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ABSTRACT

We consider a class of “generalized equations ,” involving point—to—set

mappings , which formulate the problems of linear and nonlinear programming

and of complementari ty, among others. Solution sets of such generalized equa-

tions are shown to be stable under certain hypotheses; in particular a general

form of the implicit function theorem is proved for such problems. An appli-

cation to linear generalized equations is given at the end of the paper; this

covers linear and convex quadratic programming and the positive semidefinite

linear complementarity problem. The general nonlinear programming problem is

treated in Part II of the paper , using the methods developed here.

AMS(MOS) Subject Classifications : 47805, 9OAl5 , 90C30.

Key Words: Variational inequalities, Generalized equations, Monotone operators ,

Nonlinear complementari ty problem , Nonlinear programming, Economic

equilibria.
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SIGNIFICANCE AND EXPLANATION

Linea r, quadratic and nonlinear optimization problems occur in manage-

ment science , in engineering and in other areas. One of the important questions

that arise about such problems is that of stability: if we solve such a problem

with slightly perturbed data , will the solution that we f i nd be close to a

solution of the original problem? Note that we say “a” solution , not “the”

solution ,since there may be more than one.

In this two-part paper we show that this property of stability holds,

under specified conditions , for classes of optimization problems commonly found

in applications . The results are also applicable to more general situations,

such as complementarity problems and economic equilibria.

Ti ’- r”~)X)T15 ; i~~dity for tI, wordinq and views expressed in this descriptive
summary 1i. ~~; with MkC , and not with the author of this report.
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• FNERA1IZ1 ~ Eç~UA TI N~ AND THEIR -~~I . T IOfl’~

PART I: BASIc TIfI:~ PY

Stephen M. Robinson

1. Introduction. In this paper we shall stud y t~~o behavior of solutions of the

2~~eralized equation

0 E f(x) + T(x) , (1.1)

where f is a continuously Fr~ chet differentiable function from an open set çl ~
r.

in to and T is a maxima l monotone operator from 1~
n 

in to itself (recall that an

operator T i~~ monotone i f for  each (x
1
,w

1
), (x

2
,w
2
) in araph T one has

(x
1 

— x
2
, w

1 
— w

2
) 

~ 0

• where ~~, ~) -notes the - ~r n . -  r ~-r-,duc~ • and roixir l m r O ’ t r . - ~ i ’ -  .raph i - - n t

prr,1 .rly contained in that of any other monotone operator). W .- use the term “ g e ne r a l i z e d

• equa t ion ” because if ‘r Is identically zero then (1.1) reduces to the equation f(x) 0,

and because syctoms like (1.1) retain some of the analytic properties of nonlin ar equa-

tions, as we shall show in what follows .

We shall be particularly interested in conditions which, when imposed on f and T.

will ensure that the set of solutions to (1.1) remains nonetnpty and is well behaved (in a

sense to be defined) when f is subjected to small perturbations. TO introduce t~’cse per-

tu rba t ions . we shall make use of a topological space P and a function f P -
~ IRn

so that we can replace (1.1) by

0 ‘ f (p,x) + lix ) • (1.2)

and study the set of x which solve (1.2) as p varies near a base value p
0
.

A particular case of (1.2) of special interest for applications is that in which I’

is taken to be the operator 
~~~~~~ 

where for a closed convex set c c one defines the

indica tor function of C by

Sponsored by the United States Army under Contract No. 0AAG29-75—C—0024 and by ~~- ~~~~~~~~~

Science Foundation under Grant NO . W~S74-20~ R4 A02 .



(0 , x~

~~~~~~~ x 4  c •

and where ~ denotes the subdifferential operator (13 , §231 . This yields the special

generalized equation

0 c f(p,x) + , (1.3)

which expresses analytically the geometric idea that f(p,x) is an inward normal to C

at x.

