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ABSTRA CT. Given n X n complex n~ trices A, B, the C-numerical radius

of A is the nonnegative quantity
CD

zYc(A) ms.x 
~ 

tr(CU*AIJ ) : U u.nitar~r) .

For C = d iag(1,o,....,0) it reduces to the classical numerical radius

~~~~ 
r(A) = me.x[Ix*Ax~ : x~x = 11. We show that r~ is a generalized i~~trix

~~~~ norm if and only if C is nonscalar and tr C ~ 0. Next , we consider an

arbitrary generalized n~.trix norm and characterize all, constants v > 0

for which ~~ is multiplicative. A technique to obtain such v is then

applied to C-numerical radii with Hermitian C. In particular we find

that yr is a mtrix norm if and only if v > i.
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1. 
~~~~~~~~~~~
Let be the algebra of n X n complex mtrices and let

be its unitary group. Given A, C € ~~~~~~~~ the C-numerical range of A

is the compact set

wc(A) = [tr(CU~AU) : U €

This definition together with some properties of wc(A) were presented

by the authors in (2] .

It is not bard to see (compare (2] , Le~~~ 9), that w0(A) 15

j ,nvariant under unitary similarities of A or C. Hence, if C is

norm]. with elgenvalues ‘y~, we easily find that

(1.1) wc(A) = Wdiag(~y ,... , )(A) = TUE ~Y~XA X ~ : [X~~ €

A~ being the set of orthonoru~ l bases for In particular, for

C = d.iag(],,O,...,O), we obtain the classical range

W(A) = (x*Ax : x~x = 11.

Associated with the classical range is the numerical radius

r(A) = mextizi : z € w(A) 1.

Similarly, we define the C-numerical radius to be

rc(A) — ~ x(IzI : z €

The ~~.in purpose of this work is to study the norm properties of

r ,. The situation is trivial for n = 1, 80 without further reference f— _iiil I
Whit, S.ctkrn

we assume troughout the paper that n > 2. $sctian 
~
D

We use the following standard definitions. —

(i) A mpping A -. N(A) is a semi-norm on if for any 
______

A, C and a € q, AIL~~~~7~~~~~~~~
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N ( A ) > 0 ;

N(cLA.) = IaIN(A) ;

N(A + B) < N(A) + N(B) .

(ii) A semi-norm is a 1eneralized nm.trix norm if it is positive

definite, that is,

N(A) y O for A~~~O.

(iii) A generalized natrix norm is a mtrix norm if it is

(sub-) multiplicative, i.e., for all A, B,

N(AB) < N (A)N (B).

Without difficulty we obtain

THEOREM 1. For any C, r~ is a semi-norm.

The questions of definiteness and ~~ltiplicativity are such r~ re

complicated.

In Section 2 we characterize those C for which r
0 is positive

definite. We show that r
~ 

is a generalized ~~trix norm if and only if

C is not scalar and tr C / 0. This result agrees with the weLl known

fact that the classical radius r is a generalized mtrix norm.

The classical, radius is not uniltiplicative, [ii]. Hence, in general,

a C-radius cannot be expected to be a n*trlx norm.

In Section 3 we consider arbitrary generalized uMrix norms, and.

characterize all positive constants v for which ~ is ~.iltiplicative.

A technique of finding such mu.ttiplicativi~y- factors is given by a

theorem of Gastinel Ii] .

The above technique (aided by some combinatorial inequalities

_______________  —
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obtained in Section ~
) is applied in Section 5 to find sultiplicativity

factors for C-numerical radii with Hermit Ian C. In particular we find

that yr is a mtrix norm if and only if V >

Thanks are due to Alston Householder and. to Robert Steinberg for

helpful, discussions.

2. ~~~~~~~~~~~~~~~~~~~~ C-~~~~ .

THEOREM 2. r
~ 

is a generalized nm~trix norm if and only if

(2.1) C is nonscalar and tr C j~ 0.

In the proof we use the following three lenuim.s in which A, C are

given n X n mtrices.

L~2~~ 1. Let m be an integer with 1 < m  <n. If C leaves

invar iant all rn-dimensional subspaces of ç~, then C is scalar.

Proof. Since m < n , then each one-dimensional subspace of

is an intersection of subspaces of dimension m, which by hypothesis,

are fixed by C. This implies that C fixes all one-dimensional sub-

spaces of Q~
.

Now let (C
j  

be the standard. basis of ç~. By the preceding

argument, there exist scalars ~~~~~~~~~ i~, such that

Cej = X~ej, l < j  n,

and
n n

C E e 4 — p~t E e~.
j ul. ~‘ j uil ~1

Hence, pEe
1 

= EX
3
e~~ and we conclude that X~ — p, 1 ci  n. There•.

fore ,

- 5 - - - - — .— — - . -  — — - - — — — 5-



Ce~ = Mej , 1~~~J ~~n;

i.e., C = ~I, and the lem~ follows.

L~ 1t4k 2. It

(~J*fr~J = U*AUC VU €

then either A or C are sca].ar.

Proof. Suppose A is not scalar and let us prove that C is. Let

X be an eigenvalue of A with corresponding eigenspace 
~~ 

of

dimension m. Since A is not scaler , then

1 < m  = dim(Z~) < dim(ç~) = n. 
-

Now, for arbitrary U € 1t1~, U
*AU also has X as eigenvalue with

corresponding eigenspace U~4,. Thus, for every vector v € 
~~~~~

