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This paper describes the por table compiler for Algol 68 developed at RSRE
by Currie and Morison. Chapter 2 defines the language extensions handled
by the compiler, and the system of modular compilation as seen by the user.
Chapter 3 outlines the structure of a complete system, emphasizing the
design of the intermediate language produced by the compiler for input to
a machine—dependent translator . Though factual , this paper is not the
system documentation.
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I INTRODUCTION

The aim of a portable compiler is to reduce the cost of implementing the
same language on different machines. It should also reduce the time taken
to shift the load of a computing service on to new hardware. This is the
credit side of portability . On the debit side , the product can be
inefficient in use, f or no single compiler can generate a universal machine
code adaptable by some simple transformation to any type of machine.
Traditionally, the compromise — if attempted at all — seems to have favoured
portability at the expense of a really good match to the hardware. The ‘RS ’
compiler designed and written by I F Currie and J D Morison, and originally
described by Currie (ref 1) in 1 976 , shifts the balance in favour of efficiency.
This compiler tries to make no assumptions at all about the machine for which
code is to be produced , confining its activities to things which must be done
for any machine , such as syntax analysis of the source text. The output from
the compiler, known as stream language, is far  removed f r om ‘code ’, and
being at a comparatively high level leaves a fair amount of work undone.
The implementor must write a second pass — a translator — which will take
complete responsibility for code production, including representations of
values and storage allocation.

Potential users are likely to ask two questions . Is the language true
Algol 68? Just how much work is required to complete a system? Although
no attempt is made in this paper to catalogue unimportant deviations from
Algol 68, chapter 2 should give an idea of the language and its extensions,
such as those which deal with independent compilation of program modules.
The amount of space devoted to this topic is indicative of the importance
we attach to the subject. As answer to the second question, chapter 3 is
intended to give enough information for experienced system programmers to
judge for themselves what effort is likely to be required . At the time of
writing , there is little factual data, for three implementations are in
progress but none is yet complete .

The present paper is not the RS system documentation required by translator
writers, though it may prove useful as an introduction to such documuentation.

Important note

The information given in this paper
must not be taken as definitive for
the ‘RS ’ sys tem or f or the language
it accepts.
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2 THE SOURCE LANGUAGE

The language accepted by the compiler is Algol 68 as defined in the Revised
Report (ref 2) with some deviations , principally that modes and identifiers
must be declared before they are used. Arrays are not copied in identity
declarations and in the corresponding parameter situations. The handling
of flexible arrays differs from the report in that flexibility propagates
through a mode to the right (ie inwards). The use of transient references
is not checked. These are the main deviations. There are also some signi—
ficant extensions to Algol 68 which influence the design of a translator.
Two new types of data structure have been added to the language, mainly to
increase efficiency in critical applications such as data processing,
compiler writing and translator writing. Other extensions have been
introduced in the light of experience to provide flexibility in system
programming work. Most extensions can be concealed from the ordinary user
by restricting the generally available documentation. But they cannot be
concealed from the translator writer , who may wish to exploit them and must,
in any case, be able to translate their stream language images into machine
code . The various extensions are described in 2.1.

The unit of compilation in the RS system is known as a “module”. A program
can be assembled from any number of interacting modules with full mode
checking across their boundaries , and as this is an extremely important part
of any compiling system, it is defined at some length in section 2.2.

2.1 EXTENSIONS TO ALGOL 68

2. 1. 1 Vectors and indexable structures

A vector is a one—dimensional array with an understood lower bound of I.
A typical declaration would be

VECTOR m l  INT v;

where the size n can be any unitary clause. A vector can be flexible or
not , and subscripted and trimmed l ike an array , though the use of “AT” is
forbidden. In strong contexts, a single object can be ‘rowed ’ to a
vector. The overheads associated with vectors are smaller than for arrays,
and assignment of vectors is simpler than for arrays because the elements
are always contiguous.

The indexable structure or more briefly “i—struct” represents the ultimate
step in removing array overheads whilst preserving the facility of indexing.
It groups together a fixed number of objects of any specified mode ; for
example , a STRUCT 30 REAL consists of 30 reals, and the size 30 is par t of
the mode. The size must therefore be an integer denotation. An i—struct
can be indexed with the same notation as for an array, and the indexing
starts at I. If trimmed , it gives rise to a vector (though as with vectors,
the “AT” construction is prohibited). In strong contexts, a single object
can be ‘rowed’ to an i—struct. The i—struct enables fixed length rows of
characters to be handled with the efficiency expected for Algol 68 BYTES,
LONG BYTES etc , but without any restrictions on length.

3
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Coercions on i—structs and vectors are all in the direction i—struct to vector
to array. All such coercions (including ref i—struct to ref vector etc) are
allowed before uniting. However, i—structs , vectors and arrays of the same
mode can exist side by side in the same union , and any seeming ambiguity when
uniting is avoided by preference for minimum travel in the “i—struct to
vector to array” direction . The same preference rule applies to operator
selection, as shown in the following example:

OP £ (VECTOR [ I REAL p) 
OP £ = ( [ ] REAL p ) 

With these two declarations in force, an actual operand of mode STRUCT 4 REAL
would be coerced to VECTOR [4] REAL and the first operator definition would be
selected .

String denotations are i—structs (eg “ABC” is STRUCT 3 CHAR), but the above
coercions ensure that users wishing to avoid the language extensions need not
be aware of them. The word VECTOR will not appear in compile—time diagnostic
messages unless it has already been explicitly used in the source text, and
messages concerning strings like “ABC” will typically be described as
“3 CHAR ” rather than “ STRUC T 3 CHAR”.

2 . 1 . 2  The FORALL statement

The FORALL statement has been introduced for e f f ic iency in sequenc ing through
all the elements in one dimension of an array , or al l  the elements of a
vector. As an example, in the unitary clause

FORALL xi IN x DO xi TIMESAB xi OD

the new identifier xi (declared by FORALL) successively takes each of the
values x [i] with i going FROM LWB x TO UPB x. The effect of this example ,
therefore, is to square all the elements of x. It avoids explicit indexing and
the associated overheads in the compiled code. There can be a sequence of
parts like “xi IN x” provided each has the same number of elements. For
example ,

VECTOR [10] INT v;

[ 3 : 1 2 , n :m ] REAL w;
FORALL elemv IN v,

elemw IN w

DO f(elemv, elemw) OD

app lies the function f to all pairs of arguments (v[i], w [i+2, 3) for
i “FROM I TO 10”.

