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1. Introduction.

In all the fire distribution problems that we have considered
previously [14]-[19] an implicit assumption has always been that fire could
be instantaneously shifted from one target type to another. To illustrate,
let us recall a typical problem:

maximize {ry(T) - pxl('r) - qxz('r)}.
¢(t)

dx

subject to: s 0817.

dxz
i -(1-0)027-

5 S, a
dt byx; = Byxys L

X s%y,Y 2 0 and 0O0=<¢ =<1,
and with initial conditions
o o
xl(t-O) X xz(t-O) " Xy, y(t=Q) = or

In this problem ¢ (the fraction of the Y~-forces which fires at xl)
is the control (decision or policy) variable. The reader should note that
although the control must satisfy the condition 0 < ¢ £ 1, the rate of
change of ¢ is unrestricted so that ¢ can instantaneously change, for
example, from 0 to 1. Physically, this means that we are assuming
that the Y-forces can instantaneously shift fires as desired.

When one considers command and control problems in combat, the
above implicit assumption on ¢ (instantaneous jumps permitted) does not
seem to be a realistic one. A better assumption appears to be that

there is a limit to how fast ¢ can be changed. For example, consider a




o

homogeneous Y-force in combat against heterogeneous cneﬁy forces, A
command and control system directs the fire of the homogeneous Y-force
against particular enemy targets. The effectiveness of the command and
control system might be measured in terms of the speed and accuracy with
which units of the Y-force react to orders as to which type of enemy unit
at which to fire (see [13] for some similar ideas). This fire distribution
process may be described in terms of a distribution of fire variable ¢.
We have thus been led to consider target selection problems in which the
rate of change of the allocation variable is bounded (i.e. instantaneous
shifts in fire are not allowed). For reasons discussed below, we have
chosen to call such a situation "inertial combat."

Although problems in which curves are restricted to lie in a given
domain were considered in the classical calculus of variations as long ago
as 1831 [5] (see also [1]) and discussed by Weierstrass in his lectures of
1879 (see p. 395 of [1]), development of optimality conditions for optimal
control problems with state variable inequality constraints has been
accomplished only comparatively recently. As the author pointed out in
[19), state variable inequality constraints (SVIC's) are present in all
Lanchester~type optimal control/differential game problems. Recent activity
in developing necessary conditions of optimality for problems with SVIC's
apparently owes its origin to the work of Gamkrelidze (for an English
translation of his original work see Chapter VI of [11]). Gamkrelidze
points out that in many physical problems there are restrictions not only
on the control parameters but also on the state (phase) space. He (see
P. 263 of [11]) refers to piecewise continuous controls as "inertialess

controls,”" since such controls can, if need by, instantaneously jump from
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one value to another. Following Gamkrelidze then, we use the term inertial
combat to refer to a target selection problem in which the rate of change
of the distribution of fire is bounded.

In [17] the author first applied the theory of SVIC's (the approach
of Gamkrelidze [11]) to an allocation problem in the Lanchester theory of
combat. In this first application little more than developing optimality

conditions on constrained subarcs was done. In [19] we introduced a more

convenient approach to first order SVIC's (the approach of Speyer (see [6])) G

and used theory (including corner conditions gnd boundary conditions for

the adjoint variables (see also [21])) to completely solve a problem

similar to (1). The paper at hand further extends such results: we con-
sider a problem with a second ordct* SVIC (as well as first order SVIC's).
This application is possible because of theoretical results recently obtained
by the author who extended Gamkrelidze's multiplier condition [11] (see also
[20]) to a psh order SVIC [22] (see also [21]). The reader can find a
further discussion of the theory of SVIC's in [17] and [19] (see also [6]

and [10]).

This paper is organized in the following fashion. First, we discuss
the optimal control problem (optimal fire distribution in the presence of
command and control limitations). Then, the basic necessary conditions
of optimality are developed for the problem. Next, the synthesis of the
extremal fire distribution policy is outlined in several cases. The

determination of the optimal fire distribution policy is discussed, and

.This terminology was apparently first cgincd by Bryson, Denham, and Dreyfus
(3]. They say that a problem has a ptl order SVIC when the pth time
(total) derivative of the state-variable constraint is the first derivative
to explicitly contain the control variables.

B0 L 5T g




a more general model considered. Finally, we discuss the insights gained
into the optimization of combat dynamics from our study of the problem at

hand.

2. The Fire Distribution Problem in the Presence of Command and Control

Limitations.

Accordingly, we consider the following problem:

maximize {ry(T) - pxl(T) - qxz(T)} with T
u(t)

1 specified,

dx

[

subject to: —¢nly.

.
[

a.
»®
(]

- -(1-¢)a2y.

- blxl - bzxz,

& 5l 8]
|

= u, (2)

.
"

X,,X,,y 20, T<T,, 0<¢=<1, and - £usx .
" Sl 1

and with initial conditions

1, (€%0) = x7,  x,(£=0) = x7, y(t=0) = y;, ¢(t=0) = ¢,

where all symbols are defined in the next section and RL’RU >0, It
should be noted in the above model it is no longer possible for ¢ to
instantaneously change from, for example, 0 to 1 as it had been for
(1). As we discussed in the introduction, this is how we incorporate
command and control limitations into our model.

We will focus primarily upon the development of the basic necessary
conditions of optimality for (2) and the synthesis of extremal control from

—— . .
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these. As discussed more thoroughly in s.ction.a, it is not practical
for computational reasons to completely carry out the determination of
the optimal control. Thus, for this more limited goal of characterizing
the optimal fire distribution policy the nature of the planning horizon
(terminal target set or prescribed duration) doesn't make any difference,
and we will be purposely vague on this point.*

The reader should note that the control variable in problem (2) is

u, while ¢ (the control variable in problem (1)) is now a state variable.

Hence, the restriction 0 < ¢ <1 41is now equivalent to two (first order)
SVIC's. When we use the approach of Gamkrelidze (see Chapter VI of [11])
(as modified by Bryson et al. [3] (see also [6])), a SVIC such as

C(t,xi(t)) < 0 1is replaced by the point constraint

c( ) =0,

tentry'xi

and the control inequality constraint on the state boundary (C=0)

dC
it (t,xi.u) <0 for t € [t I

entry'texit

Thus, for ¢ - 1 £ 0, we treat boundary arcs when ¢ = 1 by considering

‘(tontry) = 1 and then requiring
ds o
-k £0 for t € [tentry‘texit] when ¢ -1 =0, (3)

and for -¢ < 0, we treat boundary arcs when ¢ = 0 by considering

’(toncry) = 0 and then requiring
-dA-- - -
at ug0 for t € [tcntry’tcxic] when ¢ = 0. (4)

*
However, see [14]-[18] for the type of considerations (i.e. enumeration

of all possible terminal states) required for developing a complete solution
to such a problem.




To avoid being encumbered by too many symbols, we will consider
only one of the two SVIC's X)X, 2 0. Clearly, we lose no generality in

considering x, > 0. In this case, we have

1
C(t,xi) e % <0, (5)
dx
dC Lo
dt (t’xi) .- dt ¢‘1Yn (6)
d?c
pr 4 (t,xi,u) = ua,y - ¢al(blx1+b2x2). (7)
On a constrainted subarc on which xl(t) = (0 for :entry £t< texit’
the SVIC is replaced by the point constraints
C(tentry’xi) il xl(tentry) * % (8)
and
dx
dc 1 & &
dt (tentry’xi) T dt (tentry) ¢(tentry)aly Ry ®
and the control inequality constraint
d?c
s (t,xi,u) = ua,y - ¢al(b1x1+b2x2) <=0 for t € [tentry’texit]' (10)

Thus, x1 =2 0 1is a second order SVIC. Clearly, when xl(t) = (0 for a
finite interval of time, by (6) we must have ¢*(t) = 0 (since y > 0)
and then (7) yields u*(t) = 0, where we have considered the state

equations (2).

