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1. Introduction I ~ -•
~~~~

.-

As demonstrated in Lowengrub [
~~ 1, ~~k~~~~in mixes ‘~h~ i~~~ry

va lue prob lems arising in the classical theory of elasticity

reduce to the problem of determining functions cp1 and

sa tisfying Abel type integral equations of the type,

x ~1(t)dt 1 tx~2 
( t ) d t

a(x)j ’ + e (x) $ = h1
(x) , a <x <b (1.1)

0 (x —t~
’)~’ x (t —x~)~

~ I_ 1 ~ ( t )d t  x ~ ( t )d t1 
+ 6 (x)$ 

2 
= h2

(x) , a <x<b (1.2)

~c (t~—x~)~ 0 (x P_t P)~

where 0 < <1 , p � 1 and the functions a’ (x), ~ (x), y (x) and

8 (x) have derivatives satisfying Holder conditions on (a,b). •

I ~ It is also assumed that h~ (x). 1=1,2, is Holder continuous

on the interval.

In this paper we show that systems of the type (1.1) and

(1.2) can be reduced to the determination of a matrix function

~ (z) = (~1(z) , ~2(z)) analytic in the plane cut along (a,b) ,

satisfying certain growth conditions at and along the cut,

(a,b),

A (x),~~(x) = —e~~
1A (x)~~— (x) +F(x) (1.3)

I’ ~~ 

-

where A (x) is a coefficient matrix with elements linear

- L
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combinations of a’,~~,y and 6. The system (1.3) is a coupled

• system. We effect a linear uncoupling of this system by intro-

ducing certain similarity transformations. The matrices

associated with these transformations are explicitly computed

and hence exact solutions are derived. In physical applications,

such as the determination of the stress field in an inhomogeneous

body containing flaws, the relevant physical quantities are

expressed in terms of the matrix function •(z). One need not

actually solve for cp1 and in (1.1) and (1.2). The

functions ~1
(z) and ~2

(z) are defined (say in the case p=1 )

by

i ( t )dt
l~~~ 

— 

R(z) i ~
a ( t _ z ) M

i-u
• where R (z )  = [(z-a) (b_z)) r . These functions must be defined

on appropriate branches . Analogous representations are intro-

duced for

Section 2 of the paper thoroughly analyzes the case

while in section 3 we choose ~i = 2. These are the two cases of

physical interest. In section 4 we consider some explicit

examples : (i) a ’(x) = a ’, ~~(x) =
~~~

, y(x)  =~~‘ and 6 (x) =6 with

s i = ½.  p= l  and ~~~~~~~ and 8 constant; (ii) a (x)=S,

~ 

(x) = ~~ , ~y Cx) = ~ and 6 Cx) = -~~ with ~j  = ½. p = 2, and a,

- —- -

I.. ‘

~~~~ —~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —-— — - -~~~~~~~~~~~~~~~~~ - - ~— J~i ~~~~~~~~~~~~
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- 6 constant. The final section demonstrates how general dual

- 
relations (given in terms of the Erdelyi-Sneddon ~peratore of

- - fractional. integration-see Erdelyi-Sneddon [1)) may be

reduced to systems of the type (1.1) and (1.2).

‘
4.

- —-•~~~~~~~~~
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• 2. The first generalized Abel system.

In this section we consider the generalized Abel system of

equations,

xcp 1(t)dt bcp2 (t ) d t
- • a(x)(’ 

~~~~~~~~ 
+ 6 (X) 

[
~ 
(t—x)I~ 

= f1(x), XE (a,b) (2.1)

— b q 1(t)dt X ~2
( t )dt

v(x)J (t—x)M~ 
+ 6 (x)J’ (~~t)M 

= f2(x), XE (a,b) (2.2)

where cw,e,v, and 6 satisfy conditions to be specified later.

However, we do assume that f1 and f2 are Holder continuous

on (a ,b ) .  -

As in Sakalyuk [(0], we define the sectionally analytic

functions

b
1 ~ 1(t )

= 
‘
~~~

1a 
( t — z ) I t  dt, i=1,2. (2.3)

• i-u
where R(z) = [(z-a) (b-z) ]~~~~~~~~~ and the function is defined by

some branch. If q~~(t) satisfies ~~(t)= ~j(t)[(t_a) (b_t)]M~~~~

where e > 0 and q,~ (t) is Holder on [a,b], then ~~(z) is

analytic in the plane cut along [a,b]. Moreover, the boundary

limits •~
t(x). where

— u r n  •~~(z) a<x<b 
-Im (z)>()

and

- • •~ (x) — u r n  • (z), a< x c zb
Z*X
Im(~)<0

I.- - - 

