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Equilibrium fields with discontinuous displacement gradients can
occur in finite elasticity for certain materials. The presence of such
Requilibrium shocks® affects the energy balance in the elastostatic field,

p and the present paper is concerned with a notion of dissipation associated
with this energy balance. A dissipation inequality is proposed for three-
dimensional equilibrium shocks for both compressible and incompressible
materials. The consequences of this inequality are studied for weak shocks
in plane strain for compressible materials and for shocks of arbitrary
strength in anti-plane strain for a class of incompressible materials. A

thermodynamic argument for the dissipation inequality is also given.

1. Introduction
An example discussed in [1] shows that it is possible for the diffe-
rential equations governing finite equilibrium deformations of an elastic

solid — for an otherwise ''reasonable'' material — to lose their ellipticity

1

The results communicated in this paper were obtained in the course of an
investigation supported by Contract N00014-75-C-0196 between the
California Institute of Technology and the Office of Naval Research.




in the presence of sufficiently severe strains. For a homogeneous, isotropic,
compressible elastic solid, explicit conditions on the principal stretches

and the strain energy which are necessary and sufficient for the ellipticity

of the field equations of plane elastostatics were given in [2].

One of the consequences of such a loss of ellipticity is the possible
occurrence of elastostatic fields in which the displacements may fail — in
certain portions of the body, at least — to have continuous derivatives of
even the first order. A detailed investigation of the local structure of such
fields in plane finite elastostatics is described in [3], where it is pointed
out that they may be relevant to the study of the ''Liiders bands' commonly
observed in ductile materials!. Indeed, deformations with abruptly changing
gradients arise in a wide variety of solids in connection with what has been
termed "localized shear'?2. Boundary value problems in the equilibrium
theory of finite elasticity in which locally severe deformations — near a
cavity, for example — give rise to a loss of ellipticity and an associated
reduction in the smoothness of the stress and displacement fields would
seem to be of special interest in the study of fracture.

The mathematical description of phenomena of the kind described
above has certain features in common with the theory of stationary tran-
sonic flows in inviscid gas dyna:mics3. One of the conspicuous aspects of

such flows is the occurrence of shocks — surfaces across which the fluid

ISee Chapter 18 of [4].
2For an extensive discussion of localized shear, see the article by Rice [5].

3In fact, a precise analogy exists between the boundary value problems
for gas flows past an obstacle on the one hand, and finite anti-plane strain
(for a certain class of incompressible elastic materials) of a medium con-
taining a crack or cavity on the other hand. See § 7 of [6].
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velocity, pressure, density and entropy suffer jump discontinuities. In the
setting of finite elastostatics, the analogous surfaces are those which carry
jump discontinuities in the first derivatives of the displacement vector;

they will be called equilibrium shocks in the present paper.

In gas dynamics, one of the essential restrictions on the flow across
a shock — whether moving or stationary — is that imposed by the requirement
that the entropy of a particle shall increase as the particle crosses a shock!.
This condition leads to major qualitative conclusions concerning the ﬂowz,
and it also expresses — in an idealized way, to be sure — the dissipative
character of the process of shock formation.

In this extensive study of weak solutions of hyperbolic systems of
conservation laws, Law.x3 has emphasized the mathematical role of ""entropy
conditions' of various kinds in connection with the issue of singling out the
physically meaningful weak solution to the initial value problem from among
the many such solutions nominally admitted by the differential equations
and initial conditions themselves. The many beautiful results pertaining
to this question which are discribed in [8] - [11] appear to be most appro-
priate for dynamical problems — the propagation of shock waves, for example.
They do not seem readily interpretable in the context of finite elastic equili-
brium, in which time is not one of the independent variables and the initial

value problem is of no apparent significance. The objective of the present

paper is the derivation and discussion of a dissipation condition which is

lFox' an extensive discussion of shocks in compressible flow, see [7].
ZGal dynamical shocks are always compressive, for example.

3See [8] - [11], where references to related work may be found. |
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analogous to the 'increasing entropy'' requirement for steady gas flows and
which is thought to be appropriate for equilibrium shocks in finite elasticity.
A detailed application of the result derived here may be found in [3].

The field equations of finite elastostatics for both compressible and
incompressible materials are given in the following section. The class of
weak solutions to be considered is descrited :a Ssction 3, which also in-
cludes the jump conditions to be satisfied across an equilibrium shock. The
dissipation condition for a quasi-static time-dependent family of equilibrium
shocks is derived and discussed in Section 4. The implications of the
dissipation condition for weak shocks in plane deformations of compressible
materials are examined in Section 5. Section 6 is devoted to equilibrium
shocks and the dissipation inequality in ~nti-plane strain for a special class
of incompressible materials. A thermodynamic argument in support of the

dissipation requirement is given in the final section.

2. Equations of elastostatics

Let ® be the interior of a three-dimensional region occupied by an
elastic body in its undeformed state. In a deformation of the body, R is
mapped invertibly onto a domain R*, so that a particle with position vector

a 5 : T * ea :
x in R is carried to the point in R whose position vector is y:

Yy =y® =x+ux) , XER . (2. 1)

For the moment, the displacement vector u is assumed to be twice con-
tinuously differentiable on R. i

Let X0 Y, and u, be the components in a fixed rectangular cartesian

NS S TS LR -
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F
coordinate system of x, y and u, respectively. The tensorsl F, Gand C
defined by
E=3y=1+%s . G=EE" , C-E'E . @.2)"

where 9 is the gradient operator and 1 the identity tensor, have components

=F

, : : 3
Fa O g "0yt v BB RV + S = Fp¥yy £ %)

F is the deformation gradient tensor, G and C the left- and right- defor-
mation tensors, respectively. The Jacobian of the mapping is assumed

positive:

J =detE >0 on R ., (2. 4)

If p and po are the mass densities? in ® and n’.*, balance of mass

requires

pJ = 0, on R . (2.5)

If oij are the components of the nominal (or Piola) stress tensor >

g, the local condition of force equilibrium in the absence of body forces

l'I'he same symbol, e. g. E, will be used for a tensor and its matrix of
components in the given coordinate system.

Z'I’he superscript T stands for transposition.

3Latin subscripts have the range 1,2, 3 and repeated subscripts are summed
over this range. A subscript preceded by a comma indicates differentiation
with respect to the corresponding x- coordinate.

4
Po

5
The oij represent forces per unit undeformed area.

is taken to be constant. e |

i |
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6
may be expressed as
oij.j =0 on w , (2.6)
provided that 0 is continuously differentiable on ® . The components le
of the true (or Cauchy) stress tensor! T are related to c.lj via F as
follows:
T lrJ F (2.7)
13 SRl s o 0
If k. is continuously differentiable on R*, then (2. 6) is equivalent to
oT. 2
—B—)?_ =0 on R (2. 8)
J

Moment equilibrium leads to Tij = Tji’ but 0 is in general not symmetric.

