AD-A050 025 NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF F/G 20/4 UNSTEADY SURFACE PRESSURE AND NEAR-WAKE HOTWIRE MEASUREMENTS OFETC(U) SEP 77 K A KAIL													
	1 of 2					A second		The second secon	HANN BACKWARD, BACKWARD, MACKWARD, MACKWARD, MACKWARD,	2005 2007 200 200			A Contraction (1) - Contraction
And the second s	And the second s					$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^$			A manufacture de la constance de la constance de la constance		No. of the Local		E
2. Status The second		America de la construcción de la	Ø				A Transferration of the second	-		Ľ.			
						1-1-1			 A set of the set of		- Arrento Balandar	A second a second seco	 A season of the s
The second secon						=			These states	X		- and -	
dragmar Alternation								and the second					
			000000 100000						and the second s	-			

ECURITY CLASSIFICATION OF THIS PAGE (hen Date Entered)	READ INSTRUCTIONS
REPORT DOCUMENT	ATION PAGE	BEFORE COMPLETING FOR
. REPORT NUMBER	2. GOVT ACCESSION	G)
Title (and Subtisio)		Sand of REPORT & PERIOD COV
Unsteady Surface Pressur	e and Near-Wake	Engineer's Thesis
Hotwire Measurements of	a Circulation	September 1973
Control Airfoil		. PERFORMING ORG. REPORTNUM
AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(+)
Karl Aurel Kail, IV		
PERFORMING ORGANIZATION NAME AND	ADDRESS	10. PROGRAM ELEMENT, PROJECT, 1 AREA & WORK UNIT NUMBERS
Naval Postgraduate Schoo Monterey, California 93	940	
1. CONTROLLING OFFICE NAME AND ADDR	LSS (7.	GODAT DATE 277
Naval Postgraduate Schoo		
Monterey, California 93	3940	141
4. MONITORING AGENCY NAME & ADDRESS	il dittorent from Controlling Office) 15. SECURITY CLASS. (of this report)
(12/14/1	Unclassified
(1- P.I	154. DECLASSIFICATION DOWNGRAD
Approved for public rele	ease; distributio:	n unlimited.
Approved for public rele	ease; distribution	n unlimited.
Approved for public rele 7. DISTRIBUTION STATEMENT (of the obstrac 8. SUPPLEMENTARY NOTES 8. KEY WORDS (Continue on reverse eide if not	ease; distribution	n unlimited.
Approved for public rele 7. DISTRIBUTION STATEMENT (of the about 8. SUPPLEMENTARY HOTES 8. KEY WORDS (Continue on reverse eide if nor Circulation Control Airi	ease; distribution	n unlimited.
Approved for public release T. DISTRIBUTION STATEMENT (of the electron B. SUPPLEMENTARY HOTES Circulation Control Airs The large lift coefficience of reverse elds II need The large lift coefficience of reverse elds II need The large lift coefficience of the second seco	ease; distribution at entered in Block 20, 11 different to entered in Block 20, 11 different entered in Block 20, 11 different becomy and identify by block numb foil foil eccary and identify by block numb icient changes at oils through smal tary wing cyclic e blowing. Stati the unsteady beha imensional flow. mechanism was con	munlimited.

UNCLASSIFIED

SECUMTY CLASSIFICATION OF THIS PAGE/When Date Entered.

(20. ABSTRACT Continued)

pressure data and to study the flow phenomena occurring in the region of Coanda jet separation. Through correlation of turbulence intensity data with pressure data, it was discovered that the point of Coanda jet separation could be located using the hotwire. The objective of these tests was accordingly expanded to include correlation of the location of separation with flow parameter variation.

Although steady flow, steady blowing tests results were favorable, the unsteady blowing test was restricted in scope because of an inability of the injection air compressor to provide an adequate flow, and because the real-time acquisition system was not completed in time for these tests. From mean value and RMS data obtained during oscillatory blowing, no increase in average lift augmentation above that produced in equivalent steady blowing was discernible.

TIS Prove Control Provide Prov	ATTIS Million Anthony DIDC Birl Seatter UNANNOHMC"D JUST 1934 1934 PV DIST 1935 1934 1937 1937 1937 1937 1937 1937 DIST 1937 1937 1937 1937 1937 1937 1937 1937	ACCESSION	for
BC B // Section INANADIMETO LS I 105 114	DBC B.M. Section UNANNOUMCTO JUS 1 104 114 PV DISFILD COMPLET SECTOR 75 CLUE	NTIS	Withe Disting V
NANADINO"O LIS I IOA 193	UNANNOUNC O JUS 1 104 1 14 PV DISFRID TRANSVERSET TO TS ULAL	DDC	R.M. Section
LS LIGE (11	PV DISFILO HEALPHONE FOR IT IT IT LINE	UNAN NOD*	
bio cara contrata soluti de Lo	PV BISTUD TOMPLOTISEUT	IUS FICE	179 minutes and
Distance construction set of the reg	DISTUD TEMPORY AND TO TS		
Die an These sectors of the	DISTUD COMPACTION FOR IT IN TS		
	CISI AND LONG TO THE CITY	PI	and the south of the
Cial da Land Carlos de Cird		CIST	Cial.
A			
A	И	A	
A	n	R	

Approved for public release; distribution unlimited.

Unsteady Surface Pressure and Near-Wake Hotwire Measurements of a Circulation Control Airfoil

by

S. at

Karl Aurel Kail, IV Lieutenant, United States Navy B.S., University of Colorado, 1967

Submitted in partial fulfillment of the requirements for the degree of

AERONAUTICAL ENGINEER

from the

NAVAL POSTGRADUATE SCHOOL September 1977

Author Approved by: Thesis Advisor hours V. Schmidt Second Reader

of Aeronautics hairman tment Depar

Sgience and Engineering Dean

ABSTRACT

The large lift coefficient changes attainable with Circulation Control Airfoils through small changes in boundary layer blowing suggest rotary wing cyclic control can be obtained through modulation of the blowing. Static pressure distributions were obtained to assess the unsteady behavior of a Circulation Control Rotor in a two-dimensional flow. A constant-radius hotwire wake traversing mechanism was constructed to augment the pressure data and to study the flow phenomena occurring in the region of Coanda jet separation. Through correlation of turbulence intensity data with the pressure data, it was discovered that the point of Coanda jet separation could be located using the hotwire. The objective of these tests was accordingly expanded to include correlation of the location of separation with flow parameter variation.

Although steady flow, steady blowing tests results were favorable, the unsteady blowing test was restricted in scope because of an inability of the injection air compressor to provide an adequate flow, and because the real-time acquisition system was not completed in time for these tests. From mean value and RMS data obtained during oscillatory blowing, no increase in average lift augmentation above that produced in equivalent steady blowing was discernible.

TABLE OF CONTENTS

1.	INT	RODUCTION	14
	A.	GENERAL DISCUSSION	14
	в.	PREVIOUS EXPERIMENTAL INVESTIGATIONS	15
	c.	PREVIOUS ANALYTICAL INVESTIGATIONS	17
	D.	OSCILLATORY FLOW RESEARCH	18
	E.	PROBLEM STATEMENT	19
11.	OUT	LINE OF THE INVESTIGATION	20
	A.	APPROACH	20
	в.	INVESTIGATION PARAMETERS	20
	c.	EXPERIMENTAL PROGRAM	21
III.	EXP	PERIMENTAL APPARATUS AND PROCEDURES	22
	A.	WIND TUNNEL	22
		1. General Description	22
		2. Rotating Shutter Valve	24
		3. Test Section	26
		4. Tunnel Calibrations	26
	в.	THE AIRFOIL	28
	c.	SLOT INJECTION AIR SYSTEM	30
		1. Air Compressor	30
		2. Mass Flow Control	31
		3. Mass Flow Measurements	33
	D.	WAKE TRAVERSING MECHANISM	33
	E.	PRESSURE ACOUISITION SYSTEM	37

TU C		MTON OF NOMENTIN AND APPODUNANTO	
1. 0	COEFFIC	CIENTS	47
2	A. STR	EADY FLOW	47
E	B. OSC	CILLATING FLOW	49
V. F	RESULTS	S AND DISCUSSION	52
,	A. PRI BLC	ELIMINARY STEADY AND OSCILLATORY WING TESTS	52
E	B. STI	EADY FLOW, STEADY BLOWING TESTS	53
	1.	Airfoil Performance	53
	2.	Trailing Edge Flow Environment	57
	3.	Wake Traversing Mechanism Effects on Airfoil Performance	62
	4.	Wake Survey	67
c	C. TES	STS WITH OSCILLATING INJECTION	84
	1.	Pressure Wave Propagation	84
	2.	The Near-Wake in Oscillatory Blowing	88
Ľ	D. OSC BLC	CILLATING FREESTREAM, STEADY WING TEST	95
VI. C	CONCLUS	SIONS	102
APPENDI	IX A:	Surface Pressure Tap Locations	104
APPENDI	IX B:	Spanwise Pressure Distributions	106
APPENDI	IX C:	Hotwire Data for Near-Wake Mapping at $C_{\mu} = 0.0451$	108
APPENDI	IX D:	Unsteady Flow Pressure Data	113
APPENDI	IX E:	Unsteady Hotwire Data Corresponding to C Run Numbers 52601 through 52605 for 0.025 in. from Surface	132
LIST OF	F REFEI	RENCES	137
INITIAL	L DIST	RIBUTION LIST	141

LIST OF TABLES

1.	STEADY FLOW, STEADY BLOWING AERODYNAMIC CHARACTERISTICS	55
11.	STEADY FLOW, STEADY BLOWING AERODYNAMIC CHARACTERISTICS WITH WAKE TRAVERSING MECHANISM INSTALLED	65
	BLOWING AND LIFT COEFFICIENTS FOR STEADY FREESTREAM, OSCILLATORY BLOWING	89
IV.	STEADY FLOW, 9 Hz OSCILLATORY BLOWING AERODYNAMIC CHARACTERISTICS	90
v.	COMPARISON OF STEADY AND OSCILLATING FREESTREAM AERODYNAMIC CHARACTERISTICS WITH STEADY BLOWING -	101

LIST OF FIGURES

.

1.	Oscillating Flow Wind Tunnel and Instrumentation	23
2.	Rotating Shutter Valve	25
3.	Oscillating Flow Wind Tunnel Frequency Response Calibration	27
4.	CC Airfoil Cross-sectional View Depicting Midchord Surface Pressure Tap Locations	29
5.	Mass Flow Control	32
6.	Hotwire Wake Traversing Mechanism	34
7.	Wake Traversing Mechanism Test Console	36
8.	Schematic of the Surface Pressure Acquisition System	38
9.	Scanivalve Attachment	40
10.	Schematic Diagram of Scanivalve Dynamic Calibration Instrumentation	41
11.	Scanivalve Dynamic Frequency Response Curves	43
12.	Static Transducer Calibration Curves	44
13.	Pressure Acquisition System Console	46
14.	C_{L} vs C_{μ} for Steady Blowing	54
15.	Comparison of Jet-to-Plenum Pressure Ratios as a Function of C_{μ} for various Alpha	56
16.	Coefficient of Pressure vs Distance from the Wall along 0.5X/C for Alpha = -5	58
17.	Coefficient of Pressure vs Distance from the Wall along 0.75X/C for Alpha = -5	59
18.	Coefficient of Pressure vs Theta for Alpha = -5	60
19.	Rear Pressure Distributions vs Y/C for various C_{μ} , Alpha = -5	61

20.	Coefficient of Pressure vs Distance from Wall along 0.5X/C for Alpha = -5	63
21.	Comparison of Lift Augmentation Obtained with and without the Wake Traversing Mechanism Installed	64
22.	Comparison of Pressure Drag vs Blowing Coefficient with and without Wake Traversing Mechanism Installed	66
23.	Relative Velocity vs Theta for Alpha = -5, $C_{\mu} = 0.0332$	68
24.	Relative Velocity vs Theta for Alpha = -5, C_{μ} = 0.0575	69
25.	Relative Velocity vs Theta for Alpha = -5, $C_{\mu} = 0.0215$	71
26.	Relative Velocity vs Theta for Alpha = -5, C_{μ} = 0.0617	72
27.	Nondimensional Mean Velocity and Turbulence Intensity Profiles vs Theta for Alpha = -5, C_{μ} = 0.0451	74
28.	Coefficient of Pressure vs Theta for Alpha = -5, $C_{\mu} = 0.0451$	75
29.	Near-Wake Stagnation Streamlines Determined from Midslope Method for Various Blowing Coefficients with $\alpha = -5$	76
30.	Representative Velocity Profiles and Turbulence Intensity in Near-Wake for α = -5, C $_{\mu}$ = 0.0451	77
31.	Boundary Layer Profiles over the Trailing Edge as a Function of Angular Position for Alpha = -5, $C_{\mu} = 0.0451$	78
32.	Comparison of Turbulence Intensity vs Distance from Surface as a Function of Angular Position for Alpha = -5, C_{μ} = 0.0451	79
33.	Separation Point in Degrees from Slot vs Blowing Coefficient	81
34.	Separation Point in Degrees from Slot vs	82

35.	Wake Hotwire vs Plenum Pressure for $C_{\mu} = 0.0258$	83
36.	Comparison of Pressure Waveforms for C = 0.0854, ε = 27.4%, f = 9 Hz	85
37.	Comparison of Pressure Waveforms for C = 0.0457, ε = 47.4% and C = 0.0645, ε = 30.2% for f = 9 Hz	86
38.	Comparison of Pressure Waveforms for C = 0.045 with ε = 30%, f = 9 Hz vs f = 0 μ	87
39.	Nondimensional Mean Velocity and Turbulence Intensity Profiles vs Theta for Alpha = -5, C_{μ} = 0.0451 at 0.025 in. from Surface	91
40.	Nondimensional Mean Velocity and Turbulence Intensity Profiles vs Theta for Alpha = -5, C_{μ} = 0.0451 at 0.05 in. from Surface	92
41.	Nondimensional Mean Velocity and Turbulence Intensity Profiles vs Theta for Alpha = -5, C_{μ} = 0.0451 at 0.1 in. from Surface	93
42.	Nondimensional Mean Velocity and Turbulence Intensity Profiles vs Theta for Alpha = -5, C_{μ} = 0.0457 at 0.025 in. from Surface	94
43.	Nondimensional Mean Velocity and Turbulence Intensity Profiles vs Theta for Alpha = -5, C_{μ} = 0.0645 at 0.025 in. from Surface	96
44.	Nondimensional Mean Velocity and Turbulence Intensity Profiles vs Theta for Alpha = -5, C_{μ} = 0.0853, 0.025 to 0.25 in. from Surface	97
45.	Comparison of Hotwire and Plenum Pressure Waveforms for C_{μ} = 0.0645, ϵ = 30.2%, f = 9 Hz	98
46.	Pressure and Velocity Waveforms for Freestream Oscillating at 9 Hz, $\epsilon = 10.9$ %	99
47.	Nondimensional Mean Velocity and Turbulence Intensity Profiles vs Theta for Alpha = -5, C_{μ} = 0.0445 at 0.025 in. from Surface	100