~~~~~~~~~~~

--‘- - 
_ _ _~~~~~~~~~~~~~ ~~~~~•:T I------ —~~~~~~ -- - __________
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are continuous. In addition,

= 0 (t z-aI~~~~) . z a

u-i
= 0(Jz—b [~~~) , z-’ b (2.4)

~~(z) = 0 (Izl~~~) , z~~~ •

A simple calculation verifies tha t

+ . 
x cp.(t)dt b ~~ (t )d t

= ~()[e S (x — t)~ 
+ 

~ ~t- —x~~ 
] (2.5)

X E  (a,b)
and

~~ (x) = - 

~
—

~[J ~~~~~~~~~ 
+ e~~~f ~~~~~~~ 

(2.6)

It immediately follows that

x ~~ (t )d t  e~~~~~ (x) +~~~(x)
= [ 

~~~~~ 1 ]R(x). (2.7)

XE (a,b)

and
b ~~ (t)dt 1~ (x) +e~~~~~(x)

(t— x)M 
= - I e~~

ml _ l jR(x) . (2 .8)

i=l ,2 .

Substitution of (2 .7)  and (2.8) into (2.1) and (2. 2) yields

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ - ~~~~~~
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the boundary condition on a <x< b , -

a( x)e~~~~~~(x) - B ( x ) ~~~(x) + a ’ ( x ) ç (x) - 3 ( x ) e ~~~~~~(x) = F 1 (x) (2 .9 )

-~~(x)~~~(x)+6 (x)e M 
~~~~~~~~~~~~~~~~~~~ (x) ç (x)  = F2(x) (2.10)

P where

F.(x) = f
~
(x) (e2u~~ — l)/R(x)

This substitution then reduces our problem to determining two

sectionally analytic functions ~1
(z ) ,  ~2 (z)  satisfying the

- growth conditions (2 .4) ;  that is , solving a coupled Riemann-

- Hilbert boundary value problem. Once we have determined (z),

(i=l ,2 ) ,  the functions and 
~2 

are obtained by solving

the Abel integral equations (2.7) and (2.8).

- For convenience we introduce the following matrix notation;

set,

- 4’(z) = (~1(z),~~2(z)?~ and F(x) = (F1(x),F2(x))
T

so that the boundary conditions (2.9) and (2,10) may be written

in the form

+ i— —A (x)~ Cx) =- e~~ A ( x )~ (x) +F(x) • a<x<b (2.11)

where - 
A (x)  = (a jj (x)) . i.i = 1,2 with

a11 Cx) = a Cx) eMl
~ , a12 Cx) = -B Cx) , a21 (x) = —~~‘ Cx) and (2. h a )

~&17ia22 (x ) = 6 ( x ) e  . - •  

— — -~~~~ ~a.•_ .~~~~~~~~ 
— - - ---- — 

~~
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If we require the condition

det A(x) = a’(X)6 (X)e
2
~~

1_ v (x)6 (x) p~ 0, a < x < b  (2.12)

then the matrix A(x) is invertible and (2.11) is equivalent

to the boundary condition

~~(x) =-e~~~G(x)~~~(x) +g(x) a < xcb  (2.13)

where

G(x) =A~~~(x)A (x) and g(x) =A 1(x)F(x). (2.14)

It is necessary for us to determine conditions whereby the

coupled Riemann—Hilbert problem can be uncoupled. We shall

effect a linear uncoupling of the system (2.9) and (2.10) by

finding a non~ -singular matrix P ( z ) ,  analytic in the complex

plane (except for perhaps a finite number of poles) with a pole

at infinity and such that for a < x < b

• P (x)G (x)P~~ (x) = D C X )  = (d~~ (x) )

with d12 (x) = d21 (x) = 0

Let ECz) = (E1(z),E2 ( z ) )T be defined as follows:

E(z) = P(z)~~(z). (2.15)

•1 

—
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Note that E(z) is analytic in the plane (except for perhaps

a finite number of poles) cut along a<x<b. In addition,

E(z) satisfies appropriate growth conditions at infinity.

Substitution of (2.14) into the boundary condition (2.13)

yields the uncoupled set of conditions,

• 
• 

E~ (x) =-e~~
1d..(x)E.(x) +k

~
(x), a< x<b (2.16)

i= 1 2 and k ( x ) =P(x)g (x). Thus, this procedure reduces our

problem to the determination of two sectionally ana lytic functions

E1(z) and E2 (z) satisfying appropriate growth conditions at

infinity and the boundary conditions (2.15). The solution to

these Riemann Hilbert problems is well-known (once the index is

determined) (see for example, Muskhelishvili [5~]) .

The main problem is to explicitly determine the matrix P.

