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5 and each item passes through all of the stations in sequence. The service
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It has been conjectured that the production rate remains invariant under re—
versal of the production line. Line reversal means tha t every item pas ses
through the stations in the reverse order , that is , beginning with station k
and ending with station 1. A general proof of the reversibility proper ty is
given. First it is shown that with predetermined service t imes the total
t ime required to process a dissimilar itema through It dissimilar stations
does not change when the order of the stations and the order of the items is
reversed. Thea it is shown for the stochastic case that the order of the
items does not affect the production rate.
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ABSTRACT

A production line is treated as a series arrangement of k work stations.

An unlimited supply of raw production items is available at the first station ,

and each item passes through all of the stations in sequence. The service

time for a single item at station j  is assumed to be a random variable with

a probability distribution peculiar to that station . In this mode of opera—

tion any station will at any time be either busy, or idle , or blocked. A

measure of the productivity of such a line is its mean production rate r.

It has bean conjectured that the productioi~ rate remains invariant under re-

versal of the production line. Line reversal means that every item passes

through the stations in the reverse order , that is, beginning with station k

and ending with station 1. A general proof of the reversibility property is

given. First it is shown that with predetermined service times the total

time required to process n dissimila r items through It dissimilar stations

does not change when the order of the stations and the order of the items is

reversed . Then it is shown for the stochastic case that the order of the

items does not affect the production rate.
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INTRODUCTION AND DEFINITION S

The production line has been the object of a good deal of study in the

past. Much of the past work has involved the development of analytical solutions

or empirical formulas for the production rate. Another aspect of production

lines that has received attention is the optimization of production rate. An

important question in this context is how the production rate is affected by

a rearrangement of the order of the servers. A special case of rearrangement

is that of line reversal , to be defined in the following section. It has been

conjectured by Hillier and Roling [1] and Knott [3) ,  that the production rate

does not change under line reversal. Such a conjecture is strongly motivated

by a few special cases for which it is known to be true and by simulation re—

suits for more general cases. However, a proof of the reversibility property

has not been published . To give such a proof is the purpose of this paper.

A less complete version of this proof was presented informally at an ORSA

meeting , see [6].

We introduce the problem by characterizing the production line shown

in Figure Ia. The line consists of k dissimilar work stations (servers)

labeled 1, 2, ... , It, and arranged in series in that order . There is an un—

limited supply of identical production items (customers) at station 1. Each

rev production item enters the line at station 1, passes through all stations

in order , and leaves station It as a finished item. The service time of any

item at station j is a nonnegative random variable d•noted S~. The random

variables ~~ ... , are statistically independent , th.ir distributions

are arbitrary and not identical in general. Th. service t ime of item i at

station j is ~~~ and the sequence Si,, i 1, 2 , ... , is identically and



Line 1

(a) 
__._
~___EIIIEiIII1_*_1IIII~II1___ — — 

~EIIII~IIII1’Raw . Finished
Items ItemsEnter LeaveLine 2

(b) ._*-~LI~II1._ — —[ 2 J 4 i I I

Figure 1. The k—station production line.
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independently distributed. It is assumed that a station cannot break down

and that each station can service only one item at a time. However, the

case of station breakdown, under certain assumptions, can be reduced to the

case treated here, whereby periods of station breakdown become a part of

the service time. Every station is at any time in one of three possible

states. A station is bu~y when it is servicing an item, blocked when it

has completed service but cannot pass on its item to the next station because

that station is still busy or blocked, and idle when it is neither busy nor

blocked. Idleness is caused when a station has passed on its item to the

next station and has not yet received a new item from the preceding station.

Service begins imeediately at the time at which an item arrives at an idle

station. The first station can never be idle, similarly the last station can

never be blocked. There may be buffer spaces (in—process storage) provided

between stations to diminish the occurrence of blocking. This case does not

require special treatment since a buffer which c~n hold £ items is equivalent

to £ stations in series, where each station has zero service time, see [5].

We note that the phenomena of block ing and idling introduce an element which

is not found in ordinary queues; this makes analysis of production lines

more difficult.

One important measure of the efficiency of a line is the mean production

rate r. It is coimnonl y defined to be the expected number of items, per unit

time, released from the last station in the long run. Let N(t) be the number

of items released from station It in the time interval (0, t). Then we have

r — u r n  E[N( t) ]  (1)
t

where E [ ’J  denotes the expectation operator . An alternat ive and equivalent



definition is

r — h EED] (2)

where D may be either the interdemand time at station 1 or the interdeparture

t ime at station k*. For the purpose of our subsequent analysis and proof we

will define r in terms of the production time P(n) of the first n items to

pass through the line, that is, the time which elapses between the arrival of

item 1 at station 1 and the departure of item n from station k. We have

r — l im
n-’~ 

E[P(n) ] (3)

Clearly, (2) is obtained from (3) by putting E[P(n)] — E[P(1)J + (n—l)E[DJ.

