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ABSTRACT

Acoustic Signal Processing is a short course in electri-
cal signal processing fundamentals and their applications in
the field of underwater acoustics. It contains an introduc-
tion to Fourier transforms and their properties, sampling and
quantization, filters and bandwidth requirements, random sig-
nals and noise, and an introduction to four types of process-
ing equipment; the DELTIC, energy detectors, correlation
detectors, and beamformers. Course objectives are given in
terms of specific questions which a person completing the course
should be able to answer. The course is designed to be pre-
sented to the personnel involved with the development, opera-
tion and employment of acoustic sensors to provide them with
a better understanding of the operations accomplished by their
equipment and to develop in them a better appreciation of the
problems and limitations associated with signal detection in

the underwater environment.
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INTRODUCTION

These notes on Acoustic Signal Processing were originally
developed as an introductory course intended for the Naval
officer who has had the traditional training in sonar hardware.
However, it is applicable to anyone involved in underwater
acoustics --officer, enlisted, or civilian. An engineering
background is not necessary; however, it is presumed that the
concepts of calculus are somewhat familiar.

The course was designed to provide an overview of the
principles involved in the application of Fourier analysis
and statistics to acoustic signal processing and the operation
of spectrum analyzers, energy detectors, correlation detectors,
and beam formers. These processing methods comprise the core
around which the acoustic sensor systems are built. In pro-
ceeding toward this goal, the course follows a logical approach
of building from the basics of Fourier Transforms and Fourier
Transform Properties. Following these two sections is a sec-
tion on Sampling and Quantization and a section on Filters and
Linear Systems. These latter two sections may be interchanged
but both are required for the section on Random Signals, Power
Spectral Density, and Noise. The methods of processing are
presented last. They are DELTIC and FFT, Energy Detection,
Correlation Detection, and Beam Forming. Where appropriate,
specific hardware has been mentioned, but it is emphasi:ed

that the course is primarily devoted to principles and methods




that may be applied to various systems employed on either air,

surface, or subsurface platforms.
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COURSE OBJECTIVES

The overall objective of this course is to familiarize
the student with the principles of acoustic signal process-
ing as used in underwater sensor systems. The student who
successfully completes the course will be knowledgeable to
the degree indicated below.

The student should understand the theory of Fourier Ana-
lysis sufficiently well to do the following:

1. Explain the relationship of the Fourier Transform
to the '"time domain'" and the "frequency domain'.

2. Given a Fourier Transform pair, identify the
operations expressed.

3. Given one long and one short rectangular pulse:

a. Sketch the convolution of one with the other.

b. Transform the given pulses from the time domain
to the frequency domain, multiply them, and apply the inverse
transform (approximately) to return to the time domain.

4. Given a square wave, sketch the autocorrelation
and power spectrum.

The student should be sufficiently knowledgeable of signal
processing fundamentals to do the following:

1. Show the difference between a digital and an ana-
log signal.

2. Discuss how noise effects quantization of a signal.
3. State the Sampling Theorem and describe '"aliasing".
4. Given a plot of signal and noise as power density

versus frequency, show how filtering increases the ratio of
signal power to noise power.

5. Relate filter bandpass, integration time, and fre-
quency resolution.
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6. Given a plot of transfer function versus frequency,
sketch the impulse response and frequency response.

7. Define the statistical characteristics of a random
signal and relate them to the signal voltage (or current) and
power components. :

8. List the assumptions necessary to apply statist-
cal techniques to the processing of random signals.

9. Contrast the cross correlation of correlated sig-
nals with the cross correlation of uncorrelated signals. Show
how the correlated signals are enhanced.

10. Explain the effects of filtering gaussian white
noise, Discuss the relationship of these effects when process-
ing signal and noise.

The student should be able to describe the DELTIC and the
FFT, including:

1. The benefits of using a DELTIC in the processing
of an acoustic signal and how a DELTIC works.

2. Explain the significance of Time-Bandwidth Pro-
duct in terms of the integration time required and the fre-
quency resolution of the output.

3. Compare the FFT with the Fourier Transform.

4. Compare a DELTIC with an FFT spectrum analyzer.

Describe energy detection by explaining:

1. How the system decides whether a-target is present.

2. How the threshold setting effects the probability
of detection, P(d), and the probability of false alarm, P(fa).

3. The significance of Receiver Operating Charac-
teristics (ROC) curve.

The student should be able to explain how a correlator
processes signals and how a correlator functions:
1. Describe the effect of doppler on correlation.

2. Sketch an ambiguity diagram and explain how it is
derived.

3. Explain how doppler effects CW, FM, and PR pulses.
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4. Describe how pulse type effects doppler resolution.
5. Describe how pulse type effects range resolution.
6. List the advantages of using an FM slide.

7. State the advantages and disadvantages of using
pseudo-random pulses for search and tracking.

8. Given a two-hydrophone array being used with a cor-
relation detector, sketch and explain how the signal direction
is obtained, why a direction ambiguity exists, and how the
ambiguity may be resolved.

9. Explain the limitations on the type of signals
which may be processed passively by a correlation detector
and why these limitations exist.

To explain how a beam former processes signals spacially,
be able to:

1. Describe the method used by the beam former to
obtain direction.

2. Show the relationship between aperture excitation,
beam pattern, and spacial freauency

3. Given a hydrophone array in a beam former configu-
ration, sketch the output of the beam former for a signal in
the beam and a signal out of the beam. Show by comparing the
outputs the meaning of array gain.

4. Describe the relationship of array gain to direc-
tivity index.

——




I. INTRODUCTION TO FOURIER TRANSFORMS

An introduction to signal processing requires, for under-
standing of many processing schemes, a working familiarity
with Fourier transforms. To gain an understanding of what
Fourier transforms are, what they can do, and how to use them,
let us first examine a common type of signal. The electrical
power used in the United States is 60 Hertz (cycles per sec-
ond) alternating current. That is, the current changes its
direction of flow in such a manner as to complete a cycle
sixty times per second. If one plots the amplitude of the cur-
rent in a given direction as a function of time, the result is
a sinusoid. Since this is a description of the signal as a
function of time, it is said to be the '"time domain'" descrip-
tion. If the signal is plotted as a function of frequency, it

is called the '"frequency domain' description, or '"spectrum'.
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Because the signal consists of a single frequency, there is

but one frequency represented on the f-domain plot.

Amplitude

60 e

o

Now consider a different signal, an alternating signal

The time domain and frequency domain plots are

IATRVATA

180 f =

of 180 Hz.

as shown:

Amplitude
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o Amplitude

Note the way in which the changes in the signal are evidenced,

both in the time domain and the frequency domain.




In the same way, two other signals, 300 Hz and 420 Hz are
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Thus far the signals shown have been of a single frequency.
In general, there are also signals made up of many frequency

components. Note at this point the concept of phase:

PHASE: The phase of a sinusoidal
signal with respect to a reference
signal is the relationship between
corresponding parts of their cycles

in the time domain.

For example, a signal for reference is sketched below.

IWAWAWS

Comparing a signal with this reference, one can determine the

© Amplitude —»

phase of the new signal with respect to the reference. If
the new signal crosses the t axis at the same time and in the
same direction as the reference, it is said to be "in phase"
with the reference, or to have a phase angle of 0°. If the
new signal crosses the t axis on the down-swing when the ref-
erence signal crosses on the up-swing it is said to be "180°

out of phase'. The reason for using "180°" will be shown

———




later in this development. For the moment, however, it is
only necessary to state that a signal goes through a phase
angle of 360° each complete cycle. The phase of a signal can
either lead or lag the reference, that is, the signal may
cross the t-axis on the down-swing before or after the refer-
ence does. The first case would be "leading' and the second
would be ''lagging'" with respect to the reference. Because of

this, a signal is not generally described as having a phase

Anplijade (A)

Amplitude (A)

angle greater than 180°, since a 180° leading signal looks
just the same as a 180° lagging signal. For example, a signal

which is leading the reference by 270° looks the same as one
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lagging the reference by 90°. In this case, it is usually
described as the latter.

Returning to the signal with more than one frequency com-
ponent, consider now the way in which this would be represented
in the time and frequency domains. Take, for example, the
four frequencies represented earlier: 60, 180, 300, and 420 Hz.
If there were to be a signal composed of equal amplitude com-
ponents of each of these frequencies, the frequency domain

plot would look as shown below.

Amplitude (A)

60 180 300 420 f

(]

However, consider the time domain plot of this signal if,
instead of equal amplitudes, judiciously chosen amplitude and
phase components of the other frequencies are added to the 60 Hz

frequency. First, plot .the 60 Hz portion.
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Amplitude (A)

0 60 £

Next add the 180 Hz signal but with one-third the amplitude
and shifted 180° out of phase at the peak.
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Note the fact that the 180 Hz component, added 180° out of
phase, shows up on the frequency domain plot as a negative
amplitude. The reason for this will become apparent. For
now, the process is continued with the other frequencies. If

one added to the signal a 300 Hz component, one-fifth the

.
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amplitude and in phase with the 60 Hz signal, it becomes:

180

Now adding one-seventh the amplitude with a 420 Hz component,

180° out of phase with the 60 Hz signal, it becomes:

300 Fob

180
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thus proceeding to add carefully selected frequency components
to the signal, the time domain signal becomes more and more

like a square wave. With twenty components, the wave looks as
illustrated. Therefore, one can see that by careful choice of

component frequencies, and their respective amplitudes and

t—>-

phases, a square wave can be generated from purely sinusoidal
components. If an infinite number of components were used

the resulting waveform would be a perfect square wave. This
concept is the basis on which a large part of our signal pro-
cessing theory rests. There is not time in this paper to
demonstrate it, but it is a basic theorem of Fourier analysis -
that any shape waveform can be created from combinations of
pure sinusoidal signals.

In order to simplify the mathematics involved later, it
helps to introduce the concept of complex quantities. In
solving the mathematical equations describing waves, one en-
counters solutions which contain terms multiplied by /-1.

As can readily be seen, there is no real number which, when

multiplied by itself, will give a number which is negative.

15
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Thus, these quantities are known as '"imaginary". In actuality,
they are artifacts of the mathematics and are not directly
related to tangible quantities. However, they prove to be of
use in describjing the behavior of wave phenomena.

If "real" quantities are plotted on one axis, "imaginary"
quantities on another, and time on a third axis, there appears

a coordinate system as sketched:

Real

__ﬁl — _ _ _Imaginary

£ X

One of the results of the solutions described above is that a
sinusoidal signal in the real plane (the plane formed by the
real and time axes) can be generated by a unit vector rotating
with a uniform angular veloc- Real
ity in the complex plane (formed
by the real and imaginary axes).
Looking at this vector down the
time axis shows as illustrated
in the diagram at the right.

As this vector rotates, it is

also moving down the time axis,

so the path swept out by the tip

of the vector describes a helical

16
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[ x path around the time axis, as illustrated:

Real

Real

Real
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Imaginary --k

Imaginary

Real

Imaginary -—- -_.x,

S

At this point it should be noted that there is another meas-
ure of angular rotation known as the ''radian'". There are 2w
radians in 360°. This measure is used because it simplifies

the mathematics involved in solving wave equations.
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’ Returning to the vector generator, note that the number
of times it makes a complete 360° (27 radians) sweep in one
second of time is the frequency of the signal. The rotational
velocity of the vector, w, is the number of radians swept out
by the vector per second. Thus, w = 27f, since it sweeps out
27 radians each 360° rotation and makes f rotations per sec-
ond. Thus w is known as the '"radian frequency" of the signal.

Now consider the projections of the vector on the real

and imaginary planes as it rotates. The projection that
appears on the real plane is a cosine wave and the projection
on the imaginary plane is a sine wave. Also note that the
vector rotates 360° during one cycle of the cosine wave on the
real plane. This is where the use of 360° of phase angle

arose.

Real

nugumry--f::::fh

aF

§ The vector has components in the real and imaginary planes.
The relationship connecting sinusoids and vectors is called

' the Euler (pronounced "oiler'") Formula:

19
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etJe =cosO+ j sin 8

where j is taken to mean "in the imaginary plane'.
By vector addition, the signal is generated by vector-sum
of the real component, cos wt, and the imaginary component,

j sin wt.
Vector = cos wt +3j sin ot

Note that this is of the form of Euler's equation if 6 = wt.
Thus, the mathematical description of the vector is etjwt,
sometimes called a '"'phasor'" because it varies only in phase.

It was shown that cos wt is the projection of the phasor
tip path on the real plane. Solving Euler's equation for
cos wt:

eju)t i e-jwt

Cos wt = >

Therefore a cosine wave is represented by two phasors rotating
in the +wt and -wt directions, respectively.

Real

Imaginery==- - -
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¢ ' These phasors unwind in opposite directions along the

t-axis.

Real

o s SR
-
Imaginary - - - - - .. 2%

‘Real
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t ~n

Looking at the projection of these phasors on the real plane,

it can be seen that cos wt is generated.

QSHut  -jue
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For the cosine wave, the two contributions of the phasors
always add in the same direction on the real plane, therefore,

the plus sign (+) in the formula.

Real

<-Imaginary

‘\7?:;\

Solving Euler's equation for sin wt, one obtains;:

Jor i -=jut
Sin wt = & zfe
]

Because the two projections are always in opposite directions
on the imaginary plane, there is a minus (-) sign in the
formula.

It was shown how a single frequency plots as a single line
in the frequency domain. This appears as a line for each
phasor. But note also that the mathematical solutions estab-
lish two phasors for each frequency, one rotating at +w and
one rotating at -w. Thus, in actuvality, there has been shown
only one side of the spectrum, the positive frequency side.