Many problems from mathematical prograsmting, complementarity, mathematical economics

and other fields can be represented in the form (1.3) for example, the nonlinear comple-

rrlentarity problem

*F(x) K

x e K (1.4)

( x , F( x ) )  0

where F P”1 It
n 

, K is a nonempty polyhedral convex cone in , and

K : = k y  1~ ( y , k )  ~ 0 for each k s K), can be written as

0 F(x )  +

Further information on nonlinear complementarity problems (often with K P~ , the non-

negative orthant) may be found in, e.g., (2), (4), (“1. (R). The Kuhn—Tucker necessary

conditions for mathematical proqrameing [6) form a zp~cial case of (1.4); e.g., for the

problem

minimize $(y)

subject to q (y) - 0 (1.5)

h(y) — 0

where ~~, q and h are differentiable functions from Ptm into ~ , 
~ q and

respectively, one has the Kuhn-Tucker conditions

•
-2-
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+ ug ’ (y) + vh’(v ) 0

q (y) ~ 0

h (y)  0

u > 0

(u,g (y)) — 0

and these can be written in the form (1.4) by taking n ~ m + q + r . K = ~ m

x (y.u ,v) and

[~~
‘ (y) + uq ’ (y) + vh’(y)I

T

F(x) = -g(y)

-h(y)

There are also important applications of (1.3) to economic equilibrium problems (151 , among

others. It is of interest to note that in most of the applications mentioned one finds

that C is a polyhedral convex set , and we shall see that particularly strong results can

be obtained for such problems .

It is also worth pointing out that problems of linear or quadratic progranssinq lead

to linear generalized equations: for example , i f  P c ~ m and Q c lR~ are two polyhedral

convex cones , H and A are matrices of dimensions in m and in respectively .

c P”1 and a .- , then we can consider the quadratic progranmiinq problem

minimize ~~K, Hx> + ( c,x)
( 1 .6)

subject to a — Ax ~ Q ,  x ~ P

where Q i~ ~~~ dual on - of Q. The necessary optimality conditjon~ - f ;  (1.6) aro

(d:suminq wIt~ o it less of generality that H is syssnetric)

T *
x H + c + u A c  P a—Ax e Q

x~~~ P u e Q

(x TH + c + u A , x) .,0, (u, a-Ax> 0 .

These can be formulated in a somewhat more transparent manner by writing them as

- • 

_



1: :T] (:) + ,
~~~~~~~~~ (:) .

a linear generalized equation which , if P and 9 are taken to be P”1 and 1~

respectively (i.e., in the case of quadratic programming with equality constraints and

unconstrained variables) reduces to an ordinary linear equation. We shall see that linear

generalized equations are basic to the analysis done here in much the same way as linear

equations are basic to the analysis of nonlinear equations.

The organization of this paper is as follows : in the next section we state and prove

the main result (Theorem 1) after defining a property used in the statement. We also dis-

cuss a ~ay of simplifying (by restricting) one of the hypotheses. In Section 3 we examine

a class of multivalued functions frequently found in applications , and show that they have

one of the key properties needed in Theorem 1. Finally, in Section 4 we apply the results

of Sections 2 and 3 to linear generalized equations . Applications to nonlinear problems

will be the subject of Part II of this paper.

2. Main results. Before stating the main theorem, we require a preliminary defini-

tion dealing with a certain continuity property of multivalued f inctions for m u l t i f o i r ,

as we shall call them).

DEFINITION 1; Let X and ‘1 be normed linear spaces. A mul tifunction F : X -
~ V

is upper Lipschitzian with modulus ) , or TJ .L.(A), at a point x
0 

X with respect to

a set V c X , if for each v c V one hag

Fly) c F(x
0
) + A ll y —

where B~ is the unit ball in Y. We say F is locally U.L.(f) at x
0 

if it is

t l . L .( A )  at x
0 

with respect to some neighborhood of x
0
.

This property is close to the Lipschitz continuity for multifunct ions defined by

~~ckafel1ar (14 , § 3 1, except that we do not require F(x
0
) to be a singleton: in the pro-

blems we shall consider F(x
0
) will often be multivalued . NOte that the distance from any

point of Ply) to the set Fix
0
) is bounded above by ll v - x0 l1 , although the distance

—4—
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r on a ~~~ ir i t  of F (x 0 ) t o  F ( v )  may P.- 1 arc ’

Befor ’  s tat i ng  the main theorem, we c f a l l  t r y  to m o t i v a t e  i t s  hv p o t i i o s o s .  Recal l

t h a t  in  the classical inverse-function theorem the key assumption is t h a t  the l i n e a ri z a -

t i o n  of the  f u n c t i o n  br ing considered , about a point  x
0 

in the inve r se  image of 0 ,

should be regular : s p e c i f i c a l l y ,  t ha t  the inverse  image of 0 under the l i nea r iz e~

f in ct i o n  should he a s ingleton ( i n  f ac t , the po in t  x
0 

i t s e l f ) . In our s l t u a ’ ion , s ince

we may be l a l i n q  with solution sets  ra ther  than  points , we have to linearize about each

p oi n t  in a se t .  The f i r s t  assumption in the theorem is that there is a nonempty bounded

5, ( analogous to the point  x 1 in  the classical  case) such tha t  the inverse  image

of 0 , under  an appropr ia te  kind of l i n e a r i z a t i o n  performed at any point of X 0 , is

>: i t s e l f  t o r n - t h o r  w i t h , possibly ,  p o i n t s  outs ide some neighborhood of ~~~ There is

a lso  an assumption of u n i f o r m  upper L ipsch i tz  c o n t i n u i t y , wh ich  is a u t o m a t i c a l l y  t rue in

th .  c l a s s i c a l  case . F i n a l l y ,  there  is an assumption that the inverse image of any point

near 0 , under the l i n e a z iz a t i o n  p rev ious ly  men t ioned , has ;j c r r l v x  componer~ ii -

r r  : r : hhor hr so r l  of X
0 w i t h i n  which we are working. In t~~e c l a s s ic a l  -ise this is equ]v-

~il. nt t r , t h e  f i • i h i r !  hisis , l- ~ t not so he re .

We shall show , below and in Part II , tha t many problems of practical in ter est

satisfy these hypotheses. In particular we show in Proposition I that the third assrimr-

tion can be replaced by an assumption of positive semidefiniteness which is often sit ~~s-

f i e d  i n applications .

In the following theorem. we use f
2 

to denote the partial Fr.~chet derivative , with

respect to the second argument , of a function f(p.x) of two variabi s: B denotes the

unit bal l in with respect to the Euclidean norm , which is used throughout the re-

maindr - r of the paper.

THEOREM 1: L~! 
P ~~~~~~~~~~~~~~~~~~~~~~~~ ~l an open set in  and T a

maximal monotorie .,9L~!a~~~~~fr ~)rn 
~ n i nto  it s el f .  Let f be a con t inuous  f u n c t i o n  from

SI



p J~n such that  f 2 is continuous on P ‘ (3. Let p0 
€ P; write Lf