We first compute G(x) from (2.14)

G(X) = [det A(x)]~~ T(x)

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 7_ F •~~~ 
• :4~~~~~~~ v~~~~~~~~’1 —-  _ - 
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where T(x )  = [t..(x)] with

t11 =t 22 =a’(x)ó(x) -6(x)v (x), t12 = -2i6(x)ó(x) sin ~~

• and t21 =- 2ia’(x)~~(x) sin ~rn

A non—singular matrix, P(x), for which P(x)T(x)P~~~(x)

- 
is diagonal exists if and only if T(x) has two linearly inde-

pendent eigenvectors. In this case, the matrix P(x)T(x)P~~ (x)

- has the eigenvalues of T(x)  aa its diagonal elements and

P (x) has as its rows two independent eigenvectors of T(x ) .

• 
- If t12 (x)t21 (x) ~~

0 then the eigenvalues of T(x) are

t11(x) ± Jt12 (x) t21 (x) so that for the matrix P (x )  we may

take

• t12 (x) — ,1t12 (x) t 21 (x)

- P(x) =c(x) (2.17)

t12 (x) ,/t12 (x)t21 (x)

where c(x) is -any scalar function.

If t12 (x) t21 (x) = 0 , then T (x) has two independent eigen-

• vectors if and only if both t12 (x) and t21 (x) vanish.

Since T(x) is non-singular this can occur if and only if

either 6 (x) =a’(x) =0 and ~(x)e (x) ~~0 or ~ (x )  = 6 (x) =0 and

6 (x) a( x) y~ 0 . In this case, T(x) is just a scalar multiple of

the identity. For most applications, t12(x)t21(x) ~ O except

perhaps at the endpoints x=a and x=b. Such exceptional

k.~ T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • 
, ~~~~~— -•— ~~~ — --—— -—-~~~~~~~~~~~~~~~~ .
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cases are easily handled . In order to simplify further work ,

we assume that t12 (x) t 21 ( x )# 0 .

Let P (x )  be defined by (2.17) so that

1 
/t11 x +~~t12(x)t21(x) 0

P(x)T(x)P (x) =. f 
_ _ _ _ _ _ _ _ _ _

0 t11(x) — 4Jt12(x)t21(x)

which provides the des ired uncoupling of the pair of coupled

Riemann-Hilbert boundary value problems. The scalar c(x)

is chosen so that P(x) can be extended to a matrix P(z)

meromorphic in the plane with a pole at infini ty. This enables

us to explicitly determine and and hence and 
~2

Inversion of (2.7), (2.8) yields our original unknown functions

and 
~~~ 

An example of this analysis appears in section 4.

3. The second generalized Abel system.

We next cons ider the system

x ~ (t)dt 1 ~2(t)dt

a ( x) J ’ 1 
2 + B (x)f 2 2 = f1(x) , 0<x<1 (3.1)

0 Cx —t ) M x (t —x )~

1 ~ 1(t )d t  x cp2 (t )d t

2 2 + 6 (x) $ 2 2 = f2
(x) , 0<x< 1. (3.2)

x (t —x )~ 0 (x —t )~

____ • • . & s~_~~ 
---- - 

4- —~~- —•.~~—L ~~~~~~ ~~ ~~~
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The interval (0,1) is chosen rather than (a,b) in order to

simplify the analysis. It is trivia l to extend to (a ,b).
L

The case p=l/2 in (3.1) and (3.2) has been cons idered by

Lowengrub £3  ].

Analogous to the method used in section 2 , we introduce

the sectionally ana lytic functions ~1(z) and ~2 ( z) defined

by,

1 c p . ( t ) d t
= (z 2 — 1)~~~½$ 

1
2 2 ~ 

i = l , 2 ( 3.3)
o C z —t )

If q,~~(t) satisfies p .(t) = (t)t t(l—t)]~~~~~ where

e= 0 and ~~ (t) is Holder continuous on [0,1], then

( i= l ,2) is analytic in the plane cut along [-1, 1] and

satisfies the following conditions,

0 ( f z _ 1I~~~
½ ) as z - 1

= O ( ( z + l I M ~~ ) as z - — 1 (3.4)

and ~‘ . ( z) = 0 ( I z j ~~~) as z -~~

Moreover , the limiting values are continuous funotions

for x~ <1 except perhaps for x = 0 .

For each of the functions (z - 1) M~~ , (z + 1) (z - t) ~~

and ( z + t )~~~ we take as the branch cut that line lying along

the positive x-axis and res trict their arguments to lie between

0 and 2ii. The following limits, for 0<x< 1 , are easily computed:

~~~~ ~~~~~~~~ •
- 
.. ~~~~~~~.: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ ~—-~-- - - -
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~~ (x) _ i 1 x 2~~ _ ½ [1
1 ~~~( t ) dt  

