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3 Introduction =1
e

=

As demonstrated in Lowengrub [ % ],

value problems arising in the classical theory of elasticity
reduce to the problem of determining functions Py and ®,

satisfying Abel type integral equations of the type,

x gy (t)dt (t)dt 1 o, (t)dt
atey] Shmbesy gl (PR s AL asEed LD
0 (x°-t”)H x (£P-x")M
1 ¢1(t)dt X mz(t)dt
Y (x) Si— o (o) ‘——=h2(x). a<x<b 1.2)
: e (£P—xP)H 0 (x°-t°)H

where 0<u<1l, p21 and the functions o(x), B(x), y(x) and
6 (x) have derivatives satisfying Holder conditions on (a,b).
It is also assumed that hi(x), 17=1,2;

is Holder continuous

on the interval.

In this paper we show that systems of the type (1.1) and
(1.2) can be reduced to the determination of a matrix function
¥ (z) = (Ql(z), 62 (z)) analytic in the plane cut along (a,b),
satisfying certain growth conditions at ® and along the cut,

(a,b),

Ax) 8T (%) = -eM™A (%) 8-(x) +F(x) (1.3)

where A(x) is a coefficient matrix with elements linear

T

B




combinations of «,g,y and &. The system (1.3) is a coupled
system. We effect a linear uncoupling of this system by intro-
ducing certain similarity transformations. The matrices
associated with these transformations are explicitly computed
and hence exact solutions are derived. 1In physical applications,
such as the determination of the stress field in an inhomogeneous
body containing flaws, the relevant physical quantities are
expressed in terms of the matrix function &(z). One need not
actually solve for Py and Py in (1.1) and (1.2). The
functions Ql(z) and Qz(z) are defined (say in the case p=1)
by

L " eymrae

Ty (8} & S10)

a (t-z)M
.1.52
where R(z) = [(z-a) (b-2)] . These functions must be defined
on appropriate branches. Analogous representations are intro-
duced for g@=1.

Section 2 of the paper thoroughly analyzes the case =1
while in section 3 we choose @=2. These are the two cases of
physical interest. 1In section 4 we consider some explicit
examples: (i) o(x) =a, g(x) =g, v(x) =y and 6(x) =6 with
u=%, p=1 and «,g,y and 8 constant; (ii) o(x) =8,

B (x) =§, Y(X) = and & (x) =-£-with pu=%, p=2, and a,
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B constant. The final section demonstrates how general dual
relations (given in terms of the Erdelyi-Sneddon 6perators of
fractional integration - see Erdelyi-Sneddon [ 1]) may be

reduced to systems of the type (1.1) and (1.2).
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2. The first generalized Abel system.
| In this section we consider the generalized Abel system of
equations,
X oy (t)dat bcpz(t)dt
a(X)“ra it B (x) J;:(_t;)-u_ = £, (x), x¢ (a,b) (2.1)
b o, (t)dt X @, (t)dt
v(x)j ——u- + 6(x)[ (—Tw— = £,(x), x¢ (a,b) (2.2)
where «,B,Y, and 8 satisfy conditions to be specified later.
~- However, we do assume that fl and f2 are H6lder continuous
f on (a,b).
.g As in Sakalyuk [© ], we define the sectionally analytic
functions
E
Qi(t)
| 8, (2) = R(Z)J‘ e ot i=1,2. (2.3)
!
. L
where R(z) = [(z-a) (b-2)] and the function is defined by
some branch. If cpI(t) satisfies q;i(t)= q;i(t)[(t-a)‘(b-t)]m'e-l
‘ where ¢>0 and epI(t) is H8lder on [a,b], then Qi(z) is
4 analytic in the plane cut along [a,b]. Moreover, the boundary
E limits § it(i), where
+
é Oi(x) = ;._i‘.il‘l !i(z) a<x<b
Im(z)>0
; and
j.(x) = lim ) (z), a<x<b
Im(2)<0
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are continuous. In addition,

=1
61(2) = O(IZ-aIHT) ' z-a
=1
8, (2) = 0(|z-b!ur) : z=b (2.4)
¢, (2) = o(z]™h , z=e .