~~~
(x)

for f ( ( *x  + f
2

(p
0 ,x0

) (x—x
0
) . Suppose that  there are a nonempty, bounded convex set

X0 
arI d constants  )- , -,~~~~ 0 and r~ > 0 with X : — X

0 
+ yB c (3 , such that for each

C

1) x a (Lf + T) 1 (0)  X
0

ii) X a ( Lf  + TI
1 

is U.L.(fl at 0 with  respect to nB;
0

i i i )  For each y rIB , X n (Lf + T)
1
(y) is convex and nonempty.

Then there exist a number 6 € (O , y l  and a neighborhood U ( p
0

) such that  w i th

1{x X0 + 6B IO € f(p,x) + T(x)}, p

1( p )  : (
p 4 u

one has:

1) ~ is upper semicontinuous from U to

2) 1(p
0
) — X

0
,

and

3) For each c > 0, for some_neighborhood U(p
0

) and for each p U ,

• # 1(p) c 1(p
0
) + (A + r)ct

0
(p ) B

where

ci0 (p) : max {I l  f(p,x) — f (p 0,x) Il I x €
V

Note that if P is actually a normed linear space and if f(p,x) is Lipschitzian

in p uniformly over x € X0, then for some constant ~i and each p s U we have

(p1 c l(p
0
) + ( A  + LI IJIJ it — p0 il B

so that I is locally U . L .  ( ( A  + € )u) at p
0
.

