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ABSTRACT

Forecasting Thunderstorms over a 2- to 5-h Period
by Statistical Methods (August 1977)
Joseph Allen Zak, B.S., M.S., Pennsylvania State University

\ Chairman of Advisory Committee: Dr. James R. Scoggins

Classical statistical techniques, such as multiple regression with
variable selection and principal component analysis, were employed to
define combinations of parameters from meteorological observations which
optimally discriminate between the occurrence and nonoccurrence of
thunderstorms. Routine observations of weather elements at five levels
in the troposphere during two spring and summer seasons were analyzed
objectively onto a 65-km grid which spanned much of the central United
States. A thunderstorm occurrence was defined from manually digitized
radar (MDR) observations with an MDR code of four or greater as the basis.
The binary variable one or zero for occurrence or non-occurrence, respec-
tively, was the predictand. Parameters which are measures of atmospheric
moisture content, stability, and trigger mechanisms were calculated
from gridded fields of surface and upper-air observed elements for
different times each morning. These parameters were candidate predictors
in the variable-selection procedures. Data from all grid points and for
each day were pooled in order to provide an adequate sample of thunder-
storm cobservations.

Errors which rﬁ( from usual assumptions in a regression model

were quantitatively analyzed. Multicollinearity was severe but minimized
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through stepwise and maximum Rz variable selection techniques. Speci-
fication and heteroskedasticity errors which result from the binary
nature of the dependent variable were present but did not invalidate
the overall results.

The first four variables selected in every case were surface mixing
ratio, occurcence of precipitation during the morning, moisture conver-
gence, and a stability measure. These four variables include the
synoptic-scale conditions commonly recognized as prerequisites for
thunderstorms. The trigger mechanism was most difficult to specify
from the data, followed by stability, and then moisture. Additional
parameters (up to 17) continued to reduce the total, unexplained variance
of thunderstorm occurrence. Time changes in surface parameters were not
selected as leading predictors. Upper-air observations added an impor-
tant ingredient, the stability, which, apparently, could not be inferred
adequately from surface measurements alone.

Data were grouped by surface wind component, random sampling, and
for a spring and summer month. About one-third of the data was saved
for a test of results. Thunderstorms were more predictable between 2000
and 2300 GMT when surface winds had a northerly component at 1800 GMT.
Random sampling was a way of reducing the influence of the many observa-
tions of no thunderstorms which result from the low climatological fre-
quency of occurrence. Predictors in April reflected the importance of
kinematics, while those in July were associated with thermodynamic
variables as would be expected from synoptic-scale data.

Finally, regression statistics with the predictand being occurrence

of thunderstorms at 2000 to 2300 GMT did not show important differences




when upper-air parameters were calculated from observations at 1200,
1500, or 1800 GMT. However, these data were available only on one day,
24 April 1975. ‘

The results from this study are comparable with other objective
forecasts and with those produced by weather station forecasters although
direct comparisons are difficult to make. This technique can be applied
rapidly and effectively in an operational environment at locations with-
in the developmental area. It offers all the advantages of an objective

forecast and contains no disadvantages from being tied to specific

forecast models.
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1. INTRODUCTION

a. Statement of the problem

Thunderstorms are meteorological phenomena of great importance to
meteorologists because of the energy conversions and momentum transports
which occur. Manifestations of the above are the damaging winds and
hail so often observed. Unfortunately, the prediction of the occurrence
and intensity of these storms has been a problem of substantial signifi-
cance for meteorologists that has defied easy solution. There are
several reasons for this. First, a thunderstorm ranges in diameter from
a few tens to one hundred kilometers and lasts on the order of
103 to 104 seconds. Such mesoscale phenomena elude detection by most
routine observations. Also, the analysis and forecast schemes that are
in operational use are applied to areas and time scales much greater than
these. The larger scales permit only a degree of success in predicting
large areas in which the likelihood of thunderstorm occurrence is great
(Fawcett, 1977). Another reason is that our knowledge of the dynamics
and thermodynamics of thunderstorms is not sufficient to explain these
phenomena. Also, the precise nature of the interactions between the
large- and small-scale circulations is not sufficiently well understood
(Barnes, 1976) for the purpose of exact forecasting.