The full spectrum of cos wt is as shown on the following page.
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|.- ’ ’ Real

) AR

The lines are both on the plus side of the w axis because of

the plus sign in the formula:

jwt -jwt
Cos wt = & *Ze
; The full spectrum of sin wt is:
Imaginary
1
l +w

é
B ke i

Note. that the lines are on opposite sides of thew axis due

to the minus sign in the formula:

) e*jmt e-jmt

Note also that the lines correspond to projections on the real i

(*_ plane for cos wt, and the imaginary plane for sin wt.
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Fourier analysis shows that arbitrary waveforms can be
made from combinations of sines and cosines of the proper
amplitudes, phases, and frequencies. How can one determine
which frequencies and what amplitudes and phases to use? In
effect, one compares the waveform with various frequencies
by overlaying the waveform on a given frequency to see how
well they match. One measure of this is the point by point

product of the two, averaged over a period. This measure,

known as Cn (nth frequency coefficient) is the following:
To
<
o -jwpt 2 1
Cn 10.—/ x(t) e dt Wy 2mn
_To
-
=
o
where Wy is the nth "harmonic'" frequency component and x(t)
-jmnt

is the waveform of interest, e is the phasor being com-
pared, and the integral serves to sum the product over the
period To of the waveform. This determines how closely the
waveform matches a given frequency. In order to find the com-
ponents of a given waveform, the wavelorm must be compared
with all n frequencies. The "spectrum'" of the waveform is

th

then the summation of Cn's multiplied by the n phasor com-

jwpt :
ponent (e’"™ ), known as the Fourier Series.

o

X(t) - E Cn ejmnt -

n- - 00

.
»
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Using this technique to analyze a square wave train, the

spectrum is obtained as shown below:

=

!
1 v
2 N [ 3
T
A\ El ] ] \ B B
\ i 1 1

_%> 0

oHlv

The fact that some of the Cn's are negative indicates that
the frequency corresponding to that Cn is to be 180° out of
phase with the positive sign Cn frequencies. In general, the
Cn's may have any phase.

Note how all the Cn's occur at frequencies which are multi-
ples or "harmonics" of the lowest component. This is because
the signal is compared with sines and cosines which complete
whole numbers of cycles during the period Ty- The ancient
Greek, Pythagoras, discovered harmonics in the musical scale.
Centuries later, the mathematician, Fourier, laid the theoret-
ical foundation for signal analysis as described in this sec-
tion.

Now consider some square wave pulse trains and analyze their

spectra:
o 1 ~f
+ .
A .
4 I
F'--'ro-—“
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First solve for the Cn's and plot them. The curve is obtained

as shown.

If the period of the pulse train is increased but the length
of each individual pulse is kept constant, the following

curves are obtained.

o— T

Note that the point where the envelope of the C,'s crosses

zero remains the same, but the number of Cn's increases.

26

&)




" e

e

That is, there are more frequency components present in this
signal than there were in the first. If one now increases

the period even more, still keeping the pulse length constant,
note how all the zero crossings of the envelope remain con-

stant, but the number of Cn's increases again. If one were

T —of

P — | o .
ben.
4

to increase the period to the point where there were a single
square pulse left, that is, T +», the result would be that
the number of Cn's would be infinite, but the zero crossings
of the envelope would remain the same, as illustrated on the
following page.

From these examples we can see that the zero crossing
interval of the envelope is related to the inverse of the
pulse width, and the interval between Cn's is related to the

inverse of the period of the signal. This, and other proper-

27 ;




ties of the Fourier relations, will be discussed in greater

detail in a later chapter.
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The form of the envelope of the Cn's for the square wave
appears so frequently that it has been given a name of its
own. The form is (sin x)/x, which is called '"sinc" (may be

pronounced '"sin-cee'" to avoid confusion with "synch").

Fourier Transforms: It can be seen that as the period of

a signal becomes infinite, the number of spectral components

then becomes infinite. In this case, the spectrum of a signal

can be characterized by the formula of the envelope of the Cn's.

Techniques have been developed for finding the formula of the
envelope in the limit as T+®. One method of doing this is

known as the Fourier Transform, defianed as:

a0

X(f) = f x(t) e ot g¢

-0




Note that this is quite similar to the formula used for find-
ing the Cn's. Instead of giving each individual Cn’ however,
this formula’gives instead the envelope of the Cn's in the
f-domain.

Now compute the transform of a single square pulse, using
this formula. By integration the solution has the following

form:

X(f) = [Ar] SBrf

This is the same result obtained by computing the Cn's for a
square wave of T+», solved for the formula of the envelope.
Since the spectrum, or f-domain characteristics of a sig-

nal can be found, given its time-domain formula, it is only

reasonable that the reverse operation should be possible. This

turns out to be the case, and the operation is accomplished by

using the "inverse transform'", defined as:

x(t) =/ X(£) et gf

By substituting the spectrum in the inverse transform and
integrating, the result is the time domain characteristics of
the signal. The two transform formulas, forward and inverse,
are called a "transform pair". One formula yields the spec-
trum,given the time-domain signal, and the other finds the
time-domain characteristics, given the frequency spectrum.

Later examples show how these are powerful tools used in sig-

nal processing.

29
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For instance, returning now to the cosine wave that was
introduced earlier, note what happens if one applies modula-
tion. That is, impress a low frequency cosine wave on a ''car-
rier" wave of a much higher frequency, fc' A modulated cosine

wave looks in the time domain as pictured in the following:

e;’
= 4
SRS -

% "

sl

~
—

—

"l \“/ \y I
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where the envelope varies as one cosine wave, while inside it
are the individual peaks now at the carrier frequency. What
does this signal look like in the f-domain? Given that the

f-domain plot of the cosine wave looks as sketched:

-fO 0f f—>

The carrier is just a cosine wave of a different frequency,

so its plot looks as shown on the following page. Note that

both f-domain plots were centered about f = 0.




Now, modulating the carrier wave, i.e., multiplying it by
the cosine wave, the following result is obtained by using

the Euler formula:

e 8. e

t‘ o= oma
J

Note that the resulting signal is of the form Cosine (fci-fo).
The f-domain plot is the cosine spectrum centered about the
carrier frequency values instead of about f = 0. Thus, modu-
lation in the time domain is equivalent to a translation of

the spectrum in the f-domain from being centered at the f=0

axis to centered about the carrier frequency. Another example:

a square wave modulated carrier as illustrated on the follow-

ing page.
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It was shown that the spectrum of a square wave is a sinc
function. Using the result that modulation of a signal trans-
lates the f-domain plot of the signal and centers it about the
carry frequency, the f-domain plot of a square wave modulated
carries is as shown. The envelope takes the shape of the
square wave spectrum but is centered about the carrier fre-

quency instead of about f = 0.
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SELF TEST I

INTRODUCTION TO FOURIER TRANSFORMS

1. The fundamental concept of Fourier theory is that any
arbitrary function of time x(t) can be decomposed into, or

synthesized by, a summation of

2. The equation X(f) =[x(t) e I2w £t 4. 55 called

3. A phasor is

4. Continuous wave "CW" time functions are represented by

in the frequency domain. Single pulses are

represented by in the frequency domain.

5. Harmonics are

sin x

% (or Sinc x).

6. Sketch and dimension the graph of

7. Sketch and dimension the spectrum of a train of pulses
= T e ;

53 Ma
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8. The sketch __J—I_H ‘=§4¥,_ is called a

33

np—, 3




II. FOURIER TRANSFORM PROPERTIES

The properties of Fourier Transforms are stated most suc-
cinctly in the accompanying Fourier Transform Theorems. Know-
ledge of the theorems is important in the interpretation of
spectra, as the theorems express the relationship between
time-domain and frequency-domain operations.

In the introduction to Fourier Transforms, it was shown
that the frequency spectrum X(f) of a signal x(t) was the
Fourier Transform of the signal. That is, X(f) =3[x(t)] and
inversely, x(t)==3"l[x(f)]. These relations are called '"trans-
form pairs" and are more conveniently denoted by x(t) «— X(f).
The Fourier Transform Theorems describe the properties of

various Fourier Transform pairs.

A. LINEARITY (OR SUPERPOSITION) THEOREM:

If a signal xl(t) is multiplied by
a constant, a (as would happen if
an amplifier with a gain =a were
placed in a circuit) and a signal
xz(t) is multiplied by a constant
b, then their respective line spec-
tra will also be multiplied by the

constant a or b.
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x, (t) _.{>. ax, (t) X, (t) % bx, (t)

axl(t) + bxz(t) > aXl(f) + bXZ(f)

Linear combinations in the time-domain become linear combin-

ations in the frequency-domain.

B. TIME DELAY THEOREM:

Given the transform pair x(t) «— X(f)
if the signal x(t) is delayed by t, seconds,
as happens when the signal passes through
an ideél delay line to become a new signal,
x(t-ty), then the spectrum is modified by a
frequency dependent phase shift to become

X(£)e 2 to?

5 &
x(t-t,) ~—— X(£)e ~ O
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The translation of a signal in time changes the phase of
the spectrum but does not alter the complex amplitude. To
illustrate the Linearity and Time delay theorems, consider a

signal which is a linear combination of delayed signals:
y(t) = 2x(t-t)) — 4x(t-3t,)

The spectrum is easily written as:

23 -5t
Y(£) = 2x(f)e P °Y _ ax(fre P 0"

C. SCALE CHANGE THEOREM

It has been shown that a translation of the time origin
may be accomplished using the Time Delay theorem. The time
axis may also be expanded, compressed, or reversed by an opera-
tion known as '"scale change'". 1If a signal x(t) becomes a new

signal x(at), then:

(1) x(at) is compressed if a is a number greater than one;

x(t) = a>1 x(at)= l
t

(2) x(at) is expanded if a is a number less than one;

x(t) = - 8 2.1 %{at)

36
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(3) x(at) is reversed in time if a is negative.

x(t) = - a =-1 x(at) =

In the Fourier Transform pair,

x(atP*TéT X(;),

|a| means the absolute value of a, that is, the numerical value
only is used and the sign is dropped.

The Scale Change theorem expresses the property of recipro-
cal spreading. If the signal is compressed in time by the
factor a, its spectrum is expanded in frequency by 1/a. The
amplitude factor TéT accounts for the change in area of the
pulse due to time compression. The expansion or compression in
the time axis of a signal occurs, for example, in the playback

of recorded signals.

x(tr— f"_—L—‘
X(f)
£ - —> !
t =0 F

x(at) _:_lF_l . .H -W\ il
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D. FREQUENCY TRANSLATION (MODULATION) THEOREM:

If a signal x(t) is multiplied

j t
by erC , its spectrum X(f) will
be translated in frequency by

+f.. Mathematically stated:

Jis €
X(E)e € e K[EE D).

x(t) l __1 g \/Av/ vﬂ X(£)
f

x(t)e € s B ) Y
g&i& bk Fokvebn
£-f £e
Cc

It is more common to multiply a time signal x(t) by the real

jw .t
part of eJ .y de0., D7 COS w.t. From previous work with

Euler's theorem, it is recalled that

jw.t “Ju.t
x(t) cos w.t = I/Zx(t)(ech NPV ).

Taking this result and applying it to the Frequency Transla-

tion theorem yields the Frequency Modulation theorem:

x(t) cos wet «+ 1/2X(f+f.)

S U ——
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f-f, £,

Or, if a signal x(t) is multiplied by cos w.t, its spectrum
X(f) is shifted up and down in frequency by an amount f. . This
is the same result noticed earlier when an RF pulse train was
formed by multiplying a rectangular pulse train by cos wct.

As noted then, and confirmed by the modulation theorem, time
domain multiplication becomes translation in the frequency
domain. As an example, a rectangular pulse of amplitude A,
period t, centered at t=0, and duration t is x(t) = Am(t,t).

VAt

X(f)
A,

[ f
$

Xz
s
T

au«t

The spectrum is recognized as a SINC function, or

X(f) = A SINC £t .

Then multiplying the single pulse by cos w.t:

x(t) = An(t,T) cos wct.

+A >y

7 — =\ i t
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By the modulation theorem, the spectrum is

X(f) = 1/2 At SINC (f-fc)t + 1/2 At SINC (f+fc)r .

| ot siad At 2
m 2 2 ﬂ'\'
2\ o P ¥ .
L~ SN T R O N N
| ]
f-£ f > 4

This is the result that is used extensively in single-side-

band and double-sideband HF communications.

E. TIME DERIVATIVE THEOREM:

% 3 d .
If the derivative g is taken
of a signal x(t), the result is
multiplication in the spectrum

by jw.

FE X(8) > juX()

40
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Multiplication
’ in frequency

nents in the spectrum.

F. TIME INTEGRATION THEOREM:

b o anh

Therefore, differentiation enhances the high frequency compo-

t
Taking the integral of a signal

x(t') is equivalent to multiplying
by ;; (dividing by jw) in the fre-
quency domain:

t
f x(t') dt' « 315 X(f).

: t

J!/_

Multiplication j in frequency
1 ;
| /: Nk "
P - \ ~ .
. f-» -
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Integration, then, suppresses the high frequency components

but the low frequency components are unaffected.

"G. CONVOLUTION THEOREM

¢

Taking two signals in the time domain t', for example,
x(t') and y(t'), AND "flipping" the y(t') signal to the other

side of the axis, it becomes y(-t'), as illustrated below.

In order to make a comparison between the two signals, they
are multiplied at every point in time t' from -« to +wx,

Mathematically, this can be expressed as

+ o

z =/ x(t')y(-t")dt'.

In the case above, anywhere in the t'domain where x(t') exists,
y(-t')=0, and where y(-t') exists, x(t')=0. Therefore, their
product is zero.

Since the signals are separated by time t, if a time
delay of t is introduced making y(-t')become y(t-t'), the sig-
nals will overlap. If t, the time delay, is varied from -«

to += the y(t-t') signal will "slip'" across the signal x(t').

$)
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’ . The result is expressed as a function of time t;

4+
z(t) =/ x(t')y(-t'+¢t) de’

" The integral above is known as the '"convolution integral" and
expresses convolution mathematically, i.e., the area of the
product of the two signals. A more convenient notation for

convolution is:
z(t) = x(t) « y(t).

A graphical interpretation of convolution, as shown may help

to see what happens to the signals,

Two signals

i
x(t") | AY(t')

|
TO—- t —0: v
t'.o t'-'t

“£1 ‘pped“
'
'

Y(-t')r‘ x(t') y(-t)
— T Rl . - - t

! @ t —
Tt eet t'=0




The shaded area on the time plot of both signals repre-

sents
value

sents

the "flipped" signal y(-t') is "slipped' across x(t').

the area of their '"common product" for a particular
of time delay t. The shaded area on the z(t) plot repre-

the summation of the area of their 'common product'" as

[" 2 (t)
\“__:)_’__ A

b _aSw

z(t) = x(t) » y(t)

Rty o l ; @
1
'

IR TR

2

e
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ot

The convolution (the "flip'" and "slip") of two rectangular
pulses produces a trapezoidal pulse with a base of length
T T, Convolution of two identical rectangular pulses pro-

duces a triangular pulse with base equal to 2t and height

equal to AZT.

z(t) = x(t) = y(t)

In this instance,
z(t) = x(t) = x(t).

