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PARAMETER LIST

X,Y,2 are the parameters of a right-handed orthogonal system of coordi-
nates with +x in the downwind direction z to the zenith with the origin

at the earth's surface.

X,Y,Z are mean coordinates of the center point of a diffusing cloud
t is time

a is a constant (about 1.25)

b is a constant (about 0.4)

h source or emission height (for Praire Grass data =~ 46 cm)

k is Von Karman's constant (about 0.4)

r is a parareter of the exponential power law

C is mass concentration (mass per unit volume)

L is the Monin-Obukhov length scale (see appendix)

Q is the source strength in units of mass per unit time

u is the mean windspeed

uy, is the friction speed

u', v', w', T' are instantaneous wind and temperature fluctuations

Z, 1is §he surface roughness height (for Project Praire Grass about
0.7 cm

ay 85 €5 Ny Wy w, I'y dummy variables or arbitrary symbols
a is a constant (about 15)

¢t =2z/L

to = Zo/L

T =12/

]H

0" [w'w'

| R R R R




= Gw/u - 1
f, ¢, are universal functions of the Similarity Theory

S is the normalized wind shear function




INTRODUCTION
This report describes the concepts of similarity theory applied to con-

tinuous source diffusion problems in the atmosphere.

Various papers have appeared expounding the use of similarity theory in
diffusion methodology and estimation procedures. Gifford [1] described

the similarity model for concentration at a downwind point due to a con-
tinuously emitting point source up to, but not including, a proportionality
factor. His study indicated that the calculated power law index, m, of

the inverse power law

Concentration =(downwind distance)'m

was in excellent agreement with data.

Klug [2] developed empirical functions which relate similarity theory to

concentration data and found excellent agreement.

Pasquill [3] outlined several approaches used by others [1,4,5,] to de-
scribe the Lagrangian similarity approach to diffusion. His analysis in-
dicates that the conventional similarity hypothesis fails to account for
the effects of thermal stratification of the constant shearing stress

layer in the atmosphere.
This report develops a proportionality in the concentration relation simi-

lar to that reported by Klug [2]. A vertical distribution function is
selected for the falloff of concentration with height. By use of the
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vertical distribution, the vertical variance parameter is related to a
similarity term, and estimates of cloud spread are given.

THEORY
Similarity Hypothesis for Turbulent Flow

The similarity hypothesis for turbulent flow in the constant stress layer
or surface boundary layer of the atmosphere is that all statistical prop-
erties of the flow depend only on the ratio z/L [6]. For diffusion, cihe
hypothesis is that the average vertical displacement, z, of a cloud of
passive material diffusing throughout the surface layer is uniquely de-

termined by the friction velocity, u,, and a universal function ¢(z/L)

[3.2.31.

This hypothesis is represented by the equation

92 - buye(2) (1)

z/L.

where 7

Assuming that the rate of increase of mean displacement, X, of the par-
ticles of a diffusing cloud is equal to the average windspeed, U, at the

level z [3],

x|

& =), (2)

The expression for downwind maximum concentration from a continuous

point source located at the surface is given by the proportionality [1],

Caxial _ 1

q D)

(3)




Expressions (1), (2), and (3) are the basic equations used in the appli-
cations of similarity theory to atmospheric diffusion in the surface
boundary for a continuous ground level point source. These basic equa-

tions are discussed below.

According to the similarity theory, u of Eq. (2) is completely described

by another universal function f(z), u,, Zo, and Von Karman's constant k.

As described by [6]:

Uy
G(Z) e kK [:f(l;) = f(Co)]’ L= Z/Ly G s z,/L (4)

Therefore, at the level z, Eq. (2) is written

dx _ - U
gt = u(z) = = [f(2) - f(z0)] (5)
Using Eqs. (1) and (2) we have:
& _ i)
dz bu,s(z)’
and substituting Eq. (5) for u and setting £ = bkx/L, ¢ = Z/L, the

above differential equation in dimensionless variables %, 7 is

& _ f(o) - flco
E%- ¢(c5c ; (6)

When Eq. (6) is integrated, the concentration function Eq. (3) is

evaluated for a downwind travel distance x where x = X,




There are variations to the approach presented above. One such variation

described by Panofsky and Prasad [5] is

oo
|N]|
"
oo

where a is a constant about 1.25. Combining this with Eq. (2) gives

T OO o =
RS
"
ol
a|sl
1
oo
Q

3 (7)

cmpirical data on o, as a function of z and z, can be used with numerical
¥

integration of Eq. (7) to give x(z) [5].