One approach to the solution of the forecasting problem is through
parameterization of large-scale processes and use of appropriate statis-
tical techniques. There may be information from present observations

that, when used in certain combinations, can improve the prediction of

The citations on the following pages follow the style of the
Journal of Applied Meteorology.
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thunderstorms over a 2- to 5-h period. For periods less than two hours,
persistence and radar pattern recognition techniques should give the

best results. For periods beyond 5 h, it is unlikely that observations
will reflect the structure of the atmosphere which produce thunderstorms.
Furthermore, there may be improvement in prediction if upper-air data
were collected at more frequent intervals. Finally, optimum combina-
tions of parameters determined by statistical techniques may lead to
improved physical models.

The hypotheses underlying this research are that manifestations of
the thermodynamic and hydrodynamic interactions which evolve into in-
tense convection in the atmosphere can be detected in routine observa-
tions and that these observed parameters can be used in a statistical
model (which minimizes the unexplained variance of observed thunder-

storms) for prediction.

b. Previous studies

1) Nature of thunderstorms

Thunderstorms occur in comparatively small regions in the atmosphere.
Prior to 1947 there were few measurements of meteorological variables
in and near thunderstorms, so that circulation, pressure, temperature,
and moisture patterns were known only qualitatively. With the realiza-
tion of the Thunderstorm Project (Byers and Braham, 1949), however, sur
quantitative knowledge increased significantly. Measurements collected
over a 2-y period established the horizontal and vertical structure of
many meteorological variables associated with thunderstorms and confirmed
the existence of multiple convective cells in various stages of develop-

ment.
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Scorer and Ludlam (1953) proposed a bubble theory of convection
that explains many of the observed features of a growing convective
element. In this concept, the kinematics resemble those of a spherical
vortex, as discussed by Woodward (1959) and Turner (1964). Later stages
better resemble a jet of upward-moving air (Squires and Turner, 1962)
which exists in nearly steady state, particularly in the presence of
vertical wind shear. Ludlam (1963) discussed the role of the tilted
updraft core, a manifestation of wind shear, as a natural way to shield
the updraft that generates energy from the destructive influences of
precipitation-induced downdrafts and environmental entrainment.

Recent meteorological literature contains many articles concerning
thunderstorms, their interactions, intensification, movement, and struc-
ture. It is not our puzpo;e to review these in detail, but the follow-
ing synopsis will point out the complexity of thunderstorms and environ-
mental interactions with which we must be concerned.

Thunderstorms grow from a few kilometers in diameter to large,
quasi-steady supercells 20-50 km in diameter (Browning and Ludlam, 1962).
They can last from 30 min to many hours. Such storms may or may not
spawn tornadoes, rotate, contain destructive downdrafts or hail, or exist
in strong wind shear. Even the simple cumulus source is not simple at
all, as pointed out by Auer (1976) from his observations of distortions
of 0‘ fields near a cloud boundary. The entraining plume model falls
short of describing the thunderstorm documented by Saunders and Paine
(1975). 1In this severe supercell there was little downdraft at the
surface, but a mesoscale updraft-downdraft doublet aloft seemed to per-

mit vertical motions to persist for several hours without large
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perturbations in isentropic surfaces. Lemon (1976) discusses a flanking
line thunderstorm which includes both multicell and supercell storms
that derive impetus from entrainment of flanking cells. Still another
category termed "spearhead echo" by Fujita and Byers (1977) has in-
tense destructive downdrafts which appear to be tied to overshooting
tops of clouds at the anvil level. Finally, a fascinating observation
that "the growth of vigorous squall lines and severe weather are sharp-
ly inhibited at and to the south of the subtropical jet” is documented
and explained by Whitney (1977).

As new mesoscale observational tools, such as Doppler radar and
storm satellites (Shenk, et al., 1976), are added to our operational
inventory, we are likely to observe even more differences among thunder-
storms. Now, we have observations of internal motions within cells from
experimental Doppler radar (see, for example, Brandes, 1977; Kropfli
and Miller, 1976). Complicated motion patterns of outflow aloft and
jet stream interaction can be observed from stationary satellite picture
composites. The intricate details of overshooting, which seem to be
linked to tornado formation, can be seen from satellite film loops as
well.