3. Notation.

The symbols which are used in this paper are defined as follows:

‘1'.2’b1’b2 = constant attrition-rate coefficients,

dc

de ’

(é)(t ) =
e
t-t.

s A ot B AR .




F(¢,u) = rate of change of fraction of Y-fire directed at X

1 in more
general redistribution of fire model,

H = Hamiltonian functionm,
J = criterion (return) functional = ry(T) =~ pxl(T) - qxz(T),

P»4,r = utilities assigned to surviving Xl, X2 and Y forces
respectively,

pi(t) for i = 1,2,3,4 = dual variable corresponding to xi(t)
(x5(8) = y(8), x,(£) = ¢(e)),

RL’RU = lower and upper bounds on magnitude of rate of change of

(i.e. -RL sus< RU),

t = time after beginning of battle,

Bt time of entry to constrained subarc,

t; = 1lim ¢,
| g
e

t<t
e

t: = time of entry to constrained subarc with ¢(t) = 0 for t: sts t:
(similarly for t;),

Ny ™ time of leaving constrained subarc,

t' = time at which u*(t) switches from RU to —RL with 0 < ¢ < 1;

defined by pa(t-ts) =0,

|
itl = time at which xl is annihilated, i.e. xl(tl) =0,

\r = time at which battle ends,

’

&1 = maximum possible duration for battle, i.e. T < Tl’
|

ﬁ = control variable for redistribution of fire,
\

v\- v(t) = a,(-p (£)) = a,(=p, (1)),

\,
\
|
\

e

-




W = Bellman's optimal value function,

]
xl.xz,y = combatant force levels; with initial values xi,xg,yo.

6,61,62 = positive constants,

nl(t)(nz(t)) = multiplier corresponding to state variable inequality
constraint ¢ <1 (¢20),

u(t) = multiplier corresponding tc state variable inequality constraint

x, 2 0,

Vo " multiplier corresponding to intermediate equality constraint x,(t ) =0

used to (formally) handle entry to a constrained subarc with -
x,(t) = 0.
1

vy for 1 = 1,2,3 = multiplier corresponding to state variable terminal
inequality constraint xi(T) 20 (x3(T) = y{T)),

va(vs) = multiplier corresponding to state variable terminal inequality
constraint ¢(T) <1 (&(T) 2 0),

¢ = fraction of Y-fire directed at Xl’

t = "backwards time'" from the end of the battle; defined by 7 =T - t,
i.e. the time remaining before the end of battle,

t, = "backwards time'" of the first change in the sign of the switching
|
function v, 1i.e. v(t-T-tl) = 0,

4. Characterization of an Optimal Fire Distribution Policy.

Using Gamkrelidze's approach and considering (3), (4), (8), (9),

and (10), we have that the Hamiltonian 1is given by [2], [6], [1l1]
H(t,xi.pi.u) = -plgaly - pz(l-o)azy - p3(b1xl+b2x2) + LA
- nl(t)u + nz(t)u - u(t){ualy-¢al(blxl+b2x2)}, (11)

where




=0 for ¢ <1, =0 for ¢ > 0,

NOR ny(®

20 for ¢ =1, 20 for ¢ =0,

and

= 0 for x> 0,
u(t) <

20 for x = 0.

We have adnpted above the following correspondence between state and

dual variables:

state variable dual variable
xl Pl’
xz Pzi
¥y Py
$ Py

Again, to avoid being encumbered with too many symbols, we have only

considered one (i.e. x, > 0) of the two SVIC's 15X, 2 0. The other

1

SVIC (i.e. X, 2 0) is handled in a similar way. The adjoint system of

differential equations for the dual variables is

1 aH
- el it Tl g
dp

2 3H
T bypy - ult)eab,,
SEQ T a + (1-¢)a +u(t)a, u*
dt ay - *41P1 o S ik
SE& o B (a,p,~a,p,)y = u(t)a, (b,x,+b.x,)
dt ¢ S B L L SN b e Tl T T s Ll

The boundary conditions at t = T for the adjoint (or dual) variables

may be written

Pi(EsT) = =p + V), py(e=T) = =q + v,, p,(t=T) = r + v,, p,(tsT) = v, = v,

(12)

(13)

(14)

(15)
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where vy for 1 =1,...,5 are undetermined multipliers which require
the specification of additional information to be further delineated. To

*
this end, let us consider the case in which Y loses with T < T (i.e.

1
T defined by y(T) = 0). From the transversality condition H(T,xi(T),

pi(T),u*(T)) = 0, we obtain p3(T) = 0. Then, we have [2], [21]
pl(T) =Pt v, Py(T) = =g+ vy, P(T) =0, p,(T) =v, -vg, (16)

where
= 0 for xi(T) >0,

for 4= 3.2 v 20 for xi(T) = 0 but xi(t) >0 for t < T,

i
unrestricted when xi(t) = (0 for t1 sts=<T
with t < T,

and

=0 for ¢(T) > 0, =0 for ¢(T) <1,

v A"
"<zo for $(T) = 0, 5{20 for ¢(T) = 1.

When X 9%9,Y > 0 and 0 < ¢ <1, the (extremal) control law is

determined by the maximum principle. Hence, we consider

maximize H(t,xi.pi,u).

-RLSuSRU
and this yields

R,, for p,(t) > 0,
uk(t) = { . 4 (n

-RL for pa(t) < 0.

*

Other cases are handled in a similar manner. See [19] for a problem in
which the boundary conditions for the adjoint variables are worked out for
all the battle's end states.
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We must further investigate the possibility of singular subarcs (7] (also

see Chapter 8 in [2]) on which n, 0 for a finite interval of time (so

du
M

that all its time derivatives vanish). The condition that = 0 yields

that on a singular subarc we must have

P‘(t) = 0. (18)

d (9H
The condition o= (au) = 0 then ylelds

alpl(t) = nzpz(t). (19)

Froceeding to the next time derivative, we would have on a singular subarc

on which (18) and (19) hold that
d? (3H
3c7 (G = YPa(aby=aby). (20)

From (20), we see that a singular solution is impossible, since it is
2
impossible (in general) to have E%z- %%) = 0 for a finite interval of

time.

4.1. Necessary Conditions of Optimality on Constrained Subarc for ¢.

On a constrained subarc on which ¢(t) = 1 for te <sts tl the

control is determined by %% = 0 and hence

u*(t) = 0 for t, <t < t,. (21)

1 2

The multiplier nl(t) is determined by the condition %%-- 0 and hence

ny(£) = p(E). (22)

The requirement that nl(:) 2 0 yields that on the constrained subarc we

must have
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pb(t) = 0. (23)
Differentiating (23) and combining with (15), we obtain
ny(e) = y(a;p,-a,p,), (24)
so that Gamkrelidze's condition ﬁl(t) £ 0 [11] (see also [20]) is only
satisfied on a constrained subarc with ¢ = 1 when
al(-pl(t)) z a,(-p(t)), (25)

which the reader will, of course, recognize as a result for the correspond-
ing "inertialess" combat problem (see [14], [19]). Denoting the time of

an entrance corner by te and that of an exit cormer by tl, the corner
conditions (see [17] and [19] for further discussion, especially for
corners interior to the state space (which are not explicitly discussed

here)) yield that at an entrance corner we have [10]

p,(t]) = pi(t:) for 1 =1,2,3, (26)

and
Pa(t;) =0 = pb(t:) - nl(t:), (27)

or
P, (ED) = n (D), (28)

where t: denotes a left-hand limit. The reader should note that (28)

is in consonance with (22). Furthermore, at an exit corner we have
- -
pi(tl) - pi(tl) for i = 1,2,3,4. (29) ?