U*AXJ (Cv) = C(U*AUv) = C (Xv) = X(Cv).

- It follows that

Cv € U%~, Vv € U%,

that is, C leaves invariant. Since dim(1~) = rn and U~ is

arbitrary, we find that C leaves invariant all rn-dimensional subspaces

of q~. Hence, by Le~~~ 1, C is scalar and the proof is complete.

LF2I4t 3. If

tr(CU*AJJ) = constant VU s

then

CU*AU U~’AXJC ~~U €
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Proof. Let S be skew-Hermitian ; then e~~ is unitary for all

real e, a,nd so is Ue~~. By hypothesis therefore,

f( e) tr[C(Ue~~)*A(Ue~~)] constant, e €

and consequently,

~~f(e) = htr(Ce~~~U*Aue~~) =

= tr (Ce~~~U*ASe~~ - CSe~~~rJ*AUe~~) = 0.

EvaluatIng the derivative at 8 = 0 we obtain

tr(CU~A1JS - C~ J*AU) = 0;

hence for all skew-Hermitian S (and. all unitary U) ,

tr((CU*AU - U*AT~~)S] = 0.

$lnce every mtrix B is a linear combination of skew_Hermitians*, the

last identity implies

tr ( (CU*AU - U*ALJC)B ] = 0 VB €

Thus,

CU”AU - U*.MX~ = 0,

and the lemnm is proven.

Proof of Theorem 2. By Theorem 1, it suffices to show that (2.1)

holds if and only if rC Is positive definite .

If C is scalar, namely C — XI, then any A ~ 0 with tr A = 0

gives

r
~
(A) = lx  tr A l = 0.

*Tor example, B - - 

~~2 With S~ - ~(B - B*), 
~2 — ~(B + B*).

5— - - —-5 - —‘5--- - - - -— - - - --5-- -
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Also, if t r C = 0 , then

r
~
(I) = ltr ci = 0.

Thus, violation of (2.1) implies the indefiniteness of rC(.).

Conversely, let (2.1) hold. If r0(A) = 0, then by definition

tr(CU*AIJ*) = 0 VU €

so by Lem~~ 3, -

- CU*A U = U*AUC V U € t ~.

By Leum~ 2, therefore, either C or A are scaler, and since C is not,

A is. Setting A = p1. we have

r
~
(A) = l i.’ tx c J = 0,

and since tr C ~ 0, then I.L unist vanish and the proof is established .

~CAZ4’LE 1. The k-numerical range, 1 <k <n, was defined by

Halsos [ 3 ,  ~ 1.67) to be

wk(A) = (tr(PA ) : P orthonorml projection of rank 1€).

