
r*O-AObO 005 AIR FORCE INST OP TECH WRIIHT—PATTERSOW Alt OHIO F/i */aFORECASTIN THI*aRSTORMS OVER A 2 TO 5—H PERIOD BY STAT ISTICA —.. ETC(tJ )
AU 7? .1 A ZAK

UNCLASSIFIED AnT—Cl—fl—fl P4.

ar~_ a  
_ _

_ ii

_ _  A



__q .t9i

~~~

W f l !  .,_ ___ __ ___ 4

~
I1l

~

FORECASTING THUNDERSTORMS OVER A 2- TO 5-h PERIOD

BY STATISTICAL METHODS

A Dissertation

by

Joseph Allen Zak
cD

J C ~
)

1 w
Subsd tted to the Graduate College of

Texas A&M University
in partial fulfillaent of the require aent for the degree of

DOCTOR OF PHILOSOPHY

August 1977

s~~~ Na~jor Subj ects 1.t.orology D D Cr~9z~L ~~~~~~ UU

~ $Tkwu7ION STATEMEWI~’A
for public releas ;

DIa$zthutlcs Un~mited

. IL ..



S. • W

FORECASTING THUNDE RSTORMS OVER A 2- TO 5-h PERIOD

BY STATISTICAL METHODS

A Dissertation

by

JOSEPH ALLEN ZAK

_ _  

.5

ACCESSION i~r
Approved as to style and content by:

r ,

UNA NN OUN~~

~

1 

9 (Chairma n of CC2~~~~~~ C)

Dist. AVA IL and/or SPE~t

(He~~~~~~~~~ r~~ent)

j), 
~~~~~~~

. iL~ a
(Member) (Member)

_ _ _ _  _  • _ __ _

AuguFt 1~ 77
t
. 

-~ r

- ~~~~~~~~~~~~~~ i~
_-’•--

~
— _ __ 

_ _



UN cLA~Ji~~ ED ~~•_, ~~~. .. .
SECURITY CLA$S FIC~~ . I OF TH IS ~~4GE (W~.,, t)at. Enlered.)

p R EPORT DOCUM ENTATION PAG E BEFGRE COMPLETING FORM 
- —

R FP O RT  l.U~ IOER — 
A C CFSS

CI 7~ -29 II 
~~~~~~~~~~~~~~ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

4 TITLE (wd Subtltl.) 5 T \ F E s) F~~PC,~~T & PER 00 C ED

/ ~
) Forecasting ThunderStormS OVer 7

’
~
_ t O  5_h i  Dissertation

Period by Statistical Methods. ~~~~~~~~_ __— 6. PER~~O~~MIN G ORG. REPORT NUMBER

7. AUTH OR(s ) — — 
I ~~• co~n RA CT OR GRANT NUMBER(.)

~~~~~~~ seph ~~~~~~~
9. PER~~OR NG ORGAN IZ TION NAME AND ADDRESS 

— I(~ PPO~~P* M r.LEM ENT , PROJECT . TAs ,~
~ W~~PK UNIT NUMBER S

APIT/CI Student at Texas A&M University ,
College Station, Texas

II . CONTR OL LING OFFICE NAME AND ADDRESS . REP RT DAt E

AFIT/CI 1 Aug~~~~ ~~77j  / 
-

WPAFB OH 45433 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

$ 4. MONITORING AGENCY NAME & A ODRESS(II di f ferent from Controlling OlfIc.) IS. SECURITY CLASS. (o .

Unclassified
ISa . OEC LASS I F ; CAT IO N/ DOWNG RADIN G

SCHEDULE

16. DISTRI BUTION STAT EMENT (of th is R.pott)

Approved for Public Release; Distribution Unlimited

17. DISTRIBUTI ON STATEM ENT (of he abatract .nte, .d In Block 20• Ii different from Report)

It . PL EMENTA NOTES

ap in, APPROVED F~ U~ PU J C  1~ELEASE AFR 190 17.
irector of Information , AFIT fr ’3GT ‘)SAF ,. 

~ZPe~~~+~j  3~EZI~C4OvL ~~
¶ 9 .  X EY WORDS (Cotitinu. On r.v.r.. sid. ii n•c.awy end identify by block numb•r)

20 A BS TR A CT (Continue an ,... r.. aid. II n.c..s.i ’y end Sd.ntlly by block nw,,b.,)

O t t
DO 

~~~~~ 1473 EDITION OP I NOV 61 IS OBSOLET E , UNCLASSIFIED
SECURITY CLASSI F ICATI ON OP THIS PAGE (~~i.n beta ftfl i.r.d) .

5.._ .__ ~~~~~~~~~~~~~~~~~~~ — - _i—_ .—.-_ — —



iii

I
ABSTRACT

Forecasting Thunderstorms over a 2- to 5-h Period

I by Statistical Methods (August 1977)

Joseph Allen Zak , B.S., M.S., Pennsylvania State University

I Chairman of Mvisory Coumittee : Dr. James R. Sooggins

I Classical statistical techniques , such as multiple regression with

variable selection and principal component analysis , were employed to

I define combinations of parameters from meteorological observations which

optimally discriminate between the occurrence and nonoccurrence of

I thunderstorms. Routine observations of weather elements at five levels

I in the troposphere during two spring and sumser seasons were analysed

objectively onto a 65-km grid which spanned much of the central United

I Stat... A thunderstorm occurrence was defined from manually digitized

radar (lOR) observations with an MDR code of four or greater as the basis •

I The binary variable one or zero for occurrence or non-occurrence , respec-

I tively , was the predictand. Parameters which are measures of atmospheric

moistur, content , ~stability, and trigger mechanisms were calculated

I from gridded fields of surface and upper—air observed elements for

different times each morning. These parameters were candidate predictor.

I in the variable-selection procedures . Data from all grid points and for

I each day were pooled in order to provide an ad.qust. sample of thunder-

storm observations .

I Srrors which r u from usual assi~~~tions in a regression model

weE, quantitatively analyzed. Multioollinearity was severe but minimised .. .3
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~
4 I 2through stepwise and maximum R variable selection techniques. Spec

I fication and heteroskedasticity errors which result from the binary

natw.a of the dependent variable were present but did not invalidate

I the overall results.

I The first four variables selected in every case were surface mixing

ratio, occur.ence of precipitation during the morning, moisture conver-

I gence , and a stability measure. These four variables include the

synoptic—scale conditions oo~~~nly recognized as prerequisites for

I thunderstorms • The trigger mechanism was most difficult to specify

i f rom the data , followed by stability, and then moisture. Additional

parameters (up to 17) continued to reduce the total , unexplained variance

I of thunderstorm occurrence. Time changes in surface parameters were not

selected as leading predictors . Upper-air observations added an impor-

I tant ingredient, the stability, which, apparently, could not be inferred

I adequately from surface measurements alone .

Data were grouped by surface wind component, random sampling , and

I for a spring and sumeer month. About one-third of the data was saved

for a teat of results. Thunderstorms were more predictable between 2000

I and 2300 Q~T when surface winds had a northerly component at 1800 (~4T.

Random sampling was a way of reducing the influence of the many observa-

I tions of no thunderstOrms which result from the low clinatological fre-

I quency of occurrence . Predictors in April reflected the importance of

kinematics , while those in July were associated with thermodynamic

f variables as would be expected from synoptic—scale data .

Finally , regression statistics with the predicta nd being occurrence

I of thunderstorms at 2000 to 2300 ~~r did not show important differences

L I
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‘I when upper-air parameters were calculated from observations at 1200 ,

I 1500 , or 1800 ~~lT. However , these data were available only on one day,

24 April 1975.

I The results from this study are comparable with other objective

I forecasts and with those produced by weather station forecasters althoug h

direct comparisons are difficult to make. Thi. technique can be applied

I rapidly and effectively in an operational environment at locations with-

in the developmental area. It offers all the advantages of an objective

I forecast and contains no disadvanta ges f rom being tied to specific

forecast models.

I

Ii

I
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1. INT~~DUCTION

I 
______________ ___________

a. Statement of the problem

I Thunderstorms are meteorological, phenomena of great importance to

meteorologists because of the energ y conversions and momentum transp orts

I which occur . Manifestations of the above are the damaging winds and

i hail so often observed. Unfortunately, the prediction of the occurrence

and intensity of these storms has been a problem of substantial signif i-

I cance for meteoro logists that has defied easy solution . There are

several reasons for this. First , a thunderstorm ranges in diameter from

I a few tens to one hundred kilometers and lasts on the order of

i 
to lO~ seconds . Such mesoscale phenomena elude detection by most

routine observations . Also , the analysis and forecast schemes that are

1 in operational use are applied to areas and time scales much greate r than

these . The large r scales permit only a degree of success in predicting

I large areas in which the likelihood of thunderstorm occurrence is great

(Fawcett , 1977) . Another reason is that our knowled ge of the dynamics

and ther modyna mics of thunderstorms is not sufficient to e~q 1ain these

I phenomena. Also , the precise nature of the interact ions between the

large— and small—scale circulations is not sufficiently well understood

I (Ba rnes , 1976 ) for the purpose of exact forecasting .

One approach to the solution of the forecastin g problem is through

paramstsrization of large—scale processes and use of appropriate statis-

I tical techniques. There may be informatton from presen t observations

that , when used in certain combinations , can improve the prediction of

The citatio ns on the following pages follow the style of the
Journal of Applied Meteorology.

i t

— - -- — - -~~~~~~~- ~~~~~~~~~~~~~~~~
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I~~ I
thunderstor ms over a 2- to 5—h period. For periods less than two hours ,

I persistence and radar pattern recognition techniques should give the

best results . For periods beyond 5 h , it is unlikely that observations

I will reflect the structure of the atmosphere which produce thunderstorms.

I Furthermore , there may be improvement in predi ction if upp er-air data

were collected at more f requent inte rvals . Fina lly , optimum combina-

I tions of para meters determined by statistical techniques may lead to

improved physical models .

I The hypotheses underlying this research are that manifestations of

the ther modynami c and hydrodyna inic interactions which evolve into in-

tense convection in the atmosphere can be detected in routine observa-

tions and that these observed parameters can be used in a statistical

model (which minimizes the unexplaine d varianc e of observed thunder-

- storms) for prediction .

b. Previ ous studies

1) Nature of thunderstor ms

- Thunderstorms occur in comparatively small regions in the atmosphere .

Prior to 1947 there were few measur ements of meteoro logical variables

in and near thunderstorms , so that circulation , pressure , temperature ,

and moisture patte rns were known only qualitatively . With the realiza-

tion of the Thunderstorm Project (Byers and Braha m, 1949) , however , ~ur

quantitative knowledge increased significantly . Measurements collected

Over a 2—y period established the horizontal and vertical structure of

many .st.orological variables associated with thunderstorms and confirmed

the existence of moltiple convective cells in various stages of develop-

I.
r
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Scorer and Ludlam (1953) proposed a bubble theory of convection

I that explains many of the observed features of a growing convective

element . In this concept, the kinematics resemble those of a spherical

I vortex, as discussed by Woodward (1959) and Turner (1964) . Later stages

better resemble a jet of upward—moving air (Squires and Turner , 1962)

which exists in nearly steady state , particularly in the presence of

I vertical wind shear. Ludlam (1963) discussed the role of the tilted

updraft core , a manifestation of wind shear , as a natural way to shield

the updraft that generates energy from the destructive influences of

precipitation-induced downdrafts and environmental entrainment.

Recent meteorological literature contains many articles concerning

I thunderstorms , their interactions , intensification , movement , and struc-

ture . It is not our purpose to review these in detail , but the follow-

I ing synopsis will point out the complexity of thunderstorms and environ-

mental interactions with which we must be concerned.

Thunderstorms grow from a few kilometers in diameter to large ,

I qua si-steady supercel ls 20-50 km in diameter (Browning and Ludlam, 1962).

They can last f rom 30 mm to many hours . Such storms may or may not

I spawn tornadoes, rotate , contain destructive downdrafts or hail , or exist

in strong wind shear. Even the simple cuunil us source is not simple at

I all , as pointed out by Auer (1976) from his observations of distortions

I of 0~ fields near a cloud boundary . The entrai ning plume model falls

short of describing the thunderstorm documented by Saunders and Paine

(1975) . In this severe supercell there was little downdraft at the

surface , but a assoscal. updraft-downdraft doublet aloft seemed to per-

I mit vertical motions to persist for several hours without large

I
I.
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I
perturbations in isentropic surfaces. Lemon (1976) discusses a flanking

I line thunderstorm which includes both multicell and supercell storms

that derive impe tus from entrainment of flanking cells . Still another

category termed “spearhead echo” by Fujita and Byers (1977) has in-

I tense destructive downdrafts which appear to be tied to overshooting

tops of clouds at the anvi l level. Finally, a fascinating observation

I that “the growth of vigorous squall lines and severe weather are sharp-

ly inhib ited at and to the south of the subtropica l jet” is documented

I and explained by Whitney (1977) .

I As new mesoscale observational tools , such as Doppler radar and

storm satellites (Shenk , et al., 1976), are added to our operational

I inventory , we are likely to observe even more differences among thunder-

stor ms. Now, we have observations of internal motions within cells from

I experimental Doppler radar (see , for example , Brandes , 1977; Kropfli

and Miller , 1976) . Complicated motion patterns of outflow aloft and

jet stream interaction can be observed from stationary satellite picture

I composites . The intricate details of overshooting , which seem to be

linked to tornado formation , can be seen from satellite film 1oops as

I well.

There is no “typical” thunderstorm. Each storm is unique in many

respects. It is highly unlikely that identical environmental impulses

I exist on different days or even in different locations on the same

day . It is not surprising that modelers and forecasters have much

1 difficulty in their tasks of understanding and forecasting these ph.-

nomena .

Concerning the environment , we know that conditions n.csasary for

I
I

_ _ _ _ _ _  - -Th 

-
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I
severe convective development involve a) convective instability and a

I lifting mechanism to release it, b) abundant low—level moisture over

which a dry-air intrusion exists, and c) bands of strong winds in the

I lower and upper levels (Miller , 1972). For less severe storms thi s

list reduces to moisture , potential instability1, and a trigger . These

conditions must be identified through existing meteorological data net-

I works and numerical prognoses .

2) Forecasting procedures

I Present forecasting procedures are somewhat subjective, and there-

I fore strongly influenced by a person ’s knowledge and experience . As

these vary with individuals who tend not to stay at one location,

I thunderstorm forecasting procedures for a given point are highly vari-

able. A typical forecast involves 1) a study of the existing and past

I large-scale weather patterns with emphasis on the location of discon-

i tinuities and features discussed in the preceding paragraph , 2) an

analysis of stability of the atmosphere from the nearest and latest

I upper-air sounding, 3) evaluating the latest available numerical fore-

casts and interpolating for a given time and location , 4) a closer look

f at the local weather and hourly changes, particularly f rom surface

observations and radar , and 5) a decision on whether or not all the

- ingredients for thunderstorms will exist at the station for the future

time in question . This last step requires synthesizing all the data

from the previous steps .