The mean production rate is generally a function of the distribution of

the service time of each of the k servers and the order of the servers.

Analytical closed form expressions for this functional dependence have been

obtained only for very simple cases, where k < 3. For example, for the

case k — 3 with exponentially distributed service times having mean values

liP], 1/p2 and lip3, Hunt [2] obtained an expression for r, his equations

(21), (22), (23), which is the ratio of two polynomials in p1~ 
p
2~ ~i 3• The

numerator polynomial is of degree 6 and contains 22 terms , the denominator

polynomial is of degree 7 and contains 24 terms. The expression is already

so complicated that it does not let one obtain much insight in the behavior

of the function. Another closed form expression is given in [7], equation

(102) , for k — 3 and uniformly distributed service times, but only for the

case where all three servers are identical. These two examples underline the

diff iculty of the problem of obtaining analytical results, and explain why

most investigations of production lines rely on simulation or on numerical

methods .

alt could , in fact, be the interdemand time or the interdeparture time at any
station.



PRODUCTION LINE REVERSAL

The production line defined in the preceding section is reversed

when each item passes through the work stations in the order k, k — 1,

.., 2, 1, that is, the item enters the line at station k and departs from

it at station 1. Figure lb shows the reversed line. Let r1 
be the mean

production rate of the original line and r2 be that of the reversed line. It

has been conjectured that r
1 

— r2. This property will be referred to as

reversibility. The conjecture that reversibility holds under the most general

conditions is supported by the following special cases.

(i) Reversibility holds for It — 2 and gener~ii service t ime distributions,

in which case we have [5]

r —  (4)E [max(S1, S2) ]

(ii) Reversibility holds for k — 3 when the service times are exponentially

distributed as shown in [ 4 1 and as can be deduced from the aforemen-

tioned expression by Hunt [ 2 ] which is symmetric in p1~ 
and p3. That

expression also shows that the production rate does change when servers

are arranged in the order 1, 3, 2 or 3, 1, 2.

(iii) Reversibility holds for any It when the service times are fixed

(deterministic), see [5]. In that case we have

1 (5)max~.~ 1, 
~2’ ~~~~~~

and the production rate does not at all depend on the order of the

servers.

In the following we present a proof of reversibility which holds for

any It and for arbitrarily distributed service t imes . It should be apparent

- — 

5 
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from the discussion of the foregoing section that it will not be possible to

P f ind a general proof which relies on a closed form expression for the pro-

duction rate. Our proof uses implicitly the description of a production line

by the sequence of holding times (service times plus blocking times) of each

item. The corresponding stochastic process was first applied in [5] and

was formalized and called the holding time process in [7].

The key idea, which led to the development of the proof to follow, is that

of a movie run backwards. Suppose that a movie is taken of a production line,

showing every station and the items being worked on, over the period of time

required to process n items. When the movie is run backwards, items will

proceed through the line in reverse , and although the mode of operation is

not the same as for the original line (blocking periods now precede service

periods), there is no contradiction; the service times are the same as in the

forward case, and it takes exactly the same total time to process n items. It

is easy to reason that this total time cannot be reduced by letting the back-

ward case conform to the normal mode of operation.

An important insight gained from the Gedankenexperiment with the movie in

reverse is that the items need to proceed through the reversed line in reverse

order if the produc tion times for the two cases are to be equal. This situation

will be referred to as line and time reversal. Accordingly , our proof con-

sists of two parts dealt with in two separate sections. In the first part ,

we show that for any deterministic sequence of service times the production

time of n items is in ’ariant under line and time reversal. In the second

part we extend this result to the stochastic case where we show that the cx—

pected value of production time is invariant under line reversal alone.

4 6
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THE DETERMINISTIC CASE

In this section we treat the case of n items whose service times at

each of the k stations are predetermined . Thus we have a sequence {S
ij
}
~

i — 1, 2, ..., n, j 1, 2, . .. , k, in which the values S1~ are arbitrary

but fixed. In this sense we are speaking of the deterministic case. However,

we may think of the S
1~ 

either as the known and fixed service times for n

dissimilar items or as a particular realization of the random service times

for n identical items. It should be noted in this connection that the so

called machine scheduling ~~pblern seeks to find that order of n dissimilar

items with fixed service times which minimizes the production time.