Considering either nl(t;) =0 or H(t;) = H(EI), we find that
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p,(t)) = 0 = p,(c}). (30)

Considering (24), (28), and again nl(t;) = 0, we see that when there

is an exit from the constrained subarc at t = ¢t then (28) yields

1'
t
+ + ¢
Palty) = ny(t) = Y(t){lzpz(t) - llpl(t)}dt 2 0. (31)
t
e
On a constrained subarc on which ¢(t) =0 for t . stst

1 2
details are similar to the above with the control again given by (21),

the

since again %% = 0. Determinations similar to the above yield

nz(t) = -p,(t), (32)

and that it is necessary on the constrained subarc that

94(:) <0, (33)

and

al(-pl(t)) < az(-pz(t)). (34)

the latter condition (34) being a consequence of Gamkrelidze's multiplier
condition ﬁz(t) < 0. Corner conditions similar to (26) through (30) also
must hold. When there is an exit from the constrained subarc at t = tz,
we find that

t
L

94(c:) - -nz(t:) - I y(t){uzpz(:) - alpl(t)}dt < 0. (35)
t
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4.2, Necessary Conditions of Optimality on Constrained Subarc for X, -

On a constrained subarc on which xl(t) = 0 for te £t<T the

d2x
control is determined by —EE% = 0 which (along with the requirement that
dx
1-
I 0) yields
u*(t) = 0 for t,<ts T, (36)
and
¢(t) = 0 for t,sts i (37)
The multiplier u(t) 1is determined by the conditiomn %% = 0 and hence
p,(t) = u(t)a;y = 0, (38)
or
pa(t)
u(e) = - (39)
a,y

Differentiating (38) with respect to time and combining with (15), we
#
obtain

. b
u(t) = ;I (‘1P1"2P2)' (40)

Further differentiation and combination with (12), (13), and the condition

¢(t) = 0 yields that
x p3(t)
u(t) = —‘1—' (albl-azbz) = (41)

The necessary condition of optimality on a constrained subarc of a second
k
order SVIC (22] 1s that (-D* 4230 for k=0,1,2, and hence consid-

dt
ering (39), (40), and (41) we must have

.Thiu result was obtained after cancellation of a term y(t). Hence, a
different argument is required when y(t) = 0. This latter condition,
however, only occurs at most at a single isolated point t = T. See [19]
for a similar occurrence and further discussion.
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Pa(t) 20, (42)
nl(-pl(t)) 2 nz(-pz(t)). (43)
and ‘lbl 2 azbz, (44)

since it is readily shown that ps(t) >0 for t < T. It is of interest
to note that (43) and (44) have previously been shown ([17] to be necessary
conditions of optimality for having x, = 0 for a finite interval of time
in the inertialless combat problem (1).

As in (14], [19] let us make the nonrestrictive assumption that
2131 > aZEQ' This then implies that it is non-optimal to have x, = 0
for a finite interval of time, since (44) must hold with the sense of the
inequality reversed on such a constrained subarc.

For a second order SVIC C(t,xi) = 0, we must have at an entrance
corner to a constrained subarc [10]

- + aC

i

$ 4 o
e) - u(te) 3;: {(C)(t.)} for 4 = 1. 0000 (45)

and
H(ED) = B(ED + vy 32 (e + u(e]) 7= (O (e), (46)

where [6] Vo 2 0. Recalling (5) and (6), we find for the problem at hand

at an entrance at t = :‘ to a constrained subarc on which xl = 0 that

the following hold

py(e) = vl(t:) + Vg (47)
91(::) - 91(‘:) for 1= 2,3, (48)

’6(‘:) - pb(t:) - u(::)nly. (49)

—
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From (38) we have
P, (th) = u(tha,y, (50)
so that (49) yields

p,(t) = 0. (51)

Furthermore, the corner condition (46) (which reads H(t:) = H(c:)) is
satisfied when (48) and (49) hold. It should be clear that no trajectory
can leave a constrained subarc on which x = 0 after entry. Hence, we
omit discussion of the corner conditions at exit corners.

It will now be shown that we must have Vo > 0. Considering the
nonrestrictive assumption ‘lbl > ab,, it should be clear that we must
have xl,xz,y,o >0 for 0< t < te (we might have ¢(t=0) = 0). Then
¢(t) >0 for 0 < t < t, and ¢(t) = 0 for t st with ¢(t) being

continuous imply that u*(t;) - -RL, and thus by (17) and (51)
p“(t) <0 for t € (te-é.te) with pé(te) =0, (52)

where & > 0 1is a suitably chosen constant, and we have used the fact
that it is impossible for p‘(t) = 0 for a finite interval of time (this
was established when we showed the impossibility of a singular solution).
Expanding Pb(t) for t < te in a Taylor series about t = ::, we find
that
dpa .)
() o (8) = (-p,(t)) > O, (53)

dp
~ 4
where t € (t,t‘). Hence, - (t¢) >0 for all t € (t‘-él,te) where

0 < 61 £ §. Recalling (15) and that y > 0, we have

alpl(t) > -2p2(t) for t € (‘."1".)' (54)

e
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so that in the limit we have

alpl(t.) 2 nzpz(:.). (55)
Next, we show that we must have

‘1’1(‘.) > .ZPZ(ta)' (56)

The proof is by contradiction. Considering (55), we assume that alpl(t;)
- azpz(t:). Again expand p,(t) for t <t  1in a Taylor series about
t = :;. Recalling (15) and using the above assumption and (51), we find
that for t < te

(t~t)2 d?p, _

P, (t) = e et — ol 2 (57)
where t € (t,te). Using the state and adjoint equations, we readily
compute that

dzp6
Tz (8) = ypy(t)(ajb,-asb,) - {a;p, (t)-a,p, ()} (b, x,+b,x,). (58)
By the continuity of the dual variables between corners, t can be chosen
€(t.-6.c‘) such that for all T € (:.:‘) we have
dzpa
= ® >0,
and hence by (57) we have a contradiction to (52). Thus, (56) must hcld.

Next, we show that we must have
+ +
.lpl(t.) < ‘zpz(t.) . (59)

This follows immediately from 93(‘) >0 for t < T =i(t) >0 for

t, €t <T. Then u(t=T) £ 0 w u(t) < 0 for t, <t <T, and reference

_,‘_‘,___v

to (40) yields the desired result (59). ® |
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The proof that v, > 0 now readily follows. First, we observe

0
that (48), (56), and (59) yield

a Py (£]) > a,p,(t) = a,p,(£L) > a;p, (€1, (60)
or

p,(tD) > By (ED), (61)

> 0 by (47). Moreover, Vv is chosen so that ¢ = 0

whence follows v 0

0
precisely when xl(te) = 0.*

5. Synthesis of Extremal Policy when x. (T),x (T) > 0.
- &~
In this and the next two sections we synthesize the extremal fire
*k &
1 (the

same case for which the boundary conditions for the adjoint variables were

distribution policy for all cases in which Y loses with T < T

given in Section 4). By the synthesis of the extremal control we mean the
explicit determination (using the necessary conditions of optimality) of
the time history of the extremal control from initial to terminal time
(see [17]-[19] for further, more extensive discussiomn).

The basic idea is to trace extramals*** backwards from a given

terminal state in such a way as to guarantee the satisfaction of the initial

*Thil multiplier vy arises because the system loses two degrees of freedom
when it enters the constrained subarc (see pp. 411-412 of [10]). For a first
order SVIC, the value of the multiplier u(ty) at the entrance corner accounts
for the loss of one degree of freedom by the system upon entering the con-
strained subarc. For a second order SVIC, there are two degrees of freedom
lost this way (for the problem at hand, x; = 0 and ¢ = 0O on the constrained
subarc), one of which is accounted for by u(t:).

