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p
ABSTRACT

Acoustic Signal Processing is a short course in electri-

cal signal processing fundamentals and their applications in

the field of underwater acoustics. It contains an introduc-

tion to Fourier transforms and their properties , sampling and

quantization , filters and bandwidth requirements , random sig-

nals and noise , and an introduction to four types of process-

t ing equipment ; the DELTIC, energy detectors , correlation

j  detectors , and beamformers . Course objectives are given in

terms of specific questions which a person completing the course

should be able to answer. The course is designed to be pre-

• sented to the personnel involved with the development , opera-

tion and employment of acoustic sensors to provide them with

a better understanding of the operations accomplished by their

equipment and to develop in them a better appreciation of the

problems and limitations associated with signal detection in

the underwater environment.
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INTRODUCTION

These notes on Acoustic Signal Processing were originally

developed as an introductory course intended for the Naval

officer who has had the traditional training in sonar hardware.

However , it is applicable to anyone involved in underwater

acoustics -- o f f i ce r , enl is ted , or c iv i l ian . An engineering

background is not necessary; however, it is presumed that the

concepts of calculus are somewhat familiar .

The course was designed to provide an overview of the

principles involved in the application of Fourier analysis

and statistics to acoustic signal processing and the operation

of spectrum analyzers , energy detectors , correlation detectors ,

and beam formers. These processing methods comprise the core

around which the acoustic sensor systems are built. In pro-

ceeding toward this goal , the course follows a logical approach

of building from the basics of Fourier Transforms and Fourier

Transform Properties. Following these two sections is a sec-

tion on Sampling and Quantization and a section on Filters and

Linear Systems . These latter two sections may be interchanged

but both are required for the section on Random Signals , Power

Spvctral Density, and Noise. The methods of processing are

presented las t .  They are DELTIC and FFT , Energy Detection ,

Correlation Detection , and Beam Forming . Where appropriate ,

specific hardware has been mentioned , but it is emphasized

that the course is primarily devoted to principles and methods

2
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Hthat may be applied to various systems employed on either air ,
surface, or subsurface platforms.
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COURSE OBJECTIVES

The overall object ive  of this  course is to f ami l i a r i ze

the student with the principles of acoustic signal process-

ing as used in underwater sensor systems . The student who

successfully completes the course will be knowledgeable to

the degree indicated below .

The student should understand the theory of Fourier Ana-

lysis sufficiently well to do the following :

1. Explain the relationship of the Fourier Transform
to the “time domain” and the “frequency domain”.

2. Given a Fourier Transform pair , identify the
operations expressed.

3. Given one long and one short rectangular pulse:

a. Sketch the convolution of one with the other. - •

b. Transform the given pulses from the time domain
to the frequency domain , multiply them , and apply the inverse
transform (approximately) to return to the time domain.

4. Given a square wave , sketch the autocorrelation
and power spectrum .

The student should be sufficiently knowledgeable of signal

processing fundamentals to do the following :

1. Show the difference between a digital and an ana-
log signal.

2. Discuss how noise effects quantizdtion of a signal.

3. State the Sampling Theorem and describe “aliasing ”.

4. Given a plot of signal and noise as power density
versus frequency, show how filtering increases the ratio of
signal power to noise power.

5. Relate filter bandpass , integration time , and fre- 
,~~~~.

quency resolution .
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6. Given a plot of transfer function versus frequency ,
sketch the impulse response and frequency response.

7. Define the statistical characteristics of a random
signal and relate them to the signal voltage (or current) and
power components.

8. List the assumptions necessary to apply statist-
cal techniques to the processing of random signals.

9. Contrast the cross correlation of correlated sig-
nals with the cross correlation of uncorrelated signals. Show
how the correlated signals are enhanced.

10. Explain the effects of filtering gaussian white
noise. Discuss the relationship of these effects when process-
ing signal and noise.

The student should be able to describe the DELTIC and the

FFT, including :

1. The benefits of using a DELTIC in the processing
of an acoustic signal and how a DELTIC works .

2. Explain the significance of Time-Bandwidth Pro-
L duct in terms of the integration time required and the fre-

quency resolution of the output.

t 3. Compare the FFT with the Fourier Transform.

4. Compare a DELTIC with an FFT spectrum analyzer.

Describe energy detection by explaining :

• 1. How the system decides whether a~target is present .

2. How the threshold setti’Lg effects the probability
of detection , P(d) , and the probability o~ false alarm , P(fa).

3. The significance of Receiver Operating Charac-
teristics (ROC) curve.

The student should be able to explain how a correlator

processes signals and how a correlator functions :

1. Describe the effect of doppler on correlation .

2. Sketch an ambiguity diagram and explain how it is
derived.
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4. Describe how pulse type effects doppler resolution . )
5. Describe how pulse type effects range resolution .

6. List the advantages of using an FM slide .

7. State the advantages and disadvantages of using
pseudo-random pulses for search and tracking.

8. Given a two-hydrop hone array bein g used wi th a cor-
rela ti on de tec tor , ske tch and explain how the si gnal dire ction
is ob ta ined , why a direc t ion ambigui ty exis ts , and how the
ambi guity may be resolved.

9. Expl ain the l imi tat ion s on the type of s ignals
w h i c h  may be processed pass ively by a correla tion de tec tor
and why these l imi ta t ions exis t .

To expla i n how a beam former processes signals  spac ia l ly ,

be able  to:

1 . Describe the me thod used by the beam former to
ob ta in  direc t ion .

2 .  Show the re la t ionsh ip  between aperture exci ta t ion ,
beam pat tern , and spacial frequency

3 . Given a hydrophone a r ray  in a beam former configu-
ration , sketch the output of the beam former for a signal in
the beam and a signal out of the beam . Show by comparing the
ou tpu ts the mean i ng of array ga in .

4. Describe the relationship of array gain to direc-
tivity index.

6
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I
I. INTRODUCTION TO FOURIER TRANSFORMS

An in troduc t ion to signal processing requires , for under-

standing of many processing schemes , a working familiarity

with Fourier transforms. To gain an understanding of what

Fourier transform s are , what they can do , and how to use them ,

let us first examine a common type of signal. The electrical

power used in the United States is 60 Hertz (cycles per sec-

ond) alternating current . That is, the current changes its

direction of flow in such a manner as to complete a cycle

si xty times per second . If one plots  the ampli tude of the cur-

rent in a given direction as a function of time , the result is

a sinusoid. Since this is a description of the signal as a

function of time , it is said to be the “time domain” descrip-

t i on. If the si gnal is plotted as a function of frequency , it

is called the “frequency domain” description , or “spectrum”.

-
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Because the signal cons i s t s  of a s i n g l e  f r e q u e n c y ,  there  i s

but one frequency represented on the f-domain plot.

-‘-4
—4

0 60

Now cons ide r  a d i f f e r e n t  si gna l , an a l t e r n a t i n g  s igna l

of 180 Hz. The time domain and frequency domain plots are

as shown :

_  H
Note the way in which the changes in the signal are evidenced ,

F.
’

bo th in the t ime domain rind the frequency domain.
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In the same way,  two other signals , 300 Hz and 420 Hz are
plotted :

o 1 I & 1 1 1 I ~~~I % I L
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• Thus far the signals shown have been of a single frequency .

In genera l , ther e are also s ignals  made up of many frequency

componen ts. Note at this point the concept of phase:

PHASE: The phase of a sinusoidal

si gnal wi th respec~t to a reference

signal  is the rela tionship be tween

corresponding parts of their cycles

in the time domain.

For example , a si gnal for reference is sketched below .

0
’

- 
t-.-~~

Comparin g a si gnal wi th this reference , one can determine the

phase of the new signal with respect to the reference. If

the new signal crosses the t axis at the same time and in the

same direction as the reference , it is said to be “in phase”

wi th the reference , or to have a phase angle of 0°. If the

new sign al crosses the t axis on the down-swing when the ref-

erence signal crosses on the up - swing it is said to be “180° (~)
ou t of phase ” . The reason for  us 4 ng “180°” w i l l  be shown

10
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S later in this development. For the moment , however , it is

only necessary to state that a signal goes through a phase

angle of 360° each complete cycle. The phase of a signal can

either lead or lag the reference, that is , the signal may

cross the t-axis on the down-swing before or after the refer-

ence does. The first case would be “leading” and the second

wou ld be “lagging” with respect to the reference . Because of

this, a signal is not generally described as having a phase

\ I \  I ’ f~\ i ’  (\

I / \  I ’ / \  / ‘

~ ‘I 
‘
~~‘ ‘1 \ ‘ ‘Ii ’I • y  ‘I I’ ‘I
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I / ~\ ‘ I l l  I / j
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I / ~

i \ I  / ~.

~ I ‘J i I ‘I i I ‘I I

~~1 l  ~~ J I
~~I’ a ~ I ‘ I~ ~

angle greater than 180°, since a 1800 leading signal looks

~ust the same as a 180° lagging signal. For example , a signal

which is leading the reference by 270° looks the same as one

11
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lagging the reference by 90°. In this case , it is usually )

described as the latter.

Returning to the signal with more than one’ frequency corn-

ponent , consider now the way in which this would be represented

in the t ime and frequency domains .  Take , for example , the

fou r frequencies represented ea r l i e r :  60 , 180 , 300 , and 420 Hz.

If there were to be a signal composed of equal amplitude com-

ponents of each of these frequencies , the frequency domain

plot would look as shown below .

0 60 180 300 420

However , consider the time domain plot of this signal if ,

instead of equal amplitudes , judiciously chosen amplitude and

phase components of the other frequencies are added to the 60 Hz

frequency . First , plot the 60 Hz portion .

• 12
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i
0 60

Next add the 180 Hz signal but with one-third the amplitude
and shifted 180° out of phase at the peak.

I
0 60 110

Note the fact that the 180 Hz component, added 1800 out of
phase, shows up on the frequency domain plot as a negative
amplitude. The reason for this will become apparent. For

~~~ the process is continued with the other frequencies. If

added to the signal s 300 Hz cornponen ne~~jfth the



amplitude and in phase with the 60 Hz signal , it becomes: )

0 60 
1 . .

Now adding  one-seventh the ampli tude wi th  a 420 Hz component ,

180° out of phase with the 60 Hz signal , it becomes:

180 4~0 
-.

0 60 300 - —Ps () ~
14
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thus proceeding to add carefully selected frequency components

to the signal, the time domain signal becomes more and more

like a square wave . With twenty , componen ts , the wave looks as

il lustrated. Therefore , one can see tha t by carefu l choic e of

component frequenc ies, and the ir respective amplitudes and

t —p..

( phases , a square wave can be generated from purely sinusoidal

components. If an infinite number of components were used

the resulting waveform would be a perfect square wave. This

concept is the basis on which a large part of our signal pro-

cessing theory rests. There is not time in this paper to

demonstrate it , but it is a basic theorem of Fourier analysis

that 
~~~ 

shape waveform can be created from combinations of

pure sinusoidal signals.

In order to simplify the mathematics involved later , it

helps to introduce the concept of complex quantities. In

solving the mathematical equations describing waves , one en-

counters solut ions which contain term s multiplied by IT.
As can readi ly be seen , there is no real number which , when

C multiplied by itself , wil l give a number which is negative .

15



Thus, these quantities are known as “imaginary”. In actuality , )
they  are a r t i f ac t s of the mathematics and are not directly

related to tangible quantities. However, they prove to be of

use in describ~ng the behavior of wave phenomena .

If “real” quantities are plotted on one axis , “imag inary”

quantities on another , and time on a third axis , there appears

a coordinate system as sketched:

Real

~~~~~~~~~~~~~~~~~~~~~~~~~~

One of the resul ts  of the solutions described above is that a

sinusoidal signal in the real plane (the plane formed by the

real and time axes) can be generated by a unit vector rotating

w i t h  a uniform angular veloc- Real
i t y  in the complex plane (formed

by the real and imaginary axes).

Looking at this vector down the

time axis shows as illustrated 
-

in the diagram at the right. ._ . — — — — Imaginary
t

As this vector rotates , it is

also moving down the time axis ,

so the path swept out by the tip

~~~~~~~~~~~~~ of the vec r
d e s cr j a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



path around the time axis , as illus trated:

Real

Imaginary — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Real

( Imaginary - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Real

Imaginar~ ---~~~~~~ 

‘
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Real

Imaginary - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Real

Imaginary 

1)

t __..*. —•-

Real

I~~ g in ar 

At this point it should be noted that there is another meas-

ure of angular rotation known as the “radian”. There are 2-it

radians in 360°. This measure is used because it simplifies 
~

, ) ~the mathematics involved in solving wave equations.

18
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Returning to the vector generator , note that the number

of times it makes a complete 360° ( Zn  radians) sweep in one

second of time is the frequency of the signal. T1’e rotational

velocity of the vector , w , is the number of radians swept out

by the vector per second. Thus , w - 2-i f , since it sweeps out

2ic radians each 360° ro ta t ion and makes f rotations per sec-

ond . Thus w is known as the “radian frequency” of the signal .

Now consider the projections of the vector on the real

and imaginary planes as it rotates. The projection that

appears on the real plane is a cosine wave and the projection

on the imaginary plane is a sine wave . Also note that the

vector rotates 360° during one cycle of the cosine wave on the

real plane . This is where the use of 360° of phase angle

arose.

Real

Imaginary - - .~~~~~~~~~~~~~~~~~~~ 

The vector has components in the real and imaginary planes.

The relationship connecting sinusoids and vectors is called

,‘ . the Eu ler (pronounced “oiler ”) Formula :



~10
= c o s O±  j sin e

where  j is taken to mean “in the imag inary plane”.

By vector addition , the signal is generated by vector-sum

of the real component , cos wt , and the imag inary componen t ,

j S i f l  U ) t .

V e c t o r  = co~ ~t + j sin wt

Note that this is of the form of Euler ’s equation if 8 = wt .

Thus , the ma thema t ic al descri p t ion of the vector is e ±j W t ,

some t i nes ca l led  a “phasor ” because it varies only in phase.

It was shown that cos wt is the projection of the phasor

tip path on the real plane. Solving Euler ’s equa tion for

cos w t :

e3Wt + e 3 W t
Cos~~ t = 

2

Therefore a cosine wave is represented by two phasors ro tat ing

in the ~wt and -ui t d i rec t ions , respec tively.

Real

Imaglnery- - 

-E

~ ~
) - - - -

~~~~~~~~~~~~~~~~~~~~~~~~~



These phasors unwind in opposite directions along the
t- axis

Real

+jwte

ina>~~~~~~ 

Real
-jwt 

Looking at the projection of these phasors on the real pl ane ,
it can be seen that cos wt is generated.

Real e+JWt + e_ JWt

21 
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For the cosine wave , the two contributions of the phasors

always add in the same direction on the real plane , therefore ,

the plus sign (+) in the formula.

Real 

Sol ving  Eul er ’s equa t ion for sin ut , one ob tains ;
)

- e3~~
t 

— e 3Wt
Sin wt

Becau se the two p ro jecti ons are a lways in opposi te di rec t ions

on the imag i n a r y  p lane , there is a minu s C-) sign in the

f o r m u l a .

I t was shown how a s ingle  f requency plo ts as a s ingle l ine

in the frequency domain. This appears as a line for each

phasor But note also that the mathematical solutions estab-

l ish two phasors for each frequency , one rotating at -4.w and

one rotating at -w. Thus , in actuality, there has been shown

on ly  on e s ide  of the spec t rum , the positive frequency side.

The full spectrum of cos wt is as shown on the following page.

22
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3 Real

J 0 j

The lines are both on the plus side of the~~axis because of

the plus sign in the formula:

— 

eJWt + 
j wt

Cos~~t =

The full spectrum of sin wt is:

Imaginary

I

I
I

- I

Note. that the lines are on opposite sides of the w axis due

to the minus sign in the formula:

e~
jWt 

_____• Sin wt -j z 2

Note also that the lines correspond to projections on the real

plane for cos wt , and the imaginary plane for sin wt.

23



Four ier analysis shows that arbitrary waveform s can be

mad e from combinations of sines and cosines of the proper

amplitudes , phases , and frequenc ies. How can one determine

which frequencies and what amplitudes and phases to use? In

effect , one compares the waveform with various frequencies

by overlaying the waveform on a given frequency to see how

well they match. One measure of this is the point by point

produc t of the two , averaged over a period. This measure ,

known as Cn (flth frequency coefficien t) is the following :

T0

cn = ~j~~~J x (t) e J~~~
t dt = 2irn ~~—

where is the n “harmonic ” frequency componen and x ( t )
- j wntis the wav e form of in teres t , e is the phasor  being corn-

~~red , and the integral serves to sum the product over the

per iod T0 of the waveform . This de termines how closely the

waveform matches a given frequency. In order to find the com-

pon en t s of a g iven waveform , the waverorm must be compared

with all n frequencies. The “spectrum” of the waveform is

then the summation of Ca’s multiplied by the ~th phasor corn-
jwR t .pon en t (e ) ,  known as the Fourier Series.

x(t) = Cn e
3W flt

-. 
n--~
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Using this technique to analyze a square wave train , the

spectrum is obtained as shown below :

C

/

— .
~

- 2.

J~~o .1T T~ T0

The fact that some of the Cn ’S are negative indicates that

the frequency corresponding to that C~ is to be 180° out of

phase with the positive sign Cn frequencies. In gcneral , the

Ca’s may have any phase.

Note how all the Ca’S occur at frequencies which are multi-

ples or “harmonics” of the lowest component. This is because

the signal is compared with sines and cosines which complete

whole numbers of cycles during the period T0. The ancient

Greek, Pythagoras, discovered harmonics in the musical scale.

Centuries later, the mathematician , Four ier , laid the theoret-

ical foundation for signal analysis as described in this sec-

t ion.

Now consider some square wave pulse trains and analyze their

spectra:
_____I .

I A

T0 I

25
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First solve for the Cn ’S and plot them . The curve is obtained

as shown .

/ \
S %

I

I
I ‘

~ 1
I

/

If the period cf the pulse train is increased but the length

of each individual pulse is kep t constant , the fol lowing

curv es are o b t a i n e d .

4~)

,/ _

\
I
I

1

-i

~0~ 

1 2
T1 T1 T~~~t~

N ot e t h a t  the  point where the envelope of the Ca’s crosses

zero remain s the same , hut the number of Cn ’S increases.
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That is , there are more frequency components present in this

signal than there were in the first. If one now increases

the period even more , still keeping the pulse length constant ,

note how all the zero crossings of the envelope remain con-

stant , but the number of C~ ’s increases again. If one were

I ~

• 

I 

1

,4

~~~~~
\

I1 
- 

~~ -,
T2 T2 T2

to increase the period to the point where there were a single

square pulse left , that is , T-.~~, the result would be that

the number of Ca’S would be infinite , but the zero crossings

• of the envelope would remain the same , as illustrated on the

following page.

