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' ABSTRACT

A production line is treated as a series arrangement of k work stations.
An unlimited supply of raw production items is available at the first station,
and each item passes through all of the stations in sequence. The service
time for a single item at station j is assumed to be a random variable with
a probability distribution peculiar to that station. In this mode of opera-
tion any station will at any time be either busy, or idle, or blocked. A
measure of the productivity of such a line is its mean production rate r.
It has been conjectured that the production rate remains invariant under re-
versal of the production line. Line reversal means that every item passes
through the stations in the reverse order, that is, beginning with station k
and ending with station 1. A general proof of the reversibility property is
given. First it is shown that with predetermined service times the total
time required to process n dissimilar items through k dissimilar stations
does not change when the order of the stations and the order of the items is
reversed. Then it is shown for the stochastic case that the order of the

items does not affect the production rate.
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INTRODUCTION AND DEFINITIONS

The production line has been the object of a good deal of study in the
past. Much of the past work has involved the development of analytical solutions
or empirical formulas for the production rate. Another aspect of production
lines that has received attention is the optimization of production rate. An
important question in this context is how the production rate is affected by
a rearrangement of the order of the servers. A special case of rearrangement
is that of line reversal, to be defined in the following section. It has been
conjectured by Hillier and Boling [1] and Knott [3], that the production rate
does not change under line reversal. Such a conjecture is strongly motivated
by a few special cases for which it is known to be true and by simulation re-
sults for more general cases. However, a proof of the reversibility property
has not been published. To give such a proof is the purpose of this paper.

A less complete version of this proof was presented informally at an ORSA
meeting, see [6].
We introduce the problem by characterizing the production line shown

in Figure la. The line consists of k dissimilar work stations (servers)

labeled 1, 2, ..., k, and arranged in series in that order. There is an un-

limited supply of identical production items (customers) at station 1. Each

raw production item enters the line at station 1, passes through all stations
in order, and leaves station k as a finished item. The service time of any
item at station j is a nonnegative random variable denoted Sj. The random
variables sl, 82. souy sk are statistically independent, their distributions
are arbitrary and not identical in general. The service time of item i at

station j 1is sij. and the sequence sij’ i=1, 2, ..., is identically and
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Figure 1.

The k-station production line.




independently distributed. It is assumed that a station cannot break down
and that each station can service only one item at a time. However, the

case of station breakdown, under certain assumptions, can be reduced to the
case treated here, whereby periods of station breakdown become a part of

the service time. Every station is at any time in one of three possible
states. A station is busy when it is servicing an item, blocked when it

has completed service but cannot pass on its item to the next station because
that station is still busy or blocked, and idle when it is neither busy nor
blocked. Idleness is caused when a station has passed on its item to the
next station and has not yet received a new item from the preceding station.
Service begins immediately at the time at which an item arrives at an idle
station. The first station can never be idle, similarly the last station can

never be blocked. There may be buffer spaces (in-process storage) provided

between stations to diminish the occurrence of blocking. This case does not
require special treatment since a buffer which car hold £ items is equivalent
to L stations in series, where each station has zero service time, see [5].
We note that the phenomena of blocking and idling introduce an element which
is not found in ordinary queues; this makes analysis of production lines
more difficult.

One important measure of the efficiency of a line is the mean production

rate r. It is commonly defined to be the expected number of items, per unit
time, released from the last station in the long run. Let N(t) be the number

of items released from station k in the time interval (0, t). Then we have

e ttn ENO] @
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where E[+] denotes the expectation operator. An alternative and equivalent
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definition is
r = 1/E[D] (2)

where D may be either the interdemand time at station 1 or the interdeparture

time at station k*. For the purpose of our subsequent analysis and proof we

will define r in terms of the production time P(n) of the first n items to

pass through the line, that is, the time which elapses between the arrival of

item 1 at station 1 and the departure of item n from station k. We have

r = Ua ST 3
N>

Clearly, (2) is obtained from (3) by putting E[P(n)] = E[P(1)] + (n~-1)E[D].