A FORALL statement can have a while part, and the range of the identifiers
declared by FORALL (eg elemnv , elemw) is the WHILE clause and the DO clause.

Primarily for use in conjunction with the FORALL statement, a new dyadic operator,
CYCLE , is defined to act on multi—dimensional arrays. The expression n CYCLE w
delivers the array w with a new descriptor, in which the dimensions are cycled
to bring the (n+1)th to the front.

4
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• 2.1.3 Straightening

A “straightening” facility is provided to enable Algol 68 programmers to
write transput procedures with arbitrarily structured parameters.
Straightening is the reduction of any type of data structure to a simple
sequence — which we shall describe as a “straight”. The basic step is
the coercion of a simple row or structure to a straight; applied recursively,
the method can be used to straighten data structures of arbitrary complexi ty.

The mode STRAIGHT U, where U is any Algol 68 mode (but most commonly a
union), describes a set of objects of mode U. In this respect it is similar
to [ lU , but in other respects it is quite different and must be treated as
a new type of mode . An actual straigh t is brought into existence by strong
coercion of a row, vector , structure , i—struct or union . Such modes are
strongly coercible to STRAIGHT U if their “members” can be coerced to U by
uniting, or by straighte..ing or any of the coercions i—struct to vector to
array (2.1.1). The coercions excluded are dereferencing, deproceduring,
widening and rowing.

Example I

STRAIGHT UNION(INT , CHAR) s i  = “ABCD”

As CHA R is coercible to UN ION(INT , CHAR) , the i—struct  “ABCD” can be
coerced to the STRAIGHT. If si  were the formal parameter of an output
procedure , acceptable actuals would be a row of characters , row of integers ,
structure with integer and character fields or a union of integer and
character. However, a single INT or a single CHAR would not be accepted .

Example 2

STRUCT(INT 1, REAL r) p;

STRAIGHT UNION(REF REAL , RE F INT , REF CHAR) s2 = p

The members of p have modes REF INT and REF REAL, both of which are
coercible to the given union , so p will be coercible to the mode of
s2. Clearly, s2 might be the formal parameter of an input procedure
and p its actual parameter. The actual could not be a simp le real ,
integer or character variable.

Example 3

[1:3]INT v := ( 1 , 2 , 3);

STRAIGHT INT S = v ;

In this example , the members of the variable v have mode REF INT, but 8

is a straight of plain integers. As it stands, v cannot be straightened
to s because dereferencing of members is not allowed . But as v can be
dereferenced before straightening , the example is correct. Considered
as a formal parameter for an output procedure , s would handle any row
or structure of integers , but not a single integer by itself.

5
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As a straight cannot represent an unstructured value, most applications will
demand that it be combined with basic modes in a union, eg

UNION(INT , REAL, ... , STRAIGHT UN ION (INT , REAL, ... ) )

This mode will handle an objec t of data which possesses structure at no level
(eg an tNT) or one level (eg [ lINT) but not more. When an object is being
united to the above mode, then — regardless of the order in which the
constituent modes have been written — the fic will be sought from the non
STRAIGHT modes first , so as to avoid any possible ambiguities of coercion.

To handle one object structured at any number of levels, a recursive mode
is needed.

MODE PRINTMODE = UN ION(INT , REAL , ... , STRA IGHT PRINTMODE)

The definition of STRAIGHT is such as permits this recursion. PRINTMODE
will handle an integer , real , etc , or any row or structure built up f rom all
these to any depth. For a corresponding input parameter mode, the basic modes
would each be preceded by a REF.

The parameter of the standard “print” procedure has mode

PRINTMODE

rather than PRINTMODE . This allows the use of a collateral as the actual
parameter.

A straight cannot be handled with the full generality applicable to other
Algol 68 modes. The manipulations are confined to subscripting and
interrogation by the operator UPB. Let 14 stand for any mode, and let s have
mode STRAIGHT M. Then UPB s gives the number of objects in the straigh t, and
s[i] picks out the ith object (i>=1). There is no such thing as a STRAIGHT
generator or variable , ie objects of mode REF STRAIGHT do not exist — except
for the possibility of NIL.

2.1.4 Low level facilities

Tne monadic operator SPELL takes an operand of any simple mode and delivers a
vector of characters having the same machine representation. If the mode of
the operand was a reference, the operator delivers a REF VECTOR[ ICHAR . For
the purpose of this definition , a “simple” mode is one which contains no
vectors or arrays or which is a vector of such objects.

Code can be inserted in an Algol 68 program by the construction

mode CODE ( unc , unc , ... ) “ code “

which is treated as a primary of the specified mode (absence of which implies
mode VOID).* The unitary clauses , to which no coercions are applied , supply

* Her e, and elsewhere , underlined words are symbolic , and broken underlining
indicates an optional item.

6
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Algol 68 objects for use in the code. Other alien insertions , such as
non—Algol procedures , mus t take the form

mode identifier = ALIEN “ insertion “

ALIEN is allowed only in this identity declaration context .

An alternative method of expressing a string denotation is provided . This
uses the ABS values of the characters rather than the characters themselves —

which might be non—printing characters. The ABS values can be to radix
2 , 4, 8, 10 or 16 , and must be separated by spaces; the string must be
preceded by lOr or 16r or whatever the case may be. Thus the following
3—character strings (or more strictly STRUCT 3 CHAR ’s) are equivalent:
8r “1 15 251” , 16r “1 d a9”, where a—f represent the digits 10—15.

2.2 MODULES — THE UNITS OF COMPILATION

A program can be compiled in portions known as modules , of which there are
three different types . The basic type is the closed clause or cc module
which consists of an Algol 68 closed clause with a suitable heading and
the word FINISH. This could be a complete program or one of a number of
cc modules which are to be nested one within another . In the actual Algol
text of a cc module , any place at which some inner module is later to be
inserted is marked by a new type of unitary clause known as a “here—clause”.

• A nest of modules will be described as a ‘composition ’. The selection and
placement of modules to make a composition is specified in a composition
module, which contains no Algol 68 text of its own. A composition need
not be completed all at once. A program can be partially composed in one
composition module , leaving spaces for further cc modules to be inserted
later on by another composition module.