From these examples we can see that the zero crossing

in terval of the envelope is re lated to the inverse of the

pulse width , and the interval between C~ ’s is related to the

inverse of the period of the signal. This , and other proper-

_
_ _



t ies  of the  Fourier  relations , will be discussed in greater

de ta i l  in a la te r  chapter .

T
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The form of the envelope of the Ca’s for the square wave 
)

appears so frequently that it has been g iven a name of its

own. The form is (sin x)/x , which is called “sinc” (may be

p ronounced  “sin-cee ” to avoid confusion with “synch”) .

Four ie r  Trans forms :  I t  can be seen that as the period of

a si gnal becomes infinite , the number of spectral components

then  become s i n f i n i t e .  In this cace , the spectrum of a signal

can be characterized by the formula of the envelope of the Ca’S.

Techniques have been developed for finding the formula of the

envelope in the limit as T-’~~. One method of doing this is

known as the Fourier Transform , defined as:

X(f) = 

f
x(t) e 3 ~t dt f l

28



3 Note that this is quite similar to the formula used for find-

ing the Ca’s. Instead of giving each individual C~ , however ,

this formula gives instead the envelope of the Ca’s in the

f-domain.

Now compute the transform of a single square pulse , using

th i s  formula .  By integration the solution has the following

form :

X(f) = [Ar] sin -,rrf

This is the same result obtained by computing the Ca ’s for a

square wave of T-’~~, solved for the formula of the envelope .

Since the spectrum , or f-domain character is t ics  of a sig-

nal can be found , given its time-domain formula , it is only

reasonable that the reverse operation should be possible. This

turns out to be the case , and the operation is accomplished by

using the “inverse transform”, defined as:

I
x(t) = f  X(f) ~jwt df

By substituting the spectrum in the inverse transform and

integrating , the result is the time domain characteristics of

the signal. The two transform formulas , forward and inverse,

are called a “transform pair ”. One formula yields the spec-

trum,given the time-domain signal,and the other finds the

time-domain characteristics , given the frequency spectrum .

~~~~~~~~~~~~~



For ins tance , returning now to the cosine wave that was )
in t roduced ear l ie r , note wha t happens if one applies modula-

tion. Tha t is , impress a low f re quency cosine wave on a “car-

r ier ” wave of a much higher f requency,  
~c

• A modulated cosine

wave looks in the time domain as pictured in the following :

where the envelope varies as one cosine wave , while inside it )
are the individual peaks now at the carrier frequency . What

does this signal look like in the f-domain? Given that the

f-domain p lot of the cosine wave looks as sketched :

I I
—f0 0

The car r ie r  is Jus t  a cosine wave of a different frequency ,

so its plot looks as shown on the following page. Note that ( )
both f-domain plots were centered about f — 0.

— ~~~~~~~~~~~~~ ~~~~~~~~~~~~~ -



I I
—c 0

Now , modulating the carrier wave , i.e., multiplying it by

the cosine wave , the following result is obtained by using

the Euler formula :

Lii _____ U!
0

— 
~~~~ f) — 

~~~ 
f0) ~~~~ 

fo fc~ 
fo

Note that the resulting signal is of the form Cosine 
~~ 

± f0).

The f-domain plot is the cosine spectrum centered about the

carrier frequency values instead of about f - 0 .  Thus, modu-

lation in the time domain is equivalent to a translation of

the spectrum in the f-domain from being centered at the f - 0

axis to centered about the carrier frequency. Another example:

-
• a square wave modulated carrier as illustrated on the follow-

c 
ing page.

31
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I t was sh own th at the sp ectrum o f a square wave is a s inc

fun ction . Using the result that modulation of a signal trans-

lates the f-domain plot of the signal and centers it about the

c a r r y  f r equency , the f-domain plot of a square wave modulated

carr ies is as shown . The envelope takes the shape of the

square wave spectrum but is centered about the carrier fre-

quency ins tead of abou t f = 0.

32
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SELF TEST I

INTRODUCTION TO FOURIER TRANSFORMS

1. The fundamental concept of Fourier theory is that any

arbitrary function of time x(t) can be decomposed into , or

synthesized by, a summation of ________________

2. The equation X(f) fx(t) e 3 2TT ft dt is called ________

3. A phasor is _______________

4. Continuous wave “CW” time functions are represented by

______________ in the frequency domain . Single pulses are

represented by 
____________  

in the frequency domain.

5. Harmonics are 
______________

sin x6. Sketch and dimension the graph of (or Sinc x).

7. Sketch and dimension the spectrum of a train of pulses

.“r-1---Th--...
Ii— T0 —~~-1

8. The sketch .......J L...4- > r Jj \ L.....~
_ is called a



I I .  F O U R I E R  TRANSFOR r~1 P R O P E R T I E S

The properties of Fourier Transforms are stated most suc-

c i n c t l y  in the accompanying  F o u r i e r  Trans fo rm Theorems . Know -

ledge of t h e  t heo rems  is i m p o r t a n t  in the  i n t e r p r e t a t i o n  of

s p e c t r a , as the  t h e o r e m s  e x p r e s s  the r e l a t i o n s h i p  be tween

t i m e - d o m a i n  and f r e q u e n c y - d o m a i n  o p e r a t i o n s .

In the introduction ~o F o u r i e r  T rans fo rms , it was shown

t h a t  the  f r e q u e n c y  spec t rum X ( f )  of a si gna l  x ( t )  was the

F o u r i e r  T r a n s f o r m  of the  s i g n a l .  That is , X ( f )  =~~~[ x ( t )]  and

inv er s e l y , x ( t ) =3 1 [X(f)]. These rela t ions are ca l led  “trans-

form p ai rs ” and are more conveniently denoted by x(t) ~~~~ X ( f ) .

The Fourier Tran sform Theorems describe the properties of

various Fourier Transform pairs.

•\. L I \ E A R I T Y  (OR S U P E R P O S I T I O N )  THEOREM :

If  a si gna l  x 1(t )  is m u l t i p l i e d  b y

a constant , a (as would ha ppen if

an amplifier with a gain=a were

pl aced in a c ircu i t ) and a s ignal

x 2 ( t )  is m u l t i p l i e d  by a constant

b , th en their respective line spec-

tr a will also be multi p l i ed  by the

constan t a or b.

“
7 

________  _________________________________ _ _ _ _ -- 
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x1(t) ax 1( t )  x 2 ( t )  bx 2 ( t )

ax1(t) + bx 2 (t) ~~~~~~~ aX 1 ( f )  + bX 2 ( f )

L inea r  combina t i ons  in the time-domain become linear combin-

at ions in the f re quency-dom ain .

B. TIME DELAY THEOREM :

Given the transform pair x (t) ÷—~ X ( f )

if the signal x(t) is delayed by t 0 seconds ,

as happens when the s igna l  passes  th roug h

an id eal delay line to become a new s ignal ,

x(t-t0), then the spec trum is m o d i f i e d  by a

f requency  dependent phase  s h i f t  to become

X ( f ) e  
- j t 0 w

-j  t
0

U)
x ( t - t 0 ) ÷—~ X ( f ) e

x (t - ~~~~~~~~~~~~~~~~~

x( t )
---,

~~

-

~~~~~

-

~~~

-

~~

C

__________________ 
- 
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The t r a n s l a t i o n  of a s i g n a l  in t i m e  changes  the  p hase  of )

the spec t rum bu t doe s no t al ter th e comp l ex amp l it ude .  To

i l l u s t r a t e  t h e  L i n e a r i ty  and Time d e l a y  t h e o r e m s , c o n s i d e r  a

si g n a l  w h i c h  is a l i n e a r  c o m b i n a t i o n  of d e l a y e d  s i g n a l s :

y ( t )  = 2 x ( t - t 0) — 4 x ( t - .~~t )

The spectrum is e a s i l y w r i t t e n  a s :

-j3t0wY ( f )  = 2 X ( f ) e  — 4 X ( f ) e

C. SCALE CHANGE THE OREM

I t h as be en shown tha t a transla tion of the t ime ori gin

may be a c c o m p l i s h e d  u s i n g  the  Time Delay theorem . The time

axi s may also be exp anded , compressed , or reversed by an opera- )
tion known as “scale change ”. If a signal x(t) becomes a new

signal x(at) , then:

(1) x(at) is compressed if a is a number greater than one ;

x(t) = J j  
a > 1 x(at)= fJJ t .÷.

12) x(at) is expanded if a is a number less than one;

__________ __________  __________

x ( t )  = 

~ ~~
a < 1 x (at) 

~~~ 
I I ~~~~~~ 

~
.)

36
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(3) x(at) is reversed in time if a is negative .

x (t) 
t 0  

____  

— a = -l x(at) = I I

In the Fourier Transform pair ,

x (~~) ,

I a l  means the absolu te va lue of a , that is , the numerical  value

only  is used and the si gn is dropped .

The Scale Change theorem expresses the property of recipro-

cal spreading . If the signal is compressed in time by the

factor a , it s spec trum is expanded in frequency by 1/a. The

ampli tude fac tor -
~
-
~

-
~
- accoun ts for the change in area of the

pulse due to time compression . The expansion or compression in

the t ime axis of a si gnal occurs , for example , in the playback

of recorded signals.

x (t 

~~ =~

-j 
t -* 

- 

•
~~~ 

)- 
_ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _

x ( a t )
_ __ _  

• 
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D . FREQUEN CY TRANSLAT I ON (MODULATION) THEO REM :

If a si gnal x(t) is multi plied

by e , i ts spectrum X (f) will

be translated in frequency by

Mathematically stated:

jw t
x ( t ) e  c X( f fc).

x ( t )  L~ ~ - X(f)

x ( t) e
t
~~~~~~~~~~~~~~~ 

~
“

~‘~‘ “ ‘
~~

I t i s more common to mul t i p ly  a t ime si gna l x( t) b y the real
iw t

p a r t  of e C , i . e . ,  by cos c& c t .  From previous  work w i t h

Eule r ’s theorem , it is recalled that

x(t) cos 
~~ 

= 1/2x(t) (e
3
~~

t 
+ e ~~~~~

Taking this result and applying it to the Frequency Transla-

tion theorem yields the Frequency Modulation theorem :

x(t) cos 
~ct 

l/2X (f+f c)

It 38
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~~ ~~~

f

Or , if a signal x(t) is multiplied by cos w,.~t , its spectrum

X(f) is shifted up and down in frequency by an amount This

is the same result noticed earlier when an RF pulse train was

for med by m u l t i p l y i n g  a rectangular pulse t r a in  by cos we t .

As noted then , and confirmed by the modulation theorem , time

domain mul t ip l i ca t ion  becomes translation in the frequency

domain. As an example , a rectangular pulse of amplitude A ,

period t , centered at t= 0, and duration t is x(t) = Ass (t ,r).

The spectrum is recognized as a SINC function , or

4

X(f) = A SINC f-r

Then multiplying the single pulse by cos

x(t) An (t,i) cos wet.

ç ~~i _ _ _
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By the modulation theorem , the spec trum is

X ( f )  = 1 /2  AT SINC ( f f c) T  + 1/2 AT SINC 
~~~~~ ~

f + f ~

Th is is the result that is used extensively in single-side-

band and double-sideband HF communications.

E . TIME DERIVATIVE THEOREM :

If the derivative -~j~-_ is taken

of a s igna l x ( t) ,  the resul t is

mul tiplication in the spectrum

by jw.

-a4i x(t) 4--P j~ X ( f )

iJ~~~~~~i d _  _

t— ~ in time 
,j , 

t -+

Q) r _

40
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p Multiplication
in frequency

There fore, differentiation enhances the high frequency compo-

nents in the spectrum .

F . TIME INTEGRATI ON THEOREM :

Ft
Taking the integral f of a signal

x(t’) is equivalentio multiplying

by (dividing by jw) in the fre-

quency domain:

dt’ — X(f ) .

f~ in timet -
~ T

I Multiplication in frequency

- 0 .

41 
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In tegra t ion , then , suppresses the h igh frequency componen ts

hut the low frequency components are unaffected. 
-

G. CONVOLUTION THEOREM

Taking two s ignals  in the t ime domain t’ , for examp le ,

x(t’) and y(t’), AND “flipp ing ” the y ft’) signal to the other

sid e of the axis , it becomes y(-t’), as illustrated below .

I I

x ( t ’ )  I A y t ’ y (- t ’)~~~~ j x ( t ’)

L L L  41 I~~ r~~~J
t —4 .4— t —P

t ’=O t ’ = t  t ’— — t  t ’=O

In order to make a comparison between the two signals , they

are mu lt ip l ied  a t every poin t in t ime t’ from -~ to +~~~.

Ma thema t i c a l l y ,  th i s  can be expressed as

z =f x(t’) y(-t’) dt’

In  the  cas e above , anywhere in the t’ domain where x ( t ’) exists ,

y ( - t ’ ) =  O , and where y(-t’) exists , x(t’) = 0. Therefore , their

product  is zero.

Since the si gnals are separated by time t , if a time

del ay of t is iutroduced making y(-t’)become y(t-t’), the sig-

nals will overlap. If t , the time delay, is varied from -
~~~~

to +~~ th e y ( t - t ’ ) s igna l  w i l l  “s l ip ” across the si gnal x(t’). ()

42
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~~

“ • The result is expressed as a function of time t:

z(t) x (t’)y (-t’+ t) dt’

The integral above is known as the “convolution integral” and

expresses convolution mathematically, i.e., the area of the

product of the two signals. A more convenient notation for

convolution is:

z(t) = x(t) * y(t).

A graphical interpretation of convolution , as shown may help

to see what happens to the signals.

14•

• Two signals

x( t ’) :AY (t’)

L_ . t  LI
t — 4 ,  

t

t’~~0

“flipped “slipped”
I 

~~~(t ’ )

t’ t t’ 0 -r I— -r —-41 2 I . ’...

C
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The shaded area on the time plot of both signals repre- - -

s en t s  the  area of the i r “common produc t” for a par ticular

valu e of time delay t .  The shaded area on the z(t) plot repre-

sents the summation of the area of their “common product” as

the “f l i pped” signal y(-t’) is “slipped” acros s x( t’)  -

(t)

= x ( t~ * y ( t )

~~~Tl I
T i*—T

1
+ t2 

-,

C)

_ 
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The convolution (the “flip” and “slip”) of two rectangular

pulses produces a trapezoidal pulse with a base of length

11 
+ T2. Convolution of two identical rectangular pulses pro -

duces a triangular pulse with base equal to 2-r and height

equal to A2-r.