LIST OF SYMBOLS AND ABBREVIATIONS

atm	Atmosphere				
с	Chord length				
сс	Circulation Control				
c _D	Drag coefficient, D/(qS)				
C _L	Lift coefficient, L/(qS)				
с _м	Pitching moment coefficient, M/(qSC)				
CMU	c _µ				
cp	Pressure coefficient, $(p - p_0)/q$				
c _µ	Blowing (momentum) coefficient, $mV_j/(qS)$				
D	Drag				
e	Voltage				
f	Frequency, Hz				
G(ω)	Dynamic gain, p _o /p _i				
k	Specific heat ratio				
L	Lift				
м	Molecular weight				
ħ	Mass flow rate				
P	Pressure (see subscripts)				
PR	Pressure ratio, P _j /P _i				
P	Wind tunnel dynamic pressure, $\frac{1}{2}\rho V_{\infty}^{2}$				
R	Universal gas constant				
s	Airfoil planform surface area				
v	Velocity				
x/c	Nondimensional distance from leading edge				
Y/C	Nondimensional distance from chord line				

11

いのないのののの

LIST OF SYMBOLS AND ABBREVIATIONS (Continued)

Amplification ratio of the variable X,

Angle of attack, degrees (ALPHA)

ε(X)

α

ρ

τ

ω

φ

1

 $\sqrt{\left(\frac{X_{RMS}}{\overline{X}}\right)^2}_{OSCILLATING} - \left(\frac{X_{RMS}}{\overline{X}}\right)^2_{STEADY}$ Density Shear stress Angular frequency, $2\pi f$, sec⁻¹ Phase angle

Subscripts

N	Normal
с	Chord
1	Lower
u	Upper
f	Front
r	Rear
i	Plenum value
į	Jet
g	Geometric
s	Steady
т	Total
0	Static
Superscr	ipts

bar	Mean value	
prime	Perturbation	quantity

ACKNOWLEDGMENT

The author wishes to express his appreciation to Dr. James A. Miller and Dr. Louis V. Schmidt for their guidance and assistance during this investigation. Recognition is also due to Messrs. Ted B. Dunton, Glen Middleton, Don Harvey, Ron Ramaker and Stan Johnson for their technical assistance in the construction of the wake traversing mechanism and repair of the airfoil, to Mr. John Moulton for his assistance in conducting the tests, and to Mr. Robert A. Besel for his assistance throughout the project and in the completion of this paper.

I. INTRODUCTION

A. GENERAL DISCUSSION

Although jet flaps have been thoroughly investigated, it was not until 1959/1960 that Griswold [1] and Davidson [2] suggested that significant lift augmentation could be obtained through trailing edge blowing about bluff-edged airfoils. From their initial concepts, a distinct class known as Circulation Control Airfoils (CCA) has evolved, and is currently under extensive evaluation for possible application to V/STOL aircraft and helicopters.

Analytically, the flow field is perhaps the most complex studied, for neither slender body theory nor the Kutta condition apply. In fact it is the absence of the Kutta requirement which allows controlling the point of separation. This is effected by injection of a tangential turbulent jet of sufficient energy that it entrains flow from the upper portion of the boundary layer through the Coanda effect. The flow remains attached to the curved surface for distances, depending on the rate of injection, of the order of the trailing edge radius, substantially reducing the size of the wake. In addition to these analytical difficulties is the fact that helicopters and V/STOL aircraft typically operate in an unsteady flow environment posing additional complexity. Thus CCA aerodynamics embodies several complex topics, perhaps the most elusive of which is prediction of separation.

B. PREVIOUS EXPERIMENTAL INVESTIGATIONS

The initial experimental investigations with circulation control by tangential blowing were conducted on circular cylinders by Dunham [3] in 1967, whose work substantiated the high-lift concept. Unfortunately, the airfoil geometry employed was complicated by multiple slots and lacked the potential for high speed operation. Nevertheless, Cheeseman and Seed [4,5] and others suggested through design feasibility studies that the concept had promise. In 1967 Kind [6] completed the first experimental evaluation of an elliptical CC airfoil demonstrating control of lift through blowing.

Williams and Howe [7], Englar [8,9], and Harness [10] all demonstrated that camber adds to the CC capability of an ellipse. Included in this work was an evaluation of the effects of trailing edge shape, slot height, thickness to chord ratio and Reynolds number.

Investigations conducted by Oyler and Palmer [11] and Williams et al [12] with pulsed blowing over a blown flap and by Walters et al [13] with pulsed blowing on a cambered CC ellipse indicated additional lift augmentation could be obtained. For equal values of time averaged blowing coefficient the pulsed blowing produced higher trailing edge suction peaks and lift augmentation because of the instantaneous higher values of injection pressure and jet velocity which in turn produced greater flow entrainment and jet turning. This produced required lift coefficients at reduced

injection mass flow. Williams [12] indicated a mass flow reduction of as much as 50%. Both Oyler and Williams found optimum pulsing frequencies. Englar [14] in 1975 reported on pulsed blowing tests for a STOL wing section modified with a bluff rounded trailing edge. The pulsing valve produced a sinusoidal pressure variation of amplitude not greater than 15% of the mean for blowing coefficients, C_{μ} , of less than 0.14. He found the pulsing had little effect on lift augmentation, but assumed that the small trailing edge radius and the fact that the pulsing valve could not provide higher pressure variations were the major reasons for this result.

In 1974 Kaman Aerospace Corporation [15] and Lockheed Aircraft Corporation [16] completed detailed design feasibility studies of a helicopter with a Circulation Control Rotor (CCR). Subsequently a working model CCR was constructed and evaluated by Reader and Wilkerson [17] at the Naval Ship Research and Development Center. Included in the model was a throttling mechanism to enable rotor blade cyclic and collective control through modulated blowing from leading and trailing edge slots. Using sinusoidal pressure waves with amplitude ratios of the order of one, and various combinations of leading and trailing edge blowing, high lift-to-drag surface pressure distributions were obtained.

C. PREVIOUS ANALYTICAL INVESTIGATIONS

Analytically, CCA's have been modeled by Kind [18], Levinsky and Yeh [19] and Gibbs and Ness [20]. The accuracy of those analyses has depended primarily on how effectively the Coanda jet was modeled and separation determined. As noted by Kind [18], and Levinsky and Yeh [19], separation of a CCA occurs when the pressure coefficient on the trailing edge reaches a positive near-constant value just beyond the suction peak. Kind formulated his steady state solution using an empirical model based on the surface pressure distribution. But knowledge of the pressure distribution implies knowledge of the potential flow solution. Therefore, Gibbs and Ness, and Levinsky and Yeh formulated their steady state solutions using zero shear stress at the wall as the separation criteria. However, subsequently Englar [21] and Cebeci and Smith [22] found that the shear stress may only reach a minimum at separation and then increase again, never passing through zero. The range of validity of the zero wall stress criteria needs to be established and there is obviously a requirement to determine how to use minimum wall stress as a more general separation criterion.

In modeling the turbulent Coanda jet as a boundary layer in curvilinear coordinates, Gibbs and Ness [20] neglected body forces, and the streamwise derivatives $\frac{-R}{R+y} \frac{\partial^{\tau} xx}{\partial x}$ and $\frac{R}{R+y} \frac{\partial}{\partial x} (\overline{\rho} \ u'^2)$ from the x-momentum equation.

Assuming the height of the boundary layer was small compared with the reference length (distance from slot), they reduced the y-momentum equation to three terms:

$$-\overline{\rho} \frac{\mathbf{u'}^2}{\mathbf{R} + \mathbf{y}} + \frac{\partial \overline{p}}{\partial \mathbf{y}} + \frac{\partial}{\partial \mathbf{y}} (\overline{\rho} \mathbf{v'}^2) = 0$$

However, in regions of separation, the "boundary layer" thickness grows significantly and the fact that this modeling still yields a reasonable flow description seems to be a fortunate coincidence. There exists little experimental data to justify the assumptions. Sandborn and Liu [23] conducted one of the few contemporary experiments on turbulent separation in 1968. Even though the term $\frac{\partial}{\partial x}(\overline{u'^2})$ grows substantially near separation they observed that the convective term $\frac{\partial}{\partial y}(\overline{u'v'})$ eventually outgrows all other terms and dominates at separation. How small, constant radii of curvature affect the results was not clearly established.

D. OSCILLATORY FLOW RESEARCH

In general, problems of nonsteady flow have received far less attention than those of steady flow; in particular, there exists no unsteady blowing data of sufficient detail to permit formulation of a separation criteria. Nevertheless some perspective may be gained by examining recent studies on oscillatory boundary layers. Despard and Miller [24] measured the instantaneous velocity profiles in oscillatory laminar boundary layers subject to adverse pressure gradients,

and proposed that oscillatory separation occurred at the farthest upstream point at which there was "zero velocity" or reverse flow at some point in the velocity profile throughout the entire cycle of oscillation. They and Tsahalis and Telionis [25] agreed that the point of separation moves upstream from the steady state position, but the results of Tsahalis and Telionis seem to indicate that, at least for part of the cycle, the point of vanishing shear is downstream of the "separation" singularity.

Thus it appears that to accurately predict CCA aerodynamic properties and in particular, to permit modeling with oscillatory blowing, additional research concerning separation in a nonsteady turbulent Coanda jet is required.

E. PROBLEM STATEMENT

The primary purpose of the present investigation was to assess the feasibility of employing a CC airfoil with a modulated blowing coefficient of the form:

 $C_{u}(t) = \overline{C}_{u}(1 + \varepsilon \sin \omega t)$

for values of ε of the order of unity.

A further objective was to correlate the location of separation with flow parameter variation so that reasonable engineering predictions of turbulent separation in steady and oscillatory Coanda jets might be made.

II. OUTLINE OF THE INVESTIGATION

A. APPROACH

The method of attack consisted of direct measurement of sectional aerodynamic characteristics by integration of surface pressure data from a typical example of a CC airfoil with steady blowing, and comparison with those obtained with modulated blowing. From an evaluation of near-wake velocity profiles, and correlation with surface pressure data, an engineering criterion for Coanda sheet separation point location was to be formulated.

B. INVESTIGATION PARAMETERS

The CC airfoil section chosen for investigation had a 21.4 percent thick modified elliptic profile with a 10.206 inch chord, a 0.0479 trailing edge radius to chord ratio, and 3 percent camber. The injection slot was 0.016 inches high and was located at 0.9551 X/C on the upper surface. Spanning the entire cross section of the Department of Aeronautics 2-by-2 foot oscillating flow wind tunnel, the model may be treated approximately as a two-dimensional airfoil.

To avoid compressibility effects and to remain outside the jet flap regime, the investigation was conducted at a tunnel q of approximately 10 psf with blowing coefficients, C_{μ} , of less than 0.1. The modulated blowing coefficient amplitude ratio ε , were to be varied from 0 to 0.7. Angle

of attack was to be varied to include values appropriate to the application of CC airfoils as helicopter rotor blades; i.e., from -5 to +8 degrees.

C. EXPERIMENTAL PROGRAM

The detailed investigation was to include:

- Preliminary surface pressure measurements to calibrate the data acquisition system, and to determine the zero-lift angle of attack.
- Pressure data acquisition system calibrations to determine the dynamic transfer function between the surface pressure taps on the airfoil and the signal produced by the pressure transducer.
- A pressure and velocity survey of the wind tunnel test section in a steady and oscillating freestream without the model installed.
- Determination of aerodynamic coefficients and nearwake velocity surveys with steady injection, steady freestream.
- Determination of aerodynamic coefficients and near-wake velocity surveys with oscillatory blowing, steady freestream.
- Determination of aerodynamic coefficients and near-wake velocity surveys with steady blowing, oscillatory freestream.

III. EXPERIMENTAL APPARATUS AND PROCEDURES

A. WIND TUNNEL

1. General Description

The experimental work was conducted in the low-speed, oscillating flow wind tunnel located in the Aeronautics Laboratories of the Naval Postgraduate School. Shown in Fig. 1, the open circuit wind tunnel has a 24-inch square by 223-inch long test section, an eight-foot square inlet and a 16:1 contraction ratio. Three high solidity screens located ir the inlet section just upstream of the entrance nozzle help maintain freestream turbulence intensities to less than 1.0 percent for the velocities encountered in the present work.

The wind-tunnel drive consists of two Joy Axivane Fans in series, each of which has an internal, 100 horsepower, direct connected, 1750 rpm motor. The fan blades are internally adjustable through a pitch range of 25 to 55 degrees, providing a wide operating base. Two sets of variable inlet vanes, located immediately upstream of each fan, are externally operated to provide control of test section velocity. These vanes are of multileaf design, and preswirl the air in the direction of fan rotation to reduce fan capacity. The range of tunnel velocity is from 10 to 250 feet per second.

OSCILLATING FLOW WIND TUNNEL AND INSTRUMENTATION

2. Rotating Shutter Valve

The most successful method of obtaining an oscillating flow with large ranges of frequency and amplitude is that first employed by Karlsson [26], later by Miller [27] in his investigation of transition, and subsequently by Despard [28]. A rotating shutter valve, immediately downstream of the test section, is used to superimpose a periodic variation of velocity on the mean flow. The present shutter valve consists of four horizontal steel shafts equally spaced across the test section. The shafts are slotted to accommodate flat blades of various widths, forming a set of four butterfly valves spanning the test section. Figure 2 is a schematic of the shutter valve. Each blade drives its immediate neighbor by means of a timing belt and pulley arrangement. The bottom shaft is driven by a five-horsepower variable-speed electric motor through a timing belt and pulley. An intermediate shaft between the motor and shutter valve permits a variety of pulley arrangements and a frequency range of from two to 240 Hz. The amplitude of oscillation is controlled by blade width. Test section closure may be varied from 25 to 100 percent. The resulting amplitude of oscillation of test section velocity is a function of frequency, mean velocity and pressure gradient. In this investigation, blades producing 50.0, 66.7 and 82.5 percent closure were used, resulting in an amplitude range of from 3 to 40 percent of the local mean freestream velocity.