Rk
Other cases are handled in a similar manner. See [18] and [19] for problems

in which this is done for every end state of battle.

By an extremal we mean a path (or trajectory) on which the necessary condi-
tions of optimality are satisfied at every point in time.

S
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conditions. Thus, it is convenient to introduce the 'backwards time"

variable tv defined by v = T - t. We observe that é% = - g% but
2 2
E%z-- a%z. It is also convenient to define
v(t) = a;(=p,(£)) = a,(=p,(£)), (62)

so that differentiation and combination with (12) and (13) yield

%% = -p,(t) (a by -a,b,) . (63)

Then our nonrestrictive assumption that albl > b2 yields that

"
dv
ac (t) <0 forall t < T, (64)

since it is easily shown that ps(t) >0 for t < T. Using (62), it is

convenient to write (15) (for X, > 0) as
dpa
F = - yv, (65)
and hence ™
d“p
d
‘dei = (b1x1+b2x2)v -y a% (66)

In synthesizing an extremal there are two cases to consider:

Case (a) a,pP = a,q,

Case (b) a;p < a,q.

For Case (a): a,p 2 a,q, it 1s convenient to first observe that

a Taylor series expansion of pb(r) about T =0 yilelds for 1 20

dp 2 d%p
PA(T) = pa(t-o) + 1t 3;3 (t=0) + %T'E?Tﬁ (1=1), (67)

where T € (0,t). In this case we have
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v(t=0) = a;p - a,q 20, (68)
so that considering (64) it is readily seen that
v(t) >0 for t >0, (69)

and hence (65) and (66) yield

dpA
¢ 3 (t=0) = y(T) (alp-azq) =0, (70)
since y(T) = 0 and
dzpa
= (t) >0 for 1 > 0. (71)

Furthermore, there are three subcases to be considered when
a,p 2 a,q:

Subcase (al) ¢(t=T) = @,
Subcase (a2) 0 < ¢(t=T) < 1,
Subcase (a3) ¢(t=T) = 1.

We will now show that Subcase (al) is not consistent with an optimal policy

and work out details for the other two cases.

Subcase (al): ¢(t=T) = 0 when ap za.qg.
Since ¢(t=T) = 0, (16) yields that pa(t-O) =V, 2 0. Then (67),

(70), and (71) yield that
pa(t) >0 for 1t > 0. (72)
If the system would be on a constrained subarc for a finite interval of

time, 1.e. ¢(t) = 0 for t‘ £t <T, then (72) is a violation of the

necessary condition of optimality (33). (We also note that Gamkrelidze's
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uo%cllnty condition ﬁz(t) < 0 1is violated, since by (32), (65) and (69) 4
we |have ﬁz(t) = yv(t) > 0 for te =t <T,) If we were not on a con-

.télined subarc for a finite interval of time, then we must have  ¢(t) > 0

for) 0 < t < § with ¢(1=0) = 0. This implies that u*(t) = Ry for

l

0 S\t < 61 < 6, and this is impossible by (17) and (72). Hence this
1

casé is inconsistent with an optimal policy.

H Subcase (a2): 0 < ¢(t=T) < 1 when ap 2 ang-.

3 Since 0 < ¢(t=T) < 1, (16) yields pé(r-o) = 0, and (72) again

folles. Then by (17) and (72) we have

|

'% uk(1) =R, for 0=<tsT. (73)
Dcno#ing ¢ (t=0) by 00' we then have L + RUT = ¢(t=T) < 1, so that
this‘case happens when T < (1-¢0)/RU. The extremal policy is then given

by

u*(t) = RU for 0 £t <T< (1-¢o)/RU. (74)

For longer times we must go to the next subcase.

Subcase (a3): ¢(t=T) = 1 when ap = ag.

Since ¢(t=T) = 1, (16) now yields pa(t-o) = —vs < 0. It may be

shown that a contradiction arises unless i e 0. Hence, we must have

pa(tFO) =0, If ¢(t) <1 for T -6 <t <T where 6 > 0, then the

dcvcﬁopmen: of the previous subcase holds. If we are on a constrained
subarc with ¢(t) = 1 for t,sts T, then by (24) and (62) we have
ﬁl(t) = -~yv(t). Hence Gamkrelidze's necessary condition ﬁl(t) £0 is
satisfied by (69). Thus, we can remain (in backwards progression at the
end t = T) on the constrained subarc until we have to get off to meet

the initial condition ¢(t=0) = ‘0' As we work backwards and leave the
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constrained subarc (but in forwards time enter at te), the corner
condition (27) and a Taylor series expansion of pa(t) about t = t;

yield for 0 <t < t,

dpb (te-t)2 d?p =
pa(t) = '(te-t) - (t'te) sdescr S g4 (t=t), (75)

where T € (t,te). Recalling (65), (69), and (71), we see that p“(t) =20
for 0<tx te so that the rest of the analysis is similar to that of

the preceding subcase. Hence
when T 2> (l-¢0)/RU, we have
for 0<t < (1-¢0)/&J, uk(e) = R, and ¢*(t) = ¢, + R;t,

for (1-¢0)/RU <ts<T, u*(t) =0 and ¢*(t) = 1. (76)

For Case (b): a;p < a,q, we have that (recalling (62))

v(t=0) = a_p - aq =0k (77)

bt

From (64) we have %% (t) >0 for T >0 with v(t) a continuous
function (see [2] and above corner conditions at boundary of state space
(26)), and thus at some (backwards) time v(t) must become zero. Denote

this "backwards time'" as Tt Thus v(r-tl) = 0. There are, again,

1

three subcases to be considered when ap < azq:
Subcase (bl) ¢(t=T) = 0,
Subcase (b2) 0 < ¢(t=T) < 1,

Subcase (b3) ¢(t=T) = 1.

Analysis of these subcases is similar to that given for Case (a) with

Subcase (b3) being impossible.
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Let us now observe (recalling (25) and (34)) that in order to
satisfy Gamkrelidze's condition on constrained subarcs with ¢ = 0 or

¢ = 1, we must have
v(t) 2 0 when ¢(t) =1 for a finite interval of time, (78)

and v(t) < 0 when ¢(t) = 0 for a finite interval of time. (79)

We have previously noted in Section 4.1 the correspondence of these results
to those for "inertialless'" combat. We now consider the case when

$(t=T) = 0. Let tz denote the (forward) time when the system enters

a constrained subarc with ¢ = 0; similarly té denotes the time of

leaving one with ¢ = 1. We further assume that
#(t) =0 for ¢ =t =sT. (80)

We now prove that it is impossible to have v(t-tZ) = 0; 1in fact,
v(t) must be < 0 before ¢= 0. We begin by observing that ¢(c-t2) =0
with © < ¢(t) < 1 for t: i e tz where & > 0. Hence, u*(t) = —RL

o o
and pa(t) <0 by (17) for te - 61 L te where 0 < 61 < &, Con

sidering a Taylor series expansion about ¢t = t:_ and (27), (65), and (66),

o
e

we have for t < t

(£%-t)2

p,(t) = (t:-t)y(t:)v(t:) + ——e—z— {(byx,+b,x w® - y(® j—" (1}, (81)

22 &

where Tt € (c,t:). Considering that ¢t < tz. (64), and (81), it is
easily seen that v(t:) 2 0= pa(t) > 0 for t. & tz, which is impossible
by the above. Hence,

v(t-tZ) < 0. (82)

o
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o
t

e
Now, it is readily shown that for t! <t < t:, pa(t) - f y(s)v(s)ds

2
so that recalling (30) ¢
¢
1+ .
P (tg ) = y(s)v(s)ds. (83)
t

Then, the continuity of wv(t), (64) and (82) yield that v(t;) > 0. Denote

the time at which v=0 as T - Tl so that v(t-T-tl) = 0. Then since
t

1y(s)v(s)ds, it follows that pa(t) < 0 for

L
té <t < t: and hence by (17)

we also have pa(t) = f
t

uk(t) = -R, for ci <t < :Z.