A

[

!~~~~~~~

__

IJTj t

7 

____  ____

_ 
- T

~~~ .41 ~~ T f— 2-r +

z ( t )  — x(t) * y(t)

In this instance,
z ( t )  = x(t) * x(t).

Now that convolution in the time domain has been explained ,

how does it relate to the frequency domain? There are two con-

volution theorems which relate the two domains .

x(t) * y (t ) X( f )  Y ( f )

Convolution in the time domain
transposes to multiplication in
th e frequency domain.

x(t) . y(t) .‘ X(f) * Y(f)

Multiplication in the time do-
main transposes to convolution

C in the frequency domain.

- 
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As an example of this , the now familiar square pulse is

shown .

- .

H. CORRELAT I ON FUNCTION

In statistics , when it is desired to know how closely one

dis tr ibu t ion resembles an other , the tw•n are overlayed and the

areas in common are multiplied . This “common produ ct” repre-

sents the degree of similarity , or h ow wel l on e dis tr ibu t ion

correla tes to the other . in signal processing, i t  is o f t en

nece ssary to compare one signal with the same signal which

occurs later in time or with another signal . Signals vary in

time in different ways and the ti-i e origin may not be known .

Therefore , in order to overlay one signal on another com-

ple te ly ,  the signal is displaced in time by -r units , then r

varied to “slip ” the displaced signal across the one with which

it is desired to correlate. With each -r used, the “common pro-

duct” will be a different value. In order to obtain the value

of correlation at a given de1a~ r , the “common produc t” is

46
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p summed over a l l  values  of t ime in an in teiwal  I and d iv ided

by time I (or multiplied by This defines the “correla-

tion func t ion ” R(t) and is described mathematically as:

f ÷T/2
R ( t )  = 

~~~

‘

~

‘ 

~J x(t) x(t+T) dt.

-T/2

This is known as a “tim e average” and is den ot ed by

R ( T )  = <x(t) x(t+t)>

Note that in this context , -r is a time “slip” not a pulse

length. I f  t h e  signal is periodic in T~ it need only be aver-

aged over one per iod  T~, instead of all time . The correlation

function then becomes :

(‘+T0/2R(r) = L x(t) x(t+-r ) dt
To J

-10/2

R(r) is more prec isely referred to as the autocorrelation

function , that is , the correlation of one signal with itself.

It may be desirable , as mentioned earlier , to correlate one

signal x(t) with another si gnal y(t), displaced -r units in

time to become y(t+-r). This results in the cross correlation

function , R (-r ) - <x(t) y (t-~-T)). The cross-correlation

again measures the similarity . Where “correlation function ”

t 

47



is used , i t  is assumed  to be the  “a u t o c o r r e l a t i on  f u n c t i o n ” .

For a g rap h i c a l  r e p r e s e n t a t i o n , a s inuso ida l  wave is used

which , as illustrated , represen ts the r esul t of th e summ ati on

of t h e  “c ommon product ” as the de layed  wave is “ s l i pped”

ac ross  t h e  o t h e r  wave. T h i s  par t  of c o r r e l a t i o n  is l i k e  the

p r e v i o u s l y  d e s c r i b e d  convo lu t ion  except t ha t  the s i g n a l  is

not  f l i p p e d  and the  product  is d iv ided  by I.

b 2

When b o t h  s~ g n a i s  o v e r l a y  ::
~ small sh i ft wi l l give _______________
some negative area but the / t~~~ [ T~~~
result is still positive. —b 

~~

+b “~4”~’ t .4 bue zeto. —b

2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~ ~ “\. ‘(~~1~~ ~‘~(J 
t_ i~

2
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At 270°  the positive and
n e g a t i v e  a r e a s  a r e

T ~~equa l and the re-~L I l t a nt
value is zero. I~H~~ i

At  3bU °,a comp lete one cycle
shift , the si. t iial is hack in
phase and the re sul t is a b ~+ I + +~~ +~~maximum pos i t i ye  v a l u e . I I

The c o r r e l a t i o n  f u n c t i o n  of a p e r i o d i c  si g n a l  is a l s o

periodic. Since the time average is taken , t h e  naximum value

of the  au t o c o r r e l a t i o n  is , in f a c t , e q u a l  to the avci - a~ e power

of the  s i g n a l .

Up to now there have appeared many similarities between

convolution and correlation . However , if an asvmctrical si~-

nal is used , the final result obtained by convolution may be

qu i t e  d i f f e r e n t  from the  f i na l  resul t  ob ta ined  b y corre lation .

Tn addition , correlation theoretically includes a s c a l e  fac-

tor but in practice , T is finite and the distinction between

correla t ion and convo lu ti on is essen t i a l l y  r e la ted to the “fli p ”.

I . POWER SPECTRUM

An important theorem which applies to correlation is the

fact that the Fourier Transform of the autocorrelation is

equal to the power spectrum G(f).

R ( T )  G ( f )

49



For periodic signals , th~ power spectrum is the ~~uare of

the C~ coefficient magnitudes of the Fourier Series. It will

he shown later that this same theorem applies to random sig-

nals for which the power spectrum is a continuous density

1~ nction rather than dis ciete lin s. There also exists a

.~~‘~ss -spectrum for cross-correlation.

J. C~)NSLRVATION OF ENERGY

l~ is reasonable to expect that a si gnal pulse viewed in

the frequency domain should represent the same energy as ~n

t~~~ time domain. Energy is g iven by integrating the power over

all t ime . For si gnal x(t), thc power is g iven by l x ( t ) 1 2

lassuming for simplicit y , one Ohm of resistance). Therefore ,

the energy is given by:

E =f t x ( t ) 1 2 dt

L
The theorem states that energy is also given by:

I: =f IX(f) 1
2 df

-

A s im i l ar theorem appl i es to average power P of con t inu ous

s ig n als (wh i c h  hav e i n f i n i te energy) .

~~~~~ 
df R (T=0)]

Note the connection to autocorrelation with zero time shift . ¶
so ;

• -~~~~~~~~~ - - r - r ~~~~~~~~~~~~~~ 
_ _ _

~~~~~~~~~~~~~~~~~~~~~~



K. SIGNAL IMPULSE

In t he  s tudy  of mec han ics , th e q u a n t i t y  known as impulse

i s g iven hy integrating force over all time. The electrical

equiva lent for a signal pulse is equal to the pulse area D in

the time domain.

L D =J x(t) dt

Note that this is just the Fourier Transform evalii ate~ at zero.

frequency (which causes the exponential to be unity). There-

fore : _______________________

= X ( f = 0 )

(D) f I 
~~ ~~

C
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SELF TEST IT

FOURIER TRANSFORM PROPERTIES

Exp la in  in wo rds:

1. a x 1 ( t ) + bx )(t) --‘ ?

2.  x ( a t ) -i- -.-

3. x(t) j27t f
~ t

4 . x ( t ) *y ( t )  =[t ? ]( ? ]dt •4--~.

s. . [ L  * B..J L.. = ?
T1 T2

6. If x (t) = , sketch R(T)

7.  Compare R~~~
(-r ) w i t h  x*v

8. R ( T )  ++ ?

9. 
J

I X ( f )  j 2 df = ? = f [?]  dt

10. Pulse area in the time domain ?
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L III. QUANTIZATION AND SAMPLING

In the real  wor ld , most of the signals of interest to an

operator of a detection system are of a continuous , or analog ,

nature . On the other hand , mos t of the mor e sop histicated

processors in use today are di gi tal in opera t ion , and thus can

not use analog input s directly. Some means of digitizing the

analo g s ignals  mus t h e us ed.

To q~an t i ze  a si gnal , the value of the signal at any g i ven

t ime mus t be described by a dig i tal numb er.  This requ ir es a

measurem ent and conversion of the signal  va lue  to di g ital units.

The ques t ion of how accura tely th e value of the si gn al mus t be

measured in conv er ti n g i t to d ig i tal form mus t be consid ered .

Take th e fo l l owin g s ignal , for  example:

This signal has a maximum value of 2.5 and a minimum value of

0. Since the continuous values of the signal must be converted

to a set of d i sc re te  va lues , t he  dec i s i on mus t  be made of how

many discrete values are needed in the range from 0 to 3 to

describe the signal adequately . If it is de c ided t o u se fou r

( 
levels , that is , digitize to the nearest integer value , the

II
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si gnal will have the following appearance :

3

—

I f  th e number of valu es i s doubled and digiti zedto the near-

est half integer value , the digitized signal looks like this

Note that as the number of values used in dig itizing the

si gnal increases , the dig itiz ed curve more and mor e c lose ly

approximates the original signal. The values used in digi-

t i z i n g  the  si gnal  are k nown as q u a n t i z a t i o n  levels .  In the

cas e of a noise-free si gnal , the si gnal can be di g i t ized to

any deg ree of accura cy  by inc rea s ing  the number of quan ti za-

tio n levels.



The case of a si gnal with noise is different , however , In

this case , there is a random fluctuation of the si gnal value

because of noise , even when the value represented by the sig-

nal itself is unchanging . The range of these noise fluctuations

determines how accurately the value represented by the signal

can be measur ed , even w i th a pe r fec t mea su r i n g device. To

illustrate this , consider first a signal without noise and then

one wi th no i se .
V

0 t —’.

Wit~~~ut no ise

(
V

0
With noise

it is observ ed tha t in the no i sy  si gnal , the value of the

signa l  f l u c tua tes ab out some me an , or aver age , value  w i th in

some l imi ts . I f  the no i se  is tru ly  random in n ature , the mean

value about which it fluctuates is then the actual value of

the signal being represented. At any given instant , any value

of the signal between the upper and lower limits of the noise

fluctuation could stand for the actual value being represented.

hil , signa

L

Thc accuracY wi whiI t

~~~~~~~~~~

l can be
rneasurei

sJ~~~~~~~~~~~~~~~



l i m i t e d  to the range of f l u c t u a t i on due to no i s e .  For example ,

suppose the signal of interest is a constant 3.0 volts but

becau se o f noise , the signal f luc tua tes be tween 3 .5 and 2 . 5

vol ts. The mos t accuracy wi th wh ich  this  s ignal  can be mea-

sured is to the nearest integer volt , an appropria te degree

of uuantization.

Once it is determined how many quantization levels are

necessary, i t mus t then be de termined how of ten to sample the

s igna l in order to recons truc t i t accura te ly .  Obviously , if

the signal never changes value but remains constant , only one

samp le i s needed to recons truc t the si gnal for a l l  t imes .  If ,

ho wever , the si gnal  is no t cons tan t , there is a real  problem .

How of ten is i t necessary to sample a given s igna l?  It

is known that one sample is not enough if the signal is not

constant and also that if the signal is sampled continuously

(i.e., in an analog fashion) it can be reproduced exactly.

To sample a si gnal at extremely short intervals is very costly

and difficult to accomplish. What is needed is a compromise ,

a sampl ing  ra te hi gh enough tha t the signal can be reproduced

from the samples but not any h igher  than is necessary in order

to keep cost and equipment complexity down .

It is known intuitively that there must be some relation-

ship between the rate of change of the signal and the sampling

rate necessary to be able to reproduce it. If the signal

changes very slowly, sampling need be done infrequently. If

it  chang es r a p i d l y ,  howev er , i t  must he sampled frequently

enoug h that it does not have time to make several changes in () 
~~



the interval between samples or the changes will he lost

and the signal cannot he reproduced. If the sample inter-

vals are too long , the signal is said to he “undersampled ” .

This condition , in add iti on to caus in g the loss of som e of

the information in the si gnal , can also cause other comnli-

cations. In some of the old cowboy movies the stagecoach

wheels appear to turn backwards at times. This is a case

of undersamplin g which illustrates one of the other effects ,

ca ll ed “al ias ing ” . To expla in th is , a sine wave is diagrammed .

If this is sampled at a frequency less than that necessary

for  reproduc t ion of the s ign al , a series of samples which

give the impression of a sine wave of lower freauency is

received.
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This is a problem which must be addressed when analyz-

ing unknown s igna l s for f r equency com ponen ts , s ince a l i a s -

ing can give spurious results if the analyzer sampling rate

is not high enoug h.  This  w i l l  be d iscussed fur ther .

I n the t ime domain , the sampling process can be visual-

i:ed ide al l y  as th e mul t ip l i c at ion of the si gna l by a func tion

known as the “ideal sampling wave”, which is identically

equal to zero excep t a t the sample t imes (T 5 , 2T5 , etc.).

S 31 t

Ideal Sampling Wave

The dura tio n of thes e spikes , known as “delta functions ”, is

infini tesimal approaching zero , whi l e  their  ampli tude approaches

infini ty. They are defined such that their area (0 x ~~) is

equal  to one. Wh en the s ignal  of in teres t i s mul tipl ied by

the ideal samplin g wave , the produc t of their  areas  is at

each point T. Since the area of each delta function is one ,

and i ts wid th is zer o , the produc t of areas i s equal to the

value of the si gna l at that time . Thus the products of the

two functions appear as



t. and

u itut ti D I t li tt i L l

0

The f requency domain diagram indica tes wi ti mor e c l a r i ty
what happens when a signal is sampled. Assume that the si gnal

to be sampled is str i c t ly  “bandlimi ted” , that is , it has no

frequency components outside some limit.

X(f)

f~~~

2W is the bandwidth of this signal. Althoug h the mathema tics

is rather involved , it can now be shown that the ideal sam-

pling wave spectrum appears as below.

x ( t  x(f)

_ _ _ _  _____ _ _ _ _  1t ’~—2T —T 0 T 2T t—, 2 1 i. 2 f ~8 0  S S T T  T T
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From the modulation theorem it is recognized that modula-

tion of a function causes its spectrum to be shifted anJ - ,

centered about the modulation frequency and otherwise does

not change it. Thus , the spec trum of the sampled si gnal

appears as follows :

X (f )  
-

S 1where f = —

s T

—2f —f 0 1 2f5 f .—~~

From this it is seen that for strictly bandlimited signals ,

if f5 � 2~~, there  is no ov e r l a p ping of the spectrum components

and the spectrum of the orig inal s ign al is exac t ly r eproduc ed.

If  th e sampled signal is then pass es throug h a low-pass fil-

ter , which  has the proper ty of a l l ow ing only those f requencies

below its cu to f f  to pass , the o r ig inal  si gnal  can be exac t ly

r e c o v e r e d .  ( F i l t e r s  are d i s c u s s e d  in Sect ion IV) .

X (f) *

LPF

X ( f )

/~0 f .

~~~~

60

— 
— .~~.— . 

.— _____________________



— It follows from the previous dia~~ram that the sam pl ing

Irequencv must he � 2W , i.e., greater than , or equal to , two

times the hig hest frequency component of the si gnal in order

to reconstruct the signal from the samples.. If it is not ,

the spectrum of the sampled signal has overlaps ehich intro-

duce errors into the reconstruction of the signal. The-e

x (1)

LPF

x (1)
S

-___ _

overlaps are the cause of “aliasing ” and other inconsistencies

in the reconstructed si gnal. Th is result is formalized in the

Sampl ing Th eorem , or “theorem of uniform sam nl int~” :

If a signal contains no frequency components

L for jf ) ~ ~/ , it is completely described by

instantaneous samp le values uniformly spaced

in time with period I~ < 1/2 ~V .

C This rate of sampling , f5 2W , is known as the Nyquist Rate.

— ,
~~~~~~~~

——-—--
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It is the absolute minimum sampling rate from which a signal
r

can be reconstructed under ideal conditions.

Until now consideration has been g iv en only to ideal sam-

pl in g and recons t ruc t ion . In prac ti ce , the ide al is r a r e ly ,

if ever , realized. Practical sampling differs from ideal sam-

pling in three obvious respects:

( 1 ) Prac t ical  sam p l i n g  waves are no t com po sed of

delta functions , but have a finite width.

( 2) Prac t ical  f i l ter s are no t ide al.

(3) Real world signals normally sampled are not

strictly bandlimited.

In  pr act ice , th ese d i f f e r e n c e s  are of small enou gh signi-

ficance that for all normally encountered cases only the last

is of r eal impor tanc e . Sinc e most real s i gna l s  are no t str i c t ly

ban dlimited , there  wi l l h e some over lap  in the samp led spec trum .

~f the spec t ra l  com ponen ts ou tside some nomina l  va lu e W ar e

neg lig ib le , however , the si gnal can still be adequately de-

scr ibed for most purposes by samples spaced T5 ~ 1/2 W.

0
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SELF TEST I I I

QUANTI:AT ION AND SAMPLTNG

1. Quantization of signals is necessary in order to

2. The number of quantization levels necessary to repre-

sent a signal is related to ________________________

3. The numb er of samples necessary to r ep res en t a si gnal

is de termined by 
_____________________

4. Wha t is a “del ta func t ion ”?

5. What is “a l i a s i n g ”?

_ __ _-.- - --—--
~~~~-- --



I V .  F J L T E~iS ANI) LINEAR SYSTEMS

The ocean is an extremely noisy environment in which to

search for submarines. Noise from waves , wind , break i ng surf ,

shi pping , sonic mammals , f i sh and crus tacean s , seismic acti-

v i t v , ra in , etc., is present to some degree at all times.