Many papers on the similarity theory derive various forms for the simi-
larity functions ¢ and f of Eqs. (1), (4). Tables A-1 and A-2 (appendix)
present several of the common functions for f and ¢ (the function f is

usually referred to as the integrated wind profile function).

The method developed in this report for the relation (x, z) is yet

another application of the similarity equations thus described. This
method consists of eliminating the need to specify both f and ¢.
Instead, a second order differential equation in (%, z) is derived.

Let




&
Hence, f(z) =‘[ §éﬂldn. Furthermore, let ¢ and S be related in the

>
Lo

following sense:

Equation (6) then becomes
9:= —)fc A_dn
dc

and the second derivative of this, with the appropriate substitutions,
gives the second order differential equation in (£, z), with only the

function S(z) to be specified,

—:; —_<—— 1nS> §% =0 (10)

The x(z) function is now the solution to Eq. (10; given S(z) and the
initial conditions de/dz |zo = 0 and £(z,) = 0. Equation (10) can be
solved numerically, or for certain functions S(z), Eq. (10) admits of

elementary closed form representations.

Table A-3 gives various solutions to Eq. (10) in closed form given the
corresponding S(z) function. Form A of Table A-3 is the method used by
Klug [2], and form B is one of the methods described in [4]. Both of

these uses support the argument that ¢ is given by Eq. (9).

Particular f, ¢, or S must be chosen on the basis of the validity of
these functions in use under a given thermal stratification. For example,

if the atmosphere is unstable, L < 0, a valid S would be the KEYPS

W,




relation or the formulation credited to Dyer [7]. If the atmosphere

is stable, L » 0, then S could be selected as the KEYPS function, or

the relation as in B of Table A-3. In the special case where [L| + =,

general agreement is for S 1.

The basic starting point of similarity and its application to the diffu-

sion problem is with Eqs. (1), (2), and (3).

Equations (6) and (7) are

two wavs to describe the x(z) relation. However, Eq. (10) usinqg the

identity £q. (9) will be used in this report.

Replacing Proportionality with Equality

Klug [2] presents in his paper a function fg(T) which describes the con-

centration function aiven hy

His analysis leads to the following step:

fo(z) = Go(z)

where at - = 0, corresponding to |L|

(i can then he evaluated according to |G =

axial

(1)

(12)

for neutral stability, q(0) = 1.

.z u(?)
neutral stability

given a set of data on F‘\i{]/ﬂ and the appropriate stability functions
a’

for near neutral conditions., Klua uses the test data for near neutral

conditions from the Project Prairie Grasc diffusion experivents [8]. His

9




mean values of G are as follows: GSOm = 0.09, G 0ilde 6

100m 200m
G400m = G800m = 0.13. The subscripts refer to the distances to the vari-
ous arcs used in the field test program, Klug points out that this be-
havior of G can be ascribed to the fact that the source height in the
Prairie Grass trials was not at the surface, but at sampler height z =

46 cm above the ground for most runs, and at 150 cm above the ground for

runs 63-68.

After G has been determined, Klug assumes that the same set of G values
applies in diabatic conditions, and the function g(:) can therefore be
evaliated. When he computed the values of g, there was no functional
dependence g(-). Klug did find a significant correlation with o/ U

His linear regression curve is g(<v/u*) = -0.28 o [u, * 1.48.

Klug's resulting formula for estimating the maximum downwind concentration
for a continuous puint source located at ground level is

Faxia]

The use of this estimator is reported to be in excellent aareement with

the date [2]

An f9 function will be developed in a similar manner in this report.
The function f9 relating observed concentration to the similarity ex-

pression of £q. (3) will be expressed as

10




R

fo(z) = G(z)g(z) (13)

The functions G(Z) and g(z) will be discussed below.