-

FIGURE 2. ROTATING SHUTTER VALVE

3. Test Section

Continuous pieces of two-inch thick aluminum, 24 inches wide and 223 inches long, form the upper and lower test section walls. Each of the side walls consists of three two-inch thick panels, two of stress-relieved Lucite and the center of plywood to facilitate the mounting of model and instrumentation. The Lucite panels on the console side of the test section are hinged and may be raised hydraulically, providing access to the test section. The heavy construction of the test section is dictated by the desire to reduce deflections induced by rapid changes in static pressure. As reported by Despard [28], freestream velocity profile variation is less than one percent from the mean to within three inches of any wall.

4. Tunnel Calibrations

In order to calibrate the flow in the tunnel, a series of tests were conducted without the model installed. A hotwire, a total pressure probe, and a static pressure probe were installed in the test section at approximately the mid-chord location. The shutters were operated from 0 to 50 Hz using both the 3 and 4 inch blades, and RMS, DC and phase angle data were recorded from each of the sensors. The full details of these measurements are presented by Lancaster [34]. Figure 3 illustrates typical results obtained with the 3-inch blades. Of note is the pressure perturbation peak at approximately 21 Hz. At this frequency the velocity and pressure waveforms are very

FIGURE 3. OSCILLATING FLOW WIND TUNNEL FREQUENCY RESPONSE CALIBRATION

nearly sinusoidal. The peak is attributed to acoustic resonance from the mouth of the tunnel. This resonant frequency also appeared in a steady flow frequency spectrum analysis of the wall static pressure conducted with a Spectral Dynamics Real Time Analyzer with the airfoil installed. Blower fan noise at 480 Hz was also detectable, as were intermediate frequencies of 90 and 120 Hz whose source could not be identified. Through appropriate filtering, the tunnel noise was removed from the data signals.

B. THE AIRFOIL

The airfoil model was a prototype section obtained from the Lockheed Phase I Study on Circulation Control Rotor (CCR) Design Feasibility [16] and modified in the Department of Aeronautics model shop to correct defects in the injection slot structure. Designed from an ellipse with a 10.215 inch chord, it had a shortened trailing edge of 0.48 inch radius with an adjustable slot located at X/C = .9951 on the upper surface. The reduced chord was 10.206 inches, the camber 3 percent, and the thickness ratio 0.214. Although slot width was adjustable by means of jack screws located every two inches along the span, tests were only conducted at a constant slot height of 0.016 inches. Figure 4 is a cross-sectional view depicting the location of the slot and the 54 midspan pressure taps. There were 5 additional taps on the upper surface, 3 at

midchord 6, 9 and 10.5 inches from midspan, and 2 at the three-quarter chord 6 and 9 inches from midspan. Surface pressure tap locations are listed in Appendix A. In addition to the surface taps a pressure tap was located in the plenum.

The airfoil spanned the 24-inch width of the tunnel test section and protruded through the walls approximately four inches on either side. The portions of the slot not in the tunnel were permanently sealed. The model was fitted through and held in position by aluminum disks with elliptical openings centered on their axes of rotation. Through slip rings the airfoil and disks could be rotated as a unit to set the angle of attack. The no-blowing zero-lift value was found to be approximately -5 degrees. The airfoil section ends were capped by flat plates through which passed a 1.5-inch diameter supply line for slot injection air.

C. SLOT INJECTION AIR SYSTEM

1. Air Compressor

A Carrier, 3-stage, 300-Hp centrifugal compressor was used to supply the slot injection air. It had a 6.057inch flow metering nozzle installed in its 12-inch diameter inlet pipe. The 8-inch outlet pipe entered a distribution manifold from which extended a bypass line to control surge and a 3-inch supply line to the test area. At the test site the supply line was reduced to a 1.5-inch diameter for compatibility with the mass-flow control system and airfoil.

2. Mass Flow Control

As illustrated in Fig. 5 the mass flow control system consisted of a mean flow control globe valve immediately downstream of a Fischer and Porter Rotameter (a variable area flow meter), an oscillation control valve developed by Bauman [29] approximately two additional feet downstream with a hotwire immersed in the center of the 1.5-inch steel pipe three feet beyond it, and bypasses for the Rotameter and the oscillation control valve.

The oscillatory control valve consisted of an elliptical Lucite cam which rotated inside a two-inch steel pipe to provide a cross-section area which varied as a sine function of twice its angular position. The maximum cross-section area of the valve was approximately equal to the total exit area of the airfoil slot.

A globe value installed in the rotating value bypass line provided control of the ratio of steady flow component to oscillating component of C_{μ} . C_{μ} , therefore, could be made a function of the form $C_{\mu} = A(1 + B \sin \omega t)$ where A and B were adjusted by means of the oscillatory bypass and mean flow control globe values. The frequency ω was set by driving the rotating value with the variable speed motor employed to rotate the shutter value. Provision for mechanically introducing phase angles was designed into this drive.

3. Mass Flow Measurements

The steady blowing mass flow rate was measured using the calibrated rotameter. Nonsteady injection mass flow rates were measured by a supply line hotwire anemometer calibrated against the rotameter in steady flow. The anemometer was used to set the mean injection rate and the injection oscillation amplitude. When setting the mean injection rate, the mean plenum pressure was used as a cross-reference. The hotwire signal was observed on an oscilloscope in order to monitor mass flow waveform.

D. WAKE TRAVERSING MECHANISM

A wake traversing mechanism shown in Fig. 6 was designed to provide a two-dimensional hotwire mapping of the wake at the quarter span. To enable examining the flow at a constant distance from the trailing edge, the track on which the mechanism rides was designed to pivot about the origin of the airfoil's trailing edge radius.

The angular drive mechanism was mounted in a common housing with the radial drive to reduce flow interference. The housing was 1.5 inches high, 6 inches across, and spanned 48 degrees. The angular drive permitted coverage of 72 degrees. Through a screw and track aligned on a radial line, the probe could be positioned radially from 0 to 2.0 inches from the wall. Probe location was reported electronically with resolution of 0.001 inches and 0.1 degrees.

The entire mechanism was mounted on an aluminum base plate which in turn was bolted to the angle of attack disk on the far wall from the console. This permitted moving the mechanism with the airfoil when the angle of attack was changed. The tunnel far wall was selected to permit convenient visual observation of the mechanism by the operator and to enable determination of its flow interference effects (via the half and three-quarter chord pressure taps spanning that half of the airfoil). The uncertainty in the aerodynamic characteristics introduced by the traversing mechanism is C, dependent but in no case exceeded six percent. The traversing mechanism was positioned on the airfoil mounting disk to place the separation region for $C_{11} = 0.04$ in the center of its field of view. This permitted evaluation of the entire range of C_{μ} without having to relocate the mechanism.

The hotwire probes were 5.5 inches long with a 0.125 inch diameter that was flared to 0.25 inches for the last 1.5 inches to facilitate mounting in the probe holder. The steel tips were 0.3 inches long, spaced 0.15 inches apart and spanned by 0.00015 inch diameter tungsten filaments. The filaments were copper plated at both ends to facilitate mounting and had effective sensing lengths of 0.085 inches. The hotwire signals were processed by a Security Associates Model 100 single channel, linearized constant temperature anemometer and then displayed on a digital voltmeter, an RMS meter, and an oscilloscope for data acquisition, Fig. 7.

The anemometer output was calibrated to indicate 1 volt DC with the probe at -55 degrees, 2 inches out, a point assumed to be in the freestream. The mechanism was then rotated through the 72 degrees in increments which were adjusted to ensure coverage of the profile variations encountered. During the preliminary tests 15 data points for each radial distance were recorded. Subsequently, this was increased to 26 to improve profile definition. At each point, the angle from the chordline, the digital voltmeter DC value, and the true RMS voltage were recorded. The hotwire signal was also displayed on an oscilloscope for visual analysis. The same procedure was used for the steady and unsteady tests although the preliminary steady tests did not include RMS data acquisition.

E. PRESSURE DATA ACQUISITION SYSTEM

The airfoil surface pressure acquisition system illustrated in Fig. 8 employed two remote transducers connected via scanivalves to a number of surface points by means of an extended length of tubing. This technique reduces the possibility that the dynamics of the test setup may influence transducer response and is more cost effective, but there exists an additional complexity posed by the transfer function associated with the tubing.

A phase lag and amplitude decrease results as a signal of the form:

 $P_i(t) = \overline{P}_i + P_i \sin \omega t$

FIGURE 8

SCHEMATIC OF THE SURFACE PRESSURE ACQUISITION SYSTEM

is transmitted from the airfoil surface through the 25.5 inches of 0.033-inch I.D. steel tubing and then via either 2- or 3-inch plastic tubing (coupling length depends on scanivalve) to the scanivalve, Fig. 9. The signal sensed by the pressure transducer in the scanivalve was of the form:

 $P_{o}(t) = \overline{P}_{i} + p_{o} \sin(\omega t + \phi)$

where

and the frequency dependent dynamic gains is:

$$|G(\omega)| = p_0/p_i$$
.

To determine the dynamic gain and phase shift as functions of frequency, each scanivalve lead was connected via the same length tubing to a resonator and the output compared to that of a reference transducer as illustrated in Fig. 10. The acoustic drive of the resonator was located in the center of the cavity and from the two pressure taps provided comparative signals with an estimated accuracy of one degree in phase angle. The dynamic response curves for scanivalves

FIGURE 9

SCANIVALVE ATTACHMENT

1 and 2 are depicted in Fig. 11 and the associated static response curves are illustrated in Fig. 12.

This pressure sensing technique was first demonstrated and theoretically analyzed by Bergh [30,31]. Details of its application have been presented by Johnson [32] and Banning [33]. Briefly, with the transfer function of the pressure line determined, phases and amplitudes measured at the distal end were corrected by a numerical application of the inverse of the measured transfer function to yield the pressure history at the surface tap. The DC data were automatically logged by a Digitec printer during the steady flow tests. During the unsteady tests, the counter-timer was manually sequenced to permit recording the true RMS value of the pressure signal at approximately the same time the mean value was printed. The comparative steady-flow data were obtained in the same manner. For both the steady and unsteady tests, the DC signal was processed through a lowpass filter with a two second time constant.

A plenum pressure probe with its own transducer was incorporated as a cross reference to the injection pipe hotwire signal and to provide the clock for surface presure data correlation. The pressure waveform of the scanivalve channel being scanned could be displayed on a dual-beam oscilloscope with a channel of the alternate Scanivalve or the plenum. These signals could also be compared on the phasemeter although only order of magnitude data was obtainable. The pressure data acquisition system was

estimated to be accurate to within 1 percent of mean pressure. In addition to surface pressures each scanivalve received P_0 , P_T and P_{atm} for calibration purposes. A plenum pressure line was also connected to a water manometer to provide the mean value of the steady and oscillating plenum pressure. Tunnel q was monitored by a micromanometer and pitot-static tube installed in the test section. Figure 13 is a photograph of the pressure data acquisition system console.

IV. CALCULATION OF BLOWING AND AERODYNAMIC COEFFICIENTS

A. STEADY FLOW

The steady blowing coefficient C, may be defined as:

$$c_{\mu} = \frac{m v_j}{qs}$$

where \dot{m} is the mass flow rate, V_j is the velocity of the Coanda jet at the slow, q is the test section dynamic pressure, and S the model planform area. Mass flow rate was obtained directly from rotameter readings. The jet velocity was obtained from the isentropic relationship

$$V_{j} = \left\{\frac{2R}{M} T_{i} \left(\frac{k}{k-1}\right) \left[1 - \left(\frac{p_{\infty}}{p_{i}}\right)^{\frac{k-1}{k}}\right]\right\}^{1/2}$$

where i denotes a plenum value, and tunnel q was calculated from the freestream pitot-static measurements. Conventional aerodynamic coefficients defined by surface integrals were approximated by numerical integrations since data were available only at a finite number of pressure tap locations. The steady normal force, chord force, and pitching moment coefficients are:

$$C_{N} = \int_{0}^{1.0} (C_{P_{l}} - C_{P_{u}}) d(x/C)$$

$$C_{c} = \int_{Y/C(min)}^{Y/C(max)} (C_{p_{f}} - C_{p_{r}}) d(Y/C)$$

$$C_{M(TE)} = \int_{Y/C(min)}^{Y/C(max)} (C_{p_f} - C_{p_r})(Y/C) d(Y/C)$$

+
$$\int_{0}^{1.0} (c_{p_{\ell}} - c_{p_{u}}) (x/c) d(x/c)$$

Including the effects of angle of attack and a moment transfer to the half and quarter-chord positions, these force coefficients may be written as the usual aerodynamic coefficients:

 $C_{L} = C_{N} \cos \alpha - C_{C} \sin \alpha$ $C_{D} = C_{N} \sin \alpha + C_{C} \cos \alpha$

 $C_{M(C/4)} = C_{M(TE)} - 0.75 C_{N}$

 $C_{M(C/2)} = C_{M(TE)} - 0.5 C_{N}$

The conversion from pressure data to coefficient of pressure data, and the subsequent calculation of the aerodynamic coefficients were performed on a Hewlett-Packard Model 9830 calculator. The computer program may be found in Ref. [36].

B. OSCILLATING FLOW

For the unsteady blowing test, an oscillation was imposed on the mass flow in the air injection supply line such that the pipe hotwire indicated a velocity fluctuation of the form:

 $V_{\text{pipe}} = \overline{V}(1 + \varepsilon \sin \omega t)$

where ε was varied from 0 to 0.4. For incompressible self-similar flow, this implies that

$$\dot{m} = \dot{m}(1 + \varepsilon \sin \omega t)$$

Therefore, assuming that the velocity amplitude ratio in the pipe was the same as that occurring at the slot,

$$C_{\mu}(t) = \frac{\dot{m} V_{j}}{qS} (1 + \varepsilon \sin \omega t)^{2}$$

or

$$C_{\mu}(t) = \overline{C_{\mu}} [1 + 2\varepsilon \sin \omega t + \frac{\varepsilon^2}{2} (1 + \cos 2\omega t)]$$

with the maximum velocity amplitude ratio $\varepsilon = 0.4$, $\varepsilon^2 = 0.16$ and as a first approximation, ε^2 was neglected. Then to first order $C_{\mu}(t) = \overline{C_{\mu}}$ (1 + 2 ε sin ωt). The implications of neglecting the second order term and assuming no transfer function from the pipe to the slot are discussed in Section V. With \dot{m} proportional to the pipe velocity, and thus the hotwire signal, the mass flow amplitude ratio was defined as

$$\varepsilon = \sqrt{\left[\frac{e_{\rm RMS}}{\overline{e}}\right]^2_{\rm oscillating}} - \left[\frac{e_{\rm RMS}}{\overline{e}}\right]^2_{\rm steady}$$

where $\left[\frac{e_{RMS}}{e}\right]$ accounts for the turbulence intensity of the supply line in steady flow.