+ e~~~~
$

X 
~~~

(t ) dt~~
X (t 2—x ~~ 0 (x -t ) MJ

~~ (x) =j ( l~ x2 )~~~~ 
~:2 

+ e M9 
(x2~t

2) 
(3.6)

whereas for -l - < x < 0

~~ (x) =~~i (l~x2 )~~~~~~j ~~~~~~~~ + e~~~~} j ~~~ :t~~~

~~(x) =i(l~x
2
)~~~

f 

S + e~~~~S~~~
1

2 2 ~~~~ . (3.9)

It should be observed that for -l<x<0 ,

±
~ . ( x ) = -  ~ . ( - x)

‘
I 

~ 1 1

+ - 2 _~~~~q,~ (t~~t
~~~. Cx) + ~. (x) = 2 sin ~ rr ( l— x ~~ S 2 2 ‘ (3.10)
I 

O ( x _ t ) M

and

s M
~’~~(x) +e M~

1
~T (x ) =-2 sin u 1-x2

) j  1 
(3.l]~

• x ( t -x )

for 0 < x < 1 .

Substitution of the above into the original set of integral

equations (3.1) and 3.2) reduces the problem to the following:

_ _ _ _ _ _  

‘I
~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ •~~~~~~~~~~~i~~~~~~~

_ __ — - ~~~~~~~~~~~~ •;;~_~ •~~~~—-  ~.i-
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determine two sectionally analytic functions ~1(z) and

~2 (z) satis fying the conditions (3. 4) and the boundary values ,

[a’Cx)~~~~~ _ B (x)e m
~~~~(x) J + [a(x )~~~_ B ( x ) e M~

iç(x) ]  = F 1 (x) (3. 12)

0 < x < 1

(x) ~~ (x) ] + [6 (x) I~ ( x ) —y ( x ) e ‘I (x) ]  = F 2 (x) (3.13)

0 < x < l

where F.(x) = 2 sin

In matrix notation the system (3.l2)-(3.13) becomes

A ( x )~~~(x ) - B ( x )~~~(x) + F ( x )  0 < x < 1  (3 .14)

where ~‘(z) = (~1
(z ) ,~~2Cz))

T
, F (x ) = (F1(x),F2(x))

T,

A (x) = (a..(x)) with a11(x) = cr (x) ,
a1 (x) = — 8 (x) e ~~~

1, a21
(x) = — ~ (x)e~~’” and a22 ( x )  = 6 (x),

2

and B (x)  = A ( x ) . (3.].4a)

In order to determine ~ (z), boundary conditions for

must be extended to all of [-1,1]. It is clear from

(3.9)  how this extension is to be performed.

In particular, we obtain the system

= - ~~(x)~~(x) +~~(x) -1<x~~1 (3. 15)

( A (x)  0 < x < l
where A ( x ) =~~~ _ _ _ _• 1_A (_x ) -1<x <0 •

A 
( B(x) 0 <x < 1

B( x ) =~~~ _ _ _ _ _  
(3.16)

—1-<x<O

- ~~~~~~~~~~~~~~~~~~~~~~~~ : 7 t~~~1~~~~~~ ~~~~~~~
‘ ! ~~~~~~~~~~~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J~~ - - -
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r F(x ) O< x <l
and F(x) = 

___

L F(-x) -1< x <0

I
As in section 1, we assume that ~~(x) is invertible for

— l< x <1 . The expressions in (3.16) imply that it sufficea to

assume that A (x) is invertible for 0< x <l , or equivalently,

that

p~ 0 0 < x < 1

This gives us the system,

+
~ (x) = —G (x)~~(x) +~~(x) — 1 < x < 1  (3.17)

-~ A ._1 A A _ i  ~~~~
_

r where G(x) = A (x ) B ( x ) = A (x ) A ( x )

A 
A _ l A

F and g(x) = A  (x)F(x).

Thu~~we mus t now find a sectionally analytic matrix, ~ (z)

satisfying appropriate conditions at 1 and -1, a growth condition

~(z) = 0(~zJ
1
) at infinity, and the boundary- values (-3.17).

We seek a linear uncoupling of (3.17); that is • a non-singular

- A A A _i

matrix ~(x) such that P(x)G(x)P (x) is a diagonal matrix

for — l<x <1.
A

We first compute G(x)  on 0 < x <l and obtain.

