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Abafract

Equilibrium fields with discontinuous disp lacement gradients can

occur in finite elasticity for certain materials. The presenc e of such

~equilibr ium shocks affects the energy balanc e in the elastostatic field ,

and the present pape r is concerned with a notion of dissipation associated

with thi s energy balance. A dissipation inequality is proposed for  three-

dimensional equilibrium shocks for both compressible and incompressible

materials. The consequences of this inequality a re  studied for weak shocks

in plane strain for  compressible materials and for  shocks of a rb i t ra ry

strength in anti-p lane strain for  a class of incompressible materials. A

thermodynamic argument for the dissipation inequality is also given.
4

1. Introduction

An example discussed in [1] shows tha t it is possible for the diffe-

rential equations governing finite equilibr ium defo rmations of an elastic

solid — for an otherwise “ reasonable” material — to lose their elliptic ity

_ _ _ _

‘The results communicated in this pape r were obtained in the course of an
investigation supported by Contract N000l4-75 -C -0196 between the
California Institute of Technology and the Offic e of Naval Research .
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in the presence of sufficiently severe strains.  For a homogeneous , isotropic ,

compressible elastic solid , explic it conditions on the princ ipal stretches

and the s t ra in  energy which are  necessary and suf f i c i en t  for  the elli pticity

of the field equation s of plane elastostatics were given in [2].

One of the consequences of such a loss of elli pticity is the possible

occurrenc e of elastostatic f ields in which the disp lacements may fai l  — in

certain portions of the bod y,  at least — to have continuous derivatives of

even the f i r s t  order . A detailed investigation of the local s t ruc ture  of such

field s in plane finite elastostatics is described in [3], where it is pointed

out that they may be relevant to the study of the “ Liiders bands ” commonly

observed in ducti le materials ’. Indeed , deformations with abrupt l y changing

gradients a r i se  in a wide variety of solids in connection with what has been

termed “localized shear ”2 . Boundary value problems in the equi l ib r ium

theory of f ini te  elasticity in which locally severe deformations — near a

cavity , for example — give rise to a loss of ell iptici ty and an assoc iated

reduction in the smoothness of the stress and disp lacement f ie lds  would

seem to be of special interest in the study of f r ac tu re .

The mathematical descr iption of phenomena of the kind descr ibed

above has cer ta in  features in common with the theory of stationa ry tran-

sonic flows in inviscid gas dynamic s3. One of the conspicuous aspects of

such flows is the occurrence of shocks — surfaces across  which the fluid

1See Chapter 18 of [4].
2For an extensive discussion of localized shear , see the a rticle by R ice [51.
31n fact , a p recise analogy exists between the bounda ry value problems
for gas flows past an obstacle on the one hand , a nd finite anti-plane strain
(fo r a certa in class of incompressible elastic materials) of a medium con-
tam ing a c rack or cavity on the othe r hand. See * 7 of [6].

e.
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r
velocity , p res su re , density and entropy suffe r jump discont inui t ies .  In the

setting of finite elastostatics , the analogous surfaces  are  those which ca r ry

jump discontinuit ies tn the f i r s t  der ivat ives  of the disp lacement vector;

they will be called equil ibrium shocks in the present  paper ,

In gas dynamic s , one of the essential  res t r ic t ions  on the flow across

a shock — whethe r moving or stationary — is that imposed by the requi rement

that the entropy of a particle shall increase as the particle crosses  a shock ’.

This condition lead s to major qualitative conclusion s concerning the flow 2 ,

and it also expresses — in an idealized way , to be sure — the dissipative

characte r of the process of shock formation .

In this extensive stud y of weak solutions of hype rbolic systems of

conservation laws , Lax3 has emphasized the mathematical role of “entropy

conditions” of va rious kinds in connection with the issue of sing ling out the

physically meaningful weak solution to the initial value problem from among

the many such solutions nominally admitted by the diffe rential equations

and initial conditions themselves. The many beautiful results pe rtaining

to this question which are  discribed in [8] - [11] appear to be most appro-

priate for dynamical problems — the propagation of shock waves , for  example .

They do not seem readily interpretable in the context of finite elastic equili-

brium, in which time is not one of the independent variables and the initial

value problem is of no apparent significance. The objective of the pre sent

pape r is the derivation and discussion of a dissipation condition which is

‘For an extensive discussion of shocks in compressible flow, see [7].
2Gas dynamical shock s are  always compressive, for example.
3See [8] - [11], where references to related wo rk may be found.

~~~~~ 
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analogous to the “increasing entropy ” requirement  fo r  steady gas flows and

which is thoug ht to be appropriate for equi l ibr ium shocks in f ini te elasticity.

A detailed application of the result der ived here may be foun d in [3].

The field equations of finite elastostatics for  both compressible  and

incompressible mater ia ls  a re  given in the following section. The class of

weak solutions to be considered is desc r~ced ~ i Se.~.tion 3 , which also in-

cludes the jump conditions to be satisfied across an equilibrium shock. The

dissipation condition for a quasi-static time-dependent family of equilibrium

shocks is derived and discussed in Section 4. The implications of the

dissipation condition for  weak shocks in plane deformations of compressibl e

materials are examined in Section 5. Section 6 is devoted to equi l ibr ium

shocks and the dissi pation inequality in “n t i - p lane s t ra in  for a special class

of incompressible materials. A thermodynamic argument in suppo rt of the

dissipation requirement is given in the f inal  section.

2 . Equations of elastostatics

Let ~ be the inter ior  of a three-dimensional  region occup ied by an

elastic body in its und efo rmed state . In a deformation of the body ,  b~ is

mapped invertibly onto a domain ~~~~~
, s~ that a part icle with position vecto r

x in ~ is carr ied to the point in whose position vector is

x ~,(x) = x  + u(x) , X C R  . (2 . 1)

For the moment , the displacement vector ~ is assumed to be twice con-

tinuouily differentiable on R.

Let x . ,  y .  and u. be the components in a fixed rectangular cartesian

—
. 4

__________________ 
- -—- — —.———- — 
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coordinate system of x , y and u , respect ively. The tensors 1 F , G and C

defined by

F V 1 + V  , G F F ’
~ c F ~~F , (2 . 2) 2

where ~ is the gradient  ope rator and 1 the ident i ty  tensor , have components

F.. = y. . ~~~
.. + u. . , G.. F. F. , C.. = F .F . ; (2 . 3) 3

~~ ~~,j  ij i ,j ij ik jk tj ki k j

F is the deformation gradient tensor , G and C the left - and right-  defor-

mation tensors , respectively. The Jacobian of the mapping is assumed

positive :

J ~. det F > O on . (2 . 4)

If p and p 0 a rc  the mass dens i t ies 4 in R and ,~ ~~
, balance of mass

requires

pJ~~~p 0 on . (2 . 5)

If are  the components of the nominal (or Piola) s t ress  tensor 5

2’ the local condition of force equil ibrium in the absence of bod y forces

‘The same symbol , e. g. F . will be used for a tensor and its matr ix  of
components in the given coordinate system.

2 The superscript T stands for transposit ion.

3Latln subscripts have the range 1, 2 , 3 and repeated subsc ripts are  summed
over this range. A subscript preceded by a comma indicates differentiation
with respect to the corresponding x-. coordinate.

is taken to be constant. 
- -

5The 0ij represent forces per unit undeformed area .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - -~~~~~~
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may be expressed as

a 0 on , (2 . 6 )tJ,J

provided that U is continuousl y d i f f e r e n t i a b le  on . The compon en t s  ~~~~~ •

of th e tr ue (or Cauc hy) s t ress  te nsor ’ T a re r ela ted to a. . via F as

follows:

I
ii 

- + O~~ Fi~ . (2 . 7)

If T is continuously diffe rentiable on ~ ~~
, then (2 . 6) is equivale nt to

a ~~..
= 0  on (2 . 8 )ay.

Moment equi l ibr ium leads to T i .  but G is in general not symmetric.

For a compressible homogeneous elastic material  with a strain energy

densi ty  W = W(F) per un i t  indeformed volume , the relat ion between s t ress

and deformation may be taken in the form

a . .  ~~
(I) 

, (2 . 9 )

or , equivalently because of (2 . 7),

1 aW(r)F.~ (2 . 10)

t The 1.. represent fo rces per unit deformed area. . -
~~~~