A third type of module , the declarations module , enables modes , procedures
and other items to be declared and compiled in advance of their use in
other modules. Declarations modules are used in a very straightforward
way requiring no composition , but they can never make a program by themselves.
To make this distinction clear , the other types of module (cc and
composition) will be described as program modules.

2.2.1 Keeplists

Interaction between modules demands that source—text indicators (identifiers,
mode names and operators) declared in one module shall be usable with the
same meanings in another module. The source—text of a module mus t always
specify which of its indicators are to be kept after compilation for use in
modules to be compiled later. A keeplist is a sequence of such indicators ,
separated by commas . To distinguish between versions of operators, the
modes of operands mus t always be included , as in the keeplist here:

MAN , WOMAN , (MAN , WOMAN), = (WOMAN , MAN), adam, eve

The order of the items in a keeplist is never significant.

7
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2.2.2 Simple declarations modules

The sole purpose of a declarations module is to make declared items available
for use in other modules. Consequently, a declarations module must invariably
have a keeplist for such items , and if it uses no indicators from other modules
itself (other than from automatically incorporated library modules), its form
is

DECS decstitle

body

KEEP keeplist

FINISH

In the firs t line , decstitle stands for an identifier chosen to be the title
of the module. The body (which is not enclosed in BEGIN—END brackets) consists
of Algol 68 declarations , and other phrases which may be convenient for setting
things up. Certain restrictions are enforced to ensure that declarations
modules can be obeyed in any order wi thout giving rise to side—effects . Thus
no procedures and no user—defined operators may be called , except inside
procedure or operator declarations . These are the only restrictions for a
self—sufficient declarations module , but we must now turn attention to a more
general class of module which has an added restriction .

A DECS module can use indicators kept from previously compiled DECS modules.
There are two requirements for the passage of an item from one module to another.
Its indicator must be included in the keeplist of the source module , and the
title of that module must be included in the heading of the using module , as
shown in the second line below

DECS decstitle

USE decstitlelist

body

KEEP keeplist

FINISH

The decstitlelist is simply a list of the titles of all the other DECS modules
required , separated by commas. The body can now use kept items from these
modules , with one further restriction to ensure complete absence of side—effects .
No kept item which is a reference (or a structure , array or union containing a
reference) may be used , except wi thin a procedure or operator declaration .
These restrictions on the use of external references and calls of procedures
or user—defined operators are peculiar to DECS modules and free the user from
having to consider at what stage his DECS modules are actually obeyed.

2.2.3 Simple programs

Simple programs will usually consist of one closed clause module , possibly
supported by previously compiled declarations modules . Using square brackets
to indicate this option, the form in which the cc module is written is:

PROGRAM progtitle

[ USE decstitlelist I
closed clause

FINISH

8
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2.2.4 Nested modules

Within any program module, a pl ace can be held for a separately compiled
program module to be inserted later. This is done by the new unitary
clause

HERE place (keeplist)

where place stands for some identifier to name the place , and the
keeplist contains any indicators currently in scope which are to be kept
for the use of the inserted program module. If there are several HERE
clauses in the same module , the place identifiers must all be distinct.

The form of a cc module which contains HERE—clauses is similar to that
of the simple program shown in 2.2.3, except that each place defined
in a HERE—clause must also be listed in the module heading before the
title, ie

PROGRAM (placelist) progtitle

( USE decstitlelist ]

closed clause including HERE-clauses

FINISH

The places in the placelist  are listed , with comma separation , in any
order.

A simp le cc module sui table for insertion at a given place would be

PROGRAM title

CONTEXT place IN prog t i tle

closed clause

FINISH

The CONTEXT part of the heading, if presen t, makes the keeplist at the
given place accessible in the closed clause. It also prevents the module
being used in any other context . (By contrast, a module with no context
specification could be inserted at any place, but would be denied access
to the associated keeplist. This may seem a pointless construction, but
a realistic example of its use is given in section 2.2.7.)

Example of nesting

PROGRAM (detail) frame

BEGIN MODE FORM = ...
OP £ = (FORM f ) INT:  ...
FOR M f i , f2 , gi , g2;

HERE detail(FORN, £(FORM), g2);

END FINISH

9
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PROGRAM insert

CONTEXT de tail IN frame
BEGIN FORM f :— g2;

INT n : Ef;

END FINISH

Although “insert” is compiled in r!~e context of the firs t module so as to pick
up its kep t indica tors , it remains a separate module. A program combining the
two modules has to be expressed as a composition module,

PROGRAM whole
COMPOSE frame(detail = insert)

FINISH

2 .2.5 Composition

The purpose of a composition module is to assemble a nest of modules by pairing
up formal place names ( — the ones in the Algol 68 HERE clauses — ) with actual
names of program modules.

The form of module which completes a nesting, inwards fr om some given staring
module x, say, is

PROGRAM progtitle

COMPOSE nest
FINISH

where progtitle is a new identifier to act as the t i t le of the composition, and
nest starts with the title, x, of the star ting module, continuing with a
bracketed list of substitutions having a place on the left and a (program)
module name or a fur ther nes t on the ri ght.

Exanip 1 e

Given a program module starting

PROGRAM (xl , x2) x

and a set of inner modules with the headings

PROGRAM a
CONTE XT x i IN x
PROGRAM (b I , b2 , b3) b
CONTEXT x2 IN x
PROGRA M (c i ) c
CONTEXT b i IN b

PROGRAM d
CONTEXT b2 IN b
PROGRAM e
CONTEXT b3 IN b
PROGRAM f
CONTEXT c•I IN c

10
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the following composition module combines them all into one:

PROGRAM compo

COMPOSE x (x i  = a~,x2 = b (b l = c ( c l  = f ) ,
b2 = d ,
b3 = e) )

FINISH

This composition module may still not be a complete runnable program,
for x may specify some context. If so, it will obviously apply to
“compo” as well. Composition modules cannot have context specifications
in their headings; the context which applies to such a module is always
that specified in its outermost cc module.