Now that convolution in the time domain has been explained,

how does it relate to the frequency domain? There are two con-

volution theorems which relate the two domains.

x(t) # y(t) «+ X(£f) - Y(f)

Convolution in the time domain
transposes to multiplication in
the frequency domain.

x(t) * y(t) «= X(£f) » Y(f)

Multiplication in the time do-
main transposes to convolution
in the frequency domain.




As an example of this, the now familiar square pulse is

shown.

H. CORRELATION FUNCTION

In statistics, when it is desired to know how closely one
distribution resembles another, the two are overlayed and the
areas in common are multiplied. This ''common product'" repre-
sents the degree of similarity, or how well one distribution
correlates to the other. In signal processing, it is often
necessary to compare one signal with the same signal which
occurs later in time or with another signal. Signals vary in
time in different ways and the'tiﬁe origin may not be known.
Therefore, in order to overlay one signal on another com-
pletely, the signal is displaced in time by T units, then 7t
varied to '"slip'" the displaced signal across the one with which
it is desired to correlate. With each t used, the 'common pro-
duct'" will be a different value. 1In order to obtain the value

. €.
of correlation at a given delay t, the '"common product" is :)




summed over all values of time in an interval T and divided
by time T (or multiplied by %}. This defines the '"correla-

tion function" R(t) and is described mathematically as:

” +T/2
R(t) = }rﬂ} %/ x(t) x(t+t) dt.
-T/2

This is known as a "time average'" and is denoted by

Rétl.= {x(t) xlEt*1))

Note that in this context, T is a time '"slip" not a pulse

length. 1If the signal is periodic in Ty it need only be aver-

aged over one period T, instead of all time. The correlation

function then becomes:

+T/2
R(T) = TL/ of x(t) x(t+1) dt .
(o]

*Ty/ 2

R(t) is more precisely referred to as the autocorrelation
function, that is, the correlation of one signal with itself.
It may be desirable, as mentioned earlier, to correlate one

signal x(t) with another signal y(t), displaced t units in

time to become y(t+tr). This results in the cross correlation

(: function, ny(r) = {x(t) y(t+t))>. The cross-correlation

again measures the similarity. Where '"correlation function"
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is used, it is assumed to be the "autocorrelation function'.

For a graphical representation, a sinusoidal wave is used
which, as illustrated, represents the result of the summation
of the "common product'" as the delayed wave is 'slipped"
across the other wave. This part of correlation is like the
previously described convolution except that the signal is
not flipped and the product is divided by T.

b2

2

e
When both signals overlay +bka\ ET\ '
completely, the value is = [g" b
large and positive. k \\,/,

“b] e—Pn|e—T—>

A small shift will give

some negative area but the e
result 1s still positive.

A 90° shift makes the
positive and negative areas g

equal and the resultant val-
ue zZero.

A shift of 180° results in
the entire area being nega-
tive.

T S ———— =




At 270° the positive and
negative areas are again

equal and the resultant T =
value is zero.

At 360°,a complete one cycle F\, =

shift, the signal is back in 8 /ﬂ3§<; é;t T

phase and the result is a
maximum positive value,

The correlation function of a periodic signal is also
periodic. Since the time average is taken, the maximum value
of the autocorrelation is, in fact, equal to the average power
of the signal.

Up to now there have appeared many similarities between
convolution and correlation. However, if an asymetrical sig-
nal is used, the final result obtained by convolution may be
quite different from the final result obtained by correlation.

In addition, correlation theoretically includes a scale fac-
1
T
correiation and convolution is essentially related to the "flip".

tor but in practice, T is finite and the distinction between

I. POWER SPECTRUM

An important theorem which applies to correlation is the
fact that the Fourier Transform of the autocorrelation is

equal to the power spectrum G(f).

R(t) «» G(f)
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For periodic signals, the power spectrum is the square of
the C, coefficient magnitudes of the Fourier Series. It will
be shown later that this same theorem applies to random sig-
nals for which the power spectrum is a continuous density
function rather than discrete lines. There also exists a

cross-spectrum for cross-correlation.
J. CONSERVATION OF ENERGY

It is reasonable to expect that a signal pulse viewed in

the frequency domain should represent the same energy as in

the time domain. Energy is given by integrating the power over

all time. For signal x(t), the power is given by |x(t)|2
(assuming for simplicity, one Ohm of resistance). Therefore,

the energy is given by:

The theorem states that energy is also given by:

+ o0 2
E=[ IX(£)|° df

-0

A similar theorem applies to average power P of continuous

signals (which have infinite energy).

4+ ®
B o= (x(t) % G(£) df = R(t=0)

o0

A e et e s e e = ——— — e

Note the connection to autocorrelation with zero time shift.
50




& P K. SIGNAL IMPULSE

In the study of mechanics, the quantity known as impulse
is given by integrating force over all time. The electrical
equivalent for a signal pulse is equal to the pulse area D in

the time domain.

+ o0

D =/ x(t) dt

Note that this is just the Fourier Transform evaluated at zcro.
frequency (which causes the exponential to be unity). There-

fore:

; D= X(f=0)

(D)

t—>
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SELF TEST 11

FOURIER TRANSFORM PROPERTIES

Explain in words:

i 15

(o)

10.

a x;(t) + bx,(t) «* ?

x(at) <=+ ?

jZTcht > ?

x(t) e

x(ay(e) =f1 2 10 7 lae <> 2

T 92
If x(t) = NS, sketch R(1)
lb—Tg

Compare ny(T) with x*y

R(t) «*> ?

,/M|X(f)|2df= ? =/[?]dt

- oo

Pulse area in the time domain = 7
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ITI. QUANTIZATION AND SAMPLING

In the real world, most of the signals of interest to an
operator of a detection system are of a continuous, or analog,
nature. On the other hand, most of the more sophisticated
processors in use today are digital in operation, and thus can
not use analog inputs directly. Some means of digitizing the
analog signals must be used.

To quantize a signal, the value of the signal at any given
time must be described by a digital number. This requires a
measurement and conversion of the signal value to digital units.
The question of how accurately the value of the signal must be
measured in converting it to digital form must be considered.

Take the following signal, for example:

t—»

This signal has a maximum value of 2.5 and a minimum value of
0. Since the continuous values of the signal must be converted
to a set of discrete values, the decision must be made of how
many discrete values are needed in the range from 0 to 3 to
describe the signal adequately. If it is decided to use four

levels, that is, digitize to the nearest integer value, the

53




signal will have the following appearance:

3
/’—\'\\
2 j N
\
1 7 Y
/ \
0 v A ) U.

t—

Tf the number of values is doubled and digitizedto the near-

cst half integer value, the digitized signal looks like this:

t —

Note that as the number of values used in digitizing the
ignal increases, the digitized curve more and more closely
approximates the original signal. The values used in digi-
tizing the signal are known as quantization levels. 1In the
case of a noise-free signal, the signal can be digitized to

any degree of accuracy by increasing the number of quantiza-

tion levels.

€ m=p

——————

© |




The case of a signal with noise is different, however, In
this case, there is a random fluctuation of the signal value
because of noise, even when the value represented by the sig-
nal itself is unchanging. The range of these noise fluctuatioms
determines how accurately the value represented by the signal
can be measured, even with a perfect measuring device. To
illustrate this, consider first a signal without noise and then

one with noise.
v

0 t —>
Withosut noise

-
e = - e e e - v mem =N - -

0 t —»
With noise

It is observed that in the noisy signal, the value of the
signal fluctuates about some mean, or average, value within
some limits. If the noise is truly random in nature, the mean
value about which it fluctuates is then the actual value of
the signal being represented. At any given instant, any value
of the signal batween the upper and lower limits of the noise
fluctuation could stand for the actual value being represented.

The accuracy with which this signal can be measured is then

e %
& TR E B D . d o




limited to the range of fluctuation due to noise. For example,
suppose the signal of interest is a constant 3.0 volts but
because of noise, the signal fluctuates between 3.5 and 2.5
volts. The most accuracy with which this signal can be mea-
sured is to the nearest integer volt, an appropriate degree

of quantization.

Once it is determined how many quantization levels are
necessary, it must then be determined how often to sample the
signal in order to reconstruct it accurately. Obviously, if
the signal never changes value but remains constant, only one
sample is needed to reconstruct the signal for all times. If,
however, the signal is not constant, there is a real problem.

How often is it necessary to sample a given signal? It
is known that one sample is not enough if the signal is not
constant and also that if the signal is sampled continuously
(i.e., in an analog fashion) it can be reproduced exactly.

To sample a signal at extremely short intervals is very costly
and difficult to accomplish. What is needed is a compromise,

a sampling rate high enough that the signal can be reproduced

from the sampies but not any higher than is necessary in order
to keep cost and equipment complexity down.

It is known intuitively that there must be some relation-
ship between the rate of change of the signal and the sampling
rate necessary to be able to reproduce it. If the signal
changes very slowly, sampling need be done infrequently. If
it changes rapidly, however, it must be sampled frequently

enough that it does not have time to make several changes in
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the interval between samples or the changes will be lost

and the signal cannot be reproduced. If the sample inter-
vals are too long, the signal is said to be "undersampled".
This condition, in addition to causing the loss of some of
the information in the signal, can also cause other comnli-
cations. In some of the old cowboy movies the stagecoach
wheels appear to turn backwards at times. This is a case

of undersampling which illustrates one of the other effects,

called "aliasing'. To explain this, a sine wave is diagrammed.

If this is sampled at a frequency less than that necessary
for reproduction of the signal, a series of samples which

give the impression of a sine wave of lower freauency is

received.
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This is a problem which must be addressed when analyz-
ing unknown signals for frequency components, since alias-
ing can give spurious results if the analyzer sampling rate
is not high enough. This will be discussed further.

In the time domain, the sampling process can be visual-
ized ideally as the multiplication of the signal by a function
known as the "ideal sampling wave"; which is identically

equal to zero except at the sample times (TS, ZTS, atc. ).

A
| |
—3TS —ZTS -TS 0 Ts 2Ts 3Ts t —»

Ideal Sampling Wave

The duration of these spikes, known as ''delta functions'", is
infinitesimal approaching zero, while their amplitude approaches
infinity. They are defined such that their area (0 x «) is
equal to one. When the signal of interest is multiplied by

the ideal sampling wave, the product of their areas is at

each point T. Since the area of each delta function is one,

and its width is zero, the product of areas is equal to the
value of the signal at that time. Thus the products of the

two functions appear as
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and

The frequency domain diagram indicates witl more clarity
what happens when a signal is sampled. Assume that the signal
to be sampled is strictly "bandlimited", that is, it has no

frequency components outside some limit.

X (f)
— W £

2W is the bandwidth of this signal. Although the mathematics
is rather involved, it can now be shown that the ideal sam-

pling wave spectrum appears as below.

x(t) X(f)

f —»

.

L
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From the modulation theorem it is recognized that modula-
tion of a function causes its spectrum to be shifted and
centered about the mddulation frequency and otherwise does
not change it. Thus, the spectrum of the sampled signal

appears as follows:

X (f)
B l
where f =

VAVAV, VAV Nl

S

From this it is seen that for strictly bandlimited signals,
A f fs > 2W, there is no overlapping of the spectrum components
and the spectrum of the original signal is exactly reproduced.
If the sampled signal is then passes through a low-pass fil-
ter, which has the property of allowing only those frequencies
below its cutoff to pass, the original signal can be exactly
recovered. (Filters are discussed in Section IV).

)

LPF
- - - -—1"/

X_(f)
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It follows from the previous diagram that the sampling
frequency must be > 2W, i.e., greater than, or equal to, two
times the highest frequency component of the signal in order
to reconstruct the signal from the samples. If it is not,
the spectrum of the sampled signal has overlaps which intro-
duce errors into the reconstruction of the signal. These

x, (f)
.’“*'“:"’ LPF
; I

f—

& i

overlaps are the cause of "aliasing" and other inconsistencies
in the reconstructed signal. This result is formalized in the

Sampling Theorem, or "theorem of uniform sampling':

If a signal contains no frequency components
for |£] > W, it is completely described by
instantaneous sample values uniformly spaced

in time with period T < 1/2 V.

This rate of sampling, fg=2W, is known as the Nyquist Rate.
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It is the absolute minimum sampling rate from which a signal
can be reconstructed under ideal conditions.

Until now consideration has been given only to ideal sam-
pling and reconstruction. In practice, the ideal is rarely,
if ever, realized. Practical sampling differs from ideal sam-

pling in three obvious respects:

(1) Practical sampling waves are not composed of
delta functions, but have a finite width.
(2) Practical filters are not ideal.
(3) Real world signals normally sampled are not
strictly bandlimited.
In practice, these differences are of small enough signi-

ficance that for all normally encountered cases only the last

is of real importance. Since most real signals are not strictly

bandlimited, there will be some overlap in the sampled spectrum.

I[f the spectral components outside some nominal value W are
negligible, however, the signal can still be adequately de-

scribed for most purposes by samples spaced TS <1/2W.

62

9

e . : e 8




SELF TEST 111

QUANTIZATION AND SAMPLING

1. Quantization of signals is necessary in order to

2. The number of quantization levels necessary to repre-

sent a signal is related to

3. The number of samples necessary to represent a signal

is determined by

4, What is a '"'delta function'"?

P 5. What is "aliasing"?
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IV. FILTERS AND LINEAR SYSTEMS

The ocean is an extremely noisy environment in which to
search for submarines. Noise from waves, wind, breaking surf,
shipping, sonic mammals, fish and crustaceans, seismic acti-
vity, rain, etc., is present to some degree at all times.

The problem then is how to go about sorting out these differ-
ent sources in order to detect submarines. One way is to use
filters to eliminate as much of the noise as possible.

In general, there are several classes of filters relative
to spectral response, e.g., low-pass, high-pass, and bandpass
filters. Ideal low-pass filters allow frequencies below their
cutoff frequency to pass and to screen out all above cutoff.

Their spectral response is shown in the following diagram.

Response —p

[~

fc:utoff g

High-pass filters allow all frequencies above their cut-

off to pass and to screen out all below.

[

9]

c "o o

©

a.

2]

&

of E il
fL:utoff 1
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r ¢ Band-pass filters allow all frequencies between their
lower and upper cutoff frequencies to pass and to screen out

all others.

)

m L]
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£ £ Fig
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Filters are characterized by their upper and lower cut-
off frequencies, or their center frequency and band-pass (or

bandwidth), B. The bandwidth is defined as the passband width

; measured in positive frequency only, that is, the difference,
fu— fl = B.

v

o

-

0 0

% [

& -dh——i———on

i f
0 E fC fu —

Of course no real filters have the sharp cutoff charac-
teristics of the ideal filter, so it is customary to define
the bandwidth of a real filter as the bandwidth between the
points where the response has dropped to half the maximum.