.13

—U—- --- —I-.
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The displacement equations of equi l ibr ium for a Lompress ib le  mater ia l

then follow from (2 . 9) , (2 . 6) and the f i r s t  of (2 . .3) as

c
~Jki

(
~~
)
~~~,~~ 

0 on 
‘ 

(2 . 1 1 )

in which

a2 W(F)
c i .k I (F) 

~F. . aF (2 . 12)
i~ kI

For an isotropic compressible elastic material , W depend s on F

only throug h the invariants I i ,  I~ 
and J : W W(11, 12 , J),  where

T r G  , 12 = 1/2 [( ‘ rrG)2 
- T r ( G 2

)] , (2 . 13)

and Tr denotes the trace.  In this case (2 . 9) specializes to

a.. = + 11
2~~~

’
) F.. - 2

~~
!.F .k Ck . + J~~~~F . 1 

, (2 . 14)

where F .1 is the i , j  - element of the inverse F ’ of F , and C..  is
13 -.— —~~ ii

g iven by the last of (2 . 3).

For an incompressible homogeneous elastic material , only those

deformations which preserve volume locally are admissible, and (2 . 9),

(2 . 10) are replaced respectively by

‘W(F) is assumed to be infinitely differentiable for  every nonsingular
tensor F.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  a - .
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a ..  ~~~~~~~~~~~~~ - p F~~ , (2 . 15)

T . .  =~~~
(
~
:) F. - p ó. . , (2 . 1 6 )

ii aF.~ jk

where is the Kronecke r  delta and p is an a r bi t ra ry hy d rostat ic  p r e s s u r e ,

as sumed to be continuousl y di f f e r e n t i a b l e  on R . The disp lacemen t equations

of equi l ibr ium for an incompressible material  are  now

cjjk ,(
~~

)Uk j ,  - Fj~’p~~ = 0 on ~ (2 . 17)

together with the constra int expressing incompressibi l i ty:

J = detF 1 on . (2 . 18)

The functions in (2 . 17) are again given by (2 . 12);  (2 . 17) follows from

(2 . 6) ,  (2 . 15) and the fact  that ~~~~~ 0 if det F 1 . The system (2 . 17 ) ,

(2 . 18) comprises four  equations fo r  the f o u r  unknown s u1, p .

For an isotropic incompress ible  mater ia l , W depends on F onl y

through the invariants  I~~, 1~ of (2 . 13), and (2 . 15 ) specia l izes to

a . . = 2 + I F .  - 2 F . C . - pF~~ . (2 . 19)
13 ~ai 1 1 012 ij 012 ik kj  31

3. Weak solution s and equilibrium shocks
-w~%. - -- - -~~ —,--~---,---, ~~~~~~~ ~~~~~~~~~~~~~~~~~~

In place of the smoothness assumption s made in the preceding section ,

it will now be required that the displacement vec tor ~ be merely continu-

ous and piecewise continuously different iable  on ~~~, while the nomina l



‘1

stress tensoz U is piecewis e con t inuo us on ~~~ . For incompressible

materials , it is further ~issumed that the hydrostatic pressure p j~~

wise continuous on ~ Thus F , (and p. for incompressible materials)

may suffer jump discontinuities ac ross certain surfaces ’ in ~~~ .

Enlarging the class of admissible stress and displacement field s in

this way makes it necessary to generalize the sense in which certain of the

field equations are to be satisfied . The tensors F, G and C whose coni-

ponents are defined in (2. 3) are now piecewise continuous on ~~~~, as is the

Jacobian J of (2. 4). Equation (2. 5), expressing the local balance of mass ,

continues to have meaning under the present circ umstances and is in fact

equivalent to the integral condition expressing mass balance in the large.

The local equations (2 . 6) of fo rce  equ i l ib r ium , howev er , must  be rep laced

by the corresponding global condition s from which they were originall y

de rived :

J O .  .N.dA = 0 for every c’osed regular (3. 1)
~ surfac e S lying in ~

Here N is the unit outwa rd normal on S. The integral version (3. 1) of the

force balance requi rement remains meaningful for nomina l stress fields

a which are merely piecewise continuous on

The components T .. of true stress are still to be calculated from

and F.. according to (2. 7). Rega rded as functions on ~~~~~, the

are piecewise continuous. The symmetry condition T.~ T~. continues to

• be equivalent to the global balance of moments under present circumstances;

th i s  imposes via (2 . 7) the restriction ,

- 

- .

‘

4.

These surfaces are assumed to be regular in the sense of Kellogg. [12].

~1~’
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I

0. F. = 0 . F. on . ( .
~~~
.ik j k jk ik

U n d e r  the  smoothness  a s s u mp t i o n s  now in f o r c e , u , F and ~ are

said to furnish a weak solution of the field equations for compressible

materials if (2. 9), the first of (2. 3), (2. 5), (3. 1) and (3.2) hold . The

inequal i ty (2 . 4) is , of course , still to be imposed .

For incompressible materials , a weak solution is furnished by U,

F , c~ and p provided the above equations hold , except that (2. 9) is to be

replaced by (2 . 15).

It is possible to enlarge still furthe r the class of admissible fields

u , F, a (and p. where appropriate). One such enlargement would pe rmit

unbounded displacements and/or stresses at isolated points or along curves
2

in ~~~. A second — and considerabl y more significant — weakening of the

smoothness restrictions would permit discontinuities in the displacement

vec tor u itself . This particular relaxation of requirements would indeed

be essential for the study of fractu re . Neithe r of these generalizations will

be considered here .

Suppose now that the deformation gradient tensor F and the nominal

stress field a associated with a weak solution (for  e i ther  a c o m p r e s s i b l e

or an incompressible material)  suf fe r jump di scont inui t ies  across  a su r face  S

in ~ but are continuously differentiable on eithe r side of S in a neighbo rhood

11t follows f rom (2 . 14) that (3 . 2) is automatically satisfied fo r  an isotropic
elastic material . In fact  the same applies to all objective elastic mater ia ls :
for  these , W depend s on ~ onl y throug h C.
2 Thi~ mig ht be necessary , for  example , to accommodate s ingu la r i t i e s at the
edge of a te rminat i ’~g sur face  which c a r r i e s  d iscont inu i tes  in or 2



11

of a point P on S’. The global equilibrium ci)ndjtjon s (3. 1) then furnish

t w o  co n c l u s i o n s :  f i r s t , by t he f a m i l i a r a rg u m e n t , o satisfies the local

‘~ ~i~u I ib r i u m  conditions (2. u)  on either side ol S nea r P. Second , by

app l ying (3 . 1)  to a smal l  sph e re  c en t er e d  at P and u s i n g  the f ac t  that  (2 . 6)

hold on e i t he r  sid e of S i n s i d e  the sp here , ofle f ind s that  the j u m p s  i n

m u s t  be suc h t ha t
1~)