The mean production rate is generally a function of the distribution of
the service time of each of the k servers and the order of the servers.
Analytical closed form expressions for this functional dependence have been
obtained only for very simple cases, where k < 3. For example, for the
case k = 3 with exponentially distributed service times having mean values
1/u1, l/u2 and 1/u3, Hunt [2] obtained an expression for r, his equations
(21), (22), (23), which is the ratio of two polynomials in Hys Hps Mg. The
numerator polynomial is of degree 6 and contains 22 terms, the denominator
polynomial is of degree 7 and contains 24 terms. The expression is already
so complicated that it does not let one obtain much insight in the behavior
of the function. Another closed form expression is given in [7], equation
(102), for k = 3 and uniformly distributed service times, but only for the
case where all three servers are identical. These two examples underline the
difficulty of the problem of obtaining analytical results, and explain why
most investigations of production lines rely on simulation or on numerical

methods.

*It could, in fact, be the interdemand time or the interdeparture time at any
station.




PRODUCTION LINE REVERSAL

The production line defined in the preceding section is reversed
when each item passes through the work stations in the order k, k - 1,
esey 2, 1, that is, the item enters the line at station k and departs from
it at station 1. Figure 1b shows the reversed line. Let r, be the mean
production rate of the original line and r, be that of the reversed line. It

has been conjectured that r. = ry. This property will be referred to as

1
reversibility. The conjecture that reversibility holds under the most general

conditions is supported by the following special cases.
(1) Reversibility holds for k = 2 and general service time distributions,

in which case we have [5]

1
i E[max(s;, S,)] (4)

(11) Reversibility holds for k = 3 when the service times are exponentially
distributed as shown in [ 4] and as can be deduced from the aforemen-
tioned expression by Hunt [ 2 ] which is symmetric in ¥y and My That
expression also shows that the production rate does change when servers
are arranged in the order 1, 3, 2 or 3, 1, 2.

(i11) Reversibility holds for any k when the service times are fixed

(deterministic), see [5]. In that case we have

1
r= (5)
nnx(sl, 52’ - Sk)

and the production rate does not at all depend on the order of the
servers.
In the following we present a proof of reversibility which holds for

any k and for arbitrarily distributed service times. It should be apparent
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from the discussion of the foregoing section that it will not be possible to
find a general proof which relies on a closed form expression for the pro-
duction rate. Our proof uses implicitly the description of a production line

by the sequence of holding times (service times plus blocking times) of each

item. The corresponding stochastic process was first applied in [5] and

was formalized and called the holding time process in [7].

The key idea, which led to the development of the proof to follow, is that
of a movie run backwards. Suppose that a movie is taken of a production line,
showing every station and the items being worked on, over the period of time
required to process n items. When the movie is run backwards, items will
proceed through the line in reverse, and although the mode of operation is
not the same as for the original line (blocking periods now precede service
periods), there is no contradiction; the service times are the same as in the
forward case, and it takes exactly the same total time to process n items. It
is easy to reason that this total time cannot be reduced by letting the back-
ward case conform to the normal mode of operation.

An important insight gained from the Gedankenexperiment with the movie in
reverse is that the items need to proceed through the reversed line in reverse
order if the production times for the two cases are to be equal. This situation

will be referred to as line and time reversal. Accordingly, our proof con-

sists of two parts dealt with in two separate sections. 1In the first part,
we show that for any deterministic sequence of service times the production
time of n items is invariant under line and time reversal. In the second
part we extend this result to the stochastic case where we show that the ex-

pected value of production time is invariant under line reversal alone.
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THE DETERMINISTIC CASE

In this section we treat the case of n items whose service times at

},

each of the k stations are predetermined. Thus we have a sequence {S1

3

i=1,2, ..., n, j=1, 2, ..., k, in which the values Si are arbitrary

3
but fixed. In this sense we are speaking of the deterministic case. However,
we may think of the Sij either as the known and fixed service times for n
dissimilar items or as a particular realization of the random service times

for n identical items. It should be noted in this connection that the so

called machine scheduling problem seeks to find that order of n dissimilar

items with fixed service times which minimizes the production time.
The production time of the n items is Pl(n). It must be some function

of all n x k values Si We will develop an expression for Pl(n) with the

i
aid of the activity network shown in Figure 2. However, such an expression
is not required, for it is the structure of the activity network which leads
immediately to the conclusion that the production time is invariant under
line and time reversal. An activity network is a directed graph which re-
presents the time required to carry out a project, in our case the time re-
quired to process n items. The arcs of the network represent the times re-
quired to carry out certain activities and the nodes represent points in time
at which certain events occur. In our network all nodes are AND nodes. This
means that a node is realized only at the time at which all activities asso-
ciated with arcs leading into that node are completed. All activities asso-
ciated with arcs emanating from a node are begun at the time at which the