These points are known as the "3 dB down points'", as shown on

the following page.
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A signal which is passed through a band-pass filter appears

as follows:

1
o Unfiltered input
El
o i
ol
—

-4 ;
E./ﬂg/\\ﬁ\ﬁlj\,\/ﬂ/’\\\\\\///m/’\\\,\_
0 f -
§ Filtered Response
(o} '
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0 f—a
_§ Filtered input
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-
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As indicated earlier, filters eliminate as much of the
noise as possible. How does the filter actually improve
detection capability? To answer this question, examination
is made of the way filters help improve detection in a large
class of detectors, known as '"energy detectors'". Discus-
sion of the way these operate will be taken up in greater
detail later. The general principle of operation is that
the detector senses the total pnower (or energy) preseﬁt in
the input and compares this with a "threshold" value. If
the input exceeds threshold, the detector indicates the pres-
ence of a signal and if the input does not exceed threshold,
it indicates no signal present.

In order to understand how filtering helps to detect sig-
nals in noise, consider the '"power spectral density" plot of
an input. The power spectral density is the power in a sig-

nal that is carried by each frequency component.

(\‘ Discrete lines

Continuous
é&—— Spectral Density —

Power Density

The total power in a signal then corresponds to the
integral of the power spectral density over all frequencies.

The power spectral density thus gives an indication of which
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frequencies carry most of the power in a signal and the rela-
tive amount of power at a given frequency compared with that

at others. The power in a given frequency band is then pro-
portional to the area under the power spectral density curve
between the lower and upper limits of the band. Comparison

of the power present in a signal with the power of the back-
ground noise present indicates the detectability of the signal.
To see the gains from filtering, consider a signal against a

background of "white noise'" (white noise is defined as having

equal amounts of all spectral components). It is seen that
Power
density — Signal
Noise
0 L
% f —>

if the detector c¢vamines the entire frequency spectrum and
senses the t: ower present to compare with a threshold
value, the presence or absence of the signal does not affect
the input significantly. On the other hand, if the input is
filtered and only allows a narrow band of frequencies about
the frequency of interest as the input to the detector, then
the presence of a signal will substantially change the amount

of power in the input, as shown in the diagram on the follow-

ing page. : ‘
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In effect, this raises the signal-to-noise ratio and thus
allows detection of weaker signals than would be detected
before filtering. In the case of non-white noise, the improve-

ment in signal-to-noise (S/N) ratio can be even greater.

] Power
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Ambient noise in the ocean is an example of non-white
noise and careful filtering will improve detection probability

’ immensely.

"Power
density
g _ Ocean ambient
4 noise
t —»
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Another consideration in detection system design is the
fact that many common filters in typical applications today
are composed of reactive elements, such as LC/RLC circuits,
crystals, or transducer elements, which have finite time con-
stants associated with them. This means that these reactive
elements require a finite time to '"ring up'", or establish
resonance. Thus systems do not respond immediately to inputs.
This must be considered in the system design. The response

of these circuits has the following appearance:

Response

Input = 1008 = » ¢ 2= > e mae 2 o gy R

GIf <~ 7r

= Time constant t—9

The time required for the response to rise to 63% of the maxi-
mum is known as the time constant of the system. The narrower
the resonance (the narrower the filter bandpass) the longer the
time constant. Thus, if it is desired to resolve frequencies

to + B/2 Hz, enough time must be allowed for the filter to respond
(on the order of 1/B seconds) and this will be longer as B is
made narrower.

Even modern digital filters require a finite time to respond
to an input. This time is an inherent .property of all signal
processing systems. The general theory involved is called
Linear Systems Theory. A "linear system'" obeys the superposi-
tion theorem stated in Section II. Linear systems are completely

described by their transfer function, H(f), which is defined
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Y(f)

{
' as the ratio of the output spectrum to the input spectrum.

Their response to an arbitrary input is completely described
by the impulse response h(t), which is the Fourier Transform

of the transfer function.
= hI-_J
h(t)==H(f) I L—l

From Fourier theory, it can be shown that the outnut signal

y(t) from a linear system is given by the convolution of the

input signal x(t) and the impulse response.

e :
y(t) = x(t) &« h(t) _&:l_r __4:5}_

The power spectral density of the output, however, is given
by the product of the input Gx(f) and the square of the trans-

fer function magnitude, often called the '"frequency response'.

Gy (£) = IH(E) % G, (£) (See Page 67)

For example, a hi-fidelity audio amplifier is character-
ized by a flat frequency response from 20 Hz to 20,000 Hz, so
that it does not filter out the musical content of a record-
ing. However, the tone control on a car radio is nrovided to

purposely filter out noise from '"static'".
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Another consideration in the design of active ranging
detection systems is the requirement to accommodate doppler
in the returning echoes. The input filter must have a band-
width wide enough to pass echoes that are doppler shifted by
the maximum amount anticipated during operation of the system
or the echoes will not be detected. If a filter of suffi-
cient bandwidth to detect all echoes does not give a suffi-
cient S/N ratio improvement, a bank of narrow band filters
centered at various frequencies corresponding to different

doppler shifts may be used alternatively.
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SELF TEST IV

FILTERS AND LINEAR SYSTEMS

Name three classes of filters with respect to spec-
tral response.

Explain how a filter can improve signal/noise ratio.
What is the '"time constant'" of a filter?

What is the "3 dB'" bandwidth of a filter?

How is the bandwidth related to the response time?
What is the transfer function of a linear system?

How can the output of a linear system be calculated if
the impulse response is known?

How can the impulse response be calculated if the
transfer function is known?

What is meant by the "frequency response'" of a filter
(linear system)?
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V. RANDOM SIGNALS, POWER SPECTRAL DENSITY, AND NOISE

A. RANDOM SIGNALS

Heretofore the signals discussed have been exnlicitly
described as ''deterministic signals', such as a square wave,
sinusoidal wave, pulse, etc. In describing a signal explic-
itly as some function of time, it is assumed that its ampli-
tude and phase are known exactly for all time; i.e., past,
present, and future. No real world signal meets these cri-
teria for then the signal would convey no new information
because it could be predicted exactly for any future time.
Therefore, consideration must be given to random signals.
Random signals of interest to the Antisubmarine Warfare spe-
cialist emanate, for example, from various machinery and flow
noise. Noise in the ocean due to waves, wind, biological
sources, seismic disturbances, etc., is a special case of
random signal, and it is always present to some degree whether
or not a ''target' is present. Processing equipment must be
able to distinguish between the random signal of interest,
unwanted signals, and noise.

A random signal, unlike a deterministic signal, may only
be described by its statistical characteristics. 1Its past
history and its predicted future will be stated in terms of

some average value and a given probability that the signal

will be within certain limits at a specified time. This ''given”

probability" is revresented by a nrobability density function

(pdf).
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What is a probability density function? A function is a
descriptor, i.e., it usually describes something. Density is
a measure of quantity contained within a specified space.
Probability refers to the chance, or the percentage of time,
an event occurs. Therefore, a probability density function
describes the likelihood of some quantity being contained with-
in a specified space.

How does the probability density function relate to a ran-
dom signal? Assume a random signal, x(t), which has some ran-

domly varying voltage amplitude over time.

Voltage amplitude ——>

Time —

Plot the signal with a vertical scale representing voltage

amplitude and the horizontal scale representing time.

3. 5
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3 -
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o

e

Amplitu
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Time —>
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P Suppose now that 1-volt represents any value between 0.5 and
| 1.49; 2-volt represents 1.5 to 2.49; 3-volt represents 2.5 to

3.49, etc. From the random signal, a plot is now made with
the vertical scale still renresenting voltage amplitude but
with the horizontal scale representing the number of times the
signal is at that amplitude, or within that amplitude range.

During time interval 1, the signal was present twice in

the 3-volt range and these two blocks are shaded in on the plot.

{] _

IS
o

802

o -

a8 1]

2 e

112'3"'.‘—"17".',"10

Number of times the signal is
within the amplitude range

During time interval 2, the signal is present in the 1-

and 3-volt ranges. These additional blocks are shown in the

following diagram.

4]
=8 1-&
- g
3 L] 1c

Number of times the signal is within
the amplitude range

During time interval 3, the signal is present in the 1-

and 2-volt ranges. These additional blocks are shaded in and

are shown in the diagram on the following page.
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the amplitude range

The development should start to become apparent. Look

now at time intervals 4, 5, and 6. The signal is present in

the 3-volt range once, the 2-volt range once, and in the 1-

volt range three times. Shade these in.

;
X SR
35NN
; N
s 4N
L 1°2 7 5 46 78 910

Number of times the signal
is within the amplitude range

To finish the plot, look at time intervals 7, 8, 9, and

10. The signal appears in the 4-volt range four times; in the

3-volt range three times; in the 2-volt range four times; in

\ the 1-volt range four times; and in the 0-volt range once.

Shade them in.

4 \
B
o
5 = 2RI .
2 & NN
2 o}
122 0 8T8V Y e

‘. Number of times the signal
is within the amplitude range
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The last plot on the previous page represents the ampli-
tude ranges that the signal was in for the entire time it was
observed. The total number of shaded blocks represents the
number of times the signal is within the various amplitude
zones during the various time intervals for the entire dura-
tion of the signal: the 27 blocks account for 100% of signal
time. Each shaded block is regarded as a sample value. If
the number of sample values is denoted by n, then n=27 in
this example. The percentage of time the signal is in a par-
ticular voltage range can be approximated by dividing the num-
ber of signal sample values in that voltage range by the total

number of sample values, n.

0-volt range: 1/27 = 4%
1-volt range: 9/27 = 33%
2-volt range: 6/27 = 22%
3-volt range: 7/27 = 26%
4-volt range: 4/27 = 15%

Total 100%

The percentage of time the signal spends at other ranges
can also be calculated. Suppose, for example, that in a sys-
tem there is a detector which detects only signals with ampli-
tudes of 3 volts or more (the detector has a fixed "threshold"
of 3 volts). To determine the percentage of time that the
above random signal is detectable, it is necessary to deter
mine the percentage of time it remains in the range of 3 or
more volts. The 3-volt range covers from 2.5 to 3.49 volts.

Take one-half the time the signal is in the 3-volt range and
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add it to the entire time the signal is in the 4-volt range
to approximate the total time the signal is at or above 3

volts.
(1/2) 1)y + 4 = 7.5
Divide by n to get percentage:
T2 ="28%

Therefore, the signal is detectable 28% of the time.

The accuracy in the determination of the percentage of
time the signal is within any specified frequency range can
be increased by making the voltage amplitude ranges smaller
and shortening the duration of the time intervals. The fol-
lowing diagram shows sample values for the same signal, but
with amplitude ranges of 1/2-volt and the time interval dura-
tion halved. It is constructed in the same manner as the

previous plot.
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Number of times the signal is within-
the amplitude range

As amplitude range and the time interval length are made
smaller and smaller, the plot anproaches a continuous curve

as illustrated on the following page.
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Continuous curve approximation

In most practical applications, a formula for the continuous
curve can be determined and the corresponding function inte-
grated over the amplitude range of interest to find the per-
centage of time the signal was within that range.

The probability density function of a signal represents
the "probability" that a signal will be within an amplitude
range. As the plot constructed above represents 100% of the
time of the signal, so too, does the probability density func-
tion represent the total probability of the signal. It is
scaled from 0 to 1, i.e., the area under the probability den-
sity function curve is equal to 1. If the detector in the
example just mentioned detects, with certainty, any voltage
amplitude of 3 volts or more, and the signal spends 28% of the
time at 3 volts or more, then the probability that the signal
will be detected in the 3-volt or more range is 0.28. The
probability density is expressed by a function which may be
integrated to find the probability that the signal is in any

prescribed amplitude range. For probability density functions
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used in many applied problems, the integration process can be
avoided, since the results are readily available in standard
tables.

The probability density function (pdf) most commonly used
for electrical signals is the ''gaussian' or '"normal" pdf. It

is the familiar bell-shaned curve described by the equation:

- (x-m)
20

1
p(x) = ;m-e

p(x)
In the equation for »(x),

i R

m = mean, or average, value, -~
x = value of signal x(t) at time t,
o = standard deviation (o is the Greek lower case sigma).

The standard deviation ¢ is a measure of the spread of the sig-
nal about its average value m. In the next figure is shown
two gaussian curves with the same mean but different values of

o. The area under each curve is equal to 1.0.

p(x)

I
I
|
|
1
m x
For the gaussian pdf, about 68% of the area under the curve

lies between m-o0 and m+ o, which means that the probability
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'S P(-) that the random signal, x(t), assumes a value between m - lo

and m+ 1o is 0.68.

msle, P(<) = 0.68

(Shaded area = 68%
of total area)

m20, P(-) = 0.95

(Shaded area = 95%
of total area)

& m# 30, P(-) = 0.997

(Shaded area = 99.7%
of total area)

In the illustrations, only 0.997 of the total probability
has been accounted for. This is because there are no limits
on a gaussian pdf; the range is unbounded. A signal may con-
ceivably exist at any finite amplitude above or below the aver-
age value. The probability that the signal will occur outside
the mt 30 range is only 0.003 (1.0 -0.997 = 0.003). Limiting
circuits are normally used early in the processing stage to
prevent the rare occurrence of a large amplitude signal from
damaging equipment. The important part of the signal, 0.997
of it,is still retained.

The gaussian pdf is centered around an average value.

For an electrical signal, this is the average value of the




amplitude of the signal. Look at the signal and its pdf side

by side with the pdf oriented to the signal amplitude in the

following diagram:

x(t)
e —P

Voltage amplitud

Time ——

The value chosen for m is the statistical average of the
27 sample values on the previous pages. Each of the sample
values was 0, 1, 2, 3, or 4. The average, m, is equal to the
sum of the individual sample values divided by the sample size,
n.

L 0#1+1+1+14141414141424242424242424243+,,.44,..
Lt

or, since many values are the same,

o 1M} + BL1) + 6(2) + FU3) + 448) _ 5 18
F :

Algebraically expressed, this is

3>
m= - X
nao )
where
n
2: = the sum of all the samples
j=1

xj = j=] to j=n, or x1+x2+x3+...+xn.
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The expression given is equivalent to adding the sum of the
products of the individual sample values and their probability
of occurrence. Increasing the number of sample values gives

a more accurate description of the signal. If m is calculated
for a number of samples increasing without bound, the summa-
tion can be written as an integral in which the sample proba-

bility is replaced by the pdf p(x).

m = %i(xj)- P(xj) =d/;x - p(x) dx

It has been shown how statistical characteristics may
describe a signal. The next problem is how to obtain signal

characteristics that are statistically valid to identify a

signal.