With the dynamic gain approximately equal to one for frequencies on the order of 10 Hz, numerical integration of the unsteady static pressure distribution can be performed in a manner similar to the steady pressure integration, provided relative phase information is available. Unfortunately the real time acquisition system designed and constructed by Englehardt [35] was not completed in time for the present investigation. With the exception of the no blowing harmonic resonance case examined by Pickelsimer [36], only mean and RMS pressure data could be obtained.

The pressure and lift coefficient amplification ratios, $\varepsilon_{\rm D}$ and $\varepsilon_{\rm L}$, were defined in a similar manner to :

$$\varepsilon_{p} = \sqrt{\left[\frac{P_{RMS}}{\overline{p}}\right]^{2}}_{oscillating} - \left[\frac{P_{RMS}}{\overline{p}}\right]^{2}_{steady}$$

 $\varepsilon_{\rm L} = \sqrt{\left[\frac{C_{\rm LRMS}}{\overline{C}_{\rm L}}\right]^2}_{\rm oscillating} - \left[\frac{C_{\rm LRMS}}{\overline{C}_{\rm L}}\right]^2_{\rm steady}$

where C_{LRMS} was obtained by running the aerodynamic coefficient program with the RMS pressure data.

and

V. RESULTS AND DISCUSSION

A. PRELIMINARY STEADY AND OSCILLATORY BLOWING TESTS

Initial testing produced a dC_L/dC_μ of only one half that reported by others for similar profiles. Examination of the composite model revealed the structure to be delaminating in the area of the injection slot.

Before repairing the airfoil, a temporary fix was performed to permit completion of the mass flow control evaluation reported by Bauman [29]. With oscillating mass flow rate amplitudes of up to 43% of the mean, no noticeable effect could be observed on the forward stagnation point. In fact, it was not possible to observe surface pressure fluctuations beyond the point of separation for $C_{\mu} = 0.03$ or 0.05. These results raised questions as to the nature of the fluid dynamics occurring in the Coanda jet and the near-wake.

While the airfoil internal structure was being repaired and a steel slot lip constructed, the hotwire wake traversing mechanism was designed and constructed to allow investigation of the near-wake flow field. At the same time tunnel and surface pressure acquisition system calibrations were performed. These procedures and results were discussed in Section III.

B. STEADY FLOW, STEADY BLOWING TESTS

1. Airfoil Performance

With the steel slot lip installed, the slot height was set at 0.016 inches based on advice from Wilkerson.* Under maximum pressurization for the range of blowing coefficients investigated, the slot height increased less than 15 percent, and did not show evidence of change during extensive testing.

The steady flow lift augmentation results are illustrated in Fig. 14 and associated aerodynamic characteristics are listed in Table I. For $\alpha_g = -5$, the approximate zerolift geometric angle of attack, $dC_L/dC_{\mu} = 30.5$. This data was compiled without incorporation of wall and effective angle of attack corrections because of the need for comparable data to that obtained in the unsteady tests where such corrections are not possible. Although the augmentation appears well below the value of 70 obtained by Englar [21], it is felt that results to follow are indicative of what could be obtained on a production airfoil.

Of note is the linear relationship existing between the ratio of plenum-to-jet pressure, $PR = p_j/p_i$ and the blowing coefficient, C_{μ} as shown in Fig. 15. Treating the jet pressure at the slot as the value obtained at tap 22

*Personal communication

•

RUN	с _т	с _р	^C M(C/4)	^С м(с/2)					
$\alpha = -5^{\circ}$									
32501	0.0080	0.0483	-0.1173	-0.1163					
32502	0.7252	0.0423	-0.3354	-0.1558					
32503	1.0360	0.0461	-0.4211	-0.1641					
32504	1.5109	0.0790	-0.5588	-0.1842					
32505	2.0111	0.1126	-0.7129	-0.2145					
$\alpha = 0^{\circ}$									
32506	0.4311	0.0557	-0.1101	-0.0023					
32507	1,1979	0.0482	-0.3210	-0.0216					
32508	1.5746	0.0596	-0.4211	-0.0334					
32509	2.0272	0.0833	-0.5558	-0.0490					
32510	2.5412	0.1197	-0.6962	-0.0609					
		$\alpha = 4$	•						
33101	0.9619	0.0525	-0.1299	0.1109					
33102	1.8540	0.0704	-0.3763	0.0873					
33103	2.1499	0.0742	-0.4611	0.0764					
33104	2.5190	0.1113	-0.5587	0.0715					
33105	2.9507	0.1195	-0.6950	0.0789					
$\alpha = 8^{\circ}$									
33106	1.3341	0.0515	-0.1259	0.2061					
33107	1.8004	0.0930	-0.2594	0.1896					
33108	1.9301	0.1095	-0.2803	0.2013					
33109	2.3029	0.1726	-0.4061	0.1700					
33110	2.7566	0.1395	-0.4744	0.2129					

TABLE I

STEADY FLOW, STEADY BLOWING AERODYNAMIC CHARACTERISTICS

(0.15 inches upstream of the slot), $d(PR)/dC_{\mu}$ varied from -1.15 to -1.25 depending on angle of attack.

Figures 16 and 17 illustrate the upper surface pressure variation with spanwise distance from the wall at mid-chord and three-quarter chord respectively. From these plots and through tests with tufts and a wand, it was concluded that the wall interference propagated not more than three inches from the wall at the trailing edge.

2. Trailing Edge Flow Environment

Trailing edge pressure distributions for the C_{μ} tested at $\alpha_g = -5^{\circ}$ are illustrated in Fig. 18. As noted in Section I, the Coanda sheet separates when the pressure coefficient reaches a positive near-constant value just beyond the suction peak. Thus for the blowing cases, separation in terms of the angular coordinate measured from the slot lip ranges from 70 to 100 degrees for C_{μ} between 0.02 and 0.07.

Kind [18] and Gibbs [20] assert that the near constant value defines a separation bubble which extends over 100 degrees beyond the Coanda jet separation point for low blowing rates. The lower limit of the bubble defines the lower surface boundary layer separation point, (for typical rotor Reynolds numbers, the boundary layer is turbulent). In plotting the pressure distribution versus Y/C, this region becomes more evident, Fig. 19. A review of C_p data for C_μ from 0.0089 to 0.0854 indicated that the lower boundary layer

COEFFICIENT OF PRESSURE VS THETH FOR ALPHA = -S

separation point occurred between 170 and 190 degrees from the slot. No information existed concerning correlation of bubble depth to C_{μ} .

3. Wake Traversing Mechanism Effects on Airfoil Performance

With the wake traversing mechanism installed, flow blockage was observable at 1.5 inches and to a lesser extent at 3 inches from the wall. At the quarter-span, the pressure coefficients varied as a function of C_{μ} and seemed to have the greatest deviation from the unobstructed flow results in the range of C_{μ} less than 0.03. Figure 20 is a comparison of typical pressure data obtained with and without the mechanism installed. Additional spanwise pressure data are contained in Appendix B. Note that at values of C_{μ} greater than 0.035, the ratio $C_{p}(b/4)$ to $C_{p}(b/2)$ decreases less than 4 percent from the half to three-quarter chord with the mechanism installed. Therefore, at least for C_{μ} greater than 0.035, it is assumed that the flow reaching the hotwire was two-dimensional and indicative of that measured at midspan.

This conclusion is consistent with the lift augmentation results compared in Fig. 21. For C_{μ} between 0.01 and 0.025 the $C_{\rm L}$ loss reached 30 percent, but for C_{μ} greater than 0.035 the loss was less than 5 percent. For C_{μ} greater than 0.055 the influence of the mechanism was not detectable.

The aerodynamic characteristics obtained with the mechanism installed are listed in Table II. As shown in Fig. 22, the influence of the mechanism on pressure drag was small.

TABLE II

STEADY FLOW, STEADY BLOWING AERODYNAMIC CHARACTERISTICS WITH THE WAKE TRAVERSING MECHANISM INSTALLED

RUN	сŗ	СЪ	^C M(C/4)	^C M(C/2)	
50201	1.0881	0.5900	0.0621		
51003.1	1.1836	0.0733	0.4795	-0.1863	
51003.2	-0.0521	-0.0160	0.0238	0.0112	
51002	1.2088	0.0130	-0.4884	-0.1889	
51011	0.1555	0.0214	-0.1713		
51012	0.2517	0.0404	-0.1991		
51013	0.4402	0.0392	-0.2314		
5130.1	0.0067	0.0148	0.0020	0.0033	
51301	1.2560	0.0725	-0.4815	-0.1702	
51701	1.4971	0.0511	-0.5418		
52001	2.7322	0.1077	-0.8917	-0.2136	
52002	2.6563	0.1208	-0.8854	-0.2265	
52002.1	0.0765	0.0315	-0.0308	-0.0124	
52601	1.3785	0.0598	-0.5282	-0.1862	
52604	1.8370	0.0991	-0.6594	-0.2040	
52603	1.3103	0.0849	-0.4942	-0.1697	
52602	1.3531	0.0604	-0.5317	-0.1960	
52605.1	0.0536	0.0328	-0.0295	-0.0169	
52604.1	0.0090	0.0094	-0.0037	-0.0017	
52603.1	0.0650	0.0392	-0.0403	-0.0250	
52602.1	0.0575	0.0164	-0.0175	-0.0036	
52605	1.9903	0.0651	-0.6801	-0.1858	
52601.1	0.0107	0.045	-0.0039	-0.0013	

65

16.4

4. Wake Survey

The initial purpose of the wake traversing mechanism was to provide a means to map near-wake velocity distributions and to permit observation of the flow phenomena occurring just beyond the separation bubble. The mechanism was also to provide diagnostic information that could be correlated during oscillatory blowing with surface static pressure results to assist in identifying the contributing mechanics to the unsteady aerodynamic transfer functions.

After conducting preliminary tests, it became evident that the hotwire traversing mechanism could provide information sufficient to define the location of separation of the Coanda jet. The objective of these tests was accordingly expanded to include ocrrelation of the location of separation with flow parameter variation.

Determination of the initial location of the wake traversing mechanism required reference to the trailing edge pressure data. With separation occurring roughly between 70 and 100 degrees from the slot for C_{μ} between 0.02 and 0.07, the mechanism was located to span 48 to 120 degrees.

Figures 23 and 24 are examples of the mean velocity data obtained for a range of hotwire distances from the surface of 0.025 to 0.75 inches. Except for evidence of the velocity maximum for 0.025 inches in Fig. 24 (the higher C_{μ} case), the first 25 degrees offered little useful information.

RELATIVE VELOCITY

RELATIVE VELOCITY

Moreover, only a partial picture of the velocity minimum side of the wake was obtained. In order to permit mapping of the entire wake including the shear layer, the mechanism was relocated to span 79.4 to 151.4 degrees (15 degrees above the chord line to 55 degrees below it).

Figures 25 and 26 illustrate the behavior of the mean velocity in the vicinity of the near-wake. In comparing the 0.75 and 1.5-inch (surface distance) velocity profiles for $C_{\mu} = 0.0215$, it appeared that the velocity might be approaching a constant value for theta greater than 125 degrees. When the probe was traversed at 151.4 degrees out to 2 inches, the velocity increased less than 4 percent passing 1.75 inches and was steady from there out to 2 inches. A similar behavior was observed at higher C_{μ} 's.

For the remainder of the surveys, the velocity data was normalized adopting the value at 151.4 degrees, 2 inches out as the freestream reference value.

From the mean velocity data there did not appear to be sufficient information to determine the location of the rear stagnation streamline. The expected maximumminimum velocity profiles across the wake were obtained, but it was not clear whether the streamline intersected the points of minimum velocity or the midslopes between the maximums and minimums. The maximum velocity points were excluded for they yielded at 0.025 inches from the wall, streamline positions further above the chord line than theta (separation) determined from corresponding C_p data.

齇

.

and the

RELATIVE VELOCITY

As illustrated in Fig. 27, there was a wide region close to the surface where the flow velocities were low and nearly constant. The point of minimum velocity was defined as the point of maximum change in the shear stress in this region.

When turbulence intensity data were compared to corresponding C_p data as in Fig. 28, the point of peak turbulence at 0.025 inches from the wall was within 2 degrees of the point of separation, and corresponded to the midslope point, Fig. 27. The minimum velocity points were 5 to 10 degrees beyond the midslope points and thus are not indicative of the point of separation.

Figure 29 depicts the stagnation streamlines based on the "midslope" criteria for representative values of C_{μ} . As C_{μ} increased the streamlines appeared to become unsteady, and the detachment angle increased.

Figure 30 is a composite picture of the near-wake constructed from data illustrated in Fig. 27. Figure 31 shows velocity profiles in the boundary layers of the trailing edge for various angular position from the chord line. As discussed by Collins and Simpson [37], it is not possible to tell the local flow direction from the mean felocity data. The inflection point apparent at 2.5 degrees may well indicate a flow reversal. The turbulence intensity data for the case presented in Fig. 32 suggest separation occurred between 5 and 7.5 degrees above the chord plane but the precise point of separation is not indicated.

NONDIMENSIONAL MEAN VELOCITY AND TURBULENCE INTENSITY PROFILES VS THETA FOR ALPHA-S CHU- 8.8451/ 8.825 TO 1.75 IN. FROM SURFACE

NEAR-WAKE STAGNATION STREAMLINES DETERMINED FROM MID-SLOPE METHOD FOR VARIOUS BLOWING COEFFICIENTS WITH $\alpha = -5^{\circ}$

FIGURE 30

REPRESENTATIVE VELOCITY PROFILES AND TURBULENCE INTENSITY IN NEAR-WAKE FOR α =-5, C_µ =0.0451

FIGURE 31

BOUNDARY LAYER PROFILES OVER THE TRAILING EDGE AS A FUNCTION OF ANGULAR POSITION FOR ALPHA = -5 C_µ = 0.0451

後華

Figure 33 depicts the location of separation based on the point of peak turbulence intensity at 0.025 inches from the surface, as a function of C_{μ} . The corresponding relationship of separation point location compared with lift coefficient is plotted in Fig. 34. The flow anomaly apparent on both graphs was accompanied by a sinusoidal waveform superimposed on the turbulent signal as indicated in Fig. 35. No fluctuation was observable in the plenum.

Englar [9] indicated that shed vorticity occurs at the wall-airfoil boundary layer interface over the aft portion of the airfoil in two-dimensional CC testing. This three-dimensional effect appreciably influences the flow close to the wall. As noted in Section V.B.3, the wake traversing mechanism caused reduced lift augmentation and influenced the spanwise pressure distribution up to 6 inches from the wall at lower blowing rates (below 0.035). Thus the wake traversing mechanism appeared to increase vortex shedding. However, examination of the spanwise pressure coefficient data vs. C_{μ} provided no insight as to the specific cause of the sinusoidal waveform or the flow anomaly.