B L b 1 o
It follows that te ty l/RL' The times ty and t, are determined

by the conditions

T - Tl € (ti,t:) where v(t-T-rl) =0, (84)
and t:o
e
J y(s)v(s)ds = 0, (85)
1
%

which may be written as

T—Tl to
[ y(t)v(t)dt = - f y(t)v(t)dt. (86)
:i T-1,

The relationship of the times ti. T-tl. and t: to the time histories

of ¢(t) and v(t) are shown in Figure 1.
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t=t

e

¢=1

4=0 t-T-11

v=0
time, g-

t=0

Figure 1. Relationship of ti.

to Values of ¢ and v.

o
T-tl, and te

Omitting further details, we reach an important conclusion: for the
"inertial" combat (2) one begins to redistribute fire earlier in forward
time (anticipating changes in target priority) than in the corresponding
"inertialless" case (l1). Again, the reader is referred to Figure 1 for
motivation of this statement.

The above considerations on tracing extremals backwards from the
various terminal states of battle are summarized in Table 1. This table
shows from which of the end states extremals lead. An entry like 'possible
(but not too likely)" or “possible (but unlikely)" means that the domain

*
of controllability for extremals to that end state is a 'rather small"

#By the domain of controllability for extremals to an end state we mean the
set of points in the initial state space from which extremals lead to the
terminal state.
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Table I. Possible End States of Battle for

Extremals when xl(T),xz(T) > 0.

¢(T) = 0
(on constrained subarc
for finite time interval)

$(T) = 0
(but ¢(t)>0 for T-8<t<T)

0 <¢(T) <1

$(T) = 1
(on constrained subarc
for finite time interval)

$(T) = 1
(but ¢(t)<l for T-6<t<T)

ap 2 ay e e
possible
impossible (and quite likely)
impossible possible
(but unlikely)
possible possible

(but not too likely)

(but not too likely)

possible impossible
(and quite likely)
possible impossible

(but unlikely)

RSP

- ————— s
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subset of the initial state space in contrast to an entry like '"possible
(and quite likely)" for which the corresponding set of initial conditions
is "much larger." It has not been possible to develop explicit formulas

for these domains of controllability (as done, for example, in [14], [19]).

6. Synthesis of Extremal Policy when xlgj) =0 and x.(T) > 0.,
s

There are two cases to consider:
Case (a) on constrained subarc for finite interval of time,

Case (b) xl(t) >0 for £ < T.

For Case (a): 51(::) = (0 for tl =st<T with £, < T, 4t is

clear that we must have ¢(t) = 0 for tl <t £T so that integration

of the adjoint equations (13) through (15) and (63) with the boundary

conditions (16) yields that for t. <t < T we have

1
pz(t) = -q coshv‘azb2 (T-t), (87)
p3(t) = q lgf sinh v’azb2 (T-t), (88)

v(t) = v(T) + T’t (a;b,-a,b,) {cosh /azbz (T-t) - 1} with w(T) 20, (89)

the requirement that v(T) > 0 being a consequence of (43). We also have

by (40) and (62) that

T
p(t) = u(T) + ﬁL-J v(s)ds with u(T) 2 0. (90)
1

Recalling our nonrestrictive assumption that 3131 > 3232 and (39),
consideration of (89) yields that
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p‘(t) >0 for t, £t < T with pa(t-T) =0,

1

and v(t) >0 for t, £t < T with v(t=T) > 0.

1

Hence, we see that the necessary conditions of optimality (42) through
(44) are always satisfied on the constrained subarc. Thus, there are no
restrictions on when such an extremal can occur.

We next show that we must have v(tI) < 0. The proof is by con~-

and xl(t-tl) =0

tradiction. First, we observe that xl(t) >0 for t < tl

imply that

* = - -
u*(t) RL for tl <t < tl where & > 0. (91)

I1f we had v(::) 2 0, then (63) and the fact that p,(t) > 0 for t < T
(which follows from (88)) yield that wv(t) > 0 €for ¢t < tl. This yields

pa(t) >0 for t < t, by (65) and the condition (51) that pa(tz) = 0.

B
However, (91) is impossible if pa(t) > 0,
It should be noted that v(tI) < 0 and v(tI) > 0 guarantee that

vy * 0," eince from (A7); '¢A8), wnd €62) Av ‘followe ‘that

v * % (v(e]) = (D).

It should be recalled that vy is chosen so that ¢ = 0 when xl(tl) = Q,
o o
The value of Vo depends on X130 X5 Yoo 00, and Tl' The multiplier
2 is unrestricted and is chosen so that Vv(T) = (alp-azq) - av, 2 0.
Considering the corner conditions (47), (48). and (51), we have shown

that

-
This condition was shown to be necessary for optimality in Section 4,2.
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Py(t)) < 0, py(t)) <0, p3(t1) >0, p,(t)) =0, v(t)) <0. (92)

Further details for 0 < t < tl in the backwards synthesis are s:milar
to those given for Case (b) in Section 5 and are therefore omitted. Some
possibilities for the synthesized extremal control are shown in Table II.
Other variations in the form of the synthesized extremal control are

possible, and the reader should have no difficulty in identifying them.

For Case (b): 511;) >0 for t < T, there are three subcases to

be considered:
Subcase (bl) ¢(t=T) = 0,
Subcase (b2) 0 < ¢(t=T) < 1,

Subcase (b3) ¢(t=T) = 1.

Further analysis yields the results shown in Table III. This shows from
which of the end states extremals lead. We will now sketch how these
results were obtained.

Subcase (bl): ¢(t=T) = 0.

Since ¢(t=T) = 0, (16) yields that pb(r-O) =V, = 0. It is clear
that we must have ¢(t) >0 for t € (T-§,T) for some & > 0. Hence,

by (17) and (20)
uk(t) = -RL for t € (T-Gl,T) c (T-4,T). (93)

We now prove that p4(1-0) = 0. The proof is by contradiction. If

Pb("o) > 0, then pa(c) >0 for t € (T-GZ,T) and this contradicts (93)

.To astablish this result one makes the identification p, (t) = 5;3%27.
where W denotes Bellman's optimal value function. It follows 1

that p.(t) < 0, since addition of more X, at t cannot help but reduce v
Y's optimal return. A justification of thla argument is given in [18]. ;
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Case (1).

time, ¢t
t=0

O<e<e!
e

:-:;'
'+
tet,

1 1
t.<t<t

2
tee}
"’

L
:<t<T-11
:-T-tl
1-11<E<;1

t=t]

¥
t't1

£, <e<T
teT

t

Case (2).
time, ¢t
t=0
0<t<t.

t.<t<r-rl
t-T-fl
1-11<t<t1

t-t;
t-t{

:1<:<r

t=T

Case (3).
time, ¢t
t=0
0<c<T-11
t'T'Tl
t-gl<:<:1
tet)
tot]
t1<t‘f
t=T

T

'-.‘.

e A

B, t)
>0
>0

0
>0
>0

0

0
<0
<0
<0

0
>0
>0

0

B t)
>0
>0

0
0
<0
<0
<0
0
>0
>0
0

<0

>0
>0

w(t)
>0
>0
>0
>0
>0
>0
>0
>0

0
<0
<0
>0
>0
20

v(t)
>0

>0
>0
>0
>0

0
<0
<0
>0
>0
20

v(t)
>0
>0

0
<0
<0
>0
>0
20

uk(t

o(t)
O=$<1
0<¢<1

1

1

1

1

1
0<¢<1
0<¢<1
0<¢<1

© O ©

O=¢<1
O<¢<1
O<¢=l
0<¢=xl
O<¢<1
O0<¢<1
0<¢<1

o © o

O<¢£l
O<g<l

0<¢<1
0<¢<1

©c © ©

(T) =0
and xz(T) >0

30

Some Possibilities for Synthesized Extremal Controls and
Collateral Information for Case in which x
Constrained Subarc for Finite Time Interval}
(Must Have v(T) 20).