There is no "typical" thunderstorm. Each storm is unique in many
respects. It is highly unlikely that identical environmental impulses
exist on different days or even in different locations on the same
day. It is not surprising that modelers and forecasters have much
difficulty in their tasks of understanding and forecasting these phe-

Concerning the environment, we know that conditions necessary for

|
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severe convective development involve a) convective instability and a
lifting mechanism to release it, b) abundant low-level moisture over
which a dry-air intrusion exists, and c) bands of strong winds in the
lower and upper levels (Miller, 1972). For less severe storms this
list reduces to moisture, potential instabilityl, and a trigger , These
conditions must be identified through existing meteorological data net-
works and numerical prognoses.

2) Forecasting procedures

Present forecasting procedures are somewhat subjective, and there-
fore strongly influenced by a person's knowledge and experience. As
these vary with individuals who tend not to stay at one location,
thunderstorm forecasting procedures for a given point are highly vari-
able. A typical forecast involves 1) a study of the existing and past
large-scale weather patterns with emphasis on the location of discon-
tinuities and features discussed in the preceding paragraph, 2) an
analysis of stability of the atmosphere from the nearest and latest
upper-air soundiné, 3) evaluating the latest available numerical fore-
casts and interpolating for a given time and location, 4) a closer look
at the local weather and hourly changes, particularly from surface
observations and radar, and 5) a decision on whether or not all the
ingredients for thunderstorms will exist at the station for the future
time in question. This last step requires synthesizing all the data
from the previous steps.

Objective techniques offer scveral advantages. They do not require

L pefined by Palmén and Newton (1969, p. 345) to include both con-
vective and conditional instability.

i
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extensive personal experience; they can synthesize a great amount of

data rapidly and effectively; they can be automated. Furthermore, they
can be developed to make maximum use of historical observations. Finally,
established rules for parameterizations can be followed.

There are three steps in a parameterization approach. First, one
must know the processes (equations) involved. Next, relevant parameters
must be combined in an appropriate functional relationship. Finally,
one must test the results. A more detailed description of parameteriza-
tion techniques is given in the Global Atmospheric Research Programme
(GARP) Publication No. 8 (1972).

A statistical approach to thunderstorm forecasting is used partly
to alleviate the disparity between the lack of understanding and the
need for prediction, partly to glean as much information as possible
from existing data, and partly to gain the benefits of objective fore-
casting schemes. The forecasting of mesoscale phenomena by statistical
techniques is not new. Persistence probability has aided the operational
forecaster in predicting changes in ceiling and visibility as well as
the onset and duration of critical values of meteorological variables.
Endlich and Mancuso (1968) combined a number of measured atmospheric
quantities into several kinematic and thermodynamic parameters which
were correlated with severe thunderstorms and tornadoes. Similarly,
observational data were used in an objective (statistical) procedure
to forecast severe thunderstorms and tornadoes by Miller and David (1971).
Probability-of-precipitation forecasts and other model output statistics
have been available for several years (Glahn and Lowry, 1972). More

recently, 24-h forecasts of probabilities of thunderstorms and severe
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thunderstorms have become available from the National Weather Service
(Alaka et al., 1973). In these procedures, vafious potential predictors
from numerical forecasts were used in a screening regression program.
Those predictors selected account for a certain fraction of the total
variance of observed thunderstorms as derived from historical manually
digitized radar (MDR) data (Moore et al., 1974). Finally, a statistical
regression forecast for severe thunderstorms 2 to 6 h in the future also
recently became available (Charba, 1975). General thunderstorm fore-
casts were added during the spring of 1976, and other improvements were
made in 1977 by Charba (1977) (see, also, the National Weather Service
Technical Procedures Bulletin 194).