For a compressible homogeneous elastic material with a strain energy

density W = W(g) per unit andeformed volume, the relation between stress

and deformation may be taken in the form

. OW(E)
e | W (2.9)
or, equivalently because of (2.7),
_1 AW(E)F, ;
e 0 el . 165

I The Tij represent forces per unit deformed area.
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The displacement equations of equilibrium for a compressible material

then follow from (2. 9), (2.6) and the first of (2. 3) as

_9_|OW(EN| _ )
ax |3F;; | © it % 30 =0 on R, (2.11)

in which

i 9°W(F) 1
ijke (B 55 oF g 42)
ij =~ kit

For an isotropic compressible elastic material, W depends on F

only through the invariants Il' I2 and J : W = W(II,IZ,J), where

1, =TrG , I2 =1/2[(Trg)2-Tr(gz)] 5 (2. 13)

1
and Tr denotes the trace. In this case (2.9) specializes to

AW _ -1

. aw
% -z( laIZ)F - 25 F. C. %) Fji 2 (2. 14)

ik "kj i

where F.l'jl is the i,j - element of the inverse P;'l of F, and cij is
given by the last of (2. 3).

For an incompressible homogeneous elastic material, only those

deformations which preserve volume locally are admissible, and (2. 9),

(2.10) are replaced respectively by 4

lW(l“) is assumed to be infinitely differentiable for every nonsingular
tensor F.
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_ OW(F) ud
G EIED Py (2. 15}
1)
OW(F)
T.. ===~ F. -pbd.. , 2. 16
i 9 ik jk P ij ( )

where éij is the Kronecker delta and p is an arbitrary hydrostatic pressure,
assumed to be continuously differentiable on ®. The displacement equations

of equilibrium for an incompressible material are now

-1
Cijkl(g)uk,jl - Fji p.j =} on R, (2.17)

together with the constraint expressing incompressibility:
J =detF =1 on R ., (2.18)

The functions cijkl in (2,17) are again given by (2.12); (2.17) follows from
(2.6), (2.15) and the fact that Fj =0 if detF = 1. The system (2.17),
(2. 18) comprises four equations for the four unknowns u.l,p.

For an isotropic incompressible material, W depends on F only
through the invariants I, I, of (2.13), and (2. 15) specializes to

2 (AW, oW ow )
fyg * 2 (axl *4 312) ST Tty ¥y - A

3. Weak solutions and equilibrium shocks

In place of the smoothness assumptions made in the preceding section,
it will now be required that the displacement vector u be merely continu-

ous and piecewise continuously differentiable on ®, while the nominal




stress tensor O is piecewise continuous on ®. For incompressible
materials, it is further assumed that the hydrostatic pressure p is piece-
wise continuous on ®. Thus F, ¢ (and p, for incompressible materials)
may suffer jump discontinuities across certain surfaccsl in R.

Enlarging the class of admissible stress and displacement fields in
this way makes it necessary to generalize the sense in which certain of the
field equations are to be satisfied. The tensors ¥, G and C whose com-
ponents are defined in (2. 3) are now piecewise continuous on %, as is the
Jacobian J of (2.4). Equation (2.5), expressing the local balance of mass,
continues to have meaning under the present circumstances and is in fact
equivalent to the integral condition expressing mass balance in the large.
The local equations (2. 6) of force equilibrium, however, must be replaced
by the corresponding global conditions from which they were originally
derived:

¢
‘J o.le.dA = 0 for every ciosed regular (3.1)

S J surface S lying in R

Here I‘:{ is the unit outward normal on S. The integral version (3. 1) of the

force balance requirement remains meaningful for nominal stress fields

0 which are merely piecewise continuous on ®.

The components Tij of true stress are still to be calculated from

Oij and Fij according to (2. 7). Regarded as functions on Ru, the T.lj

are piecewise continuous. The symmetry condition 'rij = Tji continues to

be equivalent to the global balance of moments under present circumstances;

this imposes via (2. 7) the restriction

lThese surfaces are assumed to be regular in the sense of Kellogg. [12].
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. |
Oiijk = oijik on- W (3.2)

Under the smoothness assumptions now in force, u, F and 0 are

said to furnish a weak solution of the field equations for compressible

materials if (2. 9), the first of (2. 3), (2.5), (3.1) and (3.2) hold. The
inequality (2. 4) is, of course, still to be imposed.

For incompressible materials, a weak solution is furnished by u,
F, 0 and p provided the above equations hold, except that (2. 9) is to be
replaced by (2. 15).

It is possible to enlarge still further the class of admissible fields
u, F, o (and p, where appropriate). One such enlargement would permit
unbounded displacements and/or stresses at isolated points or along curves
in R. A second —and considerably more significant — weakening of the
smoothness restrictions would permit discontinuities in the displacement
vector u itself. This particular relaxation of requirements would indeed
be essential for the study of fracture. Neither of these generalizations will
be considered here.

Suppose now that the deformation gradient tensor F and the nominal
stress field 0 associated with a weak solution (for either a compressible
or an incompressible material) suffer jump discontinuities across a surface S

in R but are continuously differentiable on either side of S in a neighborhood

lIt follows from (2. 14) that (3. 2) is automatically satisfied for an isotropic
elastic material. In fact the same applies to all objective elastic materials:
for these, W depends on F only through C.

& i " y o
This might be necessary, for example, to accommodate singularities at the
edge of a terminating surface which carries discontinuites in ¥ or 0.
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of a point P on Sl. The global equilibrium conditions (3. 1) then furnish
two conclusions: first, by the familiar argument, o satisfies the local
equilibrium conditions (2. 6) on either side of S near P. Second, by
applying (3. 1) to a small sphere centered at P and using the fact that (2. 6)
hold on either side of S inside the sphere, one finds that the jumps in

must be such that

[o..]+ N: =0 at P on S . {3-3)

+ + - - . e
Here [o.lj]_ = Oij = Dij 5 $ij and oij stand for the limiting values of Oij
on S from the positive and negative sides of S, and the "positive' side
of S is the side into which N points. Equation (3. 3) asserts that the

nominal traction s with components

s, = Oiij (3. 4)

is necessarily continuous across S. It is possible to show that (3. 3) is
equivalent to the condition that the true traction t with components
t. - 'rij rwj be continuous across the deformation image S* of S; here
n is the unit normal on S*.

Let L be any unit vector which is tangent to S at P. Since u

is continuous at P and continuously differentiable on either side of S,

near enough to P it follows from the first of (2. 3) that

7. L =0 at P on S (3. 5)
ijl- ™

lS is assumed to have a continuously varying unit normal N near P, and

the derivatives oij k are presumed to have finite limiting values from either
’

side at all points of S which are sufficiently close to P.
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A surface S in ® carrying jump discontinuities in F and

la

satisfying the jump conditions (3. 3) and (3. 5) is called an equilibrium shock.

* *
To distinguish S in ® from its deformation image S in ® , it is con-

venient to refer to S as the material shock surface and to S as the spatial

shock surface. It is of course the spatial shock S" that one would actually

b3
""observe''; nevertheless, the pre-image S of S figures more prominently

in the present analysis.