(On

x,(8)
>0
>0
>0
>0
>0
>0
>0
>0
>0
>0

o O © o

© © © o

3&1&1
>0
>0

>0
>0

©c © ©
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Table III. Possible End States of Battle for
Extremals when xl(T) = 0 (But xl(t) >0
for t < T) and xz(T) > 0.

a,p 2 a,q a;p < a,q
$(T) = Q
(on constrained subarc impossible impossible
for finite time interval)
$(1).» 0 possible possible
(but 6(£)>0 for T-8<t<T) (but very unlikely) (but very unlikely)
possible possible
0<¢(T) <1 (but not too likely) (but not too likely)
T) =1
(on conzér:incd subarc posaibie 1Epepsiple
for finite time interval) (and quite likely)
") =1 possible impossible
(but ¢(t)<l for T-8<t<T) (but unlikely)
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by (17). Furthermore, we must have v(T) < 0. Again, the proof is by
contradiction. First, we remark that by considering pJ(t) = 3;%%7 (see
[18] for further discussion) we obtain that p3(t) >0 for t < T. Thus,
by (63) we have %% (t) >0 for T > 0. If we had Vv(T) = 0, then we
would have v(t) > 0 for t < T, and hence pa(t) >0 for t € (T-GZ,T)
via (65) and pA(T) = 0, However, by (17) this contradicts (93).

By (16) we see that v(T) <0 -~;§ (alp-azq) < v, < p, the latter
inequality a consequence of requiring pl(T) £ 0. It is clear that 2
can always be chosen to satisfy the above conditions regardless of whether

ap 2 a,q or a,p < aq. Thus, this subcase is always possible for the

appropriate initial values of the state variables. Furthermore, we have
pl(T) <0, pz(l‘) <0, 93('1‘) =0, p,(T) =0, v(T) <0,

so that the synthesized extremal control function can take any of the forms

shown in Table III for 0 <t <t the realization of any particular

l’
form being dependent upon the state variable initial conditions.

Subcase (b2): 0 < ¢(t=T) < 1.

Since 0 < ¢(t=T) < 1, (16) yields that pa(t-O) = 0. Moreover,

for 0 < ¢(T) £ 1 the transversality condition H(T) = 0 no longer holds,
since when xl(T) = 0 (=y(T)), variations in control d&u cannot increase
T because this would lead to violation of the constraint x, 2 0 if the
planning horizon were extended to T + dT with xl(T) = 0 and ¢(T) > O.
Then, a one-sided version of the usual variational argument [2] yields
(after dropping some terms) dJ = H(T)dT £ 0 with dT < O, where J
denotes the (augmented) return functional. This yields H(T) 2 0 and

consequently pJ(T) £ 0. Again using the argument which considers
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p3(T) 3y(T) [18], it follows that p3(T) 0 (and also p3(t) >0
for £ <7),
Now, v(t=0) = (alp-azq) - a,v where 0 < 21 < p, the latter
inequality being a consequence of requiring pl(T) < 0, For a;p 2 a,4,
we can have v(t=0) either 20 or < 0. When v(t=0) = 0, the resulting
synthesized extremal control takes a form similar to that shown in Table IV
*
below. When v(t=0) < 0, it takes any of the forms shown in Table II
for 0st=<¢t . In all cases v

1 1

realization of the synthesized extremal control depends upon the state

is chosen so that xl(T) = (0, The

variable initial conditions.

Subcase (b3): ¢(t=T) =1,

Since ¢(t=T) = 1, (16) now yields pa(T'O) = -vg < 0. If ¢(t) <1
for T~-8§<£t<T where & > 0, then previous arguments (i.e. proof by
contradiction) yield that pa(t-O) = 0, Next, we show that we must have
v(t=T) > 0. The proof is by contradiction. First, we observe that

¢(t) <1 for T -8 <t < T implies that
u*(t) = RU for t € (T-Gl,T) c (T-§,T). (94)

If v(T) < 0, then v(t) <0 for t € (T-GZ.T). Considering a Taylor
series expansion about t = T, we obtain p“(t) = (T-:)y(E)v(E) where
t € (t,T), since pa(T) = 0. But them t € (T-GZ,T) n (T-Gl,T) yields
pa(t) < 0 and this contradicts (94) by (17). Since v(T) = (alp-azq) -
a,v. 20 where v

11 1
for t < T 1s only possible when ap 2 a,q.

20, it follows that this subcase with ¢(t) < 1

If we are on a constrained subarc with ¢(t) = 1 for t: &Y,

then (23) and (25) must hold. The former yields pa(t-O) = 0, while the

*
This is the only case possible when alp < Azq.

P
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latter yields 0 < 21 < iL (alp-azq) so that this subcase with ¢(t) = 1
1

1

for t.

£t <£T 1is only possible when ap 2 a,q. The further synthesis
of the extremal control now follows previous arguments., The synthesized

extremal control is shown in Table IV.

Table IV. Synthesized Extremal Control and Collateral Information
for Case in which xl(T) = 0 (But xl(t) »=-0 for Ik < oT)
and x,(T) > 0 with ¢(t) =1 for t; <stsT.

time, ¢t B, Lt) v(t) u*(t) $(t) x,(8)
t=0 >0 >0 RU O=¢$<1l >0
0<t<tl >0 >0 R, 0<¢<1 >0
t=t!~ 0 >0 0 1 >0
c-:e+ >0 >0 0 1 >0
£ <t<T >0 >0 0 1 >0
t=T 0 20 0 1 0

Note: This case is only possible when a;p 2 anyq.

7. Synthesis of Extremal Policy when xl(T) > 0 and xz(T) = (),
When xz(T) = 0, we must have xz(t) >0 for £ < T, since it
is nonoptimal (see Section 4.2 above) to be on a constrained subarc with

x, = 0 for a finite interval of time. There are then three cases to be

considered:

Case (a) ¢(t=T) = 0,
Case (b) 0 < ¢(t=T) < 1,

Case (¢c) ¢(t=T) = 1.

LT T
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Further analysis now yields the results shown in Table V. This shows
from which of the end states extremals lead. The symmetry of these results

(interchange x, and xz) in relation to those shown in Table III for

36
xl(T) = 0 but xl(t) >0 for t < T should be noted. We will now sketch

how these results were obtained.

For Case (a): ¢(t=T) = 0, (16) yields that pé(r-O) =V, 2 0.
Observing that ¢(t) > 0 for t € (T-6,T) again implies (93), it follows

dp

4

by previous arguments that pa(r-O) = 0. Also, (93) implies that g k1) < ©
for 1 € (0,62) c (0,61), and hence v(t=0) < 0 by (65). Observing that
v(t=0) = (alp°82q) + a5y, it follows that this case with ¢(t) > 0 for
t < T 1s only possible for ap < azq. The synthesized extremal control
takes the form shown in Table II for O <t < tl.