With the occurrence of the flow anomaly, there was not sufficient information to formulate a mathematical correlation between the separation point and the lift and blowing coefficients.

FIGURE 35

Wake Hotwire vs Plenum Pressure for $C_{\mu} = 0.0258$ (10 msec/cm; Top: Hotwire 76° from slot, 0.025" from wall, 1 v/cm; Bottom: Plenum Pressure, 0.1 v/cm)

C. TESTS WITH OSCILLATING INJECTION

The objective of this portion of the investigation was to assess the feasibility of employing a CC airfoil with a modulated blowing coefficient of the form:

 $C_{\mu}(t) = \overline{C}_{\mu}(1 + \varepsilon \sin \omega t)$

for ε of the order of unity.

The range of frequencies applicable to helicopter aerodynamics when scaled to the model is roughly from 3 to 10 Hz. Below about 5 Hz data acquisition by analog readout becomes a problem because of instrument limitations. Moreover, the quality of the mass flow rate waveform decays with decreasing frequency. Thus 9 Hz was the minimum frequency available with an acceptable waveform.

1. Pressure Wave Propagation

The first portion of these tests addressed the question of whether or not the modulated blowing created a pressure wave which propagated around the airfoil. To determine this the plenum pressure signal and that from taps in the region of the forward stagnation point, and the upper and lower midchord points were examined on a dual beam oscilloscope. Figures 36 and 37 illustrate typical waveforms observed. Note the plenum pressure appears to lead the forward stagnation signal by 180 degrees.

As shown in Fig. 38 the pressure perturbation over the lower surface of the airfoil was obscured by tunnel noise.

COMPARISON OF PRESSURE WAVEFORMS FOR $C_{\mu} = 0.0854$, $\epsilon = 27.4$ %, f = 9 Hz (50 msec/cm; 0.1 v/cm)

FIGURE 37

COMPARISON OF PRESSURE WAVEFORMS FOR $C_{\mu} = 0.0457, \epsilon = 47.4\%$ AND $C_{\mu} = 0.0645, \epsilon = 30.2\%$ FOR f = 9 Hz (50 msec/cm)

$$f = 0$$
TAP 14, 0.1 v/cm
TAP 42, 0.05 v/cm
$$f = 9 Hz$$
TAP 14, 0.1 v/cm
TAP 42, 0.05 v/cm
TAP 53, 0.05 v/cm

Although the DC signals were filtered and steady RMS signals were subtracted from the observed unsteady data, it has not been determined what effect this noise has in wave propagation over the airfoil. However, what is suggested is that the momentum flux occurring at the slot induces a fluctuating rate of entrainment, and that the primary signal propagation is over the upper surface of the airfoil.

From the previous three figures, it is apparent that for relatively large values of ε the pressure fluctuation does propagate over the airfoil, but with substantial attenuation. What this means in terms of lift augmentation is illustrated in Table III. No conclusive trends concerning lift augmentation were observed. In only 3 of the 5 cases where RMS data were taken did $\langle C_L^2 \rangle^{1/2} + \overline{C}_L \stackrel{\sim}{=} C_L$ STEADY. The associated drag and moment coefficients listed in Table IV also provided no correlation with $C_{\mu}(t)$. The limit of ε available at $C_{\mu} = 0.045$ was approximately 65%, while for $C_{\mu} = 0.085$ only 30% could be obtained because of air supply limitations.

2. The Near-Wake in Oscillatory Blowing

The near-wake behavior of the mean velocity and turbulence intensity is illustrated in Figs. 39, 40, and 41. The slope of the mean velocity changes slightly, but the significant information appears to lie in the change in the turbulence intensity. As noted in Figs. 39 and 42 there appears to be a region of near-constant maximum intensity which becomes wider with increasing oscillation

TABLE III

BLOWING AND LIFT COEFFICIENTS FOR STEADY FREESTREAM, OSCILLATORY BLOWING

$c_{\rm L}$ (% of $c_{\rm L}$)	0	5.1	4.9		2.65	7.6	
$\langle c_L^2 \rangle^{i_2}$.0067	.0521	.0650		.0536	.0765	
$\langle c_{\rm LS}^2 \rangle^{\frac{1}{2}}$.0107		0600.		
$\frac{\Delta C_{LS}}{C_{LS}}$	4.5	- 2.1	- 4.9	10.3*	8.3	- 2.8	
c ^r	1.2560	1.1836	1.3103	1.4971	1.990	2.6563	
c _{LS}	1.2018	1.2088	1.3785	1.3561	1.837	2.7322	
^ξ c _μ (% of c _μ)	15.4	23	47.4	65	30.2	27.4	
บื้	.0441	.0438	.0457	.0451	.0645	.0856	

* signal not passed through low-pass filter

TABLE IV

STEADY FLOW, 9 Hz OSCILLATORY BLOWING AERODYNAMIC CHARACTERISTICS

C _M (c/2)	1849 1702 .0033	1889 1863 0112	1862 0013 1697 0250	1990	2040 0017 1858 0169	2136 2265 0124	
C _M (C/4)	4826 4815 .0020	4884 4795 0238	5282 0039 4942 0403	5353 5418	6594 0037 6801 0295	8917 8854 0308	
c _D	.0737 .0725 .0148	.0732 .0733 .0160	.0598 .0045 .0849	.0732	.0991 .0094 .0651 .0328	.1077 .1208 .0315	M Mean R RMS
c _L	1.2018 1.2560 .0067	1.2088 1.1836 .0521	1.3785 .0107 1.3103 .0650	1.3561 1.4971	1.8370 .0090 1.9903 .0536	2.7322 2.6563 .0765	wing
л с	0.0441	0.0438	0.0457	0.0451	0.0645	0.0856	Steady Blowing Oscillatory Blo
TYPE	SB MOB ROB	SB MOB ROB	SB RSB MOB ROB	SB MOB	SB RSB MOB ROB	SB MOB ROB	SB
RUN NUMBER	51303 51301 51301.1	51002 51003.1 51003.2	52601 52601.1 52603 52603.1	51701 51702	52604 52604.1 52605 52605.1	52001 52002 52002.1	

90

T

NONDIWENSIONER AEFOCILA

源

NUNDIWENSIONAL VELOCITY

amplitude. This suggests for example that the separation angle fluctuates about a mean of 83 degrees with roughly an 8-degree variation for $\varepsilon = 65$ %, $C_{\mu} = 0.045$. The unsteady variation is about 5 degrees less than one would expect for a quasi-steady flow based on steady flow measurements. For $\varepsilon = 47.4$ % nearly the same results were obtained. Figures 43 and 44 for $C_{\mu} = 0.0645$, $\varepsilon = 30.2$ % and $C_{\mu} = 0.0853$, $\varepsilon = 27.4$ % indicate virtually no change in the mean location of the separation point. With the capability to acquire unsteady data now available at the Naval Postgraduate School, it should be possible for future investigators to correlate the instantaneous separation point to the fluctuating blowing.

Figure 45 illustrates that the pressure perturbation propagates around the trailing edge separation bubble, but with noticesable attenuation.

D. OSCILLATING FREESTREAM, STEADY BLOWING TEST

With the 3-inch blades rotating at 9 Hz, an amplitude ratio of 10.9 percent of the freestream was obtained. As illustrated in Fig. 46, the pressure signal at tap 1 was considerably cleaner than the signals observed during oscillatory blowing. Also illustrated is the fact that an oscillation in the freestream imposed an oscillation in the plenum of substantial amplitude.

Figure 47 indicates there is little change induced in the wake turbulence intensity by the oscillating freestream and no perceptible separation point oscillation. The influence

(1 v/cm) WAKE HOTWIRE -5°, 0.25"

PLENUM

(0.5 v/cm) WAKE HOTWIRE -55°, 0.25"

-55*, 0.025*

FIGURE 45

COMPARISON OF WAKE HOTWIRE AND PLENUM PRESSURE WAVEFORMS FOR $C_{\mu} = 0.0645$, $\epsilon = 30.2\%$, f = 9 Hz (50 msec/cm)

TAP 1, 0.5 w/cm .

PIPE HOTWIRE 0.1 v/cm

WAKE - 99'0.1"

WAKE -99 0.025", 1 v/cm

PLENUM O.I v/cm

FIGURE 46

PRESSURE AND VELOCITY WAVEFORMS FOR FREESTREAM OSCILLATING AT 9 Hz, €=10.9% (50 msec/cm)

VS THETR FOR RLPHR--S CAU- B. BHHS RT B. BZS IN. FROM SURFRCE

NUNDIWERSTONIA AETOCILA

of the freestream oscillation on the aerodynamic characteristics is indicated in Table V. In the oscillating freestream, the mean lift effects appear to be similar to those encountered with oscillatory blowing. Only the RMS pressure drag increased substantially.

TABLE V

COMPARISON OF STEADY AND OSCILLATING FREESTREAM AERODYNAMIC CHARACTERISTICS WITH STEADY BLOWING

	STEADY	OSCILLATING	ε(%)	
Ē_⊥	1.3785	1.3531	- 1.8	
<c<sup>2_L > ¹²</c<sup>	.0107	.0575	4.2	
€ _{M(C/2)}	1862	1960	- 5.3	
<c<sub>M(C/2)^{2 > ¹/₂}</c<sub>	0013	0036	1.7	
ē _D	.0598	.0604	1.0	
«cn ² » ¹ / ₂	.0045	.0164	26.1	

VI. CONCLUSIONS

The mean values of sectional aerodynamic characteristics for a typical CC Airfoil with steady and oscillating blowing have been determined by direct integration of surface pressure data. In the oscillatory blowing case, selected amounts of unsteady pressure data have been obtained but integration of pressures to obtain aerodynamic transfer functions has not yet been obtained. The oscillatory blowing was produced by a variable area rotating cam in the injection supply line which yielded sinusoidal mass flow rate fluctuation with blowing amplification ratios from 0 to 0.65. Flow in the near-wake was monitored by a constant temperature hotwire anemometer which could be traversed 72 degrees around the trailing edge at a constant distance 0.025 to 2.0 inches from the surface. The velocity profile data were compared with surface pressure data to devise a means of locating the Coanda jet separation point.

From the results the following conclusions may be drawn:

1. Mass flow modulation produced no evident increase of mean or average lift augmentation over that produced by steady injection for oscillation amplitudes as high as 65 percent of C_{ij} , as shown in Table III.

2. Oscillatory blowing induced oscillatory entrainment which in turn was the main contributor in transmitting pressure waves to the forward stagnation point. 3. The peak turbulence intensity in the wake, as indicated by a hotwire survey, is an accurate means of locating the point of separation and is in agreement with surface pressure measurements.

4. Because of the occurrence of the flow anomaly discussed in Section V, no simple separation point predictive criteria could be formulated.

APPENDIX A

SURFACE PRESSURE TAP LOCATIONS

Tap No.	x (in.)	x/c	y (in.)	у/с
1	0.0	0.0	0.0	0.0
2	0.012	0.0012	0.084	0.0083
3	0.060	0.0059	0.173	0.0170
4	0.119	0.0117	0.247	0.0242
5	0.213	0.0209	0.335	0.0328
6	0.314	0.0308	0.406	0.0398
7	0.517	0.0507	0.528	0.0517
8	0.949	0.0930	0.728	0.0713
9	1.431	0.1402	0.897	0.0879
10	1,929	0.1890	1.038	0.1017
ii	2.433	0.2384	1.149	0.1126
12	2.848	0.2791	1.224	0.1199
13	3.954	0.3874	1.357	0.1329
14	5.093	0.4990	1.396	0.1368
15	6.098	0.5975	1.347	0.1320
16	7,130	0.6986	1.226	0.1201
17	7.635	0.7481	1,134	0.1111
18	8.021	0.7859	1.053	0.1031
19	8,670	0.8459	0.881	0.0863
20	9,191	0 9005	0.713	0.0698
21	9.400	0.9210	0.635	0.0622
22	9.598	0.9404	0.560	0.0549
23	9,801	0.9603	0 482	0.0472
24	9.949	0.9748	0.410	0.0402
25	10.053	0.9850	0.339	0.0332
26	10,135	0.9930	0.245	0.0240
27	10.182	0.9976	0.145	0.0142
28	10,193	0.9987	0.090	0.0088
29	10.206	1.0000	0.0	0.0
30	10,194	0.9988	-0.118	-0.0115
31	10.052	0.9947	-0.223	-0.0219
32	10,109	0.9905	-0.307	-0.0301
33	10.040	0.9837	-0.349	-0.0342
34	9,919	0.9719	-0.448	-0.0439
35	9.769	0.9572	-0.524	-0.0514
36	9.590	0.9396	-0.580	-0.0569
37	8.552	0.8379	-0.695	-0.0681
38	7.946	0.7786	-0.740	-0.0725
39	7.562	0.7409	-0.758	-0.0742
40	7.042	0.6900	-0.775	-0.0759
41	6.023	0.5901	-0.786	-0.0770
42	5.101	0.4998	-0.788	-0.0772
43	4.005	0.3924	-0.772	-0.0756
44	2.885	0.2827	-0.736	-0.0721

Tap No.	x (in.)	x/c	y (in.)	у/с
45 46 47 48 49 50 51	2.480 1.969 1.471 0.953 0.515 0.345 0.229	0.2430 0.1929 0.1441 0.0934 0.0505 0.0338 0.0224	-0.708 -0.658 -0.594 -0.517 -0.416 -0.349 -0.285	-0.06944 -0.0645 -0.0582 -0.0506 -0.0408 -0.0342 -0.0280
52	0.119	0.00117	-0.214	-0.0210
54	0.009	0.0009	-0.070	-0.0069
	Uppr. surf. spcl	. tubes		

55	5 108	0.5004	6.0	inches	
56	5.093	0.4990	9.0	"	Distance
57	5.095	0.4992	10.5		Stb'd.
58 59	7.631 7.631	0.7477 0.7477	6.0 9.0	inches "	from center