To investigate many of the questions pertaining to the local existence

and local properties of equilibrium shocks, it is sufficient to consider the
case in which S is a plane through P and u is such that ¥ is constant

on either side of S. Such piecewise homogeneous deformations and the

associated equilibrium shocks have been studied in [3] for the case of plane

strain in compressible materials.

4, Energz considerations and dissieation.

The first objective of the nresent section is the derivation of a
formula which reveals the effect on the mechanical energy balance in an
elastic body of the presence of an equilibrium shock. 7This formula has
connections with a conservatior law arising in the elastostatics of homo-
geneous materials as well as with the theory of defects in an elastic solid;
it will lead to a notion of dissipation for equilibriun. shocks which is the
principal concern of the present paper.

In order to obtain the energy formula, it is necessary to consider

lIt is proved in [3] that a necessary condition for the existence of an equi-
librium shock in plane strain of a compressible material is that the (plane
version) of the displacement equations of equilibrium (2. 11) must suffer a
loss of strong ellipticity at some deformation. A minor modification of the
argument used in [3] shows that this result remains true for three-dimen-
sional equilibrium shocks in compressible materials.

e ——
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a quasi-static time-dependent family of equilibrium states. Thus let
u (5,t), E(,’f,'t)' g (x,t) furnish, for each t in a suitable time interval, a
weak solution of the field equations of equilibrium for a compressible material. :

Note that no inertia effects are considered here: the time t plays only the

role of a history parameter. . Suppose that this weak solution involves

an equilibrium shock across the surface S;k in the deformed body R: at

time t, and let St be the pre-image in the undeformed body R of S,’:.

Thus St and Sf are the material and spatial shock surfaces, respectively.
Let V (x,t) stand for the velocity vector3 of a point on the moving

surface St which at time t is located at x. It is now assumed that,

at time to’ the point X, on S is such that V (?\Eo’to) neither vanishes

t
o
nor is tangent to St . Thus St does not coincide locally with a '"contact
o o
surface'' —a surface across which there is no flow of particles.‘; It then

follows that for times near enough to to' and for points X on St which,

at time to , were sufficiently close to X, on St’ V (x,t) will continue
o

to have this property.

Now suppose that 8§ is a regular subdomain of ® which contains

X Then &8 will be intersected by St for all times in a suitable interval

15, F and 0 are assumed to be continuously differentiable with respect

to t for every x in R.

21[. for example, a cylindrical body is loaded on its ends to a state of
uniaxial tension, t might be taken to be proportional to the given applied
force (if the deformation is "load controlled'") or to the given extension
("'grip control"), as long as the force — or the extension — is a monotone
function of real time.

32 (x,t) is assumed to be continuous in (x,t) for all x on St and all times
under consideration.

4See §52 of [7]. Thus S, (and therefore S:) in general consist of different

material particles at different times,
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including to Let ét denote the portion of St which lies in # . For a
sufficiently small domain 8§ and for times t close enough to t . one may
choose the unit normal vector N on ét so that X'N >0, as will now be
assumed. The positive side of ét is thus the side into which V (and there-
fore N) points. Since, to an observer fixed-on ét , particles appear to
cross ét from the positive to the negative side, it is natural to refer to the
positive side as '""upstream'', the negative as ''downstream!'. Let Et’ ﬁt

be the open doma'ms] into which 8 is divided by ét (see Fig. 1).

The total energy stored at a time t close enough to to in that portion

*
of the deformed body which occupies the domain ﬂt — the image of # under

the deformation at time t —is given by

U(t) = J‘W(z(g\c‘,t)) av . (4. 1)
D

The first objective is to obtain a formula for the derivative I.J(t). Clearly

U(t) = iW(g(gs,t))dV +  W(E(x,t))dV , (4.2)

~

BI1—-—

8¢ t
and so to find i](t) it is necessary to calculate the derivatives of the inte-
grals in (4. 2), in which the integrands and the domains of integration vary

with time. Making use of a standard formula for this purpose% one obtains

ow

U(t) =J s FjdV + | WY NdA . (4. 3)
t

)

D

Fij ij '
t S¢

BW b av - | Wynda + |
M
s

® 4+

+ -
lNote that, while ﬂt and ﬂt depend on t, 8§ does not.

S TR

2See [13], Chapter 3, Section 6.
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In this formula,

. -

+ i ~
and W, W represent the limiting values of W on St from the upstream

and downstream sides, respectively.

Let
o 9
X =, t) = 57 ulx.t) 5. 3)

stand for the velocity of the particle which at time t is located at y(ﬁ,t).

Then from (2. 3), (4.4) and (4. 5)

Fij@s,t) =Vt (4. 6)

The volume integrals in (4. 3) can then be calculated as follows: using (2.9),

(4.6), (2.6), and the divergence theorem,

J2 . oav = [o.v, v - | 0;;V}V,dA (4. 7)
% ij J - 4 J 1, Y
8 8 o8,
+ sk
where V is the unit outward normal on the boundary ast of 8. Substituting
E

from (4. 7) into (4. 3) and observing that, on that portion of 98 which coincides

with S, , the normal V = ig , one finds

" r r o+ + + x & -
U(t) = Jo,.v.v.dA - | (Oiijvi + WN,V,)dA + I(ciijvi + WN.V.)dA , (4.8)
EY §t S,

where once again the superscripts + and - on oij and vy refer to the
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appropriate limiting values of these quantities. To this point no use has
been made of the jump conditions prevailing across an equilibrium shock.
By differentiating with respect to t the equation which expresses the

equality of the limiting values of u on St’ one finds that the jump in

particle velocity v satisfies

[ [l

in terms of the components Vk of the velocity of points on the (material)

(4.9)

shock surface St and the jump in the components Fik of the deformation

gradient tensor F . When (4. 9) and the nominal traction continuity require-

ment (3. 3) are used in (4. 8), it reduces to

. )8 +
U(t) = | s,v.dA - I [P.lj]‘NjVidA : (4. 10)
98 S¢
where
P = w&ij - Fli%; (4. 11)

The Pij are the components of the energy -momentum tensor
P=W1 - ETg, whose role in the theory of defects in solids has been
explored extensively by Eshelby [14,15,16]. Indeed, (4.10) suggests that
[P]N may be viewed as a '"force per unit area' associated with the material
shock surface St. In this interpretation, the role of P is precisely that
discussed by Eshelby in § 6 of [16] in connection with the "force on an inter-

face'',

In general the '"force on a defect' has been shown [14,15,16] to

e
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have components

J. =éP..N.dA » (4.12)
1 1 )
r
where ' is a closed surface surrounding the defect. If there are no defects

inside [, so that u is twice continuously differentiable there,

3 S 1
J. -gSPiijdA =0 ; (4. 13)
I

(4. 13) represents a conservation law for compressible homogeneous elastic
materials which was independently discovered by Rice [17] and exploited by
him — and subsequently others — in connection with crack problems in elasti-
city. The energy-momentum tensor P plays a prominent part in the dissi-
pation condition to be derived below. This would seem to be related to the
fact that, as emphasized by Lax [ 11], "entropy conditions' appropriate for
shocks associated with the initial value problem for a quasilinear system are
connected with additional conservation laws implied by the system.