If we are on a constrained subarc with ¢(t) =0 for t: £ £ €T,

then (33) and (34) must hold, whence it follows that pa(r-O) = 0 and

= = - —1— - = =
v(1=0) (alp azq) +awv, <0 or 0= v, € s, (azq alp). Then pz(r 0)

2°2
-q + Nyt 0 so that we must have v(T) < 0, since for tz <Sts<T we
(q-vz)
have v(t) = v(T) + (albl-azbz) e {cosh Vazb2 (T-t) -1} and v(t) <0

2
by (34) and (62). Thus, 0 < v, & :L (azq-alp) so that this case with
2

¢(t) = 0 for t°<t<T is only possible when a.p < a,q. The synthesized
e P 1 .

extremal control is shown in Table VI.

For Case (b): 0 < ¢(t=T) < 1, (16) yields that pa(r-O) . 0. - LE

a,p 2 anq, then v(T) 2 0. The requirement that pZ(T) < 0 yields

0= v, £q so that by (14) we have p3(t) >0 for t < T, whence %% (1)

>0 for all t > 0, Hence, v(t) >0 for t > 0, and the synthesized
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Table V. Possible End States of Battle for
Extremals when xl(T) > 0 and xz(T) =0
(But xz(t) >0 for t <T).
3P 2 aq ap < a,9q
¢(T) = O
ible
(cn constrained subarc impossible g
for finite time interval) (and quite likely)
#$(3) » 0 impossible possible
(but ¢(t)>0 for T=8<t<T) (but unlikely)
possible possible
9% #(E) £ & (but not too likely) (but not too likely)
$(T) = 1
(on constrained subarc impossible impossible
for finite time interval)
Ty =1 possible possible
(but #(t)<l for T-6<t<T) (but very unlikely) (but very unlikely)

TS R T TR

3




37

Table VI. One Possibility for Synthesized Extremal Control and
Collateral Information for Case in which xl(T) >0
and xz(T) = 0 (but xz(t) >0 for t < T) With
¢(t) = 0 for t: £tsT.

time, t 2, L8) vit) uk(e) $(t) X, (8
t=0 >0 >0 Ry Osp<l >0
0<t<t; >0 >0 Ry 0<¢<1 >0
t'té_ 0 >0 Ry 1 >0
e=tl” >0 >0 0 1 >0
t é<c<: é >0 >0 0 1 >0
=t 0 >0 0 1 >0
t-té+ 0 >0 = 1 >0
t;<t<T—xl <0 >0 R 0<¢<l >0
t-T-rl <0 0 —RL O<¢<i >0
T-11<t<t2 <0 <0 -RL O<¢<1 >0
t't:- 0 <0 R 0 >0
ety <0 <0 0 0 >0
c:<t<T <0 <0 0 Q >0
t=T 0 <0 0 0 0

Notes: (1) This case is only possible when ap < a,q.
(2) Variations in the synthesized extremal control analogous

tc those shown in Table II are possible.

"'ﬁ_,.;x -
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control is as shown in Table IV for O <t < t;. 1f a;p < a,4, then we
can have either v(T) 2 0 or v(T) < 0. The former case has just been
discussed, while the latter case yields a synthesized extremal control like

one of those shown in Table II for 0 <t < tl.

For Case (c): ¢(t=T) = 1, (16) yields that pa(r-O) et < 0.
It 1s clear that we must have ¢(t) <1 for t € (T-6,T), since xz(t) >0
for t < T and xZ(T) = 0, Previous arguments readily yield pa(T-O) =0
and 0 < v, S q (since pz(T) <0). If ap > ayq, then v(T) 2 0 and
further results are similar to those of the previous case. If ap < a,4,
then v(T) 1is either 2 0 or < 0. The case in which v(T) > 0 has
just been discussed. If v(T) < 0, this leads to pa(t) < 0 for
t € (T-GZ,T). By (17) this is impossible, however, since we must have (94)
hold, since ¢(t) <1 for t € (T-§,T). Thus, this case is always possible
for the appropriate initial values of the state variables, although we must
always have Vv(T) 2 0. The synthesized extremal control is the same as for

Case (b) with v(T) = 0.

8. Determination of the Optimal Fire Distribution Policy.

It remains to discuss how the optimal fire distribution policy may
be determined from among the extremal control policies developed in the
previous sections. Two ways of proving the optimality of an extremal
trajectory are as follows (see [17], [18]):

(a) show that sufficient conditions of optimality are satisfied on
the extremal,

(b) by citing the appropriate existence theorem, show that an optimal
control exists for the problem at hand; there are two further
subcases: (1) 1f the extremal is unique, then it is optimal or
(2) 1if the extremal is not unique and only a finite number exist,

e — A A AL A
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then the optimal trajectory is determined by considering the
finite number of alternatives.

Ir the first case there are both local and global sufficiency theorems
to be considered. Neither, however, is convenient to apply to the problem
(2) at hand. The usual control theory sufficient conditions for a local
maximum (see pp. 181-184 of [2]) are not satisfied, since the problem (2)
is singular (in the sense that %ég 3 0).* Sufficient conditions for a
global maximum depend upon the appropriate functions being concave and
the planning horizon being fixed in length [4], [9]. The latter condition
is not satisfied for (2), since, for example, the battle can end by Y
being annihilated at any time before Tl.
Thus, as in earlier papers [14], [18], [19], we are again led back
to the enumeration of all extremals in various regions of the state space
(i.e. the intersections of the domains of controllability for extremals
leading to the various terminal states of battle (see [14], [19])) and
comparison of corresponding returns. The author has not been able to develop
analytic, closed-form results for the integration of the state equations (2)
in the general case (much less for the determination of domains of con-
trollability or computation of extremal returns). Thus, it has not been
possible to analytically determine the optimal control from among the candi-
date extremal controls for the problem at hand** as was done in [14] (see
also (19]).

Moreover, the existence of an optimal control readily follows from

the control variable u being uniformly bounded (see Corollary 2 on p. 262

*
Recently, conditions sufficient for a local maximum have been developed for
the singular control problem. These are, however, essentially impossible
to check for the problem at hand (see [18]).

*
* For given initial and parameter values this may be done numerically by
following the steps outlined in [14] (or [15]).
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of [8]).* The uniform boundedness of responses is a consequence of u
being required to lie in a compact set ({.e. =-= < R =us Ry < =,

Let us observe that for -R.L = -» and RU = 4o problem (2) is equivalent
to problem (1), the "inertialless" combat problem. In this case there
will be jumps in state variable ¢ in problem (2). Additional consid-
erations are now required in the development of necessary conditions of
optimality (see [12], [23], [24]). 1t should be pointed out, moreover,
that the existence theorems of Lee and Markus [8] (and others) only apply
for admissible trajectories which are absolutely continuous. Hence, they

no longer can be invoked to insure the existence of an optimal control when
-RL = -» and RU = +o,

9. More General Redistribution of Fire Model.

In the model (2) considered above the rate of redistribution of
fire by Y firers was assumed to be bounded, i.e. -RL < %% < RU, and
not to be dependent upon the distribution of fire. It is of considerable
interest and importance for us to continue our investigation of the
dependence of the structure of the optimal fire distribution policy upon
model form (see [16]). The above simple model (2) for redistribution of

fire is equivalent to

d
3% = F (W), (95)

where (a) Fl(u-O) = 0 and (b) Fl(u) is a concave function for u € [-RL,RU]
! -
with Fl(u RL) > 0.
Let us consider the more general case in which the rate of redistri-
bution of Y~fire is bounded and also dependent upon the distribution of

fire. Thus, we consider the model

R

*See also [17], [18].

oy 11
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49,
=T, (96)

where F(¢,u) reflects the ability of Y firers to redistribute their
fire over X-target types. We will see below that the functional form of
F(¢,u) (as long as it is not pathological) does not affect the structure
of the optimal fire distribution policy, although the time history of the
distribution of Y-fire, f.e. ¢(t) for 0 =<t <T, does vary, of course,
with changes in F(¢,u).