.
ф

CREFFICIENT OF PRESSURE VS DISTRNCE FROM WALL

FIGURE BI

ALONG R. 75*CX/C) FDR ALPHN = -5

SUEFFICIENT OF PRESSURE

HLINIG R. KR#CX/CD FDR ALPHR = -K

CDEFFICIENT OF PRESSURE

APPENDIX C

Hotwire Data for Near-Wake Mapping at $C_{\mu} = 0.0451$

RUN NUMBER 51701 DISTANCE FROM SURFACE (IN.) 1.75

POINT	THETA(CHORD)	MERH VEL	RHS VEL
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 10 10 10 10 10 10 10 10 10 10 10	$ \begin{array}{r} 17\\ 15\\ 18\\ 5\\ 0\\ -5\\ -10\\ -15\\ -19\\ -226\\ -35\\ -35\\ -35\\ -35\\ -445\\ -45\\ -45\\ -55\\ -55\\ \end{array} $	1.195 1.187 1.16 1.16 1.125 1.125 1.125 1.125 1.125 1.125 1.205 1.205 1.205 1.135 1.035 1.035 1.008 1 1.03 1.03	6.50000E-03 6.80000E-03 7.50000E-03 8.50000E-03 0.0155 0.035 0.057 0.115 0.163 0.165 0.165 0.165 0.165 0.153 0.117 8.068 0.034 0.031 0.012 7.00000E-03

POINT THETR(CHORD) MERH VEL RMS VEL 1 17 2.035 0.15 2 14.9 1.935 0.155 3 12.4 1.88 0.165 4 9.9 1.75 0.195 5 7.5 1.64 0.251 6 5 1.36 0.31 7 2.5 1.1 0.34 8 0 0.63 0.315 9 -2.6 0.55 0.24 10 -5.1 0.41 0.19 11 -7.6 0.35 0.155 12 -16 0.245 0.088 14 -26 0.245 0.088 15 -24.9 0.165 0.075 16 -30 0.12 0.658 17 -35.1 0.12 0.653 18 -40 0.13 0.052 19 -44.9 0.1 0.653 20	FOINT THETR(CHORD) MEAN VEL RMS VE 1 17 2.035 0.15 2 14.9 1.935 0.155 3 12.4 1.88 0.165 4 9.9 1.75 0.195 5 7.5 1.64 0.25 6 5 1.36 0.31 7 2.5 1.1 0.34 8 0 0.63 0.315 9 -2.6 0.55 0.24 10 -5.1 0.41 0.19 11 -7.6 0.35 0.155	KUN NUMBER	51702 UISTANCE	FRUM SURFHCE	(IN.) 0.025
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	POINT	THETA(CHORD)	MEAH VEL	RMS VEL
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 14 5 16 7 8 9 10 14 5 16 7 8 9 10 14 5 16 7 8 9 10 14 5 16 7 8 9 10 14 5 16 7 8 9 10 14 5 16 7 8 9 10 14 14 14 14 14 14 14 14 14 14 14 14 14	$ \begin{array}{c} 17\\ 14.9\\ 12.4\\ 9.9\\ 7.5\\ 5.5\\ 2.5\\ 0.5\\ -2.5\\ -2.5\\ -2.5\\ -2.5\\ -35\\ -35\\ -35\\ -35\\ -55\\ -55\\ -55\\ -5$	2.035 1.935 1.88 1.75 1.64 1.36 1.1 0.83 0.55 0.41 0.35 0.288 0.245 0.245 0.245 0.245 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12	0.15 0.155 0.165 0.25 0.31 0.34 0.315 0.24 0.195 0.155 0.114 0.088 0.082 0.082 0.082 0.051 0.052

RUN NUMBER 51703 DISTANCE FROM SURFACE (IN.) 0.05

POINT	THETA(CHORD)	MEAN VEL	RMS VEL
1	17.1	1.96	0.157
2	15	1.945	0.151
3	12.0	1.88	U.154 1
4	10	1.84	8.16 C.
2	£.0	1.78	0.18 C
5	2 -	1,65	0.235
2	2.5	1.43	0.31
8	<u> </u>	1.1	8.35
4	-2.5	0.86	0.34
10	-5.1	0.65	e.s 62
11	-7.4	0.46	0.23
12	-10.1	0.35	0.18
13	-12.5	0.3	0.13
14	-15	0.26	0.103
15	-20	0.25	0.097
16	-25	0.2	0.095
17	~29.9	0.14	0.078 🛌 '
18	-34.9	0.108	0.051 S
19	-40	0.097	0.038 🛄 .
20	-45	0.1	0.048 ; 🗠
21	-50	0.12	0.058
22	-55	0.16	0.068

POINT	THETR(CHORD)	MEAN VEL	RMS VEL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	$ \begin{array}{r} 17.1 \\ 15.1 \\ 12.5 \\ 10 \\ 7.4 \\ 4.9 \\ 2.6 \\ 0 \\ -4.9 \\ -7.5 \\ -9.9 \\ -12.5 \\ -15 \\ -15 \\ -15 \\ -20 \\ -24.9 \\ -30.1 \\ -35 \\ -39.9 \\ -44.9 \\ $	1.6 1.61 1.66 1.75 1.82 1.82 1.82 1.82 1.78 1.56 1.3 1.05 0.825 0.62 0.42 0.335 0.28 0.28 0.185 0.13 0.13 0.13 0.13	0.17 0.195 0.21 0.21 0.19 0.175 0.165 0.175 0.37 0.38 0.37 0.38 0.35 0.31 0.23 0.11 0.115 0.035 0.07 0.08
22	-55	0.375	0.135

RUN NUMBER 51704 DISTANCE FROM SURFACE (IN.) 0.1

RUN NUMBER	51705 DISTANCE	FRUM SURFACE	(IN.) 0.25
POINT	THETACCHORD	MEAN VEL	RMS VEL
1 23 45 67 89 11 12 34 56 7 89 11 12 34 56 7 89 11 12 34 56 7 89 11 12 34 56 7 89 11 12 34 56 7 89 11 12 34 56 7 89 10 11 20 14 56 7 89 10 11 20 14 56 7 89 10 11 20 14 56 7 89 10 11 20 14 56 7 89 10 11 20 20 11 20 20 11 20 10 10 10 10 10 10 10 10 10 10 10 10 10	17.1 12.7 10 4.9 2.5 0 -2.5 -2.7 -5.1 -7.6 -9.9 -15.5 -15 -20.5 -29.9 -15 -20.5 -29.9 -39.9 -39.9 -39.9 -39.8 -59.2	1.385 1.34 1.29 1.24 1.225 1.23 1.36 1.46 1.55 1.63 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62	0.025 0.021 0.021 0.021 0.021 0.07 0.13 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.2
22	-55	0.31	0.1

BEST AVAILADLE COPY

RUN NUMBER	51706 DISTANCE	FROM SURFACE	(IN.) 0.375
POINT	THETR(CHORD)	MEAN VEL	RMS VEL
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 112 3 4 5 6 7 8 9 10 112 112 112 112 112 112 112 112 112	$ \begin{array}{r} 17\\ 12.9\\ 10.1\\ 5.1\\ 0\\ -5\\ -7.6\\ -10\\ -12.3\\ -15.3\\ -17.7\\ -20\\ -25\\ -27.8\\ -30.1\\ -32.5\\ -35\\ -40.1\\ -44.8\\ -49.8\\ -55\end{array} $	1.39 1.345 1.325 1.235 1.16 1.14 1.2 1.35 1.47 1.55 1.55 1.55 1.38 1 0.78 0.58 0.41 0.41 0.58 0.78 0.78 0.78 0.87 0.97	0.018 0.016 0.016 0.018 0.029 0.07 0.13 0.21 0.23 0.26 0.35 0.35 0.44 0.33 0.44 0.33 0.44 0.35 0.44 0.35 0.44 0.35 0.16 0.14 0.11 0.08 0.045

B

RUN NUMBER 51707 DISTANCE FROM SURFACE (IN.) 0.5

POINT	THETA(CHORD)	MEAN VEL	RMS VEL
1	17.1	1.42	0.013
2	10.2	1.35	0.017
3	5	1.285	0.02
4	0	1.23	0.025
5	-5.1	1.17	a a 25
6	-10.2	1.14	0.08
7	-12.5	1 19	0.00 0.14
8	-14.9	1 27	a 22
ğ	-17.8	1 44	0.24
10	-19 9	1 515	0.27
11	-22 7	1.010	0.27
12	_25	1.07	0.00
10	-27 7	1.40	0.42
10	-20.0	1.08	0.42
14	-30.2 00.1	0.82	0.37
10	-32.4	0.7	0.34
16	-35	0.57	0.24
17	-37.7	0.61	0.16
18	-40.1	0.68	0.12
19	-45	0.86	0.058
20	-50.1	0.9	0.03
21	-55	0.968	0.021

RUN I	UMBER	51708	DISTANCE	FROM	SURFACE	(IN.)	0.75
POINT	Т	THE	TA(CHORD)	MEF	AN VEL	Rt	1S VEL
1 2 3 4 5 6 7 8 9,00 11 2 3 4 5 6 7 8 9,00 11 2 3 4 5 6 7 8 9,00 11 2 3 4 5 6 7 8 9,00 11 2 3 4 5 6 7 8 9,00 11 2 3 4 5 6 7 8 9,00 11 2 3 4 5 6 7 8 9,00 11 2 3 4 5 6 7 8 9,00 11 2 3 4 5 5 7 8 9,00 11 2 3 4 5 5 7 8 9,00 11 2 3 4 5 5 7 8 9,00 11 2 3 4 5 5 7 8 9,00 11 2 3 4 5 5 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10		17 10 5. 0 -5. -10 -12 -25 -29 -32 -35 -40	.1 .1 1 .2 .3 .1 .2 .9 .4	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 0. 0.	39 31 27 227 16 11 13 39 23 08 99 845		0.013 0.012 0.014 0.018 0.022 0.047 0.025 0.047 0.055 0.11 0.21 0.34 0.34 0.34 0.34 0.34 0.34 0.34
15 16		-42 -45	.3	Ø. Ø.	.89 .91	(3.052 3.04
17 18		-50 -55	. 1	0. 1.	.98 .02		a.023 a.019

RUN NUMBER 51709 DIS	TANCE FROM SURFACE (I	N.) 1.25
POINT THETACC	HORD) MEAN VEL	RMS VEL
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.38 1.355 1.3 1.265 1.235 1.22 1.194 1.205 1.23 1.33 1.35 1.34 1.27 1.18 1.085 1.081 1.085 1.081 1.085 1.11	0.012 0.013 0.013 0.014 0.021 0.042 0.042 0.045 0.11 0.14 0.14 0.175 0.19 0.23 0.23 0.23 0.175 0.1 0.048 0.021 0.0135 0.01

BEST AVAILABLE CC:

APPENDIX D

Unsteady Flow Pressure Data

The midspan pressure distributions and upper surface spanwise pressure data for the oscillatory blowing tests and for the oscillating freestream test are presented by run number. The corresponding steady, unsteady and RMS are indicated in Table D1.

TABLE D1

Unsteady Flow Data Key

RUN NUMBER	с _г	cμ	REMARKS
51002	1.2088	.0438	steady flow for 51003.1
51003.1	1.1836	.0438	9 Hz oscillatory blowing
51003.2	.0521	.0438	RMS data for 51003.1
51301	1.2560	.0441	9 Hz oscillatory blowing
51301.1	.0067	.0441	RMS data for 51301
52001	2.7322	.0856	steady flow for 52002
52002	2.6563	.0856	9 Hz oscillatory blowing
50002.1	.0765	.0856	RMS data for 52002
52601	1.3785	.0457	steady flow for 52602 and 52603
52601.1	.0107	.0457	RMS data for 52601
52602	1.3531	.0457	9 Hz oscillatory freestream
52602.1	.0575	.0457	RMS data for 52602
52603	1.3103	.0457	9 Hz oscillatory blowing
52603.1	.0650	.0457	RMS data for 52603
52604	1.8370	.0645	steady flow for 52605
52604.1	.0090	.0645	RMS data for 52604
52605	1.9903	.0645	9 Hz oscillatory blowing
52605.1	.0536	.0645	RMS data for 52605

inport	H INCOUD	NE PROAKT	DOTION
N	UPPER CP	N	LOWER CP
123456789011234567890122222229 1112345678901222222222	$\begin{array}{c} 1.203\\ 9.760\\ 9.560\\ 9.413\\ -0.012\\ -0.171\\ -0.372\\ -0.709\\ -0.9838\\ -0.957\\ -0.9888\\ -1.3262\\ -1.3262\\ -1.416\\ -1.478\\ -1.4684\\ -1.478\\ -1.494\\ -1.509\\ -2.4888\\ -1.451\\ -2.4888\\ -4.555\\ -0.582\\ -0.134\\ \end{array}$	2931233456789901234 3335678901234 1	$\begin{array}{c} 0.134\\ 0.323\\ 0.425\\ 0.449\\ 0.449\\ 0.449\\ 0.365\\ 0.064\\ 0.017\\ -0.029\\ 0.0145\\ -0.029\\ -0.0231\\ -0.2250\\ -0.2231\\ -0.2231\\ -0.2231\\ -0.2231\\ -0.2231\\ -0.2231\\ -0.2231\\ -0.2231\\ -0.2250\\ -0.2231\\ -0.2250\\ -0.250\\ $
ummen	CUDEOCE	COMMITOR	norecur

RUN NUMBER 51002 MIDSPAN PRESSURE DISTRIBUTION

UPPER SURFACE SPANWISE PRESSURE

DFW(IN)	0.5+(X/C)	0.75*(X/C)
12 6 3	-1.3234 -1.1309 -1.0581 -0.9599	-1.4709 -1.3023 -1.1017

BEST AVAILABLE COPY

RUN NUMB MIDSPAN PRESSU	ÉR 51003.1 RE DISTRIBUTIO	Ч
UPPER N CP	LOWEI N CP	R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5359-1956559-189070711633165
DEPER SURFACE	SPANWISE PRESS	URE O TEX/V
12 6 3	-1.3018 -1.1064 -0.9776	-1.4034 -1.2269 -1.0476

BEST AVAILABLE CCPY

(C)

RUN NUMBER 51003.2 MIDSPAN PRESSURE DISTRIBUTION

н	UPPER CP	н	LOWER CP
123456789011234567890123456789	0.074 0.080 0.038 0.112 0.118 0.101 0.101 0.101 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.123 0.123 0.124 0.123 0.124 0.148 0.148 0.148 0.148 0.148 0.148	290123456789012345578901234 33333444444444555555	0.148 0.098 0.071 0.065 0.083 0.083 0.083 0.083 0.083 0.070 0.070 0.0700 0.0700 0.0