An alternative and more convenient form of the energy formula (4. 10)

is obtained by noting that,if L is any vector tangent to St , (4.11) gives

PiijLi = - FkickjLiNj ’ (4. 14)

’ Equation (4. 13) is easily verified directly withthe help of the divergence theorem
and the field equations of Section 2 appropriate to compressible materials.




so that by (3. 5), (3. 3),

+ 3 + + -
[p.lj] N.L, = - [Fm.l]_ L. [Ornj]_ N; =0 . (4. 15)

Thus the vector [g]fg is perpendicular to St ; it follows that (4. 10) may

be written in the form

. r'
U(t) = | 8 vdA + j (H]' v 'NdA (4. 16)
Y &

where

H = H(E,N) = - PijNiNj =-W+ FmicijiNj : (4. 17)
The identity (4. 16) is the energy formula which furnishes the basis

for the notion of a dissipative shock to be introduced below. One first notes
that [H]t = 0 if no shock is present, so that (4. 16) then reduces to the
statement that the rate of change of energy stored in any portion of the elastic
body is equal to the rate at which work is done by the forces external to
that portion. If an equilibrium shock is present, it is natural to require
that the second term on the right in (4. 16) be nonpositive, corresponding
to the idea that the shock should be dissipative in the sense that it tend to
diminish (or at least not increase) the stored energy in the body. One is

accordingly led to require that, at each instant t,

J 1ty NaA <0 (4.18)
St

e ——————————
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for every subdomain # of R which is intersected by St and which is
small enough to permit N to be chosen so that V*N > 0 on St - Strlﬂ.

Suppose (4. 18) holds, and let x be a non-contact point on St

i. e, a point at which V is neither zero nor tangent to St' Since #§ may
be chosen as the interior of an arbitrarily small sphere centered at X,

it follows that
[H]t < 0 at all non-contact points of St 5 (4.19)

provided one interprets the positive side of St as the side into which V
points.

According to (4.17), the scalar H in the dissipation inequality
(4.19) depends not only on the particular particle concerned (through F) but
on the orientation of the shock (through N) as well. The inequality (4. 19)
may thus be interpreted as requiring that the value of H associated with
a given particle and a given N shall not decrease as the particle crosses
the shock, as is true of the entropy in gas-dynamic shocks.

In what follows, (4.19) will be required to hold at all times t.

The version of (4. 19) appropriate to equilibrium shocks in piecewise
homogeneous plane deformations of a compressible elastic material was
derived in [3] and applied there to certain specific strain energy densities.

For incompressible materials, the argument used to obtain (4. 16)

can be repeated as above, except that (4. 7) must be replaced by

J%g_-‘i‘i v - J'(o + PF )vi jav - Jc VividA + jp-s— av . (4. 20)
+ 1 +
i i 0d

e = -
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Here (2. 15) has been used, as well as the relation

i | : -
Fivij® av. /oy, (4.21)

in which, on the left, v.l is regarded as a function of x and t, while on
the right, as a function of Y and t. The incompressibility condition (2. 18),
however, implies that 6v.l/ayi = 0, so that the last integral on the right in
(4.20) vanishes, reducing (4. 20) to the same result obtained in (4. 7). It
then follows that (4. 16) holds also for incompressible materials with H
again given by (4.17). Thus the inequality (4. 19) is the natural dissipation
requirement to impose on equilibrium shocks in incompressible materials

as well.

5. Comgressible materials: weak shocks in Rlane strain.

If the region R occupied by the undeformed body is cylindrical with
generators parallel to the X3 - axis, the deformation (2.1) corresponds to

Sl e 1 % :
plane strain if u3 =0 and B o ua(xl’xz). For plane strain, F, g and

C of (2.2) are functions of X),%, only and are such that F_ , =F; =C,,

=C 3 =G3Q=Ga3 =0, while F33 =C3

e =G33:1.

3
Not all elastic materials can sustain general states of plane strain

in the absence of body forces. A sufficient condition that a material shall

have this property is that, under the above circumstances, g as determined

by (2.9) shall be such that Oaq = %3 = 0 This is assumed hereafter in

the present section. An isotropic material always fulfills this condition,

For plane strain the displacement equations of equilibrium (2. 11)

lGreek subscripts have the range 1,2,

e
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in the compressible case are readily shown to reduce to

caﬁYé(E)quBé =0 on RO ’ (5.1)

where R,o is the cross-section of the cylinder ® which lies in the plane

X, =0, and

2

F
Caﬁyé(z) zag‘—wgl‘q)— : (5.2)

of " By

If the deformation is plane, one shows easily from (2. 13) and (2. 4)

that

I :l+I,IZ=I+J2,I=G

1 aa = FogFop (5. 3)

so that for isotropic materials, W = W(Il I2 J) = W(I,J). It can further

be shownl that

4 L
- 4W
St ¥ op¥yp * ?.me(rpapyb 3 W )+ SPEgaF g Wyr + 2W 18, B,
SRR A
+IW, (FﬂaFGY B FaanY) (5. 4)

for isotropic materials; here subscripts I and J indicate partial
differentiation of W(I,J) .

In plane strain, both the material and the spatial equilibrium
shock surfaces are cylindrical, and a material shock surface intersects

the cross-section Ro in a cufve2 C. The jump conditions (3.3) and

Isee (2], Eq. (1.17).

. C is assumed to have a continuously varying normal.
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(3.5) become
+
[cap] Ng = 0 on C (5. 5)
and £
[FQpT Lg =0 on C , (5. 6)

where N and L are the unit normal and unit tangent vectors on C, res-
pectively, and the positive side of C is the side into which N is directed

+
In general the various physical and geometrical quantities Fm3 .

:aﬁ . Nc’ L, will vary with position along C. Moreover, if the shock

is regarded as a member of a quasi-static time-dependent family of equi-
librium shocks in the sense of the preceding section, the values of these
quantities will also vary with time. In the present section attention is con-
fined to the local structure of the various fields at a fixed point on C and
at a fixed instant of time. Suppose at such a fixed point and fixed time,

the values of ;aﬁ (and therefore gaﬁ) are regarded as given. The jump
conditions (5. 5) and (5. 6) then restrict the possible local values of Fap -

o

af ’

La and N_ associated with the equilibrium shock. Since
OW(F)
o = %— 5 (5_ 7)
o F
B of

and in view of the fact that N and L can be expressed solely in terms of

the local angle of inclination ¢ of L with respect to the X, - axis, the

~

jump conditions (5. 5) and (5. 6) may be regarded as four equations for the

five unknowns Faﬁ and ¢. One would thus expect to find a one-parameter
+
o * ® of (5.5),(5.6) for given Faﬂ . It is conven- |

ient to choose as the parameter € indexing this family the relative area-

family of "solutions" F
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change across the shock, so that, in view of (2.5),

O+
[
V1

Yi'Hi
e:J;JA . (5. 8)
J

pol!