( Objective techniques offer t;cvt~ral advantages. They do not require

I ‘Defined by Pala~n and Newton (1969, p. 345) to include both con-
vective and conditional instability.

p.
_ _ _ _ _ _ _  -
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extensive personal experience ; they can synthesize a great amount of

I data rapidly and effectively; they can be automated . Furthermore , they

can be developed to make maximum use of historical observations . Finally,

I established rules for parameterizations can be followed.

i There are three steps in a parameterization approach . First , one

must know the processes (equations) involved. Next, relevant parameters

I must be combined in an appropriate functional relationship. Finally,

one must test the results . A more detailed description of parameteriza-

I tion techniques is given in the Global Atmospheric Research Prograimne

I ( GARP) Publication No. 8 (1972) .

A statistical approach to thunderstorm forecasting is used partly

I to alleviate the disparity between the lack of understanding and the

need for prediction, partly to glean as much information as possible

I from existing data, and partly to gain the benefits of obj ective fore-

I casting schemes. The forecasting of mesoscale phenomena by statistical

techniques is not new . Persistenc e probability has aided the operationa l

I forecaster in predicting changes in ceiling and visibility as well as

the onset and duration of critical values of meteorological variables .

I Endlich and Mancuso (1968) combined a number of measured athospheric

I quantities into several kinematic and thermodynamic parameters which

were correlated with severe thunderstorms and tornadoes . Similarly ,

observational da ta were used in an objective (statistical ) procedure

to forecast severe thunderstorms and tornadoe s by Miller and David (1971) .

I Probability-of—precipita tion forecasts and other model output statistics

I have been available for several years (Glahn and Lowry , 1972) . More

recently , 24—h forecasts of probabilities of thunderstorms and severe

I
I
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I
thunderstorms have become available from the National Weather Service

I (Alaka et al., 1973). In these procedures, various potential predictors

from numerical forecasts were used in a screening regression program.

I Those predictors selected account for a certain fraction of the total

I variance of observed thunderstorms as derived from historical manually

digitized radar (MDR) data (Moore et al., 1974). Finally , a statistical

I regression forecast for severe thunderstorms 2 to 6 h in the future also

recently became available (Charba, 1975). General thunderstorm f ore-

I casts were added during the spring of 1976 , and other improvements were

made in 1977 by Charba (1977) (see , also , the National Weather Service

Technical Procedures Bulletin 194) .

In these latter procedures predictors were derived from surface ob-~

servations and dynamic model forecasts . An advantage to the use of

parameters from forecast models is that the physics of the circulation

system is included . A disadvantage, however , is that changes to the

model necessitate development of new equations , as the old regression

equations apply only to variables calculated from the former model.

Another disadvantage is that inaccuracies in the forecasts will limit

the degree to which the model can describe the predictand. Finally,

predictors lose their simple inte~pr etation in that forecast elements

include biases from the model . In this research the disadvantages are

eliminated, and the physics will be included to the greatest extent

possible in the choice of candidate predictors .

c. Objectives

- Within the general framework of developing a statistical model to

forecast thunderstorms in a 2- to 5—h period will be the following

r
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objectives : developing parameters for candidate predictors that are

consistent with known physical processes , parameterization methods , and

interactions between systems of different scale , relating various test

statistics to available verifications of existing thunderstorm—forecast-

ing methods, developing a way to use the spatial variation of meteoro-

logical variables to best advantage when many independent variables are

1 involved , interpreting statistical results in terms of violations of

model assumptions , assessing the influence of upper-air observations

I available at 3—h intervals , and finding optimum times for the dependent

variable and time changes for selected predictors .

This research will extend the work of Charba (1977) and others in

several important ways . First , different statistical models will be

evaluated such as principal component analysis, variable selection, and

di scr iminant analysis . Analysis-of-variance statistics wiU be examined

I along with plots of key parameters to determine the magnitudes of

errors due to assumptions made in the models. Secondly , the final model

I will be tested on an independent data sample . These statistics will

be related to actual verifications of thunderstorm forecasts . Thirdly ,

I upper-air observations will be employed and their importance to observed

i (by radar ) thunderstorm s assessed . A unique set of upper-air data

collected during atmospheric variability experiments (Fucik and Turner,

1 1975) will permit calculations of upper—air parameters every three hours

for one day . These data are available usually at 12-h intervals .

I Finall y , potentia l predictors will be calculated from the observed

variables in a way which wil l  minimize intercorrelations which exist

naturally in this type of data.

I
r
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As long as a short-period forecasting requirement exists, meteo-

I rologists must strive to produce the best forecasts possible. This

research will contribute to that goal, and may also aid in the underly-

I ing goal of understanding the complex interactions of atmospheric

parameters which culminate in thunderstorms .

d. I~portance

Meteorological data networks and numerical forecasting techniques

I are established for the synoptic scale of atmospheric analysis and pre-

diction. A true mesoscale data network is prohibitively costly and

I could not be handled with present computer systems . Until new observa-

I 
tional tools such as Doppler radar and geosynchronous satellites are

perfected and automated , we are constrained in making point forecasts

I of mesoscale phenomena such as thunderstorms with present-day data .

These data consist of 1) hourly surface reports from stations spaced

I approximately 150 km apart , 2) hourly radar reports manually digitized

from a network in the eastern two—thirds of the United States, 3) sate].-

I lite photographs at 30—mm intervals available at selected locations,

I and 4) 12-h upper-air observations from stations spaced approximately

300 km apart. Our task , then , must be to extract as much information

I as possible from these data. This is made more realistic, physically ,

by the postulate that the energy required to initiate the development

I of mesoscale systems is contained within the synoptic—scale systems

(Global Atmospheric Research Programme, 1972 , p. 1) .

I
I
I
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.1
2. STATISTICAL APPROACH

The theory of classical statistical methods such as least squares

and regression analyses is well documented (see, for example, Draper

and Smith , 1966 ; Morrison , 1976; Neter and Wasserman , 1974), and will

only be presented here to the extent necessary to facilitate discussions

of model assumptions, variable selection techniques , and results .

Errors resulting from violations of model assumptions, and also from

I use of a binary dependent variable and intercorrelated independent

variables will be presented . We will conclude with discussions of the

I interpretation of results for a regression model and principal component

analysis .

a. Linear models

I Since the exact form of relationships between dependent and inde-

pendent variables is unknown , a common assumption (and good starting

point) is that of a linear relationship of the form

I ‘~i ~o + 81x. 1  + ~~x.2  + ... + ~~x. + C ., .  (1)

i 
In this study , Y , ,  the dependent variable , indicates a yes—no occurrence

of thunderstorms for a given time interval during a day and given corn-

I bination of grid points by assuming values of one and zero , respectively.

The independent variables , x ’s , are obtained from the measured or

I analyzed observations. The error or residual term, Li ? is due to the

fact that the occurrence of thunderstorms cannot be precisely predicted .

The Bj
’S are the partial regression coefficients which relate observed

I conditions to the occurrence of thunderstorms . These coefficients

are estimated from the data so as to minimize the sums of squared

II
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differences between actual and estimated values of the dependent van-

I able . Estimates of the 8~ ’s are denoted by 
~~~~~

. This latter procedure

amounts to minimizing the following :

U 2E (Y . — — x. — ... — x. ) . (2 )
ia ]. 1 0 i i]. m t m

I This term is called the sum of squares of the errors or SSE. Differen-

tiating (2) with respect to 
~~~~~