= [det (A(x))]1T(x)

where T(x) = [tij (x)] with t11(x) =t22(x) = 6 (x)a(x)—?(x)8(x),

t12(x) = —2isin~ iTô (x)B(x) and t21(x) = —2isin Mlra(x)y(x)

If we employ the arguments of section 1, we see that,

- ~~~~~~~~~~~~~ I_~: i T’ ~~~~~~~•~ 
--

~~~ ~~~~~~~~~ —~
-

•~ ~~~~~~~~~~ ~~~~~~~~
- -- - -

~~~~~ 
- • ~~~ ~~~~~ 

_
~~ 

- 
~~~~~~~~
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• (t 12 (x) —,/t 12 (x) t21 (x) ’
~P (x)  = c ( x )

• \ t 12 (x) J t12 (x) t 21 (x )J  . (3.18)
- 

(-6 (x) B (x) -~ a C x ) B ( x ) y ( x ) 6 ( x )
=+ 2i sjn Mrr c(x) 

_ _ _ _ _ _ _ _ _ _ _ _ _

—6 (x)~~(x) 4Ja(x)6(x)y(x)6 Cx)

— 

* (provided t
12(x)t21

(x) ,~ 0)

produces the desired uncoupling of the boundary conditions (3.17)

for 0<x<l.

In particular, —

1 
(t11

(x) +~~~~~ (x) t 21 (x)~ 0
P(x)T(x)P Cx)

~ 
0

on 0< x<1.

A A ANext we compute G(x) for -1<x<0. Since G(x) =G(-x)

for -1 <x < 0, we find that

G(x) = Cdet (A(-x))]~~T(-x) -1< x< O.

Moreover, since a(x),B(x),y(x) and ô (x) are real, the rows

of P(x) are also independent eigenvectors of T(x) for

0-< x<l . Hence P(-x)T(—x)P(-x)~~ is diagonal for -1<x<0,

and if P(x) is defined by

A 
IP (x) 0< x <1 P(x) 0<x <l

P(x) =~~~ or 
_ _ _

- 

1~~
C_x) -1<x <O -l<x<O

A A A ...1then P(x)G(x)P Cx) is diagonal for -l<x <l. If in addition

• ~~~~~~~~ *~~~~~
•
_

_
_ ~~~~~~~~~~~~~~~~~~~~ -• 

•
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P(x) can be extended to a function ~(z) meromorphic in 4
with a pole at infinity, then E (z)  =~~ (z) ~ .(z) defines a

sectionally analytic function E(z), satisfying properties

analogous to 3.4 and the boundary condition

+ A A

E C x) = —D(x) E (x) + k ( x)  — 1 < x < 1  (3.19)

A A A A— iwhere - D (x) = P (x) G (x) P Cx)

and k(x) = P ( x )~~(x) . An example illustrating this ana lysis

appears in the fourth section.

§4 Examples.

As a first example, we consider the set of equations (2.1) ,

(2.2) with a(x) =a , 6(x) =6’ ‘((x) =~~~ and ô ( x ) =ô . Here, a,

~~, 
y, and ~5 are all complex constants. Since this example

appears in various applications, we display the appropriate

matrices and write out the solution. We assume that a8yó ,’O .

The coefficient matrices needed in (2.13) and (2.14) are

given by:

r6 ~~i—1 1 e B
A (x~ 2~ iii ~~i 

, (4.1)
aôe 

~~~~~~ 
a

- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 

- -
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___________  

r aó — — 2i86 sin
2~~iaöe —2iay Slfl u~ a6 — (4 .2)

16 6 4/ciB V6
P (x)  = —2i sin u-rr I ____  i (4.3)

1 ó~ —~Jcvpy6 J
while the diagonal matrix, D(x), used in (2.15) takes the form ,

aó- 8V + 2 i s i n umJa
~

v6 0 1
D ( x ) =  2 (4 4)

a6 e u1r1 .~ 0 — — 2i sin uir~Ja~ va

The problem is then reduced to the solution of the uncoupled

Riemann Hu bert problem: determine E1(z ) ,  and E2 (z) ana lytic

everywhere in the plane except along the cut (a,b) where

and E2 satisfy the conditions,

E~(x) = e (v +X ) 1  
~ E1(X) +k1(x)

E~(x) = - ~~~~~~ ~a 
~~ (x) +k (x) , (4.6)

2 ~~~2 
2

E1 (z) = E2 (z) = O(~ z)
1
) as z~~~

and ).X,p.~ ,k1(x) and k2(x) are given by:

• _ 
- - 

- 

~~~~--- — ‘
~~~~~~-• ~~~~~



fl~~ ~
- - -7—----• —

~
-- -  — •- - -

19

_11 2 sin~tii~Jcw~~6 1
v = tan L óa — ~~ y J (4 7)

x = tan 1 [ — i  + YB\~ tan C4.8)

p = [(6cy -~~~)
2+ 4 sin 2

~~~(aB~ 6)J
½ 

(4.9)

v = [(a6 )
2
+ (v~) 2 2a5 v6 cos 2~.L7y ]½ C4 .10)