One now regards i‘ap —'i;‘aﬁ(e), ® - P(e), and therefore LQ Lu(e) and

Na = Na(e) , as functions of €.

+
If in fact no shock is present, so that J - J , (5. 8) shows that
+

€ =0. A weak equilibrium shock is one for which | b:aﬁ(e) - P and

aﬁl‘

therefore Ie I » are small compared to unity. It is now assumed that

+

(5.5) and (5. 6), with the aid of (5.7), determine, for a given Fa a

p ’
smoothl family F-‘aﬁ(e). Na(e)‘ Lo‘e) near € = 0 which is such that

+
(0) = F (5.9)

Faﬂ aff -’
The objective of the analysis in the remainder of this section is the deter -
mination of the weak-shock approximation to the local value of the jump

[H]ZL in the function H of (4.17) for plane strain of a compressible material.

This necessitates a study of the corresponding approximations2 to I':ap(e)

and Na(e).

lSpt.ecifically F_o(€) and ®(e) must be four times and three times continu-
ously differentiable, respectively.

ZWeak shocks are studied in detail in [ 3], but more refined calculations
thag those given in [3] are required to find the weak shock approximation to
(H]Z .
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To begin, one observes that the kinematical jump condition (5. 6)

immediately leads to

- + 5 1
Fopl€) = Fog t 8, (ONg(E) (5.10)
where g(€) is an as yet undetermined, four times continuously differentiable

function which,by (5.9), must satisfy

gn(O)r 0 {5.11)
The vector g(€) represents the jump across the shock of the derivative

of the displacement vector normal to the shock.

In order to analyze the traction continuity condition (5.5), set

+ -
_ | 2WE)  oW(E(e))
AG (E) = [aFaﬁ ¥ 8Fap J Nﬁ(e) ’ (5 12)

and observe that, for all sufficiently small |€ I,

Aa(e) ) (5.13)
But (5.12) and (5.2) show that
BW(E) OW(F
d i F) oW(E(e))| ./
By (€) = [aFa‘3 ™ ]N p'®

‘

- Capys E(9) FLg(ONgE) (5.14)

lE.quation (5.10), which is not limited to weak shocks, leads to the geome-
trical interpretation of the local deformation associated with equilibrium
shocks. Although this interpretation will not be discussed here, it is ex-
plained fully in [3].
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where the prime indicates differentiation with respect to € . From (5.10),
(5.11),
=1 ‘ eIN ’/ 4 / 0
¥ [ ¥ X y
ap(®) = B (EING(€) + g, (€)Ng(€) , F,4(0) = g (0)Ng(0) . (5.15)

/
Since according to (5.13), Aoz(o) = 0, one concludes from (5.14), (5.15) and

(5.9) that g;,(O) must satisfy

Q,,(N(0). E e, (0) = 0 (5.16)

where

Q (N,F)=c (g)NpN (5.17)

ch( apBYd )

for any unit vector N and nonsingular tensor F. It can be shown from

(5.8) and (5. 10) that E(C) satisfies
+ .
g©)(E ) TNe) = - ¢ ; (5. 18)
differentiating (5. 18) with respect to €, setting € = 0 and using (5.11)
shows that

g 0+(F )TN0y = -1, (5.19)

so that g' (0)# 0. The existence of a nontrivial vector gl (0) satisfying (5. 16)

~

requires that +
detQ(N(0),F) =0 . (5.20)

The condition (5. 20) is necessary and sufficient for the failure of ellipticity
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of the plane displacement equations of equilibrium](s. 1) at a deformation
t }
whose local gradient is F. If, foragiven F, N(0) satisfies (5.20), then

N(0) isnormaltoacharacteristic curveof the system (5.1). Forany such

N(0), onecan showthat (5. 16)andthe normalizationcondition (5. 19) determine
El (0) uniquely, provided that the symmetric tensor  is notthe null tcnsm',z
i
It is unfortunately necessary to compute A;(O). Differentiating

(5.14) and setting € = 0 gives, with the aid of (5.9) and (5.15),

2,(0) = - cam<é>{2g;<o> [Ne(0)(0) « N ()N (0)]

+ 2, ()N (0)N4(0)

i / ' 5
" 4, gy s (E)8y (0)8y (OING(0)N, ()N (0) , (5.21)
where
3 _ 9 o’ W(E)
apysrs(E) = mcam&(f;) = TF,OF OFy,, (5.22)

Since (5.13) holds for all sufficiently small |e|, it follows that A:(O) =0
and therefore that g;(O)A';(O) = 0. This, together with (5.16) and the

symmetry upys = Cybap apparent from (5.2), lead to

+ / ’ ’
<apys £ )85 (0)8y (ON4(0)N} (0)

+ / / U
= - 7 dypy s ()8, (0)8), (008} (ONG(0)N, (O)N, (0) . (5.23)

ISee Section 1 of 1]

%The case Q= 0 is excluded from consideration.
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This formula will be used later.
To compute [H]_+ , set
+ + <
h(€) = [H]_ = H(E,N(¢)) - H(F(¢),N(e)) . (5.24)

Invoking the special features of F, 0 and N appropriate to plane strain

and using the definition (4.17) as well as (5.7), one obtains
h(e) = W(E(€)) - W(F)
W 4 +
+5F;B(§)NB(G)FWNQ(€)
W(F(e))N ’e)F SEIN_(€) (5.25)
YB

If one subsitutes from (5. 10) for Fya(ii) where it appears explicitly in (5. 25)

one finds

h(e) = W(E(€)) - W(E) -%;Y—ﬁ(;iwngy<emﬁ<e>
i
+
+ F_ Ny (€) (E)Ng (e)- ( (€))N;(€)
Lindfl [ az (e (5. 26)

The traction continuity condition (5. 5), together with (5.7), shows that the

quantity in brackets in (5. 26) vanishes, so that

h(e) = W(E(E)) - W(F) - ﬂ(F(G))gy(e)Np(e) . (5.27)

Obviously h(0) = 0. To determine the small - |e| approximation to h(e€) ,

one must compute some derivatives of h at € = 0., Differentiating (5.27),
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using the first of (5. 15) and referring to (5. 2), one gets

h'(€) = copy s (E(€) g, (€ INg(E)F, 4 (€) . (5.

In view of (5.11),

h (0) =0 . (5.