N. = 0 at P on S . (3 . 3)

H e r e  [~~• • ]
+ 

= - &..  
~~~. . and ~5 . .  stand for the l imiting values of ~~~. .13 — 13 13 13 13 13

on S from the positive and negative sides of S, and the “positive ” side

of S is the side into which N points. Equation (3 . 3) asserts that the

nominal traction ~ with components

s. - o N .  (3 . 4)
1 13 3

is necessarily continuous across S. It is possible to show tha t ( 3 . 3) is

equivalent to the condition that the true traction ~ with components

t. ~r .. r’. be continuous across the deformation image S~ of S; here
I 1J .

n is the unit normal on S’
~
’.

Let L be any unit vecto r whic h is tangent to S at P. Since .~~

is continuous at P and continuously d i f fe ren t iab le  on ei ther  side of 5,

near  enough to P it follows from the f i r s t  of (2 . .3) tha t

[F. .J~ L. = 0 at P on S (3. 5)
ii — 3

is assumed to have a continuously varying unit normal ~ near P, and
the derivatives 0 Lj k are presumed to have finite limiting values from either

side at all points of S which a re  suffic iently close to P.

_________ • - ——-~~~~~~~~~~~—.-—~~~~~~—---—- — - - 
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A sur face  S in ri c a r r y i n g  jump dis ont i n u i t i e s in F and C

sat isf ying the jump conditions (3 . 3) and (3 . 5) is called an equilibrium shock.

* . *To distinguish S tn ~i f rom its defo rmation image S In i~ , it is con -

*venient to refe r to S as the material  shock s u r f a c e  and to S as the spatial

shock sur face . It is of course the spatial shock S that one would actuall y

“obse rve ” ; neve rtheless , the pre-image S of S~ f igu res  more prominently

in the present analys is.

To investigate many of the questions per ta ining to the local existenc e

and loca l p rope r t i e s  of equil ibrium shocks , it is suff ic ient  to consider  the

case in which S is a plane throug h P and u is such that F is constant

on eithe r side of S. Such piecewise homogeneous deformations and the

associated equil ibrium shocks have been studied in [3] for  the case of plane

strain in compressib le  mater ia ls .  I

4. Ene~~~~~~~~ ider~~ions an~~~~ssi ation.

The f i r s t  objective of the ~ rescnt section is the derivation of a

fo rmula whic h reveals  the e f fec t  on the mechanical  ene rgy  bala nce in an

elastic bod y of the presence of an equilibrium shock. This fo rmula has .

connections with a conservation law ar is ing  in the elastostatic s of homo-

geneous mater ia ls  as well as with the theory of defects  in an elast ic  solid ;

it will lead to a notion of dissipation for equilibrium shocks which is the

principal concern of the present paper.

Iii order to obtain the energy formula , it is necessary to consider

11t is proved in [3] tha t a necessary condition for the existence of an equi-
librium shock in plane strain of a compressible material is that the (p lane
version) of the displacement equations of equil ibrium (2 . 11) must su ffe r a
lose of strong ellipticity at some defo rmation. A minor modification of the
argument used in [3] shows that this result remains true for  three-dimen-
sional equil ibrium shocks in compressible materials.

_ _ _ _ __ _  • .
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a quasi-s tat ic  t ime-dependent  famil y of equ i l ib r ium states . Thus l et

i i  (x , t ) ,  F(x , t ) ,  a ( ~~, t ) fu r n i s h , for  each t in a sui table  time interval , a

weak solution of the field equations of equ i l i b r ium f o r  a compress ib le  mater ia l . I

Note that no iner t ia  e f fec t s  a re  considered he re :  the time t plays on ly the
2

role of a history paramete r. Suppose that this weak solution involves

an equilibrium shock across the sur face  S~ in the deformed bod y at

time t, and let S~ be the pre -image in the undeformed bod y ~l of S~
’.

Thus St and S~ are  the material and spatial shock surfaces , respectively.

Let V (~ , t) stand for  the velocity vector 3 of a point on the moving

surface S~ whic h at time t is located at x . It is now assumed that ,

at time t the point x on S is such that V (x , t ) neither  vanishes
0 ~~ O t ‘~~~~~O 0

nor is tangent to S~ . Thus S~ does not coincide locally with a “contact

surface” — a surfac: across which there is no flow of particles~ It then

follows that for t imes near enough to to , and for points x on St which ,

at time to were sufficiently close to x on S~ , V (~~, t) will continue

to have this proper ty .

Now suppose that ~ is a regular  subdoma in of i~ which contains

Then £ will be intersected by 
~~ 

for all times in a suitable interval

F and a are assumed to be continuously differentiable w ith respect
to t for  every x in 11.
21f , for  example , a cy lindrical body is loaded on its ends to a state of
uniaxial tension , t might be taken to be proportional to the given app lied
fo rc e (if  the deformation is “load controlled”) or to the given extension
(“ gr i p control”),  as long as the fo rc e — or the extension — is a monotone
function of real time .
3v (x , t) is assumed to be continuous in (~ , t) for all x on St and all times
under  cons idera t ion .
4See ~52 of [7]. Thus  S~ (and the ’~efore  S ’ ) in general  consist of d i f f e ren t  ¶
mater ia l  pa rt icles  a t  d i f f e r e n t  times.

________________________ - •——•-— • • ______________—.. 
~~~~~~~~~ . .-•
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including t .  Let denote the port ion of S~ which l ies in £ . For a

s u f f i c i e n t ly small domain ~ and for  times t close enough to to , one may

choose the unit norma l vec tor  N on S~ so tha t V N  > 0 , a s will  now be

assumed. The pos i t ive  side of S~ is thus the sid e into which V (and there-

f ore ~~) points. Since , to an observer  fixed-on S~ , p ar t ic les  appea r to

c ross S~ f rom the positive to the negative side , it is natural  to r e fe r  to the

positive side as “upstream” , the negative as “downstream”. Let 
~~~~~~

‘ 
~~~~

be the open domains’ into which ~ is divided by S~ (see Fig. 1).

The tota l energy stored at a time t close enough to to in that portion

of the defo rmed body which occupies the domain £~~— the image of ~ under

the deformation at time t — is given by

U (t)  = SW(F(x , t)) dV . (4 . 1)

The f i r s t  objective is to obtain a formula for  the der iva t ive  U (t) .  Clearly

U(t)  = ~~W(F(x , t ) ) d V  4 $w(F(x , t ) ) d v  , (4 .2)

and so to find U( t )  it is necessa ry  to calculate the der iva t ives  of the inte-

g rals in (4. 2) ,  in which the integrands and the domains of integration vary

with time. Making use of a standard formula for th is  purpose~ one obtains

!J(t) = J ~~~_i’.~dV - J ~~V ’NdA + j 
~~ 

*~~dV + 
~ 

Wy L sI~dA . (4 . 3)

S~ £t S~

1 + -

Note that , while arid 
~~ 

depend on t , £ does not.

2See [13] , Chapter 3 , Section 6.

_______________________________________________________________ .—.——————- .——-----—- ---.- .—~~~~~~~~~~~~~~~~~~~~~
.——------— —

~~~~~ 
-
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I

In this formula ,

F . .(x , t) .
~~~~

- F. .(x , t) , (4.4)

+ -

and W , W represent  the l imiting values  of W on from the upstream

and downstream sides , respectively.

Let

V = v(x , t) = .ä~~
u(x , t) (4 . 5)

stand for  the velocity of the particle which at time t is located at y(x , t) .

Then from (2 . 3), (4 .4 )  and (4 . 5)

F
~3

(~~
, t) = v 1~~ (~~~t) . (4 .6)

The volume integrals in (4 . 3) can then be calculated as follows: using (2 . 9) ,

(4 . 6) ,  (2 . 6),  and the divergenc e theorem ,

$~~~ fr. .d v =J ’ a.. v. .dV = J O . . ~~.v .dA (4 . 7 )8F~ 13 13 1,3  13 3

a
~t

* ±
where v is the unit outwa rd no rmal on the boundary 

~~ 
of £~~. Substituting
*

from (4. 7) into (4. 3) and observing that , on that portion of a~ which coinc ides

with S~~, the normal V = ~N ,  one find s

r +  + + f -

U(t) = J c7~3
v

3
v 1dA - j (~~~N~v1 + WN

1
V

1
)dA + ~ (&~~Nj~~ + WN

1
V

1
)dA (4. 8)

s~

where onc e again the superscripts + and - on and v1 refe r to the

_ _ _ -
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I
appropriate limiting values of these quantities. To this point no use has

been made of the jump conditions prevail ing across  an equilibrium shock.

By differentiating with respect to t the equation which expresses the

equality of the limiting values of u on S~, one find s that the jump in

pa rticle veloc ity v satisfies

[v.]~ = - [F~ ]~
vk (4 . 9)

in te rms of the components Vk of the velocity of points on the (material)

shock surface S~ and the jump in the component s F~~ of the deformation

gradient tensor . When (4. 9) and the nominal traction continuity require-

ment (3. 3) are used in (4 . 8),  it reduces to

U(t) $s.v.ci.~ - ~~ [Pii]+NJ~~i~~ 
, (4. 10)

-

where

P. .  W & .  - F .o . . (4. 11)
13 ij k t k j

The P.~ are the components of the energy -momentum tensor

T
= W i - F a , whose role in the theory of defects in solids has been

explored extensively by Eshelby [14, 15, 16]. Indeed, (4. 10) suggest8 tha t

[~~]~j may be viewed as a “forc e per unit area” associated with the material

shock surface S~ . In this interpretation , the role of P is precisely that

discussed by Eshelby in ~ 6 of [16] in connection with the “force on an inter-

face”.