The problem then is how to cio about sorting out these differ-

en t sources  in ord er to de tec t submarine s. One way is to u se

filters to eliminate as much of the noise as possible.

In general , there are several classes of filters relative

to spectral response , e.g., low-pass , hig h-pa ss; and bandpass

filters. Ideal low-pass filters allow frequencies below their

cutoff frequency to pass and to screen out all above cutoff.

Their spectral response is shown in the following di agram .

_ 1
I

High-pass filters allow all frequencies above their cut-

off to pass and to screen out all below .

I
F — — a . .  . -

~~1

cutoff
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Band-pass filters allow all frequencies between their

lower and upper cutoff frequencies to pass and to screen out

all others.

‘1~

o 
~ 

Lu

Filters are characteri zed by their unner and lower cut-

off frequencies , or their center frequency and band-pass (or

bandwidth), B. The bandwidth is defined as the nassband width

measured in positive frequency only, that is , the difference ,

( ~.r ~i 
= B.

J______________ ___
01 

f— 4

O f course  no real  f i l ter s have the shar p cu to f f  ch ar ac-

teristics of the ideal filter , so it is customary to define

the bandwidth of a real filter as the bandwidth between the

poin ts where the response has dropped to hal f the maximum .

These po i n t s ar e kno wn as the “ 3 d B  down poi n t s”, as shown on

the f o l l o w ing pag e.
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A signal which is passed through a band-pass filter appears

as f o l l o ws :

Unfiltered input

dl

Filtered Response
0 

I

Filtere~4 input



As indicated earlier , filters eliminate as much of the

noise as possible. How does the filter actually improve

detection capability ? To answer this question , examination

is made of the way filters help improve detection in a large

class of detectors , known as “ene rgy  detector s ”. Discus-

sion of the way these  ope ra t e  w i l l  be t a k e n  up in  g r e at e r

detail later. The general principle of operation is that

the detector senses the total power (or energy) present in

the input and compares this with a “threshold” value , li-

the input exceeds threshold , the detector indicates the pres-

ence of a s ign al and if the inpu t do es n ot exceed thresho ld ,

it indicates no si gnal  pres en t .

In order to unders tand how f i l ter ing  hel ps to detect s i g-

( nals in noise , consider the “power spectral density ” plo t of

an inpu t. The power spectral density is the power in a sig-

nal that is carried by each frequency component.

Discrete lines

I .
The total power in a signal then corresponds to the

integral of the power spectral density over all frequencies.

$ C The power spectral density thus gives an indication of which

67
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frequencies carry most of the power in a signal and the rela-

tive amount of power at a given frequency compared with that

at others. The power in a given frequency band is then pro -

po r t ional  to the area under  the power spectral densi ty curve

between the lower and upper limits of the band. Comparison

of the power present in a signal with the power of the back-

ground noise present indicates the detectability of the signal.

To see the gains from filtering , cons id er a si gna l  aga ins t a

back ground of “white noise ” (white noise is defined as having

equ a l am oun ts of al l  spec tral  componen t s ) .  I~ is seen that

Power
dens it y — Signa l

No ise

)
() 

•T

if the detector ~. unes the entire frequency spectrum and

senses the t~ iwer presen t to compare with a threshold

v a lue , th e presence or ab sence of the si gnal  does no t a f f e c t

the input s’gnificant ly. On the other hand , if the inpu t is

filtered and onl y a l lows  a nar row band of f r equenc ie s abou t

the frequency ~f interest as the input to the detector , then

th e p r esence o f a sig na l  w i l l  subs tan t i a l l y  change the amoun t

of power in the input , as shown in the diagram on the follow -

ing page .
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I,
Power
density 

- - 
~~,,, Filter respon se

.bi.,p..Signal 
Noise

0 
— 

f f’ ~i s  u

In effect , this raises the signal- to-noise ratio and thus

allows detection of weaker sig n a l s  than wou ld  be det ected

before filtering. In the case of non-white noise , the improve-

ment in signal-to -noise (S/N)  ra t io can b e even gr eate r.

~Powe r

e

o ~~~~ ~ f— .p

Ambient noise in the ocean is an example of non-white

noise and careful filtering will improve detection probability

i m m e n s e l y .

Power
density

~~~~~~~~~~~~~~~~~~~~~~~~ c b ~~nt



A n o t h e r  c o n s i d e r a t i o n  in detection system design is the

fact that many common filters in typ ical app lications today

are  comp o se d  of reactive elements , such as JC/RLC circuits ,

cr y s t a l s , or t r a n s d u c e r  elements , which have finite time con-

stants associated with them . This me an-~ that these reactive

e l e m en t s  require a finite time to “ring up ” , or est i blish

resonance. Thus systems do not re~.pmi d immedi a tel y to i n p u t s .

This must he cen~~idered in the system desi gn. The responsr-

of these circuits has the foll cm ing appearance:

Response

Input

1 =  Time const ,I t

The time required for the respons e t o  r i - ~e to  6~~% of t h e  max i-

mum is known as the time c o n c t a n t  of t h e  sy s t e m .  The narrower

the resonance (the narrower the filter bandpass) the longer the

time constant. Thus , if it is desired to resolve frequencies

to ‘ B/2 Hz , enoug h t ime must be allowed for the filter to respond

(on the order of 1/B seconds) and this will he longer as B is

made n a r r ower .

I~ ’cn modern di g ital filters require a finite time to respond

to an i n pu t. This  t ime is an inheren t -proper ty of al l si gn a l

prncessing systems. The general theory involved is called

Linear Systems Fheory. A “linear system ” obeys the superposi-

t ion theorem stated in Section II. Linear systems are completely

described by their transfer function , 11(f), wh ich is  d e f i n e d
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as the ratio of the output spectrum to  the input spectrum .

C 
H ( f )  Xi  [H I

Their response to an arbitrary input is completely described

by the i m p u l s e  r esponse  h ( t ) ,  which is the Fourier Transform

of the transfer function.

h H
h (t) - -  H (f) - ~~~~~~~~ •

‘ \ j~~~
‘—.“ f

From Fourier theory , it can he shown t h a t  the  ou t n u t  s i g n a l

y(t) 1 rom a l ine ar sys tem is g iven by the conv ol u ti on of the

in put signal x(t) and the impulse response.

y(t) = x (t) * h ( t )1  ~~~ t ~~~~~~~~

The power spectral density of the output , however , is given

by the product of the input G
~
(f) and the square of the trans-

fer  func tio n ma gni tude , often called the “frequency response ” .

Gy (f) 
= IH(f ) 1 2 G~~

(f ) J (See Page ~~
‘)

l~or example , a hi-fidel ity audio amplifier is character-

ized by a flat frequency resoonse from 20 Hz to 0,00 0 Hz , so

that it does not filter out the musical content of a record-

ing . However , the tone control on a car r adio  is orovide d to

C purn osely  f i l t e r  ou~ noise  from “static ”.
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Anothe r  c o n s i d e r a t i o n  in the  des ign  of a c t i v e  rang ing

detection systems is the requirement to accommodate doppler

in the re turn ing echoes . Th e inpu t f i l ter mus t have a band-

width wide enough to pass echoes that are doppler shifted by

the maximum amount antici pated during opera t ion of the sys tem

or t h e  echoes  w i l l  not be de tec ted .  If  a f i l t e r  of su f f i -

cient bandwidth to detect all echoes does not g ive a suf f i -

c ient S/N ratio improvement , a bank of narrow band f i l ters

cen te red  at v a r i o u s  f r equenc ie s  corresponding to d i f f e r e n t

doppl er sh i f ts may b e used al terna t ively.

• - ,-i
72
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SELF TEST IV

FILTFRS AND LINEAR SYSTEMS

1. Name three classes of fi l t e r s  with  respect to spec-
tral response.

2. Explain how a filter can improve signal/noise ratio.

3. What is the “time constant” of a filter?

4. What is the “3 dB” bandwidth of a filter?

5. How is the bandwidth related to the response time?

6. What is the transfer function of a linear system ?

7. How can the output of a linear system be calculated if
the impulse response is known?

8. How can the impulse response be calculated if the
t r a n s f e r  f u n c t i on i s known ?

9. What is meant by the “frequency response” of a filter
(linear system)?

I

_ _  
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r
V. RANDOM SIGNALS, POWER SPECTRAL DE~JS I TY ,  AN D NOISE

A. RANDOM SIGNALS

Heretofore the signals discussed have been explicitly

d e s c r i b e d  as “ d e t e r m i n i s t i c  s i g n a l s ” , such as a square  wave ,

sinusoidal wave , pulse , etc. In describing a signal exp lic-

i t l y  as some func ti on of t ime , it is assumed that its ampli-

tude and phase are kno wn exac t ly f or a l l  t ime ; i .e . , past ,

present , and future. No real world signal meets these cri-

teria for then the signal would convey no new information

because it could be predicted exactly for any future time .

Therefore , cons idera t ion mu st be given to random s ignals .

Random s i g n a l s  of i n t e r e s t  to the An t i submar in e Warfare  spe-
I

c i a l is t emana te , for  example , f rom vari ous machinery  and f low

noise . Noise  in the ocean due to waves , wind , bio l og i c a l

cour ces , seismic disturbances , etc., is a special  case of

random signal , and it is always present  to some degree whether

or not a “targe t” is presen t. Processing equipmen t mus t be

able  to d is ti ngu is h be tween the random s i g n a l  of in teres t ,

un wan ted si gna l s , and no i se.

A r andom si gnal , u n l i k e  a de termin i s t i c s ignal , may only

be descr ibed  by i ts statistical characteristics. Its past

hi story and its predicted future will he stated in terms of

some average value and a given probability that the signal

will be within certain limits at a specified time . This “given ”

pr oba bi lity ” is represented by a orohability densi t- -’ function

(pd f ) .

- .~~~~~r ~~~ ------~ 
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What is a probability density function? A function is a

descri ptor , i . e . ,  i t usua l ly  descr ibe s some thin g. Dens ity is

a measure of quantity contained within a specified space.

Probab i l ity re fe rs  to the chance , or the perc en tage of t ime ,

an event occurs. Therefore , a probability density fun ct ion

descr ibes  the l ike l ihood  of some quan tity being con tained wi th-

in a spec i f ied  space .

How does the probabil ity densi ty func t ion rel ate to a r an-

dom signal? Assume a random signal , x(t), wh ich has some ran-

domly vary ing voltage amplitude over time .

Time —i

Plot the signal with a vertical scale representing voltage

amplitude and the horizontal scale representing time .

C Time ~
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Suppose now that 1-volt represents any value between 0.5 and

1.49; 2-volt represents 1.5 to 2.49; 3-volt represents 2.5 to

3~~~4~~1
, etc. From the random si gnal , a plo t is now ma d e wi th

the vertical scale still renresenting voltage amplitude but

with the horizontal scale representing the number of times the

signal is at that amplitude , or within that amp li tude range .

During time interval 1 , the si gnal was present twice in

the 3-volt range and these two blocks are shaded in on the plot.

~~~~~

~~~~ 2
— o  j

~ ‘ 7 ’ t~~
1

F ‘Ic

Number of t imes the si gnal. is
within the amplitude range

Tii ing time interval 2 , the signal is present in the 1-

and 3-volt ranges. These additional blocks are shown in the

followinc z diagram .

4 
_____

- I • 2 ’  3~ ~~r 
~ 7 ’  f ’  ,

Number of times the signal is within
the amplitude range

During tim e interva l 3 , the signal is present in the 1-

and 2-volt ranc~es . These addi ti onal  b l ocks are shaded in and - 
-

are shown in the diagram on the following nage. (_)
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V
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Number of timez the signal is within
the amplitude range

The development should start to become apparent. Look

now a t t ime in terva ls 4 , 5, and 6. Th e si gnal is pre sen t in

the 3-volt range once , the 2-volt range once , and in the 1—

volt range three times. Shade these in.

4

1 . 2 _ V  •~~~~~‘ 7 ~

Number of times the signal
is within the amplitude range

To finish the plot , look at time intervals 7 , 8 , 9 , and

10. The signal appears in the 4-volt range four times; in the

3-volt range three times; in the 2-volt range four times ; in

the 1-volt range four t imes; and in the 0-volt range on~.e.

Shade them in.

1 ~73 ’4 ’ 5
~~~~’

’ 7 ’ € ’ 9 ’
i-

Number of times the signal
is withi n the amplitude range

4
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The last plot on the prev i ous page represents the ampli-

tude ranges that the si gnal was in for the entire time it was

observed. The total number of shaded blocks represents the

num ber of times the signal is within the various amplitude

zones during the various time intervals for the entire dura-

tion of the signal: the 27 blocks account for 100% of signal

time . Each shaded block is regarded as a sample value . If

the number of sample values is denoted by n , then n= 27 in

this example. The percentage of time the signal is in a nar-

ticular voltage range can be approximated by d iv id i n g  the nu m-

ber of s ignal sample values in that voltage range by the total

number of sample values , n .

0-volt range: 1/27 = 4%

1-volt range: 9/27 = 33%

2-volt range : 6/27 = 2 2 %

3-vol t range: 7/27 = 26%

4-volt range: 4/27 = 15%

Total 100%

The percen tage of time the signal spends at other ranges

can al so be ea ’cu la ted.  Suppose , for example , tha t in a sys-

tern there is a detector which detects only si gna l s w it h ampli-

tudes of 3 volts or more (the detector has a fixed “threshold”

of 3 volts). To determine the percentage of time that the

abov e rand om s i g n a l  is detec table , it is necessary to deter

mine the nercenta~ e of ti me i t rem a i n s  i n the range of 3 or

more volts. The 3-volt range covers from 2.5 to 3.49 volts.

Take one-h alf tb.: time the signal is in the 3-volt range and
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add it to the entire time the signal is in the 4-volt range

to approximate the total time the signal is at or above 3

volts.

(1/2) (7) + 4 = 7 . 5

Divide by n to get percentage:

7 . 5 / 2 7  =

Ther efore , the signal is detectable 28% of the time .

The accur acy in th e de termina ti on of the percen ta ge of

time the si gnal is wi thin  any spe c i f i ed f r equency rang e can

be increased by making the voltage amplitude ranges smaller

and shor ten~ing the dur at ion of the t ime in terva ls. The fol-

low in g d iag r am shows sampl e va lues for  the same si gnal , but

with amplitude ranges of 1/2-volt and the time interval dura-

ti on ha lved .  I t is cons truc ted in the same manner as the

prev ious plo t.

~ ~~: \\ _________
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~ \ ~.T

~2

. 
~~~~ ~~~~~ 

_ _ _

~~~, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1.~ ~~~~~~~~~~~~~~~~~~~~~2. 
1

u 1 ~~~r~~ T~~~1j  ‘,~~~
‘ ., ‘ ~~‘ .,,,~~I ,.._ .

Number of times the signal is withtn
the amplitude range

As amp litude range and the t ime interval length are made

C sma l ler and smal l er , the plot approaches a continuous curve

as illustrated on the following page.
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Continuous curve approximation

In most practical applications , a formula  for  the con t inuous

curv e can be de te rmined  and the corresp onding func t ion in te-

grated over the amplitude range of interest to find the per-

centage of time the signal was within that range.

Th e prob ab i l i ty dens ity func t ion of a si gnal represents

‘~he “n r o h a h i l i t y ” that a si gnal will he within an amplitude

range. As the plot constructed above represents 100% of the

time of the si gnal , so too , does t h e pr obab i l i ty densi ty func-

tion represent the total probability of the si gn al .  I t is

scaled from 0 to 1 , i . e ., th e area under  the prob ab i l i ty den-

si ty func tio n curv e is equal  to 1 • If the detector in the

example just mentioned detects , with certainty , any vo lt age

amplitude of 3 volts or more , and th e si gnal spends 28% of the

time at 3 volts or more , then the probability that the signal

will be detected in the 3-volt or more range is 0.28. The

pr obabil i t y density is expressed by a function which may be

integrated to find the probability that the signal is in any

prescribed amp lit ’ th’ rin~ e. For prob abi l it y densi ty func tions )
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used in many applied problems , the integration process can be

avoided , since the results are readily available in standard

tables.

The p robabil ity dens ity func ti on (pd f )  mos t commonly used

for  elec tr ica l  signals  is the “gauss i an ” or “normal” pdf .  I t

is the familiar bell-shaped curve described by the equation :

2- (x-m )
1 2

p (x) 1r.e

p (x)
In the equation for p (x),

m = mean , or average , value , x

x = value of signal x(t) at time t ,

a = standard deviation (a is the Greek lower case si gma) .

The standard devia t ion a i s a measur e of the spread of the sig-

nal about its average value m. In the next figure is shown

two gaussian curves with the same mean but different values of

a. Th e ar ea under each curve is equal  to 1.0 .