We easily verify that

wk(A) = where Ck = tk ~ °n-k

Thus, the k-numerical radius

rk(A) — mx (lzl : z €

is a genera lized ~~trix norm if and only if l < k < n  - 1.  In particular 4

r(A) — r1(A) is a generalized norm while r~(A) ltr A l is not .

--——-5 -~~~~~~~~~~~~~ -- - — - - —  - ~~~~~ _ _  - — — - - - 
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given a semi-norm N on and a constant v > 0, then

obviously

N~~m v N

is a semi-norm too. Similarly, N is definite if and only if N~, is.

In any case the new norm my or my not be multiplicative. If it is, we

say that v is a multiplicativity factor of N.

A characterization of ~iltiplicativity factors fox generalized

mtrix norms is given in Theorem 14~ We first prove, however , that

indefinite nontrivial semi -norms have no sultip licativity factors.

TBEOR~)1 3. An indefinite semi-norm N on is multiplicative

if and only if N 0.

Proo f. The trivial semi-norm is certainly multiplicative. So let

N be indefinite and multiplicative , and let us show that N 0.

Since N is indefinite, then N(A) = 0 for some A ~ 0. Let CZ~~

be a nonvanishing ent ry of A, and denote by Eu the mtrix whose

(i ,j) element is 1 and the others are zero. Since

E~/~E~~ =

then by multiplicativity,

Ia~~lN( E~~) = N(a,~E~~) ~~ N (E~2)N(A)N(E~~) = o.

We conc lude that

N(E~~) = 0  ~~~~~~~~ i <n ;

thus for any B — ~~~ €



N(B) = 
N (E ~i?i~)$~~~ 

l~jj
iN(Eij) = 0,

and the theorem follows.

THEOREM 4 .  If N is a generalized matrix norm, then V isa

uniltiplicativity factor of N (i.e., N
~ 

is a matrix norm) if and only

it

- 
N(AB )

~~ .~~~ 
V
N 

= 

A,B~O 
N(A)N (BY

Proof. We write in the form

- 

V
N 

= max[N(AB) : N(A) = N(B) = 1),

and use a compactness argument to conclude that is well defined.

It is clear then that V
N > 0.

Now, if V ) VN, then

N (AB) = vN (A~) < vv ~N (A) N (B)  < v~N ( A ) N ( B)  = N~(A)N~(B);

henc e N is mult iplicative.

Conversely, if v satisfies 0 < v < 
~N’ we can find matrices

A, B such that ~I1(A)N(B) < N(AB). Thus we have

N~(AB) = i4~(AB) > v2N ( A ) N( B )  =

and the proof is complete.

As an inn~diate consequence we have established

C~~OLtARY 1. A generalized matrix norm N~ is a matrix norm if

and only if VN < l.

In practice, Theorem ~4 offers limited help since in general , ~N
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not easily evaluated. In the case of C-numerical radii , we were unable

to find the opt imal factor except for the classical radius.

An alternat ive way of finding multiplicativity factors is suggested

by the following, somewhat stronger version of a theorem by (]e.stinel, [1].

ThEOREM 5. Let N be a semi-norm, M a matrix norm, and r~ > ~ > 0

constants such that

(3 . 1) ~M(A) < N(A) < r~(A) VA €

Then,

(i) N is a generalized matrix norm.

(ii) For any i~’ > , N~, is a matrix norm.

(iii) If ~~~ <1, then N is a matrix norm.

Proof. Part (i) is trivial, and for part (ii) we should merely note

that

N~(AB) = VN(AB) <vi~M(AB) <vi~M(A)M(B)

<.~~~ N(A)N(B) < v 2N (A)N( B)  = N (A)N (B).
V V

Part (iii) then follows.

We recall, of c~~rse , that any two norms on are equivalent.

Thus if  N of Theorem 5 is known to be a matrix norm, then (3.1) always

holds for suitable constants i~ ~ > 0.

In Section 5 we use Theorem 5 to obtain uniltiplicativity factors for

C-numerical radii With Hermitian C.