A simple calculation verifies that

x g (t)dt b g, (t)dt

+ £ unl
Qi(x) = R(x)[ Iu (x-t)H 5 Ix (t-x)H (2.5)
x € (a,b)
and
i
@, (t)dt b ¢.(t)dt
P =ay prri i
§ (x) = R(x)” Goohte . (E-xF ]- (2.6)

It immediately follows that

x o, (t)at e“ﬂi§+(x) +8] (x)
f oo - [ — R, (2.7)
x ¢ (a,b)
and § o
b o, (t)at ‘N £ (%) +e“" 8, )
j‘ (t-x)H = 7 eZumi . ]ﬂ(x) ' (2.8)
X
i=1,2 .

Substitution of (2.7) and (2.8) into (2.1) and (2.2) yields
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the boundary condition on a<x<b ,

pri pmi

a(x)e QI(x) - B(x) 8, () +a(x)8] (x) -8 () e (x) =F, (x)  (2.9)

~y () 8] (x) 46 (x) M6 (x) -y (x) e8] (x) 48 (x) € (x) = F,(x)  (2.10)

where

2umi

Fi(x) = fi(x) (e - 1)/R(x) .

This substitution then reduces our problem to determining two
sectionally analytic functions Ql(z), Qz(z) satisfying the
growth conditions (2.4); that is, solving a coupled Riemann-
Hilbert boundary value problem. Once we have determined Qj(z),
(i=1,2), the functions ®, and v, are obtained by solving
the Abel integral equations (2.7) and (2.8).

For convenience we introduce the following matrix notation;
set,

8(z) = (2, (2),8,(2) and F(x) = (F) (x),F,(x))"

so that the boundary conditions (2.9) and (2,10) may be written

in the form

AT (x) m- PR (X) (%) +F(X) , a<x<b (2.11)
where A(x) = (aij(x)), {,3=1,2 with
a,; (%) =ae!™, a, (x) =-px), ay (x)=-y(x) and (2.11a)
pri

azz(x)sé(x)e .
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I If we require the condition

det A(x) = a(x)6 (x)eM™_ y(x)p(x) # 0, a<x<b (2.12)
then the matrix A (x) is invertible and (2.11) is equivalent

to the boundary condition

F : §+(x) = -e”‘ﬂiG (x) 3 (x) +9(x) a<x<bhb (2.13)
i; where
E G (x) =A_1(x)A—(::) and g (x) =A_1 (X)F(x). (2.14)

It is necessary for us to determine conditions whereby the

coupled Riemann-Hilbert problem can be uncoupled. We shall
effect a linear uncoupling of the system (2.9) and (2.10) by
finding a non-:singular matrix P(z), analytic in the complex
plane (except for perhaps a finite number of poles) with a pole

f at infinity and such that for a<x<b
-1
P(x)G(x)P " (x) = D(x) = (dij(x))

with d12 (x) =d21 (x) =0 .

4 Let 3(z2) = (zl(z).zz (z))T be defined as follows:

£(z) = P(2)¥(z). (2.15)




Note that £(z) is analytic in the plane (except for perhaps

a finite number of poles) cut along a<x<b. 1In addition,

£(z) satisfies appropriate growth conditions at infinity.
Substitution of (2.14) into the boundary condition (2.13)

yields the uncoupled set of conditions,

prTi

2:&)=4a dﬁ}mz;m)+ﬁgh a<x<b (2.16)

i=1,2 and k(x) =P(x)g(x). Thus, this procedure reduces our
problem to the determination of two sectionally analytic functions
El(z) and Zz(z) satisfying appropriate growth conditions at
infinity and the boundary conditions (2.15). The solution to
these Riemann Hilbert problems is well-known (once the index is
determined) (see for example, Muskhelishvili [5]).

The main problem is to explicitly determine the matrix P.

We first compute G(x) from (2.14) .