Differentiate (5. 28) and use (5.22) and the first of (5.15) to find

h“(e) s daﬁYé)\“(E(e))ga(e)Nﬁ(e)f;é(C)I‘:;\“(G:)

5 °aﬂv6"i‘e’{f;ﬁ‘e’f§a‘e) *ga(e)Np(e)f;’é(e)] i

From (5.11), (5.9) and (5. 15) it then follows that

1" gy ’
h  (0) :Capy6(E)ga(o)gy(o)Np(o)N6(0) (5.

and hence from (5. 16) that

1

h (0)

1
(=}

Finally, differentiate (5. 30) and set € =0, making use of (5.11), (5.9),

(5.15), (5.16) and the symmetry c This yields

apys” “ysap”

+ / / ‘
h (0) = ZdapyGM(E)SQ(O)SY(O)G)\(O)Np(O)Nb(O)N“(O)

+ 6c gy 5(E)8a(0)8, (NG (O)N((0) . (5.

(5.

28)

29)

30)

31)

32)

33)

P
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Appealing to (5.23), one arrives at

Xy

1 3 ‘ ‘
h'(0) = zdgg, 41, ()84 (0)8y (0)85 (OIN4(O)N, (ON, (0) . (5. 34)

Since h vanishes to second order at € =0, one has

h(e) =zh"""(0)e? + o) , ev0 (5. 35)

and hence, using (5.24), the weak-shock result

[H]:r =De> + o(e4) TR e (5. 36)

where, by (5.33), (5.22)

3
D =%zﬁi%@a——g'(0)g'<0>g’(om (0)N4(0)N (0) . (5. 37)
"l el o e S

The formulas (5. 36), (5.37) comprise the main result of the present section.
They express the jump [H]t in terms of the third gradients of the strain
energy density W , the weak-shock limiting normal N(0), and the weak-
shock approximation g'(O)G to the jump E(G) in the normal derivative of
the displacement vector across the shock; g'(O) is a nontrivial solution of
(5. 16) which also satisfies (5. 19).

The fact that, for weak shocks, the jump [H]t is of the third order
in the shock strength € is analogous to the result in gas dynamics that the
entropy jump across a weak shock is of third order in the corresponding

shock strength parameter.l

lSee p. 143 of [7].
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Consider a quasi-static time-dependent family of plane strain equi-
librium shocks in a given material, and let x be the position vector of a
point on the material shock surface St at a fixed instant t. Let V(x,t)
be the velocity of the point x at the instant t , }E: = é(;\g,t) the limiting
valueof F at x,t from the upstream side. Let N(0) satisfy (5. 20) and be
such that V(x,t)*N(0) is positive.l Let g'(O) be the vector determined
uniquely by (5.16), (5.19). Reference to (5. 37) shows tnat the value of D
at the point x and the instant t is then fully determined by é and N(O).
If the shock is sufficiently weak at x,t, (5.36) shows that the sign of the
shock strength € =€(x,t) is determined2 by the dissipation inequality
(4. 19)? This in turn determines the sign of the jumps across the shock
in other field quantities such as the density (see (5. 8)).

If the compressible material at hand is isotropic, it is possible to
use (5.37) (5.22), (5.4) and (5. 19) to show that D assumes the following
special form:

4 1+ 1 +2 \
D=-ggd " Wyyy - gIWp + W+ 73 Wpyp )€

t 2 2 3
- IW Tt WL, (5.38)

lIf N(0) satisfies (5.20), so does -N(0) (see (5.17)). Thus if x is a non-
contact point of S, (as is assumed here), then a vector N(0) satisfying (5. 20)
may be assumed to satisfy Y(x,t)*N(0)>0 without loss of generality.

Zli:xcept in the special case when D = 0; this eventuality will not be considered
here,

3see [3] for details in special cases.
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where

+ ’
¢ = Fogga(ONg(0) (5. 39)

and the derivatives of W appearing in (5. 38) are to be evaluated at the

+ + +
values I and J appropriate to F.

6. Incompressible materials: eguilibrimn shocks in anti-plane strain.

A simpler class of deformations for the cylindrical body of the

preceding section is that of anti-plane strain, in which the displacement vector

satisfies
ul=u250 Uy =u&xl,x2) . (6.1)

A particle is therefore displaced only axially, and the amount of displacement
depends only upon the position of the particle in its cross-section. It
follows from the first of (2. 3) that the deformation gradient tensor F asso-

ciated with the displacement field (6. 1) has components

Fapzbap' Fa3=0, F3a:“'a' F33=l 3 (6.2)
From (6.2) and (2. 13) one obtains
2
I, =1, =3+ |%|%, J=detE=1, (6.3)

the last of which shows that anti-plane strain is locally volume-preserving.
For anti-plane strain the field equations of Section 2 can be reduced

for a compressible material to three differential equations tor the single

unknown u, and in the incompressible case to three differential equations

for the two unknowns u and p. It is thus not surprising that not all materials
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— not even all homogeneous, isotropic ones — can sustain general states of

anti-plane strain in the absence of body foro:es.l One class of incompressible

materials which do have this property consists of those whose strain energy

densities depend only on II:

W = w(11>. W(3) =0 . 6. 4)°

Such materials are isotropic and include the neo-Hookean material, in which
W is linear in Il , as a special case. If (6.4) holds, the governing equations
(2.6), (2.19), (6.2), (6.3) and the third of (2. 3) can be consistently reduced

to the following single differential equation3 for the out-of-plane displacement

“("1"‘2) :

9 ‘ 2 du Y
gg[w (3 + | vul )Ha] =0 on R (6.5)

where, as in the preceding section, Ro denotes an open cross-section of
the undeformed cylinder, and the prime indicates differentiation with respect

to the argument of W.

lA necessary and sufficient condition that a homogeneous, isotropic, in-
compressible elastic material admit general states of anti-plane strain is
derived in [18]; the corresponding condition for compressible materials is
considerably more restrictive and may be found in [19].

ZThe requirement that W should vanish in the undeformed state is a con-
venient normalization.

3Deuill of this reduction are included in [18]; it is assumed that the tractions
on the lateral surface of the cylinder are independent of x4 See also [6].
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The components of nominal stress O and true stress ' are given by

‘ 2
T30 = Taz = %30 = %3 = 2W'(3 + |%u]®)u,

=0 =g =0

T 1
ap ~ Yo " 33 ’ (6.6)

T3 =2W (3 + |7ul?)|9u|? |

33

If u= kxz, where k is constant, then (6.5) is satisfied and the
deformation is one of simple shear,Z The relation between the shear stress

T3 =T and the amount of shear k is found from (6. 6) to be

T;zw’(3 +k2)k (6.7)

in simple shear; M = ZW'(B) is the shear modulus for infinitesimal defor-
mations. The shear modulus at arbitrary shear k is ZWIK3 + kz) and
is assumed to be positive for all k.

The differential equation (6. 5) is found to be elliptic at a solution

u and at a point (xl. xz) if

{:T [w'{s + kz)k]] >0 . (6. 8)

b IX“("I"‘Z)'

From (6.7), this is equivalent to the condition that the curve of shear stress

l’I‘he hydr ntT:ic pressure p occurring in (2. 19) has been eliminated in
terms of |Vu| in the course of reducing the field equations to (6. 5). See

[18] or [6].