, 
~~~~~~

, and setting each equal to

I zero, we get a set of Normal Equations which can be written in matrix

I notation

(X ’X) B = X ’Y , (3)

I where capital letters are matrices , underlined terms are vectors and a

prime denotes the transpose of a matrix. Here (X’x )  is the sum of

I squares and cross products of all independent variables and is called

I the variance-covariance matrix since we are dealing with corrected (mean

subtracted from each observation) values. From (3) one can see that ~

can be obtained by multiplication of X’Y by the inverse, (X’X)~~~. The

partial regression coefficients, B ’ s, indicate the change in Y associ-

I ]

ated with a unit change in x while all other x’s remain constant. The

I fact that Y is a binary variable make s no difference in these calcula-

tions .

b. Partitioning sums of squares

I The statistical analysis continues by partitioning sums of squares

in the fashion o~ analysis of variance (ANOVA) to determine the signi-

I ficance of the ana lyses as a whole as well as that of individua l

coefficients. The total (corrected ) sums of squares can be partitioned

as follows :

I ¶
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— Z ( y  — — — 

2
+ E(~~ + Bi~

Cil + 4 Bm~
Cim - Y) . (4)

The term on the left is simply n times the variance of Y or total sum

of squares (SST) . The first term on the right is thE- sum of squared

deviations of observed data from estimates based on the model. It is

the residual sum of squares of the errors (SSE) . The last term repre-

I sents the sum of squared differences between the model estimates and

- estimates when no model is assumed. This is usually called the sum of

squares due to regression (SSR). A mean square regression (MSR) and mean

I square error (MSE) are obtained by dividing SSR and SSE by their

respective degrees of freedom. The partitioning is summarized in Table

I 1. The ratio of MSR/MSE forms the basis for the statistical F—test for

Table 1. Analysis of variance.

Source of Degrees of Sum of Mean F
variation freedom Squares Squares

I 
2Total n—l SST E(Y—Y) -- --

I Regression m SSR4X’Y SSR/m MSR/NSE

Residual naa-l 5SE SST-SSR SSE/n rn~l --

I an hypothesis that there is no linear relation or that ~—0. Another

ratio used in regression analysis is the ratio of the sum of squares of

I regression to the total sum of squares, SSR/SST. This quantity is

scmstiaes called the coefficient of determination and its syM ol is
I 2 2R • We can interpret R as the fractional amount of total variance

- i
1
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I s
accounted for by the linear cou*ination of variables . The significance

I of individual partial B’ s can also be examined, but can be misleading

when x ’s are interrelated ; that is , when it is impossible to vary one x

I and hold all others constant. This problem will be examined in para-

graphs d and e.

c. Model asstm~ tions and violations

1) A linear model correctly describes the data.

I The correct model is not known. Even if the model is of the form

in (1), which parameters should be included? Variable selection tech—

I niques aid in this choice but do not guarantee that the best2 subset

has been chosen.

Within the framework of linear regression non-linear predictors are

included. Linear regression refers to linear parameters (~ ‘s), not

linear independent variables. It is unlikely that all predictors are

I exactly linearly related to the occurrence of thunderstorms. Fortu-

nately, in a rather broad range for many predictors, the linear approxi-

mation is representative of the association between dependent and

I independent variables. We can linearize them, if we choose, by replacing

the original variable by a transformed version more nearly linearly

I related to the predictand; however, we are not sure about its behavior

when it coexists in the model with other predictors . In several attempts

I to linearize predictors, the overall improvement in R2 was less than

I 3.0% . Also , once predictors are linearized, the equations are more

I 
2Bsst or optimum refers to the maximum possible reduction of van-

U ance that can be achieved with the given lin.ar ccs~~ination of variables .

H 
--• -

• 1  

_ _ _ _ _ _  

_ _ _ _ _ _ _  
__________- _ _ _ _  -
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I
difficult to use in an operational environment . Finally , other errors

I to be discussed next appear to be more serious. Therefore, lineariza-

tion was not pursued in this research .

I 2) The x’s are measured without error.

I We know that there are errors in measuring all variables. Not only

are there errors in measuring basic variables such as temperature and

I wind, but also there are errors due to finite difference approximations.

Unfortunately, the original data spacing and analysis procedure limit

I the smallest space interval for which unique information is available .

Measurement error is not a problem in this study because it is small

compared to the total variance of the x’s. For example , the temperature

error may be 0 • 5 K whereas the range of temperature may span 50 K.

3) The values of C are independent, random, normally-distributed

I variables with a mean of zero and constant variance.

i 
This term is estimated by residuals or differences between observed

and predicted values from the computed linear function. Each item will

I be discussed separately.

Independent C: Meteorological variables are functions of time;

I however , the time dependency in our case is somewhat masked because we

input data from a sequence of 36, 30, 30, 36, .. grid points for suc-

cessive days . In other words , day 1 contains 36 data points; days 2

I and 3 contain 30 points ; day 4 contains 36 points , etc . This scheme is

a consequence of the data input algorithm and remained the same for all

I days in this study . Also, which time dependence (one day , two days ,

etc.) is important? This dependence probably changes with different —

I synoptic situations , and th. overall effect is masked by other problems

I
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to be discussed.

I Randomly distributed C: A correctly specified model should show

residuals which are random when plotted against an independent variable .

I While plots show definite non—randomness , it is most likely due to many

peculiarities resulting f rom a dichotomous , dependent variable . These

will be discussed in paragraph 5. Violations of the assumption that €

I is randomly distributed are called specification error and result from

not knowing the correct model form and not including the correct van-

I ables. The residual sums of squares , SSE , is , therefore , inflated and

estimates of regression coefficients may be biased. There is no good

way of dealing with this problem except to recognize possible nonlinear-

ities in predictors and include physically relevant parameters. We are

naturally constrained in this latter work by our fixed observational.

networks .

c of constant variance, mean of zero: it is assumed that c ’s are

from a single population with zero mean and variance a2 The mean is

zero but variance is a function of the x ’s due to the nature of the

predictand in the sample used in this study . This error is termed

I
Next, we will consider these last few problems in more detail .

I 5) Special problems for a dependent, binary variable

I In addition to the error of specif ication, there are several prob-

lems uniqu. to the use of a binary dependent variable . The first and

I most obvious is that the error term can assume just two values depending

on whether the predicted value is subtracted from zero or one . Fig . 1

I is a plot of residuals for a typica l predictor , W , which is positively

I
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correlated to thunderstorm occurrence . Each letter represents the

nu~~er of observations corresponding to its position in the alphabet.

A is one observation; Z represents 26 observations . Errors are clus-

I tered around small negative values (when Y is zero) and medium positive

i 
values (when Y is one and the predicted values are weighted toward

zero due to the influence of all the zero observations). Obviously,

the assumption of normality is not valid. The second problem is that

the variance of is a function of x1 (Neter and Wasserman , 1974) .

Finally, since Y . is similar to a probability of occurrence3, this

nurber should lie between zero and one . The regression response func-

tion does not automatically possess this property. Fig. 2 is a plot

I of residuals versus predicted values for the dependent sample . Predicted

values range from —0.2 to 1.2 , but the mean is about 0.15.

I Concerning the first problem, even though error terms are not

normal , the least squares procedure still provides unbiased estimates.

Further , when sample sizes are large , the distribution of estimates is

I asymptotically normal so that inferences concerning the regression

coefficients and mean responses can still be made . Variable selection

1 procedures , then , can still produce satisfactory results though little

mention of “significance” will be made in this work . The second problem

can be dealt with through weighted regression (Meter and Wasserman,

I 1974). Weights are assigned to observations in such a way that re—

sponses or predicted values near zero or one receive maximum weight.

ar e trying to predict an occurrence which is represented by a
one or a non—occurrence represented by zero in a continuous fashion.

I
I 

_ _ _ _  _ _ _
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This type of regression was not performed because the observations of

I thunderstorms are already weighted by virtue of low cliinatological

frequencies of thunderstorm occurrence . An attempt was made to deal

I with the problem through inclusion of random samples of no-thunderstorm

observations and through prior screening of no-thunderstorm cases by

critical values of selected predictors . The problem of predicting

I less than zero or greater than one is not particularly serious since

the threshold for forecasting thunderstorms from predicted values is

I arbitrary . Nevertheless , it appears that fitting a logistic function

such as

Y ( exp (— lO.O + O.lx))/(j. + exp (— lO .O + O.lx ) ) (5)

I would eliminate this problem. Such a function is shown in Fig. 3 for

one independent variable.

I It can be linearized by the simple transformation ,

I 
Y’ — in ( Y / ( i— Y ) ) .  (6)

Special precautions are required for zero predicted values . Note that

I her .., too , added weight is given to both near—zero and one predictors .

Glahn and Bocchieri (1975) used a similar function in an objective

forecasting scheme and found difficulties in some cases due to the

symsetric nature of the curve and poor fit  near the threshold probabil-

I ity for yes-no forecasts. Also, fitting this function is not easy

I unless there are repeat observations for each level of x . Such is not

the case with the data used in this research .

d. Nulticollinearity

I Another more serio us problem results from use of interrela ted

predictors (x’s). The x ’s are in fact related in at least three ways .

_ _ _
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First, the basic, measured variables are related through physical laws

and relationships such as the gas law , first law of thermodynamics, or

thermal wind equation; therefore, parameters derived from the basic

variables are related. This problem is usually exaggerated by using

the basic five surface variables and five upper-air variables (the

latter for each of four chosen pressure levels in the troposphere), and

I computing up to 35 parameters for more than twice as many points in

space as there are original data measurements . Also, several measures

I of the same basic dimension, say stability, are calculated because

I the best measure of stability is not known. Therefore , many more

variables than we need are included . Secondly , variables are related

in space for many hundreds of kilometers. The very concept of an air

mass suggests a dependence for many variables . Finally , there is a

I time dependence in that meteorological variables on one day are cor-

related to those on the next day (or longer).

The problem of intercorrelated “independent” variables is called

I multicollinearity and for data in this research is severe enough to pre-

vent us from calculating (X’X)~~ since near-singularities exist
5.

Therefore , we must use a variable-selection technique to be discussed

in Section 2e or a principal component analysis discussed in Section 2g.

When an inverse can be computed and the model is correct, then the

regression coefficients estimated by the least squares technique are

4
This is a consequence of the analysis schemes, and the price paid

for trying to preserve as much detail as possible.

- 5
A generalized inverse can be calculated; however , the estimates

-
~ of the coefficients would be biased .

I - - - -

I 
_  _ _  

_ _
_ _ _ _- - - -- - - - - -
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unbiased . This means that the expected values computed from repeated

I samples will approach the correct value in the mean . The space—cor-

relation problem is reduced by use of every fourth grid point in the

I statistical analyses .

I e. Variable selection methods and inference

Fortunately, the regression analysis is robust in that even moderate

I deviations from the asstu~ptions do not invalidate results . The signi-

I ficant problem of multicollinearity , however , can have severe in f luences

(even critical in our case with all variables where the XI X matrix is

I near singular) . Of many interrelated variables, which should be kept

in the model? To deal with this problem, four different variable

I selection techniques were used in this study ; all try to choose subsets

of predictors which minimize the residual mean square (MSE) . They are

forward selection , backward elimination , stepwise, and maximum R2

I improvement.

1) Forward selection

I This procedure, often called step—up, begins by choosing that

variable which is most highly correlated with the dependent variable.

The second variable is chosen by seeking the next most highly correlated

I of the remaining independent variables with the dependent variable ,

according to the partial correlation coefficient . In other words, for

I each remaining independent variable , a partial F-statistic is calculated

that reflects that variable ’s contr ibution to the model were it to be

included . If this statistic for one or more variables has a “signifi-

I cance level” greater than a specified amount (0.50 is used in this

study) , then the variable with the largest F is included . This process

II
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is repeated and variables added one at a time unti l none passes the F-

test or no more remain. Once a variable is added to the model, it

must remain whether or not its influence is negated by other variables

added. This procedure is likely to give near optimum few-variable

models, but deteriorates as more are added.

2) Backward elimination

In this technique , also called step—down , the model with all vari-

ables is considered; then variables are deleted one at a time starting

with the one whose ~ exhibits the lowest F-statistic. Here, we are

likely to get optimum many—variable models but poor results when more

and more variables are deleted since they can never be included again.

3) Stepwise

This procedure is a refinement of forward selection. At each step

before determining the next variable to be added , the F—statistics are

checked for the coefficients already chosen to see if any should be

deleted based on another prespecified “ significance level” (in our case

0.1) . Only after this check for deletion is made can another variable

be added. The procedure terminates when no partial F is ? 0.5 or a

variable to be added is one just deleted . This procedure is most

appealing so far; but, still an optimum subset is not guaranteed (Draper

and Smith , 1966). Stepwise is the predominant procedure used in this

research .

4) Maxi mum R2 improvement

A one—variable model is chosen as with forward selection . Then

every coi~~ination of variables with this one is examined. When two

variables are included each of these is compared to each variable not

I
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~ I in the model. For every comparison it is determined if removing the

I variable in the model and replacing it with the excluded variable

I 
would increase R2. After all comparisons, the switch is made that

gives the highest R2 . This process continues with each variable added .

i Optimum one-to-eight variable models are most likely to be found, but

the costs in computer processing are high when more than 20 candidate

I predictors are used (Barr et al ., 1976) .

I 
Al though variable selection procedures do not guarantee that an

optimum subset of predictors is chosen , the stepwise procedure does a

I credible job up to about the fourth variable for data in this study .

Comparisons were made of variables selected by the stepwise procedure

I with those from the best four- to seven-variable models where all

possible regressions were considered. In all cases the four-variable

I models were identical . The five— and six—variable models differed by

I just one variable . The best seven—variable model differed by two van —

ables. Due to computer-processing limitations, comparisons were not

I exact in that only 18 of 25 predictors were considered for all possible

regressions. Even for this combination there were 31,824 possibilities.

I in the case of the seven-variable model, the two variables not selected

I by the “best” procedure were not available to it. Beyond five pre-

dictors there could be any number of variable combinations which produce

I the same or even slightly higher R2. Therefore, discussions of variable

combinations wil l  usually be limi ted to the first four or five .

I 
________________ __________________ ________

f .  Interpretation of regression-model results

I In those discus&~iona , intense convection , thunderstorm occurrence ,

and MDR�4 are used synonymously, though the latter is the true

I
I

- — - - _ _ _
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I 2predictand. The coefficient of determination, R , the amount of van-

I ance accounted for by the linear combination of variables , and reduction

of total variance due to the regression model also are used synonymously.

$ Finally , independent variables , predictors , and x ’s mean the same as do

dependent variable , Y , and predictand.

Models of form (1) are used where particular x ’s , parameters , are

I chosen by variable selection techniques discussed in Section 2e. The

associated coefficients, B ’ s, are computed according to the least

$ squares method (Section 2a). Analysis of variance tables such as shown

in Table 1 (p.12) are produced for every different combination of inde-

pendent variables and for all data subdivisions. A few of these tables

I
~
r important combinations of parameters are shown in Appendix A. In

general , however , only summaries are included in the text . These

I summaries present the total R2 , number of variables (x’s) which pro-

I duced the R2, mean square error for this number of variables , and

occurrence frequency for the dependent variable (frequency of thunder-

I storm occurrence) . Also shown are the variables selected in the order

in which they were chosen , the cumulative R2 , and the sign of the

I partial regression coefficient (B ) for each data stratification. In

I 
order to reconstruct the linear equation for a given combination of

variables , the partial regression coefficients from Appendix A are

I required. These coefficients are then substituted into (1) together

with their respective predictors .

I Although 1(2 will be discussed to some extent , the 1(2 differences

from sample to sample must not be interpreted to imply improved re-

gression results unless the proportion of ones (as opposed to zeros) is

I
I

_ _ _ _ _ _ _ _ _ _  - -
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also the same . For a binomial distribution the variance is given by

I np(l-p) . Since this term appears in the denominator of R2 , an increased

p (up to 0.5) results in a lower R2 given the same regression sum of

I squares. Three examples follow , each using similar but artificial data

with one independent , continuous variable positively correlated to one

dependent , dichotomous variable .

I 1) Example one: occurrence frequency 10%

Assume there are ten observations of dependent variable y and

$ independent variable x and that the frequency of ones is 10%. The data

and regression analysis are shown in Table 2.

Table 2 . Data and regression analysis for 10 observations of hypo-

I thetical variables x and y with 10% occurrence frequency.

I ~ 
~~~~~~ tx—x) Iy—y ) Ux— x) ( y— y ) ) 2 $~~~ary

o — 0 . 3  0.01 2 —1 1 0 .3  0 .01 
____________

0 -0.1 0.01 2 -1 1 0.1 0.01 — t ( x_T) t — 0.330
0 —0.1  0.01 2 —1 1 0.1 0.01 — 2I 0 —0. 1  0.01 3 0 0 0.0 0.00 ~~~ — ~~~~~ ‘} — 0.9

1 0 -0.1 0.01 3 0 0 0.0 0.00 20 — 0 . 3  0.01 4 1 1 — 0 . 1  0.01 P ~~~~~~ — . 367
0 — 0.1  0.01 2 —1 1 0.1 0.01 ~
1 0.9 0.83 5 2 4 1.8 3 .24  — —I 0 —0. 3 0.01 3 0 0 0.0 0.00 X • 3.0 ; y — 0 .1 — p
0 —0.1  0 .01 4 1 1 —0. 1 0.01

1 0.90 30 10 3.30 ~~~

2) Example two; occurrence frequency 30%

I Table 3 illustrates another example with the same sample size but

different occurrence f requency . Note that as the occurrence frequency

increases, R decreases. This decrease is a consequence of the in-

I creased variance of y (higher p ) .

- I
I
1 
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Table 3. Data and regression analysis for 10 observations of hypo-
thetical variables x and y with 30% occurrence frequency .

y y -y (y —y ) 2 x x -x (x — x)  (x — x ) (y —y) I ( x — x H y — y ) 1 2 
Sua .r-y St a t i i t ~ cs

o -0.3 0.09 2 -L 1 0.3 0.09 — — 2
3 0.7 0.49 4 1 1 0. 7 0.49 SSR • ~~( a—x ) (y - y ) J  

— 0 . 2 9
1 0. 7 0. 49 4 1 1 0. 7 0. 49
o -0 . 3  0. 09 2 -1 1 0 .3  0.09 — 2
0 -0.3 0 .09 ~ 0 o 0 SST • Lty -y )  — 2 .1 0
o — 0 . 3  0.09 4 1 1 —0 . 3  0.09
0 -0.3 0.09 2 -1 1 0 . 3  0.09 - • 0.138
1 0. 7 0.49 5 2 4 1.4 1.96 SST
o -o .j  0.09 2 -1 3 0.3  0.09 — —

0 —0.3 0.09 2 -1 1 0 . 3  0.09 x — 3 .0 ;  Y • 0 . 3  • p

3 2.10 30 12 3.48 S~~

I
3) Example three: random sampling

I We will now consider the effect of random sampling on R2 in

Table 4. Table 3 is duplicated for all occurrences but for only 57%

I of the

I Table 4. Data and regression analysis for 57% of nonoccurrence
observations in Table 3 data.

I y (y~~ ) (y—~ ) 2 
~ x- a-;)

2 ( x— ) (y—~ ) ( ( a - ) ( y—
~il

2 
S~~~~ ry Sta t istic.

0 —0.429 0.184 2 1.143 1.306 0.490 0.240 
____________I i 0.571 0.329 4 0.8~.7 0.735 0.489 0.239 — — .263

1 0.571 0.326 4 0.857 0. 73~ 0.499 0.2 3 9
0 —0.429 0.184 3 0.143 0.020 — 0 . 061 0.004 $5? — E ( y -y ) 2 

— 1.714
o —0 .429 0.184 2 — 1. 1 4 3  1.306 0.490 0.2 40
1 0.571 0.326 5 1.857 3. 449 1.060 1.124 P2 

— • 0.154I 0 —0.429 0.184 2 —1 .143 1.306 0.490 0.240 SS?

x — 3.14, ~ — 0.429 — p

3 1.714 22 8.857 2.328 $i~~

I — -

Table 5 shows the comparison of pertinent statistics for the

I different occurrence frequencies and the random sample. In the case of

the random sample, sums of squares of x ’s decrease relative to the

I other cases because i~ increases . Total sum of squares, Z (y—~) 2 ,

decreases compared to the 30% sample in this case because there are t -

fewer elements to sum . Finally, the squared sum of cross products

-—~~~~~~~~ -- - .
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ii
r Table 5. Comparison of Tables 2 , 3, and 4.

I
Term Table 2 Table 3 Table 4

- 10% ones 30% ones Random (43% ones)

- 3.0 3.0 3.140
E (x— ~~)

2 10.0 12.0 8.857

2 
0.1 0.3 0.429

E(y— ~) 2 
0.9 2.1 1.714

I E[(x—i)(y— ~)] 3.30 3.48 2.328
I SSR 0.330 0.290 0.263

1(2 0.367 0.138 0.154
MSE 0.071 0.226 0.289
n 10 10 7

decreases but at a slower rate than in Table 3. Consequently , ~2 
~~

I creases for the random sample compared to the 30% case. It is clear

from these examples that R cannot be used as a measure of relative

I strength of the regression model when the frequency of occurrence

changes. The only true measure of “goodness ” will be the performance

of the function in an operational environment.

g. Principal component analysis

I Another way to approach the multicollinearity problem is through

a technique called principal component analysis first introduced to

I meteorology over two decades ago by Lorenz (1956) . Briar and Meltesen ,

(1976) give a brief history of meteorological applications. Only a

I sumeary of the methodology will be presented here .