G(x) = [det A(x)]'1 T (x)




where T(x) = [tij(x)] with

tll = t22 =a(x)0 (x) -B(x)y(x), t12 =-2ig(x)6 (x) sin um

and t21=—2ia(x)v(x) sin um .

A non-singular matrix, P(x), for which P_(x)T(x)P-l(x)
is diagonal exists if and only if T(x) has two linearly inde-
pendent eigenvectors., In this case, the matrix P(x)T(x)P_l(x)
has the eigenvalues of T(x) as its diagonal elements and
P(x) has as its rows two independent eigenvectors of T(x).

L E tlz(x)tzl(x)#o then the eigenvalues of T(x) are

€1 (x) + "/tlz (x)t21(x) so that for the matrix P(x) we may

take

P(x) = c(x) (2.17)
B1p () Wy, () Ey) (%)

where c(x) 1is -any scalar function,
If 1:12 (x)t21 (x) =0, then T(x) has two independent eigen-
(x) and ¢t

’ vectors if and only if both t (x) vanish,

12 21

Since T(x) is non-singular this can occur if and only if

either 0§ (x) =a(x)=0 and vy (x)p(x)#0 or vy(x)=g(x)=0 and
6(x)a(x)_;‘ 0. In this case, T(x) is just a scalar multiple of
the identity. For most applications, t12 (x)t21(x) #0 except

perhaps at the endpoints x=a and x=b. Such exceptional
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cases are easily handled. 1In order to simplify further work,
we assume that tlz(x)t21(x)#(h

Let P(x) be defined by (2.17) so that

i tll(x)-+v%12(x)t21(x) 0
P(x)T(x)P (x) =

0 tll(x)-vtlz(x)t21(x)

which provides the desired uncoupling of the pair of coupled

Riemann-Hilbert boundary value problems. The scalar c(x)

is chosen so that P(x) can be extended to a matrix P (z)

meromorphic in the plane with a pole at infinity. This enables
;1 us to explicitly determine 21 and 22 and hence @1 and @2.

Inversion of (2.7), (2.8) yields our original unknown functions

®q and 0y- An example of this analysis appears in section 4.

3. The second generalized Abel system.

We next consider the system

x o (t)dt 1 Ppltiat
a(x) _—:'z—é— + s(x)I = fl(x) ’ <=l (3.4}
0 (x°-t ) X (t ~X )
z fl pq (E)dt x g, (t)at
)] =Emmemms 4o}l T = L X 0<x<1l. (3.2)
(t2 x2) 0 (x2-t2)“ 2

) i
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The interval (0,1) is chosen rather than (a,b) in order to
simplify the analysis. It is trivial to extend to (a,b).
The case pn=1/2 in (3.1) and (3.2) has been considered by
Lowengrub [3 ].

Analogous to the method used in section 2, we introduce
the sectionally analytic functions 61(2) and §2(z) defined
by,

1 p; (E)at

2 u-3s : . 1
%.(2) =(z"=- 1) - i=1,2 (3.3)
i J'O (ZZ_tZ)p. J

If w’i(t) satisfies q)i(t)=cp;(t)t“[t(l—t)]“+€-l where
e=0 and cp’;_(t) is Holder continuous on [0,1], then

8. (2) (i=1,2) is analytic in the plane cut along [-1,1] and

e

satisfies the following conditions, :

o 9 SN gt P VR gy Fbi 2 4 A,
e b R

—O(Iz—llu-%) as z-1

o1

—

-
i

3 8. (z) = 0(|z+1|“_%) as z-=-1 (3.4) :
4

3 i -1

and @i(z) =0(lz]l) as z=° ,

E/ +

? Moreover, the limiting values i’j_(X) are continuous funations

for |x| <1 except perhaps for x=0.
For each of the functions (z - l)“-%, (z +l)“—%, (z-t) M
- and (z «!-l:)"“l we take as the branch cut that line lying along

the positive x-axis and restrict their arguments to lie between

0 and 2m. The following limits, for 0<x<1l, are easily computed:
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5 1 @, (E)at X @, (t)dt
8} (x) = -1 (L-x) M ;’{[’ e ek T K (3.5)
‘x (£°-x)H T g