-6- 
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PROOF : Choose x - X~~; denote I f • T by O(x~1
) Let R r (a ,~~) w i t h

Y and i t  v . -‘ B: t h e n  X a Q ( x
0

) ’)’n C + t~~y fl B C  X . tt ’:’r,th.rn:s (iii),

- - i -  — f  0 ( x ) ,  imp l i e s  t h a t  fo r  -a ),  y ‘ ~
n 1f , X. a 0 (x 0

) 1 P )  is non—

•-m~ tv , ri -ri : a t  an-i - nv - - s .  In p a r t i c u l a r ,  X 0 is a compact OT iV’- X r O t

The bas ic  idea of r~ , proof j r  to approx i m a t e  the inverse  of the o : - . - r a t r , r

f ( I , x )  + T ( x )  by i):. i nve r se  of the operator

Q N ( x ) )  ( z )  : Lf
( )  

( z)  + T ( z )

+ f 2
(p

0
, n ( , c ) )  ( z — x

0
) + T ( z )

where r ( x )  is the closest point to x in X
0
, just as one approximates the :nv .isr -

i f  a f u n c t i o n  in the c lass ica l  i n v e r s e — f u n c t ion  theorem by t h e  inverse of its l i n e a r i z a -

tion about some f - r u n t  . We then apply a fixed—point theorem; in provino tin inverse-

fun ction t fi ,o r .-m one usuall y uses the con tract ion p r i n cip le , but here we have to use

the K a k u t a n i theorem. Observe t h a t  the ‘ l i n ear i z e d”  operator  appear ing  here is of

the tyj- . - we discussed above in considering linear generalized equations; this illus-

t r a t . - ’  ocr  comment t h a t  these operators play  a r l e  in the ana l ys i s  of g e n e r a l i zed equa-

t i n n e r  analogous to t h a t  o f  l i n e a r  operators in c l a s s i c a l  a n a l y s i s .

of rr, u Irs. , lur in ’t this approximation it Will he necessary to be careful that we

work wi th the correct component of the inverse image (i.e., that lying in X ) ,  and

t ’ O S  adds a -: ,-rtdin amount if cotnplexitv to tb. notation .

—7—
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4

Define , for two subsets A and C of and a point x €

-i)x,C] : — ‘nf
~~lI 

x - cli I c c  C) and d L A , C) = s u p( d ( a ,C1~~a r A) ,  where the suf .rentr-irr

and j n f : r n r i r  i f  0 ar defined to be - -‘ -  and +-‘ respectively. Denote by ‘ ‘h

- - t r o n  from ~ n onto X
0
;s is well known to be nonexoansive , hence a fortiors o’,n-

t m ucus.

Using continuity and compactness , one can show that the function

B (6) : max{Il f2(p0,x) 
— f

2
(p
0
.in (x)) II Ix € + 6B}

is well defined for small 5, and is continuous at 0 with 8(0) — 0. Thus , we can

choose a 6 ( o , -~
) such that A B (r S ) < ~~

- and .58(6) < ~ 8. It is not difficult to show

that for this fixed .5 the function

max(II f(p,x) — f(p
0
,x) ll x € X

6
}

is well  def ined for  all p • P , and is continuous at p
0 

with m~~(p
0
) 0. Thus, we

can choose a neighborhood U(p
0
) such that for each p U, c1

6
(p) < ~~8 and

Now choose any p € U, and define a multifunction F from X
6 

in to

P” by

F(x ) : X n Q (it(x))’tLf ( ) (x) — f(p,x)I

If x is any point of X~~, we have

IlLf 5(~) (x) — f(p,x) 
~ ~If~p,x) — f(p

0
,x) + IIf (p0,x) — Lf

() (x)Il . (2.1)

Now define (for this fixed x) a function of one real variable t by

g ( r )  : • f (p
0

, -rx + (1 — i ) ’ 1 ( x ) ) — Lf~~~~1
(rx + (1 — 1)5(5))

We f ind  that

lI f (p 0,x) - Lf ( )  ~~)tl - ~g(l) 
- g(O)I~ < sup( flg ’ C t )  II 0 < < 1)

However, for t ‘ (0,11 ,

-8- S i



0

CT) If
2 Q ) .x~~) — f

2
)f ,3 .~ (xl l o x  — ~ (x)]

where x := ix + (1 — ~)r (x) . We have by propert r’-s of t h e  projection that

— “ (xl , so

I f 2 ~~~~~~ f
2

(p
0
,r lx )) II II f

2
(p
0
,x) - f

2 
(p
0
,n Cx ) ) l I  (~~ - )

since x € X - Hence
I

1 f(p0,x) — Lf
( ,  

lx) II 8 (6)11 x — r ( x )  II . (2.~r)

t.s l I f ) f- ,x )  — f(p
0
,x)Il < i~~(p), we have from (2.1) and (2.2)

l I - f ., (xl ( x )  — f(p,x) II ‘ o~, (p) + 8 (6)11 x — — (xl j (i.3)