What are appropriate properties to postulate for F(¢,u) in order
to model the real world? First of all, it must be possible to keep the
distribution of fire constant. Thus, we stipulate that if u = 0, there
is no redistribution of fire. Also, if u > 0 (<0), then ¢ increases
(decreases) (but the rate of change is bounded). It seems appropriate to
postulate that there are 'stragglers'" in redistributing their fire, as
¢ approaches zero (or one) its rate of change decreases. Finally, we
assume that all the Y firers can shift their fire in a finite interval
of time.

We therefore make the following assumptions about F(¢,u):

(Al) for all ¢ € [0,1]

F(¢,u) = 0 for
0 <F($,u) <F for 0<usx
’ U EUO,

-F, £ F(¢,u) <0 for -R =<u<oO,
{ b uRL 0,

where FL,FU

(A2) F(¢,u) 1is piecewise C(l) in its arguments for all
¢ € [0,1] and u € [-RL.RU].

B L RS P
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(A3) for fixed ¢ € [0,1], F($,u) 1s concave in u for
-RL fus RU with %%‘(O:U'RU) >0,

(A4) F(¢,u) 1s a strictly {;22::::12:} function of ¢ for
-R, <u<0
fixed u such that {ToL T2 Ru} .

An example of such a function is

u(cl+¢) for R, S u< o,
F(¢,u) = { 97)
u(1+e2-¢) for 0<u=x RU’

where el,ez > 0.

“R {t=t.)
Then we have, for example, ¢(t) = -, + (e1+¢0)e RL 0 when u(s) =
-RL for tO £ss<t¢t.
We now show that for problem (2) when (96) is used with F(¢,u)
satisfying (Al) through (A4), the structure of the optimal fire distribu-
*
tion policy is the same as for problem (2) (with %% = u). The Hamiltonian

in this case is given by

H(toxi)piﬂl) » -910313' g Pz(l"¢)52y it P3(blx1+b2xz) + PAF(¢tu)

- "1(°)“ + nz(t)u - u(c){F(o.u)aly - ¢nl(b1x1+b2x2)}. (98)

so that (15) is now replaced by

fzﬁ = pay - p.a,y - 2£~+ (:){25 a,y - a,(b,x,+b.x )} (99)
gt  RY TPR TRL Te T VRN BT T 40 R TR

*
Of course, ¢(t) and dependent quantities differ in their particular form.
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When x y>0 and 0 < ¢ <1, the extremal control is again

1°%2°
given by (17) because of assumption (A3). Again, it will be shown that

there is no singular solution. This is proved as follows. Since %% $0,

the condition %% = 0 for a finite interval of time again leads to (18)
and %(%%} = 0 on the singular subarc so that (19) again follows. For

an arc on which (18) and (19) hold we again have (20) so that E%;f%%) 0,
since it has been shown that p3(t) >0 for t < T, and we have assumed
alb1 > azbz. It follows then that there is no singular solution (i.e. no
singular subarc in the solution).

The analysis of constrained subarcs also follows that given above

for problem (2). We illustrate this for a constrained subarc on which

xl(t) = Q0 for t,<t<T. Again, (36) and (37) hold. Now

TP i
2u  3u ‘Pg¥%Y),

so that %% = 0 again yields (38), since %% # 0. It is readily shown
in a similar fashion that (40) and (41) still hold so that the necessary
conditions of optimality on a constrained subarc with xl(t) = 0 for a
finite interval of time are again given by (42) through (44). Treatment
of other types of constrained subarcs is similar and further discussion
is omitted.

Thus, we have shown that the characterization of an optimal fire

distribution policy for the more general redistribution of fire model

given above is exactly the same as that for problem (2).

10. Discussion.
In this section we discuss what we have learned about the influence

of command and control limitations on the structure of optimal fire
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distribution policies. The reader should bear in mind, moreover, that

the combat model considered in this paper is, far too simple to have the
results obtained from it be taken literally, but he should interpret these
results as indicating general principles or hypotheses to be further
investigated by higher resolution analysis techniques such as field experi-
mentation or computer simulation. Nevertheless, it is hoped that our simple
model (2) has provided some insights into the optimization of this combat
process. Thus, it is the form of the optimal policy and its functional
dependence on model parameters that is of primary interest.

In this paper we have considered a version of the two-on-one fire
distribution problem considered elsewhere [14], [18]. In the version (2)
considered here there are limits on the rate at which the distribution of
fire can change. This might be thought of as reflecting a coumand and
control limitation (e.g. the existence of a time lag between the giving
of an order and its implementation). From our above study, we conclude
that the structure of the optimal fire distribution policy for problem (2)
(a) depends upon the model for the attrition of X-force target types and
not upon the nature of the model for redistribution of fire (see Section 9)
(as long as this does not change the functional form of enemy target-type
attrition); (b) depends upon the following model parameters (see [16] for
further discussion): (1) .ibi for 1= 1,2, (2) a,p and a,4, and (3)
whether Y wins or loses; and (c) is very similar to that for the inertia-
less combat case.

To elaborate further about (c), the reader can find results for the
inertialess combat problem (1) reported in [14], [18]. When these are

compared with those for the problem at hand (2), there are seen to be many
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similarities (see below). Both models have the same attrition structure
(for X-force target types), although the model (2) considered here incor-
porates command and control limitations. As long as these do not affect
the function form of the attrition process of enemy target types,* the
optimal policies are similar (see also Section 9).

We saw that for both "inertialess'" and "inertial" combat, we must

necessarily have

albl 2 ab,,

1 to zero (while X, >0 and

before t = T). Furthermore, we also developed a necessary condition

in order for it to be optimal to drive x

involving v(t) = al(-pl(t)) - az(-pz(t)) for it to be optimal in (2) to
have ¢(t) = 0 for 1 for a finite interval of time. Again, the results
were similar to those for the "inertialess' combat problem (1).

The sign of the quantity v(t) = al(-pl(t)) - az(-pz(t)) reflects
the ranking of target priorities: when v(t) > 0, xl is a higher
priority target for Y than is xz; and the situation is reversed when
v(t) < 0. A significant result (see Section 5) was that for "inertial"
combat an optimal policy for the distribution of Y-fire over enemy target

types is characterized by beginning to change the distribution of fire

(1.e. shifting of fires) before target priorities (as measured by the sign

.ln (13] Schreiber formulates a Lanchester-type combat model in which the
effectiveness of intelligence and command and control systems modifies the
form of combatant attrition. These capabilities are incorporated into
Schreiber's model through a parameter € [0,1] which he denotes as 'command
efficiency." His equations reduce to Lanchester's classical equations for
area fire when "command efficiency'" is equal to zero for each side and to
those for aimed fire when it is equal to one.

2 95
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of wv(t)) change. (It should be recalled that in the '"inertialess' version
of this problem all fire was concentrated on the target type with the
higher priority and instantaneously shifted when this changed.) 1In other
words, due to decreased reaction ability one begins to change the distri-
bution of fire before target priorities change in anticipation of this coming
change. We might even generalize this result to say that with slow reactions
one's optimal policy involves anticipating enemy actions.

It should finally be pointed out that to the best of the author's
knowledge the problem (2) considered in this paper is the first one with
a higher order (i.e. greater than first order) SVIC (see [3], [6], [22])
to be considefed in the operations research literature.* Moreover, the
complete treatment of this problem was made possible by some recent results

of the author [21], [22].

#
Examples of problems with an SVIC of order greater than one have appeared,
of course, previously in the engineering literature (see (3], [6]).

—
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