2 ,2

& [ 2o, (B X (t)at
e = ety R i, 4 o7 —i—_-}f (3.6)
x (£7-x )Ll 0 (x°-t )M

whereas for -1<x<0

||
1o, (t)at v, (t)dt
g o e e DR R (3.7)
i 2 2.1 2 .24
'x, (t -x") 0 (x-t7)
3 E 2.l oL @y (E)AE .""cpi(t)dt
3 @i(x) =i(l-x )"‘t I —J-"z-——z—- + euTTlI _2'—2— c (3.9)
x| (t“-x“)H 0 (x“-t%)H
’1 It should be observed that for -1<x<0,
t
] F S T !
Qi(x) =~ §i(-x) .
., (x) +8%,(x) = 2 sin unm(l-x") e (3.10)
i i 0 (xz-—tz)"‘
3 and
‘ ; g 1 o, (t)dat
o & - P
¢ e Mt (%) + M ™87 (%) = =2 sin pm(1-x2)H !‘j e (3.1
i i e (t2_x2)g

for 0<x<1.
Substitution of the above into the original sef of integral : 1

equations (3.1) and 3.2) reduces the problem to the following:




determine two sectionally analytic functions Ql(z) and

§2(z) satisfying the conditions (3.4) and the boundary values,

[o(x) QI (2) -8 (x)e~ M

85 (x)] + Lo (x) 8] (x)e“"i§; ()] =F (x) (3.12)
0<x<1l

[-v (e 6T () 4 (1) ¥ (1)) + [6 () 85 () -y () e8] () ] =F, (%) (3.13)

0<x<1

where Fi(x) = 2 sin un(l-xz)u—%fi(x) %

In matrix notation the system (3.12)-(3.13) becomes
AT (x) = - B(x)8 (x) +F(x) 0<x<1l (3.14)
where & (z) = (@l(z),éz(z))T, F(x) = (Fl(x),Fz(x))T.
A(x) = (aij(x)) with all(x) = a(x),
a;, (0 =-p()e™ ™, o (x) =-v(x)e™™ and ay,(x) =8 @),
and  B(x) = A(x) . (3.14a)
In order to determine 3(z), boundary conditions for
Qt(x) must be extended to all of [-1,1]. It is clear from

(3.9) how this extension is to be performed.

In particular, we obtain the system
Ax)ET(x) = - B x) +F(x) -1<x<1l  (3.15)

A (x) 0<x<1l

where ﬁ(x)

B(x) 0<x<1

B(x) (3.16)

-B (-x) -1<x<0,




ed ol

. F(x) 0<x<1l

and F(x)

F(-x) -1<x<0 .

As in section 1, we assume that A(x) is invertible for
-1<x<1 . The expressions in (3.16) imply that it suffices to
assume that A (x) is invertible for 0<x<1, or equivalently,

that

o (x)8 (x)e2H ™ v (x)p(x) # 0 0o<x<1.

This gives us the systen,

8% (x) = -G(x)8 (%) +8(x) 1<x<1l  (3.17)

A1

where St} =& YeoE @ = A gk )

]

and §lx) = A l)E ),

Thus we must now find a sectionally analytic matrix, % (z)
satisfying appropriate conditions at 1 and -1, a growth condition
3 (z) =0(|z|’1) at infinity, and the boundary values (3.17).
We .gseek a linear uncoupling of (3.17); that is, a non-singular
matrix B(x) such that ﬁ(x)&-(x)ﬁ‘l(x) is a diagonal matrix
for -1<x<1.

We first compute é(x) on 0<x<1 and obtain,

&(x) = [det(a(x)) ] T (x) |

where T(x) = [tij(x)] with t,, (%) =t ,(x) =0 (x)a(x)-y(x)p (x),

t12 (x) ==-2isinumd (x)p(x) and t21 (x) =-2i sin yma (x) y(x) .