1 1< ~-e + ~ = o

Hence , by our p r e v i o u s  r emarks  F ( x )  i s  a i n t e r n , 0 )  corrv’rx . t  f x

Also, u ’ ; i n q  ( I ) ,  (ii) and (2.3) we have for x X6,

d 1F
1
(x) ,x

0
) = dlx a -2(r (xl ) 

-l 
ELf 

Cx ) 
lx ) - f (p,x) ) ,X

, 
a Q (~ (xl 1

1
(0)1

lLf 5~~1 (xl — f (p,x) II (2.4)

+ Ah V- I II x - s(x) iI < ~~~~ + .5

so F earr 1e’~ X in to  i t : r - i f .  We havep -

:;raf ) F — I lx .‘/) Ix ‘ , y X~ , I f  ( x l  — f (p , x)  ‘ -- lx ) 
(yl + T (y)

( l x , ’,’) 0 f ( p , x ) + f
,,Q 0

,ti(x) ) (y—x ) + T l y ) )  a I X  ~ x~ )

Using tb ’ - ‘n t nuity if f , f
2
, and ri , to’; -th ’-r with the fact t hri ’ T is closed (by

maximal m r n n t - r n r ’ n t ’ )  , one can how without difficulty that graph P is d on, in

X~~. We can tn r i ’ . a p ~~ l y the Knkutani f i x - f — :  ‘ it- i - r (5, ’) conclude

that the re is ‘ rn.’ : c ’  X with x • F Cx I ; that itt ,
p p p p

If (x ) — f(p,x ) I,f (x ) + T(x
(x) p p “Cx ) p p

-‘I-



so

0 ‘ f (p, x ) + T(x 1
p p

and thus x ‘(p1 , which is therefore nonempty. We have

graph — {(p,x) U x~ io ‘ fCp, x) + T(x)

t i m  is closed in U ‘ by j o i n t  c o n t i n u i t y  of f and closure of T. H owever ,  the

ranc, ~ is - ‘r,nrained in the compact set X
6
; thus by (9, Leulna 4.4) ~: is actu a l l y

u~-p’ r ‘,‘micontlnuous from U to X
,5
. If x

0 
X
0 

then by Ci ) one has

0 Lf (x
0

1 + T(x
0
) — f(p

0
,x
0
) + r (x 0 ) ,  so x

0 
€ 1(p

0
) and thus ZIp

0
) X

0
. On the

o the r  hand ,  i f  x c 1(p
0

) then x . X
6 

and 0 € fCp
0
,x) + T(x); therefore

Lf () 
(x) — f(p

0
,x) r tf ( )  Cx) + ‘F(x)

so tha t x .- F Cx) . As x X
6
, we have f r~w (2.4) with p — p

0 
that

P0

d (x.X
0
j d (F~~~Cx) ,X01 

~ 
\lI Lf Cx) Cx ) — fCp 0,x)

But from (2.3) with p — p
0
, we find that

l l Lf ( )  
(xl  — f ( p0,x)ll~ B (6)Ilx — s(x)Il. 8(6)dlx ,X01

Thus

d (x ,X
01 ~ A8(6)d(x,X01 <

imp ly ing  tha t  x x~ since X
0 

is closed . Thus we actually have )(p
0

) — X
0
.

Now take any c 0: find € (0,6) such that for a (0,6) one has

18(o) ~‘ ~- i/( 1 + - ) . One can show that the function 4

~(p) : max ( 11 f 2(p,x) — f
2
Cp
0
,x )IlI x € X

0 
+ is well defined on P and is continuous

at p
0
; choose a neiqhborhood U(p

0
) c U so that if p U we heve

1 (p) c (p
0
) + 6B  and 1- y (p) . 

~

- ~/(A + € ) .  Now choose any p • U and any x ~ 1 (p) .