I Assume that new variables , principal components (Ci) .  can be

generated that are linear combinations of observations of original

I variables as follows t - 
- -

I 
I

~1 
_ _ _ _ _ _  

_ _ _ _ _ _  _ _ _ _ _  
_______



~~ ~~~~~ x +b  ~. + ... + b  x1 1,1 1 1,2 2 1,m m

I C ~~b x + b  x + ...+ b2 2,1 1  2,2 2  2,m m

t
C = b  x + b  x + ... + b  xrn m ,l l  2,in 2 m,m m

I Also choose coefficients for C. i .e~ b . . ’s so that the variance of C1
is as large as possible . Choose the 

~2 coefficients so that the vari-

ance of C2 is as large as possible subject to the constraint that ob-

servations of C1 be uncorrelated with those of C2. We continue for all

- C. and ii~pose an additional restriction that squares of coefficients in

any C. sum to one. It turns out (Harris, 1975) that if the eigenvalue s

• and eigenvectors of the X’X matrix are found (since it is real ,

symmetric, and positive definite), then the assumptions are fulfilled .

j Also, the components of the eicjenvectors normalized to length one are

the b. . ‘s.
J - J

Since the variance is just a measure of the variability for

[ d i f f erent observations, it is reasonable to interpret C1 as that linear

combination of original variables which maximally discriminates among

I. our observations. These components also partition the total variance

of the original variables into m additive parts, hence, the interpreta-

I tion that they “account for” a certain fraction of the total variance.

kws  (or columns) in the symmetric (X ’X ) matrix which are linear combi-

nations of each other will produce a zero eigenvalue and will contribute

1 nothing to the total variance ; hence , we have another way of assessing

I 
multicollinearity and of finding, possibly, how many true dimensions

or hypothetical latent variables there are in the particular (X’X )

matrix which is evaluated in this manner. It is this property which
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y
has led to recent applications in meteorology (Smith and Woolf, 1976;

I Brier and Melteson , 1976) . A method for calculating eigenvalues is

i given by Essenwanger (1976). The procedures used in this study are

those available in the statistical analysis system (SAS ) (Barr , et al.,

I 1976) .

I
I
I - .

I
I
I
I
I
I
I
I

r
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IIr 3. DATA SELECTION AND PROCESSING

a. Location

I The area for this study was chosen to provide relative homogeneity

in terrain, an adequate sample of meteorological observations , and as

many thunderstorm occurrences as possible during the time digital

radar data were available . The period chosen included April through

July 1974 and 1975, 30 days in each month. Surface, upper-air and

meteorological radar data were used in the analysis. Each will be

discussed separately .

b. Surface data

Altimeter setting, wind speed, wind direction, temperature, and

dew point temperature were obtained for 97 locations as shown in Fig. 4

for five times each day: 1200, 1500, 1600, 1700, and 1800 GMT .

I c. Upper-air data

Observations of geopotential height, temperature, dew point de-

I pression, wind speed, and wind direction at 1200 GMT were used for each

I of four standard pressure levels: 850, 700, 500, and 300 ~~
6 There

were 14 upper-air locations (Fig. 4 ) .  Both surface and upper-air data

I were obtained f rom the USA? Environmental Technical Applications Center

at Scott A}’B, IL.

I
d. Radar data

I Radar data consisted of manually digitized radar (MDR) observations

I 6Only geopotential height and winds were utilized for the 300-mb
lsvel.

I

_ _  ~~~~~~ ~~~~
-

~
--
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I

for each hour from 1630 to 0130 ~~T and for 187 boxes shown within the

I bold line in Fig. 5. Note that the centers of these boxes fall within

the general area outlined in Fig. 4 (p. 32). These data were provided by

NOAA ’ s Techniques Development Laboratory. Radar observations are usually

taken about 30 to 35 mis past each hour and transmitted in coded form

(Table 6) (Foster and Reap , 1973) . Digital codes represent the maximum

Table 6. Explanation of Manually Digitized Radar (MDR) code

I Maximum Maximum
O~served Coverage Rainfall Intensity

Code No. VIP Values In Box Rate (in./hr) Category

I 0 No Echoes

1 1 Any VIP 1 < . 1  Weak

I 2 2 < 50% of VIP2 .1- .5 Moderate

3 2 > 50% of VIP2 .5—1.0 Moderate

I 4 3 ~ 50% of VIP3 1.0— 2. 0 Strong
1 5 3 > 50% of vIP3 1.0—2.0 Strong

6 4 � 50% of vIP3 1.0—2.0 Very StrongI
7 4 > 50% of VIP3 1.0—2.0 Very Strong

and 4

I 8 5 or 6 � 50% or V1P3, >2.0 Intense or
4, 5, and 6 Extreme

9 5 or 6 > 50% or V1P3, >2.0 Intense or
4, 5, and 6 Extreme

I ~Video Integrator Processor

I intensity of reflectiv ities anywhere in a square area approximately 85

km on a side . These codes also take into account the general area

I coverage of the echoes. Time composites for the maximum code in any

of the following groups were saved for each day : 1635-1735 , 1835-1935 ,

I 1935—2235 , and 2235—0135 GMT. These will be called 1700—1800 (NT ,

I
- I
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1900—2000 GMT , 2000—2300 GMT and 2300—0200 GMT periods, respectively.

Radar data had to be grouped by time intervals to obtain an adequate

sample because many hours of observations were missing. There are

several reasons for the specific groupings. The first interval is to

f be used as a candidate predictor. The latter three were all predictands

and were formulated from operational considerations. A 3-h interval

represents a forecast of thunderstorms val id within 1.5 h of an esti-

mated time of arrival for aircraft flight operations. For example, an

ai rcrew may obtain a weather briefing at 1830 GMT for a 5.5-h flight

with departure time estimated to be 1900 GMT and estimated arrival time

at destination of 0030 GMT . A forecast for intermittent thunderstorms

would cover the period from 2300 to 0200 GMT . This interval is reason-

able owing to operational uncertainties such as delays in departure and

landing for long flights and to uncertainties in predicting the thunder-

storm event so long in advance . The 1-h interval at the earlier t ime

reflects both reduced forecast and operational uncertainties because of

the short forecast lead time and brief flying time . For example, a crew

for a 1-h flight may get a weather briefing at 1800 GMT for estimated

arrival at 1930 GMT. The forecast would then cover the period from

1900 to 2000 GilT. Finally, an attempt was made to avoid overlapping

intervals so that forecasts for the different times could be compared .

e. Initial processing

Raw data were available on magnetic tapes. Programe were written

to (1) select specific observed elements, times , and stations; (2) ensure

all missing hours and days were accounted for ; (3) check for gross

errors in reported values ; and (4) write all data onto a direct access

I
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~ I storage device . Observations that were either missing or which con-

I tam ed numbers outside the range of what would be considered reportable

values for that variable were filled with zeros and ignored in subse-

I quent processing. Many observations were checked against archived

teletype data to ensure accuracy.

f .  Objective analysis

I The results of this research were dependent upon the representative-

I 
ness of raw data interpolated or analyzed onto an equally-spaced grid

system. Therefore, considerable care was taken in choosing an analysis

I procedure and grid. An 18 x 18 array of grid points spaced 65 km

apart was chosen to preserve as much detail in the surface and radar

data fields as possible. Boundary points were used only for the calcu-

lation of derivatives so that only 256 points (16 x 16) were used for

statistical correlations. An analysis scheme by Barnes (1964) was

selected , not only because results obtained were very similar to hand

analysis, but also because scales of atmospheric features retained by

this technique could be determined, and the program was efficient .  Scan

radii and initialization procedures were adjusted to produce an optimum

balance among the following: (1) cost, since we had 12,480 total

analyses to perform7; (2) missing data; (3) amplification of spurious

waves ; (4) small-scale surface features; (5) radar grid transposition;

I and (6) duplication of manual analyses. The optimum choice for scan

I ~24O days x (5 surface variables x 5 times + 5 upper—air variables
x 3 levels + 3 upp.r—air variables x 1 level + 1 radar variable x 9

I times ) .

I - -

I 
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I
radius, number of iterations, and characteristic wave lengths preserved

I as a result of these choices are susinarized in Table 7. Wind was con-

I 
verted to components with respect to grid orientation (nearly latitude-

longitude aligned). These and all other basic variables were analyzed

I onto the 18 x 18 grid array for each time and day . From these data the

predictand and candidate predictors were computed at each grid point

I as discussed in the next Section.

Table 7. Sununary of analysis parameters .

Data Avera ge data Scan Iteration . Init~ a1iaation w3ve1,nqth of Wave length of
Iourc. Spacing kadius 90% amp l i tude 50% awçli tude

Preservation Prrscrva t ion

$utfa c. 120 km 275 km 3 Mean value of 450 km 300 km
parameter

Upper air 370 km 520 km 3 Mean valu . of 900 km 600 km
parameter

Radar 83 km 84 k. 1 0

With on. iteration this was eaeent iilly an inter~oiation of the nearest MOP observation to
•ach grid point.

I L

I
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I
4 . PARAMETERIZATION AND DATA SUBDIVISION

This section includes the formulation of predictands and the

development of predictors in the context of parameterization of synop-

tic observations. Also discussed is the subdivision of the total data

I set into subsets for statistical processing.

I a. Predictand formulation

Coded MDR data from the 65-km grid and three time groups, 1900-2000

I GMT , 2000—2300 GMT , and 2300—0200 GMT, were converted to a simple binary

f orm . Any MDR code equal to or greater than four at any of the four

nearest neighbor grid points as shown in Fig. 6 was assumed to repre-

sent the occurrence of a thunderstorm (Mogil , 1974) , and was assigned

the binary code one ; otherwise code zero was assigned . The data void

areas in this figure result from the use of every fourth grid point f or

the statistical analyses. A zero could only be assigned if the gr id

point in question and the nearest neighbors were all reporting ?IDR

codes less than four . The best resolution in the predictand area is

limited to a square area about 138 km on a side. This was the smallest

area for which unique information from the original radar grid (83 km

square) was available. We have not distinguished among precipitation

intensities (or thunderstorm seven ties) in this study.

b. Predictor formulation

One approach now tempting many investigators because of expanded

computer capabilities is to use every imaginable parameter as a candi-

I date predictor . For just the basic analyzed variables (temperature,

wind components, pressure, etc.) along with their first and second time

I
I

— ~----- - - - - - -- _ _ _
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I
I
I
I
I

I Fig. 6. Orientation of the predictand area with respect to the
pcedictor point.

I
I
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and space derivatives, there would be well over 100 candidates , many

I of which would be interrelated. Selection techniques for such a large

number, not even counting products or time changes of space derivatives

and vice versa, would be expensive and, more important, results would

be extremely difficult to interpret. In this study all predictors have

been chosen through parameterization techniques for categories of van —

I ables known to be associated with thunderstorms .

It is generally recognized that there are three synoptic-scale8

I conditions for thunderstorms : moisture , potential instability, and a

trigger mechanism. Therefore, parameters to represent these ingredients

were calculated from centered finite differences for which the distance

interval was twice the grid distance or 130 km. In addition, a nine-

point Laplacian routine for ~
2
A was used, where A is any scalar. All

I parameters, along with their definition and source, are shown in

Table 8. Each group will be discussed separately.

1) Moisture

I The first set of moisture variables includes the equivalent

potential temperature ( 0 )  at several levels in the atmosphere , its

t ime change , gradient magnitude , and advection. This parameter has

been used for many years as a means of identifying air samples owing

to its conservative properties for both dry and saturated adiabatic

I processes. It has been used recently in conjunction with the location

of the thunderstorm updraft (see, for example, Elirod and Marwitz , 1976 ;

I Fankhauser , 1974; Brandes, 1977). High values of 0e represent a

I 8~~ data network restricts the horizontal scales to 300 to 1500 km.

I
I
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• 1 I
Table 8. Candidate predictors

I (a) Moisture Parameters

I 
Symbol Definition Source Time

I 
0e 8(exp(Lw

5/c 19) Surface 1800

0 same except 850 nib values Upper air 1200e8

I 0e7 
same except 700 nib values Upper air 1200

0 (1800 GMT ) - 0 (1500 GMT) Surface 115001
e e [ ieooJ

I ~2e 
— -(0 (1500 Q4T)—O (1200 GMT )) J  Surface 1 15001e e [l800J

I $~eI \~~2t)
2 

+ (.~~&)
2 

Surface 1800e ~l~1x
0 A — (u~~~ + v~~~~) Surface 1800e

I T_T
d 

T_T
d Surface 1800

(T_T
d
)
8 same except 850 nib values Upper air 1200

(T_T
d
)
7 same except 500 nib values Upper air 1200

J W 0.622e/P—e Surface 1800
e — (6 11)107.S(Td—273.lS)/Td—35.86

P —1013.25 + l013.25/(l.0~a(z))~
’

I +ALTSTG, where a(z) ~ .0065z/288.0,
b 5.246

same except for 850 irib Upper air 1200

same except for 700 nib Upper air 1200

I 
T~~2 a W 2

+ ~~~ Surface 1800

~
2w a w

+ .~- .  Surface 1800

Surface 1800
.1 aw au aw av 2 aw au 3W 3v 2I I D I 
~~~~~~ 

.

~
—. + ~~~ 

.
~~

.) + (.~
—. .

~
.-. + ~~ Surface 1800

I 
ii:I

_ _ _ _ _ _  

- _ _ _  _ _ _ _- -—- - -- _ _ _
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I I

1
• 1
I Table 8. Candidate predictors (Continued)

(b) Stability

Symbol Definition Source Time

I DTA (_
~
.
~~T)8 

- (~.~~T)5 Upper air 1200

I CSIL 8
e7 — e~ 

Upper air 1200

i 
CSIM °e5 

— Upper air 1200

Ia T8 + T~~ -CT-Ta
)
7 

- T5 Upper air 1200

I ?I’I 2(T8 - T5)(T 
— Ta

)
a Upper air 1200

i srsi ~T7~ (0 - 0 ) Upper air 1200
I e7 7 C

5

UWSH U
5 

- u8 Upper air 1200

I DTH (Z8—Z7)/l50 —(Z7—Z5
)/200 Upper air 1200

I ~
2
~THA ~

2
~
(_
~7
.~~(DTH)) Ui~ er air 1200

T Temperature Surface 1800

0 T(1000/P) R/Cp Surface 1800

-
I
I
I

t_
I 
_ _ _ _ _ _  

__________- - ____  _ _ _ _
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* I
I 

-

Table 8. Candidate predictors (Continued)I Cc) Trigger

I Symbol Definition Source Time

I (—~~~~Z)gp + (~ .~~)50 Surface 1800

32P 3
2P

i ~~~ 
+ Surface 1800

3v 3u Surface 1800

I DVA ~~~~~~~~~~~~~~~~~ Upper air 1200

I IDIV 2.25(~ 
.
~~~) 

+ l.75(~ 
.
~~~) 

+ l.0(~ •
~~~

) Upper air 1200
P 8 p  7 p 5

IMDIV ~~~~~~~ + (ç.W~~) + (~ .W~) + (~ •W~) Upper air 1200I + ~~ 2 2

7 p 5 p 3

1v 5 1 ~Ju5 + v5 Upper air 1200

I v
5 500 uti, N—S wind component Upper air 1200

I VSUM V5 + V8 Upper air 1200

I~PI ~( 3P) 2 
+ ~~~~ 

2

I 
3x 3y

) Surface 1800

3P ap
1~~~~ + V~~~ Surface 18003x oy

I 3~~
2~) 

~
2P (1800 QIT) — ~

2P(l5O0 GMT) Surface {~ 500}
1800

I MDRP MDR code > 1 at 1700 or 1800 G?VP Radar {1700 )
1800

I
I
I



I
p potential, latent energy source (warm moist air) for the convective

I process.