• where rk1(x) F 1 (x)
K ( x ) = I = - [P(x )A ~~X)] . (4.11)

Lk 2 (x) F.2 (x)

For example, the solution of the coupled pair of equations

X 

~~~~~~ 
1 q,2(t)dtI ( x — t )  + $ (t — x) = , XE (—1,l) (4.12)

0 x

and

1 cp1( t)dt  ~x 
~~~~~~~

~ 
Ct~~x)½~ J 0 Ct— x)~~ ~2 

xE (—]~1) (4.13)

Cwith f1 and f2 constant)

require the determination of the sectionally analytic functions

Cz), z2 (z) with and E2 vanishing at ~ and satisfying

the boundary conditions,

4(x) = — E~(x) +k1, XE (—L1) (4.14)

4(x) = Cx) + k 2, x E ~—1. 1) (4.15)

where k1 and k2 are the complex cons ta its

LI~~. - 

:~ _ _—I J



(1 — i) (f1+ f2), k2= — (1 + i) (f 1 — f2)

It is a simple matter to demonstrate that the solutions to the

above Riemann Hu bert problems are given by
H

- -

1 Z
= r~~

(l + i) Cf i+ f 2~ {~~( z + i) ( z — l )  — (4.16)

and

= — ~~~~~l + i ) (f 1— f 2 ) in [-~~
] (4.17)

so that

= - i[E1
(z) +E2 (z)]

and

~2 C~~ = —i[E2
(z) — E 1Cz)]

The unknown functions and are then determined from

the Abel equations (2.7) and (2.8) where RCx) = 4J ~1-x ’) .

One can see that even in the simple case (4.12) and (4.13) the

results are quite complicated. Fortunately, for applications,

one is usually only interested in (z) and (z). For

problems in the theory of elasticity, [see Lowengrub [4 J] the

stress field is expressed in terms of these two sectionally

analytic functions.

Secondly, we consider the particular case of (3.1) and

(3.2) with

M= ½ , a C x) = e .  B Cx) = ~~~, ‘,~(x) = a  and 6 (x) = - ~~~

where a and ~ are cons tants . We show that our methods

— V ~~~~ I _ — -. 
~~~~~ ~~~~~~~ — ~~~~~~~~~~~~~ ~~~~~~~ ____________ —
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yield the same result as in Lowengrub [3]. We consider the

coupled system
• ‘- + A A

A ( x) I  (x ) = — B ( x)~ Cx) +F(x), -1<x<l

-
~ where A (x) , B(x), and F(x) are given in (3.l4a) while A , B

and F are defined by (3.16).  It follows that the condition

dat A ( x ) ~~~0 implies tha t ~
2 

a2# 0. In addition, if 0<x< 1

- 
• we have

(8
2+a2

\ 2icyB
x x ) 2

- G( x ) = - X (4.18)

~
2_ a2 — 2iaS — (6

2+a2
)

/.& -~~\
P(x ) = ( ~ J, (4.19)

1
/
/

/ 2
—l l (~~6~~~ 

0
P( x ) T ( x ) P  Cx) = — — 

2 
• 

(4.20)

\ 0

while if — l< x< 0 , 
-

/ 21 ( 6 — a )  0
_ _  _ _  _ _ _  1 1
P( - X) T( x) p~~~(— x) ~ 0 (~~+ cr) 2 (4. 21)

and det A(-x ) = ~(~2_ a2).

Thus, the uncoupled Riemann boundary value problem becomes:

~~ 

determine~~~~eectiona11y analytic functions E1(z) and E~(z)
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that vanish at infinity and along the cut -1~~x � l  satisfy

the boundary conditions

4( x) = ( a) E~~(x ) + k 1 (x) ,

(4.22)

4(x) = ( ~~
‘
~~ )z ; (x ) ÷ k 2 (x) ,

This is in complete agreement with Lowengrub [3 ], where the

solution to the original pair of Abel equations is given along

with an application to elasticity.

§5. application to dual Lelations.

In what follows, use will be made of certa in well known

operators of fractional integration, differentia tion and Hankel
• - transforms which were introduced by Erdelyi and Sneddon [

~
Let S denote the Rankel transform

• S ff(g);xJ = 2ax_aj’ ~~~~~~~~~~~~~~~~~ (5.1)

and for a>O define the fractional integral operators ‘Il a 
•

by

a—i
I~~~tfCg);x) = r() J

~~~~~~~~~ 2 2  
~
2’
~~ f(~)d~ (5.2)

~~~~~~~~~~~~~~~~ 
..

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~ --- —-——‘ -~- --~ - - 
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K~~~ff(g);x} = )J (~~
_ x )

~~~~~~~~~~~ f(g)d~. (5.3)

For a < 0 the fractional der ivatives I and K are

defined to be the formal inverses of the operators I

and K respectively. Frequent use will be made of the

well known identities relating these operators. [See Sneddon

[ 7 ], page 274.] -

• We shall cons ider systems of dual relations of the form

• f~~( g )  + bB(~~)]( 2
~~ (~ x)d~ = f1(x) 0~~x <l

f [cA (~~) +dB (~ )J ( 28
T (~x)d ~ = f2(x)

(5.4)

J A C ~)3’(~x)dg = 0

1 <x <~~
= 0 ,

where a ,b ,c and d are cons tants .