ZSimgle shear can, of course, be sustained without body forces in any
elastic material.

a2
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versus amount of shear shall have positive alopel at k = Iz’ukxl.x2>|.
For anti-plane strain, the components of the energy-momentum tensor

are found from (4.11), (6.2) and (6.6} to be

’
paﬁ :.Wéap-ZW u,au,p . :
(6.9)
’
Paz "Pago-eW u,, ; Py =W
When taken over closed cylindrical surfaces ' of unit length which are
coaxial with R, the integrals Ji of (4.13) reduce to
f 7 h
b =4> \Woyg - 2W u,au,ﬁ)dis 2 (6. 10)
15
o
i
1, = -ézw u,gNgds (6. 11)

o

where ro is the closed curve forming the boundary of the cross-section of
I', and s is arc-length on ro’ If ro encloses only points of ®  where

u is twice continuously differentiable, one has the conservation laws

I8 , 3.50, (6. 12)

as can be verified directly with the aid of (6. 5) and the divergence theorem.

The function H of (4. 17) reduces because of (6.9) to

H=-w(3+|ul?)s2w’ (3 +1%l?) (&), (6. 13)

lFor the neo-Hookean material, w' (3 + kz) = 4 = constant, (6.5) is Laplace's
equation, and (6. 8) holds for all k.

ZW and W' are to be evaluated at 3 + lzulz
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where 9u/9N = u, N .

A special subclass of hypothetical incompressible isotropic materia.lsl

which satisfy (6. 4) are those for which

n

_M b 2
W(Il)—z—b{[l+n(ll-3)] -1] » 1;23, (6.14)

where M>0, b>0 and n>0 are material constants. The T- k relation

for this class of materials is
b 2>n-l
T = —

u(1+nk % . (6. 15)

Graphs of T vs k for various values of n are shown in Fig. 2. The el-
lipticity condition (6. 8) is always satisfied if b>0, n21/2., If b>0,0<n<1/2,

ellipticity of (6. 5) fails if

I,zu(xlvxz)l 2‘/(1_?2;)1) . (6. 16)

It will be assumed henceforth that 0<n<1/2. For the special materials char-

acterized by (6 .14), formula (6. 13) for H reduces to

3 b 2\n-1 [(8uj2 1 A
H=gp+u(l+29l?) [(ﬁ“q‘) - 75 |9ul -2'5] : bl

For weak solutions in anti-plane strain which involve equilibrium

shocks, both the material and the spatial shock surfaces are cylindrical, and

lTht.e]ae materials have been considered in connection with a crack problem
in [6].

2One always has I 3 in locally volume-preserving deformations.

P e s Vs st
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a material shock intersects the cross-section RO in a curve C. The traction

jump condition (3. 3) can be seen from (6. 6) tc reduce to

! : +
[w’p +lval®ju, ] R, =0 on € , (6. 18)
while the conditions (3. 5) for continuity of the tangential displacement gradients
become

[u, 1} L, =0 on & (6. 19)

where N and L are unit vectors normal and tangent to C, with N pointing
into the positive side of C.

From (6. 19), one concludes that there is a scalar g such that

- 4
u, =u,

a + gN on C ., (6.20)l

o o

Let € be introduced by

w'(3 +I7d1?)
; S

)

(6.21)

w3+ |zl

thus € is the relative change in the shear modulus across the shock. Since
it has been assumed that W'> 0, one has €<1, The traction continuity con-

dition (6. 18) can be written as

+ .
(1 - €)u,°Na -, N on C (6.22)

whence, from (6. 20)

—ee

lI:'Jqua':ion (6.20) is the analog in anti-plane strain of (5. 10) for plane strain.
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+
g:-e\‘i,aNa:-e%% : (6.23)
From (6,20), (6.23) one has
s 2
95 )? = (9t]” - g—l‘;) @ - e)e o T, (6. 24)
so that (6.21) reduces to
] +2 ‘ A 3{‘; 2 )
W B +KT) =1 -ew (3 +K°- W> 2 - e)), on C (6.25)
where the abbreviations
+
i = |v&|2 (6. 26)

have been introduced. If zlt , and therefore lt , is regarded as given,
+
(6.25) furnishes one equation for the determination of 8\+1/8N =Va*N asa :

function of €. According to (6.20) and (6. 23), one would thus expect to

find a one-parameter family of gradients zﬁ which can be '""connected"
s : o 1 :
to Yu via the shock conditions; € — the shock strength —is to be chosen as

" . 2
the indexing parameter.

For weak shocks in anti-plane strain, |e|<<1, and an analysis
parallel to, but much simpler than, that carried out in the preceding

section shows that the limiting value as €20 of 3$/8N satisfies

lIt is possible to show that the local existence of a solution Bﬁ/aN of (6. 25)
for some € # 0 requires the material to be such that the ellipticity condition
(6. 8) should fail for some value of the amount of shear k. :

2 :
Note that the physical mearing of € in anti-plane strain is not the same as
that of its counterpart for plane deformations; compare (6. 21), (5. 8).
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+
/ﬁf ¥ -W'3+k2 (6.27)
oN ; j

e =0 2w +x5)

This result, in turn, can be used to show that the limiting direction of the

shock as €~ 0 is that of a characteristic curve of the partial differential

equation (6.5). There are in general two characteristic directions associated
with a point (xl,xz) at which Zu(xl,xz) is such that ellipticity has failed, and
these characteristic directions are symmetric with respect to Zu(xl,xz).

By carrying out the appropriate small - Iel approximations using
(6.13) and (6. 25), one obtains the following weak-shock formula for [H]_+
4 4

1ey /ou 7] 3

+
+ |2 (8u 4
[H] )e ZalA Bﬁ)e _oW'te’ +o€¥aser0 , (6.28)

13N
where W' and W'’ are to be evaluated at 3 + }tZ. and ; is given in
(6.26). In this form, the approximation (6.28) is analogous to the plane
strain result (5. 36), (5.38). In the present circumstances, (6.27) can be

used to further reduce (6. 28) to

$.2
(a1? = 3 (G - 0[3(w" T w'W'“J e’ +oet)ase~0 , (6.29)

where, again, the derivatives of W are evaluated at 3 + IVL+1|2.