In general the “force on a defect” has been shown (14, 15, 16] to
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have components

J. =~~ P..N.dA , (4 . 12)
1 .1 13 3

F

where F is a closed surface surrounding the defect.  If there are  no defects

inside F , so that ~ is twice continuously differentiable there ,

j . ~ dP . .N . JA = 0 ; (4. 13) 1
I ~ 13 3I.’

(4. 13) represents a conservation law for compressible homogeneous elastic

materials which was independently discovered by Ric e [17] and exploited by

him — and subsequently others — in connection with c rack problems in elasti-

city . The energy-momentum tensor ~ plays a prominent part in the dissi-

• pation condition to be derived below. This would seem to be related to the

fact that, as emphasized by Lax [11], “entropy conditions” appropriate for

shocks assoc iated with the initial value problem for a qua sil inea r system are

connected with additional conservation laws impl ied by the system.

An alternative and more convenient form of the energy fo rmul a (4. 10)

is obtained by noting that , if j~ 
is any vector tangen t to S~ , (4 . 11) give s

• P. .N.L.  = - F .a .L.N. , (4 . 14)
1 3 3 1  ki kj  1 3

1 Equation (4. 13) is easily verified directly with the help of the divergence theorem
and the field equations of Section 2 appropriate to compressi ble materials.

-- - . —- - v~~.’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - • - 
- 

~~~~~~~~~~~~~

-.-

-~ 

- — —

~~~~~ 

I
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so that by (3 . 5),(3. 3),

1P..1~ N .L. = - rF .1~ L. ro .VN. = 0 . (4 . 15)
L 13J 3 1 L ~~~ L~~3J... 3

Thus the vector [Pj 1
~N is perpendicular to S~ ; it follows that (4 . 10) may

be writ ten in the form

U(t) = 
J

r
S I VdA + $ [H] 4 V NdA , (4 . 16)

where

H = H ( F , N ) - -P . . N . N . = - W + F  .0 .N.N. . (4 . 17)__ 
13 I 3 mi mj 1 3

The identity (4 . 16) is the energy formula which furnishe s the basis

for the notion of a dissipative shock to be introduced below. One f i r s t  notes

that [Hf ~ 0 if no shock is present , so tha t (4 . 16) then reduces to the

statement tha t the rate of change of energy stored in any portion of the elastic

body is equa l to the rate at which work is done by the forces  external to

that portion . If an equilibrium shock is present , it is natural to require

that the second te rm on the rig ht in (4. 16) be nonpositive , corresponding

to the idea that the shock should be dissipative in the sense that it tend to

diminish (or at least not inc rease) the stored energy in the body. One is

accordingly led to require that , at each instant t ,

$ [H]~~V ’N dA 0 (4 . iS)

_______________________________
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f o r every  subdomain ~ of ~ whic h is  i n te r sec ted by S~ and wh ic h is

small enough to permi t  N to be chosen so that V N >  0 on S~ S~
fl&

Suppose (4 . 18) hold s , and let x be a non-contact point on S
t

i. e, a point at which V is neither zero nor tangent to S~. Since ~ may

be chosen as the in ter ior  of an arbi t rar i l y small sphere centered at x ,

it follows tha t

[H] + 
~ 0 at all non-contact  points of S~ , (4. 19)

provided one inte rpre t s  the positive side of S~ as the side into which V

points.

According to (4 . 17), the scala r H in the dissipation inequali ty

(4 . 19) depends not only on the particular pa rticle conc e rned (throug h 
~~~

) but

on the orientation of the shock (through N) as well. The inequality (4 . 19)

may thus be interpreted as requiring that the value of H associated with

a given par t ic le  and a given ~ shall not decrease as the particle crosses

the shock , as is t rue  of the entropy in gas-d ynamic shocks.

In what follows , (4 . 19) will be required to hold at all t imes t.

The version of (4 . 19) appropriate  to equi l ibr ium shocks in p iecewise

homogeneous plane defo rmations of a compressible  elast ic  mater ia l  was

derived in [3] and applied there to ce r ta in  spe c ific s t ra in energy  densi t ies .

For incompressible materials , the argument used to obta in (4. 16)

can be repeated as above , except that (4. 7) must be replaced by

+ PF~1
1 )V 1 , 3 dV = j c Y 1~v~v 1dA + J’p~~~~ 

dV . (4. 20)

I t
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Here (2. 15) has been used , as well as the relation

F ’v. . = av./ay. (4.21)
3 1  1,3 1 1

in which , on the lef t , v . is regarded as a funct ion of ~ and t , while on

the rig ht , as a funct ion of and t. The incompress ib i l i ty  condition (2 . 18),

howeve r , implies that 3v~/a y. = 0 , so that the last in tegral  on the r ig ht in

(4 . 20) vanishes , reduc ing (4. 20) to the same resul t  obtained in (4 . 7). It

then follows tha t (4 . 16) holds also for incompressible mate rials with H

again given by (4. 17). Thus the inequality (4 . 19) is the natural d iss ipation

requirement  to impose on equi l ibr ium shocks in incompressible mater ia ls

as well .

5 . ssible~~~~~~~~als: wea~~~ h~5k s i ~ j lane strain.

If the region R occupied by the undeformed body is cy lindrical  with

gene rators  paral le l  to the x3 - axis , the deformation (2 . 1) corresponds to

plane strain if u3 0 and ~ u~ = u~~(x 1
x

2 ). For plane strain , F , G and

of (2 . 2) are functions of x 1, x2 only and are such that F~~3 F3~~= C3~

= C~~ = G3~ = G~ 3 = 0 , while F33 = C 33 G 33 1 .

Not all elastic materials  can sustain general states of plane strain

in the absence of body forces.  A sufficient condition that a material  shall

have this prope rty is that , under the above circumstances, a as dete rmined

by (2 . 9) shall be such that 0
3~ 

= 0~ 3 = 0. This is assumed hereaf ter  in

the present section. An isotropic material always fulfills this condition.

For plane strain the displac ement equations of equilibrium (2 . 11)

1Greek subscripts have the range 1 , 2 .

_ _ _ _- .- . - .  - _ _ _ _  -  

_
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in the compressible case are  readil y shown to reduc e to

~~~~~~~~~~~~~~ 0 on 
~ o 

(5 . 1)

where  R is the c ross -sec t ion  of the cy linder R which lies in the plane

x3 = 0 , and

c~~~~6
(F) = . (5. 2)

If the deformation is plane , one shows easily from (2 . 13) and (2 . 4)

that

I
~ 

= 1 + I , 12 = I + J2 , I = G~~~ = F~~F~~ (5 . 3)

so that for isotropic materials, W = W( 11 I2 J) W(I , J) . It can fu r the r
1be shown that

~~~~~ = 4W 11F~~F~ 5 + 2JW JJ (F~~~F 
~ 
+ F~~~F~~ )+ J2F~’F~’WJJ +

+ ~~~ (F~~ F~~ - F~~ F~~ ) (5 . 4)

for isotropic materials; here subscripts I and J indicate partial

differentiation of W(I , J)

In plane strain , both the material and the spatial equilibrium

shock surfaces are cy lindrical , and a material shock surface intersects

the cross-section in a curve
2 

C. The ,j uxnp conditions (3. 3) and

1
See [2], Eq. (1. 17).

C is assum ed to have a continuously varying normal.