Next, basic measures of low-level relative humidity are included.

I These are expressed as dew point depressions. The la8t group of mois-

ture parameters are basic measures of atmospheric water vapor content.

The mixing ratio has been combined with the divergence field of surface
+ +I wind in V~WV so that moisture advection and convergence are included

in a single term . This has been a leading predictor in other studies

(Charba , 1977; Alaka et al., 1973; Henz , 1974) . The Laplacian of mixing

ratio identifies centers of high moisture (negative Laplacian). A

term which combines both the deformation field of the wind and surface

I moisture pattern has been introduced in IDI. This is similar in form

to the frontogenetic function of Petterseen (1956, p. 201) with 0 re-

I placed by W and is discussed in Palm~n and Newton (1969, p. 246). It

is a way of locating where shear and confluence of surface wind could

I concentrate moisture. Fig. 7 shows schematically how this might be

I accomplished . Prime quantities represent isolines after a time incre-

ment tat. The lines of W’ in Fig. 7a have been shifted to the left for

I convenience. Consider th: magnitude of %. As decreases , I~wI in-

creases. Similarly, as decreases , I wi increases .

I 2) Stability

I There are numerous ways of estimating atmospheric static stability.

Differential temperature advection where cold air is advected over warm

I air or vice versa is a way of incorp orating kinematics (wind structure )

and t ime. So long as the advection is constant with cold advection

I above warm advection, the atmosphere will respond by decreasing stability

I
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with time . Similarly , the horizontal temperature gradient is related

I to the vertical wind shear and differential temperature advection will

be reflected in adjustment of the thickness field . Both wind shear

and thickness differences have been included. The Laplacian of thick-

ness advection should be a way of locating centers of strong differential

temperature changes which , in a subsequent time interval, could be

related to thunderstorm development. Convective instability is impor-

tant to thunderstorm development (Koch , 1975) . This type exists in the

I atmosphere in those layers where °e decreases with height. There are

three parameters in which a f ini te  difference version of this term are

included. The last of these is static stability discussed by Paine

and Kaplan (1974). Finally, standard parcel stability measures and

surface values of temperature and potential temperature were used.

1 3) Trigger mechanism

Many days occur when sufficient moisture and instability are both

present and yet there are no thunderstorms. A trigger mechanism is

f needed to release the instability and latent energy . Usually , this

trigger is manifested in vertical motion, so that we need to find a

I lifting mechanism. Terrain—induced vertical motion is included as a

predictor combined with surface velocity divergence . The vorticity

I field at the surface measured by the vertical component of the curl of

I the surface wind field or indirectly through the pressure Laplacian is

another potential uplift mechanism through convergence which it induces.

I Fronts are frequently associated with thunderstorms. A front can be

identified through the wind , temperature, moisture , and pressure

I fields . Temperature , moisture , pressure gradients and the advections

I
I
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I
of °e and P were included as parameters . Measures of vertical motion

I can be obtained in only a crude way from data at ju st five levels in

the atmosphere . Both integrated divergence (sums of divergence for

I three levels) and integrated moisture divergence were included as

predictor parameters . Differential vorticity advection ( DVA) is in-

cluded as a parameter since it together with the Laplacian of thickness

I advection , are the two terms in the w-eguation (Holton, 1972). The

meridional wind ‘-omponent at 500 nib is a measure of the strength and/or

I proximity of an approaching trough if a general west to east wave

motion exists . Vorticity advection and vertical motion usually ensue.

The v—component sum at 850 and 500 tth measures the degree to which the

wind is in-phase at these two levels east of a trough. The more out-of-

phase, the lower this sum would be; therefore, one would be looking at

I a measure of the baroclinity of the lower atmosphere . A negative cor-

relation of this parameter measured at 1200 GMT with thunderstorms

later in the day would be expected. Finally, an increased tendency for

I cyclogenesis at the surface may be associated with general uplift and,

therefore , a trigger mechanism for subsequent thunderstorms . The time

I 3 t2change of the Laplacian of the surf ace pressure , (v p), is one

such indicator.

I The last trigger shown in Table 8 is a binary z~adar parameter . Any

I MDR code (two or greater ) during the time period 1700 to 1800 GMT for

each grid point was coded as one; otherwise, zero was assigned. In this

way a one represents any precipitation occurring near the time the fore-

cast is to be made . Usually , when other conditions are right, any pre-

I cipitation at this time of the morning either maintains its intensity

II
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I
by propagating within the predictand area when the code is already

I greater than four, or develops into a thunderstorm in the subsequent

2 to 5 h. This predictor is the only direct measure of vertical motion

or trigger among all predictor parameters. Of course , some of the para-

meters could contribute to more than one condition for thunderstorms .

Consider , for example , the discontinuity function , ~D~; while listed

under moisture , it might also be discussed in conjunction with the dry

line and frontogenesis or a trigger term. Similarly , the Laplacian

of thickness advection is a term in both the w—equation and Petterssen ’s

development of surface vorticity tendency. It could be shown with the

trigger terms as well.

c. Subdivision of original data

The total data set consists of parameters calculated at each of

256 grid points for 240 days. However, for reasons discussed in Section

3, not every grid-point was used. There were a total of 7680 observa-

tions possible in the data set used for subsequent statistical analysis.

However, an observation which contained any missing element was not

I used. The data were then subdivided into groups as shown in Fig. 8.

1) Developmental and test

I Subdivision of the original data sat into developmental and test

groups was necessary so that some type of quality measure or verifica-

tion could be obtained. Every third day is considered to be independent

I for temperature (Panofsky and Brier , 1958) . Therefore, data in every

third day (day one, day four, day seven, . . . )  were used as a test sample.

I The developmental sample included data in all other days . As far as

thunderstorms were concerned , the assumption of independence was

I -
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I TOTAL

n~~7680

I
I

NORTH SOUTH RANDOM
W IND WIND
2570 5110 231 1

I 
_ _  _ _ _

I 
— _ _

IN DEPENDENT DEPENDENT

I 2880 4800

~OPTH SOUTH RAND~~A APRIL JUL Y NORTH SOUTH
WIND WIND WIND WINDI 937 943 462 1920 920 633 3167

Fig. 8. Subdivision of total data set.

I
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I
examined for a few grid points in the test sample. Ones were not ob-

served f o r  two consecutive periods (day one and day four , fo r example) .

The developmental sample was , therefore , considered to be the dependent

sample; the test data set was the independent sample. Equations were

developed from statistical models applied to the developmental sample

and tested on the test sample .

2) Nor th wind and south wind

Thunderstorms are observed to develop and behave somewhat different-

ly in d i f f erent types of synoptic situations or in different air masses

(Purdor , 1975) . Subdivision by air mass may give better results in this

type of statistical analysis where the sample includes several thunder-

storm seasons for a large area. Partitioning by air mass was not

directly possible wi th the historical data available. However, a

division of data by surface wind component at 1800 GMT was considered

to be a fair substitute . Consequently , the data were divided into

north wind and south wind sets depending on whether or not the surface

wind had a northerly or southerly component at 1800 GMT, respectively .

Separate regression analyses were performed on each subset.

3) April and July

All days and observation points in April for the two years of data

were combined . The same was done for July. Again, analyses were per-

formed within each data set to determine differences , if any , in spring

and suniser predictors .

4) Random sample

Samples were chosen by random—number generators so that develop-

mental samples contained nearly the same number of occurrences and

I
I
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I
nonoccurrences . The unequal natural frequencies of thunderstorms

I versus no thunderstorms create problems in regression analysis when the

dependent variable is binary. These problems were discussed in Section

2. Results of application of the various statistical techniques outlined

in Section 2 to subsets discussed here are presented next .

I
I

I
I

II 
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5. RESULTS

I
First , comparisons of results for different predictand times will

I be presented. The types of predictors selected and the order in which

I 
they were included in the model will be discussed next for all data

subdivisions. Followinq this will be the importance of surface versus

I upper-air parameters to the prediction of thunderstorms . A discussion

2of the maximum R or variancn reduction achieved will follow. Next,

I perform~~ ce of the equations applied to an indepeiident data set will

be presented followed by comparisons with results of other investigators .

I Results of a principal component analysis will be presented next.

Last will be a discussion of the utility of these equations in an

operational environment .

a. Forecast time intervals

I Regression models were tested with fixed numbers of independent

variables and three time combinations of the dependent variable: 1900 -

I 2000 GMT , 2000-2300 C~iT, and 2300—0200 GIlT . Random samples were chosen

so that p was nearly the same. The R2 decreased, as expected , when

the time interval between observations and forecasts lengthened; how-

I ever , the occurrence frequency of the predictand was only 9.3% in the

fi rst period . With so few occurrences , this equation would likely

I deteriorate9 when applied to independent data. In other words, there

I 9”Dets r iorat e” means that probabilities of thunderstorms produced
by the linear equation developed from data in a dependent or develop-
mental sample would not correspond well with observed frequencies of

I occurrence when these equations are used on an independent sample of
• data .

II
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~ , 
$

would not have been enough different thunderstorm-producing environ-

$ ments included in the sample. Also, extrapolation of existing radar

echo patterns would seem to be a more promising technique for those 1—

to 2—h forecasts . Similarly , it is not likely that observed features

of the atmosphere early in the morning would adequately reflect ingre-

dients for the occurrence of thunderstorms late in the afternoon. Con—

I sequently , only the 2000—2300 GMT period was included in all further

analyses.

I
b. Predictor selections

The order of selection and specific predictors selected by a step-

wise, variable selection technique are shown in Table 9 for different

1 groups of data . Only the first six of many predictors offered as

I candidates are shown. No matter how the data are divided, the three

variables consistently selected include a combination of moisture and

I trigger terms ; the next several invariably include a measure of atmo-

spheric instability through either stability indices or linear combi-

I nations of vertical temperature and moisture parameters . The first

four-to-five variables include all the synoptic-scale conditions for

intense convection. Therefore, it is not surprising that more than

I 85% of the total variance explained by the regression model is accounted

for by the fi rst five variables .

I In the case of the north wind and all other subsets except south

I 
wind, the singl, most important predictor was the surface mixing ratio .

The presence of precipitation (MDRP ) near 1800 ~ 4T was most important

I for the south wind data . In the area chosen for this study , a south

wind implies the presence of maritime tropical air which contains

I
I
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$ 1
considerable moisture. Therefore, a trigger mechanism identified by

I MDRP would be an important parameter contributing to thunderstorms,

given that moisture is already present.

For the April and July subsets the first three predictors are the

I same . During April , a 500-mb trough (v—wind component at 500 mb) and

concentration of moisture gradient at the surface through the deforms-

I tion field of the wind are the next most important parameters . This

latter predictor can be interpreted to represent the location of the

surface dry line which is recognized as a favored region for severe

I weather (Miller , 1972) . In the spring, surface winds are stronger and

gradients more intense than in summer. Therefore, one would expect

these quantities to be reflected more in the synoptic data which are

utilized. During July stability measured by the Total-Totals Index is

the fourth predictor chosen. This development is reasonable owing to

the weaker winds in the sumser .

In a separate analysis , four different time changes were computed

for five surface variables. These were the 1-h, 3-h, 6-h and 3—h change

in the 3-h time change for the following : °~~ MDIV , WTS, e A , and

I ~
2p. w ien these were used as candidate predictors in the stepwise

I selection procedure, they were not chosen among the top five predictors.

Also, when time derivatives were selected, the 3-h and 6-h changes were

I chosen before 1—h changes. One possibility for this result is that the

original spacing of surface data and analysis procedures restricts the

I amplitude, of resolvable features. Six-hour features are more likely

I to have the larger amplitudes which can trigger intense convection later

in the afternoon . I4ore work needs to be done in this area .

I
I
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I
The signs of regression coefficients are as expected when other

variables are included in the model. For example, the sign of the

temperature coefficient is interpreted as the change in predictand for

a unit change in temperature while holding constant all other variables

in the model at that time. The negative sign indicates that given

that surface moisture (among other things) already is present , then

thunderstorms occur with lower temperatures or when the air is more

nearly saturated. The total correlation coefficient for temperature

shown in Table 10 indicates a positive correlation of temperature and

thunderstorms when all other variables are ignored.

c. Importance of surface versus upper-air parameters

Regression models were utilized with stepwise procedures for sur-

face variables and upper-air variables separately. F~esults are

sususarized in Table 11. Surface parameters alone in linear combination

accounted for 15% of the total variance (R
2 

- 0.150), whereas upper-air

parameters accounted for only 13.4%. When both sets were used to-

2 .gether, however, the best results were obtained; R improved to 0.197.

Both timeliness and spatial resolution contributed to this result.

Surface data were available at 1800 GIlT , 2—5 h before thunderstorm

occurrence as opposed to upper—air observations at 1200 GIlT . Also ,

surface stations are spaced about 120 km apart compared to 370 km for

upper-air reports. Space derivatives, which are used extensively as

parameters , are , therefore, more nearly represented by finite differ-

ences in the case of the former . Even though the upp er-air predictors

were old and contained poor spatial resolution , when combined with sur-

face predictors , they produced a 30% improvement in R2 . It appears

I
I
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4 I
Table 10. Linear correlation coefficients of selected predictors

with the occurrence of thunderstorms during the
period 2000-2300 GIlT .

I
Predictor Time of Correlation Significance

Observation (GIlT) Coefficient Probability level

0 1800 0.280 0.0001I
WTS 1800 —0.154 0.0001

I MDIV 1800 0.173 0.0001

8 A 1800 0.103 0.0001

I LP 1800 0.079 0.0001

C 1800 0.099 0.0001

I ,D~ 1800 0.050 0.0001

I %I 1800 0.041 0.0006

W 1800 —0.082 0.0001

I CSIM 1200 -0.275 0.0001

CSIL 1200 -0.230 0.0001

I ia 1200 0.289 0.0001

I TI’I 1200 0.251 0.0001

STSI 1200 -0.274 0.0001

I UWSH 1200 -0.130 0.0001

DVA 1200 0.008 0.5173

I LThA 1200 0.052 0.0001

I 0?? 1200 0.051 0.0001

IDIV 1200 -0.040 0.0008

I I~~ IV 1200 -0.041 0.0006

I 1200 —0.12$ 0.0001

I 

- 
_ _  _ _ _  _ _ __ _ _ _
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‘ I Table 10. (Continued) .