The validity of statistical methods in determining the
outcome of a process depends on repetition of the process over
and over again. With a random signal, x(t), this repetition
may be accomplished by using an "ensemble" of random signal
generators with each signal generated having the same broad
statistical characteristics. If the individual outputs from

this "ensemble'" are measured simultaneously at some time, t,

and averaged, the result would be an "ensemble average', indi-
cated by Xx(t). This "ensemble average'" is identical to, and
has all the properties of, a statistical average. However,
most signals of interest in typical systems originate from a
single source. Therefore, only the time average of the signal,

{x(t)> , may be obtained.
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Amplitude

Amplitude

The time average, ¢(x(t)) , and the ensemble average, x(t),
are not always the same. For example, suppose the statisti-
cal characteristics of the signal from the random signal gen-
erators in the ensemble vary with time. Such a variation
would not be reflected in measurements made at a fixed time,

t The ensemble average at time ty would be different from

1
the ensemble average at time t,. A random signal with these
characteristics is called '"mon-stationary'". If a detector is
used to detect the random signal in the examnle above, what

is the effect on the detector if the random signa’ is '"mon-
stationary"? The average, m, was calculated as 2.18. Sup-
pose that m varies with time and that over another time inter-
val m is calculated to be 1.14. If the signal over the second
time has the same characteristics as over the first, the
effect on detection would be the same as raising the threshold

to 4 volts over the first interval, as indicated in the fol-

lowing diagram.

5

4 Threshold = 4.
8 .
o 2 ‘/\/\/ 2.18
o - - -\ - Average = 2.
&3l

ol S LA A s 30

Time —»

4 -
- Threshold = 3.0
S2 -
E | - Average = 1.14

-
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The probability is that x=3 volts or more would become

2/27 =745 vice 28% for m = 2,18! 1If the average is unchanged
and the standard deviation increased by a factor of three, the
detector would be observing only 0.68 of the signal as opposed
to 0.997. Therefore, if the random signal is not '"'stationary"
(i.e., its statistical characteristics do not vary with time)
or at least '"'stationary'" for the processing time of the detec-
tor, the detector will be very inefficient. On the other hand,
the signals might be stationary (such as a collection of bat-
teries) yet be unequal to the ensemble average.

Fortunately, many random signals that must be processed
may have time and ensemble averages which are identical, per-
haps not for all time, but at least for the processing time
required. Signals with their time and ensemble averages equal,
{x(t)y =x(t), are said to come from an "ergodic process'", or
to have the property of '"ergodicity'. An "ergodic process' is
also stationary. Under the assumption that a signal from an
ergodic process means the time and ensemble averages are equal,
the signal is stationary and the time average will have all the
properties of a statistical average.

Having established that a time average will be statisti-
cally valid if it is from an ergodic process, how do we obtain
the other statistical characteristics which describe a signal?
A1l acoustic detectors convert the signal (and, unfortunately,
the noise, which will be addressed later) into some time-

varying voltage or current, x(t).
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Signal
voltage

& x(t)
Signal —— ‘

Detector

Time —»

The time average of the signal, (x(t)), assuming ergodicity,
is equal to the average value m. This average value is both
the value about which the signal's density p(x) is centered
and, as the time average, represents the ''dc'" component of the
signal (direct current, also called the steady-state or the
non-time-varying component). If m = 0, there is no '"dc" com-
ponent. If the signal x(t) is impressed across a one-ohm
resistor, the instantareous power dissipated is xz(t). The
time average(xz(t)>becomes the "second moment', which repre-
sents the total average power ;Z.Of the electrical signal. The
"second moment'" differs from the "average value squared" m2
which is the dc power, or the power in the non-time-varying
component. m2 is obtained by squaring after averaging, whereas
;Z is obtained by squaring before averaging.

As an illustration of these values, consider a random sig-

nal x(t), diagrammed below and on the following page.

x(t)\‘

Amplitude —
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[
o

Amplitude —»

Time —p
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There are two other measures which characterize any random
signals in addition to the average value m, about which it is
centered. A random signal is composed of a dc component and

and "ac' component (alternating current, or the time varying

88

-y




sy

component of the signal). The total power x2 must be the sum

2 and the ac power 02. Although representing

of the dc power m
the ac power of the signal, 02 is the "variance" of the den-
sity p(x). The variance is equal to the second moment minus
the average squared, 02= ;7- mz. For an electrical signal,
the variance is the total average power minus the dc power.
As the standard deviation o represents the square root of the
ac power, it is more commonly known as the root-mean square
(rms) value. These definitions are summarized briefly:

Given an ergodic random signal x(t):

1. the average (mean) value m is its dc component;

2. the average-squared m2 is its dc power;

3. the second moment x2 is its total average power;
4. the variance 02= x2-m? is its ac power;

5. the standard deviation o is its rms value.

In "Fourier Transform Properties', the concept of correla-
tion of a signal was discussed. It is considered again here
because of its unique proverties and because of its relation-
ship to the '"power spectral density'" of a random signal. Those
who feel that they have not grasped the concept of correlation
should review that section before proceeding.

The autocorrelation function, R(T), was defined previously
as the time average R(T) =¢x(t) - x(t+ T)>. For an ergodic ran-

dom signal, the autocorrelation function becomes:

R{T) = x(t) «x(t+7)) = x(t) - x(t+7)

The value of R(t) is a function of the time delay, T, not time t.
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R(t) is a maximum at 1 = 0.

2

R(O) = x{t} +x(t»0) = X“.= total average power.

As t increases, R(r) decreases, until at t = infinity, R(t) is

a minimum:
L
R(») = m” = dc power;

: R A L s
R(0) - R(») = 6" =x"-m” = ac power.

The autocorrelation function is also a measure of the "time
coherence" of the random signal. If t is small, x(t) and
x(t+ 1) will be close together in time. Therefore, the presence
of one will have some effect on the presence of the other, a
condition known as ''statistical dependence'. If the presence
of x(t) has no effect on x(t+ t), such as happens if 1 is large
and x(t) is random and non-periodic, then x(t) and x(t+ 1) are
said to be "statistically independent'". If the absolute value
of the autocorrelation function (minus the dc vower) equals zero,
then x(t) and x(t + t) are said to be "uncorrelated". For example,
a sine wave is uncorrelated with a cosine wave but is statisti-
cally dependent. Statistical independence simplifies the cal-
culation of the autocorrelatian function. Whether or not two
signals are correlated becomes important in the calculation of
their average powers.

Assume that a signal has been formed by the addition of two
separate signals: z(t) =x(t) +y(t). The correlation function

of z(t) will be of the form,

(x+y)(x+y) = x‘ +xy+yx+y’
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f'v . and is equal to:

Ry(1) =<x(t) - x(t+T)>+Cy(t) - Yt + T+ x(t) - y(t+71)> +Ly(t) - x(t +1)

1) (t) + B %) + R.,. (1)

R
il xy yx

l
3 RJT)= Rxx(

where the last two terms are the 'cross correlation terms' of
x(t) with y(t) and y(t) with x(t). As noted previously, the
above correlation functions represent the average power in the

signals, and can be written as:

Let the part of the two signals x(t) and y(t) which is cor-
related over the time delay T be called S. Then S is the sum
i of the coherent power Sxx in signal x(t), the coherent power

Syv in signal y(t), and their cross correlations Sx and Sy

x*

) &

Sz * Sxx + Syy + sxy 2 Syx'

If the part of the signals which is mutually uncorrelated

over the time delay 1t is called noise, then the total noise

power N is the sum of only the noise power Nxx and Nyy' The

cross correlations are equal to zero:

NZ = Nxx+Nyy; (nyzo; Ny)c: 0).

For a signal which is the sum of mutually uncorrelated
signals, the correlation function is the sum of only the auto-
correlations (the cross correlations equal zero) and the aver-
age power is the sum of only the average powers of the indi-

" vidual signals (the cross correlated nowers equal zero).
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P-’ B. POWER SPECTRAL DENSITY

Thus far only the time domain asvect of random signals has
been addressed. The frequency domain is represented by the
power spectral density, which was introduced in "Filters and
Linear Systems'", Section IV. The device used to transfer
between the time and frequency domains is the Fourier Trans-
form. The Weiner-Kinchine Theorem states that the power
spectral density, G(f), and the autocorrelation function R(t)

are Fourier Transforms of each other:

+o

G(f) = 7L [R(1)] =f Cx(t) - x(t+1) e J9tgr

And from the Duality Theorem,
if R(t)¢> G(f), then G(1) «»R(f). )

As can be seen above, the random signal may be described
in either the time domain R(t) or the frequency domain G(f)
with free interchange between the two.

Since the power spectral density is the Fourier Transform
of the autocorrelation function, the Fourier Transform Theo-

: rems may be applied to the power spectral density. The sys-
tems designer uses the proverties expressed by these theorems
to design an efficient detector/signal processing system. The
specialist who has knowledge of these properties can better

i understand how his system is designed to operate and, there-
fore, utilize it more effectively. The duality theorem was

already utilized. The other major theorems applicalbe to power (3)
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r‘ : ' spectral density will be explained along with examples of

their usage.

1. Frecuency Translation Theorem

If a signal x(t) is bandlimited in W<ffc and a new
signal y(t) is formed by multiplying x(t) by cos(wct-+¢),
y(t) = x(t) cos (mct-+r), then the correlation function of
y(t) is eaual to one-half the correlation function of

x(t) cos w

T that is, Ry(r) = (k)Rx(r) cos w . In addition,

the power spectral density G(f) is
G (£) = (M)G,(£-£.) + (G (£+£).

Multiplication in the time domain by coswct becomes trans-
l lated in the frequency domain as the power spectrum is shifted
up and down in frequency by ifc. The condition that the band-
width W be less than fc is necessary to ensure that Gx(f-fc)
and Gx(f+ fc) do not overlap, otherwise aliasing would result,
as described in "Quantization and Sampling", Section III.
i Notice also that in multiplication by cos(mct~+¢) the phase
3 factor ¢ is lost in translation to the power spectral density.
Therefore, the original random waveform may not be reconstructed
from knowledge of the power spectral density. However, by re-

turning to the time domain via the inverse Fourier Transform,

the autocorrelation function R(t) with its significant statis-

tical properties may be found.
Frequency translation is very useful in signal processing.
‘l Suppose that due to space, weight, or power limitations, it

is impractical to locate the detector and the processor
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together. The low frequency (0 to 1000 Hz) sound may be
detected, translated to radio frequency (RF) such as used in
acoustic listening sonobuoys and broadcast to the processor.
In the same manner, one processor can handle many detectors
if each detector's signal is translated to a separate fre-
quency band within the RF range (Detector 1, frequency fl to
fz; Detector 2, frequency f3 to f4; etc., all within the RF
band). The problem could be one of processing signals of
many different frequencies. Rather than having many differ-
ent processors each processing only one signal, it may be
better to have one processor operating at a fixed frequency.
All of the signals could be translated to the processor fre-
quency for processing. If the processor is very elaborate

and/or very expensive, this method becomes desirable.

2. Integration Theorem

t
If y(t) =f (t) dt* , then G (f) = —— G_(f).
- ¥ (2nf)¢ X
The multiplication factor ?;lzgz indicates that the low
m

frequency components of the power spectral density will be
enhanced by integration. The ocean acts as an "integrating
filter" in that it allows the low frequencies to propagate
while rapidly attenuating the higher frequencies. This is one
reason why, in an attempt to get long detection ranges, active
sonars and passive processing systems have increasingly ex-

ploited the lower frequencies.

@




% z 3. Differentiation Theorem

This theorem is offered without an example since it
follows so naturally the integration theorem.

If y(t) = d[x(t)]/dt, then 6 (£) = (2nf)%6_(£).
The multiplication factor (an)2 indicates that the high fre-
¢ quency components of the power spectral density will be

enhanced by differentiation.

& C. NOISE

At the beginning of this section, noise was mentioned as
a "special case of random signal which is always present to
some degree whether or not a 'target' is present'". In com-
i ; munications, noise is often defined as any electrical inter-

(i ference, or unwanted signal. Signal then, in addition to the

RS,

characteristics previously used to describe it, has the qual-
ity of being wanted, sought after, emanating from a source of
interest, and containing intelligence. In ASW, signal is
always associated with "target'". Noise, on the other hand, is
anything which interferes with, or tends to mask, the signal.
Often ''one man's signal is another man's noise" and vice versa,
such as passive sonar, acoustic countermeasures, etc. An
acoustic detector converts both signal and noise into a time-
varying electrical voltage or current. An examination of some
of the characteristics of noise will help in understanding how
systems may be designed to reduce it.

Another way to define noise is simply as that quantity

observed in the absence of signal. Noise may come from a




variety of man-made or naturally occurring sources. Systems
are designed to eliminate as much noise as possible, but some ,)
noise will inevitably remain. The thermal motion of electrons
in the conducting media of the components of a system, for
instance, is one unavoidable cause of electron noise. Thermal
noise is interesting in that its power spectrum is constant
over a wide range of frequencies. It is designated "white
noise'" by analogy to white light as all frequency components
are present in equal amplitudes. The amplitude of thermal
noise has been proven to have a 'gaussian'" pdf. It is ‘there-
fore referred to as '"gaussian white noise'" (''gaussian', ampli-
tude distribution; '"white", frequency distribution). If 'gaus-
sian white noise" is played over a loudspeaker, it sounds dull
and monotonous, somewhat like a waterfall. The subtleties of
its random variations are hidden from the human observer.

The power spectrum of gaussian white noise, with zero
mean, is G(f) = % , where n is power density in watts per Hertz.
By Fourier Transformation, the autocorrelation function is

R(1) ./”’% GJutdf = (3)s )

where 6 represents the '"delta function" introduced previously. !

G(f) R(7) !
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| l It is apparent from the R(t) plot that for any time delay Tt

other than zero, the autocorrelation function is zero; there-

» IR DT

fore, any two different samples of a gaussian white noise sig-

nal are uncorrelated and statistically independent.
The signals of interest here are frequency limited, i.e.,

there is some finite frequency band within which the signal

exists. Filtering in order to improve detection of that sig-

nal was discussed earlier. If gaussian white noise is filtered

its frequency components are naturally those of the filter band-
width but the amplitude distribution remains gaussian. The
output power spectrum of white gaussian noise filtered by an

ideal filter is a rectangular function,

O Gy (£) = ; n(f,2B)

where m indicates a rectangular function and B represents the

filter bandpass. The autocorrelation function is the inverse

: Fourier Transform of the power spectral density. As indicated

in "Fourier Transorm Properties', the Fourier Transform of a

rectangular pulse is a "SINC function, Ry(T) = nB SINC 2Bt.