_ _ _ _ _

_ 
_ _ _ _ _  _ _ _
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Let Cry yj , 1 <j < n , be scalars and consider the set

~ (cr) = ~Yj
CZ~7(j ) : a €

being the s~ mnetric group. In this section we study bounds for the

radius of

R (Cr) = mex~jz~ : z e

A general remark is that all the involved quantities are invariant

under rearrangements of the Cr~ and the Yj, and under rotations of the

form

(~~ ~
Cr
n) e~~

(ai,...,an), ~‘l’ 
. ~;) 

-, el
~*(y 1,.. .,* y )

which include , of course , change of sign. This fact will be repeatedly

used in the proof of the following results.

LEMW~ 4 .  For a~~ ~~~~~ €

,y
i

Proof. Let Ti’
, I = l,2,...,n, be the powers of a nontrivial

cyclic permutation In S~. Since

~~~‘y Cr 1 €~~~(a), l < i < n ,
j=1 r (j)

then

R,~(a) , 
~ ~~~~~~~~~ 

‘Y
i i ) ~

— 
~fl i~~~~.t

i(j)~ 
= 

~~~~~~~~~~~
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and the lemma holds.

LEM~~~5. ~~ ~1 € ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~

R~,(Cr) >~~ maxIa~ 
- a~I max I~1 -

Proof. Setting

-

~~ 
= x~ + i~~ xi, 

~ 
€

we have -

= Xj
Cra(j) + i E

�
~~~n~~

X
i
a
a(i)~ 

Rx(a)

Now, if the y1,~~are equal, then the result is trivial; so by

rotating and. rearanging the ~~ we may assume that

nmxl’y1 - ’y11 ‘
~
‘l ’

~
’n .> °

It follows that

- ‘
~
‘l - ‘

~n 
= max~y1 - ~y

1
~ a i x 1 - x1 1 .

Thus

~1 � x
1~~~

x~, 2 < j < n - l ,

‘so we may assume that

We my also assume that
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Henc e, observing that

E Xf~, ~2 = ~~

are two points in ~~(a), we have

Rx(cr) - 

~~ 
= ~ J x 1(cr1 - c z )  + A~(a2 ~ .cr 1) + ... + x (a - ai)I

n~~~l n ~~~~~~~~ n~l 2 n-l) s”x rn1~~~~rn1 
)(a r 1~~

Cr r 1
L~J ~j+1 L~J L~i~

1

- 

~~~~~ 
- C

m) 
= 

~~ 

max ly~ - yj imax I Cri - CZ11,

and the lemma follows.

We are interested now in obtaining constants iç~,, which may depend

on the but not on the C~~, such that

(11.1) M~(a) > K ~ mxIC~ l VCrl~•• •~
Crm € 

~~
.

T1~ OR~14 6. ~~~~~ € 9,, 1 <i < n , there exists a constant
- K,.~ > 0 which satisfies (14.1) if and only if

(11.2) are not all equal and ~ 0.
I

]~ (l#. 2) holds, then t )4.l) is satisfied by the positive constant

lE~y 1 ’max I v1 - I
= 2~~~~I + x 1y 1 ~~~~~i i 1,1

Proof. Suppose (11.2) is violated. If the are equal, we choose

a1 not all equal, with Z C Z
3 

= 0; if — 0, we take C
1 

= 1,

2. < 3  <n. In both cases i~~a) — 0 but maxfa3 I > 0; hence no positive

satisfies (li.1).

) 

Conversely, let (11.2) hold , and let be the constant specified

4 
_______________ _ _ _ _ _ _ _ _ _  

_ _ _
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in (11.3). We may assume that

where in fact, by change of sign if necessary, It suffices to consider

the cases

(li .lea) C
1

> .. .  ) *Cr > O ,

and

(1k . 11-b) a1 > ... a~ > 0 > 
~k+l ~ 

••
~~ 

> a with ~~x a
1 

= Cr1.

In case (l1.1~a) we write Cm = E321, 0 < e  < 1, and use Le~~~s 14 arid

5 to obtain, respectively,

R~(a) ~~ i~~a1iI E ~’1l > cZ I E ’Y~I = ez1IEa1l = elE -y1lmax la1I

and

.? mx Ia1 - a~ ~~~ l’Y~ - I - a ) m x 1~~ - ~1

- e)nm.xI-y~ - y
1JmxJa1J .