Systems similar to (1) have been discussed by various

authors. Closed forms solutions have been obtained by Lowengrub

and Sneddon [~~.]  for the cases a = B = -½. M = 0, v = 1 and

a = B = -½, M = ½. v = -½. In the former instance, the system

(1) was reduced to a system of Carlemann type singular integral

equations whereas in the latter the generalized Abel system

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~ 
.
-
,

----- 
_
~~~~~__ i ~~~~~~~

_
~~~~~ij 

;~~~~~ç~~_ — ~~~~~~~~~~~~~~~~~~ 
—-- 

~~~~~~~~ — 
- • ,  

- - 

-
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(3.1, 3.2) was obtained. Westmann used similar techniques to

construct solutions for c i = 8  and p . = v = 2 , whereas Erdogan

[2 ] presented a method for reducing (1) to an infinite system

of algebraic equations.

• The procedures developed for treating special cases of (5.4)

have mostly been ad hoc. We shall indicate a more systematic

approach for analyzing (5.4) wh ich in certa in cases reduces to

the generalized Abel system (3.1, 3. 2 ) .

In operator notation the system (5. 4) becomes

S [[a0 ( ~~) + b v ( ~~) ] ; x } F (x) , O < x < l  (5.6)1

S f[c~ (~ )+bY (~)]x3 F2(x), 0<x <l (5.7)
~~— B ,2B

S (q,(~);x) = g1(x)I~~l—x ), x>l (5.8)

S ~y ( ~~) ;x} = g ( x ) H ( l — x )  , x > 1  (5 .9)

~~o 2
2 ’

where ~ (~
) =A(~)/~ , ~ (~

) = B ( ~~)/~ , F1(x) =2
2a

f
1

(X)/X
2a

,

F 2 (x) = 2 26 f 2 (x)/x 2 6 and g1(x) and g2 (x) are unknown

functions for 0< x < 1.

Formal inversion of (5.8) and (5.9) yields

- r~~-~ - 
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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c p (~ ) = S (g1(x);~~}

2’
k

= S  o K  [ k]
.~,0 .

~
yy ~

and 

2 1 x ~~~J + (x~ )k 1(x)dx (5.10)

= S [g (x)~~~}2

= S 0K [k].~, o ~~~~~ 
2

= s  [ k ]2
2

= 26 (8
$ x1 6 k (x)~~~÷6 (x~ )dx (5. 11)

• where k1(x) = K

k (x) = K [g ],
2 

~~~~~~~~~~~ 
2

and ~ and 6 are parameters to be specified later. The

manipulations involved in (5. 10) and (5. 11) are well known and

- 

may be found in Sneddon [ 7  1.

Substitution of (5.10) and (5.11) into (5.6) and (5 .7 ) ,

followed by an application of appropriate fractional transforms ,

yields

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
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I S [[acp (~ ) +b’y (~ )];x} =

-~ +a ,X -~ -a ,2o~
A

= a S  ~.s [k 3 -i- b S S [k ] (5.12)1 
~~~a X+2a ~~~~~ 

2
and

I aS f[ccp (~ ) +d1fr (~ ) ] ;x) =

~~~~~ ~ — e . 2 e

= c s as Ek 3 +d S .S Ek 3 (5.13)

~~~~~~~~ ~ L~~y 
1 

~~— 6 ,26 ~~~ 2

where £~1 (x) = I [F1
],

[F]2 £ + B , P  2

and X and p are parameters as yet unspecified.

There are two trivial cases of (5.12) and (5.13).

If ~~~~~~~~~ let y = 5 , X = — a  and P=— 8  then these relations

become

a S as  [k 1] ÷ b  S a S  [k 2 ] = p
1 (x)

~~— cw ,a •
~ , Y  ~- — a ,a -~

,y

= a K [k 1] + b  K Ek J (5.14)
- ~~~- c ~ ,a+y 

2

and

c.S ‘S [k 3 + d  S S Ek ] = F (x)
~ I ~ 2 2

2 B’ B 2 ’ s” 2 8’ 2 ’

= C K [k ]+d x [k 2 ]. (5. 15)
1 -~ — 6 , 6 + V

- -
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If we invert relations (5.14) and (5.15), one obtains a simple
- algebraic system for k1 and k2
L