-10-
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Using (2.4) and tb fact that x ‘ F (x). we have

d lx , I i ’  1 1  < dEF (x) ,X 1
-) p 0

Il Lf~~,~ 
(x) — fCp .x) II

A llh x — h(n Cx) I ll + A IIh( s (x) I l l

+ l I f p 0,x) — Lf 1 1  (xl II , (2.5)

where h(x) : f(p,x) - f(p
0

, x) . I f  we de f i ne , as before , x := tx + (1 — T)ti(x) , we

have

Il h C x — h(”(x)) 1 < l ix  — n(xl I sup{ lI h (x) II lo  < • i}

But h’ (x ) — f2Cp.x ) — f
2

(p
0
,x), so

lh (x) — h(s (x)) II < YIP) x — “Cx) II

Thus, using 12.2), (2.5) and the fact that lI h (sC x ))II < ..~C p), we have

dlx, - J A y(p) II x — sIX) 
~ 

+ A 10(p) + ‘8 ( 6 ) i f x — s(x) II

(n/(i + ) I li x — s(x) II + 1a0(p)

But x — ~r (x) II — d (x, 
~~~~~~ 

so if A > 0 we obtain

(8/Ct + r ) (dlx, (p0)1 ~ 1 ( p)

and thus

dEx, (p0)) 
(1 + t)ci0

(p) . (2.6)

On the other hand , if — 0 then (2.5) ieçlies that dtx , (p 0)) 0, in which case

(2.6) holds trivially. In either case , therefore ,

E(p) c Z(p
0
) + ( A  + € )ci0Cp)B

which cos~ letes the proof.

Verification cf the hypotheses of this theorem in a particular case may be difficult;

this is particularly true of (ii) and (iii). It is therefore desirable to look for

I
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classes of problems for which this verification may be ‘ann ’ -r. In ti. ,- t o - s t  t~~- ’ t i r ,n We

exhibi t such a class for hypothesis (ii); we do so for ( i i i )  A n the following ~r’.r-osi -

— t i on .

PROPOSITION 1: In Theorem 1 , the hypothesis (iii) may be r~pl aro’~ ho

(iii)’ : f
2
(p
0
, x l  is positive semidefinitr- ,

PROOF : We shall show that (iii)’ , together with the other hypotre - - r-; - i f Tb --n -ri 1 ,

implies (iii ). Choose any x0 X
0
; under (iii)’ the function Lf

x 
will be a maximal

- i n . u~ ( - e r a t i ~~r .  As T is also maxima l monotone and as dom Lf (the effective
X

domain of Lf ) is all of , we have from (1 • Cor. 2.71 that Q (x0) is maxima l

monotone ; hence so is QCx
0
)

1
. The set QCx )

1
(0) is then convex , so that (i) ,m~ uie-

that çl x
0
)~~~(0) X

0
. It follows that for y c nB, X a Q (x )

1
Cy) c X + if y ~ B

(by (ii)). Now let o (O ,r~1 wi th Xe < Y. If y aB , the convexity of

impl ies that X a Q(x
0
) 

1
(y) — Q (x ) ’(y), so Q(x )~~ is locally U.L.(A) at 0.

Bu t th i s , together with the boundedness of Q (x ) 1(O) , shows that 9(x ) 1 is l~ ca11y

bounded a t 0; in f ac t ,  it must be locally bounded at every point of m t  ciB, since th~

image of some ball around such a point will be contained in the image of riB , which in

turn is contained in the bounded set X = X + AciB . But then from (12, Th. 11 we have

that tnt riB cannot contain any boundary point of dom QCx )~~~; however, as m t  iB

meets dom Q (x )
1 

(at 0) and is connected we finally conclude that

m t  1B C tnt doin Q(x
0
) 1

. Thus, for each y with I~~lI ci the set Q (x )
1
Cy) is

none.pty. convex and contained in C X .  This proves Proposition 1 (rej i-iCini q

r~ b’- an - ,- posi tive number smaller than -i ).

The hypothesis (iii)’ is certainly simpler ‘ ian ;s (i l l ) ;  however , ( i i i )  inns -r u a

more qer- ’ral class of probleas. For exam ple , cc’ -.ider the linear Qeneralized equation

0 €  —mx + $ + 
~~~~ 