We thus find. that

R
?
(a) 

~~~~~~~~~~ ~
(l - e)mxly1 - ~~i} 

• maxicz
1 l .

The expressions in the above braces are functions of e which describe

straight lines with opposite slopes and intersection value ic.~. Henc e,

for any e

mex {eIE~ 3 I~ ~(l - e)n*xI’y1 - ~~i} �‘c~

and (4.1) follows.

In case (li .l1b) we use Le~~~ 5 to find that



> ~(cr1. - a)mx I’v1 - ;l > mx I’y1 - y
3 

I mx Ia3 I .

Since

~ me.xk’1 - y 3 l > K ~,,

them (4.i) holds again, and the theorem is proven.

The above result can be improved for certain classes of y
1
.

THEOREM 7. If y3, 1 <j  < n , are complex scalars of the same

argument, then (4.1) holds with

( 11.5) K = 
~ 

max kli - 
~1,1

Proof. By change of argument and rearangement we may assume that

~‘l �”  �“Vn �0 ’

arid that the satisfy (1l . 1l.a) or (Ii .11b).

For (4. l4a) we have

= Ly3cr3 ,y
1
a
1 2~~

(”
~’1 

-

and for (4.4b), Len~~ 5 yeilds

R.~,(a) 2~~~Y1 - ;)(a1 - a )  >
~~~ ‘l -

Thus,

mx fry1 - ~~x Ia1 I ,

end the proof is complete.

Indeed, comparing of (4. 5) with of (11.3), we realize that - -

for the relevant ‘y3, Theorem 6 provides a tighter lower bound for

J~~a) than Theorem 5.

-- 
— - - - - -

~~
—-- ---~~~~~-- - -- .  - —5 - - ‘- -5-  - -_ _ _ _  _ _ _ _ _
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5. ~~~~~~~~~~~~~~~~~~~~~~~~
As indicated previously, the pirpose of this section is to

obtain multiplicativity factors for C-numerical radii with

Hermitian C.

LEI’1W~ 6. Let A, C be normal matrices ~with elgenvalues C
3 

and

respectively . Then

r
~
(A) =

Proof. Obviously, it suffices to show that

COnY Wc
(A) = conv

Since WC(A) is invariant under unitary similarities of A and C,

and since A and C are normal, then by (1.1),

Wc(A) ={ E  y
3
x~ diag(Cr1,...,Cr~)xj : tx1 I € A~}.

- Thus, using the standard basis [e1 }, we find that every point in

satisfies

E v 1
e~(3) dia€ (a1~...~a~)e~~1) € Wc(A),

which gives us

&,,,(a) cWc(A).

Conversely, take an arbitrary point ,

E y3x7 d.iag(a1,. •s ,a~)x3 
€ Wc(A).
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Since x
1 

= (X
11,

. . . ~~~~~~~ 1 <j  < n, is an ort honor mal basis , then

x ~ E I X1~ I~1 is a doubly stochastic matrix. Doubly stochastic matrices

are convex combinations of permutation matrices Thus writ ing

X z Z
~
Xc~P0 

and

a ~ (a1,...,cr~)T, c

we have

~~~ diag(c11,...,a~
)x
3 

= E ‘Y3 J~~k J a k = cT~a =

- CT[E XQFa ]a = ZX a(CT1~aft) = E X a~~ Yfa( i)] € COnY

This yields

WC(A) C cony

and the lemma follows.

L~}W~ 7. Let C be normal with eigenvalues y1, let

satisfy (11.1), and. let

h A il 2 mx ((x*A*Ax) l/’2 : x*x =

denote the spectral norm of A. Then

rC(A) > Iç.,~hIHiI 2 VHermitian H €

Proof. For Hermitian H with eigenvalues a1, we know that

11H112 = mxIa~I .

Since the a
3 

are real , we may use (11.1), and. by Lenina 6

r0(A) .R .~,( a ) > K ~, mxIa3 I - I c~IIkII 2.

L~ 4~ 8. if C is Hermitian, then r~(A) = rC (A*).
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Proof.

* * *r~(A) = maxltr(cu Au) I = maxltr (CU AU) *I = maxhtr (u A~JC)I = rC (A*).
U U U

LF7~!4A, 9. If C is Hermitian with eigenvalues y1, and if

satisfies (4.1), then

r0(A) >~~ ~y IkII2 VA €

Proof. We write A = .~(H1 - iH2), 
- 

where

H1 = A + A*, H 2 = i(A -

are Hermitian.. By Lemmas 7 and 8, and by Theorem 1,

~ K~jJA j I2 = ?~ 
K~Ib~1 - m2 112 <~~~~ K~( 1k1112 + I1H2 I12] < .~

(r
~(H 1) + rC(H2)]

— ~fr ~(A + A*) + r~ (A - ipt*)] <-
~~~( r((A) + r~(A*)) = r0(A),