In these latter procedures predictors were derived from surface ob-
servations and dynamic model forecasts. An advantage to the use of
parameters from forecast models is that the physics of the circulation
system is included. A disadvantage, however, is that changes to the
model necessitate development of new equations, as the old regression
equations apply only to variables calculated from the former model.
Another disadvantage is that inaccuracies in the forecasts will limit
the degree to which the model can describe the predictand. Finally,
predictors lose their simple interpretation in that forecast elements
include biases from the model. 1In this research the disadvantages are
eliminated, and the physics will be included to the greatest extent

possible in the choice of candidate predictors.

c. Objectives

Within the general framework of developing a statistical model to

forecast thunderstorms in a 2- to 5~h period will be the following
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objectives: developing parameters for candidate predictors that are
consistent with known physical processes, parameterization methods, and
interactions between systems of different scale, relating various test
statistics to available verifications of existing thunderstorm-forecast-
ing methods, developing a way to use the spatial variation of meteoro-
logical variables to best advantage when many independent variables are
involved, interpreting statistical results in terms of violations of
model assumptions, assessing the influence of upper-air observations
available at 3-h intervals, and finding optimum times for the dependent
variable and time changes for selected predictors.

This research will extend the work of Charba (1977) and others in
several important ways. First, different statistical models will be
evaluated such as principal component analysis, variable selection, and
discriminant analysis. Analysis-of-variance statistics will be examined
along with plots of key parameters to determine the magnitudes of
errors due to assumptions made in the models. Secondly, the final model
will be tested on an independent data sample. These statistics will
be related to actual verifications of thunderstorm forecasts. Thirdly,
upper-air observations will be employed and their importance to observed
(by radar) thunderstorms assessed. A unique set of upper-air data
collected during atmospheric variability experiments (Fucik and Turner,
1975) will permit calculations of upper-air parameters every three hours
for one day. These data are available usually at 12-h intervals.
Finally, potential predictors will be calculated from the observed
variablcs in a way which will minimize intercorrelations which exist

naturally in this type of data.




As long as a short-period forecasting requirement exists, meteo-
' rologists must strive to produce the best forecasts possible. This
research will contribute to that goal, and may also aid in the underly-
' ing goal of understanding the complex interactions of atmospheric

parameters which culminate in thunderstorms.

- Importance

Meteorological data networks and numerical forecasting techniques
are established for the synoptic scale of atmospheric analysis and pre-

diction. A true mesoscale data network is prohibitively costly and

could not be handled with present computer systems. Until new observa-
tional tools such as Doppler radar and geosynchronous satellites are
perfected and automated, we are constrained in making point forecasts
of mesoscale phenomena such as thunderstorms with present-day data.
These data consist of 1) hourly surface reports from stations spaced
approximately 150 km apart, 2) hourly radar reports manually digitized
from a network in the eastern two-thirds of the United States, 3) satel-
lite photographs at 30-min intervals available at selected locations,
and 4) 12-h upper-air observations from stations spaced approximately
300 km apart. Our task, then, must be to extract as much information
as possible from these data. This is made more realistic, physically,
by the postulate that the energy required to initiate the development

l of mesoscale systems is contained within the synoptic-scale systems
| (Global Atmospheric Research Programme, 1972, p. 1).
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k 2. STATISTICAL APPROACH

The theory of classical statistical methods such as least squares
and regression analyses is well documented (see, for example, Draper
and Smith, 1966; Morrison, 1976; Neter and Wasserman, 1974), and will
only be presented here to the extent necessary to facilitate discussions
of model assumptions, variable selection techniques, and results.
Errors resulting from violations of model assumptions, and also from
use of a binary dependent variable and intercorrelated independent
variables will be presented. We will conclude with discussions of the
interpretation of results for a regression model and principal component

analysis.

a. Linear models

Since the exact form of relationships between dependent and inde-
pendent variables is unknown, a common assumption (and good starting
point) is that of a linear relationship of the form

Y, =Byt Byxyy +Byxy, bl +Bx tE,. (1)

In this study, Yi, the dependent variable, indicates a yes-no occurrence
of thunderstorms for a given time interval during a day and given com-
bination of grid points by assuming values of one and zero, respectively.

The independent variables, x's, are obtained from the measured or

analyzed observations. The error or residual term, ei, is due to the
fact that the occurrence of thunderstorms cannot be precisely predicted.