For th e gauss i an pdf , about 68% of the area under the curve

C lies between r n - a  and m~~a, which  means  tha t the n robab i l i ty

Sl



P(.) that the random signal , x(t), assumes a value between r n — l a

and m + !a is 0.b8.

x T-

(Shaded a r e a = 9 %  
_ _ _ _ _ _ _ _o f to ta l  ar ea) - - .- - - ~~-Z —-20 m +20 x

m ± 3 o , P( . )  = 0 . 9 9 7

(Shaded  a rea  = 99 . 7% -‘
~~~~~

‘
•
~~~ 

• 

~~~~~~~~
of total area) — . 

-
‘

In the illustrations , only 0.997 of the total probability

has been accounted for. This is because there are no limits

on a gau ss i an  pd f ;  the r ang e is unbounded . A s igna l  may con-

ce ivably exist at any finite amplitude above or below the aver-

age va l u e. The probab i l i ty tha t the si gnal  w i l l  occur ou tside

the m ± 3a range is only 0.003 (1.0 —0.997 = 0.003). Limiting

circuits re normally used early in the processing stage to

pr event the rare occurrence of a large amplitude signal from

damaging equipment. The important part of the signal , 0. 997

of i t, is still retained.

The gaussian pdf is centered aroun d an average value.

For an elec t r ical s igna l , this is the average value of the
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7 
amplitude of the signal. Look at the signal and its pdf side

by side w ith the ~df oriented to the signal am~ 1i tude in the

f o l l o w i n g dia g ram :

x

Time —)

The value chosen for m is the stat is t ical avera ge of the

27 sample values  on the previous pages. Each of the sample

values  was 0 , 1, 2 , 3 , or 4.  The average , m , is equal  to the

sum of the ind iv idu al sample values divided by the sample s i ze ,

n .

m = 
0+1+1+1+1+l+1+1+1+l+2+2÷2÷2+2+2+2+2+3÷ .. .+4.

2.7

or , since many values are the same ,

1(0) + 9(1) + 6(2) + 7 ( 3 )  + 4(4) 
— 2 8m 2 . 7  — .1

Al gebra ica l ly  expressed , th i s  is

m = ~~~ x~

where

n

E = the sum of all the samples

C i—i H
x . j ~~ l t o j = n , o r x  +x +x ~...+x .1 2 3 n

1 83
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The expression g iven is equivalent to adding the sum of the

products of the individual samp le values and their probability

of occurrence. Increasing the number of sample values gives

a more accurate descri ption of the signal. If m is calculated

for a number of samples increasing without bound , the summa-

tion can be written as an integral in which the sample proba-

bility is replaced by the pdf p(x).

m =E (x~) P(x~) =
~:~ 

. p(x) dx

I t  has been shown how statistical characteristics may

desc r ibe  a si gn al. The nex t p roblem i s how to ob tain signa l

characteristics that are statistically valid to identify a

signal.

The v~i l i d itv of statistical methods in 4etermining the

outcome of a process depends on repetition of the process over

and over again. with a random signal , x(t), thi s repe ti t ion

m ay be accn-i~~~ished by u s in g an “en semble ” of random si gnal

~en er ator s w it h each s ignal  genera ted hav ing th e same broad

statistical characteristics. If the individual outputs from

this “ensemble ” are measured  simul taneous ly  at some time , t ,

and av eraged , the result would be an “ensemble average ” , indi-

ca ted by xftj. This “ensemble  average ” is identical to , and

has .ill the properties of , a statistical average. However ,

most si~ na1s of interest in typ ic a l sys tems or ig ina te from a

single source. Therefore , only the time average of the signal ,

may be obtained. 0
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Th e ti me average , <x(t)> , and the ensemble average , x (t),

are not always the same. For example , suppose the statisti-

cal characteristics of the signal from the random signal gen-

era tors in the ensemble vary w ith ti me. Su ch a var i at ion

would not be reflected in measurements made at a fixed time ,

t 1. The ensemble average at time t1 would be different from

the ens emble  avera ge at t ime t2 . A r andom s ignal with these

ch ar acter isti cs is ca l led “non-stationary ”. If a detector is

used to detect  the  random s igna l  in the example above , wha t

is the e f f ect on the de tec tor if the random si gna is “non -

sta tion ary ” ? Th e average , m , was calculated as 2.18. Sup-

pose that m varies with time and that over another time ~nter-

val m is calculated to be 1.14. If the signal over the second

t ime ha s the same charac ter is t ics as ov er the f irs t , the

e f f e ct on de tec t ion would be the same as r ai s ing th e thr esh old

to 4 vol ts ove r th e f i r s t in terval , as indicated in the fol-

lowing diagram.

5- -

w 4 -  ______  — —  - . — — -—  — -~~~~~~~~ Threshold = 4.0

j i 2 - Average = 2 . 1 8

1 ‘ 2 3 4 I I I 7 i 9 ‘ q ‘

Time —.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Time —p
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The p robabilit y is that x= 3 volts or more would become

2/27 = 74~ vice 28% For m = 2.18! If the average is unchanged

and the standard deviation increased by a factor of three , the

detector would be observing only 0.68 of the si gnal as opposed

to 0.~)97. Therefore , if the random si gnal is not “stationary ”

(i.e., its statistical characteristics do not vary with time)

.~r a t  l e a s t  “s t a t i o n a r y” fo r  the  p r o c e s s i n g  t ime  of the  detec-

to r , t h e det e c t o r w i l l  be very inefficient. On the other hand ,

the si gnals mi ght be stationar y (such as a collection of bat-

teries) yet he unequal to the ensemble average.

Fortunately, many random signals that must be processed

may have t im e and ens embl e averages which are iden tical , per-

hap s not for all time , but at least for the processing time

re qu i r ed. Signal s wi th thei r  time and ensemb le averages equal ,

= x (tl , are said to come f r o m  an “e rgod ic  process ” , or

t~ have the p r o p e r t y  of “e r g o d i c i t y ” . An “e rgod ic  process ” is

also stationary . Under the assumption that a signal from an

ergod ic pr ocess me ans the t ime and ens emble av er ag es are equ al ,

the signal is s t a t i o n a r y  and the time average will have all the

p r o p e r t i e s  of a s t a t i s t i c a l  ave rage .

Having established that a time average will be statisti-

ca l l y  va l i d  if  it is from an e rgodic  process , how do we ob ta in

the other statistical characteristics which describe a signal?

A ll acoustic detectors convert the signal (and , unfo r tun ate l y ,

the noise , which w ill be addressed later) into some time- 
. 1~varying voltage or current , x ( t ) .

0 
~

.
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s1~na l~ ))~ 
_ _ _ _ _ _ _ _ _

Detector ________________________

Time —a

The t ime average of the signal ,<x(t)>, assuming ergodicity,

is equal to the average value m. This average value is both

the value about which the si gna l ’ s density p(x) is centered

and , as the t ime aver age , represents the “dc ” component of the

s i g n a l  ( d i r ec t  cu r ren t , a lso called the steady-state or the

non- time-varying component). If m = 0, there is no “dc ” com-

ponent. If the si gnal x(t) is impressed across a one-ohm

resistor , the in stan taneous power d iss i pated is x 2 ( t) . The

t ime av era ge(x 2(t)>becomes the “second momen t” , w h i c h  rep re-

sents the total average power of the electrical signal. The

“second mom en t” d i f f er s f r om the “averag e valu e squared”  m 2

wh i ch i s the dc power , or the power in the non-time-vary ing

component. m 2 i s ob ta ined by squar ing af ter aver ag ing , wherea s

is obt ained by squar ing before  averag ing .

As an illustration of these values , consider a random sig-

nal x(t), dia gr ammed below and on the fo l lowing  pag e.

t _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Time 
- .  

Time _-~~~
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1.0 .~~.0
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T’~e following drawings illustrate computation of in2 and

x ’- .

~~~~~~ H~ 
1 (t )>— .~ 

m

~~~~~~~~~~~~~~~~ 
(t 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C t  ))—~ 

,~2

There are two o ther  m~ asur es which  char ac te r i z e  any random

signals in  addition to the average value m , about which it is

cent red. A random si gnal is composed of a dc component and

and “ac ’ component (altrrnatin ~ cu r r en t , or the time varying
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component of the signal). The total power x2 mu s t be the sum

of the dc ‘~ower m and the ac power a2 . Althoug h representing

the ac power of the si gnal , a is the “variance ” of the den-

sity p(x). The variance is equal to the second moment minus

~~ 2the average squared , ~~ = x - rn . For an e l e c t r i c a l  s igna l ,

the  v a r i a n c e  is the  total average power minus the dc power.

~s the standard deviation a represents the square ioot of the

ac power , it is more commonly known as the root-mean square

(rms) value . These definitions are summarized briefly :

Given an ergodic random signal x(t):

1. the average (mean) value in is its dc component ;

2. the average-squared m 2 is i t s  dc power;

3. the second moment x is its total average power;

4. the variance ~
2 = x2 - m 2 is i ts ac power ;

S. the standard  devia tion a is it s rms va lue .

In “Four i er Trans f orm Proper ti es ” , the concept of correla-

tion of a si gnal was discussed. It is considered again here

because of its unique properties and because of its relation-

shi p to the “power spectral density ” of a r andom signal .  Those

~iho feel that they have not grasped the concept of correlation

shou ld review that section before proceeding .

The autocorrel ation function , R(I), was defined prev ious ly

as the time average R(T) =<x(t) - x(t + T)>. For an ergodic ran-

dom signal , the autocorrelation function becomes:

R(T) = <x(t) . x (t + 1)> x (t) . x(t + T)

t The v a l u e  of R ( r )  i s  a f u n c t i o n  of th e t ime de lay ,  r , not time t.

4
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R (r l  is  a iax iia um at  r 0.

R ( 0 )  = x~ t ) - x ( t ~~~ O ) = = total average power.

As -r inL.rcases , R ( T ) decreases , un til at -r = infinit y , R(t) is

a min imum :

R(~ ) = m 2 = dc power;

- R(cx ) = = x 2 - m 2 = ac power.

The a ut~~correlation function is also a measure of the “time

coherence ” of the random signal. If ‘r is small , x(t) and

+ T) w i l l  be c los e toget h er in t ime . Theref ore , the p resence

of one will have some effect on the presence of the other , a

condition known as “statistical dependence ”. If the presence

of x(t) ha- S no effect on x(t + i ) ,  such as happ r’ns if T is large

and x(t) is random and non-periodic , then x ( t ) and x ( t + T) are

sa id to be “statistica l l \- independent ”. If the absolute value

of the autocorrelation function (minus the dc power) equals zero ,

then x(t) and x(t + T) are sa id  to be “u n c o r r e l a t e d ” . For example ,

a sine wave is uncorrelated with a cosine wave but is statisti-

cally dependent. Statistical independence simplifies the cal-

culation of the autocorrelation function . V~hether or not two

si gnals are  correlated become s important in the calculation of

their average powers.

Assume that a signal has been formed by the addition of two

separate si gn ils: z(t) = x (t) + y(t). The correlation function

of zit) will he of the form ,

(x + y ) ( x + y ) = x 2 + x y 4 y x 4 y Z
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and is equal to:

R~( T )  =< x ( t )  . x ( t  + T)> + < y ( t )  - y(t + T ) > - +  <x(t) - y(t +T)> + < y (t )  - x(t +T)>

R~ (r )  = R
~~~