Consider how the effects of h, a nonzero source release height, is taken
into account. Sutton [9] used the method of images to account for the
effects of an impervious earth and a nonzero source height. Consider
the extension of his method to a generalized distribution of particles

in the vertical using the functional form

r 4
X(Z) = exp - JL_é__h_l._ + exp - .I.Z_E__b.l_. (]4)

The parameter r is assumed constant together with a prescribed height of
emission h. B is a function of downwind distance x. The vertical

spread of particles is then determined by the ratio x(z)/x(z_._) where

max

Rnax is the height at which the maximum concentration will occur. A

concentration function for the xz plane will then be constructed as

916451-= —111517- Qéél_’ where = is a one dimensional concentration

X\ Znax

{gp)
Ot
x

function. Assume tx) . :Iﬂiél for a surface based point source. Then
Q )
z u(z
JIxaz) = Z)_ g(%) ! S Now suppose measurements are made of con-
x\Z o
max z ulz)

centration using samplers located on a grid with a fixed sampler height,

z. The comparison of the data to the above theoretical form should use

11



C(X’ZS) X X(Z ) 1

S
= 9(t (15)
Q X(zmaX) Ezt(z
Comparing Eqs. (11), (13), and (15) yields
6(2) "('—)'X(zs) (16)
C =
X\Zpax
To find L set the derivative of Eq. (14) with respect to z to zero
and solve for z=2 .. For 0 < z < », the root to 311£l-= 0 is an
max - 9z
Zmax
absolute maximum. With n = vt the solution for zmax is derived from

TANH{u(1 + n)" = u(1 = n)") = n, where y = 5 r“f = (1)

and TANH is the Hyperbolic tangent function.

Now B in Eq. (17) can be found by invoking the definition of Z[1,2,3];

that is, z is the first moment of particle distribution in the vertical

: o7z C(x,2)dz : o zx(z)dz (18)
i C(x,z)dz o7 x(z)dz

N

Using Eq. (14),

r r
7 - he(1/r, ) =817 DA 11 2o (2, 1)) (19)

where I'(a) = s n® e "dn is the gamma function, and &(a,e) =

£
a-1 -
of n e ndn

I‘(J

12




r

Note that if -g— + 0 then

B]/T(z—) = i“ ] : -Z- (20)

Remember Z(x) is known and for X = x B is a function of downwind travel
distance, B = B(x) (actually B is the vertical size parameter for the
diffusing cloud, for if h = 0, r = 2, then B = 20% where o, is a commonly
used descriptor of vertical cloud size to be defined later). Inserting

B(x) into Eq. (17) defines z " which indicates G(z) = G(x) which was

ma
shown empirically by Klug (see page 10 of this report).

Similarity Theory and the Vertical Distribution 22

The statistic z? of the distribution of diffusing particles from the

7

position they would otherwise occupy as a result of average displacement

Z is defined as follows:

3]

27 =/ z?C(x,z)dz//m C(x,z)dz (21)

substituting Eq. (14) in the C(x,z) function as shown on page 11, then

27 = /w 22y (z)dz //mx(z)dz = gél/v %H'%%+ h? (22)

For simplicity r = 2 gives the familiar form

B = 202 = 2(z2 - h?) (23)

13



i
where the quantity 9, is the familiar standard deviation, (z? - z )3,
where Z = h, of a normally distributed (Gaussian) probability function, but

o, is known as the vertical size parameter of a diffusing cloud in the

r4

context of this report.

Substituting B = 20% in Eq. (14) and with r = 2,
x(z) = exp[-4(z - h)2/02] + exp[-}(z + h)?/o}] (24)

The above form, Eq. (24), is widely used in concentration predictors as

the vertical distribution function [9].

Evaluation

Now that the diffusion model has been defined, constants and/or functions
like b, r, and g(Z) can be evaluated. First, the values of b and r will
be found by using data on o§ as defined in Eq. (23) from Haugen et al.
[10]. The predictor is

2/r ri3§r;
- 2 o RE .
oi = 2z h B T /r (25)

14




There are 48 runs for whichoZ at y = 100 meters could be calculated.

The similarity functions for S(z) are as follows (Table A-3):

(1-15 z/L)" Y%, z/i. < 0

(1 + 3 2z/L) 12 BE0

Zr/L - R,

where g = E;7f—ﬁ;_—' with By ™ 2 meters and Ri is the Richardson number

for the 2-meter level. Von Karman's constant k is set at 0.40. The
value for r was chosen to be 1.5 for the following reasons. Elliot's
[11] analysis of Prairie Grass data for the vertical concentration
distribution did not reveal any substantial variation of shape with
stability, and his average r was 1.49. The value of b in Eq. (1) was
adjusted to obtain the best fit of Eq. (25) to Haugen's Sy data. A value

of b = 0.48 was obtained.

The resulting value of bk = 0.19 is not far from the experimental value

of 0.18 obtained by Pasquill from these same data [3]. Figure 1 shows

the comparison of theory, i.e., Eq. (25), to the g, data. Very good agree-
ment is obtained for all L such that 1/L - 0.03. There is fair agreement

for the very stable condition 1/L > 0.03.