The B.'s are the partial regression coefficients which relate observed

3

conditions to the occurrence of thunderstorms. These coefficients

are estimated from the data so as to minimize the sums of squared
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differences between actual and estimated values of the dependent vari-
able. Estimates of the Bj's are denoted by Bj' This latter procedure

amounts to minimizing the following:

§2, (2)

igl(yi > Bo & B1"11 £ gm"'un
This term is called the sum of squares of the errors or SSE. Differen-
tiating (2) with respect to Qo, 31, ses Bm and setting each equal to
zero, we get a set of Normal Equations which can be written in matrix
notation

(X'x)g = x'y, (3)
where capital letters are matrices, underlined terms are vectors and a
prime denotes the transpose of a matrix. Here (X'X) is the sum of
squares and cross products of all independent variables and is called
the variance-covariance matrix since we are dealing with corrected (mean
subtracted from each observation) values. From (3) one can see that 8
can be obtained by multiplication of X'Y by the inverse, (X'x)-l. The
partial regression coefficients, Bj's, indicate the change in Y associ-
ated with a unit change in x while all other x's remain constant. The

fact that Y is a binary variable makes no difference in these calcula-

tions.

b. Partitioning sums of squares

The statistical analysis continues by partitioning sums of squares
in the fashion of analysis of variance (ANOVA) to determine the signi-
ficance of the analyses as a whole as well as that of individual
coefficients. The total (corrected) sums of squares can be partitioned

as follows:
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$(y-9)2 = L(y - éo - 61"11 i émxim)

~

+ Z(B0 + Bixil s Bmxim -Y)°. (4)

The term on the left is simply n times the variance of Y or total sum

of squares (SST). The first term on the right is the sum of squared
deviations of observed data from estimates based on the model. It is

the residual sum of squares of the errors (SSE). The last term repre-
sents the sum of squared differences between the model estimates and
estimates when no model is assumed. This is usually called the sum of
squares due to regression (SSR). A mean square regression (MSR) and mean
square error (MSE) are obtained by dividing SSR and SSE by their
respective degrees of freedom. The partitioning is summarized in Table

1. The ratio of MSR/MSE forms the basis for the statistical F-test for

Table 1. Analysis of variance.

Source of Degrees of Sum of Mean F
variation freedom Squares Squares

Total n-1 ssT=L(y-)%  -- --
Regression m SSR=BX'Y SSR/m MSR/MSE
Residual nem-1 SSE=SST-SSR SSE/n-m-1 -

an hypothesis that there is no linear relation or that 8=0. Another
ratio used in regression analysis is the ratio of the sum of squares of
regression to the total sum of squares, SSR/SST. This quantity is
sometimes called the coefficient of determination and its symbol is

Rz. We can interpret Rz as the fractional amount of total variance
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accounted for by the linear combination of variables. The significance
of individual partial gfs can also be examined, but can be misleading
when x's are interrelated; that is, when it is impossible to vary one x
and hold all others constant. This problem will be examined in para-

graphs d and e.

c. Model assumptions and violations

1) A linear model correctly describes the data.

The correct model is not known. Even if the model is of the form
in (1), which parameters should be included? Variable selection tech-
niques aid in this choice but do not guarantee that the best2 subset
has been chosen.

Within the framework of linear regression non-linear predictors are
included. Linear regression refers to linear parameters (f's), not
linear independent variables. It is unlikely that all predictors are
exactly linearly related to the occurrence of thunderstorms. Fortu-
nately, in a rather broad range for many predictors, the linear approxi-
mation is representative of the association between dependent and
independent variables. We can linearize them, if we choose, by replacing
the original variable by a transformed version more nearly linearly
related to the predictand; however, we are not sure about its behavior
when it coexists in the model with other predictors. In several attempts
to linearize predictors, the overall improvement in R2 was less than

3.08. Also, once predictors are linearized, the equations are more

2no.t or optimum refers to the maximum possible reduction.of vari-
ance that can be achieved with the given linear combination of variables.
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difficult to use in an operational environment. Finally, other errors
to be discussed next appear to be more serious. Therefore, lineariza-
tion was not pursued in this research.

2) The x's are measured without error.

We know that there are errors in measuring all variables. Not only
are there errors in measuring basic variables such as temperature and
wind, but also there are errors due to finite difference approximations.
Unfortunately, the original data spacing and analysis procedure limit
the smallest space interval for which unique information is available.
Measurement error is not a problem in this study because it is small
compared to the total variance of the x's. For example, the temperature
error may be 0.5 K whereas the range of temperature may span 50 K.

3) The values of € are independent, random, normally-distributed
variables with a mean of zero and constant variance.