(T) + Ryy (T) + R
~~~

(T) + Ryx (T)

where the last two term s are the “cross correlation terms ” of

x(t) with y(t) and y(t) with x (t). As noted ireviously, the

above correlation functions represent the average power in the

si gnals , and can be written as:

p = p  + p  + p  + pxx yy xy yx

Let the part of the two si gna ls x ( t ) and y ( t ) which  is co r-

related over the time delay T be called S. Then S is the sum

of the coherent power ~~~ in si gnal x(t), the coherent power

S> ,,,. in s ignal y(t), and the i r  c ross cor re la t i ons ~~~ and S,~,,, .

S = S  + s  + s  + sz xx yv xy yx

If the part of the signals which is mutually uncorrelated

over  the time delay t is called noise , then the total noise

power N is the sum of only the noise power N,~ and Ny)~ The
cross correlations are eq~ al to zero:

N = N  + N  ; ~N = 0 N 0).z xx yy ~ xy ‘ yx

For a signal which is th e sum of mutually uncorrelated

sign a ls , the correlation function is the sum of only the auto-

correla tions (the cross correlations equal zero) and t~.e aver-

age power is the sum of only the average powers of the in Ii-

t vidua l signals (the cross correlated nowers equal zero).
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B. POWER SPECTRAL DENSITY

Thus far only the time domain aspect of random signals has

been addressed. The frequency domain is represented by the

power spectral density , which was introduced in “Filters and

Linear Systems”, Section IV. The device used to transfer

between the time and frequency domains is the Fourier Trans-

form . The Weiner-Kinchine Theorem states that the power

spectral density, G(f), and the autocorrelation function R(t)

are Fourier Transforms of each other :

G(f) = 

~ [R(t)) L<~
t)  

. x(t + i) e -jwt dt~

And from the Duality Theorem ,

if R(t)4—~.G(f), then G(t).~-j.R(f).

As can be seen above , the random signal may be described

in either the time domain R(t) or the frequency domain G(f)

with free interchange between the two .

Since the power spectral density is the Fourier Transform

of the autocorrelation function , the Fourier Transform Theo-

rems may be applied to the power spectral density . The sys-

tems designer uses the properties expressed by these theorems

to design an efficient detector/signal processing system. The

specialist who has knowledge of these properties can better

understand how his system is designed to operate and , there-

fore , utilize it more effectively. The duality theorem was

already utilized. The other major theorems applicalbe to power
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p spectral density will be explained along with examples of

their usage.

1. Frc~ iency Translation Theorem

If a signal x(t) is bandlimited in W < f
~ 

and a new

signal y(t) is formed by multiplying x(t) by cos (w
~
t+

~~
),

y(t) = x(t) cos (w
~~

t + t ) ,  then the correlation function of

y(t) is eaual to one-half the correlation function of

x(t) cos w~~r , that is , = (½)R
~
(r) cos w~t. In addition ,

the power spectral density G(f) is

G~ (f) = (¼)G
~
(f_f

~
) + (¼)G (f+ ~~~

Multiplication in the time domain by cos w
~
t becomes trans-

lated in the frequency domain as the power spectrum is shifted

up and down in frequency by ±fc• The condition that the band-

width W be less than 
~c 

is necessary to ensure that Gx
(f_ f

c)

and G
~
(f+f

~) do not overlap , otherwise a]iasing would result ,

as described in “Quantization and Sampling”, Section III.

Notice also that in multiplication by COS (w
c
t+$) the phase

factor $ is lost in translation to the power spectral density .

Therefore , the orig inal random waveform may not be reconstructed

from knowledge of the power spectral density. However , by re-

turning to the time domain via the inverse Fourier Transform ,

• the autocorrelation function R(r) with its significant statis-

tical properties may be found.

Frequency translation is very useful in signal processing .

C Suppose that due to space, weight, or power limitations , it

is impractical to locate the detector and the processor
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together. The low frequency (0 to 1000 Hz) sound may be

detected , translated to radio frequency (RF) such as used in

acoustic listening sonobuoys and broadcast to the processor .

In the same manner , one processor can handle many detectors

if each detector ’s signal is translated to a separate fre-

quency band within the RF range (Detector 1, frequency f1 to

Detector 2 , frequency f3 to f4; etc., all within the RF

band). The problem could be one of processing signals of

many different frequencies. Rather than having many differ-

ent processors each processing only one signal , it may be

better to have one processor operating at a fixed frequency .

All of the signals could be translated to the processor fre-

quency for processing . If the processor is very elaborate

and/or very expensive , this method becomes desirable. )
2. Integration Theorem

t
If y(t) f  (t) dt , then G (f) = 

1 
2 G (f).

-~~~~ y (2nf) X

The multiplication factor ~ indicates that the low
(2irf)

frequency components of the power spectral density will be

enhanced by integration . The ocean acts as an “integrating

filter” in that it allow s the low frequencies to propagate

while rapidly attenuating the higher frequencies. This is one

reason why, in an attempt to get long detection ranges, active

sonars and passive processing systems have increasingly ex-

ploited the lower frequencies.
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r
3. Differentiation Theorem

This theorem is offered without an example since it

follows so naturally the integration theorem .

If y(t) = d[x(t)]/dt , then G~(f) — (2,rf)2G
~
(f).

The multiplication factor (2rrf)2 indicates that the high fre-

quency components of the power spectral density will be

enhanced by differentiation.

C. NOISE

At the beginning of this section, noise was mentioned as

a “special case of random signal which is always present to

some degree whether or not a ‘target’ is present” . In com-

munications , noise is often defined as any electrical inter-

(i ference , or unwanted signal. Signal then , in addition to the

characteristics previously used to describe it, has the qual-

ity of being wanted , sought after, emanating from a source of

interest, and containing intelligence. In ASW, signal is

always associated with “target”. Noise , on the other hand, is

anything which interferes with, or tends to mask , the signal.

Often “one man’s signal is another man’s noise” and vice versa,

such as passive sonar, acoustic countermeasures , etc. An

acoustic detector converts both signal and noise into a time-

varying electrical voltage or current. An examination of some

of the characteristics of noise will help in understanding how

systems say be designed to reduce it.

Another way to define noise is simply as that quantity

observed in the absence of signal. Noise may come from a

• 9s
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variety of man-made or naturally occurring sources. Systems

are designed to eliminate as much noise as possible , but some

noise will inevitably remain. The thermal motion of electrons

in the conducting media of the components of a system , for

instance , is one unavoidable cause of electron noise. Thermal

noise is interesting in that its power spectrum is constant

over a wide range of frequencies. It is designated “white

noise” by analogy to white light as all frequency components

are present in equal amplitudes. The amplitude of thermal

noise has been proven to have a “gaussian” pdf. It is there-

fore referred to as “gaussian white noise” (“gaussian”,ampli-

tude distribution ; “white”,frequency distribution). If “gaus-

sian white noise” is played over a loudspeaker , it sounds dull

and monotonous , somewhat like a waterfall. The subtleties of

its random variations are hidden from the human observer.

The power spectrum of gaussian white noise , with zero

mean , is G(f) = , where Ti is power density in watts per Hertz.

By Fourier Transformation , the autocorrelation function is

R ( T )  

~ e~~
(
~

T df —

where 6 represents the “delta function” introduced previously.

G(f) R(r)
Ti •

1~ T

0



p Z It is apparent from the R(r) plot that for any time delay t

other than zero , the autocorrelation function is zero; there-

fore , any two different samples of a gaussian white noise sig-

nal are uncorrelated and statistically independent.

The signals of interest here are frequency limited , i.e.,

there is some finite frequency band within which the signal

exists. Filtering in order to improve detection of that sig-

nal was discussed earlier. If gaussian white noise is filtered

its frequency components are naturally those of the filter band-

width but the amplitude distribution remains gaussian . The

output power spectrum of white gaussian noise filtered by an

ideal filter is a rectangular function ,

( - 

GN (f) — ~~ ii (f,2B)

where ii. indicates a rectangular function and B represents the

filter bandpass. The autocorrelation function is the inverse

Fourier Transform of the power spectral density. As indicated

in “Fourier Transorm Properties”, the Four ier Transform of a

rectangular pulse is a “SINC function , R~(.T) - rIB SINC 2Bt .

G(f)  

I 

C (f)
1 TI

_ _ _ _ 
_ __ _
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R (t) )

H

The figure above shows that filtering has produced the

following results:

1. The power spectrum, though no longer white , is

constant over the finite frequency range of the filter.

2. The output power is finite , N — rIB - aN .  Noise

power varies linearly with bandwidth B.

3. The output signal is correlated over time inter-
1vals of about

How is this knowledge used in signal processing?

Item 1. The noise in which a signal of interest must

be detected is often not gaussian white noise. However,

through judicious choice of a bandwidth , its power spectral

density may be constant over that range. Otherwise , a pre-

whitening filter may be used to make the noise power spectral

density constant over the bandwidth. Therefore, after filter-

ing it may be treated as gaussian white noise.

Item 2. The noise power after filtering is ~B - N - aN .

It is a direct , linear function of bandwidth B. By narrowing

the bandwidth , the amount of noise power present is reduced.

Narrowband (tonal) signals are enhanced in relation to the
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noise power. This is crucial in a power , or energy detector .

Item 3. The bandwidth of the filter determines the mini-

mum time delay r to dc-correlate noise . It must be greater

than 2~ ’ 
(T > 

~
), or the noise as well as the signal will be

correlated. If the noise is uncorrelated , which it will be

for t > ~, the cross-correlation power approaches zero, for
example , at the output of a beam former for signals off-axis.

(Refer to Section IX).

The bandwidth of the filter also determines the finite

integration time to be used in determining the time average.

The time average is indicated by< ) (brackets) and is de-

fined as:

T

f < ) = lim 
~ J x(t) dtT-’~ ~

Replacing T by ~, we obtain the output as B + 0.

A review of the development of bandwidth versus integra-

tion time in the “Filters and Linear Systems”, Section IV ,
may be helpful in understanding these relationships.

This section has been an attempt to describe the concepts

of random signals, power spectral density , and noise. The

intent has been to provide a basis for understanding their

individual characteristics. A grasp of these characteristics

is necessary to understand the methods of signal processing.

Some common methods in current use , DELTIC , energy detectors ,

correlation detectors , and beam formers , will  be presented

in following sections.
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SELF TEST V 
~.d)

RANDOM SIGNAL, POWER SPECTRAL DENSITY, AND NOISE

Given an ergodic random signal x(t), the electrical quantity

corresponding to:

1. The average (mean) value is 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

2. The average squared is 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

3. The second moment is ________________________

4. The variance is 
____________________

5. The standard deviation is 
—

6. The autocorrelation

R(O) = ?

R(oo ) = ?

R(O) - R(w) = ?

7. Filtered white noise has power given by

N =  ?

where T)

B =  ?

8. Power spectral density is given by __________________ .

d
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VI . DELTIC AND FFT

In Section IV on Filters and Linear Systems , it was shown

that a bandpass filter can serve two functions : (1) increase

signal/noise ratio , and (2) resolve differences in frequency

(e.g., doppler). These properties are utilized in the analy-

sis of signals in order to detect and classify targets. How-

ever , the frequencies which the signal may contain are not

usually known in advance , so it is necessary to cover a wide

range of frequencies. In addition , they should be covered

simultaneously in order not to miss an intermittent signal .

It was seen that one method of accomplishing this is the

use of a bank of many filters arranged side-b y-side in fre-

quency. In the analysis of signals with discrete frequency

components , it is an advantage to have the bandwidth of the

filter as narrow as possible which enhances both functions of

the filter, as stated above. However , in order to cover a wide

range of frequencies in this manner , the number of filters

required may become prohibitively large.

Another solution is to tune a single filter , like tuning a

radio, in order to scan the band. In this case it is necessary

to remain tuned to each frequency “bin” for a finite time .

It was shown that one must wait for longer periods of time

as the frequency resolution requirements becomes stricter. For

acoustic frequencies , however , the “ring up” time required by

a single filter may be much too long to cover a band adequately.

In order to circumvent this , several processing schemes have
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been developed which in effecL give more filters for a given pro- )
cessing time .

DELTIC

A scheme commonly used in acous t ic  spectrum ana lyze r s  is

known as the DELTIC (DELay TIme Compressor) . Inves ti gation

~f the way in ~~ ich this processor operates shows that proces-

sing the signal by a single filter requires a dwell time T,

approximately equal to 1/B. The DELTIC takes the signal as

received and records T seconds of data in a recirculating mem-

ory. It does this in a special sequence , however. To observe

how t h i s  is processed , a s imple signal is shown .

T seconds

~ Time ~indow ——----P! *

1 2 3 4 5 6 7 8 9

For s i m p l i c i t y  in showing the op era t ion , an 8-sample point

“time window” will be used. In actual practice , 1000 or more

sample points are commonly used. If the time between sample

points is T5 , the time window observed will be 8T~ T. There-

fore , if the DELTIC is not used , the best resolution obtained

is lIT. It  would requi re  T seconds to get this resolution . The

ph y s i c a l  layout  of a DELTIC is shown in the diagram on the fol-

lowing page.
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~ ~ j / Input ”Gate ” Read—out Head

T~ seconds 
~. 8

be tween
samp les 

~ : T~ seconds per revolution

- 

4 5 Memory “Drum ”

The “drum” is ro tated at a rate TR so that it makes one

revolut ion p~Ius one sample space during the time neriod T5.

In this case , wi th eight sample points , it makes 1.125 rev-

olut ions per T5 seconds . The read-ou t head reads out the

s ample values cont inuously as the drum rotates under it . The

(I input gate injec ts a new sample point once e ach 1.125 revolu-

ti ons in such a way that the sample point which has been on

the drum the longes t t ime is replaced . Star ting w ith a blank

drum , the process is shown as it occurs.

I 
~~~~:tt ~ fi rst revolution

_________ _________ 
Sample #1

When the drum has made 1.125 revolutions (in T5 seconds),

the input gate inserts the second sample ‘mint.
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- L - i _ i_ 1_ J~ L~ I l 1 2 i  -~~~

___________ 

Sample #2

A f t e r  1 . 1 2 5  more r e v o l u t i o n s , the  thi rd sample point

is in serted.

~~~~-H -I -~J - I 1 L 2 1 3 J

Sample #3

The r e m a i n i n g  spots  are f i l l e d  s i m i l a r l y  u n t i l  a l l  e igh t

are f i l l e d .  The ou tput  dur ing  one revolu t ion  of the drum i s :

1 1 1 2 1  3 J 4 j 5 J 6 J 7 J 8 j

When the  nex t  sample  p o i n t  is i n s e r t e d  a f t e r  1.125 revolu-

t i O n s  i t  d i s p l a c e s  the f i r s t , as i l l u s t r a t e d  on the fo l lowing

page .

0
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1~ 1~ 1~ 1 6 I~ 1 8 1~1

Once the drum is f i l l e d  (which takes 8T5 seconds), a new

value replaces the oldest one every T5 seconds. Looking at

the output from the read-out head , it is seen that there are

eight values read out each TR seconds , plus one redundant

sample which is insignificant for large T/T5.

F’ 1 2  1~~1 4 J 5  16  J 7  1 8  1 1 1
} — TR sec.

The output of the DELTIC each TR seconds is thus the same

as the inputs over the last T seconds. The DELTIC operation

described above can be illustrated by the following analogy .

If 90 seconds of conversation is recorded on tape and then the

playback is speeded up so that the conversation takes place in

only 10 seconds , the conversation has been compressed just as

a DELTIC would do. The same information is in the 10 second

playback as was in the 90 second conversation , but it only

takes one-ninth the time to hear it. It is also noticed that

this compressed conversation has been shifted in frequency by

the compression and normal voices sound l ike Donald Duck.



By using the DELTIC it is  nossible to observe the pre- J
cedin g T secon d s ’ wor th of signa l during each interval of

lengt l~ TR seconds. The frequency domain plots of the orig-

inal si gnal and the output of the DELTIC show that the orig-

inal spectrum spectr um has been shifted in frequency and

stretched out.

ORIGINAL SPECTRUM

Mi nimum resolvab le
frequency difference

0 f W 1~
DELT IC OUTPUT SPECTRUM

, i9f ~~ f~~~9f 
-

The Fourier scale change theorem shows that having corn-

pressed the time d o m a i n  c h a r a ct e r i s t i c s  of the s ignal , x ( t )

become s x (9t) and so the f requency domain characteristics of

the signal X(f) becomes X(f/9) which has the effect of multi-

~ l y i n g  the frequency plot by nine .

(16
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The “compression factor” is the ratio of the original

sample time T to the compressed sample time TR. Thus in this

case it is the ratio T to T/9, or 9. Note that not only is

the center frequency and bandwidth multiplied by this factor ,

but also the minimum resolvable frequency difference . With-

out compression , it would be integrated for I seconds to

obtain a resolvable difference of l/T. Upon com~ression , this

becomes 9/T. At first glance , this does not seem to help,

since the resolution has not been improved. However, the

benefit in using the DELTIC is that this resolution can be

obtained , not by integrating over T seconds , but over T/9

seconds once the DELTIC has been filled. Many spectrum ana-

lyzers “scan” the frequency band of interest by using a single

band-pass filter of bandwidth equal to the minimum resolvable

frequency difference of the processor and stepping its center

frequency across the band one step each integration period .

Thus, if the filter bandwidth is 1/9 the bandwidth of inter-

est , without the DELTIC it would require nine integration

periods (T) for one scan of the band . With the DELTIC , each

integration period is T/9. Thus the entire band can be scan-

ned with the same resolution in what was previously one inte-

gration time T. This is an advantage for a band of perhaps

• several hundred Hertz and a resolution of less than 1.0 Hz.

The DELTIC need not be des igned for insertion of a new

sample value every revolution, but only a new value every

several complete revolutions. In this way the signal can be

compressed even further by having the drum revolve more than

once every T5 seconds.
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Instead of a drum , a delay line with feedback or a digital

s h i f t  reg i s te r  may be used .  The s h i f t  reg is ter  is stepped

past the read-out gate in such a way as to read the entire

register each TR seconds . The values are then recirculated.

Each time a complete circuit is made a new value is input to

replace the oldest and the process continues.

1 1 1 2 1 3 1 4  J s  J 6 1 7 1 8  2J 3 1 4 1 5  1 6 1 7  18 1 1

J Read ___________ ___________ ____________

Out

(a) (b)

___ 1
~ 1 4 1 5 I 6 1 7 1 8 [ 1 1 2  ~_ _ _ 1 9 I 2 I 3 { 4 I 5 1 6 I 7 I 8  —

I Input

(c) (d)

As the signal is “stepped” into the DELTIC , the output of

the DELTIC represents the compressed signal . Plots A through

F on the following page indicate the build-up of the DELTIC.

— 
—_- 
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F Plots G through J show the oldest information dropping out

z~nd only the most recent information being represented.

I 

\~~~~

f 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• U S -. • •~ S •A____~t 
— £ • p S A S~ —

‘TiT~v _

Plot K on the following page shows the complete time history

of the signal and its DELTIC output.
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FFT

Modern acoustic analyzers generally use a digital calcu-

lation of the Fourier series coefficients C~ from signal data

observed during a time window T rather than processing it

through a bank of filters or a DELTIC. As was discussed in Sec-

tion III , Quantization and Sampling, in order to analyze a sig-

nal digitally it must be converted from a voltage (“analog”

form) to a number. In fact, a continuously varying voltage

• becomes a list of numbers which must be stored in the computer

memory for use in calculations.

for a finite period T, sampled at intervals T
~
, taken



sufficiently close together to avoid aliasing . If the time )
T is not actuall y a completc cycle (or multiple) of the sig-

nal , the calculation can still be made but the result becomes

an approximation to the spectrum rather than an exact analy-

sis .  If the s igna l  is a pulse , the analys is  approximates  a

Fourier Transform . The mathematical form of the calculation

can be derived from the formula for the Fourier series coef-

ficients , C~:

- ~
i

T
[xt][e~

i 21T~T’1T t][dt]

Assuming that the signal has been sampled, x(t) becomes

a list of sample values x1 taken at intervals T5. The time

t~ at which each sample was taken becomes iT5 and the total 3
number of samples in period T becomes N = T/T5. Substitut-

ing into a summation ,

C~ ~~~~~~~~~~~~~ [xj1[e
J2~~

fl1T)hT
s][15]

i 0

The formula  becomes ,

• ~~~~ xi
p
~~ where F e J2~

’N

iso

Note at this point that the sampling must be accomplished

at a rate for which T5 1/ 2W , where W is the highest frequency 4!) ~~
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component of the signal. Therefore, the number of samples

processed for a time window T is

{ 
N = 2 T W ]

Als o, the highest order coefficient corresponds to W Hertz

and since we are calculating 2-sided spectra , the total fre-

quency span covers from -W to +W Hertz. Therefore, 2w Hertz

divided by the separation of the Fourier components (l/T Hz)

gives a total of 2TW spectrum “lines ”. This number is called

the Time-Bandwidth Product and is an important measure of the

amount of data being processed and the memory required in the

computer.

sec sampling interval

x ( t )  ii11T11~~
_ 

I Sample values x 1

[“ T eec
Time window

____ 

*- 1/? Uz line spacing

, 1 ~rnT{[[I ‘flTn”f 
~~~~~~ 

Spactrum componen ts C~

X ( f j

-w• _ _ _ _  2W Hz 
:~ •~Frequency span - ;

• 

-
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The summation formula  requires N multiplicati ons and

a d d i t i o n s  for  each spect ra l  component so tha t  a d i rec t  imple-

m e n t a t i o n  in a computer would require  N 2 operat ions  to cover

all N spectral lines. This calculation also has to be per-

formed in T seconds in order not to miss any data. Even for

acous t i c  f requenc ies , a d i g i t a l  computer would ha rd ly  be able

to accompl ish  th i s  c a l c u l a t i o n  in “real time ” if it were not

for a clever algorithm known as the PFT (Fast Fourier Trans-

form). This algorithm batches the data pairwise in a special

way which allows the formula to be evaluated with only N . R

operations , where N is equal to 2R~ The saving in time is on

the  order of N/R. For example , if N= 2048= 211, the computa-

tion time is reduced by a factor 2048/il 186.

Note that the FFT requires a time window T seconds long to )
provide frequency resolution of l/T Hz , just as a filter re-

quires a dwell time T for the same resolution and a DELTIC

requires T seconds to fill the “drum”. This illustrates the

fundamental nature of the relationship between frequency resolu-

tion and processing time.