The function g(z) can now be determined from the data by the relation

SR c
- _Meas 2z u(z :
. fkon vz —ETéjl-where _9322.15 the measured field of concentration for

15
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a run normalized by the source strength for that run. Fifty runs were
obtained from approximately 70 tests of the Prairie Grass Program to
utilize in evaluating g. As with Klug [2], no relation such as g  g(z)
was found. Instead, after finding an average g, g, for each run, 50 g

values were correlated with uv/u*. The linear regression is

g(ov/u*) = -0.0350v/u* + 0.186 (27)
This regression line and the data are plotted in Fiqure 2. To compare
this linear regression line to that of Klug's, Eq. (27) has to be scaled

g(o /uy)

by 1/0.13. !ith this scale ——ﬁlTj—— = =0.27 OV/U* + 1.43. The compari-

son is in good agreement considering the different approach taken by

the two methods. (See page 10 this report.)

Our prediction formula for concentration in the xz plane from a con-

tinuous point source for a near ground level release is

Clx,2) = ﬁéﬁl—j

2
max 7 (2

(-0.035 o _/u, + 0.186)
Y i (28)

The data of Tables A-5, A-6, and A-7 depict the applicability of the
similarity theory to the diffusion problem. The data on.chomparisons

in Table A-5 show very good agreement with the overall ratio of predicted
(22 - h2)'/? to observed o, values equal to 1.04. The concentration com-

parisons of Table A-6 give good agreement. There is an anomalous value

16




of the 800-meter value of concentration for run 39. But the overall

ratios of predicted to observed concentrations are

reg = 1.02 200 = 1.06 800 ~ 1.29

r]OO = 1.00 r400 = 1.21

The comparison of the vertical distribution Eq. (14) using r = 1.5 is
given in Table A-7. Here Elliot's [12] data on the ratio of vertical
concentration at height z to that at height z = 0.5 is used. The distri-

bution Eq. (14) does an excellent job.

CONCLUSIONS
The Similarity Theory aided with empirical derivations has been shown to
be applicable to the continuous point source problem of atmospheric dif-
fusion., The stability functions f, ¢, and S allow the theory to cover

all atmospheric stabilities of neutral, stable, or unstable.

This report has shown that the solution to a second-order ordinary dif-
ferential equation in (z, ¢), Eq. (10), which needs only a function for
S(z), the nondimensional wind shear, specifies the change of z versus x.
(Note that the integration can be carried out even if S is in the form of
data points directly computed from a wind profile, although this was not

done in this report,)

17




The solution to Eq. (10) in Z and X is then used to compute the concen-
tration C. This report has also developed a proportionality for Eq. (3)

based on an analytical treatment of the vertical diffusion term (Eq. 14).

The vertical size parameter ;F has been given a functional form (Egq. 22)

and has been shown to be in excellent agreement with data over all atmo-

spheric stabilities.

A restraint on h, the source emission height, is that it should not be
greater than a few meters above ground level. For an excellent summary

of restrictions on h and x in similarity theory see Pasquill [16], sec-

tion 3.3.

18
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APPENDTX
CALCULATION PROCEDURES

The calculation procedures for finding L, u,, ¢(R.), R

i ;» and 4y (a nu-

merical calculation of S(z) from profile data) are as follows:

R, = g/7’13I7$712-Zg AlnZ where

T =°E + 273:.16
= 0.0098 deg k/m
g = 9.8 m/sec
Zg = geometric mean of the profile layer

V is the wind profile data, m/sec

In stable flow,

_ kg s8/3Z _ kg 40 = Lk
/L = 4,6 Ve = uenv * Mt = 7

AV-] = AV

21 -
oy = [+ 57— 1= ¢y
u, = k¢61 AV/A1InZ
el
i sV

In unstable flow,

23
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g g o

H = cppKH :—?
ku,Z

KH = o
oy = oy
i Avi - Avg
- AV.I - 28V
u, = ke ' aV/alnZ

y =15
where

cp = 2.24 cal/g deg
p = 0.0012 g/cm?