I)
_ _ _ _ _ _  __  •
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(3 . 5) become

[a~ p ] ~ N~ = 0 on C (5 . 5)

and

[F~~]
+ L~ = 0  on C (5.6)

where N and L a re  th e uni t normal and uni t tan gent vec tors  on C , res-

pect ively, and the positive side of C is the side into which N is directed
±

In general the various physical and geometrical quantities F~~~,

a~~~, N~~, L~ will vary with position along C. Moreover , if the shock

is regarded as a member of a quasi-static time-dependent family of equi-

librium shocks in the sense of the preceding section , the values of these

quanti t ies will also va ry with time. In the present  section attention is con-

fined to the local s t ruc tu re  of the va rious f ields at a fixed point on C and

at a fixed instant of t ime . Suppose at such a fixed point and fixed time ,
+ +

the values of F~~ (a nd the re fo re  a~~~) are regarded as given. The jump

conditions (5. 5) and (5. 6) then restrict the possible local values of

c~~~, L~ and N~ associated with the equilibrium shock. Since

OW ( .~ ) 
, (5 .7)

and in view of the fact  that N and L can be expressed solely in term s of

the local angle of inclination 4’ of L with respect to the x 1 - axis , the

jump conditions (5. 5) and (5 . 6) may be regarded as four equations for the

five unknowns ~~
‘ and 4’. One would thus expect to find a one-parameter

family of “soluti:ns” , 4’ of (5. 5), (5. 6) for given . It is conven-

ient to choose as the parameter c indexing this family the relative area-

_______________ 
_ _ __ -
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c hange ac ross  the shock , so tha t , in view of (2 . 5) ,

+ - + -

J - J  p _ p
+ - . ( 5 . 8)
J p

One now rega rds = F~~3(e) , 4’ 4 ’(e )  , and t h e  r e t o r e  L J . ( ’-:) and

N~ = N~ (e) , as functions of c.

If in fact  no shock is p r e s e n t , so t h a t  .1 J . (5 . 8) shows  t hat

c 0 . A weak e q u i l i b r i u m  shock is one for  w h i c h  I F~~~( c )  - F~~ j , and

therefore € , a r e  small  compared t un i t y .  I t  is  now assumed tha t

(5 . 5) and (5 . 6) ,  with the ai~ of (5 . 7 ) ,  deter mtne , a given F .~ , a

smooth
1 

fa rn i~y F~~~(c ) ,  N~~(e) , L~~€) nea r € = 0 which  is such  tha t

F~~~( 0) . (5 . 9 )

The object ive of the anal y s i s  in the rema inder of this  sect ion is the deter-

mination of the weak-shock approximat ion  to the local  va lue  of the j u m p

[HJ + in the function H of (4 . 17) for  p lane s t ra in  of a compressible material .

This necess i ta tes  a stud y of the correspond ing approximat ions2 to

and N~(€).

‘Specifically F (€)  and •(e) must be fou r times and three times continu-
ously dif ferent ia~ le , respectively.
2 Weak shocks are  studied in detail  in [3] ,  but mo re refined ca lcu la t ions
than those given in [3] are required to find the weak shock appiux imat ion  to
[HJ~~.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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T o beg in , one obse rve.  tha t  the k i n e m a t i c a l  ju mp cond i t ion  (5 . ( )

immediately leads to

F~~~( c )  ~~~~ + g~~(c) N
13(~ ) (5.

w here  g ( € )  is an as ye t  undete rmined , f o u r  t i m e s  cont inuous l y d i f f e r e n t i a b l e

function which ,by ( 5 . 9 ) ,  mus t  s a t i s fy

g (0) 0 . (5 . 11)

The vector  g (€ ) r e p r e s e n t s  the jump a c r o s s  the shock of the de r iva t ive

of the displacement vector norma l to the shock.

In order to anal yze  t he t r a c t i o n  cont inui t y condition ( 5. 5) ,  set

= _ _ _ _  - N~ (c)  , (5 .  12)

and observe that , for  all suf f ic ien t l y small  (C I,

~~~(c) = 0 ( 5 .  1 3 )

But (5. 12) and ( 5 . 2 )  show that

~~
‘ 

~~~~ ~~ 
~W(F) 

- 

aW (F (c )) 1 
N ’ (C)[ OF~~ aF~~ j t~

- c~~~~~( F ( € ) ) F’
~~~~)N .~(c) , (5 .  14)

‘Equation (5. 10), which is not limited to weak shocks , leads to the geome-
• t r ical  interpreta t ion of the local deformation associated with equil ibrium

shocks.  Althoug h this in terpre ta t ion  will not be d iscussed here , it is cx-
plained full y in [3].

_________________ - - • ~~~~~~~~~~~ --• -- — - _______
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where  the prime ind ica tes  d i f feren t i a t ion  w i t h  r e sp ect  to C . From (5 . 10),

(5 . 11) ,

g ’(€ )N~ ( c )  g ( € ) N ~ ( C )  , F~~~( O )  ~~~, ( 0) N
p

(0)  . (5 .  15)

Since according to (5 . 13 ) ,  i~~ (0 ) 0 , one concludes from (5 .  14) ,  (5 .  15) and

( 5 . 9 )  tha t g~ (0) must  satisf y

Q~~(N(0) . Ihg~~(0) = 0 ( 5 .  16)

where

Q~~~(N , F) - ~~~~~~~~~~~~~~ ( 5 . 1 7 )

fo r  any unit vector  N and nons ingu la r  tensor  F . It can be shown f r o m

( 5 . 8 )  and (5.  10) that  
~~

(€ )  sa t i s f ies

g ( € ) a ( 1~~~~)1N ( c )  = - € ; (5. 18)

dif ferent ia t ing (5 .  18) wi th  respect  to € , sett ing € = 0 and using (5. 11)

shows that

/ ( O ) .(F 1) T N(O) = - 1 , (5 . 1 9 )

so that ~~~
‘ (0) � 0. The existence of a nontrivial vector g

’ (0) satisfying (5. 16)

• requires that
detQ(N (0),F) 0 . (5 . 20)

The condition (5.  20) is necessa ry  and suf f ic ien t  for the fa i lure  of ellipticity

——-—-•—..-

~

- — —.-• -—-——
~~-— .—-—•- - - .- -
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of the plane disp lacement equations of equ il ib r ium ’(5.  1) at a de fo rma t ion
+

whose local gradient is F . If , foragiv en F, ~~(0)  s a t i s f i e s  (5 . 20 ) ,  then

N(O) is normal to a characteristic c u r v e  of the sys tem (5 . 1) . For any such

one can show tha t (5 . 16) and the no rmal i za t ion  cond i t ion  ( 5 . 19) de t e rmine

~~~
‘ (0) uni quely ,  provided that the symmetr ic  tensor  Q is not the n u l l  t en sor~

It is unfor tuna te ly n e c e s s a r y  to compute  ~~ (0). D i f fe r en t i a t i n g

(5.  14) and set t ing € = 0 gives , with the aid of ( 5 . 9 )  and (5.  15) .

= - c ~~~~ I~) {2~~
’(O) [N~ (o) N~ (o) N~ ( O)N ~ (O) ]

+

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , ( 5 . 2 1 )

where

a ~f 3 W( F)
d~~~~~~ ( F )  

~~~~~~~~~~~~~ &F~~~ F~~~Y~~ 
• (5. 22)

Since (5. 13) holds for all suff ic ient ly small ( € 1 ,  it follows that A~(0) 0

and therefore that g~~(0)4~(0) = 0. This, together with (5 . 16) and the

symmetry cy~~ p apparent from (5. 2), lead to

c~~~~~(F  )g~~(0)g~~(0)N ~~(0)N ~~~0)

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . (5. 23)

‘See Section 1 of [1]

2The case ~ ,~~ is excluded from consideration.

____________________ - -, . ‘ • • . . _____________.- —
~~ — —..---—-- —- — —
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This formula will  be used la te r .

To compute [11J , set

h(€) = I H J~ = H(F , N ( c ) )  - Hft (€) , N(€ ) )  . (5 . 24)

Invok ing the special fea tures  of F , ~ and N appropr ia te  to plane strain

and using the def in i t ion  (4 .  17) as wel l  as (5 . 7) ,  one obtai ns

+
h ( €)  = W ( F ( € ) )  .. W ( F )

- ~~~~_ - ( F ( € ) ) N ~~~ c) F  ( c )N ( € )  • ( 5 . 2 5 )

If one sub situtes f rom (5.  10) for F~~~(€ )  where it appears explicitly in (5 . 25) ,

one finds

h (€) = W(~~(€)) - W (i) - ( F ( € ) ) g  ( c ) N  ( C )
V P ‘

~ ~~

+ Fy QN
~(€ ) 1~~ 

(~JN~ (€) - ~~
‘ (F~( C ) ) N ~ (e)  