node is realized. The horizontal arcs of the network represent the service

times sij and the vertical arcs represer.t dummy activities of duration zero.
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The arc labeled sij leads into the node ij, which represents Tij

which item i departs from station j. T10 is the time at which item i enters

, the time at

station 1. The vertical arcs provide the coupling between the passage of

two successive items through the line; they t hus account for the blocking
phenomenon. For example, item 2 cannot move into station 2 before item 1

has cleared s;ation 2, that is, before the node 12 has been realized. This

is assured by the vertical arc from node 12 to node 21. We observe that nodes

lying on a vertical line have the same index sum. The departure times T

1)

and Ti—l 341 are represented by adjacent nodes on the same vertical line,

see Figure 3. It is apparent that '1‘1.1 3_T1_1’ j41° More specifically we

have the relation

T,, = max{T

13 ke

j)} , 1>1, §=1,2,...,k-1 (6)

By using this relation, it now transpires that every Tij is expressible as

1, ot By 4

the maximum of certain sums of service times. For example we have

T ® 8

11 11

121 - nax{(Sll + 312)’ (s11 + 821)}

122 = mx{(s11 +5,+ s13), (s11 + s12 + 822). (s11 + 321 + szz))

In the expression for T,, the sum (Sll+ S12 + 513) represents & path from

22

the source node 10 to the node 22. There are three possible paths between

these two nodes and the node realization time T22 is equal to the lengest

path. We now define a path from the source node to node ij as the sum
i+j

Ryy(L, M) = kZZ Se(x), m(k) L
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where
L= (202), £(3), ..., 2(i+)))
M= (m(2), m(3), ..., m(i+j)) (8)
and where the progression of the indices %£(k) and m(k) satisfies the constraints
2(2) = m(2) =1
2(k) + m(k) = k
L(k) < 2(k+l) < 2(k)+1 9)
It then follows that

T,, = max Rij(L’ M)

3 (10)

Also, the production time Pl(n) corresponds to the longest path from the source

node 10 to the sink node nk, that is

Pl(n) = Tnk = ;a; Rnk(L’ M) (11)

Now let P3(n) represent the production time for the same n items under
line and time reversal. Clearly, the activity network for this case 1is ob-
tained from the network of Figure 2 by reversing the direction of each arrow
and by letting node nk be the source node and node 10 be the sink node. This
implies that Tij becomes the time at which item i enters station j. Since the
longest path from node 10 to node nk is the same as the longest path from node
nk to node 10 it follows that

P,(n) = Py(n) (12)

and the proof of the first part is complete.

11




P" THE STOCHASTIC CASE

We let Ml(n) be the matrix whose elements are the service times S

i)’
that is
P Sy
s SRR
Hl(n) = . . (13)
snl = ) snk
b nd

rslk e o o Sll
My() = | - : (14)
; _Fnk B A snl_J

e
My(n) = . . (15)
s | GBI

The production time as developed in (11) is a function f{+} of the matrix of

Qarvice times, namely

Pi(n) - f{Hi(n)} ® i=1, 2,3 (16)

It was shown that P3(n) = Pl(n). but in general we have Pz(n) é Pl(n).

AR
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In the stochastic case the service times S,, as well as the production

1]
times Pi(n) are random variables. Because of (16), the distribution function

of Pi(n)

Fi(x) = P[P, (n) < x] , f =y 2,3 (17)
is some function of the joint distribution of the elements of the random
matrix Mi(n). All the elements in any given column of Hi(n) are identically
and independently distributed random variables, thus the order of the ele-
ments in any column may be rearranged without changing the probability pro-
perties of Mi(n).~ Since Mz(n) is obtained by reversing all columns of Ha(n)
it follows that Hz(n) and M3(n) are equivalent, in the sense that their pro-
bability measures are equal. Thus we obtain

F3(X) = Fz(x) (18)

A similar conclusion is that a server cannot distinguish one item from another
because the sequence sij’ i=1, 2, ..., n, is identically and independently dis-
tributed. Hence we may define si‘1 to be the service time at station j of the
ith item which enters the station, instead of the service time of the item with
label i. With this definition we have the stronger condition H3(n) = Mz(n),

and both matrices are represented by (14). From (18) follows

E[Py(n)] = E[P,(n)] (19)
and after substituting (12)

E[P,(n)] = E[P,(n)] (20)
Finally, applying (20) to (3) gives
r,=r, (21) i

and the proof is complete.

13
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