k =0.4

@ = °C + 273.16

G
i

]‘1/%
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TABLE A-1
INTEGRATED WIND PROFILE FUNCTIONS COMMONLY IN USE

A.  KEYPS (Yamamoto [13])
i) =8 =2 TAN s - 2 TANH=15, where 6% - azs3 - 1 = 0 with

about 7, ¢ = z/L

B. Monin-Obukhov [6]

Inc + gz, 8 >0
f(z) =
Tne g =0
C’R.i
Bl1. As above but with 8 variable with g = R

i
= zr/L, z.a reference height,

Ri = Richardson number at level z,

C. Businger, Dyer [14]

where ¢ = (1 - yg)l/u. y about 15

25




TABLE A-2
THE UNIVERSAL FUNCTION ¢(z) OF EQ. (1)

Monin (1959) [15]

-1_1/4
¢(z) = [0 - (%;) ] 7" where f is the integrated wind profile function.
Gifford [1]

1+ 1 1/4
= (G - ); 'l 2 5

KOEHLER (1967) [16]

olz) = (1 +8g) ', 8>0

26




TABLE A-3

THE RELATION OF X AND z USING EQ. (10) AND THE FOLLOWING S(z) FUNCTIONS
(using the initial conditions d&/dz|z. = 0, £(zo) = 0).

A. KEYPS [13]

S(z) given by S* - a7 S3 -1=0

then

e ;2 [5(5“3* 9) _ (s% - 252 - 3)tan"}s - 1/2(S* - 3)(So - 2tan”!S,)
a

(1 +S.)(1-59)
+ 1/2(S“ + 252 - 3)1In 0 =S + S)]

where S¢ - azo Se - 1 =0
B. Monin-Obukhov [4]

S =1+ 87

£ = T%E {12eI1ng/go + 6e2Ing/go + 12(e - €o) + 3(e - 3eo)(e - o)

1 Z(C - 50)2(2C = Co)}y Where S BE’ €o = Blo

C. Businger, Dyer [11]
§ (1. oD V"

(1 ~ €2)(1 + €02) (1 + e)(1 - e0)
{Ez - Loz + ]/2]” (1 3 Ez)(] = Eozy’ ¥ (53/2)]n (] = E)(] ry EQT

™y
\
oo

+ e3(tan e, - tan"le))

where ¢ = §°!, ¢ = S5}
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TABLE A-

4

VALUES OF G '(X) FOR TYPICAL STABILITY CONDITIONS

(Zo = 0,007 my, b = 0,48, k = 0,4, r =

Stability

Extremely Unstable
L > -5

Moderately Unstable

2100 < L < -5

Near Neutral
LT > 100

Stable

< <

Very Stable
L <10

L
Value
Used

-1

-50

-200
+200

+50

+1

1.5, W = 0,46 m

Distance From Source, x

50 m

1.07

1.2¢

1.30
1.35

1.42

23

100 m

1.02

1.04

f 5 s
1.15

1.19

1.63

o

200 m

1.00

1.01

105
1.07

1.09

1.36

400 m

1.00

1.00

1.02
1.03

1.05

1.26

800 m

1.00

1.00

1.00
1.01

1.02

1.13

R i g =S i i Wi
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COMPARISON OF VERTICAL SPREAD [z2-h2]!/2 AT 100 m.
o OBSERVED (HAUGEN, ET AL.), [Z2-h2]'/2 PREDICTED,

TABLE A-5

AND R, RATIO OF PREDICTED TO OBSERVED

['Z‘z_hz]l/z

.18
.46

NWOTOITNOTNWOTOOPEAEPLPOIONWWOON —
. . . . . . . . . . . . . . . . . . .

(2]

o

.74
.97

.96
22
.87

.03
.94
.95
.96
.98
.96
.02
.95
.78

.01
.97
.10
.34
.89
.07
.78

Run
No.

Q
—
= |
~

n

E=3
—WNWOEBWN—~EBERBWOPLPOANNWPEPONPLW
CW—POOLONNVPELLLOLODVTIOWNWO &N

average ratio Ra
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TABLE A-6

VALUES OF CALCULATED PARAMETERS FOR ALL PRAIRIE GRASS RUNS,
AND RATIOS OF PREDICTED CONCENTRATIONS BY THEORY
TO MEASURED CONCENTRATIONS FOR THOSE RUNS SELECTED BY THIS STUDY

