975 .
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Fi g ure 18. Same as Fi g. 2 excep t for September 1975.
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F i gure 19 . Same as F I g. 3 except for Septembe r 1975 .
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Fi gure 20.  Sa m e as F i g. 2 excep t for October 1975 ,
and the paths of Typhoons E l s i e  and
F l ossie are show n.
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Fi gure 21. Sa me as Fi g.  3 except for October 1975 .
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Fi gure 22. Same as Fi g. 2 exce pt for November 1975 ,
and the pa t hs of  T yphoons June and Ida
a re shown.
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F igure 23 . Same as Fi g. 3 except to r November 1975 .
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Fi gure 24. Same as F i g. 2 except for December 1975 .
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Fi gu re 25 . Same as Fi g. 3 except for December 1975 .
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Fi gure 26. The v e r t i c a l  component of the January m o n t h l y
mean w i n d  stress curl (curl

~~t) from band pass
f i l t e r e d  u and v w i n d  compo n ents. Contour values
a re -4 . , — 3 .  ,- 2. ,- 1 . ,+O ,÷i . ,+2. ,+3. ,÷ls . x
dynes/c rn 3 . The heav7 l i n e s  are l i n e s  of zero
curl , and gray s h a d i n g  denotes p o s i t i v e  c u r l .

JA N CURLZ ‘t
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F i g u r e  27 . The v e r t i c a l  component of the January m o n t h l y
mean w i n d  stre ss curl (curl

~~
r) from u n f i l t e r e d

u and v w i n d  components. Co n tour v a l u e s _ are
as in Fi~~. 26 except values are times 10 ‘
dines/cm . The heavy li n e s  are lines of zero
curl . - “
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Fi gure 28. Same as Fi g. 26 except for Februar y 1975 .
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Fi gure 29. Same as F i g .  27 except for February 1975 .
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Fi gure 30. Same as Fi g. 26 except for March 1975 .
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Fi gure 3 1 .  Same as F i g. 27 excep t for March 1975 .
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Fi gure 32. Same as Fi g. 26 except for A p r i l  1975 .
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Fi gu r e 33 . Same as Fi g. 27 except for A p r i l  1975 .
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Fi g ure 3 14 . January monthl y mean sea surface temperature
anomalies (SST QM ). Co ntour i n t e r v a l s  are .5°C .
Heav y l i n e s  are zero anom lay li n e s , wa rm an omal y
areas are de not ed b y + , and cold anom al y areas
are denoted by - . Dashed lin e s  i n d i c a t e  monthl y
mean max im um areas of u

~~
3 f rom f i l t ered w i nd as

in F i g. 2.
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Fi gure 35 . Same as Fi g. 31s except for February 1 975 .

- -- 

43 

- —



MAR SSTDM 
-

130 Jo JO Jo Ito Jo io

Fi gure  36. Sa m e as Fi g. 34 except for March 1975 .
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Fi gure 38. Same as Fi g. 3-4 except for May 1975 .
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Fi gure 39. Same as Fi g. 34 except for June 1975 .
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Fi gure 140. Same as Fig. 34 except for July 1975.
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Figure 14 1. Same as Fi g. 34 except for August 1975.
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F igure 142. Same as Fi g. 34 except for September 1975 .
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Fi gure 43. Same as Fig. 34 except for October 1975 .
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Fi gure 414. Same as Fi g . 34 except for November 1975 .
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Fi gure 45. Same as Fi g. 34 except for December 1975 .
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