— A second trivial case results if ~~~~~~~~~ + a - = 0, since by

choosing X + G ’ = p + B = y + a = ô + S = O  we obtain

a S oS [k 3 +b S aS [k 3 = (x)1 2 1
2 — a ,a 2’ 2 a , a 2 ’ 8

= ak + b I [k 1 (5.16)2

and

c S  S + d S  S [ k ] = ~~~~(x)
£ _~~ ~~~~ ~~~~~~~~~~~~~~~~ 

£ 2 2
2 ~~‘ 2 ’ 2 ~~~~~ 2 ’

= c I [k
1
] +d Ic2. (5.17)

2~ 8 a

Application of I to (5.17) yields

c k +d I 1k 3 = I [~‘ ] . (5. 18)

2 ’ B 2’ B

It is now a simple matter to solve (5.16) and (5.18) for k1

and I c .

In general the system (5.12) and (5.13) cannot be solved

so easily. However, it may be simplified in either of two ways .

If , for x , y , p  and 6 , we choose v = - a . ~ = -B .  c = 
~~~~~~~~~ 

- B

and X = - a then the system becomes

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ - - -
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a I 1k 3 + b K 1k 1 = F (5.19)
~~~~~ 

1 
~~- a ,~~~~ + ( a - B)  2 1

C K [k ] + d  I 1k 3 = . (5. 20)
£ ~~~~~~~~~~~~~~ ) 1 ~~~~~~ 2 2
2 ‘2 ~~~~~~~ 2 ’ 2

Whereas by choos ing ~~ = - • 6 = - a , p = -~~~ and

X = —a we obtain

a K  [ k ] ÷ b I E - k ] = ~~ (5 .21)
.k 

~~~-~~ -i - (  ) 1 £~~~~L 
2 1

2 a B 2’ 2

c i C k J + d K  ~k ]= ~~ . (5.22)
• ~ ~~~ 1 £ _ ~~~~~~ 2 2

-; 2 ’ 2 2 ~~‘ 2 ~8— a

The systems (5.19) - ( 5 .22 )  may be regarded as generalized

F Abel systems. In most applications a = e  and hence we shall

consider only this case for the remainder of this section.

It should be observed that when 
~~ 
- ~ is an even integer the

operators appearing in -(5.19) - (5.22) are not of fractional

order. It is then a simple matter to reduce either of the

systems (5.19), (5.20)

or (5.21), (5.22) - to a single linear ordinary differential

equation. In particular, for the case considered by Westmann 
~~~]

(i.e. ‘~,=~~+2) the system (5.19), (5.20) reduces to a simple

first order linear differential equation.

If M -V is not an even integer then the operators are

~~~~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Ai~~Z~_~~~ ~~~~~~~ -
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of fra ctiona l order , with both frac tional integrals and

fractional derivatives appearing in bo th sys tems. However, in

certain cases it is possible to reduce the systems (5.19) — (5.22)

to Abel systems of the form (3.1) and (3.2). We might note

that if ~i-~~ is one - 
- the Abel system obtained will

contain only operators of order 1/2 , whereas in general , opera tors

of different order will occur within the same system. Provided

neither of the unknown functions appears in operators of differ-

ent order , a straight forward extension of the technique

presented in section 3 will treat such systems .
— 

As an example, cons ider the system (1) with v = l , ~~= 0 ,

a = = ½. If we let X = p = -½. ô = -l and y = 0 we obtain

a K ½ ½~~ l + b  I½ ½ [k 2 ] = p
1 (x) 

(5.23)

~ I~ ½~~l~ 
+d  KO, _½ [X 2 J = ~ 2 (x) . (5.24)

Since, - x
1
½,_½

[k21 = S~~
2 — t 2 ) 

~~~Ctk 2 t )]dt

K
0 ½

[k2 ]

- 

Ic1 ( t )  = g
1 

(t )  and

k2 (t)  = x~~,1E~2 ] = 2t~~~$ g 2 (u)du ,

L - _____ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- — -

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ 

- 
--
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the system (5.23), (5.24) yields the generalized Abel sys tem,

~~~ r (t2~x2)-½tg1(t)dt~~b $
X
(%2_

~2)
_½

g2(
~
)
~~ 

= ~~~~~~~~ (5.25)

1

£ $ (x2_t2)~ ½tg (t)dt + d 
$

‘
(t 2_x 2 ) _ ½

g2 ( t ) d t = r~~~~~2 (x) ( 5 . 2 6 )

- 
- - 0<x< 1 .

4

’ -
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