Run
No. L Uy (Ry)2m  Rgy  Rigg Rogg  Regp  Rggo
T 1197 .
2 -27.0 ‘128 *
3 0.35  .020 5
4 0.35  .020 5
5  -32.3 [434 * 93 B o308 A3 148
& =1L, " 429 « Y88 3.8 187 18 . 1.65
7 aiead 1336 v
8 258 '333 x .46 47 .48 .68 9]
$ =19.6 434 * 08 Y88 1O 13 1.3
0 110 358 x 69 78 Bk g
1 -90.9 546 * 195 193 % 76 .81
12 -58.8 "586 x 6. 118 91 85 64
13 0.35 020 5
12 0.35  .020 5
15 -8.13  .253 * .52 .53 .50 .53 .88
16 4.5 .3 .
17 -86.0 1209 x .84 .84 7 R N Rt T
18 31.4 213 . Ak AeE 18 148 1.8
19 -22.2 460 *
20 -50.0 680 * 106, 1.9 - 104 1.8 1.8
21 282 "425 007 .74 76 ‘85 93 1.02
22 238, 507 008 .80 179 80 89 1.05
23 259, ‘414 WL ar 108 188 1.3 - 1.%e
24 302. '397 008 1 1.3 18 14 108
25 -5.00  .222 x
2%  -38.5 474 * .22 108 109 - 1.2 . 1.64
27 -37.0 459 . 8 '8 ¥ l@ e
28 26.8 167 083 1.286 138 184 2.5 o 2.17
29 40.4 273 1033
0 -52.6 1504 -
N -100. 572 * .18 1.3 14y 1.8 1.0
32 6.31  .094 J02 L8l LW 1B 1 1.4
3 -76.9 547 . ‘92 ‘87 bR b B
W -83.3 1679 . 112 1.03 92 89 82
35 2.20  .051 224
B/s  65.5 1253 023 .88 VR S SRR e
36 9.21  .084 - AR W e - S o RN R
37 na. 315 oW 108 1. 1.4 186 2.9
8 12, .295 013 .82 ‘78 77 180 .87
30
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Table A-6(Cont)

Run

No. L

39 7.
40 10
41 105
42 136

43 -13

44 -27
45 -125
46 112

47 -4
48 -7
48s -5
49 -31

50 -32
51 -37

52 -8
53 5
54 47
55 166
56 91

57 -333
58 18
59 13
60 70
61 -34
62 -29
63 0
64 0
65 59
66 23
67 84
68 24

g Al I il i A T
WNO—-wWwPOTrwo O

32 .102

.0 .101

. 320
.421

B .395
.8 .43

.430
.372

.67 .269
.14 .564
58 «257
.3 .494
«3 .493
.0 .498
.33 .344
« 3 .103
w3 <ol )

.418
. 330
<925
.109
.150
.320
.572
. 381
.020
.020
.299
.188
.299
.160

oo

.053

.075

.022
*

*

9
5
.025
.049
.019
.048

overall average ratios

*For unstable conditions z/L = R1

Rso

3

.04

33
.60

.89
02
.06
.85

.19

.45
.84
.90
.85
1
.02

.78
.33
.96
.20

.14
.05

.02

R200

.60

.89
1.08
.90
1.40

1.21

.98
1.29
1.20

1.43
.96
.94

1.04

1.11
.61
.59
77

.69

.87

Ra00

<97

1.09
.96
.91

1.85

1.13

1.20
1.41
1.54

1.83
.95
1.19
1.1
§.22
.63
+99
.93

.62

.87

.

N NN —
. « o o




Run
No.

26

33

43

55

100
150
250
450
750

100
150
250
450
750

100
150
;)l)n
450
750

100
150
250
450
750

100
150
250
450
750

100
150
250
450
750

TABLE A-7

COMPARISON OF RATIOS OF GAS CONCENTRATIONS AT HEIGHT Z
TO CONCENTRATION AT 0.5 M.

.95

.70
.42
.14

.98
.96
.84
a5

.28

.92
.88

30

72
.43
.15

.81

.96

.19
.54
.26

97
.94
.85
.65
.39

.95

Run
No.

18

21

27

37

a4

57

Z

cm

100
150

450
750

100
150
250
450
750

100
150
250
450
750

100
150
250
450
750

100

250
450
750

100
150
250
450
750

32

OBSERVED R,, AND PREDICTED Rp
AT 100 M FROM RELEASE POINT (R, VALUES FROM ELLIOT [5])

Ro

.92
.83
.63
.38
.068

Run
No.

19

22

30

48

49

60

Z

cm

100
150
250
450
750

100
150
250
450
750

100
150
250
450
750

100
150
250
450
750

100
150
250
450
750

100
150
250
450
750

Ro
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