SPECTR UM AVERAGING

If a random signal or noise is processed by a spectrum ana-

lyzer , the output spectrum is itself random as well. The pres-

ence of a discrete signal spectrum line in the noise will be

masked by random peaks in the noise spectrum . However , if the

spectrum is measured repeatedly , the signal line will consist-

ently appear , whereas the noise peaks will fluctuate from meas- Q
urement to measurement. Detection of discrete lines can be
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enhanced by spectrum averag ing , sometimes called “line inte-

,~ration” . This averag ing takes place v i sua l l y  by the opera to r

if the spectra are recorded on a paper d i s p l a y , called a “spec-

trogr:-tm” or “gram ” for short. The paper is marked by a stylus

which travels across the display in proportion to the frequency ,

marking the paper in shades of gray proportional to the spectral

density. As the paper advances , consistent discrete frequency

components leave a linear trace , while the random noise back-

ground leaves a salt-and-pepper speckled pattern . The eye can

v i sua l ly  “in tegra te” the spectrum and detect very faint lines.

The spectra can also be averaged digitally, which is called ALT

(Automatic Line Integration). Spectrum averag ing further en-

hances weak signals but again processing gain must be paid for

with time .

Spectrum of signal plus
time wi idow

i ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :;::~

Averag. of several

~: 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ suceea,ive spectra
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SELF TEST VI i

DELTIC AND FFT

1 . DELTIC is an acronym for ________________________________

2 . A DELTIC re qui res  a ____________________________memory .

3. The advantage of a DELTIC when combined with a tunable

filter is

4. FF1 is an algorithm which calculates ___________________.

5. The advantage of the FFT over direct calculation is

6. The Time-Bandwidth Product is mrasure of _____________

7. Describ e how spectrum Averaging enhances detection of weak

d i scre te s igna l  l ines . 
- -

~ :1



V I I .  ENERGY DETE CT ION

In the discussion of random signals , it was noted that

in order to apply statistical analysis to sig~ial processing ,

the signals must be “ergodic ”. One property of ergodic sig-

nals is statistical stationarity, that is , the statistical

properties of the signal are constant in time . In reality,

the signals that must be processed are not strictly station-

ary. The sea noise varies with the time of day, changes in

weather , etc., but the variation is over a long time period .

This fact makes it possible to apply the statistical analysis

approach to si gnal proc ess ing  as long as the processing time

is short enough that the variation in signal properties is

negligible.

Consideration must be given to how to apply statistical

methods to detect ion problems . For simplicity, the case of

Gaussian noise is cited , where the probability distributions

of amplitude for noise alone and noise—plus-signal are Gaus-

sian with equal variance but different means (average

v a l u e s ) .

• I 

~~~~~

. .l.

~~~~~~
:_ i

s + N
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If  ther e i s now a proc essor wh ich comp ares the amplitude

of the input with a “ th r e sho ld”  level se t in to i t and indi-

cates “signal  presen t” if the input is above threshold , “sig-

nal absent ” if the input is below threshold , then statistical

theory can be app l ied to de termine the opera ting charac ter-

istics of the processor.

S+N

a
~~~~~~~~~~~~~

5h0!

~~~~~~~~~~~~~~

p (a)

The area under the S + N curve above the threshold is pro-

por t ion al to the probabi l i ty tha t the ampl itude of the inpu t

w ill be above the threshold when the signal is present. Thus ,

this area is proportional to the signal detection probability ,

P ( d ) .

_ H
p(a)
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The area under the N curve and above the threshold

is proportiona l to the probab ili ty that the amplitude of

the input will be above the threshold , even when the

signal is absent , because of the background noise. Thus~
this area is proportional to the probability of false

alarm , P(fa). -

~~~~~~~~~~~~~~~~~~~

p(a )

If the threshold is varied , the probabilities change.

If the threshold is raised , the probability of detection

decreases , but so does the probability of false alarm .



I f  the thr eshold i s l owered , P(d )  increase s, bu t so does )
P(fa).

a~~~~~~~~~~~~~~~~~~~~~

p (a)

The ratio of P(d) to P(fa) does -not remain constant , however.

Plo tting P(d) versus P(fa) as the threshold varies , the fol-

low ing result is obtained. This is known as a “Receiver

P(d) 
~~~~~~~~~~~~~~ :hOld

p(fa)

Operating Characteristics ” curve or ROC curve . Using this

curve it can be determined where to set the receiver thresh-

old to optimize P(d) and P(fa). As the threshold is raised , 
•

P(d) does not change muc h in comparison with the rate at 
-

-)
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which P(fa) is decreasing , until the “knee” of the curve

(between points 2 and 3) is reached .

P (d) 
a

P(fa) p(a)

In continuing to raise the threshold above this -value ,

P(d) starts to fall off rapidly , while P(fa) changes very

little. By deciding what maximum P(fa) can be tolerated , the

threshold can be set to yield the maximum P(d) possible for

that particular P(fa) by referring to the ROC curve. Con-

versely, if a minimum P(d) is required , the ROC curve indi-

cates the minimum P(fa) that must be tolerated.

Until now the effect of changing the mean of the S+N

distribution with respect to the N distribution would have

on P(d) and P(fa) has not been discussed. If the mean of

the S+N distribution is raised , then the ra tio P ( d ) / P ( f a )

is larger for all threshold settings .
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J
a

P(fa)—ö

—a
—

.—

p(a)

The resul t is shown on the ROC curve in the drawing below .

P(d) 
Previous curve

P(fa)

“Root detection index” is defined as the quantity d’ or

(Ms + N - M~)/a wh ich is a measure of the re lative separa tion

between the distributions. A large d’ value indicates a

large separation between the distributions and thus a curve

with more of a “knee”. The diagram on the following page

shows that if the presence of a signal drastically changes

the input distribution mean , then the P(fa) can be reduced

significantly while still retaining a large P(d). If the
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presence of a signal does not drastically change the mean ,

large values for P(d) are possible only at the expense of a

large P(fa). ____________________

P (d)

P(fa)

Thresholds have been discussed and the way the selection

of threshold values affects the probability of detection and

the probability of false alarm , but how these thresholds are

cet has not been discussed. One point that may not be readily

apparent is that in detection systems ~n which the human oper—

ator is involved in the decision as to presence or absence of

signal , his perception of the display must be included in com-

putation of the threshold value. Most systems in use opera-

tionally involve an operator in the decision process. Active

sonar is an example. The operator can vary the threshold to

an extent by adjusting the brightness and intensity of the dis-

play and the gain con tro l, but a big consideration in deter-

min ing whether or not a target is present is his ability to

distinguish between targe t and noi se as pres ented on the PPI

scope .

The operator reading spectrograms is another example.

backgrounn, or the gre~~~ control the ga i y value of the d o n



ir~ the paper , but his perception of the distinction between tar-

get and noise determines the threshold. For this reason , it

is d i f f i c u l t  to determine  the ROC curves for systems with

human operators because it is difficult to determine the

actual threshold setting. The threshold will vary from day to

day , or even hour to hour , with  the same operator and the same

hardware  se t t ing s because of the operator ’s s ta te  of mind ,

phys ica l  condi t ion , fa tigue , etc. This is what makes quanti-

fica tion of the detection characteristics for a system diffi-

cult. Completely automatic systems are much easier to evaluate ,

as it can be determined exactly what the settings are.

In the preceding discussion of energy detection and thresh-

olding it has been shown how a system ’s detection capability

can be determined from knowledge of the characteristic distri-

butions of noise and signal plus noise. Implicit in this treat-

ment is the assumption that the distributions of noise and

signal plus noise are exactly known. If these distributions

are exactly known, the performance of the system can be speci-

fied for any given threshold setting in terms of P(d) and P(fa).

If these distributions are not known exactly , the analysis will

not describe the system performance exactly. Thus , the accu-

racy of the prediction of system performance depends on the

accuracy with which these distributions can be described . In

designing real world systems , this is one of the problems fac-

ing the designer , since the distributions of noise and signal

plus noise are not constant in time (over any lengthy period)

or with geographical position . For this ~reason , many systems ()
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r do not always perform as well as the specifications indicate.

Only if the ambient conditions are the same as those for which
the system was designed will it perform as predicted .
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SELF TEST VII

ENE RGY DETE CTI ON

Given the distribution functions of noise alone and signal
plus  noise , with a threshold applied :

1. P r o b a b i l i t y  of detect ion is given by 
______________________

2. Probability of false alarm is given by 
____________________

3. An ROC curve is a graph of ______________________________

as _______________________________ is varied.

4. Sketch ROC curves for two different signal/noise ratios.

5. It is difficult to include the human operator in an ROC

curve because 
____________________________________________________

.
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‘ 4.
VIII. CORRELATION DETECTION

In Section V, Random Signals , Power Spectral Density, and

Noise , it was shown that correlation can effectively improve

the signal-to-noise ratio for correlated signals due to the

cross product terms in the calculation of the correlation func-

tion . The question is how this information can be used to

detect signals in noise. As an example , an active echo rang-

ing system is described.

In this type of system a signal is transmitted and then

the returning signals are processed . The range of the reflect-

ing object can be determined from the echo return time . In a

noise-free environment , there are few problems in this system ,
( but in most real situations the ambient noise may “bury” some

of the returns. By using correlation , the signal-to-noise

ratio can be improved and these echoes recovered.

This system retains a replica of the transmitted signal

and then inputs the received signal into the correlator . The

output of the correlator is large when an echo is received and

small when only noise is present.

In examining a burst of CW signal transmitted and the effect

of doppler shifting on the correlation function , it is noted

that if the echo is not doppler shifted the output of the cor-

relator will be the autocorrelation of the transmitted signal

at a time r , which is related to the range of the reflected

o object. As the returning echo is shifted in frequency by doppler ,
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Transmitted Returning Correlator
signal echo output

the output of the correla tor becomes the cross~ correlat ion of

two closely related signals but its value is never as hig h as

the autocorrelation . The cross-correlation amplitude and the

amount of delay over which it is correlated decrease . (In fact ,

the reduction results from the decrease in the delay over which

the signal is correlated with its doppler shifted echo).

Transmitted Doppler shifted Correlator
signal returning echo output

•~ plo t of the correlator output for a number of different

doppler shifts on the same diagram , that is a T , 1~f corr ela-

tor amplit ude plot shows the effects of doppler.

R(i)

H -

For a~given echo , this plot gives a solid surface relating

Af , r , and amplitude , as shown on the following page. 
~~
.) ~
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R (T )

t Equal ampli tude
contour lines

f

If at the -r , Af’~plane , the contour line is plotted where

the amplitude of the function is 50% of the maximum , the result

as shown below is obtained. This diagram is commonly known as

an “ambi guity diagram ”. The reason for this w i l l  become appar-

ent from examination of FM pulses. First , consider a “long”

CW pulse to see how doppler a4!fects the correlator output.

f 

50% contour
li ne

---
~~~
-

~~~~~~~~~~~~~~~~~~~;
R(T)

Out of
page

The section on correlation and convolution showed that

the width ~f the correlation function is related to the

duration of the time domain signal. Thus for a long CW pulse ,

Autocorrelat ion
Time domain Function

signal

_L 1

~~

~~~~~ fr-.-2T__~

the correlator can be expected te ~~spond over a long range

of va lue s of T.



Observation of two signals at slig ht ly differ ent frequen-

ci~ s shows that the longer the pulses t n  he correlated , the

less the correlation , since th e si gnals will be almost cor-

r e l a t ed  over only  a few cycles  but  get  f u r t he r  and f u r t h e r  out

of phase  as t ime  p r o g r e s s e s .  As the d i f f e r e n c e  ~n f r e quency

between the signals increases , the number of cycl es over whi ch

the two are almost correlated decreases rapidly. Thus for long

CW pulses , the correlator response decreases rapidly with dop —

pler shifts. The ambiguity diagram for a long CW pulse is

shown in the following figure. The length T is propor ti onal to

the length of the CW pulse , TR i s the delay corresp ond ing to

the actual range of the target.

A!

TR

For a “short ” C’W p u l s e , the  l eng th  of the  c o r r e l a t i o n  peak

50% contour will he shorter , but the range of doppler shifts ~~
over whi ch the si gnals remain essentially correlated is greater.
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Short
pu lse
length

Thus the ambiguity diagram for the short CW pulse has the fol-

low ing appearance :

TR

These two diagrams show why long pulse CW is good for

— searching and doppler determination and short pulse CW is good

for range resolu tion . A sonar pulse of 120 m illiseconds wil l

ensonify a region of water 180 meters long . In other words ,

the spatial length of the pulse as it travels through the water

is 180 meters (1500 meters /seconds velocity x 0.120 seconds =

180 meters , the distance the forward edge of the pulse has

traveled during the time the rest of the pulse was being gener-

ated). The correlation peak 50% contour , as shown on the ambi-

gu ity diagram , will he proportional to the pulse leng th T, and

for CW this turns out to be a one-to-one ratio. Thus the cor-

relation will be over a period of 120 milliseconds which means

t that the target range can be determined only to the nearest 180

meters.

~~~~~~~~~~~~~~~~



In  the ~ase o ’ a short pulse of , for example , fi’~- e m i l l i-

seconds , the pulse spat ial length is 7.5 meters , th e corre la-

tion pe~ik s over 5 milliseconds , and the range resolution is

7 .5 meters.

The effect of dopp ler on the ambiguity diagram s’~ows that

the same type of ievelopment can he made to relate frequency

r esoth t ion of t h t ~ tt~o different pulse 1cngth~~. Because the

lon g pulse remains correlated over very limited doppler shifts ,

t~ e frc~ ti encv of the returning echo can be determined fairly

accuratel y by using a hank of correlators comparing the echo

to replicas with varying amounts of doppler shifts. On the

Rep lica 1 Correlator
Response Range

~ R e p l i c a  2 Correlator
Response Range

—~———~~~~~~~~~~~~~~~~~~~ Renlica 3

Replica 4

Rep l ica S

o the r  hand , use of the  same bank  of c o r r e l a t o r s  w i t h  a short

pulse pr oduces a response from each of these correla tors

h~ cause h -  short pulse remains correlated over a large range

of doppl er .,hifts , as indica ted on the following page .
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I
Repl ic a 1

- 

Replica 2

— ~~~— Replica 3

Replica 4

Repl ica 5

If a pulse is used in which the frequency is changed during

tr ansmis s ion , commonly referred to as FM slide , several dif-

ferences appear . Because of the frequency change during the

pu l se , the returning echo correlates with the transmitted replica

over a short range of time T , even for  long pu l ses .  Thus the

- 

- 

FM “Up—S lide ”

ambiguity diagram is very narrow in the T direction . On the

other hand , if a long pulse is used , the Af range of correla-

tion is narrow. One difference between FM and CW pulses

becomes apparen t , however. In the case of FM pulses , a dop-

pler shift will tend to shift the entire pulse in frequency ,

bu t the slide will remain linear (provided it was originally

linear j and thus it will still tend to correlate but at a

differeiit value of t .  This behavior and its effect on the

ambigui ty diagram are shown in the drawings on the following

page.
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Original

st i l l  Cor re la ted
over t h i s  in terval  ~~

4 
‘, ~~~~~~~~~~~~~

Cw

• ~~~~~ Shor t

•1
R

Note that the FM slide pui;~ has some of the character-

i s t i c s  of bo th  long and short pulse CW. At any given doppler

shift , the correlation peak itself is narrow , as is the peak

for short CW pulses. Thus , range resolution is good . o
134



Af
I,

Width of correlation
peak at given dopp ler
shift

Note also that at a given T the range of doppler shift over

which the signal is correlated is narrow , on the order of the

range over which the long CW pulse is correlated. The reason

this diagram is called an “ambiguity diagram ” can now be seen .

Af

The correlator output , that is , the T-amplitude plot , is

shown in the diagram below . Was the peak at -r~ caused by a

target exhibiting no doppler at range equivalent to T? or was

R4t
- ~~~~~~~~~~~~~ 

-
~~~~~~~~~ --

~~~~~~~~~~~
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• it caused by a target with five knots of doppler at range

~? The output looks the same in either case. There is a

“range ambiguity ” present.

~~~~~~~~~~~~~~~~~~~~~~ 5 kno ts o f

T ?!A L~

One way to resolve this is to transmit two FM slide pulses ,

one with an “up-slide ” (increasing frequency with time) and

one with a “down-slide ” (decreasing frequency with time). By )
then using two correlatois , one with an “up-slide ” replica and

one with a “down-slide ” replica , the ambiguity can be resolved .

The f o l l o w i n g  ambigu i ty  d iagra T . show s the output from both cor-

rel ators for a given range target.