Now consider a quasi-static time-dependent family of equilibrium
shocks in anti-plane strain, and let the shock strength at time t associated
with this family he €(t). If the shock is sufficiently weak at time t, and if

the dissipation inequality (4. 19) holds, then (6.29) shows that
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lB[W"ul)l‘2 -wiapw ) ey <o , (6. 30)

+2
where Il =3 +k (t).
For the special material characterized by the strain energy density

(6.14), one verifies easily that

WY - ww . "‘Z—bi(lz.‘—ﬂl [1 +1§-(1l & 3)J2n-4 . (6.31)
4n

Since b>0, 0<n<1/2, this quantity is negative, and (6. 30) thus requires that
€(t), which is always less than unity, shall also be nonnegative for this
material, at least for sufficiently weak shocks. Reference to (6.21) then
shows that the shear modulus ZWI(3 + kz) is smaller on the positive —
or "upstream'' — side of the shockl than on the downstream side. Moreover,
(6.24) shows that, for a dissipative weak shock in the particular material
under consideration, the downstream side carries the smaller value of
lzulz, since 0<e<l1,

For the special strain energy density (6. 14), the basic equation
(6.25) governing the shock transition can in fact be solved explicitly and
the conclusions above can be validated for all equilibrium shocks — not

merely weak ones. The result of solving (6.25) in this case is

1
l-n

(an/ B2 T, e (6. 32)

Recall that the velocity V of the quasi-statically moving shock C points
into the "positive' side of C.
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Since

3

2
7 2
an) - de® = edl® -k

=k (6. 33)

one must have

1
1 -n
n h +2%1 = (1 =& 42
;\1+; )‘ﬁi—le( o5y =K . (6. 34)

if a shock of strength € is to exist in the presence of a displacement grad-

b

ient of magnitude }t on the positive side of the shock. Thus, for a given value
of the material constants b and n, only those points in the €, 1-:-— plane
which lie above the curve in Fig. 3 — the admissible region — correspond to
equilibrium shocks in anti-plane strain.

Finally, one can compute [H]t exactly for the special material at

hand from (6. 13), (6.14) and (6. 32). One finds

) fe) , (6. 35)
where

1 1

-n (L - 2m)l -2) ° “}. (6. 36)

f(€) =5—=1{2n-2+e + (1 LR
It can then be shown that f(€)<0 for 0<e<l1l, f(0) =0, and f(e€)>0 for
- @ <€ <0, The dissipation inequality (4. 19) would then again require
0<e <l for all (not just weak) shocks. That portion of the admissible
region of Fig. 3 which corresponds to dissipative shocks is indicated by
shading. Note that ellipticity is always lost on the upstream side of the shock

when the dissipation condition holds,

|

| e e ST

:

-4
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7. A thermodynamic basis for the dissigation inequality.
e ~ e

The present section is concerned with a thermodynamic argurnentl

in support of the dissipation inequality (4. 19). For simplicity, only com-
pressible materials will be considered.

Consider a material characterized by an internal energy € =€(F,n)
(measured per unit of mass) which depends only on the deformation gradient

tensor F = E(}\g,t) and the entropy per unit mass 1 = T](zg, t), and for which

the nominal stress tensor J = J(x,t) and the temperature 6 = 6(5,t)>0 are

2
given by

§ o _9€
Olj | pO 3F1J (E) n) ’ 6 i an (Epn) - (7' l)

Here Po is the (constant) mass per unit undeformed volume, and, as in
the preceding sections, x is the position vector to a particle in the unde-
formed state. The internal energy density € is assumed to be infinitely
differentiable with respect to F and 7, and also to be such that the

second of (7. 1) is uniquely invertible to give
n = fi(E,8) (7.2)

as an infinitely differentiable function of F and 8 for every nonsingular

F and every 6>0. Let

¥ = V‘El 9) =€(§:nﬁ(go 9)) a eﬁ (Eu 8) (7. 3)

lI am indebted to Professor James R. Rice for the substance of the argument
given here.

%In the terminology of §80 of [ 20], such a material is called perfect. {
i
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be the free energy per unit mass. One shows easily from (7.1) - (7. 3)
that
% :ooa%wij—(g.e) , n=-2 0 . (7. 4)

As in section 3, it is assumed that, for each time t in the interval
of interest, the displacement field u is continuous and piecewise continuously
differentiable on the region R occupied by the undeformed body, so that
F =Y u is piecewise continuous on R for each t. Itis also assumed that
T is piecewise continuous on R for each t. Finally, u,FE and M are
presumed to be continuously differentiable in t for each x in R. It
follows from (7. 1) that the smoothness properties of 0 and 8 are the
same as those of F and n.

Let # be an arbitrary regular subregion of ®, and let 9: be the
image at time t of # under the motion y=x+t u(x,t). The balance of

energy is postulated as follows:

-

d 5 ) 2 i g il
FJpoedv’Lprcr!dvl =Jsdi+JB NdA , (7.5)

Y 8
for every #. Here v =v(x,t) is the particle velocity, 8 =ON is the
nominal traction acting on the boundary 89:‘ of ﬂ: » and h is the heat
flux (measured per unit area of 88) acting on 89: . Thus the left side
represents the rate of increase of the sum of internal and kinetic energy,
while the right side is the sum of the rate of work of the tractions and the

*
rate of heat flow into ﬂt across its boundary.l

lBocly forces and internal heat sources are assumed to be absent.

T ——
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The rate of entropy production I' (t) associated with the motion is

defined by

T 1

=3t JP,dV - |gh'NdA . (7.6)
by 99

It is further postulated that

T ()20 (7.7

for every 8, for every motion and for each time t.

Suppose now that the temperature is uniform throughout the body
and independent of time 0(x,t) = 90 = constant for every x and R and all
t. By eliminating the heat flux integral between (7. 5) and (7. 6) and making

use of the definition (7. 3), one finds that

r :@1: { Jervan - & [j'pow(g,eo)dv +1 Jl‘poylzdvil' s
a8 8 8
Thus the entropy production rate is proportional to the excess of the rate of
work of the forces external to 0’: over the rate of increase of the sum of the
free energy and the kinetic energy.
A comparison of the first of (7. 4) with (2. 9) shows that the material
presently under consideration may be identified with the (compressible)

elastic material of section 2 by writing
W(E) » po* (En 60) ’ (7- 9)

as long as the motion is isothermal. For isothermal quasi-static motions

of the kind considered in section 4, one neglects the contribution of the
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kinetic energy in (7. 8) and thus obtains, with the aid of (7. 9), the result

F:EI-JIE'NdA-(} : (7. 10)
o | a8
where
Ut) = | WE(, t)aV . (7. 11)
P

Now suppose that the isothermal, quasi-static motion involves a
shock with the properties described in section 4. If the material shock
surface S, intersects 8, the (4.16) applies and can be used to write (7. 10)

in the form

Pe.g ) H' VNaA (7.12)
° g 3

t
where St is the part of St lying in 8. The postulate (7.7) of nonnegative
entropy production rate then leads immediately to (4. 18), from which the
dissipation inequality (4. 19) follows.

If no shock is present, then [H] =0 and (7.12) gives [(t) = 0. Thus,

although smooth quasi-static motions of an elastic body do not result in

dissipation, weak solutions involving equilibrium shocks generally do.
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FIGURE 1. MOVING SHOCK S,, WITH DOMAINS D, B,, D,
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FIGURE 2. SHEAR STRESS T VS. AMOUNT OF SHEAR
k IN SIMPLE SHEAR (EQ. (6.15))
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FIGURE 3. ADMISSIBLE REGION FOR EQUILIBRIUM SHOCKS IN
ANTI-PLANE STRAIN FOR AN INCOMPRESSIBLE
MATERIAL CHARACTERIZED BY (6.14) WITH O<n<I|/2.
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