If we employ the arguments of section 1, we see that,




t, ., (x) -JE (X))t . (%)
Pl « ot 12 12 21

t12 (%) ,,/1:12 (x) t21 (%) - (3.18)

b (x)g(x)  -Ma(x)p(x)y(x)d(x)
=+ 21i sin um c(x)

-8 (%) B (x) Vo (%) g (%) v (x)6 (x)

(provided t12 (x)tzl(x) # 0)

produces the desired uncoupling of the boundary conditions (3.17)

for 0<x<1,.

In particular,

e €11 )+, ()t (%) 0
P(xX)T(x)P ~(x) =

on 0<x<1,
" - -P-
Next we compute G(x) for -1<x<0. Since G(x) =G(-x)

for -1<x<0, we find that

é(x) = [det(A(-x))]'lT(-x) -1<x<0.

Moreover, since a(x),g(x),y(x) and 0 (x) are real, the rows
of P(x) are also independent eigenvectors of T(x) for
0<x<1l. Hence P(—x)T(-x)P(-x)-l is diagonal for -1<x<0,
and if P(x) is defined by

P(x) 0<x<1 P (x) 0<x<1l

B(x) = or T
P(-x) -1<x<0 P(-x) -1<x<0

then f’(x)&(x)ﬁ-l(x) is diagonal for -1<x<1l, If in addition




P(x) can be extended to a function ﬁ(z) meromorphic in ¢

e
A s s e

with a pole at infinity, then I(z) =3(z) $ (z) defines a
sectionally analytic function £(z), satisfying properties

analogous to 3.4 and the boundary condition
$Hx) = -Dx) T (x) +R(x) S1<x<1 (3.19)

where  D(x) =§(x)§(x)f’_1 (x)
and ﬁ(x) = l‘.;(x)é(x). An example illustrating this analysis

e | appears in the fourth section.

§4 Examples.

As a first example, we consider the set of equations (2.1),
(2.2) with a(x) =2, B(x) =8, Y(x) =y and 8(x) =6. Here, «,
B, ¥, and & are all complex constants. Since this example
appears in various applications, we display the appropriate
matrices and write out the salution. We assume that agyd #0.

The coefficient matrices needed in (2.13) and (2.14) are

4 given by:
:
1 :
. MTTL
Aty s —A— ” g (4.1)
. A ’ .
ad ez"mi-yp o ae"mi




&
i;
5
¢
g
£
:
£

18

' ab - gy - 2igd sinunm
Bix) = Tt
ade MM yg -2iay sinum  ab - gy : (4.2)
g Voapvd
P(x) = -2isinuyunm (4.3)
&g -vagyd

while the diagonal matrix, D(x), used in (2.15) takes the form,

1 ad-gy + 2i sin um/agyd 0

D(x) = e , (4.4)
abe Lml-'ys 0 od -gy - 2i sin ym/agyd

The problem is then reduced to the solution of the uncoupled
Riemann Hilbert problem: determine 21 (z), and 22 (z) analytic

everywhere in the plane except along the cut (a,b) where
Z:l and 2:2 satisfy the conditions,

I} (x) = -o (VM4 L5 +x (), 4.5)

E+(x) = - e(}‘-V)i £ 5 (x) +k. (x) , (4.6)
2 (o A 2

,(2) = 5,(2) = 0(|zl-1) as z-=® ,

and y,A,p,0,k; (x) and k,(x) are given by:
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_1[ 2 sin pym/apyd ]
tan

v = B .. BY (4.7)
=1|_/ad +yg
A = tan [ (0,6 ‘YS) tan uﬂ] (4.8) |
!
% a
p = [(Ga-gy)2+ 4 sinzuﬂ(aBYE))] (4.9) '
v =) (va)z- 2abvp coaassz];5 (4.10)
where kl (x) r 1 (x)
r -
K(x) = - LP(x)AI(x)] ] (4.11)
k2 (x) F.2 (x)

For example, the solution of the coupled pair of equations

X
o ()at 1 g, (t)dt

‘o x-€) T J.x T ARk x€(-L,1) (4.12)

and
1 gy (t)at  x @, (t)dt
e T X € (L1) (4.13)
0

X

(with £ and f constant)

1 2

require the determination of the sectionally analytic functions

and T

2 vanishing at « and satisfying

Zl(z), zz(z) with 21

the boundary conditions,

x€(-L1) (4.14)

(%) = - 5 (%) +X

1'

+
22 (x)

z; (x) +%,, x €(-2,1) (4.15)

where k and k, are the complex constaats

1 2 !
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k=(1-i)(f1+ fz), k=-(1+i)(fl-f

1 2 ) .