--

~

—

~

--
-

~

-
-
-
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When compared on a T-amplitude plot , the correlator out-

puts for a target exhibiting the doppler shif t , shown on the

ambiguity diagram by the dotted line , appear as in the follow-

ing diagram .

R(T)

Up-slide

-~~~~~~~~~ Down—slide

By no ting which peak appears firs t , it can be determined

whether the dopplev is up or down . If the “up-slide ” peak

f appears last , then the returning echo has been shifted up in

frequency and thus correlated at a delay A later than it

would if not doppler shifted. This indicates ~p doppler.

1’PI AAAAIAIAIIJ1IIIMIMMII1IIIIII1II1 Echo

V V YV1IIYWV11U~QURII!~~ 
(~~ doppler)

(~~-1 tde)
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• 
If  the “down - slide” pe ak appears f irs t , this confirms the

c o n d i t i o n  w h i c h  i n d i c a t e s  yp dopp le r .  The t rue  range of the

(i~~~ —siide )

• 
(!& doppler)

t a r g e t  is midway between the two correlation peaks regard-

less of the amoun t of doppler shift present . If the target

has no doppler , the two peaks coincide .

— 

T
R 

-

R(T~

- Up—elide

~~~~~~ Down—slide

t’R . )

-
• 
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The separation between the up-slide and down-slide cor-

relation peaks is proportional to the amount of doppler shift

in the returning echo. If a suitably calibrated display of

the two outputs is available , the amount of doppler may be

read directly from the presentation . Thus , by employing FM

slide pulses and suitable processing , the range resolution of

short CIV pulses and the doppler discrimination of long CW

pulses can be obtained from a pair of long FM pulses.

Another type of pulse which provides the “best of both

worlds” with respect to doppler and range is known as the

“pseudo-random noise pulse” which consists of a “coded” pulse

with amplitude or frequency varied in a pseudo-random fashion ,

for example , the case where the amplitude (or frequency) of

f ’ the signal is not a simple sinusoid but a binary coded function.

4- T -nT

This pulse is correlated over a very narrow range of r , giving

good range resolution and it is also correlated over a very

narrow range of doppler shift because of its pseudo-random char-

acter (truly random signa ls correla te only at a s~~jj~ value of

r). The ambiguity diagram for a pseudo-random pulse is shown

in the figure on the following page. Note that because of the
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correlation over narrow ranges of f and r , no range ambigu ity

is present. However , the pseudo-random pulse requires a sep-

ara te correla tor for each doppler channel which is more expen-

sive than dual FM. Also , another problem associated with this

type of pulse  is tha t the amp li tude of partial correlation

peaks in R(r) may be greater than for FM and tends to degrade

the false alarm probability and thus degrades the performance

of real systems .

Up to this po in t the use of correlation in active systems

and how the use of FM slide pulses combined with the proper

correlation processor makes it possible to determine the amount

of doppler in an echo directly have been covered. Examination

of some app lications of correlation in the passive detection

filed will be discussed.

One difference between active and passive correlation

detection systems becomes app:rent very quickly. That is , in c~



the active system the returning echo is compared with a rep-

lica of the transmitted pulse. In other words , the signal

sought is a known quantity (a replica of the transmitted pulse).

In a passive system , however , no pulse is transmitted , there-

fore there is no replica for comparison with the incoming sig-

nal. Consequently, correlation cannot be utilized in the same

manner; however it is still of use , particularly in passive

direction-finding systems . The utility of passive direction-

finding systems can be seen by examination of a typical system

and its operation . Consider a system composed of two hydro-

phones separated in space by some distance d. If the output

d
•1

1 2

of hydrophone 1 is used as a replica with which to compare the

output of hydrophone 2, the cross-correlation of the two out-

puts can be obtained . The important property of sea noise for

this system is that it tends to be isotropic , that is , to be

the same regardless of the direction from which it impinges on
1~

the hydrophone. In addition , sea noise tends to be uncorrelated

over distance. On the other hand, most signals of interest are

from a sing le source, usually a submar ine, and thus are coher-

ent to an extent and directional in nature. Since sea noise is

isotropic , the correlator output will be small and relatively

constant when no signal is present. In the presence of a sig-

nal of thterest, the acoustic ~~er~~~tr5v~~ing outward from the



source w i l l  imp inge  on the  hydrop hones from some given direc-

tion . Following a given wavefront as it travels across the

hydrophones , it is seen that it will encounter one of the

hydrop hones be fore  the other unless  the d i rec t ion of impinge-

ment is perpendicular to the line joining the two hydrophones

or the baseline. The difference between the times that the

wavefront strikes the two hydrophones depends on the direction

from which it arrives with respect to the baseline . If the

direction of arrival is perpendicular to this baseline , the

wavefront strikes both hydrophones at the same time and thus

there is no time difference. If the direction of arrival is

parallel to the baseline , the time difference is a maximum .

In fact , the time difference is related to the arrival direc-

t ion by the fo l lowing  equation : •

v~~t — ~~~~~~~~ 0 . 

. -

-

where v is the speed of sound in the medium and e the wavefront J -
~~~~
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arrival angle with respect to broadside. The cross-correla-

tion of the two hydrophone outputs for a single wave passing

the array shows that the delay time -r at which a correlation

peak appears is a function of the wavefront arrival time dif-

ference at the hydrophones. If the wavefront arrival angle

v At

1 2.
~4— d  ~~

is 00 , then the arrival time difference is zero and thus the

correlation peak will appear at T = 0. For any other arrival

angle , there is a positive arrival time difference At and the

correlation peak appears att - At. This allows relating the

correlation delay time T to the wave arrival direction with

respect to, the array baseline. There is a problem of direc-

tional ambiguity as arrivals from opposite sides of the array

at equal angles with respect to the baseline produce the same

delay.

t• z r f
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This ambiguity can be resolved by adding another array to

cros s - f i x , or by adding a third hydrop h on e no t i n l ine  wi th

the first two . It should he noted that although this method

works well with broaah ;mnu j adiated signals , it has some draw-

backs when applied to si~~n a l s  ef a s ing le f r equenc y l ine  or

those with a very broc ~~tocorre lat ion func t ion . The prob-

lem is that if a signal consists of a single frequency line ,

its autocorrelation function is a sinusoidal function . The

question then arises as to which peak correponds to the signal

ar r ival d irec t ion. For this  reason , a corr ela tion de tector

is not ~~ll suited for passive detection of narrow-band signals ,

but works well for broadband signal detection.

~~~~~~~~~~~~
2

OR~~~~~~~~~~~~~~~~~
2

G ( f )  R( T )
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3 It has been seen how correlation can be of help in active

systems and in passive broadband signal detection systems .

What can be done about single frequency line detection? In

order to answer this question , a system will be examined which

is s im i l a r  to correla t ion in many aspec ts bu t is not actual ly
correlation.

0
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S E L F  TE Sr  V I I I  J

CORRE l ATION DETECTION

1. A correlator processes the received si gnal  by 
__________

2. Sketch the output of a correlator for a CW pulse si gnal.

3. Dopp ler c a u s e s  ~chat effect on the output of a correlator

for a C1~ p u l s e  si g n a l ?

4 .  ~h a t  is an “ambiguity diagram”?

5. (Tcmpare the amb igu ity d iagr ams for  shor t pulse and long

pulse CW signals.

6. Do~ : 1er caus es wh at ef f ec t on the ou tpu t of a corr elator

for an FM p u l s e  si g n a l ?

7. W h a t  art .’ the advantages of an FM pulse over a CW pu l se ?

8. How can range-doppler ambiguity be resolved in an FM

processor?

9. What are the disadvantages of a pseudo-random pulse?

10 . How can a correlator be used as a passive direction finder?

11. Why is a passive correlator ’s performance degrad ed for

narrow band si gnals?

~~~~
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IX .  BEAM FORMING

Beam forming , or electrical steering of arrays , is accom-

plished by a process which is similar to correlation but with

one major difference -- it uses summation instead of multipli-

cation of the outputs. Starting with a two-hydrophone array ,

the process is examined to understand how it operates . As

- • noted in the preceding section , the acoustic wave arrival

direction determines the wavefront arrival time difference at

the hydrophones. For example , assuming that it is desired to

“steer” the array to receive signals from a given direction

relative to the array baseline selectively , that is , to form

a “receiving beam” at a given orientation , if the output is

delayed from Hydrophone 2 for a time td = At , and add td to the

time necessary for the acoustic wave from the desired direction

to trave l from Hydrophone 2 to Hydrophone 1, the array can be

selectively biases to receive signals from that direction .

desired beam/ Direction of
1 2

Why does this selectively bias the response of the system to

signals from that direction ? Consider a single impulse arriv-

ing from the direction of the selected beam .

147

——--—
~~~~~~~~~~~

-
~~~~~~~~~ - -—~~~~

— - - - —
~~ 

..——-- -—-—— - 
~~~~~~~

—-——-- - 
__ _

- .~~~~~~~ -~ 

— -



Plotting the output of each hydrophone as a func t ion of ti me
J

produces the following result:

}lydrop hone 2 
~~

-

I ly d r o p hone 1 
~

F- ~~
-
~j 

t .4

By delaying the outpu t of Hydrophone 2 for a time td = At and

adding the output of the two hydrophones , the two impulses

reinforce each other and the output will appear as in the fol-

lowin g :

I
a I

I

2N
t~~~

rf , however , the impulse arrived from a different direction ,

the time difference between arrival at the two hydrophones

w i l l  be d i f f e r e n t  as shown in the i l lus t ra t ion  on the follow-

ing page.
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-

_
Hydrophone 2

Hydrophone 1 

t.4

If the output of Hydrophone 2 is input through the same delay

At , the plot of the summation of the two signals is as shown

below :

_ _ _  i— a

___

2N

Thus the signals arriving from the selected direction (time

delay At) will selectively reinforce one another in the pro-

cessor , while those from other directions will not . If a

3-hydrophone linear array is examined , it is observed that

the effect is even more pronounced.

_ _ _  _ _ _
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By delay ing the output of [-lydrophone 3 for a length of time 
-~~~

ZAt and the output of }-lydrophone 2 for a length of time ~t ,

a wave from the desired direction will produce the effect

sh own in the fo l lowing f i gures :

a)

J J y d  r ophone  3 
1 ~~ __

Ilydrophone 2 If
T~-L

H ydrophone 1 !II~ ~kt ~ At I

Output a fter
sur nma t ion

w 3aU)

0.U)

—

- 
3~

____________________ V

0
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• A wave from a different direction will give the

following output.

Hydrophone 3 

~i—~--- T

Hydrophone 2 -

~

j•

~~

__  

. I

Hydrophone 1 

~
j -

1 .

-t ~t ’ IA t ’ ~At-.~s— At- ’

Output after ~summation 
—

11• 
I 1 U

I~~~T

f i
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I t is apparen t tha t adding hydrop hones to the array makes

it more responsive to signals  from the chosen d i rec t ion .

Also , since the output of the system is not a correlation of

the individual hydrophone outputs but a simpl e summa t ion of

their  ampli tudes , the system will work for narrow-band or

single-frequency line signals as well as for broadb and signals.

The si gnal power from the desired direction is g iven by

the square of the entire summation of amplitudes:

r 12
S = [a 1~ a2~ a3j

= a1
2 + a2

2 + a3
2 + 2a1 a2 + 2a1 a3 + 2a2 a3 = 9a2

since all the a ’s are equal.

The noise power is similarly:

N = n 2 + ~~2 + n 32 + 2n 1 r~ + 2n1 n3 + 2n 2 n 3

However the noise amplitudes are randomly positive and nega—

tive , so that on the average , the crossproducts add up to

zero.

fl~~~fl2 
+ fl 3 n 3 + n~n3 %-0

Therefore , in this case N 3n2 and the signal/noise ratio

in the desired direction is 3 t ime s tha t of an omn i hydro-

phone , or in general:

f s\  [number of elementsl Is \

~
J
~)array 

[ in the array 

~J ~ ‘J~)omniphone
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By using a number of hydronhones in this manner , in con-

junction with an energy detector , and by setting the threshold

hi gh enough to preclude response to the unreinforced signals

from other directions , one has a very directional detection

ca pab i l it y from a ser ie s of omnid irecti onal hydr ophones.

WAVE DIFFRACT ION - FOURIER THEORY

Transmitted beam patterns may be analyzed as the phenom-

enon of diffraction. The concept of diffraction is based

on the addition of phasors . Waves may have the mathematical

form of a phasor function of distance r and time t. The

waves from any pair of phase-locked (coherent) sources will

add vectorially depending on the phase difference.

- / r
Phasor Wave A e32~~~

t E

where A = ampl i tude

2irf(t-~) 
phase NOTE : fA = c

£ = frequency of wave A = wavelength

c = velocity of wave

A classical example of diffraction is the dipole or

“double slit” experiment in which a sinusoidal signal excites

two point sources spaced a distance d apart. The waves

• . observed at a distance r from the dipole where r is large

compared to both d and the wavelength ~ are found to inter-

fere constructively at certain angles and destructively at

other angles . The null angles exist for conditions in which

waves from the two sources travel a distance in which the
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contribution from each sourc e is out of phase wi th the other.

The phasor sum is therefore zero at the nul l angle . This cor-

responds to the condition sketched in which the wave from one

source is delayed by a distance d . sin 0 (or approximately Od

for angles less than 200

d s~n 0 ~

~ 
angle 

phasor siun~~O

I 1’ ~~~~~

‘ for Od .r kV2
where k odd thteger

Another example is the “gra t ing” (many sources equally spaced).

d i9 At nufl angle, phasor
_—

~~~~~~ ~~~~~~~ 
sum~ 0 , as sources

I cancel ~n pairsd ~~

• ~~~~~~~~~~• /  ~
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A third example is the “clear aperture” (a single source of
wid th compa rabl e to a few A ) .

L -0

,

The total radiat ion leaving an aper ture at a given angle
is , therefore , the summation (integral) of all contributions ,

delayed in phase an appropriate amount. For the clear aper-

( 
~ ture,

t 
_ _ _

B(e) = e j2
~ ~~ dx B(O~ 

0

= Drl~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Therefore , any other arbitrary aperture function A(x) pro

duces a radiation pattern of the form ,

4 p . 2 Tr
~ B(c~) - I A(x) e 3T Ox dx where A(x) aperture •() J function

Aperture

- 
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The last integral equation can now be recognized ac the

FOURIER TRAN SFORM of A( x ) , where S ~ ~~
- (actually, S = A

Therefore , an arbi trary aper ture func tion can be sa id to

have a SPACIAL FREQUENCY SPECTRUM proportional to the RADIA-

TION PATTERN .

B ( s )  = f A(x) e ~ 2~rsx dx
Aperture

or where 

[ 

0 = As 
1

B(s) ‘K ) A(x)

Now consider a “sinusoidal grat ing” in which the aperture

is exci ted by a distribution of amplitude given by the equa-

t ion ,

A(x) = A0 cos(2ir x/x 0)

The radia tion will be diffracted into only two beams at an

angle-to0 from the normal to the grating . The angle oc~ 
is

given by the fo rmula

sin - ~~
_ or 00 ~~~~

— for small angles.

Therefore , the diffracted radiation angle is inversely pro—

portional to the spacial period XL~ 
, or directly proportional

to the spacial frequency.

SPACIAL FREQUENCY s~ ~~~ J
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then

A ( x )  = A
0 cos 2ii s0x

and the diffrac t ion angle is given by

= A s0

being linearly proportional to the spacial frequency s~~.

Therefore there is a one-to-one correspondence between Lhe

spacial frequency at the aperture and the angle of diffrac-

tion. The sinusoida l grating has only a single spacial fre-

quency s0. Any aperture other than a sinusoidal grating

has a c ntinuous distribution of spacial frequencies.

-

• 

~~~~~~~~~ B(s) 
:—

Note that a receiving beamformer accomplishes the same

phase shifting (delaying) and integrating (summing) as the

diffraction process in transmitting.

delay

wave
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- Therefore , the same math ematics applies and the receiving
p p a t t e r n  i s  t h e  same as the tran smitting pattern.

EXAMPLES :

A ( x )  __ 
B(s)

_ 
2

(1
~~~~~ B(s)

-t T 
_  _ _

2 
_____ _____ A (x ) 

5— 
B(s)
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SELF TEST IX

BEAM FORMING

1. Beam forming and electrical steering of a receiving

array is accomp lished by 
_______________  

and 
____________

the output of each elemen t .

2. The signal/noise ratio at the output of a beam former

can be approximately equal to a factor __________________

better than the S/N of a single element .

3. Transmitted beam patterns may be analyzed as the phe-

nomenon of ____________________

4. The t r a n s m i t t e d  beam pa t te rn  is re la ted  to the excita-

t ion  funct ion of the aperture by ________________________

5. Spacial frequency is ________________________________

6. The receiving beam pattern is the same as tl’e trans-

mitting pattern because _________________________________

‘ ( I
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