G(f) , Gy(f)'
E ' NN\NE
W = | i | = NN
£ -B - 1 ‘=B +B

White gaussian noige

Idctibnn&uut
filter

T e




The figure above shows that filtering has produced the
following results:
1. The power spectrum, though no longer white, is
constant over the finite frequency range of the filter.
2. The output power is finite, N = nB = oNz. Noise
power varies linearly with bandwidth B.
3. The output signal is correlated over time inter-

vals of about %F.
How is this knowledge used in signal processing?

Item 1. The noise in which a signal of interest must
be detected is often not gaussian white noise. However,
through judicious choice of a bandwidth, its power spectral
density may be constant over that range. Otherwise, a pre-
whitening filter may be used to make the noise power spectral
density constant over the bandwidth. Therefore, after filter-

ing it may be treated as gaussian white noise.

Item 2. The noise power after filtering is nB = N = ch.

It is a direct, linear function of bandwidth B. By narrowing

the bandwidth, the amount of noise power present is reduced.

Narrowband (tonal) signals are enhanced in relation to the

e —
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noise power. This is crucial in a power, or energy detector.

Item 3. The bandwidth of the filter determines the mini-
mum time delay t to de-correlate noise. It must be greater
than ;k, (T > %t), or the noise as well as the signal will be
correlated. If the noise is uncorrelated, which it will be
for v > éf’ the cross-correlation power approaches zero, for
example, at the output of a beam former for signals off-axis.
(Refer to Section IX).

The bandwidth of the filter also determines the finite
integration time to be used in determining the time average.
The time average is indicated by { ) (brackets) and is de-
fined as:

T
> = lim.},.{x(t)dt

T+

Replacing T by %, we obtain the output as B + 0.

A review of the development of bandwidth versus integra-
tion time in the "Filters and Linear Systems", Section IV,
may be helpful in understanding these relationships.

This section has been an attempt to describe the concepts
of random signals, power spectral density, and noise. The
intent has been to provide a basis for understanding their
individual characteristics. A grasp of these characteristics
is necessary to understand the methods of signal processing.
Some common methods in current use, DELTIC, energy detectors,

correlation detectors, and beam formers, will be presented

in following sectionms.




SELF TEST V J

RANDOM SIGNAL, POWER SPECTRAL DENSITY, AND NOISE

Given an ergodic random signal x(t), the electrical quantity

corresponding to:

1. The average (mean) value is

2. The average squared is

3. The second moment is .

4. The variance is

S. The standard deviation is

J

6. The autocorrelation

R(0) = ?
R(=») = ?
R(0) - R(w) = ?

7. Filtered white noise has power given by

N= ?
where n = 2
B= 7
8. Power spectral density is given by 3
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VI. DELTIC AND FFT

In Section IV on Filters and Linear Systems, it was shown
that a bandpass filter can serve two functions: (1) increase
signal/noise ratio, and (2) resolve differences in frequency
(e.g., doppler). These properties are utilized in the analy-
sis of signals in order to detect and classify targets. How-
ever, the frequencies which the signal may contain are not
usually known in advance, so it is necessary to cover a wide
range of frequencies. In addition, they should be covered
simultaneously in order not to miss an intermittent signal.

It was scen that one method of accomplishing this is the
use of a bank of many filters arranged side-by-side in fre-
quency. In the analysis of signals with discrete frequency
components, it is an advantage to have the bandwidth of the
filter as narrow as possible which enhances both functions of
the filter, as stated above. However, in order to cover a wide
range of frequencies in this manner, the number of filters
required may become prohibitively large.

Another solution is to tune a single filter, like tuning a
radio, in order to scan the band. In this case it is necessary
tc remain tuned to each frequency '"bin" for a finite time.

It was shown that one must wait for longer periods of time
as the frequency resolution requirements becomes stricter. For
acoustic frequencies, however, the '"ring up" time required by
a single filter may be much too long to cover a band adequately.

In order to circumvent this, several processing schemes have




been developed which in effect give more filters for a given pro-

cessing time.

DELTIC

A scheme commonly used in acoustic spectrum analyzers is
known as the DELTIC (DELay TIme Compressor). Investigation
of the way in which this processor operates shows that proces-
sing the signal by a single filter requires a dwell time T,
approximately equal to 1/B. The DELTIC takes the signal as
received and records T seconds of data in a recirculating mem-
ory. It does this in a special sequence, however. To observe

how this is processed, a simple signal is shown.

" T seconds
Ye— Time window— Y

Amplitude

=

LY e 8 t —

For simplicity in showing the opyeration, an 8-sample point
"time window" will be used. In actual practice, 1000 or more
sample points are commonly used. If the time between sample
points is Tg the time window observed will be BT;- T. There-
fore, if the DELTIC is not used, the best resolution obtained
is 1/T. It would require T seconds to get this resolution. The
physical layout of a DELTIC is shown in the diagram on the fol-

lowing page.
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/ Input "Gate" Read-out Head

I3 seconds

between
samples

) TP seconds per revolution

Memory ''Drum''

The "drum" is rotated at a rate Tp so that it makes one
revolution plus one sample space during the time period Ts'
In this case, with eight sample points, it makes 1.125 rev-
olutions per Ts seconds. The read-out head reads out the
sample values continﬁously as the drum rotates under it. The
input gate injects a new sample point once each 1.125 revolu-
tions in such a way that the sample point which has been on
the drum the longest time is replaced. Starting with a blank

drum, the process is shown as it occurs.

——_ = CEEEEEET
Read-out during first revolution

t 1 Sample #1

When the drum has made 1.125 revolutions (in TS seconds) ,

the input gate inserts the second sample noint.
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Sample {2

After 1.125 more revolutions, the third sample point

1s inserted.

o R R L L

Sample #3

The remaining spots are filled similarly until all eight

are filled. The output during one revolution of the drum is:

When the next sample point is inserted after 1.125 revolu-

tions it displaces the first, as illustrated on the following

page.

1vd




Once the drum is filled (which takes 8Ts seconds), a new
value replaces the oldest one every TS seconds. Looking at
the outnut from the read-out head, it is seen that there are
eight values read out each TR seconds, plus one redundant

sample which is insignificant for large T/TS.

)2 3 4 15 6 7 8 ik

'.-—- T, sec. ’-‘

The output of the DELTIC each TR seconds is thus the same

as the inputs over the last T seconds. The DELTIC operation
described above can be illustrated by the following analogy.
If 90 seconds of conversation is recorded on tape and then the
playback is speeded up so that the conversation takes place in
only 10 seconds, the conversation has been compressed just as
a DELTIC would do. The same information is in the 10 second
playback as was in the 90 second conversation, but it only
takes one-ninth the time to hear it. It is also noticed that
this compressed conversation has been shifted in frequency by
the compression and normal voices sound like Donald Duck.

This illustrates the practical effects of the Fourier scale

change theorem.
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Pﬂ' By using the DELTIC it is possible to observe the pre- ),
| ceding T seconds' worth of signal during each interval of

length TR seconds. The frequency domain plots of the orig-
inal signal and the output of the DELTIC show that the orig-

inal spectrum spectrum has been shifted in frequency and

stretched out.

ORIGINAL SPECTRUM

Minimum resolvable
frequency difference

§
|
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DELTIC OUTPUT SPECTRUM
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The Fourier scale change theorem shows that having com-
pressed the time domain characteristics of the signal, x(t)
becomes x(9t) and so the frequency domain characteristics of .
the signal X(f) becomes X(f/9) which has the effect of multi-

plying the frequency plot by nine.
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The '"compression factor'" is the ratio of the original

sample time T to the compressed sample time T Thus in this

R
case it is the ratio T to T/9, or 9. Note that not only is
the center frequency and bandwidth multiplied by this factor,
but also the minimum resolvable frequency difference. With-
out compression, it would be integrated for T seconds to
obtain a resolvable difference of 1/T. Upon compression, this
becomes 9/T. At first glance, this does not seem to help,
since the resolution has not been improved. However, the
benefit in using the DELTIC is that this resolution can be
obtained, not by integrating over T seconds, but over T/9
seconds once the DELTIC has been filled. Many spectrum ana-
lyzers "scan'" the frequency band of interest by using a single
band-pass filter of bandwidth equal to the minimum resolvable
frequency difference of the processor and stepping its center
frequency across the band one step each integration period.
Thus, if the filter bandwidth is 1/9 the bandwidth of inter-
est, without the DELTIC it would require nine integration
periods (T) for one scan of the band. With the DELTIC, each
integration period is T/9. Thus the entire band can be scan-
ned with the same resolution in what was previously one inte-
gration time T. This is an advantage for a band of perhaps
several hundred Hertz and a resolution of less than 1.0 Hz.
The DELTIC need not be designed for insertion of a new
sample value every revolution, but only a new value every
several complete revolutions. In this way the signal can be

compressed even further by having the drum revolve more than

once every Ts seconds.
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Instead of a drum, a delay line with feedback or a digital
shift register may be used. The shift register is stepped
past the read-out gate in such a way as to read the entire
register each Tp seconds. The values are then recirculated.
Each time a complete circuit is made a new value is input to

replace the oldest and the process continues.

LT 2.03 56 5161748 21314567 (|8]1
Read
—_—p
Out
(a) (b)

* o -1[1:]

Input

f e3) ()

As the signal is 'stepped'" into the DELTIC, the output of
the DELTIC represents the compressed signal. Plots A through

F on the following page indicazte the build-up of the DELTIC.
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Plots G through J show the oldest information dropping out

snd only the most recent information being represented.
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Plot K on the following page shows the complete time history

A A A e A, A A y — |

I

of the signal and its DELTIC output.
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FFT

Modern acoustic analyzers generally use a digital calcu-
lation of the Fourier series coefficients Ch from signal data
observed during a time window T rather than processing it
through a bank of filters or a DELTIC. As was discussed in Sec-
tion III, Quantization and Sampling, in order to analyze a sig-
nal digitally it must be converted from a voltage ("analog"
form) to a number. In fact, a continuously varying voltage
becomes a list of numbers which must be stored in the computer
memory for use in calculations.

The Fourier series requires data representing the signal

for a finite period T, sampled at intervals Ts' taken
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sufficiently close together to avoid aliasing. If the time

T is not actually a completc cycle (or multiple) of the sig-
nal, the calculation can still be made but the result becomes
an approximation to the spectrum rather than an exact analy-
sis. If the signal is a pulse, the analysis approximates a
Fourier Transform. The mathematical form of the calculation
can be derived from the formula for the Fourier series coef-
ficients, C_:

n

Cn =

S e [e7 22 ]

Assuming that the signal has been sampled, x(t) becomes

|-

a list of sample values X, taken at intervals Ts' The time
t, at which each sample was taken becomes iTs and the total
number of samples in period T becomes N = T/Ts. Substitut-

ing into a summation,

N-1
i3 -j2n(n/T)iT ][ ]
Cn TE [xi][e S Ts
i=0
The formula becomes,
N-1 347
v ni « a-Jj2n/N
Cn N xiF where F e
i=0
e

Note at this point that the sampling must be accomplished

at a rate for which Ts- 1/2 W, where W is the highest frequency
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component of the signal. Therefore, the number of samples

processed for a time window T is

N=2TW

Also, the highest order coefficient corresponds to W Hertz
and since we are calculating 2-sided spectra, the total fre-
quency span covers from -W to +W Hertz. Therefore, 2w Hert:z
divided by the separation of the Fourier components (1/T Hz)
gives a total of 2 TWspectrum "lines". This number is called

the Time-Bandwidth Product and is an important measure of the

amount of data being processed and the memory required in the

computer.
{
— - T‘ sec sampling interval
e o Sample values xy i
x(t)
0
? i ——— T gec ——-——-q

Time window

e Lr——-——- 1/T Hz line spacing |
T -m —— Spectrum components C_
b : X(f) %
;-:,
: -W W
h——. zw Hg ———4 s
s

Frequency span




The summation formula requires N multiplications and
additions for each spectral component so that a direct imple-
mentation in a computer would require N2 operations to cover
all N spectral lines. This calculation also has to be per-
formed in T seconds in order not to miss any data. Even for
acoustic frequencies, a digital computer would hardly be able
to accomplish this calculation in "'real time'" if it were not
for a clever algorithm known as the FFT (Fast Fourier Trans-
form). This algorithm batches the data pairwise in a special
way which allows the formula to be evaluated with only N-R
operations, where N is equal to ZR. The saving in time is on

the order of N/R. For example, if N= 2048 = 211

, the computa-
tion time is reduced by a factor 2048/11 = 186.

Note that the FFT reqvires a time window T seconds long to
provide frequency resolution of 1/T Hz, just as a filtér re-
quires a dwell time T for the same resolution and a DELTIC
requires T seconds to fill the '"drum'". This illustrates the

fundamental nature of the relationship between frequency resolu-

tion and processing time.

SPECTRUM AVERAGING

If a random signal or noise is processed by a spectrum ana-
lyzer, the output spectrum is itself random as well. The pres-
ence of a discrete signal spectrum line in the noise will be
masked by random peaks in the noise spectrum. However, if the
spectrum is measured repeatedly, the signal line will consist-

ently appear, whereas the noise peaks will fluctuate from meas-

urement to measurement. Detection of discrete lines can be
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enhanced by spectrum averaging, sometimes called '"line inte-
sration"”. This averaging takes place visually by the operator
if the spectra are recorded on a paper display, called a "spec-
trogram'" or ''gram" for short. The paper is marked by a stylus
which travels across the display in proportion to the frequency,
marking the paper in shades of gray proportional to the spectral
density. As the paper advances, consistent discrete frequency
components leave a linear trace, while the random noise back-
ground leaves a salt-and-pepper speckled pattern. The eye can
visually "integrate' the spectrum and detect very faint lines.
The spectra can also be averaged digitally, which is called ALI
(Automatic Line Integration). Spectrum averaging further en-
hances weak signals but again processing gain must be paid for

with time.