2

It is a simple matter to demonstrate that the solutions to the

above Riemann Hilbert problems are given by

1 z
£ is) = garil s Dl o) [TEetE—— - 1] (@.16)
and
L,(8) = - Frp(L+1) (£, £,) 1n [$5E] (4.17)
so that
8, (2) = - i[F, (2) +Z,(2)]
[ and
: %, (2z) = -i[zz(z)-zl(z)] .
A The unknown functions ?y and v, are then determined from
: the Abel equations (2.7) and (2.8) where R(x) = 44&Ij:;z).

i One can see that even in the simple case (4.12) and (4.13) the
results are quite complicated. Fortunately, for applications,
one is usually only interested in §1(z) and §2(z). For
problems in the theory of elasticity, [see Lowengrub [3 ]] the
stress field is expressed in terms of these two sectionally

analytic functions.

t § Secondly, we consider the particular case of (3.1) and
(3.2) with

F | w=k a(x =g, p(x) =3 y(x) =c and b(x)=-B

‘ where o and pg are constants. We show that our methods




Ghbs Lo

-

-

yield the same result as in Lowengrub [ 3 ]. We consider the

coupled system

At (x) = - Bx)t" (x) +F(x), —l<x<l J

A

where A(x), B(x), and F(x) are given in (3.14a) while 3, B

and F are defined by (3.16). It follows that the condition
det A(x) #0 implies that 52— az# 0. In addition, if 0<x<1

we have

- .
E _(a_:ig_) Qg_&

G(x) = - gl X " (4.18)
B - « -2iag - <§2+a )
i -1
P(x) = [ % { (4.19)
1
b4 1
-1 1 (a—a)2 0
P(x)T(x)P ~(x) = - = : (4.20)
0 (g+a)2
while if -1<x<o0 ,
g~ o) 0
1
P(=x) T(-x) p-l(-x) x 0 g+m?/ 421

and det A(-x) = ;1‘-(52- a2).

'I'hus; the uncoupled Riemann boundary value problem becomes:

determine two sectionally analytic functions zl(z) and }:2(2)




that vanish at infinity and along the cut -l sx=s1 satisfy
the boundary conditions

+ i - o -

o0 =(822) gt 4k 0, -l<x<l

pto
(4.22)

Z;(x) =(;m) £, (%) +k, (x) , e

This is in complete agreement with Lowengrub [ 3 ], where the
solution to the original pair of Abel equations is given along

with an application to elasticity.

§5. Application to dual :relations.

In what follows, use will be made of certain well known
operators of fractional integration, differentiation and Hankel
transforms which were introduced by Erdelyi and Sneddon Iy i

Let S & denote the Hankel transform

ull

LIE(8)1x) = 2% j e e (o), 2nte (B)QE . (5.1)

and for o >0 define the fractional integral operators I

neo

by

—2a-2n
Jx(x - 2“*1f(g)dg (5.2)

{f(g)-x} =




23

2g2M® g 9 %1 o0 2ii1
K {£(8);:x} = —-—J' (g°-x") e M1g(g)ae. (5.3)
n,o Tla)d
For «o<O0 the fractional derivatives I and K are
n.@ Ne @
defined to be the formal inverses of the operators In+a &
o
and K'q+a o respectively. Frequent use will be made of the
H [ Bl

well known identities relating these operators. [See Sneddon
(71, page 274]

We shall consider systems of dual relations of the form

i -2

I BA(E) +bB(E) ]k a.]'u(gx)dg = fl(x) 0<x<1

0

f [ca(g) +dB(§)]g'25T (Bx)ag = £, (x)

0 A

(5.4)

I
(@]

J'A(g)J‘“(gx)dg
0

1<x<e

"
(=}

.

| B(5)J (gx)dg
0

where a,b,c and d are constants.