This term is estimated by residuals or differences between observed
and predicted values from the computed linear function. Each item will
be discussed separately.

Independent £€: Meteorological variables are functions of time;
however, the time dependency in our case is somewhat masked because we
input data from a sequence of 36, 30, 30, 36, ... grid points for suc-
cessive days. In other words, day 1 contains 36 data points; days 2
and 3 contain 30 points; day 4 contains 36 points, etc. This scheme is
a consequence of the data input algorithm and remained the same for all
days in this study. Also, which time dependence (one day, two days,
etc.) is important? This dependence probably changes with different ¢

synoptic situations, and the overall effect is masked by other problems
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to be discussed.

Randomly distributed €: A correctly specified model should show
residuals which are random when plotted against an independent variable.
While plots show definite non-randomness, it is most likely due to many
peculiarities resulting from a dichotomous, dependent variable. These
will be discussed in paragraph 5. Violations of the assumption that €
is randomly distributed are called specification error and result from
not knowing the correct model form and not including the correct vari-
ables. The residual sums of squares, SSE, is, therefore, inflated and
estimates of regression coefficients may be biased. There is no good
way of dealing with this problem except to recognize possible nonlinear-
ities in predictors and include physically relevant parameters. We are
naturally constrained in this latter work by our fixed observational
networks.

€ of ccnstant variance, mean of zero: It is assumed that €'s are
from a single population with zero mean and variance 02. The mean is
zero but variance is a function of the x's due to the nature of the
predictand in the sample used in this study. This error is termed
heteroskedasticity.

Next, we will consider these last few problems in more detail.

5) Special problems for a dependent, binary variable.

In addition to the error of specification, there are several prob-
lems unique to the use of a binzxy dependent variable. The first and
most obvious is that the error term can assume just two values depending

on whether the predicted value is subtracted from zero or one. Fig. 1l

R P e

is a plot of residuals for a typical predictor, W, which is positively
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Fig. 1. Plot of mixing ratio versus residual from regression model.
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correlated to thunderstorm occurrence. Each letter represents the

number of observations corresponding to its position in the alphabet.
A is one observation; Z represents 26 observations. Errors are clus-
tered around small negative values (when Y is zero) and medium positive
values (when Y is one and the predicted values are weighted toward
zero due to the influence of all the zero observations). Obviously,
the assumption of normality is not valid. The second problem is that
the variance of ei is a function of xi (Neter and Wasserman, 1974).
Finally, since Yi is similar to a probability of occuxrence3, this
number should lie between zero and one. The regression response func-
tion does not automatically possess this property. Fig. 2 is a plot

of residuals versus predicted values for the dependent sample. Predicted
values range from -0.2 to 1.2, but the mean is about 0.15.

Concerning the first problem, even though error terms are not
normal, the least squares procedure still provides unbiased estimates.
Further, when sample sizes are large, the distribution of estimates is
asymptotically normal so that inferences concerning the regression
coefficients and mean responses can still be made. Variable selection
procedures, then, can still produce satisfactory results though little
mention of "significance" will be made in this work. The second problem
can be dealt with through weighted regression (Neter and Wasserman,

1974) . Weights are assigned to observations in such a way that re-

sponses or predicted values near zero or one receive maximum weight.

3!. are trying to predict an occurrence which is represented by a

one or a non-occurrence represented by zero in a continuous fashion.
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This type of regression was not performed because the observations of
thunderstorms are already weighted by virtue of low climatological
frequencies of thunderstorm occurrence. An attempt was made to deal
with the problem through inclusion of random samples of no-thunderstorm
observations and through prior screening of no-thunderstorm cases by
critical values of selected predictors. The problem of predicting
less than zero or greater than one is not particularly serious since
the threshold for forecasting thunderstorms from predicted values is
arbitrary. Nevertheless, it appears that fitting a logistic function
such as

Y = (exp(~10.0 + 0.1x))/(1 + exp(-10.0 + 0.1x)) (5)
would eliminate this problem. Such a function is shown in Fig. 3 for
one independent variable.