(5 . 26)

The traction continuity condition ( 5 . 5), together with (5. 7), shows that the

quanti ty in brackets  in (5 . 26) vanishes , so that

- + ow -h(e) W(~~(€ ) )  - W(F) - -
~~ ---—(~~(C ))g (C)NM(€) . (5 . 27)

V

Obviously h(0) = 0. To determine the small - Ic I approximation to h(c) ,
one must compute some derivatives of h at C = 0. Differentiating (5. 27),

_ _ _ _ _ _ _ _ _ _ _ _  
-. — -- ——•- 

~~~~~~~~~~~~~~~~~~ — .~- •
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using the first of (5. 15) and referring to (5. 2), one gets

h (e ) ~~~~~~~~~~~~~~~~~~~~~~~~~~ . (5.28)

In view of (5.11),

h (0) = 0 . (5. 29)

Di f fe ren t i a te  (5 . 28) and use (5 . 22) and the f i r s t  of (5 . 15) to find

h”(e) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ ~~~~~~~~~~~~~~~~~~~~~~ + ~~(c)N~ (e)F~~ (c)] . (5 .  30)

From (5. 11), (5.9) and (5. 15) it then follows that

I, + I Ih (0) = ~~~~~~~~~~~~~~~~~~~~~~~~~~ (5. 31)

and hence from (5. 16) tha t

h”(O) = 0 . ( 5 . 3 2 )

Finally , differentiate (5. 30) and se t C = 0 , making use of (5. Il), (5. 9),

(5. 15), (5. 16) and the symmetry c~ py6 = ~~~~~~ Th is y ields

I.., + I I Ih (0) = 2d~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• + ~~~~~~~~~~~~~~~~~~~~~~~~~~~ . (5. 33)
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A ppeal ing to (5. 23), one arrives at

III 1 + I , ih (0) = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ( 5 .  34)

Since h vanishes to second order at C = 0 , one has

h(c ) = ~-h
’”(0)C3 + O(c~) , €-‘O , (5.  3 5 )

and hence, using (5. 24), the weak-shock result

[H]
+ 

= DC
3 

+ Q(~
4
) as €-~0 , (5. 36)

where, by (5. 33), (5.22)

3 +
1 O W(F) , I

D = U 9F~~ OF~,~ 8F~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. (5. 37)

The formulas (5. 36), (5. 37) comprise the ma in result of the present section.

They express the jump [H]
+ in terms of the third gradients of the strain

energy density W , the weak-shock limiting normal N(O), and the weak-

shock approximation g’(O)€ to the jump g(C) in the normal derivative of

the displacement vector across the shock; g’(O) is a nontr ivial solut ion of

(5. 16) which also satisfies (5. 19).

The fact that, for weak ehocks , the jump [HI + is of the third order

in the shock strength £ is analogous to the result in gas dynamics that the

entropy jump ac ross a weak shock is of third order in the corresponding

shock strength parameterL~

‘See p. 143 of (7].
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Consider a quasi-static t ime-dependent famil y of plane strain equi-

librium shocks in a given material, and let x be the position vector of a

point on the material shock surface S~ at a fixed instant t . Let

+ +
be the velocity of the point ~ at the instant t , ~ = ~ ,t) the limiting

value of F at x , t from the upstream side. Let N (0) satisf y (5. 20) and be

such tha t V(x , t ) ’N( O)  is positive~ Let g ’(O) be the vector determined

uniquely by (5 . 16), (5. 19). Referenc e to (5 . 37) shows t~iat the value of D

at the point x and the in stant t is then fully de termined by and N(0).

If the shock is sufficiently weak at x , t , (5 . 36) shows that the ~~~~ of the

shock strength C = €(x , t) is determ ined 2 by the dissi pation inequality

(4 . 19)~ This in turn determines the sign of the jumps across the shock

in other field quantities such as the density (see (5. 8)).

If the compressible material at hand is isotropic, it is possible to

use (5. 37) (5. 22), (5. 4) and (5. 19) to show that D assumes the following

spec ial form:

1+ 1+2D = -U
~~ 

~~~~~ - + + ~~
. 

~~ w1~~) C

- ~w1~~ C 2 
÷~~w~~ c 3 (5. 38)

11f N (0) satisfies (5 . 20), so does -N(0) (see (5. 17) ). Thus if x is a non-
contact point of St (as is assumed here), then a vector ~~(O) satisf ying (5. 20)
may be assumed to satisf y 3(~

, t) ‘~~(Op O without loss of gene rality .
2Except in the special case when D = 0; this eventuali ty will not be considered
here.

3See [3] for details in special cases.

-i:i
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where

C = F~~g~ (0)N~ (0) , (5. 39)

and the derivatives of W appearing in (5. 38) are to be evaluated at the
+ + +

values I and J appropriate to ~~~.

6. bl~~~~~~~~j~~sj~~~quilibrium shocks in anti-plane strain.

A simpler class of deformations for the cylindrical body of the

preceding section is that of anti-plane strain, in which the displacement vec tor

satisfies

u1 ~ u2 0 , u3 = u (~x1,x2) . (6. 1 )

A particle is therefore displaced only axially, and the amount of displacement

depends only upon the position of the particle in its cross-section. It

follows from the first  of (2 . 3) that the deformation gradient tensor ~ asso-

ciated with the displac ement field (6. 1) has components

= ~~~~~ F~3 = 0 , F~~0 = u, ~~~~ F33 = 1 . (6. 2)

From (6. 2) and (2 . 13)  one obtains

11 = 1~ = 3 + I ,~uI 2 , J = detF = 1 • (6. 3)

the last of which shows that ant i-plane strai n is locally volume-preservin g.

For anti-plane strain the field equation s of Section 2 can be reduc ed

for a compressible material to three differential equation u l~~r the single

unknown u , and in the incompressibl e case to three differential equations

for the two unkn own s u and p. It is thus not surprising that not all materials

~~. — - --- - - _____

~ ~~~~
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— not even all homogeneous , isotropic ones — can sustain general states of

anti-plane strain in the absence of body forces~ One class of inc ompressible

mate rials which do have this property consists of those whose strain energy

densities depend only on Ii :

w w(i 1) ,  W(3) = 0 . (6.  4)
2

Such materials  are isotropic and include the neo-Hookean material , in which

W iB linear in I~ , as a special case. If (6. 4) holds , the governing equations

(~ . 6) , (2. 19) , (6. 2) ,  (6 . 3) and the third of (2. 3) can be consistently reduced

to the following single differential equation3 for the out-of-plane displacement

+ I v u I 2) .~ 1 = 0  on ~ ( 6 . 5 )OX0 L  Ox~ J

where, as in the preceding section , 
~ 

denotes an open cross-section of

the undeforined cylinder, and the prime indicates differentiation with respect

to the argument of W.

necessary and sufficient condition that a homogeneous, isotropic , in-
compressible elastic material admit general states of anti-plane strain is
derived In [18]; the corresponding condition for compressible materials is
considerably more restrictive and may be found in [l9J .
2 The requirement that W should vanish In the undeforrned state is a con-
venient normalization,
3DetaUs of this reduction are included in [18]; it is assumed that the tractions
on the lateral surface of the cy linder are  independent of x3. See also (6].

_ _ _ _ _ _ _ _ _ _ _  
—~~—--- . —~~~~~~~~~~~~~~~
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The components of nominal stress ~ and true stress ~ are given by

30 
-• ¶

3 
0

30 003 - 2 W \ 3  + L~u I 2 )u , 0
I = °013 = 0

33 = 0 
(6. 6)

!

T
33 

ZW ’ç3 + I~u I 2 ) I~u I 2

If u kx 2 ,  where k is constant , then (6 . 5) is satisfied and the

deformation is one of simple shea r~ The relation between the shear s tress
¶ and the amoun t of shear k is found from (6. 6) to be

T 2 W ’(3 +k2)k (6.7)

in simple shear; ~ = ZW ’(3) is the shear modulus for  tnfinitesimal defor-

mations. The shear modulus at arbitrary shear k is 2W ’(~3 + k
2
) and

is assumed to be positive for all k.