2.2.6 Partial composition

A composition module may leave some places to be filled by other program
modules in a further composition later. It does this by pairing a place
name with a new place name of its own instead of an actual program module
title. A new place name in a composition module is introduced by the
word HERE , even though it is not in an Algol text setting. As an example,
let us omit module c from the composition given above, and make the partial
composition

PROGRAM (hole) p

COMPOSE x(xi = a,
x2 = b(b l  = HERE hole,

• b2= d ,
b3 = e))

FINISH

Observe that there is no explicit keeplist at “HERE ” in a partial composition.
The available indicators are all those kept en route from the outermost
module to the word HERE in the composition. Thus, any module now compiled at

CONTEXT hol e IN p

has available to it all the indicators kept at x2 in x, as well as those
at b i in b. Combination of keeplists is the main purpose of partial
composition , enabling programs to exploit several “environmental packages ”
simultaneously, as we shall now see.

2.2.7 Use of environmental packages

Many packages (eg for simulation or graph—plotting), besides declari ng modes
and procedures , have to set up some starting position before the user’s
program is obeyed, and tidy up afterwards (eg close files which were opened
at the start). The basis of any such package must be a cc module with a
“HERE ” for the rest of the program.

ii
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For instance ,

PROGRAM (userprog)package l
BEGIN

HERE userprog(keeplistl);

END
FINISH

PRO GRAM my prog
CONTEXT userprog IN package!
closed clause FINISH

with

PRO GRAM runner
COMPOSE package l (userprog = myprog)
FINISH

as the composition.

Now consider writing a program, “our prog” say , which requires the services of
1~ o packages , designed independently along the l ines of package i .  The question
will be , in what context to compile “our prog”? It cannot be userprog IN
package), which brings in only keeplistl , nor can it be userprog IN package2
for a similar reason. The only answer is a context like “user IN both” , set
up specially by the partial composition:

PROGRAM (user)both
COMPOSE packagei (userprog = package2(userprog = HERE user))
FINISH

• The context “user IN both” combines the keeplists of both packages, as explained
in 2.2.6. Before leaving this example , it is worth remarking that “package2”
fits at “userprog IN package )” because package2 specifies no particular context.
Being an independent package, it needs no access to package l ’s keeplist.

2.2.8 Declarations modules in a context

DECS modules , like cc modules , can specify a context in their heading:

DECS decstitle

CONTEXT place IN progtitle

body using kepts at above placs

FINI SH

The CONTEXT line makes the kepts at place IN progtitle accessible for use in
the body of the DECS module , with the same restrictions as given in 2.2.2
earlier. No kept item which is a reference (or a structure , array or union
containing a reference) may be used except within procedure or operator
declarations . And as with all DECS modules, there can be no procedure calls ,
or calls of user—defined operators .

12
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Any module which has access to the same kepts (te those at p~~~e IN progtitle)
can USE this declarations module. The context specified by the using module
must therefore be the same as that of the DECS module or be a dependent
context resulting from partial composition — which, by the combination rule,
would supply the same kepts and more besides. To see this clearly, consider
once more the composition

PR OGRAM (hole) p
‘ COMPOSE x ( x I  a ,

x2 = b ( b l  = HERE hole ,
b2 = d ,
b3= e))

FINISH

The context “hole IN p” is derived from “b i IN b” which is in turn derived
from “x2 IN x”. It follows that any module specifying “CONTEXT hole IN p”
can USE declaration modules specifying one of

hole IN p,

b I  IN b,
x2 IN x,

or, of course , no context at all.

2.2.9 Provision for Algol 68 standard environment

Any cc module or declarations module having no explicit context specification
in its heading is assumed by the compiler to have specified a standard

• default context. For descriptive purposes only, we shall refer to this as

CONTEXT %program IN %mkxprelude

Thus, a program which appears to be complete, such as

PROGRAM pmw closed clause FINISH

can only run when nested in %mkxprelude. The intention is that the necessary
composition should be effected automatically. The %mkxprelude will go some
part of the way towards providing the Algol 68 standard environment, and will
do so without any action by the user. (Its kepts are accessible to all
modules without need for partial composition , see 2.2.10.)

The remainder of the standard environment will be provided by library DECS
modules. With the cooperation of its shell , the compiler will supply a
de f au l t  USE for any library declarations modules required in a program.

2.2.10 The void context

A truly outermost cc module specifies CONTEXT VOID and is, by that token,
a prelude. (Absence of any context specification , as we have already seen,
does not imply a void context.) The compiler treats preludes in a special
way. For simplicity of explanation , it will be assumed that a prelude
has only one HERE—clause.

The first special property of a prelude is that it provides what may be
described as a “universal context” for composition purposes. A cc module
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which specifies a prelude context (explicitly or by default) can be inserted
direc tly in the prel ude or in ~ zy dependent context. An example of this is
to be found at the end of 2.2.7 (environmental packages).

The second property of a prelude is that its kepts are universal. Its own
keeplist and those of any DECS modules compiled at that context are freely
accessible to all dependent modules. This is shown below for a chain of
cc modules.

module can access cc keep lists from

PROGRAM (prog) ownprelude
CONTEXT VOID
closed clause FINISH nowhere

PROGRAM (al ) a
CONTEXT prog IN ownprelude
closed clause FINISH prog IN ownprelude

PROGRAM (bl) b
CONTEXT a) IN a prog IN ownprelude
closed clause FINISH al IN a

PROGRAM c
CONTEXT b i IN b prog IN ownprelude
closed clause FINISH bi IN b

The last of these modules , c, shows the accessible kepts to be those from the
immediately surrounding context and the outermost one. The keeplist at
“at  IN a” is not accessible.

Declarations modules , like cc modules , can be compiled at CONTEXT VOID.
Any module can USE such a DECS module. This is a consequence of the general
rule given at the beginning of p 13 , and is in fact the limiting case of it.

Finally, the context for a composition will be VOID if the composition starts
from a prelude . This means that systems programmers will be able to extend
%mkxprelude if they wish, without losing any of its special properties.

14
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2.2.11 Summary of syntax and semantics of modules

Square brackets enclose cpttonal par ts

I DECS module]

DECS decs title
[ CONTEXT place IN progtitle ]*
( USE decs titleliat I
body

KEEP keeplis t

FINISH

Except within procedure or operator declarations, the
body must not use any externally declared references
or call any procedures or user—defined operators.