~1
(x)



wi r ‘ - > ‘) . This -I ’-’ n. - - t satis t - ,- Ii i C ‘ - -~ , - : • — . • ~~~~~. -~~-
- -  - f  -

ti n t; (one if 1 8 1 -i , th r’ - ’- i f 81 i) - - i t b ana ),z’ 1 iti d . r (m i x) . If t~ ‘ -

t i ,  - - - ‘ l i t  m e n  at — 5’tru 8 u.n h’ so , . n i i 1 , z . - , i , Pt , ’ - - , I u t  m , n ,  at ;, ‘;ri h e r - - ’ r d - i - -C ,

‘he  ‘-o i l , ions of Theorem 1 a, 1 I or t h a t  - ‘ I  m ’ e r r

3. Polyhedral multifunctiens. In the last section , we e x h i b i t - I  a cIa—s of f ro-

blems for whi ch hypothesis (iii) of th or n 1 always held. tl ’-r ,- we do -u ’n m -w i - , t

- uorn, - ~hxng for hypothesis (ii): we show that for a class of multifunctions ir for ’ ui x . ’

in app lic ations to optimization and equilibrium problems , local ii “ r  I , i j s : i i t z  ‘on-

t in u i ty holds at each point of the range space . The problem of verifying h’,’fe~t I

( m i t , in the case of such functions , then reduces to that of showing that the Lipschitz

constants are u n i f o r m l y  bounded and tha t  the c o n t i n u i t y  holds  on a f i xed  ne n i;hluo rhnuui -I

for ‘ acim function in the family considered . For the application given in Section 4 thns
S

is trivial; some cases in which it is non—trivial are treated in Part II.

DE} INITP,N 2 :  A multifunct ion Q : 1~n jtm i.s polyhedral if tr; uraph is tb

m r - n  of a f i t i t e  (possibly empty) collection of polyhedral convex sets (called compo-

n ’-ru t

I f - r e  we use “polyhedra l convex set” as in (1 3 , §19] .

It  is  clear tha t  a p o l y h e d r a l  mu l t i f u n c t i o n  is always closed , arid that its inverse

is lik ewise polyhedral. Further , one can show wi thout difficulty that the class of

polyhedral multifuncti ons is closed under scalar multiplication , (finite) addition , and

(finite ) composition. The following proposition shows that they have good properties

also wi th respect to upper Lipschitz continuity. For brevity , we omit the p roo f s  of

this roposition and the next; they may hr. found in 1101

PROPOSITIo N 2
: Let F be a polyhedral multifunction from into Then

there exists a constant 1 such that P is locally U.L.(i) at each x
0

It is worth pointing out that depends only on F and not on x0
, al though

of ‘;rnmrn, ’ the size of the neighborhood of x
0 

within which the continuity holds will

— ____________ -



r

in general I’ C~~~ 1 on x~ .

The m nnn ; -er t ari- .- of I I - , h , - t r a l  multifunctions for applications is i l lustra ted by
I

t t ~c f-’ (lowing fac t, I n  t i , -  statement of which we use the concepts of subdifferential

an-i “I a polyhedral -“tivex (-mnot m e nu ( tn - wr,,i’o- ,- n iaranh i ’  a polyhedral r onv, x set)

whm h are b:—;cm:, - ’ - t  further in 11 3 ).

P R f l F - - ’h : T I O N  3: Let f be a polyhedral convex function from into (~~~~,+ ‘ )

Then the ukid fferen tial f is~~~ j’olyhedraI multifunction .

It f i l l - n w -  from this rinpo sit ion that snmbdifferentials of polyhedral convex

functions display th , upper i .m;si ~hitz continuity required in Theorem 1. In view of our

earlier remarks about polyhedral multifunctions , this behavior is not lost if we combine

these subdifferentials in various ways with other po yhedral multifunctions. For

cxam( 1,- , I - n  C be a n or i.-m; ty  polyhedral convex set in and let : Rn , (_ .

be it s indicator function , def ined  by

(0, x c c

~~~~~~

~~~ 
x 4 C

It is readily verified that is a polyhedral convex function. Now , if  A is a

linear transformation from into itself and a ~ P
0 
, then the operator

A~c + a + 8n~i~ (x )  and its inverse are , by propositions 2 and 3 , everywhere locally upper

Lipschitzian. Hence , generalized linear equations have good continuity properties with

resp’--:t to perturbations of the right-hand side; we shall exploit this fact in the next

section .