UPPER SURFACE SPANWISE PRESSURE

DFW(IN)	0.5*(X/C)	0.75*(X/C)
12	0.1036	0.1232
6	0.0980	0.1120
3	0.0924	0.1036
1.5	0.0924	

BEST AVAILABLE COPY

RUN NUMBER 51301 MIDSPAN PRESSURE DISTRIBUTION

Ν	UPPER CP	N	LOWER CP	
1234567898122345678981239456789 11111111122222223456789	$\begin{array}{c} 1.003\\ 0.8961\\ 0.8961\\ 0.378\\ 0.03667\\ -0.25949\\ -0.25949\\ -1.029303\\ -1.229303667\\ -1.229303669\\ -1.229303669\\ -1.229303669\\ -1.44667\\ 4.12030\\ -1.44667\\ -1.5663469\\ -1.20308\\ -1$	90123456789012345678901234 20012345678904444444455555555555555555555555555555	0.221 0.363 0.475 0.467 0.467 0.467 0.467 0.168 0.0011 0.00147 -0.1650 -0.00917 -0.16852 -0.1428 0.0147 -0.16852 -0.1428 0.01428 -0.001473 -0.001473 -0.001473 -0.001428 -0.001473 -0.001473 -0.001428 -0.001473 -0.001428 -0.001428 -0.001473 -0.001428 -0.00148 -0.0	
UPPER	SURFACE	SPANWISE	PRESSU	RE
DFWCIN	Ð	0.5*(X/(0.75*(X/C)
12 6 3 1.5		-1.2957 -1.4193 -1.3173 -1.2266		-1.4581 -1.4929 -1.3343

BEST_AVAILABLE COPY

RUN NUMBER 51301.1 MIDSPAN PRESSURE DISTRIBUTION

Ν	UPPER CP	ы	LOWER
			0.
1	0.072	29	0.127
2	0.078	30	0.099
З	0.087	31	0.070
4	0.087	32	0.067
5	0.087	33	0.058
6	0.078	34	0.064
7	0.079	35	0.058
8	0.078	36	0.435
9	0.071	37	0.065
10	0.081	38	0.065
11	0.079	39	0.065
12	0.078	40	0.068
13	0.081	41	0.062
14	0.078	42	0.065
15	0.087	43	0.065
16	0.087	44	0.057
17	0.085	45	0.062
18	0.078	46	0.065
19	0.085	47	0.065
20	0.099	48	0.07•1
21	0.108	49	0.071
22	0.105	50	0.071
23	0.198	51	0.071
24	0.269	52	0.071
25	0.340	53	0.071
26	0.368	54	0.071
27	0.368		
28	0.283		
29	0.127		

UPPER SURFACE SPANWISE PRESSURE

DFW(IN)	0.5*(%/C)	0.75*(X/C)
12	0.0783	0.0850
6	0.0850	0.0850
1.5	0.0350	0.0800

BEST AVAILABLE COPY

RUN NUMBER 52001 MIDSPAN PRESSURE DISTRIBUTION

Ν	UPPER CP	Н	LOWER CP
12345678901234567890123456789	0.291 - 0.114 - 0.997 - 0.997 - 0.9887 - 1.4336 - 1.4336 - 1.4336 - 1.53206 - 1.5326 - 1.5326 - 1.9916 - 1.9914 - 1.9914 - 1.9914 - 1.2327 - 2.334435 - 2.2324435 - 2.232548 - 2.23256 - 2.2327712 - 2.33475 - 2.2327712 - 2.2327712 - 2.33475 - 2.3377712 - 2.33475 - 2.3377712 - 2.33777712 - 2.33777712 - 2.33777712 - 2.337777712 - $2.3377777777777777777777777777777777777$	9 01 23456789012345678901234 2333338888884444444444555555	-0.399 -0.040 0.598 0.642 0.652 0.652 0.652 0.6513 0.6553 0.55560 0.55560 0.55560 0.55560 0.55560 0.55560 0.55560 0.555600 0.55560000000000

UPPER SURFACE SPANNISE PRESSURE

DFW(IN)	0.5*(X/C),	0.75*(X/C)
12 6 3 1.5	-2.2583 -2.1425 -2.0570 -1.9516	-2.4473 -2.2678 -2.0399

RUN NUMBER 52002 MIDSPAN PRESSURE DISTRIBUTION

Н	UPPER CP	н	LOWER CP
1 1 2 3 4 5 6 7 8 9 8 1 2 3 4 5 6 7 8 9 8 1 2 3 4 5 6 7 8 9 8 1 2 3 4 5 6 7 8 9 8 1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.5829 -0.260 -0.260 -0.260 -1.2757 -1.2757 -1.2757 -1.22377 -2.22377 -2.237777 -2.237777 -2.237777 -2.237777 -2.237777 -2.237777 -2.237777 -2.237777 -2.237777 -2.237777 -2.237777 -2.2377777 -2.2377777 -2.2377777777777777777777777777777777777	5 9012045670004444444445070004 00000000444444444555555	-1.453 -0.53359 -0.53359 -0.55212 -0.52212 -0.5222 -0.52212 -0.522 -0.5222
ton at	4 × 17 0.0 00		

UPPER SURFACE SPANWISE PRESSURE

DFU(IN)	0.5*(%/C)	0.75*(X/C)
12 6 3 1.5	-2.2427 -2.1369 -1.9581 -1.9246	-2.3268 -2.2458 -2.0587

RIDSPAN	UN NUMBER I PRESSURE	52002. Distri	1 BUTION
łł	UPPER CP	Ы	LOHER CP
123455785512345578581239456789 11111111111112285812322456789	0.111 0.161 0.161 0.196 0.175 0.146 0.146 0.146 0.112 0.126 0.266 0.838 0.838	90123456789012345678901234	0.838 0.094 0.0973 0.0973 0.00773 0.00777 0.00777777777 0.007777777777

UPPER SURFACE SPANWISE PRESSURE

DFW(1N)	0.5*(%/C)	0.75*(X/C)
12 6 3 1.5	0.1111 0.1034 0.0894 0.0978	0.1257 0.1117 0.1034

121

RUN NUMBER 52601 MIDSPAN PRESSURE DISTRIBUTION

-

UPPER N CP	Н	LOWER CP
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200123456789812345678981234	$\begin{array}{c} 9.192\\ 9.3931\\ 9.575\\ 9.4443\\ 9.44451\\ 9.44451\\ 9.215251\\ 9.900000575\\ 9.900000575\\ 9.900000575\\ 9.90000057\\ 9.90000057\\ 9.90000057\\ 9.90000057\\ 9.90000057\\ 9.9000057\\ 9.9000057\\ 9.900005\\ 9.900005\\ 9.900005\\ 9.900005\\ 9.900005\\ 9.900005\\ 9.900005\\ 9.9005\\ 9.9005\\ 9.9005\\ 9.9005\\ 9.9005\\ 9.9005\\ 9.900$

UPPER SURFACE SPANNISE PRESSURE

DFW(IN)	0.5*(X/C)	0.75*(X/C)
12 6 3	-1.4897 -1.4206 -1.2006	-1.4819 -1.3538 -1.1532
1.5	-1.0585	

RUN NUMBER 52601.1 MIDSPAN PRESSURE DISTRIBUTION

Ч	UPPER CP	н	LÓWER CP
10045670904004567009400456709	0.065 0.067 0.067 0.0673 0.073 0.073 0.073 0.073 0.073 0.073 0.073 0.075 0.0673 0.0673 0.0673 0.0677 0.0677 0.0677	9012034567090120945678701204 23333333333333444444444444555555	0.028 0.097 0.0673 0.0677 0.0667 0.0667 0.0661 0.0661 0.0661 0.0661 0.0664 0.0664 0.0664 0.0664 0.0666 0.0664 0.0667 0.06722 0.0677 0.0651 0.0657 0.0651 0.0651 0.0651 0.0651 0.0651 0.0651 0.0651 0.0651 0.0651 0.0651 0.0651 0.0651 0.0651 0.0651 0.0657 0.0651 0.0651 0.0657 0.0657 0.0651 0.0651 0.0657 0.0657 0.0651 0.0651 0.0657 0.0657 0.0651 0.0651 0.0657 0.0657 0.0651 0.0651 0.06577 0.06577 0.06577 0.06577 0.06577 0.06577 0.0657720 0.0657720000000000000000000000000000000000

UPPER SURFACE SPANWISE PRESSURE

DFW(IN)	0.5*(%/C)	0.75*(%/0)
12 6 3 1.5	0.0762 0.0696 0.0613 0.0613	0.0669 0.0641 0.0641

BEST AVMILAULE COPY

123

MIDSPAN PRESSU	JRE DISTRIBUTIO	H
UPPER N CP	LOWE H CP	R
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	66376-189049196997692065641
UPPER SURFACE	SPANWISE PRESS	URE
DEMCIN	0.0*(X/U)	0.75*(8/0)
12 6 3 1.5	-1.5706 -1.4331 -1.2267 -1.0203	-1.4767 -1.3692 -1.2616

RUN NUMBER 52602 HIDSPAN PRESSURE DISTRIBUTION

BEST AVAILABLE COPY

RUN NUMBER 52602.1 NIDSPAN PRESSURE DISTRIBUTION

н	UPPER CP	Ν	LOWER CP
12345678901123456789012222222222	0.692 0.720 0.720 0.720 0.735 0.735 0.735 0.735 0.735 0.7735 0.7735 0.7735 0.7749 0.7799 0.7799 0.8148 0.9887 1.017 0.9599 1.017 0.799 0.799	290 3123345567890 44234567890 1234 555555555555555555555555555555555555	0.799 0.720 0.720 0.720 0.720 0.720 0.7220 0.7220 0.7220 0.7720 0.7720 0.7727 0.7727 0.7727 0.7727 0.7727 0.7727 0.7727 0.6659 0.66540 0.66539 0.66540 0.66539 0.6655900 0.66559000000000000000000000000000000000
JPPER	SURFACE	SPANWISE	PRESSURE

DFW(IN)	0.5*(X/C)	0.75*(X/C)
12	0.7493	0.7994
6	0.7413	0.7413
3	0.7122	0.7267
1.5	0.7413	

RUN NUMBER 52603 MIDSPAN PRESSURE DISTRIBUTION

N	UPPER CP	Ν	LOWER CP	
1234567890112345678901222456789	$\begin{array}{c} 9.985\\ 9.7869\\ 9.7869\\ 9.31859\\ -0.4225\\ -0.4225\\ -0.452755\\ -1.99641\\ -1.3181\\ -1.3811\\ -1.44795\\ -1.44795\\ -1.44977\\ -1.44977\\ -1.44977\\ -1.44977\\ -1.44977\\ -1.44977\\ -1.44977\\ -1.44977\\ -1.44977\\ -1.59679\\ -1.59679\\ -1.594\\ -0.104\end{array}$	29012345678999442345678901234 3333553339944444444455555555555555555	0.104 0.335 0.4457 0.4475 0.4475 0.4425 0.2759 0.0072 0.00176 0.00129 0.001249 -0.011469 -0.01155 0.2374 0.2374 0.2374 0.2374 0.2377 0.2374 0.2377	
UPPER	SURFACE	SPANWISE	PRESSUR	RE
DFW(I)	Ð	0.5*(X/()	0.75*(%/0)
12 6 3 1.5		-1.3109 -1.4141 -1.2563 -1.2000		-1.4704 -1.4451 -1.1465

BEST AVAILABLE COPY

A Alia Artis

RUN NUMBER 52603.1 MIDSPAN PRESSURE DISTRIBUTION

UPPER SURFACE SPANWISE PRESSURE

DFW(IN)	0.5*(%/C)	0.75*(X/C)
12 6 3	0.1466 0.1549 0.1408 6.1408	0.1331 0.1690 0.1549

RUN NUMBER 52604 MIDSPAN PRESSURE DISTRIBUTION

N	UPPER CP	N	LOWER CP	
1234567890112945678901222222222222222222222222222222222222	9.931 9.631 9.000 0.014 -0.337 -0.437 -0.806 -1.008 -1.910 -1.210 -1.389 -1.717 -1.740 -1.803 -1.779 -1.803 -1.903 -1.861 -1.918 -1.861 -1.918 -1.915 -1.918 -1.915 -1.918 -1.915 -1.918 -1.915 -1.918 -1.915 -1.918 -1.915 -1.918 -1.915 -1.918 -1.915 -1.915 -1.915 -1.918 -1.915	29 31 32 34 56 7 39 84 42 44 56 7 89 81 23 44 56 7 89 84 42 34 56 7 89 84 42 34 56 7 89 84 42 34 56 7 89 84 55 55 89 84 55 55 55 80 80 80 80 80 80 80 80 80 80 80 80 80	$\begin{array}{c} -0.273\\ 0.355\\ 0.571\\ 0.6291\\ 0.6291\\ 0.5949\\ 0.3265\\ 0.3265\\ 0.3265\\ 0.3265\\ 0.3265\\ 0.3275\\ 0.00377\\ -0.0039\\ -0.0049\\ -0.0009\\ -$	
UPPER	SURFACE	SPANWISE	PRESSUR	RE _
DFW(I)	4)	0.5*(X/)	\$	0.75*(X.C)
12 6 3 1.5		-1.7171 -1.5574 -1.4209 -1.3224		-1.7787 -1.6612 -1.4098

MIDSPA	RUN NUMB IN PRESSU	ER 52604. RE DISTRI	1 BUTION	
н	UPPER CP	н	LOWER CP	
123456789991123456789	0.086 0.094 0.094 0.086 0.086 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.08	29 31 33 34 56 78 90 12 34 56 78 90 12 34 55 55 54	9.273 9.096 9.096 9.086 9.086 9.086 9.086 9.086 9.086 9.086 9.086 9.086 9.086 9.088	
UPPER	SURFACE	SPHNWISE	PRESSU	RE DENVIOL
12	1/	0.07(8/0		0.0820
3		0.0920 0.0765 0.0874		0.0820

BEST AVAILABLE COPY

MIDSPAN PRESS	URE DISTRIBUTION	ł
UPPER N CP	LOWER N CP	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
DENCINA	SPHNWISE PRESSU	IRE
DFWC107	0.0*(////	0.(3*(A/C)
6 3 1.5	-1.8836 -1.6028 -1.4556 -1.3750	-1.8639 -1.7056 -1.4889

RUN NUMBER 52605

Ņ	UPPER CP	И	LOWER CP
1234567898112345678981222222456789	0.119 0.164 0.164 0.164 0.164 0.164 0.164 0.139 0.164 0.139 0.119 0.131 0.119 0.119 0.119 0.119 0.119 0.167 0.167 0.169 0.167 0.169 0.161 0.167 0.169 0.167 0.169 0.167 0.169 0.167 0.169 0.167 0.169 0.16	29 30 32 33 45 67 89 80 41 23 45 67 89 81 20 4 55 55 55 55 55 55	0.472 0.125 0.104 0.104 0.104 0.104 0.104 0.104 0.111
UPPER	SURFACE	SPANWISE	PRESSURE
DFWCI	4)	0.5*(X/	c) (C

RUN NUMBER 52605.1 MIDSPAN PRESSURE DISTRIBUTION

能

0.75*(%/C)