and the proof is complete.

L~}t4P~ 10. If C is normal with eigenvalues y~, then

rC(A) <~~~ fry1 I 1k 112 VA € 
~~~~~~~

Proof. By (1.1) we have

rC(A) = mx{~~~v1x;Ax3~ : ~x3 ) €

and. since x~Ax I 1k 112 for any unit vector x, the 1e~~~ follows.

T1~ OREM 8. Let C be Hermitian, nonscalar, with tr C ~( 0 and

~~~~~~~~~ y
3
. Then, for any v with

+ mxI’y1 -
v � 4 Z f r v j I [ j~~ j . n . y j  - ~ i j ’I

I 

_ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _

_ _ _ _ _ _ _ _ _  _ _ _ _  -
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p the (Hermitian) numerical radius vr
~ ~ 

r~~ is a matrix norm.

Proof. Since C is nonscalar, the are not all equal ; and

since tr C ~ 0, then ~ v3 ~ 0. Thus, by Theorem 6, the inequality in

(4.1) is satisfied by the positive constant K of (11 .3). By Le~~~s 9

aM 10 we have therefore,

IZ y i + m x l - y  - y l
~ 2}Z’y~ + mxIy~ - 

ik II2 ~ 
r~(A) ~~ E I’y3 I iIA.I12 VA €

and Theorem 5 completes the proof.

For Hermitian definit e C, we improve Theorem 6 as follows.

TH~~R~}1 9. Let C be Hermitian nonnegative (nonpositive) definite.

If C is nonscalar with eigenvalues y
3
, then for every V with

l62~~j y  I
i i

v >  ,— maxlyi -i,j ‘I

vr,~ r~~ is a matrix norm.

Proof. Since C is Hermitian definite, the are of the same

sign and by Theorem 7, K~, of (11.5) satisfies (11.1). Le~~~s 9 and 10

yield now,

(5.1) ~ maxl’v~ - ‘y3 1 IIMl2 < r ~(A) <X ~ fry
3 

I IIA.112 VA €

Since C is nonscalar, the are not all equal ; so m x ly i - ~‘, I > 0 ,

end Theorem 5 completes the proof.

~ CA*LE 2. We recall the definition of the k-numerical radius rk .

By Theorem 7, we find that Yrk, 1 < k  < n  - 1, is a matrix norm if

i 2 16k.

_  5-- _
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~~~iiple 2 implies that v 
~ 

16 is a multiplicativity factor for the
* classical radius r. The optimal factor, Vr~ is given in the following result.

ThEOREM 10. yr Is a matrix norm if and. only if v 
~ 

4; that is

V = 11.

Proof. - It is well known, (3, ~l62], that

~ik 112 r (A) <1k 112 VA € 
~T~Xfl~

Thus, by Theorem 5, V > 4 is a multiplicativity factor for r, and by

Theorem 4, v < 4.

To show that > 11, consider the matrices

Io i~ Io o\
A = (  J~~ i~ 2, B = ( .  ) ® ~ 2

~O 0/ ~l 0/ r~

A simple calculation shows that

r(A ) = r(B) = .
~, r(AB) = 1.

Henc e

r~(AB ) < r ~(A)r ~(B)

if and only if v > 11 , and the theorem follows.
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