The differential equation (6. 5) is found to be elliptic at a solution

u and at a point (x1, x2) if

{
~~~[w

1
c3 + k 2)k]}k 

= I V u(x 1, x2 ) I  
. (6. 8)

From (6. 7), this is equivalent to the condition that the curve of shear stress

‘The hydr 9st~tic pressure p occurring in (2 . 19) has been eliminated in
te rms of I!u I in the course of reducing the field equations to (6. 5). See
[1 8] or (6].
2Siznpl e shear can , of course , be su stained without body fo rces in any
ela stic material . 

.•
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versus amount of shear shall have positive slope
1 
at k = Izu cx 1,x2 ) I .

For ant i -plane strain , the components of the energy-momentum tensor

a re  found from (4. 11) , (6. 2) and (6. 6~ to be

P~~ Wô0~ - 2W ’u~~0u~~~ , 

2(6. 9)
p

03 = = - 2W ’u ,~~ , P33 
z W

When taken ove r closed cy lindrical surfaces  F of unit length which a re

c oaxial with ~~~, the integrals J. of (4. 13) reduc e to

j0 =~~~(wo 0~ - 2W ’u ,0u ,~~)N ~ ds , (6. 10)

= -~~~2W ’u,~~N~ds , (6. 11)

where is the closed curv e forming the boundary of the cross-section of

F , and s is arc -length on F , LI encloses only points of where

u is twice continuously d i f fe ren t iab le , one has the conservation laws

= 0 , J3 
= 0 , (6. 12)

as can be verified directly with the aid of (6. 5) and the divergence theorem.

The function H of (4. 17) reduces because of (6.9) to

H = - w(3 + 1zu 12) + 2W ’(3 + I~ u I 2) (Ou )2 
, (6. 13)

‘For the neo-Hookean material, W ’ (3 + k 2) = = constant, (6. 5) is Laplac e’s
equation , and (6. 8) holds for all k.

and W ’ are to be evaluated at 3 + IZu I~

_ _ _ _ _ _ _ _  

_______________ 
_ _ _ _ _



35

where Ou/ON =u ,~~N0.

A special subclass of hypothetical  incompress ib le  isotrop ic materials’

which satisfy (6. 4) a re  those for  which

W( 11) = ~ [i + ~~
(I

l 
- - } 11 

� 3 , (6. 14) 2

where ~~> 0 , b> 0 and n >0 are material constants. The T - k relation

for this class of materials is

I = ~ (i + .
~~ k 2)’~~~

’k . (6 .  15)

Graphs of I vs k for various values of n are  shown in Fig. 2 . The el-

lipticity condition (6 .8) is always satisfied if b>0 , n~ 1/2 . If b > 0 , 0 < n< l / 2 ,

ellipticity of (6. 5) fails if

1 ,~
u(xi , xz)I 

~1j U 
‘1

2 ) b  (6. 16)

It will be assumed henceforth that 0<n < 1 / 2. For the special materials cha r-

acterized by (6 . 14), formula (6. 13) for H reduces to

H ~~~+~~ (l +~~~( V u I 2 ) n ~~ [ça u ) Z _
~~~I~uI 2_

~~] 
. (6. 17)

For weak solutions in anti-plane strain which involve equilibrium

shocks , both the material and the spatial shock surfaces  are  cy l indrical , and

‘These materials have been considered in connection with a c rack problem
in[6].

2One always has ~~~ 3 in locally volume-preserving deformations.

S
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a material shock in tersects  the cross-sec t ion  R in a curve C. The traction
0

jump condition (3. 3) can be seen f ro m ( 6 . 6 ) to r educ e t o

[w ’~3 + IV uI 2)u,~ ] N0 = 0 on C , (6. 18)

while the c onditions (3 . 5) for continuity of the tangential disp lacement gradients

become

[u ,~~]+ L~ = 0 on C , (6. 19)

where N and L are  unit vectors norma l and tangent to C , with N pointing

into the positive sid e of C.

From (6. L 9 ) ,  one concludes that there is a scalar g such tha t

= + gN~ on C . (6 . 20) l

Let C be introduced by

w ”(3 + I v ~~J
2)

1 - C 
w ’(3 + I~~I~) 

; (6 . 2 1)

thus C is the relative change in the Bhear modulus across the shock. Sinc e

it hae been assumed that W
1
>0, one has C< 1. The traction continuity con-

dition (6. 18) can be written as

(1 - C)~~ ,0 N
0 

ii , 0
N

0 on C (6 . 22)

whence , from (6 . 20)

‘Equation (6. 20) is the analog in anti-plane strain of (5. 10) for plane strain.

_ _ _ _ _ _ _ _- —~—~r---••--- ~~~~~~~~—
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g = - C&~~N 0 = - C~~~~ . ( 6 . 23)

From (6. 20),  (6. 23) one has

I!~i I 2 IY~I 2 - - C C  on c , 6. 24

so that (6. 2 l )  reduces to

W ’ (3 + ~~2 ) = (1 - c) W (3 + 
~~~~~ a+

)2 - € ) C ) ,  on C (6 . 25)

where the abbreviations

± ± 2
k = I~ u I  (6. 26)

have been introduced. If V~~, and therefore it , is regarded as given ,

(6. 25) furnishes one equation for the determination of Ou+/ ON V~ ~ as a

function of C . According to (6. 20) and (6. 23), one would thus ex pect  t o

find a one-parameter  family of gradients  Vii which can be “con nected”

to via the ~~~~ conditions~ C — the shock s t rength  — is to be chosen as

the indexing p ar . iI

For vea~ ‘ocks in anti-plane strain, Ic ~~~~ 1 , and an analysis

parallel to, but much simpler than , that carr ied out in the preceding

section shows that the limiting value as c - 0  of Ou+ / ON satisfies

• ‘It is possible to show that the local existence of a solution 8~ / 8N of (6. 25)
for some € t 0 requires the material to be such tha t the ellipticity condition
(6. 8) should fail for some value of the amount of shear k.

• 2Note that the physical meaning of c in anti-plane strain is not the same as
that of its counterpart for plane defo rmations; compare (6. 2f ~7 ( 5 . 8) .
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+ 2(au ~ _ -W ( 3 + k )  ‘ 6 2\aN I — 
+

~~
C = 0 2W (3 + k

This result, in t u r n , can be used to show that  the l imit ing direc tion of the

shock as € ~ 0 is that of a characteristic curve of the partial differential

equation (6. 5). There  a re  in general  two c h a r a c t e r i s t i c  d i r ec t i ons  associated

with a point (x 1, x 2 ) at which V u(x 1, x2 ) is such that e l l ip t ic i ty  h as fa i led , and

these cha rac t e r i s t i c  directions a r e  symmetric with respec t  to V u(x 1, x2 ).

By carrying out the appropr ia te  small - C approx ima t ions  us ing

(6 . 13) and (6. 25) ,  one obtains the following weak-shock formula for

[H]~ = [
~
. J~

) 
= 0w ’~~+ (

~-~
)
~ 0w u ’}  £~~ + O(€~~) 

:s 
€ ~0 , (6 . 28)

where W and W are  to be evaluated at 3 + k , and k is g iven in

(6 . 26).  In this form , the approximation (6. 28) is analogous to the p lane

strain resul t  ~5. 36) ,  (5 . 38). In the present  c i r cums tances , (6 . 2 7) can be

uaed to fu r the r  reduce (6. 28) to

[HJ~ = 
~~ (~~~~~~~) = 0

~~3(W
h 1

)
2 

- w ’w ”} c~ + Q(~~4 ) as € ~ 0 , (6. 29)

where , again , the derivatives of W are evaluated at 3 + Iv~~I 2 .

Now consider a quasi-static t ime-dependent family of equi l ibr ium

shocks in an t i -p lane strain , and let the shock strength at time t associated

with this  family h~ € ( t ) .  LI the shock is sufficiently weak at time t , and if

the dissipat ion inequality (4 . 19) holds , then (6. 29) shows tha t

_ _ _  

_ 
- -_
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ii 2 ii’ 33[W (I~ )J  — W (1~ )W (I
i ) € ( t )  0 , ( 6 .  30)

+2
where I~ = 3 + k ( t ) .

Foe the specia l mater ia l c h a r ac t e r i z e d  by the strain energy density

(6. 14), one ve rif ie~ easi l y tha t

3(W ” ) 2 
- = - ~~

2
b

2 ( 1 -  Zn) 
[i + (I~ - 3)] . (6. 31)

Sinc e b > 0 , 0< n < l / 2 , th is  quantity is negative , and (6 . 30) thus require s that

€ ( t ) ,  wh ich  is a lways  less than uni ty , shall also be nonnegative for this

material , at least for  suff ic ient l y weak shocks . Reference  to (6 . 21 )  then

shows that the shear modulus ZW ’(3 + Ic
2

) is smaller on the positive —

or “upstream ” — side of the shock ’ than on the downstream side . Moreover ,

(t) . 24)  shows that , fo r  a d iss ipative weak shock in the par t icular  mater ia l

under consideration , the downstream side ca r r i e s  the smaller value of

17 u 1 2 , since O < c < 1 .

For the special strain energy densi ty ( 6 . 14), the basic equation

( I I . 25)  governing the shock transition can in fact  be solved explici t ly and

the conc lusions above can be validated for  all equilibrium shocks — not

merely weak ones. The result  of solving (6. 2 5)  in this case is

(
~~~~ 2 