I
Predictor Time of Correlation Significance

Observation (GM?) Coefficient Probability level

DTR 1200 -0.016 0.000 1

0 1200 0.283 0.0001e8
8 1200 0.220 0.0001

W8 1200 0.311 0.0001

I Wi 1200 0.233 0.0001

~
T T d~ 7 1200 —0 .174 0.000

1200 -0.213 0 .000.~

v5 1200 0.090 0.0001

W 1800 0.328 0.0001

VSUM 1200 0.113 0.0001

u 1800 —0.043 0.0001

I v 1800 0.050 0.0001

I 
T 1800 0.166 0.0001

‘P_Ta 1800 —0. 190 0 .0001

J MDR P 1735 0.324 0.0001

I

I
I
I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _—~~~~~~—--~-~~~ - - —‘-- —
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Table 11. Summary of statistics for regression analyses with
surface and upper-air predictors .

Total Occurrence Data Max R2 Number Mean
Sample Frequency of Squared
i.ze Predictors Error

7492 17.9 Surface 0.150 11 0.125

7492 17.9 Upper air 0.134 16 0.128

7492 17.9 Surface and 0.197 24 0.118
upper air

7125 17.9 Upper air, 0.243 20 0.114
sur face and

that poor as they are , these predictors fil l  an important gap in iden-

tifying those observed features of the atmosphere which are subsequently

related to intense convection. Surface data alone give little indica-

tion of the potential stability of the atmosphere . It is this ingre-

dient which is added by including upper—air parameters. The dew-point

depression at the 700-mb level is the first upper-air predictor included

by the stepwise procedure. Also, it is the third parameter following

low—level moisture and moisture divergence. Stability alone, however ,

gives inadequate information for predicting subsequent thunderstorms .

From Table 10 (p. 57) it is seen that the highest correlation coefficient

between the predictand and any single stability measure is 0.289 for the

K index. Several oth•r variables such as W , the radar predictor (MDRP) ,

and equivalent potential temperature differences exhibit higher cor-

relations .

I
I
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I
d. Quality of f i t  of the regression model

While the conditions for thunderstorms are known with some con-

I fidence as far as synoptic data are concerned, there is little confi-

dence in determining these conditions from the study data. For example,

I stability can be obtained from the vertical structure of temperature

and moisture profiles . When a limited sample of these data at a few

fixed levels in the troposphere comprise our measures, only approxi-

mations to the stability can be made • There is a number of these

approximations depending on levels , variable combinations , and physical

I assumptions (parcel method , layer method , etc .) .  Similarly, the trigger

mechanism must be inferred since vertical motion , the usual trigger, is

I not one of the observed variables. Finally, the parameters contributing

to many thunderstorm occurrences exist on a scale much smaller than we

can resolve with our data. Thunderstorms have been observed to occur

I at boundaries and intersections of pressure discontinuities ( gust fronts)

caused by previous cells (Purdom , 1974). Similarly, they have been ob-

I served to develop in the afternoon in areas which were void of clouds

1 
that morning (Weiss and Purdom, 1974). The influence of the sea breeze

is illustrated by the frequency distribution of thunderstorms along the

I Gulf Coast and Florida (Scoggins , 1976) . Small-scale convergence in-

duced by gravity waves (Wave CISK) appears to be important to intense

I convection from theoretical considerations as well (Raymond , 1976) .

i Even diffusion in a two—constituent medium might be a tri gger (Schaefer ,

1975) . A consequenc . of the foregoing discussion is reflected in the

I ovsrall low R2 or relatively small amount of variance of thunderstorm

occurrences that can be explained by th. linear combination of synoptic

I
I
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I
parameters.

I Table 12 contains the maximum R2 for a specific number of predictors

in each data subset. The regression for the random sample of no-thunder-

storm observations produced the highest R2, 0.332, most likely because

Table 12. Sunm~ary of statistics for regression analyses with
dif ferent data subsets .

Total Occurrence Data Max R2 Number Mean
Sample Frequency of Squared

I Size (%) Predictors Error

I 7125 17.9 Total 0 .243 20 0.114

2 203 40. 7 Random 18% 0.332 18 0.163
of no TSTMI days

2376 13.9 North wind 0.284 13 0.086

47 50 20.6 South wind 0.238 21 0.125

1837 8.1 April 0.255 14 0.056
dependent

1759 25.4 July 0.279 16 0.138
dependent

the total number of observations decreased. The equation for predicting

thunderstorms which developed between 2000 and 2300 CM? following sur-

face wind with a northerly component at 1800 GIlT accounted for 28.4% of

the total variance , whereas the south wind equation accounted for 23.8%

though some of this difference would be due to the larger occurrence

I frequency in the south wind data . Further , the north wind equation did

its job with a fewer number of predictors.

I 2
The R for th. April and July data are based on fewer observations,

I
I
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I
but it is interesting to note that the R2 for April (0.255) is lower

$ than that for July (0.279) even though the frequency of thunderstorm

occurrence is much higher in July.

The mean squared error (MSE) of the regression analyses continued

to be reduced as more variables were added to the model. This indicates

that the exact synoptic—scale measures of the conditions for thunder-

storms were not available, or the parameters did not truly represent

these conditions . This result is not surprising if one considers

the crudeness of our measures of atmospheric structure in terms of

limited horizontal and vertical resolution, the untimeliness of the

upper-air measurements (8—11 h before thunderstorm occurrence), and

I limitations imposed by the specific observed variables from which para-

meters were computed.

Another way to evaluate quality is to consider how well predicted

I probabilities represent actual f requencies of occurrence of thunder-

storms . Predicted probabilities in 10% increments were generated for

I several different data subdivisions. These are shown in Pig. 9. In

general there was a slight tendency to overpredict the observed prob-

ability at low probabilities and underpredict for probabilities above

I 0.6. This seems to be consistent with our natural bias in subj ectively-

derived probabilities. Underprediction at high frequencies of occur-

I rence can be explained by the decreased slope of the regression plane

owing to the many more non-occurrence observations compared to thunder-

I storm occurrences (see paragraph e). No explanation, however, is

apparent for the overprediction .

I
I
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Fig . 9. Relation between predicted and observed probabilities of
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I
e. Performance on a test data sample

I A further measure of the quality or goodness of the regression

models is how well the equations perform on an independent data sample.

Equations developed from a dependent sample were applied to independent

I data. Furthermore, a threshold of predicted probability was chosen and

a contingency table of counts for predicted and observed yes and no

I cases d veloped as follows :

ForecastI 0
b 

____ Yes No Sum

I Yes A S S1
I r No C D S

v _ _  _ _ _ _  _ _  2
e Sum S3 S T

I d

From such a table some typical discriminates can be examined such as the

overall percent correct, (A+D)/T)100; the percent of correctly forecast

I observations of an occurrence, called prefigurance, (A/S1)lOO; the per-

cent of correctly observed forecasts of occurrence (postagreement) ,

(A/ S3
) 100 ; Threat Score , A/A+B+C (Charba , 1977) called critical success

I index by Donaldson et al., (1975); skill score [ (A+D) - 

~3~1 
+ S4S2)/T]/

(T - S3S1 + S4s2 )/T 1 , discussed by Brier and Allen (1952); and V-score ,

I V (AD - BC)/ (A+ B) (C+D) , presented by Dobrysh~ an (1972) and discussed

by Woodcock (1976) . The threat score, skill score, or percent correct

cannot be interpreted to measure relative merits of each subdivision of

I the o’ i ginal data because each is a function of the observed probability

of occurrence (called trial conditions by Woodcock (1976)). These

I probabilities change as the threshold of predicted probabilities for

classification purposes changes. Table 13 contains example contingency

I
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‘I Tabl e 13. Contingency tables for 25 no—thunderstorm forecasts shifted
to the yes forecast column in different observed proportions .

I Threat score and skill score are also shown .

I (a) Original proportion (b) 10% proportion (ci 15% proportion
(20% forecast yes) (3 yes; 22 no) (4 yes; 21 no)

I Forecas t

I ~ . .  !~~ — ____ 

yes No 
— 

Yes No

r Yes 67 55 
— Yes 70 5~~ — 

Yes 71 51

I
No 108 656 

— 
No 130 634 

— 
No 129 635

TS 0.291 TS = 0.280 TS = 0.282

I sS — 0.340 SS = 0.318 SS = 0.326

I
I

(d) 20% proportion (e) 30% proportion (f) 49% proportionI (5 yes; 20 no) (8 yes; 17 no) (12 yes; 13 no)

I — 
Yes No 

— — 
Yes No 

— — 
Yes No

I Yes 72 50 
— 

Yes 75 47 
— 

Yes 79 43

j &  128 636 — ~~ 125 639 No 121 643

I PS — 0.288 TS — 0.304 PS — 0.320

SS — 0.330 SS — 0.356 55 — 0.386

I
I
I

_  _  -
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I
tables where a fixed number of no-thunderstorm forecasts (in this case

I 25) are shifted to the yes column for different proportions of observed

yes and no cases. This is exactly what is done when the threshold

probability is lowered . One can see that the threat score (PS) or

I skill score (SS) exceeds the original values only after the proportion

within the observed categories exceeds the original forecast probabili-

I ty. They appear to be unsuitable for a goodness measure . The overall

percent correct also is not very meaningful because of the many days

when no thunderstorms occur . The V-score is least affected by trial

conditions but also involves the No—No entry. Therefore, our discussions

will focus primarily on the prefigurance and postagreement percentages .

I Table 14 contains the above discriminates for each data subdivision .

One can obtain an indication of the deterioration of the ~quations

by looking at the decrease in any of the discriminates but , in partic-

I ular , the V—sco re between the developmental and test samples . For

example , the mean V— score for the total developmental sample is 0.454 .

The mean for the total test sample is 0.390. The lower score means

poorer performance.

Thunderstorms appear to be more predictable from synoptic para-

meters when the surface wind has a northerly component at 1800 GMT.

Such an implication is indicated by the greater V-score , prefigurance,

I and postagreelnent percentages for th~ n~rth wind equation when tested

on the independent sample compared to similar statistics for either the

total equation or that for the south wind subdivision . There are

several explanations. First, thunderstorms frequently develop behind

a shallow surface cold front (north wind component) in the area of

I
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~ 1
this study . In these situations the storms are usually connected with

I a synoptic-scale vertical motion field that results from positive

vorticity advection due to a short-wave trough aloft, given that

moist’ire and potential instability exist. Storms also can develop

I along a surface cold front which trails an active squall line . In

these cases as well, the surface winds behind a southeastward moving

I squall line are likely to have a northerly component 2-5 h before the

occurrence of the cold—front cells. Finally, we can distinguish between

thunderstorms in continental air masses where surface wind s are from

the North and maritime air masses with southerly winds . Thunderstorms

occurring in the maritime air are more frequently classified as con—

I vective, air—mass thunderstorms (Beers, 1945). The trigger mechanism

for releasing the instability usually present is less detectable from

synoptic data. Mesoscale or even smaller discontinuiti~s may exist and

I contribute to the trigger . These elude detection from the data in

this study .

I When applied to a random dependent sample (in other words how well

can the linear function discriminate between thunderstorms and no

I thunderstorms within the dependent sample which only includes 17% of

i all no observation s ) ,  the equation produced prefigurance and post—

agreement percentages of 85 and 77, respectively, although the overall

I percent correct was down to 76 (Table 14 , p. 67) . The deterioration when

applied to a random independent sample was not large . For a threshold

I of 0.46, 78 and 80% were obtained for the prefigurance and postagreement,

i respectively . When the equation developed from the random dependent

sample ( 17% of no-thunderstorm observations) was applied to the total

I
I f

.0 ----- —4 -~~ -



I 69

$ 1
independent sample (as opposed to the random independent sample) ,

I the prefigurance—postagreement percentages were not as high .

It is not clear why the equation from the random dependent sample

I deter iorates so little when applied to the independent sample. One

possible explanation could be due to the binary nature of the dependent

variable and unequal distributions of occurrences and nonoccurrences.

I Figure 10 shows how the influence of the nonoccurence observations.

I
I 

_ _ _ _

I — o DATA FROM TABLE 3 ~ / ~~I REGRES~ ON LINE

I x t~ TA FROM TABLE 4 /
/

REGRESS O N L

INDEPENDENT VARIABLE (x )

I
Fig. 10. Regression lines for data in Tables 3 and 4.

I
actually decreases the slope of the least squares estimate of a regres-

sion line. By eliminating the no’s so that the proporti*~ns are more

I nearly equal , the slope is increased . This increase can be visualized

as an increase in the , discriminating ability of the independent

I
I

_____________  - - - - —. — —(4--- —
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I
variables. As the slope of the regression line increases , a small

change in x would produce a large change in the predicted probability

(Y) if the linear function were to be used in a predictive fashion .

Several attempts were made to accomplish the same result by using

I critical values of predictors . These values were selected from frequency

distributions of the predictand and leading predictors . One such fre-

I quency distribution is shown in Fig. 11. There a cut-off would be

5 g kg 1 for the surface mixing ratio. Others were chosen similarly

and used in conjunction (logical and) and disjunction (logical or)

I operations. An example of the latter would be as follows : If

W < 5 g kg 1 
or 0 < 317 K or KI < -8 or W

8 < 5 g kg 1, then delete this

I observation (hopefully it will be a no—thunderstorm observation). In fact

the above statement provided the best results which could be obtained .

Frequency of occurrence was increased only 7% and R2 changed from 0.260

I to 0.247 for a stepwise procedure.

I f .  Comparison with other results

Except for the work of Charba (1977) there are no other results

I which are directly comparable . Charba has published his results for a

similar statistical technique (step up) and for 2— to 6-h forecasts

I of thunderstorms (defined similarly from MDR data) . His research area

I includes most of the eastern United States, and predictand area is

about 80 km on a side. However , Charba used combinations of radar

I observations at 1735 GMT , radar climatology , surface observations at

1500 GIlT , and upper—air forecasts valid at 2100 GMT f rom a limited-

I area , fine—mesh model (Howcroft and Desmarais , 1971) as predictors.

( I
I

_ _ _ _  - -
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.4 I
If we exclude radar predictors, his top four were (1) a modified1° K

index, (2) moisture divergence at the surface, (3) modified Total-

Totals Index , and (4) 500—mb wind speed. These compare favorably with

the moisture, divergence, and stability parameters from observations

in this study . The observed frequency of thunderstorms in Charba’s

work was 10% compared to 17% here . One should see an increased R2

from this influence in Charba’s result counteracted to some extent by a

reduction in R 2 due to the smaller forecast area . The net result was

2an R of 0.282 in Charba’s scheme compared to 0.284 in the case of our

I north-wind equation. In addition , Charba ’s predicted probabilities

were similar overall to those in this research .