PROGRAM modul]~~~

PROGRAM [ (placelist) ) progtitle
CONTEXT place IN prog title 1*

• ( USE decstitlelist I
closed clause

• FINISH

The above is a closed clause or cc module. The closed
clause can include “here—clauses” of the form
HERE place (keeplist). This makes a hole which can be
filled by another cc module, as specifie d in a
composition module:

PROGRAM [ (placelist) I progtitle
COMPOSE nest

FINISH

Notes

decstitle, place, progtitle all stand for identifiers. An itemlist is a
sequence of items with conmia separation . For the definition of a keeplist,
see 2.2.1. For definition of nest, see 2.2.5.

* Omission of an explicit context introduces the default context :
CONTEXT %pro gram IN %mkxpr elude
For absolutely no context at all , CONTEXT VOID must be written.

15
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Composi tion rules

A program module can be composed at p IN q if its context specification — explicitly
or by default — is one of the following three possibilities:

p IN q,

the prelude context from which q is derived ,

VOID (applicable only to prelude writers)

The context specification of a composition module is that of its starting module.

Accessibili ty of kep ts for use in a cc module

If the context specification is CONTEXT p IN q, the cc module can use kept
indicators from

p IN q, and any DECS compiled at p IN q;

if q is a partial composition, from any hierarchical context
embracing p, and any DECS compiled at any of those contexts;

the prelude context of q, and any DECS compiled there;

any DECS ‘compiled at context VOID.

Any DECS modules required must be mentioned in the heading of the using module
(at “USE decstitlelist”), unless they are library DECS which may be incorporated
in the final program automatically as needed.

Accessibility of kepts for use in a DECS module

The sources are the same as for cc modules, but any kept references are
debarred from use in the body of the DECS module except within procedure or
operator declarations. This restriction extends to objects such as structures ,
arrays and unions containing references.

16
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3 THE COMPILE R IN CONTEXT

The RS compiler differs from most others in produc ing output which bears
very l i t t l e  resemblance to machine code. The structure of the output is
close to that of Algol 68 in many respects , and yet the work done by the
compiler is not insubstantial . It checks the correctness of the source
text , as far as this is possible by syntax and mode analysis. If an error
is found , it outputs the diagnosis; otherwise the information in the source
program is recast in a form suitable for translation . Complicated operations
are broken down into sequences of the simpler steps adjudged primitive for
the purpose of code generation. For example, as the modes of all objects
in the source program have been determined by the compiler , it can specify
every coercion explicitly. The coercions will in fact make their appearance
to the translator at the precise moments required , even though the
compiler may have had to see much farther ahead in the program to determine
the destination mode. This is one of the fruits of the technique of using
the output from the compiler as a buffer for the re—ordering of information.
The compiler puts its output on one or another of several parallel streams ,
and arranges that the item immediately required by the translator is always
at the reading point on one of the streams . This technique , reported by
Currie (ref 1) to be widely used by compiler writers at the University of
Grenobl e, explains why we use the term stream language for the compiler ’s
output.

3. I ORGANIZATION

In any Algol 68 system based on the RS compiler , the first pass compiles
source text into stream language, and the second pass — which must be a
genuinely distinct pass — translates stream language into machine code.
Al though the compiler is machine independent, this attribute cannot extend
to the whole of the first pass, whose input and output arrangements will
depend on hardware. For each new implementation, theref ore , it is
necessary not only to write a translator, but also to write a new interfacing
shell for the compiler. Figure 1 shows the whole system diagrammatically,

Fig i

1st pass 2nd pass

faults
—streams —

source object
text , input compile output 

— 

translate 
code

specifica tions

library of — upda tes

comp iled modules — assembly
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including the library of compiled modules which will provide for the Algol 68
standard prelude and for users ’ own collections (“albums” in Algol 68—R). To
give it the necessary interfaces, the compiler is written as a procedure , with
parameters for the shell. The specification is:

PRO C compile =

(PRO C(REF [ ]CHAR , REF INT)BOOL input,
PROC(O UTPUT , IN T )VO ID ou tput ,
PROC( ( ]CHAR , INT)VOID faul t ,
PROC( ID , BOOL)Y~.%M~INFO give module details ,

PROC(ID , ID, YM)YSPEC give spec ,

PROC(REF[ J CRAR, BOOL) INT lookup ,
REF[ ] STRUCT(INT type , value) charset
)BOOL:

The parameters give module details and give spec are concerned with inter—module
checking and are not described in the present paper .

The input pa r amete r supp lies a line of source text each time it is called by the
compiler , whose first task is to assemble the stream of characters into larger
units such as identifiers and compound symbols. The compiler cannot do this
unaided , for it has very few built—in assumptions about the character set or
symbol representation conventions. The charset parameter associates the ABS
values of the characters with their semantic values and combining properties.
Bold words are distinguished from identifiers by stropping or by the use of a
different alphabet: the two methods can be made available simultaneously if
desired . Decisions such as this are entirely within the province of the shell
writer , the stropp ing convention being indicated in the charset parameter.
The lookup parameter is a list of the representations used in the source text
for language words and multi—character symbols (“compound symbols”), along with
their meanings expressed in terms of a set of pre—arranged integers used by
the compiler.

Output from the compiler consists of fault messages , and stream language for the
translator. Stream language is a sequence of commands (“imperatives”) which
are generated by the compiler one at a time. The output procedure takes one
imperative , of mode OUTPUT, extracts from it the data needed by the translator ,
and puts it out on the specified stream. Through the output procedure , the
implementor has complete control over the selection and format of the data to
be passed to the translator. The fields of data in an object of mode OUTPUT
are variously essential , gratuitous and superfluous . Gratuitous information
typically gives the translator advance warning of properties of some complicated
clause at its outset rather than when the complicating features actually
appear. Superfluous information is that which is present in an OUTPUT purely
for the compiler ’s own conveni ence , and should be eliminated by the output
procedure . It is strongly recommended to implementors that the output procedure
and translator be written by the same person in order to effect a good match
between passes.

3.2 STREAM LANGUAGE OUTPUT

The mode OUTPUT defined in the compiler is a union which decomposes into one
of a number of more specialized modes , each corresponding to one class of
imperative , such as the class of all declarations . There is one special
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imperative , in a class by i tse l f , which can be disposed of inunediately.
This tells the translator when to switch its reader from one stream to
another. After the stream collation has taken place , the translator sees
stream language as one single unbranching series of imperatives , and
throughout the remainder of this description , this is exactly how we shall
look at it.