The production time of the n items is P1(n). It must be some function

of all n x It values S
1~
. We will develop an expression for P1(n) with the

aid of the activity network shown in Figure 2. However, such an expression

is not required , for it is the structure of the activity network which leads

immediately to the conclusion that the production time is invariant under

]ine and time reversal. An activity network is a directed graph which re-

presents the time required to carry out a project, in our case the time re-

quired to process n items. The arcs of the network represent the times re-

quired to carry out certain activities and the nodes represent points in time

at which certain events occur. In our network all nodes are AND nodes. This

means that a node Is realized only at the time at which all activities asso-

ciated with arcs leading into that node are completed. All activities asso-

ciated with arcs emanating from a node are begun at the time at which the

node is realized. The horizontal arcs of the network represent the service

times S
1~ 

and the vertical arcs represer.t dummy activities of duration zero

.7
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r

The arc labeled S1 leads into the node ij, which represents Ti4, the time atj

which item I departs from station j. T~~ ie the time at which item 1 enters

station 1. The vertical arcs provide the coupling between the passage of

two successive items through the line; they t hus account for the blocking

phenomenon. For example, item 2 cannot move into station 2 before item 1

has cleared station 2, that is, before the node 12 has been realized, This

is assured by the vertical arc from node 12 to node 21. We observe that nodes

lying on a vertical line have the same index sum. The departure times T
ij

and T~_1, j+l are represented by adjacent nodes on the same vertical line,

see Figure 3. It is apparent that T1~ > T11 j+l • More specifically we

have the relation

Tij — max(T11 ~~~~~ 
(T
i j—l + Sij

)} , I>1~ j— l ,2,...,k—l (6)

By using this relation , it now transpires that every Tij is expressible as

the maximum of certain sums of service time~. For example we have

T — S11 11

— max{ (S11 + S12) ,  (S11 + S21))

— max{(S11 + S12 + S13),  (S11 + S12 + 
~22~~’ ~~ll 

+ 
~2l + s22)}

In the expression for T22 the sum (S11+ S12 + S13
) represents a path from

the source node 10 to the node 22. There are three possible paths between

these two nodes and the node realization time T22 is equal to the longest

path. We nov define a path from the source node to node ij as the sum

i+j
R1~ (L. ~~ — J2 SL(k) , rn(k)

9
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T1_1 ,j+l

0
Sij

0>
T
1~~..1

Figure 3. Illustration of Equation (6).
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where

L — (2 (2) ,  2(3) , ..., £( i+j))

M — (rn(2) , m(3) , ..., rn(i+j)) (8)

and where the progression of the indices 1(k) axid m (k) satisfies the constraints

1(2) — m(2) — 1

2 (k) + m (k) — It

1(k) < £(k+1) < t (k)+1 (9)

It then follows that

Ti — max R
i (L,M)

L,M (10)

Also , the production t ime P1(n) corresponds to the longest path from the source

node 10 to the sink node nIt , that is

P1(n) — T
nk 

— max ~ k~~’ 
M) (11)

L,M ‘~

Now let P3(n) represent the production time for the same n items under

line and time reversal. Clearly, the activity network for this case is ob-

tained from the network of Figure 2 by reversing the direction of each arrow

and by letting node nk be the source node and node 10 be the sink node. This

implies that T1~ becomes the time at which item I enters station j. Since the

longest path from node 10 to node nk is the same as the longest path from node

nIt to node 10 it follows that

— P3(n) (12)

and the proof of the first part is complete.

~



THE STOCHASTIC CASE

We let M1(n) be the matrix whose elements are the service t imes S~~

that is

~1l 
•

M1(n) — (13)

S • . .  Snl nk

The matrix correspond ing to line reversal alone is

Slk 
S • • S11

M2
(n) — : (14)

S ... SnIt nl

and f or line and time reversal we have

Snk
.

M3(n) — • (15)

SlIt ~l1

The production time as developed in (11) is a function f {’} of the matrix of

service t imes, namely

P1Ca) — f {M~ (n) ) , i — 1, 2 , 3 (16)

It was shown that P3(n) — P1(n) , but in general we have P2 (n) ~ P1(n) .

12
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In the stochastic case the service t imes S as well as the production
Pu ii

times P1(n) are random variables. Because of (16) , the distribution function

of P1(n)

Fi(x) — P[P
i(n) < x] , i — 1, 2, 3 (11)

is some function of the joint distribution of the elements of the random

matrix M1(n) . All the elements in any given column of M1(n) are identically

and independently distributed random variables , thus the order of the ele-

ments in any column may be rearranged without changing the probability pro-

perties of Mi(n).- Since ?42(n) is obtained by reversing all columns of M3(n)

it follows that M2 (n) and M3(n) are equivalent , in the sense that their pro-

bability measures are equal. Thus we obtain

F3(x) — F2(x) (18)

A similar conclusion is that a server cannot distinguiah one item from another

because the sequence S~~, i — 1, 2, ... ,~~~~~, 
is identically and independently dis-

tributed . Hence we may def ine S~~ to be the service time at station j of the

ith item which enters the station , instead of the service time of the item with

label i. With this definition we have the stronger condition M3(n) — 11
2
(n) ,

and both matrices are represented by (14) . From (18) follows

f E [P 3(n) ] — E(P 2 (n) ] (19)

and after substituting (12)

E[P1(n)J — E [P 2 (n) ] (20)

Finall y, applying (20) to (3) gives

r1 — r 2 (21) 
- 

-

and the proof is complete.
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