I Some knowledge is required of how forecasters subjectively predict

thunderstorms in an operational environment. Unfortunately , there are

no statistics which would exactly correspond to the areas, times, and

I procedures used here. In fact , any verifications of thunderstorm fore -

I 
casts with different lead times are diff icult  to find. One set of

data was available for 14 base weather stations in or near the area of

I Fig . 4 (p. 32) during the June, July , and August 1976 period. These data

consist of warnings issued by forecasters of impending thunderstorms.

I The number issued and the number verified with a lead time is sumearized

in Table 15. Thunderstorms which occur less than 1 h from the forecast

I
10
Modified in this context means that surface observations of

I temperature and dew point at 1800 GIlT were averaged with a forecast
temperature and dew point at 850 mb.

I

II
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Table 15. Contingency table of observed and forecast
thunderstorms fo r 14 base weather stations
near the area outlined in Fig . 4.

Forecast

____ 

Yes No

I
S Yes 78 90 46 .4%e  _____________

I V

e
d N o J  167

I— 

31.8%

I
t ime are counted as misses . For example , a warning for thunder storms

issued at 1700 GMT valid for the period 1900 to 2300 GMT would be a

I hit if a thunderstorm were observed at the station or within the base

environment after 1900 GIlT. Otherwise, it would be a miss. The base

I environment is usually about a 10-km radius of the station but may vary

up to 45 km. This is stili considerably smaller than the forecast

area of a square 138 km on a side used in this study and, therefore,

1 should reflect poorer performance. On the other hand, a 1-h lead time

is allowed for verifying the weather warnings, whereas the lead time is

I 2 h for the statistics in Appendix B. This may compensate to some ex-

tent for the smaller area. Many other differences exist between these

I statistics and those presented in Appendix B so that comparisons are

I difficult. The very definition of thunderstorms is different. An MDR

code of four or greater was used in this research. The weather station

I

-
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I

used their observation log or the radar in a qualitative sense. Also,

I the issue time from the weather station was not constrained to 1800 GMT.

I 
Finally,  the period for the base weather station included a year , 1976 ,

and month, August, that were not available in this study. Nevertheless,

I the low prefigur arice and postagreement percentages of 46% and 32%,

respectively , seem to be typical of a forecaster ’s performance at this

difficult task.

Though there is little confidence in comparisons of verification

measures applied to data of this nature, there are a combination of en-

couraging signs which lead to a conclusion that observations of key

parameters in linear combination can provide useful forecasts of thun-

I derstorms in areas of about 8350 kin2 for periods of 2— to 5-h. First,

parameters selected by statistical methods provide the ingredients for

subsequent thunderstorms which have been deduced from many years of

I experience. Secondly, the equations do not deteriorate when applied to

independent samples. Further, contingency tables produced from equations

I for many different threshold probabilities provided higher prefigurance

and postagreement percentages than those f rom a table of actual perfor-

mance . Also , predicted probabilities from the equations represent

I actual occurrence frequencies. Finally, these results are very similar

to those from an operational program where forecast model predictors had

I been used. Results of a principal component analysis are discussed

next .

I
g. Dimensionality

I As stated earlier , eigenvectors of the independent-variable matrix

II
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that consist of sums of squares and cross products, (X’X), can be

I interpreted to represent the part of the total variance accounted for

by the given linear combination of variables where the eigenvector

elements are the weights or coefficients. If it turns out that the

first few components account for some large percentage of the total

variance as shown by the cumulative portion of the eigenvalues, then

it can be assumed that there is evidence of the true dimensionality of

the original set of variables or that there is an indication of the

- total number of hypothetical, latent variables needed to describe the

structure of the original variables. This is another way of quantifying

the degree of intercorrelation among the x’s. These eigenvectors for

different subsets of the (X’X) matrix are shown in Table 16. Also

- 
shown are the associated eigenvalues and cumulative portion of the

total variance which is accounted for by each successive eigenvector.

I In the case of moisture parameters, we can account for nearly

90% of the total variance in all moisture parameters by using the first

I five components (the five largest eigenvalues). We can account for

50% of the total with just two. The variables which seem to be most

I important, according to the sum of the first two eigenvector co-

I ef f ic ients , are surface , 850-’, and 700—mb mixing ratio , equivalent

potential temperature at the surface, and dew—point depression at 700

I mb. It is not surprising that among these are the leading parameters

I 
selected by the stepwise regression procedure .

Stability parameters have fewer dimensions as shown by the eigen-

I vectors . Just one principal component accounts for 59% of the total

variance. The 90% point is reached with only four eigenvectors . Among

II
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I
the first two components those important variables seem to be equivalent

potential temperature at 700 and 850 nib and the Total-Totals Index.

If we consider all eigenvectors , the top five parameters are 0 -O

i e5 e8
static stability index, 

e~ ’ 
Total—Totals Index, and differential

I thickness (DTH). All stability parameters are highly intercorrelated

and there really should not be many dimensions when they are considered

together.

Principal components for trigger parameters indicate that the

trigger mechanism is difficult to identify from these parameters . The-

I cumulative variance does not reach 50% until the third eigenvector (com-

pared to first for stability and second for moisture) and 90% is not

I reached unti l  eigenvector seven (not shown in Table 16 , p. 76 , as we stop

at six eigenvectors) . Here , important parameters are vertical motion at

the top of the surface layer (this includes terrain induced vertical

I motion), surface divergence of moisture, and integrated moisture di-

vergence from 850 to 300 mb.

I Finally, all predictor parameters can be considered together. This

case is summarized in Table 17 where only eigenvalues and cumulative

variance are shown. With five principal components one could account

I for 50% of the total variance among all parameters. Seventeen components

could account for 92%. Therefore, it seems justifiable to use at

I least f ive  variables in discriminant models and possibly up to 17. The

radar predictor was not included in this analysis .

h. Operational u ti li~~

I It is rather fortuitous for i ndividual weather station application

I
I
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I
I Table 17. Eigenvalues and cumulative portion of total variance accounted

for by each successive eigenvector.

I 
2 

Elgenvector 

6 7 8 9

I Eigenvalue 9.677 3.032 2.698 2.055 2.012 1.777 1.336 1.218 1.149

Cumulative 0.276 0.363 0.440 0.499 0.556 0.607 0.645 0.680 0,713
Portion

I 10 11 12 13 14 15 16 17 18
Eigenvalue 1.026 0.997 0.965 0.918 0.872 0.864 0.761 0.734 0.653

Cumulative 0.742 0.771 0.798 0.825 0.849 0.874 0.896 0.917 0.936

I Portion

I that none of the more complicated (from a computational standpoint)

parameters were chosen among the top few predictors. In a five—vari-

able equation one would have only to evaluate the moisture divergence

I term . In order to do this , one needs to plot 1800 GMT mixing ratios

obtained from a skew-T diagram along with u and v wind components. A

I forecaster should extract values of (1) the product of u x W at two

I east-west grid points spaced 130 km apart , 65 km to either side of his

station, and (2) v x W at two similarly spaced north-south grid points.

I Negative predicted probabilities are possible but should be con-

sidered as zero. Similarly, probabilities greater than one should be

I interpreted as one. The probability threshold for a thunderstorm-no-

thunderstorm decision could be estimated from the 40% postagreement

percentages in the contingency tables from within the dependent or

I total samples. The best estimate for either the total , north wind , or

south wind equations is about 0.28. This would optimize prefigurance

I at the expense of “crying wolf ” and total percent correct, Of ~:uur’ - .’ ,

this cut—off would be shifted toward lower probabilities when a ri t ical

II
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I
(in terms of costs involved) task was involved.

I The probabilities can be used directly and the op.rator should be

i encouraged to use these in conjunction with coat analyses . If the costs

of protective action and loss potential for inaction are known, then

I the occurrence probabilities can be used in objective cost-loss algo-

rithms (Murphy, 1976) .

I Operational equations should be developed in given areas with all

data available . Since this study was undertaken, an additional year of

data has been collected. New equations should incorporate all days for

I which predictor-predictand samples are available and should be applied

to the subsequent year . So long as a few (five or six) predictors are

I used , weather station forecasters within the developsent area and for

i the particular predictor-predictand times could use the equations di-

rectly for estimating the probability of thunderstorms. More complicated

I .quation. which incorporate extensive analysis, and transformed pre-

dictor. would be applied to current data at facilities with computer

I processing capability . Probabilities could be transmitted to appropriate

locations . This latter procedure is currently employed by the National

I Weather S.rvic .. (See National Weather Service Technical Procedures

I Bulletin 194.)

The ollcwing five-variable equations developed from the 1974-1975

I sampl. can be tested with current data and probabilities evaluated :

Total PY — 0.0181 + O 0185*W + O 4l4*MDPP — 0.00278*(~.W)I (8)
- O.00569*(??d)7 

— o.oosls*(e
• 

- O
•

)

I North wind PY — 1.028 + 0.00337*W + 0.358*MDRP — 0.O0336*(~.W)
(9)- 0.00374*(T—T ) — o.oo373~e

I.i 
d 7  17

LI! _ _ _ _

_
_ _ _ _ _ _ _  U
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0 I  
+South wind PY — 0.0655 + 0.427*MDRP + 0.0194*W — 0.00265* (~~.WV)

I — O.0O583*(T_Td
) e 

— O.00406*(T_Td
) 7 

(10)

Coefficients from these equations are valid for the following units of

measure for predictors : W (g kg ’) ;  MDRP (zero or one for no precip

I or precip); (in s~~ ) ;  T , e, Td (IC) ; ~x — Ay — 1.3 (in) in the moisture

divergence calculation. Predicted probabilities would apply to loca-

tions within the develop mental area (Fig. 4, p. 32) and are valid with

I 1800 C~IT surface or 1200 GI4T upper-air observations . Thunderstorm prob-

abilities (PY) would apply to the area shown in Fig. 6 (p. 39) with re-

I spect to the forecasting station and during the period 2000 to 2300 GMT .

Performance in terms of prefi gur ance and postagre ~~mnt percenta ges

of a binary (yes or no) forecast could be expected to be slightly lower

I than the 65% , 40% obtained , respectively, with equa tions containing

more than 15 predictors .

I
I

~ I
I
I

II
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6. UPPER-AIR CONDITIONS PT 3-h INTERVALS

On one day , 24 April 1975, upper-air data were available at 3-h

I intervals. Thc~c were collected as part of the Fourth Atmospheric

Variability Experiment (AVE IV) sponsored by the National Aeronautics

I and Space Adsinistratio n (NPSA) . Analyzed fields of temperature , height ,

dew point, and wind components from a 158-km grid spacing for 49 grid

points and four levels were utilized in a teat to determine changes

I of correlations and predictors at different times with occurrences of

thunderstorms at 2000—2300 GNT. Analysis procedures are described by

Fuelberg (1976) .

Twenty—one candida te predictors were calculated for each grid point

I at 1200 GilT , 1500 GilT, and 1800 GilT . The predictand was the highest

I MDR value (converted to bina ry) in an area equivalent to a 138-km box

surrounding the grid point as in previous work and for any time during

I the period 2000 to 2300 GilT. Again , variable selection techniques were

used to choose sobsets of predictors . Stepwise procedures provided

1 th. first several predictors ; all possible regressions were considered

I in th . selection of variabl es four through six. A stepdown or backward

elimination procedure was used for those models beyond six variables .

( Separate regression analyses were performsd for each period , and the

came candidat . predictors as discussed earlier were available to each .

I ) j~~ achieved for each model from a one-variable model up to a

I model with all 21 variables is shown in Fig. 12. As expected, most of

the sxplainsd variance was cbtainsd with th . first three variables .

I Ilbat is surprising is that th. 1800 GIft predictor tim., which is clos.st

to the tie. for which th. forecast is mads, did not provide a clearly
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I selection procedures .

I super ior equation . With models including the leading on• and two
I 2predictors , R is highest for 1200 Gift and lowest for 1500 GIft though

I the differsnces are slight. Naximea A2 of 0.874 was achieved for the

all-variabis model with 1500 (aft data , whereas the ~~~~~~~~ A2 se to

I reach a plateau beyond ten variables for the 1800 (aft period . ~~ cam-

- • i plete3y satisfy ing explanat ion is apçar.nt for the lack of improvement

I as the predictand time is approached, however , th.re are some

II
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possibilities . As pointed out in Section 2 , the assumptions inherent

in an analysis of this type are not fulfilled . These errors may be

preventing the measure of true correlations . Secondly , this was one

day for which there were only 49 observation s , and many of these were

I not independent .

On this day most of the thunderstorm activity was associated with

I two squall lines. As shown in Fig . 13, the first group of cells was

I dissipating and moving southeastward between 1200 and 1500 GIlT . At

1800 Gift there were few echoes . The second line became active after

I 2100 (alT. One may hypothesize that there were diffe re nt atmospheric

environ ments created by the occurrence or nonoccurre nce of convection

I at many of the 49 points for each time. Similarly , a discontinuity

existed across the area in the form of a stationary front shown in

Fig . 14. Such a feature complicates the inte rpretation of results for

I all points as each is considere d en independent , separate observation .

For e~aaple, t~~~erature may be important to thunderstorm development

I in the area behind (in the cool air) the front, but its influence may

i be masked by the many observations in the warm air where it may not

be important at all. Finally , the response of the atmosphere to the

I synoptic-scale parameters is being asured. There may be different

response times for different para meters . It is possible that those

I upper-air features at 1800 GilT to which the atmospher. responds most

- exist on a horizontal and vertical scale aller than can be resolved

from our data .

I Table 18 contains the predictors selected during each of the thre e

periods . Up to the five-variable model all ant ecedent predictors ars

I

~j, I H
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I
included. For example , the best five—variable model with 1200 QIT

I data includes u-component wind shear , differential temperature advec-

tion , static stability inde x, mid—level convective instability , and the

dew-point depression at 700 m b .  After five predictors different van-

I ables are chosen, some of which were not selected up to that point.

Again , the particular variables selected beyond five should not really

I be discussed since these are undoubtedly more a func tion of the

particular selection technique than any physical mechanism.

I The first few variables included in the model can be discussed in

I that these variables in linear combination are most highly correlated

to subsequent thunderstorms on 24 April 1975 . The difference between

I the u—wind component at 500 and 850 mb is important at the earlier two

times • This term Is related to the mean horizontal temperature gradient

I in the layer between 850 and 500 mb insofar as the winds are geostrophic .

I Differential temperature advection between 850 and 500 mb is also an

important term as it is ancng the top two predictors for all times .

I Temperature advection probably was an important mechanism for creating

I 
the instability on this day. It is interesting to note that the u-compo-

nent wind shear was the first variable selected for the model at both

I 1200 and 1500 GilT observation times, whereas it is fourth at 1800 GMT .

This may be a consequence of the environmental influence of thunder-

I storms present at the earlier times but almost totally absent at 1800 GilT .