3.2.) The structure of stream language

Stream language defines objects and operations (the basic operators of
Al gol 68 , coercions determined by the compiler , assignments , etc) to
produce f u r t h e r  ob jec t s .  This aspect of a program is represented in
reverse Polish , as described in later sections . Operands are loaded on
to a conceptua l stack before the operator is specified. The other facet
of stream language is control structure , which is shaped in terms of
phrases , serial clauses and closed clauses , l ike Al gol 68 itself.
Clauses always deliver objects , which may possibly be void , and serial
clauses determine localities in the usual technical sense. However, in
sp ite of the resemblance to Algol 68, if the source text and compiled
versions of a particular program are compared , the various structural
un its w i l l  not be found in exact one—to—one correspondence. In its
conversion of formulae to reverse Polish form, the compiler will have
removed binding brackets (though not when the enclosure is a serial
clause with semi—colons), and it may have introduced extra phrases as ~
consequence of breaking down complicated operations into successions
of more primitive ones.

The ac tua l  imperatives which impart to stream language its phrase structure
r e f l e c t  f a m i l i a r  symbols of Algol  68. These im peratives all belong to
the mode OI TPI’T(XCONTROL)*, a structure whose function is indicated in

• its princi pal field by one of the following mnemonic integer values.

xbeg in , xsemi , ,cexit, send , xroutinend ,

• xcoll, xcollcomma , xendcoll,
xi!, xtl’en, xelse, xfi ,
xcase, xin , xcomrna , xout, xesac,
xcaseu, xinu, xuchoice, xcommau, xoutu, xesacu,
xfor , xforall, xwhile, xdo, xod,
xfinish

The meanings should for the most part be obvious. Note that xroutinend
has no counterpart in Algol 68; it occurs immediately after the end of a
routine text. Note also that the compiler always distinguishes between
different types of closed clause by supplying the appropriate bracket,
eg xcoll to open a collateral but xbegin for an ordinary closed clause,
xcaseu for a conformity clause but xcase for an ordinary case clause.
Other fields of an XCONTROL contain various items of supplementary
information . Whenever the XCONTROL initiates a serial clause or a closed
clause , the mode of the result to be delivered is given. At the start of
a serial  clause , a pro per ty wor d in the XCON TROL conta ins bits which show
whether the serial clause contains a semi—colon , an EXIT, a label setting,

* The notation X(Y) serves as a reminder that Y, the mode under consideration,
is a constituent of a union X.
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variable declaration , etc. Special bits are also present in all relevant
imperatives to assist the translator with dynamic storage control.

We have described XCONTROL first because it is where a top—down examination
of stream language should begin. It is also where the structure of Algol 68
shows through most clearly. The OUTPUT union does in fact include quite a
large number of modes , of which the five most important are

XCONTROL control word

XDEC declaration of identifier or label

XLOAD load of operand ~ reverse Polish
XOPER operation j

XROUTINE routine text

The mode OUTPUT (XDEC) fur ther  subdivides into XDEC (XIDDEC) and XDEC(XLAB DEC) .
An imperative of the latter mode is a label declaration, introduced by the
compiler at the beginning of the serial clause containing the actual label
setting — which is indicated by another form of XLABDEC imperative . Thus,
in stream language, labels are always declared before they are used. The mode
XDEC(XIDDEC) corresponds to those Algol 68 declarations which define
identifiers , except that the shortened forms of procedure and operator
declarations are handled by XROUTINE imperatives. Any occurrence of a routine
text in the source program gives rise to an XROUTINE imperative, which can be
thought of as a declaration in stream language, whether or not it came from a
declaration in the source—text. A ful l identity declaration in the source
program, whether for a procedure or any other object , always becomes an
XDEC(XIDDEC) imperative. So also does a variable declaration or any operator
declaration of the unshortened variety . Priori ty declarations are absorbed by
the compiler and used when converting expressions into reverse Polish.

There are no mode declarations in stream language to correspond with those in
the source text of a program, though in a sense every mode used in a program
is declared in stream language. At the outset of the collated stream, one
imperative supplies the translator with an array of all the modes used in the
program. Thereafter, any one of these can be represented as an index to the
array .

For compactness and simplicity , al l  cross referencing in stream l anguage is
done by integers . Declarations are all numbered. Source text names are passed
across by the compiler in stream language declarations only to enable a
t ranslator  to use them in run—time diagnostic messages. The real stream
language identifiers are the declaration numbers, of which there are three
separate sets — one for XLABDEC, one for XIDDEC and one for XROUTINE
declarations. The XIDDEC numbers are re—used for declarations whose ranges
do not overlap. This keeps to a minimum the amount of information the
t ranslator  holds about identif iers , assuming it organizes its information in
the obvious manner.

There is a special imperative at the beginning of a stream language program
which tells the translator the maximum sizes of various arrays it will need
to declare .
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3.2.2 The reverse Polish stack

In the present account of stream l anguage, the reverse Polish stack is a
pure ly  conceptual  device for remembering operands, and at this conceptual
leve l , the loading of an operand does not imply action of any other kind .
In reality, most translators will find it convenient to maintain a real
stack in some form or another , to act as a kind of work—bench for the
generation of code . However , the way in which operands uould be represented
on an actua l translator stack lies wholly within the province of the
translator desi gner, and is not discussed in the present paper.

Operands appear on the reverse Polish stack in two ways. They may have
been placed there as the result of a previous operation , or they may be
introduced by an OUTP UT (XLOAD) imperative . The mode XLOAD is a union
whose various constituent modes describe the different forms of object
which can be loaded. For example , XLOAD(INT) loads a declara tion number
standing for some object which has previously been declared. Other modes
in XLOAD introduce undeclared objects , such as those expressed in the
Algol 68 program as denotations (see Appendix).

Almost every kind of object in stream language is described by its
Algol 68 mode represented as an integer item of data — not to be confused
with the mode of the imperative which handles it. To the compiler , the
mode of an object is important as a means of checking program consistency
and selecting operator definitions correctly; to the translator its main
importance is in determining the size of an object in the running machine .
This is of course impossible for an Algol 6~ array or vector , as the number
of elements is unknown at compile time . However, in addition to elements,
every array has a descriptor of fixed size, and in stream language it is
the descriptor which is taken as the object to which an array mode applies.