Systems similar to (1) have been discussed by various
authors. Closed forms solutions have been obtained by Lowengrub
and Sneddon [ ] for the cases ao=g=-%, u=0, y=1 and
a=g=-%, u=%, yy=-%. 1In the former instance, the system

(1) was reduced to a system of Carlemann type singular integral

equations whereas in the latter the generalized Abel system
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4 (3.1, 3.2) was obtained. Westmann used similar techniques to

construct solutions for o=g8 and p=v=2, whereas Erdogan

0 at

[ 2] presented a method for reducing (1) to an infinite system

T

of algebraic equations.

R

The procedures developed for treating special cases of (5.4)

have mostly been ad hoc. We shall indicate a more systematic

Srom g S L

approach for analyzing (5.4) which in certain cases reduces to
the generalized Abel system (3.1, 3.2).

In operator notation the system (5.4) becomes

{[aw(€)+b‘i’(§)]7x}=Fl(x), 0<x<1 (5.6)
2o

S
§ -

S%‘B.za{[cw(g)+bw(g)];x}=F2(x), 0<x<1 (5.7)

I L a  a i e S S b
e

seeig S
Pl ¥

S, f{e(8)ix} = gy (x)H(1 -x), x>1 (5.8)

1 .0

s {v(g):x} = g, (x)H(1 -x) , x>1 (5.9)
2'0

———

i : where ¢ (g) =A(8)/8 , V(§) =B(§)/§ , F,(x) =22af1(x)/x2a.
Fz(x)==225f2(x)/x2B and gl(x) and gz(x) are unknown
functions for O0<x<1.

Formal inversion of (5.8) and (5.9) yields

G W T
S e )

e
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@ (8) = S“'O{gl(x):g}
= S oK k, ]
30 gy
Y-y, 1oy
= 2V _[ox T 0y (xE)Ky () ax (5.10)
and %
¥(g) =s_ f{g,(x);g}
,0

1
8 abpt L8
2°e J‘ox X, (x)J:)+6 (xE)dx (5.11)

where kl(x) = [91].

K
By, -y

K
¥+6,-6

k, (x) [92].

and Yy and & are parameters to be specified later. The
manipulations involved in (5.10) and (5.11) are well known and
may be found in Sneddon [ 71].

Substitution of (5.10) and (5.11) into (5.6) and (5.7),

followed by an application of appropriate fractional transforms,

yields




n"“\
e

g

T
B
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I S b ix} = F
%M'}\ 5—-—0’,2a[[acp(g)+ y(g)];x} F) (x)

=a S oE [k,]+b s oS [k.] (5.12)
H_g, +20 K,y 1 Moo, 420 26 2
2 2 2 2
and
I .S {lep () +ay(g)Isx} = F. (x)
% 2
%""Bop % Be28
=CS oS [kl] +d s S [k2] (5.13)
¥-g.r+28 H,v ¥-8028 %0
where F.(x) = I o
L %+a,)\ 1
F.(x) =1 F.]
, (%) JZHME :

and )\ and p are parameters as yet unspecified.
There are two trivial cases of (5.12) and (5.13).

If pu=vy, let y=6, \A=-o and p=-g, then these relations

become
as S (k.l]+b s e S (k.] = F. (x)
v 1 fr oy 2 1
2-0,& 2"Y 2 o, o 2'Y
=aK [k.] +b K [k.] (5.14)
"2*'0’10’+Y . ‘ %-a,aﬂ/ €
and
c .S eS (k,]+d s oS [k.] = F, (x)
1 2 2
Y-8 Sy ~BeB BeY
=cK [kl] +d K [k2]. (5.15)
2~ BiBHY - (5l g