From an energy study of this day , Fuelberg (1976) found strong conve r-

I sion of potential to kinetic energy associated with intensifyi ng

I convection . The maximum conversion was at 400 mb . A selection of

different variables measured at different times or the same variables

_ _ _ _—.

~~~ 
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in different order could also be a result of differences in atmospheric

I response to dynamic as opposed to thermodynamic parameters. More

work needs to be done in this area.

I In suninary , the linear combination of upper-air parameters computed

from variables measured 2 to 5 h before the predictand time on 24 April

1975 did not explain more of the variance of thunderstorm occurrence at

I 2000 to 2300 GMT than those measured 8 to 13 h before . Also , there were

differences in parameters selected at the different times . Differential

I temperature advection was important at all times . The vertical wind

shear of the east-west wind component was less important to subsequent

intense convection when the former was computed from 1800 GIlT measure-

I ments compared to this parameter measured at 1200 or 1500 GIlT . These

resul ts may be a consequence of environmental influences of convection

I at the earlier two t imes , since little convection was apparent at 1800

GilT . They also might result from violations of model assumptions.

I
I
I
I
I
I
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7. SUMMARY AND CONCLUSIONS

I
Surface , upper-air , and radar observations analyzed onto a 65-km

I grid were used exclusively to develop equations which relate predictors

to subsequent thunderstorms by classical statistical and parameterization

I techniques. Particular attention was devoted to minimizing errors

which result from violations of model assumptions . Raw data were pro-

cessed to preserve as much detail as can be justified from the original

I spacing of observing stations. Every fourth point from a 16 x 16 array

was included to reduce the spatial correlation naturally present in

I meteorological data. Variable selection techniques , plots of model

i residuals, and principal component analyses were used to reduce the

multicollineanity present among independent variables . Finally , several

I different statistical procedures were used to cross—check and confirm

results.

I Specific synoptic parameters believed to be related to intense

i convection were calculated from analyses at 1200 , 1700 , and 1800 GMT

and used as candidate predictors in a stepwise variable-selection pro-

I cedure . Surface and upper—air data were tested separately. The pre-

dictand was the occurrence or nonoccurrence of an MDR code of four

1 or greater (assumed to represent thunderstorms) in an area of about

8500 km2 surrounding a grid point during three subsequent time combina-

tions . The best time was the period from 2000 to 2300 GIlT ~o that only

I this combination was used in further analyses .

I

II
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The equations were found to be atable~
1 when applied to test data .

Also , they contained reasonable parameters as predictors and produced

results in contingency tables comparable with present , subjective

techniques and with other statistical procedures . Predicted values

I from developmental and test samples represented actual thunderstorm

frequencies of occurrence . This technique can be used to forecast

I thunderstorms in an operational environment . Furthermore, thunderstorms

can be predicted with greater success with this scheme when the surface

wind has a northerly component at 1800 GIqI .

While not impressive alone , upper-air data seemed to add an impor-

tant ingredient, namely stability, which is not available from surface

I data. Radar echoes present at and before the forecast t ime also added

I an important dimension. MDR code greater than one near 1700 GIlT can

lead to MDR of four or greater between 2000 and 2300 GilT due to diurnal

I effects, or a high MDR initially might tend to persist in space and

I 
time . In any case , this radar predictor indicates the presence of

vertical motion , a recognized trigger mechanism. Neither time nor space

I derivatives as computed in this study were particularly important

predictors with the notable exception of moisture divergence . But the

I surface mixing ratio , occurrence of antecedent precipitation, con-

vergence of motsture , and stability were chosen to be among the top

I five predictors in every case • A reason for the poor showing of other

in this context means that statistics in both the
developmental and test data sample are nearly the same .

II
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derivatives was that the small-scale gradients important to intense

convection cannot be measured due to data—resolution constraints from

fixed observation networks .

It was found from both the stepwise prpcedure and principal-compo-

nent analyses that linear equations should include from five to 17

variables when parameters represent observed surface and upper—air

features . Furthermore, measures of the trigger mechanism were found

to be most difficult to define f rom data in this study , whereas moisture

parameters were easily defined.

Equations with many variables will produce slightly better results

in terms of prefigurance and postagreement discriminates. Reasonable

values to expect would be 65% and 40% , respectively.

Finally, parameters from upper-air observations at 1800 GIlT on

24 April 1974 were not more highly correlated to thunderstorms in the

period 2000—2300 GIlT than were parameters from observations at 1200 or

1500 GIlT. This result may be a consequence of the small statistical

sample, violations of assumptions in the statistical analysis and the

organized development and movement of two groups of thunderstorms . One

group influenced observ~ttona from whicth parameters were calculated at

1200 and 1500 GIlT.

S

I
I
I
I

- _t_ - - - :- -  —~~~~~~



94

I
8. SUGGESTLOWS FOR FURTHER RESEARCH

I
In a study of this scope and magnitude there are practical restric—

I tions on the amount of data to be handled , numbers of predictors used,

and types of processing to be performed . It is believed that this

I research remained within these constraints without sacrificing

scientific thoroughness and accuracy . Nevertheless, these limitations

and results of the investigation itself provide several suggestions

I for future research.

a) . In order to capture some of the true mesoscale features of

I the atmosphere, synchronous meteorological satellite data should be

i used . Mesoscale wind fields determined from satellite cloud observa-

tions might be important predictors of severe weather (Houghton and

I Wilson, 1975) . Time and space derivatives of equivalent black body

temperatures might reveal small-scale features which lead to subsequent

I thunderstorms. A microwave sensor , such as that flown on the NASA

i satellites, would provide indications of soil moisture . Albedo might

be important as well. Some preliminary experiments with regression

I procedures and the ATS-3 satellite data by Sikula and yonder Haar (1972)

indicated satisfactory results when the dependent variables were ceilings

I and visibilities and independent variables were satellite radiances .

Even conventional data available from several mesoscale networks

such as HIPLEX (Scoggins and Wilson , 1976) , NSSL (Fankhauser. 1969) ,

and ISETRONEX (Changnon .t al., 1971) could be used in this type of

study to determi ne what additiona l information about subsequent thunder-

I storms is available for a few areas . Severa l thunderstorms seasons

must be used , however.

1
— —~~~~

- — —. —, -— - 
________________________________

— - - - - ---———
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - , —~
--



I
I

b) .  Severe thunderstorms might be predicted from statistical

I procedures by use of upper—air winds inferred from satellite thickness

(and geopotential height) calculations. Areas of jet streams and

difluence aloft could be identified and related to severe weather.

I Digital radar data now available at several locations (Muenc h , 1976)

could be used as well as additive data from present MDR rep orts in con-

I junction with severe weather prediction.

C). Different predictors from conventional data could be tested.

For example, present weather , past weather , visibility, wind gusts,

I sky conditions and remarks are available from surface observations .

Clima tological frequencies of occurrence for thunderstorms could be

I computed from all available thunderstorms data and these used as pre-

dictors as well. Use of upp er-air data should be expanded to include

all the resolution in the present observation . In addition , time changes

I for upp er air parameters might be tested. Trajectories of key pa rameters

might make important predictors . The K Index and DrI could both be

I updated by using the temperature and moisture from 1800 GIlT surfa ce

observations averaged with those observed at 850 mb 12 h earlier.

I d). The area for predictor selection should be allowed to vary

I and predictand area reduced. The reduction in correlation due to

reduceti size of predictand might be compensated for by parameters from

I smaller—scale data sources selected from different areas.

e) .  More work on the timeliness of upper-air data ig required .

I Mditionsl days when 3—h data are available should be used to obtain a

I more adequate sample. Similarly, further research into the time changes

of surface and upper-air repo rt s should b. performed to determine

_________________-- - . - - -
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atmospheric response t imes (in terms of producing intense convection)

for various physical processes such as differential advections .

f) .  Further work on air mass stratifications would be fruitful .

One might use combinations of temperature , wind and moisture to identify

three or four types of air masses. Five years of digital radar data

will be available for this type of work after the 1977 season .

g) . We should continue to investigate random sampling or other

ways of reducing the many nonoccurrence days . A forecaster is not

concerned with predicting thunderstorms on the many days that he is

confident there will be none.

h). There should be more investigation into verification techniq ues

for this type of data .

I
I
I
I
I
I

t i
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I APPENDIX A

ANOVA for selected regressions

(1) Total Equations (7 predictors)

Source Degrees of Sum of Squares Mean Square F Value R2

I freedom

I Model 7 239.94357522 34.27765360 294.91 0.22481796

Error 7118 827.33582417 0.11623150

Corrected 7125 1067.27939938
Total

I
Parameter Units ~ estimate Standard error

Intercept — 3.16740081 -

I tix rv gg 1s ’ x 1O~ —0.00276198 0.00020761

W gg 1 25.43248796 1.64332634

I MDRP (1 or 0) 0.39082300 0.01794391

I 
CSIL K —0.00512986 0.00069915

0e7 K —0.01096999 0.00097647

I N7 gg~~ x l0~ 0.05462544 0.00395796

I
I

II
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(2) Northwind equation (7 predictors )

Source Degrees of Sum of Squares Mean Square F Value ft 2
freedom

Model 7 78.07938810 11.15419830 127.84 0.2740 14

Error 2371 206.86722812 0.08724894

Corrected 2378 284.94661623
Total

Parameter Units ~ estimate Standard error

Intercept — 1.19350345 0.30434664

NDIV gg ’s~~ x io
8 —0.00303301 0.00034990

(T_T
d) 7 K -0.00430722 0.00084002

I N gg~~ 69.09513072 6.42057583

I MDRP 0 or 1 0.36068872 0.02911004

T K —0.01807394 0.00359192

$ T
~Td K 0.0236 5490 0.00360711

e K —0.0048576 3 0.00101146

I

I
I
I

V
—.—— —-— - •— —- - -• - ______________________________________________________ — —
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~1

I
I

(3 ) Random Equation (6 predictors)

I
Source Degrees of Sum of Squares Mean Square F Value R2

freedom

Model 6 161.91260308 26.98543385 155.31 0.291224

I Error 2268 394.05926505 0.17374747

I Corrected 2274 555.97186813
I Total

Parameter Units ~ estimate Standard error

I Intercept — 1.57191166 0.46848081

MD IV gg 1s 1 x 108 —0 .003408 50 0.00039607

1 (T
~

Td
) 7 K —0.00789130 0.00129024

I N gg 46 .44806192 3.21385797

‘rn K 0 .01232299 0.00144379

I 8 K —0 .00650511 0.00150835.7
MDRP 0 or 1 0.24007083 0.02659094

I

II
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I
(4) Total Equation (20 predictors)

Source Degrees of Sum of Squares Mean Square F Value R2

I freedom

I Model 20 259.37113846 12.96855692 114.05 0.24302084

Error 7105 807.90826092 0.11370982

I Corrected 7125 1067.27939938
Total

Parameter Units ~ estimate Standard error

Intercept — 8.91002397 —
1 0 K 0.00762649 0.00105337e 

1 1  8MDIV gg s x 10 —0.00228346 0.00023036

I 0e~ 
Ks 1 x 106 0.00006 796 0.00002784

—2 1012 0.00008997 0,00005411

I s ’ x io6 0.00036562 0.00023066

I ~
2W gg 1m 2 x 1015 0.00009605 0.00002797

KI K 0.01872137 0.00316708

I DTH M mb ’ x 102 —0.00127867 0.00055703

(T—T ) K 0.01376441 0.00341045
I d 7

I CT_T
a
)8 K 0.02245995 0.00355782

I v 5 m 0.00262488 0.00048169
I —lW gg 10.97990075 3.09197109

I MDRP (0 r 1) 0.39041505 0.01793046

V in 5 1 —0.00397307 0.00112285

I CSIM K —0.15500734 0.02892617

• 

~~me -
~~~ 

- , 

.
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4 1

I (4 ) Total Equation (20 predictors ) (Continued)

I Parameter Units ~ estimate Standard error

a STSI m2sg 1 0.01596813 0.00284876

8 K —0.03357575 0.00484179
e8

1 8 K —0.00633453 0.00142566
I

W8 gg~~ x l0~ 0.14166814 0.01732946

I u ~ s~~ —0.00 565405 0.00146472

I
I
I
I
I
I
I
I
I
I

t j  
S

- 

~~~~~~~~~
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S APPENDIX B

Contingency tables for different predicted pr obability thresholds and
dependent equations applied as indicated.

(1) Total dependent equation applied to:

Cut off Total indep endent data Total dependent data

0.2 2

I
Yes 

____ 

187

No 522 1712

0.25 Yes No 
_____ 

Yes No

Yes 314 222 Yes 559 247

I No 399 1835 _ No 708 3216

I 0.28 
_____ 

Yes No

Yes 275 261

No 285 1949

0.30 
_____ 

Yes No 
_____ 

Yes No

I Yes 243 293 Yes 439 367

No 232 2002 No 419 3505

I
i 0.32 _____ 

Yes , No

I Yes 400 406

I No j~~

II 
~~~~~~~~~~~~~~~~~ 

.11

~~ij  
--- .- . - • - . 

- .---
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I
(2) North wind dependent equation applied to:

Cut off tiorthwjnd NorthwindI independent data dependent data

I 0.25

i Yes No 
_____ 

Yes No

Yes 80 42 Yes 161 57

I No 126 638 No 200 1200

I 0.28 
_____ 

Yes No

Yes 78 44

I No 104 660

0.30 
____ 

Yes No _____ 
Yes No

I Yes 72 50 Yes 143 75

No 92 672 No 140 1260

I
0.3 4 

_____ 
Yes No 

_____ 
Yes No

I Yes 57 65 Yes 128 90

No 68 696 No 96 1304

I 0.37 
_ _ _  

Yes No 
_ _ _  

Yes No

Yes 47 75 Yes 114 104

I No 54 710 No 83 1317

I
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(3) Southwind dependent equation applied to:

Cut off Southwind Southwind
indep endent data dependent data

0.25 
_____ 

Yes No _____ 
Yes No

Yea 238 176 Yes 407 181

No 259 1211 NO 521 2003

0.27 
____ 

Yes No 
_____ 

Yes No

Yes 223 191 Yes 372 216

No 210 1260 No 425 2099

I 
___  ___  ___  _ _ _ _  ___  ___0.30 
____ 

Yes No ____ 
Yes No

I Yea 185 229 Yes 330 258

No 136 1334 No 311 2213

I 
0. 33 

_ _ _  
Yes No

Yes 277 311

No 226 2298

‘ I

I
I

1
_ _ _ _ _ _ _ _ _ _ _ _ _
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(4) Random sample dependent equation applied to:

Cut off Total indep endent data

0. 42
Yes No

Yes 451 85

No 989 1245

0. 50
_____ 

Yes No

Yes 408 128

I No 706 1528

0.65 . ____ Yes No

I Yes 281 255

No 296 1938

I
I Random Random
C independent data dependent data

4

0. 46 
____ 

Yes No

Yes 430 106

No 123 227

i i
0.50 Yes Yes No Yes No

Yes 408 128 Yes 682 124

I No 103 262 No 209 3~ j
‘ I
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