• This is not to deny that array elements exist! Certain XOPER imperatives
call for production of code to find space for array elements in the object
machine, and to copy them from one place to another, and yet a set of array
elements is never a reverse Polish operand . This is because the translator
can obtain all the information it needs about an array from the descriptor.
We may therefore conclude that stream language only operates directly on
objects of known size. As we shall show, this is the very feature of its
desi gn which enables it to break down complicated declarat ions , gene rators
and assignments into the rudimentary steps which a translator needs.

3.2.3 The creation of new objects

The work entailed in creating a new object is split between compiler and
translator , the compiler doing as much as it can without knowing anything
about the final object machine . It canno t do very much with source text
denotations , as the translator must deal with machine representations .
Denotations are therefore passed into stream language almost literally, in
XLOAD imperatives, though number denotations are tidied up into standard
formats. Routine texts are compiled like any other pieces of Algo l 68,
with formal parameters expressed by XIDDEC imperatives of type “xfdec”,
the whole routine being preceded by an XROUTINE imperative which gives it
a declaration number in every case.

Jumps are treated as objects in stream language, and loaded by their label
declaration numbers. No action is taken until specified by a subsequent
coercion (an XOPER).
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In Algo l 68, a reference is created by a generator or a variable declaration;
its purpose is allocation of storage space for an object of given mode. The
object can be described as ‘simple ’ if the generator or declaration contains no
array bounds , for then the total amount of space to be allocated is known from
the mode, and stream language does no more than reflect the Algol 68 constructions .
A generator becomes an XLOAD(XGEN) imperative , which puts a new local or heap
reference on the reverse Polish stack , and a variable declaration becomes an
XDEC(XIDDEC) of type “xvardec”, or “xivardec” if the declara t ion is combined
with an in i t ia l  assi gnment . E i the r  type creates a new reference and gives it
a declaration number. In addition , xivardec will find the object for initial
assignment on the reverse Polish stack, and remove it. Being a declaration and
not an operator , it leaves no result behind.

When the Al gol 68 generator or declaration contains array bounds, space for
elements has to be generated dynamically. As these may introduce further arrays,
the task can be a protracted one. The compiler breaks it down so that the
translator is never called upon to deal with more than one array at a time . As
an example at one level only ,  consider the declarat ion

[ 1 :n I R E A L  r;

which requires the translator to

— generate space dynamically ~or n reals,

— create the associated fixed size object (ie the descri pto r ) of mode I IREAL ,

— create an object of mode REF[ IREAL and assign the descriptor to it ( a
‘s tat ic ’ assignment).

In outline (for the compiler actually does a little more), this maps into stream
language as

XLOAD the lower bound I • I
XLOAD the upper bound n
XOPER “xbdpack”

(packs the bounds into a single ob ject)

XLOAD a boolean for local/heap , here local

XOP ER “dyngrab”

(takes the boundpack and boolean operands, generates space for array
elements and del ivers the descriptor)

XDEC ( XIDDEC) “xivardec ”

(creates the variable, qives it a declaration number , takes the
descriptor from the reverse Polish stack as operand and assigns
it stat ical ly to the array variable)

It is particularly to be noticed that an xivardec initialization is always a
static assignment, ie assignment of a fixed size stream language object only,
with no regard for any array elements. Normally, xivardecs are used when there
are initial assignments in the source text (eg REAL x := 0.0), but not if the
object declared is an array variable. Initial assignment of array elements is
carried out separately as a standard assignment operation , described in 2.2.4.
An array generator gives the same sequence as that shown for an array
declaration, except that the XIDDEC “xiva rdec” is replaced by the XOPER
“statgrab” . Instead of creating a reference and then declaring it as a variable ,
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statgrab creates the reference but puts it on the reverse Polish stack after
statically assigning the descriptor.

In actuality , all but the final step shown above is wrapped up in a stream
language routine invented by the compiler for the given mode. In the
example , the routine would deliver the I )REAL as operand for the xivardec .
In a more general case , eg from the source declaration

STRL’CT(BOOL b , [1 :n ]REAL r )s ;

the routine would deliver the f ixed—size  obj ect of mode

STRUCT(BOOL b , ( ]REAL r)

as operand for the ivardec.

For declarat ions involving array space at more than one ‘depth ’ , the routine
for the whole array mode calls similar routines for any contained array
modes . For example , consider the source declaration

(1 :m}STRUCT(BOOL b , (1:nIREAL r)t;

The mode already considered is now contained in an array, and the inner
routine (nr, say) will deliver the STRUCT(BOOL b, ( IREAL r) inside the
routine (mr , say ) for the whole mode , where it will be assigned to each
of the m array elements — as m fixed size objects. The routine mr will
f i n a l l y  deliver the fixed size object

I ISTRIJCT(BOOL b , [ ]REAL r)

for assignment to t in the ivardec .

3.2.4 Assignment

The XOPE R “xassign” takes two operands, a destination and a source. It
leaves t’ie first operand on the reverse Polish stack at the conclusion
of the assignment , clearly imaging the Algol 68 construction . But the
stream language operation gives the translator less work than would an
Algol 68 assignment in its ful l generality . As with a complicated declaration,
the compiler invents and calls specially tailored routines to break down a
complicated assignment.

The mode of the destination determines what xassign is called upon to do.
If it is a ref vector or ref array (non f lexible) , the actual elements are
to be cop ied and the assoc iated descriptors left untouched. This is
‘dynamic assi gnment ’ . For every other destination mode , including ref
flex array and ref flex vector , xassign means static assignment. The
object to be copied is the stream language source operand , which may be a
descriptor but  cannot be a set of elements. From a stream language point
of view , dynamic assignment is the oddity , as the operands are not the
objects directly involved in the copying process. The translator ’s generation
of code to copy array elements is a kind of side—effect to an otherwise
inert stream language operation . At this point, it is worth recalling the
initialized variable declaration of 2.2.3, as the assignment embodied in the
ivardec is always of the static type, irrespective of mode. It is not just
an absorbed xassign operation.
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In a dynamic assignment , the -elements to be cop ied wi l l  always be objects of
known size. The translator is never asked , all in one go, to copy elements
which themselves contain elements to be copied. The invented assignment
routines see to that;  by the use of “ f o r a l l ”  constructions , all the l oops are
given explicitly.