B T g ey
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If we invert relations (5.14) and (5.15), one obtains a simple

algebraic system for kl and k2

A second trivial case results if -‘L;—“ + a-g=0, since by

choosing A +a=p+g=Y+a=06+8=0 we obtain

as °S (k,]+b S oS [k]=f‘(x)
B TR B A T i
) o,Q 2! o 2" % 8
=ak, +b I ! [x,] (5.16)
2P
and
c S s +ds S [k21=£~(x)
Y-8 Sica E-gp 2B
= c IE [li +d k2. (5.17)
2’8~
Application of I to (5.17) yields
bra-p
ck,+d I (k.,] =1 (F.] . (5.18)
1 y 2 " 2
210"'3 zva-a

It is now a simple matter to solve (5.16) and (5.18) for kl
and kz.

In general the system (5.12) and (5.13) cannot be solved
so easily. However, it may be simplified in either of two ways.
I1f, for ')»,¥,p and &6, we choose =-a, 6 =-g, p= Egi -8

and )= 5‘-;-“ - @ then the system becomes

W NPT VRN R P,
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a I [k.] + b K [k.] = F (5.19)
Boy-u 1 Bow Mol fany & 1
2° 2 2~ g *la-p)
K [k,]+d I .1« P (5.20)
c = . e
9 ey it 1 ¥ M-y - 2 2
2 Bz *(g-a) 2' 2
Whereas by choosing Y=£2-'E-Bu ¢ =H-'2-—¥-a, =-g and
A=-a we obtain
A
a K [k,]+b I [k,] =F (5.21)
B_ . v = 1 Yy M-y 2 1
2 -5 *(e-p) 2’ 2
- A
cI J [k1] +d K¥ 4 Lkzj =P, . (5.22)
272 2Bz t(p-a
;Q The systems (5.19) - (5.22) may be regarded as generalized

Abel systems. In most applications o =g and hence we shall

consider only this case for the remainder of this section.

It should be observed that when y-u is an even integer the

operators appearing in (5.19) - (5.22) are not of fractional

order. It is then a simple matter to reduce either of the

systems (5.19), (5.20)

or (5.21), (5.22) . to a single linear ordinary differential
U equation. In particular, for the case considered by Westmann [8]

(i.e. y=pu+2) the system (5.19), (5.20) reduces to a simple

first order linear differential equation.

If u-vy is not an even integer then the operators are
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of fractional order, with both fractional integrals and

fractional derivatives appearing in both systems. However, in

certain cases it is possible to reduce the systems (5.19) - (5.22)

to Abel systems of the form (3.1) and (3.2). We might note

that if u-y is one . the Abel system obtained will

contain only operators of order 1/2, whereas in general, operators

of different order will occur within the same system. Provided

neither of the unknown functions appears in operators of differ-

ent order, a straight forward extension of the technique

presented in section 3 will treat such systems.
As an example, consider the system (1) with

v=1, 'J-=ot

a=g=%. Ifwelet A=p=-%, 8=-1 and y=0 we obtain

a ko lkl+p 1 (%] =F) (x) (5.23)

A
c 10'%[k13 +d Ko'_;i[kzj - F,x) . (5.24)

Since,

~ g 3 ek 8
I, _ylk,] = jo(x <217 = [ (e) Jae

1
¥ 2_2,-k4
Ko, _y[X,] = -j'x(t ~x)"" 8 [ek, te) Jae,
4k1(t) = gl(t) and
-1 1
ky(t) = Ky 1[g,] = 2t j'tgz (u)du,

JURESSQRES

NEPRpea—




e S

30

the system (5.23), (5.24) yields the generalized Abel system,

LY

1 X
¥ (tz—xz)-%tgl(t)dt-b f (xz-tz)-%gz(t)dt
‘x 0

X 1
-} 2 2 -5 2 2 -4
: J‘O (x“-t%) "Ptg, (t)at + a J'x(t -x") g, (t)at

- L&)g
= Atip (). (8,29)

0<x<1

. alila
= *24'p, (x) (5.26)

O<x<1 .

P R T ety e et wp— o
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