Spectrum of signal plus

o random noise, time wiadow
3 of T seconds
:
-
o
&

f—>
® Overlay of several
g successive spectra
-
2
g

f—>
| Average of several
g successive spectra
-
§

£ —
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SELF TEST VI

DELTIC AND FET

1. DELTIC is an acronym for

2. A DELTIC requires a memory.

3. The advantage of a DELTIC when combined with a tunable
filter is

4. FFT is an algorithm which calculates

5. The advantage of the FFT over direct calculation is

6. The Time-Bandwidth Product is 2 measure of

7. Describe how spectrum Averaging enhances detection of weak

discrete signal lines.
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VII. ENERGY DETECTION

In the discussion of random signals, it was noted that
in order to apply statistical analysis to signal processing,
the signals must be '"ergodic'. One property of ergodic sig-
nals is statistical stationarity, that is, the statistical
properties of the signal are constant in time. In reality,
the signals that must be processed are not strictly station-
ary. The sea noise varies with the time of day, changes in
weather, etc., but the variation is over a long time period.
This fact makes it possible to apply the statistical analysis
approach to signal processing as long as the processing time
is short enough that the variation in signal properties is
negligible.

Consideration must be given to how to apply statistical
methods to detection problems. For simplicity, the case of
Gaussian noise is cited, where the probability distributions
of amplitude for noise alone and noise-plus-signal are Gaus-

sian with equal variance cz but different means (average

values).




If there is now a processor which compares the amplitude
of the input with a '"threshold'" level set into it and indi-
cates 'signal present" if the input is above threshold, "sig-
nal absent" if the input is below threshold, then statistical
theory can be applied to determine the operating character-

isties of the processor.

S+N

ks‘ Threshold

p(a)

The area under the S+ N curve above the threshold is pro-
portional to the probability that the amplitude of the input
will be above the threshold when the signal is present. Thus,

this area is proportional to the signal detection probability,

P(d).

P(d)

p(a)
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The area under the N curve and above the threshold
is proportional to the probability that the amplitude of
the input will be above the threshold, even when the
signal is absent, because of the background noise. Thus,
this area is proportional to the probability of false

alarm, P(fa).

P(fa)

T

il P /

pes

p(a)

If the threshold is varied, the probabilities change.
If the threshold is raised, the probability of detection

decreases, but so does the probability of false alarm.

p(a)
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Pe If the threshold is lowered, P(d) increases, but so does

P(fa).

p(a)

The ratio of P(d) to P(fa) does not remain constant, however.
i Plotting P(d) versus P(fa) as the threshold varies, the fol-

lowing result is obtained. This is known as a ''Receiver

Raise

P(d) Threshold

> P(fa)

Operating Characteristics'" curve or ROC curve. Using this

curve it can be determined where to set the receiver thresh-

old to optimize P(d) and P(fa). As the threshold is raised, !
P(d) does not change much in comparison with the rate at Q:) ‘
|




b" ’ which P(fa) is decreasing, until the "knee'" of the curve

(between points 2 and 3) is reached.

P(d)

- N W s

VA4

P(fa) p(a)

In continuing to raise the threshold above this value,
P(d) starts to fall off rapidly, while P(fa) changes very
little. By deciding what maximum P(fa) can be tolerated, the
threshold can be set to yield the maximum P(d) possible for
that particular P(fa) by referring to the ROC curve. Con-
versely, if a minimum P(d) is required, the ROC curve indi-
4 ; cates the minimum P(fa) that must be tolerated.

: Until now the effect of changing the mean of the S+ N

j distribution with respect to the N distribution would have

i on P(d) and P(fa) has not been discussed. If the mean of
the S+ N distribution is raised, then the ratio P(d)/P(fa)

is larger for all threshold settings.
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p(a)

The result is shown on the ROC curve in the drawing below.

P(d)

P(fa)

"Root detection index" is defined as the quantity d' or
(Ms-vN"Mn)/c which is a measure of the relative separation
between the distributions. A large d' value indicates a

large separation between the distributions and thus a curve

with more of a "knee'". The diagram on the following page :
shows that if the presence of a signal drastically changes i.
the input distribution mean, then the P(fa) can be reduced (:>

4
significantly while still retaining a large P(d). If the 'E
£
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presence of a signal does not drastically change the mean,

large values for P(d) are possible only at the expense of a
large P(fa).

P(d)

P(fa)

Thresholds have been discussed and the way the selection
of threshold values affects the probability of detection and
the probability of false alarm, but how these thresholds are
cet has not been discussed. One point that may not be readily
apparent is that in detection systems in which the human oper-
ator is involved in the decision as to presence or absence of
signal, his perception of the display must be included in com-
putation of the threshold value. Most systems in use opera-
tionally involve an operator in the decision process. Active
sonar is an example. The operator can vary the threshold to
an extent by adjusting the brightness and intensity of the dis-
play and the gain control, but a big consideration in deter-
mining whether or not a target is present is his ability to
distinguish between target and noise as presented on the PPI
scope.

The operator reading spectrograms is another example. He

can control the gain, or the grey value of the background on
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the paper, but his perception of the distinction between tar-
get and noise determines the threshold. For this reason, it
is difficult to determine the ROC curves for systems with
human operators because it is difficult to determine the
actual threshold setting. The threshold will vary from day to
day, or even hour to hour, with the same operator and the same
hardware settings because of the operator's state of mind,
physical condition, fatigue, etc. This is what makes quanti-
fication of the detection characteristics for a system diffi-
cult. Completely automatic systems are much easier to evaluate,
as it can be determined exactly what the settings are.

In the preceding discussion of energy detection and thresh-
olding it has been shown how a system's detection capability
can be determined from knowledge of the characteristic distri-
butions of noise and signal plus noise. Implicit in this treat-
ment is the assumption that the distributions of noise and
signal plus noise are exactly known. If these distributions
are exactly known, the performance of the system can be speci-
fied for any given threshold setting in terms of P(d) and P(fa).
If these distributions are not known exactly, the analysis will
not describe the system performance exactly. Thus, the accu-
racy of the prediction of system performance depends on the
accuracy with which these distributions can be described. 1In
designing real world systems, this is one of the problems fac-
ing the designer, since the distributions of noise and signal
plus noise are not constant in time (over any lengthy period)

or with geographical position. For this'ieason, many systems
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do not always perform as well as the specifications indicate.
Only if the ambient conditions are the same as those for which

the system was designed will it perform as predicted.
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SELF TEST VII

ENERGY DETECTION

Given the distribution functions of noise alone and signal
plus noise, with a threshold applied:

1. Probability of detection is given by

2. Probability of false alarm is given by

3. An ROC curve is a graph of

as is wvaried.

4. Sketch ROC curves for two different signal/noise ratios.

5. It is difficult to include the human operator in an ROC

curve because
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VIII. CORRELATION DETECTION

In Section V, Random Signals, Power Spectral Density, and
Noise, it was shown that correlation can effectively improve
the signal-to-noise ratio for correlated signals due to the
cross product terms in the calculation of the correlation func-
tion. The question is how this information can be used to
detect signals in noise. As an example, an active echo rang-
ing system is described.

In this type of system a signal is transmitted and then
the returning signals are processed. The range of the reflect-
ing object can be determined from the echo return time. 1In a
noise-free environment, there are few problems in this system,
but in most real situations the ambient noise may "bury" some
of the returns. By using correlation, the signal-to;noise
ratio can be improved and these echoes recovered.

This system retains a replica of the transmitted signal
and then inputs the received signal into the correlator. The
output of the correlator is large when an echo is received and
small when only noise is present.

In examining a burst of CW signal transmitted and the effect
of doppler shifting on the correlation function, it is noted
that if the echo is not doppler shifted the output of the cor-

relator will be the autocorrelation of the transmitted signal

at a time t, which is related to the range of the reflected

object. As the returning echo is shifted in frequency by doppler,
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Transmitted s Returning Correlator
signal echo output

the output of the correlator becomes the cross-correlation of
two closely related signals but its value is never as high as

the autocorrelation. The cross-correlation amplitude and the

amount of delay over which it is correlated decrease. (In fact,

the reduction results from the decrease in the delay over which

the signal is correlated with its doppler shifted echo).

—Hli— -

Transmitted Doppler shifted Correlator
signal returning echo output

A plot of the correlator output for a number of different
doppler shifts on the same diagram, that is a 1, Af correla-

tor amplitude plot shows the effects of doppler.

R(T)
1

For a given echo, this plot gives a solid surface relating

Af, v, and amplitude, as shown on the following page.
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R(T)

Equal amplitude
contour lines

1f at the t, Af-plane, the contour line is plotted where
the amplitude of the function is 50% of the maximum, the result
as shown below 1is obtained. This diagram is commonly known as
an "ambiguity diagram'". The reason for this will become appar-
ent from examination of FM pulses. First, consider a "long"
CW pulse to see how doppler affects the correlator output.
Af '
]
T : 50% contour
:/ line
[}
‘F\ @T_’

R(T)
Out of
page

- S .

The section on correlation and convolution showed that
the width of the correlation function is related to the
duration of the time domain signal. Thus for a long CW pulse,

Autocorrelation
Time domain Function
signal

=
7o fo— 27—

the correlator can be expected to respond over a long range

of values of r.
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Observation of two signals at slightly different frequen-
cies shows that the longer the pulses to be correlated, the
less the correlation, since the signals will be almost cor-
related over only a few cycles but get further and further out
of phase as time progresses. As the difference in frequency
between the signals increases, the number of cycles over which

the two are almost correlated decreases rapidly. Thus for long

CW pulses, the correlator response decreases rapidly with dop-
pler shifts. The ambiguity diagram for a long CW pulse is
shown in the following figure. The length T is proportional to
the length of the CW pulse, TR is the delay corresponding to

the actual range of the target.

Af
+* '
1
]
\
sl 7
- 1
T,
L
Pise R )

For a "short" CW pulse, the length of the correlation peak
50% contour will be shorter, but the range of doppler shifts

over which the signals remain essentially correlated is greater.
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Thus the ambiguity diagram for the short CW pulse has the fol-

lowing appearance:

Af

1

T

BT e

These two diagrams show why long pulse CW is good for
searching and doppler determination and short pulsé CW is good
for range resolution. A sonar pulse of 120 milliseconds will
ensonify a region of water 180 meters long. In other words,
the spatial length of the pulse as it travels through the water
is 180 meters (1500 meters/seconds velocity x 0.120 seconds =
180 meters, the distance the forward edge of the pulse has
traveled during the time the rest of the pulse was being gener-
ated). The correlation peak 50% contour, as shown on the ambi-
guity diagram, will be proportional to the pulse length T, and
for CW this turns out to be a one-to-one ratio. Thus the cor-
relation will be over a period of 120 milliseconds which means

that the target range can be determined only to the nearest 180

meters.
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In the case of a short pulse of, for example, five milli-
seconds, the pulse spatial length is 7.5 meters, the correla-
tion peaks over 5 milliseconds, and the range resolution is
7.5 meters.

The effect of doppler on the ambiguity diagram shows that
the same type of development can be made to relate frequency
resolution of the two different pulse lengths. Because the
long pulse remains correlated over very limited doppler shifts,
the frequency of the returning echo can be determined fairly
accurately by using a bank of correlators comparing the echo

to replicas with varying amounts of doppler shifts. On the

A ‘Replica 1 Correlator
I Response Range

t

|

R

) Replica 2 Correlator
| Response Range

= ﬂsfnlica 3
| I Replica 4
! 55T /T

| I Replica 5

PR B S L R L

'
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other hand, use of the same bank of correlators with a short
pulse produces a response from each of these correlators
because the short pulse remains correlated over a large range

of doppler shifts, as indicated on the following page.
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Replica 1
Replica 2

Replica 3

Replica 4

Replica 5

If a pulse is used in which the frequency is changed during
transmission, commonly referred to as FM slide, several dif-
ferences appear. Because of the frequency change during the
pulse, the returning echo correlates with the transmitted replica

b over a short range of time 1, even for long pulses. Thus the

FM "Up-Slide"

ambiguity diagram is very narrow in the t direction. On the
other hand, if a long pulse is used, the Af range of correla-
tion is narrow. One difference between FM and CW pulses
becomes apparent, however. In the case of FM pulses, a dop-
pler shift will tend to shift the entire pulse in frequency,
but the slide will remain linear (provided it was originally
linear) and thus it will still tend to correlate but at a

different value of t. This behavior and its effect on the

§ ¥

ambiguity diagram are shown in the drawings on the following

3 "!‘:r;é

page.
133




Original
Signal
Still Correlated
over this interval
Doppler
Shifted
Return

ST ‘\,.‘.‘— Shor
o CW
I
i 3
R

Note that the FM slide puli:e has some of the character-
istics of both long and short pulse CW. At any given doppler
shift, the correlation peak itself is narrow, as is the peak

for short CW pulses. Thus, range resolution is good.
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; Width of correlation
' peak at given doppler

TR shift Afl

Note also that at a given t the range of doppler shift over
which the signal is correlated is narrow, on the order of the
range over which the long CW pulse is correlated. The reason

this diagram is called an "ambiguity diagram'" can now be seen.

|
| Af |
b 4+ f |
{ ! Range of correlation
* . ¢ over doppler
]
1§ i T =tp
o
|
g ool
|
I
-
k.
s
s The correlator output, that is, the t-amplitude plot, is
v shown in the diagram below. Was the peak at t; caused by a
% target exhibiting no doppler at range equivalent to T, or was
(4 R(T)

$ :

Y.,
)
1
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it caused by a target with five knots of doppler at range

T,- A? The output looks the same in either case.

"range ambiguity'" present.

Af '
1
T :
' 5 knots of
i T/ ~ doppler
e

There is a

One way to resolve this is to transmit two FM slide pulses,

one with an "up-slide" (increasing frequency with time) and

one with a "down-slide'" (decreasing frequency with time). By

then using two correlators, one with an "up-slide'" replica and

one with a "down-slide" replica, the ambiguity can be resolved.

The following ambiguity diagran shows the output from both cor-

relators for a given range target.

Down-slide
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P’ . When compared on a t-amplitude plot, the correlator out-
puts for a target exhibiting the doppler shift, shown on the
ambiguity diagram by the dotted line, appear as in the follow-

ing diagram.

R(1)

T

/\‘ Up-slide

/.

Ca

-, Down-slide

._-}. - -

By no“ing which peak appears first, it can be determined
‘ whether the doppler is up or down. If the "up-slide" peak
i appears last, then the returning echo has been shifted up in
frequency and thus correlated at a delay A later than it

would if not doppler shifted. This indicates up doppler.