It can be linearized by the simple transformation,
Y' = 1n (Y/(1-Y)). (6)

Special precautions are required for zero predicted values. Note that
her:, too, added weight is given to both near-zero and one predictors.
Glahn and Bocchieri (1975) used a similar function in an objective

forecasting scheme and found difficulties in some cases due to the

symmetric nature of the curve and poor fit near the threshold probabil
ity for yes-no forecasts. Also, fitting this function is not easy
unless there are repeat observations for each level of x. Such is not

the case with the data used in this research.

d. Multicollinearity

Another more serious problem results from use of interrelated

predictors (x's). The x's are in fact related in at least three ways.
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First, the basic, measured variables are related through physical laws
and relationships such as the gas law, first law of thermodynamics, or
thermal wind equation; therefore, parameters derived from the basic
variables are related. This problem is usually exaggerated by using
the basic five surface variables and five upper-air variables (the
latter for each of four chosen pressure levels in the troposphere), and
computing up to 35 parameters for more than twice as many points in
space as there are original data measurements4. Also, several measures
of the same basic dimension, say stability, are calculated because

the best measure of stability is not known. Therefore, many more
variables than we need are included. Secondly, variables are related
in space for many hundreds of kilometers. The very concept of an air
mass suggests a dependence for many variables. Finally, there is a
time dependence in that meteorological variables on one day are cor-
related to those on the next day (or longer).

The problem of intercorrelated "independent" variables is called
multicollinearity and for data in this research is severe enough to pre-
vent us from calculating (x'x)'l since near-singularities exists.
Therefore, we must use a variable-selection technique to be discussed
in Section 2e or a principal component analysis discussed in Section 2g.
When an inverse can be computed and the model is correct, then the

regression coefficients estimated by the least squares technique are

4
This is a consequence of the analysis schemes, and the price paid

for trying to preserve as much detail as possible.

5 !
A generalized inverse can be calculated; however, the estimates
of the coefficients would be biased.
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unbiased. This means that the expected values computed from repeated
samples will approach the correct value in the mean. The space-cor-
relation problem is reduced by use of every fourth grid point in the

statistical analyses.

e. Variable selection methods and inference

Fortunately, the regression analysis is robust in that even moderate
deviations from the assumptions do not invalidate results. The signi-
ficant problem of multicollinearity, however, can have severe influences
(even critical in our case with all variables where the X'X matrix is
near singular). Of many interrelated variables, which should be kept
in the model? To deal with this problem, four different variable
selection techniques were used in this study; all try to choose subsets
of predictors which minimize the residual mean square (MSE). They are
forward selection, backward elimination, stepwise, and maximum R2
improvement.

1) Forward selection

This procedure, often called step-up, begins by choosing that
variable which is most highly correlated with the dependent variable.
The second variable is chosen by seeking the next most highly correlated
of the remaining independent variables with the dependent variable,
according to the partial correlation coefficient. 1In other words, for
each remaining independent variable, a partial F-statistic is calculated
that reflects that variable's contribution to the model were it to be
included. If this statistic for one or more variables has a "signifi-
cance level" greater than a specified amount (0.50 is used in this

study), then the variable with the largest F is included. This process




is repeated and variables added one at a time until none passes the F-
test or no more remain. Once a variable is added to the model, it
must remain whether or not its influence is negated by other variables
added. This procedure is likely to give near optimum few-variable
models, but deteriorates as more are added.

2) Backward elimination

In this technique, also called step-down, the model with all vari-
ables is considered; then variables are deleted one at a time starting
with the one whose B exhibits the lowest F-statistic. Here, we are
likely to get optimum many-variable models but poor results when more
and more variables are deleted since they can never be included again.

3) Stepwise

This procedure is a refinement of forward selection. At each step
before determining the next variable to be added, the F-statistics are
checked for the coefficients already chosen to see if any should be
deleted based on another prespecified "significance level" (in our case
0.1). Only after this check for deletion is made can another variable
be added. The procedure terminates when no partial F is 2 0.5 or a
variable to be added is one just deleted. This procedure is most
appealing so far; but, still an optimum subset is not guaranteed (Draper
and Smith, 1966). Stepwise is the predominant procedure used in this
research.

4) Maximum R2 improvement

A one-variable model is chosen as with forward selection. Then
every combination of variables with this one is examined. When two

variables are included each of these is compared to each variable not
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in the model. For every comparison it is determined if removing the
variable in the model and replacing it with the excluded variable
would increase R2. After all comparisons, the switch is made that
gives the highest Rz. This process continues with each variable added.
Optimum one-to-eight variable models are most likely to be found, but
the costs in computer processing are high when more than 20 candidate
predictors are used (Barr et al., 1976).