One fu r the r  operation is required to complete the subject  of assignment . An
• Algol 68 assignment to a flexible array or vector variable implies the making

of a new set of elements and a new descriptor , and the xassign in this case
deals only with the descriptor. A special operation “xcopy” always precedes
the static assignment to a flex variable. This operation takes the descriptor
from the right—hand side of the Algol 68 assignment as its one operand ,
generates the required amount of space (on the heap) for a new copy of the
elements , copies the elements , constructs  a new descriptor  and delivers this
as the result of the operation. The xassign operation then picks up this new
descri pto r and statically assigns it to the flex variable as already described.

3.2.5 Summary of stream language operations

The OUTPUT(XOPER) imperative is a structure whose three fields define the
operation , give the mode of its result and provide other useful information
(“param”) where necessary . The various operations are listed below , with
brief descriptions of their meanings — which should not be taken as strict
definitions .

Monadic and dyadic operators from Algol 68

xmonop monadic operator
xdyop dyadic operator

The different meanings of an operator which apply for different modes of operand
are known as versions . The param f i e l d  of the imperative speci f ies  the operator
and its version in each case.

Coercions and operations similar to coercion

xde ref de refe r ence

xunite unite (from non—union)
xuniteu unite (from sub—union)

xwrc widen real to complex
xwir widen integer to real
xwib widen integer to bits
xwbvb widen bits to vector of booleans

xis mode to i—struct of mode
xvec mode to vector of mode
xarr mode to array of mode
xisvec i—struct to vector
xisarr hierarchy of i—structs to param—dimensional array
xvecarr vector to one—dimensional array
xarrarr array to array with extra dimension

xnil tom NIL to given mode
xski ptom SKIP to given mode

xgotoproc coerce jump to a procedure mode
xgotom coerce jump to other given mode

xvoid void
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Field selection and array indexing

xselect select paramth f ie ld  of operand

xsimpleindex produce single element from given array
or vector and subscripts

xtrim produce trimmer from its component parts

xtrimindex produce subse t from given array or vector
and trimscripts

Procedure cal ls

xpara mpack remove “param” actual operands from stack
xcall call the given procedure with the actual

parameters removed by xparampack and produce
the result of the procedure

Assignment

xassign already described (3.2.4)

Space finding

r xbdpack pack the given array or vector bound(s) as
a single object

xdyngrab produce descriptor for array or vector, hav ing
generated necessary space for elements from
given boundpack and boolean (local/heap)

xstatgrab make space for object taken from stack, assign
it s tat ical ly to the space , and deliver the
reference

xcopy replace given descriptor with new descriptor,
having generated new heap space and copied the
elements into it (see 2.2.4)

xdefaultbd tuck default lower bound of I under top item
on stack (for Algol [n]INT)

Operations aesociated wit h stra ightening (xstra ight , xprestraig ht and
xs tri-ndex) are not described in this paper . Nor is xdcunite.

3.3 IMPLEMENTATION

To harness the RS compiler for use on a new machine , the obvious need is
the translator  to convert stream ldnguage into machine code , but one must
never lose sight of the fact that the final product is a system and not
jus t a collection of programs . The importance of the shell for the compiler
is obvious from Figure 1 in section 2 . 1 , a major part of wh ich is concerned
with the updating and retrieval scheme for library modules. Not least in
importance here is the actual content of the system library, incl udi ng
t ransput .  F inal ly ,  proper provision must be make for run—time diagnostics ,
not shown in Figure 1 but clearly a crucial part of the system.

The development of a system initially depends on the process known as
bootstrapping , and we conclude with an outline of its three stages.
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Stage I begins with getting the compiler running on some existing machine. As
the compiler is written in a subset of Algol 68—R, the ICL 1 900 is the obviou s
machine for bootstrapping, but there is nothing to prevent the use of some other
Algol 68 machine provided that the compiler is suitably adapted . With a temporary
first pass actually running, the next phase of stage I is to produce a matching
translator which generates code for the final object machine. It may be
convenient to write this translator in the bootstrapping machine using the same
language as the compiler , as shown in Figure 2. Al ternatively; it can be written
for the new machine from the star t, provided that the new machine supports a
suitable high—level language ~Figure 3). Either way, we are now equipped with
a means of producing code for the new machine from Algol 68 source text.

broken boxes represent
the new machine
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Stage 2 uses the result of stage I to compile and translate a final version
of the compiler and a shell suitable for the new machine . The translator is
also compiled and translated when the first of the two plans is adopted
(Figure 2). The result of stage 2 is a compiler, shell and tra nsla tor which
can be loaded in the new machine.

Stage 3 consists of tidying up. The translator probably requires enhancement,
for up to this point it has only had to deal with the system itself , which
is almost certainly in a subset of stream language. The RS compiler produces

• a subset, and the other parts of the system can with advantage do the same.
— Now the compiler and translator should be compiled and translated in the

new machine to check that the whole system is self—supporting. This may
• entail rewriting the translator , for if the second plan (Figure 3) was

adopted , it will probably not have been written in Algol 68. One final
adjustment will be found necessary before putting the system into service.
In order to deal with the RS compiler , the shell has had to accept certain
constructions peculiar to Algol 68—R. A simple shell revision now bars
these constructions and completes the switch to Algol 68 of the Revised
Report.
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APPENDIX - PRINCIPAL STREAM LANGUAGE IMPERATIVE S

OUTPUT

I I I 1
XCONTROL XDE C XRO UTINE XLOAD XOPER

• see 3.2.1 see 3.2.1 see 3.2.5

XLABDEC XIDDEC

xiddec
xvardec
xivarde c
xfdec
xccdec
xfordec
xforalldec

I I I I
BOOL XNIJI-IBER XSTRING XFORMAT STRUCT(INT nse) REF LAREL INT XCEN

(1) (2) (3) (4) (5)

Source text features loaded

(1) Denotations for booleans , numbers , strings and formats
(2) NIL , SKIP , EMP TY

(3) GOTO some label 
-

(4) Declared object

(5) Generator

Types of XIDDEC

The types xvardec, xivardec are discussed in 2.2.3. The xiddec is an
identity declaration taking the object to be declared as operand. The
xfdec ‘declares ’ a formal parameter of a proced ure , xccdec the for mal
identifier in a case of a conformity , xfordec the iden tifier in a
for—statement and xforalldec the identifier in a foral l—statement.
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