+ 2) 1
€~z

(i
;~~

) ’ - n  
, . (6 . 32)

‘Recall that the velocity V of the quasi-stat ically moving shock C points
into the “posit ive ” side of C.

__________________________________ • • - —.- — • - -•-—— —
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I
Since

� i t 2 
, (6 . 33)

one must have

+ ~ It 2)  ( ~~~) 1 - 

~ j~
2 

, (6. 34)

if a shock of s trength C is to exist in the presenc e of a displacement grad-
+

ient of magnitude k on the positive side of the shock . Thus , for  a given value
+

of the material  constants b and n , only those points in the c , k — plane

which lie above the curve in Fig. 3 — the admissible region — correspond to

equilibrium shocks in anti-plane strain.

Finally ,  one can compute [HJ + exactly for  the special material  at

hand from (6. 13), (6. 14) and (6. 32) . One find s

[H]~ = 
~~~~~ 

(~ 
+ .

~~ 

~~ ~~~~~~~ 
, (6 . 35)

where

f( c ) = C {Zn - 2 + € + (1 - ~)1~~~~ + (1 - Zn)(l - ~)1 (6. 36)

It can then be shown that f ( € )( 0  for 0<C <1 , f(0) = 0, and f ( € ) > 0  for

- < €  <0. The dissipation inequality (4. 19) would then again require

0 <€ < 1  for all (not just weak) shocks. That portion of the admissible

region of Fig. 3 which correspond s to dissipative shocks is indicated by

shading. Note tha t ellipticity is always lost on the upstream side of the shock

when the dissipation condition holds.

I — * ••-

~~~~~~~

- .•. -i —



4 1

7. ~~ rmod narnic basis f2r the dissipation inequality .

The present section is concerned with a thermodynamic argument’

in support of the dissipation inequality (4 . 19). For simplicity , only com-

pressible materials will be considered.

Consider a material cha racterized by an inte rnal energy C =

(measured per unit of mass)  which depend s only on the deformation gradient

tensor F F(x , t) and the entropy ~~L unit mass I~ = fl(x , t ) ,  and for whi ch

the nominal stress tensor a = C(x , t) and the temperature 8 = e( ,~, t ) > 0  a re

g iven by
2

(F , r~) , 0 =~~
.
~~(F ,r)) . (7 . 1)

Here P
0 is the (constant) mass per unit undeformed volume , and , as in

the preceding sections , ~ is the position vecto r to a particle in the unde-

formed state. The inte rnal energy density C is assumed to be inf ini tely

different iable  with respect to F and i~, and also to be suc h that the

second of (7 . 1) is uniquel y invertible to give

n = f i ( F ,8) (7. 2)

as  an infinitely d ifferentiable function of F and 8 for every nonsingula r

F and every 8>0 .  Let

= $(F , e) = C ( F , P~(F , 8)) - 8~i(F , 8) (7. 3)

am indebted to Professor James R. Rice for the substance of the argument
given he re .

the te rminology of ~ 80 of [ 20], such a material is called perfect .

•1 

__________ 
______ __________________ _______________• - -•— ___ -- •_ _  - 

- _ _ _ _ _
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be the f ree  energy ~~~ uni t  mass.  One shows ea sil y f rom (7. 1) - (7. 3)

that

°ij  = ~o , 11 = - (F , 8) . (7 . 4)

As in section 3 , it is assumed that , for each time t in the interval

of interest , the disp lacement field ~ is continuous and piecewise continuously

di f ferent iable  on the region ~ occupied by the undeformed bod y ,  80 that

F = V u is piecewise  continuous on R for  each t. It is also assumed that

is piecewise continuous on ~i for each t. Finally ,  u , F and 1] are

presumed to be continuously different iable  in t for each x in ~~. It

follows from (7. 1) that the smoothness proper t ies  of 0 and B are  the

same as those of F and r~.

Let ~ be an a rb i t ra ry  regular subregion of ~i , and let be the

image at time t of ~ under the motion = x  + u(x , t). The balanc e of

energy is postulated as follows:

d 1 r  2 1  I.
,~ 

P~ cdV + j P~~ dVI 
~ ~

‘~ dA + J ~~~~
‘ ~ dA . (7 . 5)

£ J a~

for every £. Here v = 
~~ 

t) is the pa rticle velocity , a = ~ is the

nominal traction acting on the boundary a~~ of £ , and ~ is the heat

flux (measured per unit area of 8~ ) acting on 8~~~. Thus the left side

represents the rate of increase of the sum of inte rnal and kinetic energy ,

while the rig ht side is the sum of the rate of work of the tractions and the

rate of heat flow into ac ross it s boundary ’

‘Body forces and interna l heat sources are assumed to be absent.

~ .
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*
The rate of entropy production r (t) associated with the motion is

defined by

F =~~~~~~ - ,j P ‘ldV - j - ~~h ’NdA . (7. 6)

It is fur ther  postulated that

F (t)~~~0 ( 7 . 7 )

for every £ , for every motion and for  each time t.

Suppose now tha t the tempe rature is uniform throughout the body

and independent of time 8(x,t) 0
~ 

constant for  every x and ~l and all

t. By eliminating the heat flux integral between (7. 5) and (7. 6) and making

use of the definition (7. 3), one finds tha t

~~ =

~~~~~ 

- 

~
i- [ S P 0~~~~~

eo dv +~~ J P ~~~~~dV]
} 

. (7. 8)

Thus the entropy production rate is proportional to the excess of the rate of

work of the forces external to over the rate of increase of the sum of the

free energy and the kinetic energy.

A comparison of the first  of (7. 4) with (2 . 9) shows that the mate rial

presently under consideration may be identified with the (compressible)

elastic material of section 2 by writing

W(~ ) = P $ ( F , 8 )  , (7.9)

as long as the motion is isothermal. For isothermal quasi-static motions

of the kind considered in section 4 , one neglec ts the contribution of the

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _  -—
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‘C

kinet ic  energy in (7. 8) and thus obtains , with the aid of (7 . 9), the resul t

(7 . 10)
0

where

U(t )  = 
j  

W(F(x , t) )dV . (7 . 11)

Now suppose that the ~aothe rmal , quasi-s tat ic  motion involves a

shock with the properties described in section 4. If the material  shock

surfa ce S~ intersects  £ , the (4. 16) applies and can be used to write (7. 10)

in the form

F = - .
~

— j [HJ~ V ’NdA , (7. 12)
o

where is the part  of St lying in £ . The postulate (7.7) of nonnegative

entropy production rate then leads immediately to (4 . 18), f rom which the

dissipation inequality (4. 19) follows.

If no shock is present , then [H] = 0 and (7. 12) gives F(t) = 0. Thus ,

although smooth quasi-static motions of an ela .. t ic body do not result in

dissipation , weak solutions involving equilibrium shocks generally do.
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