Although variable selection procedures do not guarantee that an
optimum subset of predictors is cheosen, the stepwise procedure does a
credible job up to about the fourth variable for data in this study.
Comparisons were made of variables selected by the stepwise procedure
with those from the best four- to seven-variable models where all
possible regressions were considered. In all cases the four-variable
models were identical. The five- and six-variable models differed by
just one variable. The best seven-variable model differed by two vari-
ables. Due to computer-processing limitations, comparisons were not
exact in that only 18 of 25 predictors were considered for all possible
regressions. Even for this combination there were 31,824 possibilities.
In the case of the seven-variable model, the two variables not selected
by the "best" procedure were not available to it. Beyond five pre-
dictors there could be any number of variable combinations which produce
the same or even slightly higher R2. Therefore, discussions of variable

combinations will usually be limited to the first four or five.

£, Interpretation of regression-model results

In these discussions, intense convection, thunderstorm occurrence,

and MDR24 are used synonymously, though the latter is the true

24
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predictand. The coefficient of determination, R2, the amount of vari-
ance accounted for by the linear combination of variables, and reduction
of total variance due to the regression model also are used synonymously.
Finally, independent variables, predictors, and x's mean the same as do
dependent variable, Y, and predictand.

Models of form (1) are used where particular x's, parameters, are
chosen by variable selection techniques discussed in Section 2e. The
associated coefficients, Bj's, are computed according to the least
squares method (Section 2a). Analysis of variance tables such as shown
in Table 1 (p.l2) are produced for every different combination of inde-
pendent variables and for all data subdivisions. A few of these tables
for important combinations of parameters are shown in Appendix A. 1In
general, however, only summaries are included in the text. These
summaries present the total RZ, number of variables (x's) which pro-
duced the Rz, mean square error for this number of variables, and
occurrence frequency for the dependent variable (frequency of thunder-
storm occurrence). Also shown are the variables selected in the order
in which they were chosen, the cumulative Rz, and the sign of the
partial regression coefficient (B) for each data stratification. 1In
order to reconstruct the linear equation for a given combination of
variables, the partial regression coefiicients from Appendix A are
required. These coefficients are then substituted into (1) together
with their respective predictors.

Although R2 will be discussed to some extent, the R2 differences
from sample to sample must not be interpreted to imply improved re-

gression results unless the proportion of ones (as opposed to zeros) is
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also the same. For a binomial distribution the variance is given by
np(l-p). Since this term appears in the denominator of R2, an increased
p (up to 0.5) results in a lower R2 given the same regression sum of
squares. Three examples follow, each using similar but artificial data
with one independent, continuous variable positively correlated to one
dependent, dichotomous variable.

1) Example one: occurrence frequency 10%

Assume there are ten observations of dependent variable y and
independent variable x and that the frequency of ones is 10%. The data
and regression analysis are shown in Table 2.

Table 2. Data and regression analysis for 10 observations of hypo-
thetical variables x and y with 10% occurrence frequency.

y (y-y) (y-;)z X (x=x) (x-;)z (x=3) (y=y)  [(x=2) (y=y) )2 Summary Statistics
ety

0 =01 B0 2 w1 1 0.1 0.01 L((x-%) (y-

G S0 00k 3Ll ek 1 0.1 0.0l w L e e

R TR T X 0.1 0.01 =

g 0.4 Sy it 0 0.0 0.00 85T = L(y-y)" = 0.9

0 =03 e ¥ 0 0.0 0.00 S ek

6 S0y T e 1 -0.1 0.01 R e SR e

6 =01 6B 2 =i 1 0.1 0.01

I VR o TR 4 1.8 3.24 = <

6 =03 00 - 0 0.0 0.00 TGS

0 -0k GoL 4 1 -0.1 0.01

1 0.90 30 10 3.30  sum

2) Example two: occurrence frequénéy"30t

Table 3 illustrates another example with the same sample size but
different occurrence frequency. Note that as the occurrence frequency
increases, R2 decreases. This decrease is a consequence of the in-

creased variance of y (h<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>