Echo
(Up doppler)

Replica
(Up-slide)




If the "down-slide'" peak appears first, this confirms the
condition which indicates up doppler. The true range of the

Replica
(Down-slide)

Echo
(Up doppler)

tafget is midway between the two correlation peaks regard-
less of the amount of doppler shift present. If the target

has no doppler, the two peaks coincide.

Af

4_s—.Up-slide

&Z . pown-slide

R
R(T)
)
{ " Up-slide
‘}.\ Down-slide
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The separation between the up-slide and down-slide cor-
relation peaks is proportional to the amount of doppler shift
in the returning ecko. If a suitably calibrated display of
the two outputs is available, the amount of doppler may be
read directly from the presentation. Thus, by employing FM
slide pulses and suitable processing, the range resolution of
short CW pulses and the doppler discrimination of long CW
pulses can be obtained from a pair of long FM pulses.

Another type of pulse which provides the 'best of both
worlds" with respect to doppler and range is known as the
"pseudo-random noise pulse'" which consists of a ''coded" pulse
with amplitude or frequency varied in a pseudo-random fashion,
for example, the case where the amplitude (or frequency) of

the signal is not a simple sinusoid but a binary coded function.

t 4
>
00 T, = time for one bit
g . :
5@
o 3
- o
-0
ge
M :
N ]
P USSE——, | R — |
8 ] |
!

t =

This pulse is correlated over a very narrow range of 1, giving
good range resolution and it is also correlated over a very
narrow range of doppler shift because of its pseudo-random char-
acter (truly random signals correlate only at a single value of
t). The ambiguity diagram for a pseudo-random pulse is shown

in the figure on the following page. Note that because of the
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correlation over narrow ranges of f and T, no range ambiguity
is present. However, the pseudo-random pulse requires a sep-
arate correlator for each doppler channel which is more expen-
sive than dual FM. Also, another problem associated with this
type of pulse is that the amplitude of partial correlation
peaks in R(tr) may be greater than'for FM and tends to degrade
the false alarm probability and thus degrades the performance
of real systems.

Up to this point the use of correlation in active systems
and how the use of FM slide pulses combined with the proper
correlation processor makes it possible to determine the amount
of doppler in an echo directly have been covered. Examination
of some applications of correlation in the passive detection
filed will be discussed.

One difference between active and passive correlation

detection systems becomes apparent very quickly. That is, in
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the active system the returning echo is compared with a rep-

lica of the transmitted pulse. In other words, the signal

sought is a known quantity (a replica of the transmitted pulse).

In a passive system, however, no pulse is transmitted, there-
fore there is no replica for comparison with the incoming sig-
nal. Consequently, correlation cannot be utilized in the same
manner; however it is still of use, particularly in passive
direction-finding systems. The utility of passive direction-
finding systems can be seen by examination of a typical system
and its operation. Consider a system composed of two hydro-

phones separated in space by some distance d. If the output

d
e e

1 2

of hydrophone 1 is used as a replica Qith which to compare the
output of hydrophone 2, the cross-correlation of the two out-
puts can be obtained. The important property of sea noise for
this system is that it tends to be isotropic, that is, to be

the same regardless of the direction from which it impinges on

the hydrophone. In addition, sea noise tends to be uncorrelated

over distance. On the other hand, most signals of interest are
from a single source, usually a submarine, and thus are coher-
ent to an extent and directional in nature. Since sea noise is
isotropic, the correlator output will be small and relatively
constant when no signal is present. In the presence of a sig-

nal of interest, the acoustic energy traveling outward from the
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source will impinge on the hydrophones from some given direc-
tion. Following a given wavefront as it travels across the

hydrophones, it is seen that it will encounter one of the

~®
(] J

hydrophones before the other unless the direction of impinge-
ment is perpendicular to the line joining the two hydrophones

or the baseline. The difference between the times that the

-
foen

s
B e
——red

\

~@®

® ]
2 1

wavefront strikes the two hydrophones depends on the direction
from which it arrives with respect to the baseline. If the
direction of arrival is perpendicular to this baseline, the
wavefront strikes both hydrophones at the same time and thus
there is no time difference. If the direction of arrival is
parallel to the baseline, the time difference is a maximum.

In fact, the time difference is related to the arrival direc-

tion by the following equation:

léi-- sin 6

where v is the speed of sound in the medium and & the wavefront
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arrival angle with respect to broadside. The cross-correla-
tion of the two hydrophone outputs for a single wave passing
the array shows that the delay time T at which a correlation
peak appears is a function of the wavefront arrival time dif-

ference at the hydrophones. If the wavefront arrival angle

v At
" Sy oy
7}
1 2 d
|e— d —

is 0°, then the arrival time difference is zero and thus the
correlation peak will appear at t=0. For any other arrival
angle, there is a positive arrival time difference At and the
correlation peak appears att = At. This allows relating the
correlation delay time T to the wave arrival direction with
respect to the array baseline. There is a problem of direc-
tional ambiguity as arrivals from opposite sides of the array

at equal angles with respect to the baseline produce the same

delay.

~®
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This ambiguity can be resolved by adding another array to
cross-fix, or by adding a third hydrophone not in line with
the first two. It should be noted that although this method
works well with broadb: nd radiated signals, it has some draw-
backs when applied to signals of a single frequency line or
those with a very broad autocorrelation function. The prob-
lem is that if a signal consists of a single frequency line,
its autocorrelation function is a sinusoidal function. The
question then arises as to which peak correponds to the signal
arrival direction. For this reason, a correlation detector

is not well suited for passive detection of narrow-band signals,

but works well for broadband signal detection.
4
53 3
%
7. e S i
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. It has been seen how correlation can be of help in active
systems and in passive broadband signal detection systems.
What can be done about single frequency line detection? In
order to answer this question, a system will be examined which
is similar to correlation in many aspects but is not actually

correlation.

13
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SELF TEST VIII

CORRELATION DETECTION

A correlator processes the received signal by

Sketch the output of a correlator for a CW pulse signal.

Doppler causes what effect on the output of a correlator

for a CW pulse signal?

4.

S,

What is an "ambiguity diagram"?

Compare the ambiguity diagrams for short pulse and long

pulse CW signals.

6.

Doppler causes what effect on the output of a correlator

for an FM pulse signal?

7. What are the advantages of an FM pulse over a CW pulse?

8. How can range-doppler ambiguity be resolved in an FM
processor?

9. What are the disadvantages of a pseudo-random pulse?

10. How can a correlator be used as a passive direction finder?
11. Why is a passive correlator's performance degraded for

narrow band signals?
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IX. BEAM FORMING

Beam forming, or electrical steering of arrays, is accom-
plished by a process which is similar to correlation but with
one major difference --it uses summation instead of multipli-
cation of the outputs. Starting with a two-hydrophone array,
the process is examined to understand how it operates. As
noted in the preceding section, the acoustic wave arrival
direction determines the wavefront arrival time difference at
the hydrophones. For example, assuming that it is desired to
"steer'" the array to receive signals from a given direction
relative to the array baseline selectively, that is, to form
a '"'receiving beam'" at a given orientation, if the output is
delayed from Hydrophone 2 for a time ty= At, and add ty to the
time necessary for the acoustic wave from the desired direction
to travel from Hydrophone 2 to Hydrophone 1, the array can be

selectively biases to receive signals from that direction.

birection of
’/’/" desired beam
@
2

®
1

Why does this selectively bias the response of the system to
signals from that direction? Consider a single impulse arriv-

ing from the direction of the selected beam.

i _
i _
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Plotting the output of each hydrophone as a function of time

produces the following result:

7

L
1]
[=}
, &
Hydrophone E 4
' ,ts ‘t -
1
7] '
(7] E
c '
Q
Hydrophone 1 & : a
H— +
- . t -
At-.1

k—

By delaying the output of Hydrophone 2 for a time t;= At and
adding the output of the two hydrophones, the two impulses
reinforce each other and the output will appear as in the fol-

lowing:

Response
N
n

e

tp

If, however, the impulse arrived from a different direction,
the time difference between arrival at the two hydrophones

will be different as shown in the illustration on the follow-

ing page.
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G If the output of Hydrophone 2 is input through the same delay

At, the plot of the summation of the two signals is as shown

L

Thus the signals arriving from the selected direction (time

below:

Response

delay At) will selectively reinforce one another in the pro-
cessor, while those from other directions will not. If a
3-hydrophone linear array is examined, it is observed that

the effect is even more pronounced.

-0
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By delaying the output of Hydrophone 3 for a length of time
2At and the output of Hydrophone 2 for a length of time At,
a wave from the desired direction will produce the effect

shown in the following figures:

Hydrophone 3

Response
= aa—r Y
0 {

Hydrophone 2

Response
- = | o QEm———————
() |

Hydrophone 1

. Response
— e+ SRR

Cutput after {
summation 1
3a

Response

|
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¥
FH‘ & A wave from a different direction will give the

following output.

Hydrophone 3

Response
‘l::::%
s

C tew
Hydrophone 2
te
o . :
2] .
g . ' r
Hydrophone 1 g 3 ; l I‘ai
‘ < - 0E W
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Output after
summation
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|
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T

It is apparent that adding hydrophones to the array makes
it more respoﬁsive to signals from the chosen direction.
Also, since the output of the system is not a correlation of
the individual hydrophone outputs but a simple summation of
their amplitudes, the system will work for narrow-band or
single-frequency line signals as well as for broadband signals.
The signal power from the desired direction is given by

the square of the entire summation of amplitudes:

2
S = [a,-* a,+ a,]

2

= af% a.*+ 3% 23’8, » 20,84 % 20,8y = 92°

since all the a's are equal.

The noise power is similarly: v

«r

= 2 2 2
N=sna®+n*"+ "+ 2005 ¥ 2n,n, * 20,0,

However the noise amplitudes are randomly positive and nega-
tive, so that on the average, the crossproducts add up to

zero.
mn, + nn; + nn; %0

Therefore, in this case N = 3n? and the signal/noise ratio

in the desired direction is 3 times that of an omni hydro-

phone, or in general:

(S) v: [numl_)er of elements| <§)
N array in the array N/ omniphone
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By using a number of hydrophones in this manner, in con-
junction with an energy detector, and by setting the threshold
high enough to preclude response to the unreinforced signals
from other directions, one has a very directional detection

capability from a series of omnidirectional hydrophones.

WAVE DIFFRACTION - FOURIER THEORY

Transmitted beam patterns may be analyzed as the phenom-
enon of diffraction. The concept of diffraction is based
on the addition of phasors. Waves may have the mathematical
form of a phasor function of distance r and time t. The
waves from any pair of phase-locked (coherent) sources will

add vectorially depending on the phase difference.

2 r
Phasor Wave A el z"f(t'E)

where A = amplitude

2nf(t-§) = phase NOTE: £\ c

>
L}

f = frequency of wave wavelength

¢ = velocity of wave

A classical example of diffraction is the dipole or
""double slit'" experiment in which a sinusoidal signal excites
two point sources spaced a distance d apart. The waves
observed at a distance r from the dipole where r is large
compared to both d and the wavelength » are found to inter-
fere constructively at certain angles and destructively at
other angles. The null angles exist for conditions in which

waves from the two sources travel a distance in which the
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contribution from each source is out of phase with the other.
The phasor sum is therefore zero at the null angle. This cor-
responds to the condition sketched in which the wave from one
source is delayed by a distance d - sin 6 (or approximately 6d

for angles less than 20°

/
/4\_ d sin 6 x 6d

T
@_ dT 8)}//\2&111 angle At null angle,
~

phasor sum =0
]: ? e for 8d ~ k)/2
‘ />l ~N where k = odd integer

e N
~ ~

~

\\ 22=0

Another example is the ''grating'" (many sources equally spaced).

At null angle, phasor
sum= 0 , as sources
cancel in pairs

g‘“‘
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A third example is the '"clear aperture" (a single source of

width comparable to a few 1).

The total radiation leaving an aperture at a given angle
is, therefore, the summation (integral) of all contributions,

delayed in phase an appropriate amount. For the clear aper-

ture,
(
L4
+D/2 s N
3(e) = | L) e 18" 0 U 10
Lop < .

sin(3L gf_) |B(8)|
(T Ay s vl

Therefore, any other arbitrary aperture function A(x) pro-

duces a radiation pattern of the form,

Wi
B(p) = A(x) e I % 9% g4 where A(x) = aperture
function

Aperture
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The last integral equation can now be recognized as the
FOURIER TRANSFORM of A(x), where S = % (actually, S = ii%ii).
Therefore, an arbitrary aperture function can be said to
have a SPACIAL FREQUENCY SPECTRUM proportional to the RADIA-

TION PATTERN.

B(s) = | A(x) e I27SX 4

Aperture

AS

@
1]

or where

B(s) €«<—> A(x)

Now consider a "sinusoidal grating" in which the aperture
is excited by a distribution of amplitude given by the equa-

tion,

A(x) = A, cos(2m x/xo)

(o]

The radiation will be diffracted into only two beams at an
anglezeo from the normal to the grating. The angle C is

given by the formula

" I
sin eo or 90 z i; for small angles.

>

Therefore, the diffracted radiation angle is inversely pro-
portional to the spacial period X, » OT directly proportional

to the spacial frequency.

SPACIAL FREQUENCY s = l/ﬁ)
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then
} A(x) = A0 cos 2m Sp X

and the diffraction angle is given by

being linearly proportional to the spacial frequency So
Therefore there is a one-to-one correspondence between the
spacial frequency at the aperture and the angle of diffrac-
tion. The sinusoidal grating has only a single spacial fre-
quency s . Any aperture other than a sinusoidal grating

has a continuous distribution of spacial frequencies.

Note that a receiving beamformer accomplishes the same
phase shifting (delaying) and integrating (summing) as the

diffraction process in transmitting.

A(x
hdﬂhgz:;/ delay

B(0) W

A BN e T

incoming wave
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Therefore, the same mathematics applies and the receiving

pattern is the same as the transmitting pattern.

EXAMPLES:

‘2-- A(x)
X i

s ~4‘} L\» y
o ., W, B(9)| A
_g___ Alx) r <\ B(s) 4
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SELF TEBST IX

BEAM FORMING

1. Beam forming and electrical steering of a receiving

array is accomplished by and

the output of each element.

2. The signal/noise ratio at the output of a beam former

can be approximately equal to a factor

better than the S/N of a single element.

3. Transmitted beam patterns may be analyzed as the phe-

nomenon of

4. The transmitted beam pattern is related to the excita-

tion function of the aperture by

5. Spacial frequency is

6. The receiving beam pattern is the same as thke trans-

mitting pattern because
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