12	0.1194	0.1389
6	0.1111	0.1250
3	0.1111	0.1111
1.5	0.1111	

APPENDIX E

Unsteady Hotwire Data Corresponding to C_p Run Numbers 52601 through 52605 for 0.025 in. from Surface

STEADY FREESTREAM, STEADY BLOWING RUN NUMBER 52601 DISTANCE FROM SURFACE (IN.) 0.025

POINT	THETA(CHORD)	MEAN VEL	RMS VEL
1	17.2	1.95	0.335
2	15.1	1.91	0.337
3	12.7	1.86	0.335
4	10	1.78	0.324
5	7.6	1.72	0.324
6	5	1.6	0.35
?	2.5	1.4	0.426
8	1.3	1.25	0.458
9	0.8	1.2	0.466
10	0	1.08	0.476
11	-0.9	0.97	0.475
12	-2.1	0.88	0.462
13	-4.9	0.585	0.381
14	-7.6	0.46	0.32
15	-10	0.33	0.248
16	-12.3	0.255	0.18
17	-15.1	0.214	0.132
18	-17.5 /	0.196	0.105
19	-20 /	0.185	0.09
20	-25 /	0.145	0.081
21	-30./2	0.102	0.064
22	-35/	0.03	0.048
23	-49	0.075	0.043
24	-45	0.06	0.045
25	-50	0.07	0.043
26	~55	0.055	0.04

BEST AVAILABLE COPY

9 HZ OSCILLATING FREESTREAM, STEADY BLOWING RUN NUMBER 52602 DISTANCE FROM SURFACE (IN.) 0.025

POINT	THETR(CHORD)	MEAN VEL	RMS VEL
1 2 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 3 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 15 16 17 10 10 10 10 10 10 10 10 10 10 10 10 10	$ \begin{array}{r} 17.2 \\ 15.1 \\ 12.4 \\ 10.1 \\ 7.6 \\ 5.1 \\ 3.6 \\ 2.6 \\ 1.6 \\ 0 \\ -1.1 \\ -2.4 \\ -5 \\ -7.6 \\ -10 \\ -12.5 \\ -17.5 \\ -20.1 \\ -25.1 \\ -30.1 \\ -35.1 \\ -39.9 \\ -45 \\ -50 \\ 1 \end{array} $	1.88 1.74 1.76 1.72 1.635 1.54 1.42 1.36 1.2 1.05 0.93 0.8 0.57 0.4 0.33 0.26 0.22 0.195 0.185 0.15 0.15 0.15 0.15 0.07 0.07 0.07 0.06	0.328 0.333 0.333 0.328 0.328 0.342 0.371 0.415 0.445 0.445 0.478 0.445 0.478 0.445 0.478 0.445 0.478 0.445 0.478 0.445 0.45 0.45 0.14 0.055 0.051 0.055 0.0542
26	-55	0.058	0.04

.STEADY FREESTREAM, OSCILLATORY BLOWING RUN NUMBER 52603 DISTANCE FROM SURFACE (IN.) 0.025

POINT	THETA(CHORD)	MEUH AEF	RMS VEL
1 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 6 7 8 9 0 11 2 3 4 5 7 8 9 0 11 2 3 4 5 7 8 9 0 11 2 3 1 2 3 4 5 7 8 9 0 11 2 3 2 3	17.2 15.1 12.4 19.6 5.1666 1.4 -12.5 -102.5 -125.1 -125.1 -125.1 -225.1 -355.1 -55	2.01 1.97 1.914 1.75 1.51 1.45 1.325 1.31 1.21 1.22 1.31 1.22 1.31 1.22 1.31 1.22 1.31 1.22 1.325 0.935 0.701 0.55 0.41 0.255 0.225 0.225 0.225 0.225 0.225 0.225 0.115 0.115 0.1 0.125 0.1	9.5553644689642567589963 9.6667777777777775567589963 9.6667777777777777777777777777777777777

>	
3	1
5	
8	
5	
A	
2	
5	
B	
	BEST AVAILABLE COPY

		CARGE CONTRACT	1111 0 0 0 C C C
POINT	THETR(CHORD)	MEAN VEL	RMS VEL
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 10 10 10 10 10 10 10 10 10 10 10 10 10	17.2 15.1 12.4 10.1 7.6 5.1 3.6 1.6 5.1 3.6 1.1 -25 -102 5 -102 -125 -102 -125 -102 -255 -359 -450 -55	2.55 2.46 2.246 2.218 2.228 2.214 2.2175 2.214 2.2175 2.214 2.2175 2.2175 2.214 2.21755 2.21755 2.21755 2.21755 2.21755 2.21755 2.21755 2.217555 2.217555 2.21755555 2.2175555555	9.37 9.355 9.3354 9.33354 9.33354 9.933354 9.93354 9.935 9.955 9.9

135

STEADY FREESTREAM, STEADY BLOWING RUN NUMBER 52604 DISTANCE FROM SURFACE (IN.) 0:025

RUN HUMBER	52605 DISTANCE	FROM SURFACE	(IN.) 0.025
POINT	THETA(CHORD)	MEAN VEL	RMS VEL
1 203456789 10 11 23 4567 10 10 20 21 22 22	$\begin{array}{c} 17.2\\ 15.1\\ 12.4\\ 10.6\\ 5.66\\ 1.4\\ -5.66\\ 1.4\\ -5.6\\ -1.2\\ -7.0\\ 25.1\\ -125\\ -125\\ -225\\ -225\\ -35.1$	2.45 4.42 2.22 2.218 2.22 2.218 2.22 2.22 2.22 2	9.42 9.42 9.44 9.44 9.44 9.44 9.44 9.45 9.62 9.62 9.63 9.63 9.63 9.63 9.63 9.63 9.63 9.63
23 24	-39.9 -45	0.11 0.085	0.062 0.05
25	-50.1	0.065	0.052
26	-55	0.08	0.05

STEADY FREESTREAM, OSCILLATORY BLOWING

LIST OF REFERENCES

- Griswold, R. W., <u>Circulatory Jet Airfoils</u>, United States Patent 2,885,160, 5 May 1959.
- Davidson, I.M., <u>Airfoil Boundary Layer Control Systems</u>, British Patent No. 913754, 1960.
- 3. Dunham, J., <u>A Tentative Theory of Circulation Control</u> Applied to a Circular Cylinder, ARC 27 170, 1965.
- Cheeseman, I. C., and Seed, A. R., "The Application of Circulation Control by Blowing to Helicopter Rotors," <u>Journal of the Royal Aeronautical Society</u>, Vol. 71, July 1967.
- Cheeseman, I. C., and Seed, A. R., "The Application of Circulation Control Blowing to Helicopter Rotors," <u>Journal of the Royal Aeronautical Society</u>, Vol. 70, February and July 1966.
- Kind, R. J., <u>A Proposed Method of Circulation Control</u>, Ph.D. Thesis, Cambridge University, 1967.
- 7. Williams, R. M., and Howe, H. J., <u>Two Dimensional</u> <u>Subsonic Wind Tunnel Tests on a 20 Percent Thick, 5</u> <u>Percent Cambered Circulation Control Airfoil</u>, Naval Ship Research and Development Center, TN AL-176, 1972.
- 8. Englar, R. J., <u>Two-Dimensional Subsonic Wind Tunnel</u> <u>Tests of Two 15-percent Thick Circulation Control</u> <u>Airfoils</u>, NSRDC TN AL-211, August 1971.
- 9. Englar, R. J., Test Techniques for High Lift Two-Dimensional Airfoils with Boundary Layer and Circulation Control for Application to Rotary Wing Aircraft, NRSDC paper, May 1972.
- Harness, G. S., <u>An Experimental Investigation of a</u> <u>Circulation Controlled Cambered Elliptical Airfoil</u>, <u>Master's Thesis</u>, <u>West Virginia University</u>, 1970.
- 11. Oyler, T. E., and Palmer, W. E., <u>Exploratory Investiga-</u> tion of Pulse Blowing for Boundary Layer Control, Columbus Aircraft Division/North American Rockwell Corporation Report NR72H-12, January 1972.

- 12. Williams, J. R., et al., <u>Analysis of a Pulsing Wall</u> <u>Jet</u>, Report NR72H-325, Columbus Aircraft Division/ North American Rockwell, October 1972.
- 13. Walters, R. E., Myer, D. P., and Holt, D. J., <u>Circulation Control by Steady and Pulsed Blowing for a Cambered Elliptical Airfoil</u>, West Virginia University Department of Engineering Technical Report 32, July 1972.
- 14. Englar, R. J., <u>Subsonic Two-Dimensional Wind Tunnel</u> <u>Investigation of the High Lift Capability of Circulation</u> <u>Control Wing Sections</u>, DTNSRDC Report ASED-274, Naval <u>Ship Research and Development Center</u>, Bethesda, Maryland, April 1975.
- Kaman Aerospace Corporation Report R-1036-2, Contract N00019-73-C-0429, <u>Design Study of a Flight Worthy</u> Circulation Control Rotor System, July 1974.
- Lockheed Aircraft Corporation Report LR26417, Contract N00019-73-C-0435, Design Study of a Helicopter with a Circulation Control Rotor (CCR), May 1974.
- 17. Reader, K. R., and Wilkerson, J. B., <u>Circulation Control</u> <u>Applied to a High Speed Helicopter Rotor</u>, Reprint no. 1003, 32nd Annual National V/STOL Forum, American Helicopter Society, Washington, D. C., May 1976.
- Kind, R. J., "A Calculation Method for Circulation Control by Tangential Blowing Around a Bluff Trailing Edge," <u>The Aeronautical Quarterly</u>, Vol. XIX, August 1968, pp. 170-182.
- 19. Levinsky, E. S., and Yeh, A. C., <u>Analytical and Experi-</u> mental Investigation of Circulation Control by Means of a Turbulent Coanda Jet, NASA CR-2114, September 1972.
- 20. Gibbs, E. H., and Ness, N., <u>Analysis of Circulation</u> <u>Controlled Airfoils</u>, West Virginia University Department of Aerospace Engineering TR 43, June 1975.
- 21. Englar, R. J., Experimental Investigation of the High Velocity Coanda Wall Jet Applied to Bluff Trailing Edge Circulation Control Airfoils, Naval Ship Research and Development Center RN 4708, September 1975.
- 22. Cebeci, T., and Smith, A. M. O., <u>Analysis of Turbulent</u> Boundary Layers, Academic Press, 1974.

- 23. Sandborn, V. A., and Liu, C. Y., "On Turbulent Boundary-Layer Separation," <u>Journal of Fluid Mechanics</u>, Vol. 32, 1968, pp. 293-304.
- 24. Despard, R. A., and Miller, J. A., "Separation in Oscillating Laminar Boundary Layer Flows," <u>Journal of</u> <u>Fluid Mechanics</u>, Vol. 47, 1971, pp. 21-31.
- 25. Tsahalis, D. Th., and Telionis, D. P., "Oscillating Laminar Boundary Layers and Unsteady Separation," AIAA Journal, Vol. 12, 1974, pp. 1469-76.
- 26. Karlsson, S. F., An Unsteady Turbulent Boundary Layer, Ph.D. Thesis, Johns Hopkins University, 1958.
- 27. Miller, J. A., <u>Transition in Oscillating Blasius Flow</u>, Ph.D. Thesis, Illinois Institute of Technology, 1963.
- Despard, R. A., Laminar Boundary Layer Separation in Oscillating Flow, Ph.D. Thesis, United States Naval Postgraduate School, 1969.
- 29. Bauman, J. L., Development of a Control Valve to Induce an Oscillatory Blowing Coefficient in a Circulation Control Rotor, Master's Thesis, United States Naval Postgraduate School, 1976.
- 30. Bergh, H., <u>A New Method for Measuring the Pressure</u> Distribution on Harmonically Oscillating Wings, Proceedings of the 4th ICAS Congress, Paris, 1964.
- 31. Bergh, H., and Tijdman, H., <u>Theoretical and Experimental</u> <u>Results for the Dynamic Response of Pressure Measuring</u> <u>Systems</u>, National Aeronautics and Astronautics Research Institute NRL-TRF 238, Amsterdam, 1965.
- 32. Johnson, R. B., <u>A Technique for Measuring Unsteady</u> <u>Pressures</u>, A. E. Thesis, United States Naval Postgraduate School, 1969.
- 33. Banning, M. R., The Unsteady Normal Force on an Airfoil in Oscillating Flow, A. E. Thesis, United States Naval Postgraduate School, 1969.
- 34. Lancaster, E. J., Initial Unsteady Aerodynamic Measurements of a Circulation Controlled Airfoil and an Oscillating Flow Wind Tunnel, Master's Thesis, United States Naval Postgraduate School, 1977.

- 35. Englehardt, D., <u>Design of a Microprocessor System for</u> <u>Analysis of Unsteady Circulation Control Airfoil</u> <u>Aerodynamic Characteristics</u>, Master's Thesis, United <u>States Naval Postgraduate School</u>, to be published August, 1977.
- 36. Pickelsimer, B. M., <u>Data Reduction for the Unsteady</u> <u>Aerodynamics on a Circulation Control Airfoil</u>, Master's Thesis, United States Naval Postgraduate School, 1977.
- 37. Kind, R. J., and Maull, D. J., "An Experimental Investigation of a Low-Speed Circulation Controlled Airfoil," <u>The Aeronautical Quarterly</u>, Vol. XIX, May 1968, pp. 170-182.
- 38. Collins, M. A., and Simpson, R. L., Flowfield Prediction for Separating Turbulent Boundary Layers, Technical Report WT-4, Department of Civil and Mechanical Engineering, Southern Methodist University, February 1976.

INITIAL DISTRIBUTION LIST

		No. Copies
L.	Defense Documentation Center Cameron Station Alexandria, Virginia 22314	2
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940	2
3.	Department Chairman, Code 67 Department of Aeronautics Naval Postgraduate School Monterey, California 93940	1
۱.	Professor J. A. Miller, Code 67Mo Department of Aeronautics Naval Postgraduate School Monterey, California 93940	10
5.	Professor L. V. Schmidt, Code 67Sx Department of Aeronautics Naval Postgraduate School Monterey, California 93940	1
5.	Commanding Officer Attn: Mr. R. F. Siewert, AIR-320D Naval Air Systems Command Washington, D. C. 20361	1
	Commanding Officer Attn: Dr. H. Chaplin, Code AESD Mr. J. Wilkerson, Code AESD David W. Taylor Naval Ship Research and Development Center Bethesda, Maryland 20084	2
3.	LT Karl Aurel Kail, IV, USN 14243 Minorca Cove Del Mar. California 92014	1