This discussion also shows that, if the operator T in Theorem 1 is polyhedral,

then the linearized operators Lf + T have at least some of the continuity properties
0

required in hypothesis Cii) of that theorem; it is still necessary to prove uniformity ,

but this is trivial if X,) is a singleton, while in general it can often be done by

using the structure of the problem ~~~~~ in nonlinear prograimning: see Part II of this

paper)

-14- 4



4- ~~~~jjl: ’mt: :i : st~~hi l i ty of a lin ear generalized equation. To illustrate

an a~ ; Iic ation of The -r i m 1, we specialize it to analyze the behavior of the solution

00 of t u e  lm n ’-ar qeneralizr- - I .‘n~ mat mo n

0 , Ax + a + ~-~~(x) , (4.1)

where A i s an ~ n matrix, a € , and C is a nonempty polyhedral convex set

in P~ . :-~,m - : h problems include , as special cases , the problems of linear and quadratic

r- “nraimning and the linear complementarity problem. We shall characterize stability of

t b. solution Set of (4.1) when the matrix A is positive semidefinite (but not necessari-

1-, synunetric) a more general (but more complicated ) result could be obtained by dropping

the assumption of positive semidefiniteness but assuming hypothesis Cii i) of Theorem 1.

THEOREM 2: Let A be a positive semidefinitr’ n ’ n  matrix. C be a nonempty

polyhedra l  conve x set in and a ~ ~ n Then the following are equivalent:

a) The solution set of (4.1) is nonempty and bounded,

b) There exists c
0 

> 0 such that for each n x n matrix A ’ and each a ’ ‘

with

max( IIA ’ — A I l ll a ’— a II < , (4.2)

the set

S(A’ ,a’) : {xlO € A ’x + a ’ +

i s noneI~~ty.

Further , 
~~j.~

.ose thcS~ conditions hold; let p be a bound on S(A ,a), and be

l,c~ 1 q~~..r Ii :  - , n - h ;t z - ‘i:, - ’~~r t fur (A(.) + a + at 0 (which exists by

the results of b. ction 3) . Then for any open bounded set ~ containing S(A,a) there

i s some , 0 such that for each A’ , a’ with max { II A ’ — A II ‘ l l a ’-a II < 
~l ~~

have

0 s S(A’ ,a’) n ~ c S (A,a) + A ’ (l—\ ‘) 1
(l+~ )B . (4.3)

V
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I

F i n a l l y, i f  ( A ’ , a ’ ) are r e s t r m c ~ ed to vali. ’ f u r  wbm ’;h S(A ’ . .m ’) is krowt.

t o be connected (in particular, i f  A ’ is restricted to bi ~~~~ i ive~~ ’-midefiru i teL~~~the:-

n
i can be replaced by P

PROOF (b a): If (b) holds then in particular S(A ,a ’) is nonempty for all a ’

in some ball about a. This means that 0 belongs to the interior of the range of the

operator A( S ) + a + 
~

‘C
1
~~~

’ which is maximal monotone by (1 , Cor . 2.71 . Accordingly,

the inverse of this operator is locally bounded at 0 (1, Prop . 2.91 and so in parti-

cular S(A,a) is bounded.

C a b) : We apply Theorem 1, taking P to be the normed linear space of pairs

CA ’ ,a’) of n x n  matrices and points of ~ n , wi th the distance from (A ’ ,a ’) to

(A” ,a”) given by max{ ii A ’-A”ii ‘ ita ’—a ”ii }; we take p
0
:.(A ,a), T:=

~
l1
c. 

and

:— A’ x + a’. The set is then S(A ,a); we let 0 be any open bounded

set containing X 0 , and since Lf (x) = Ax + a for any x
0
, it is clear tha t thex0

hypotheses are satisfied (note that Proposition 1 implies that (iii) holds) . We then

find that for some 6 > 0, > 0 and all (A’ ,a’) with ~~
‘ 

~ ~~~~
‘ 

we have

S(A ,a’) ri (S(A ,a) + 5B) nonempty, which proves (b).

Now choose ‘I’; without loss of generality we can suppose that 0 was taken to be

this V . As V is bounded, we can find c (O ,r~ 1 with Ac
1 

< 1 and such that for

each x € V , t
1
(l + II x ii ) < n. where r~ is the parameter appearing in Theorem 1. Now

pick any (A ,a’) with c ’ < t~~; by the above discussion SCA’ ,a’) n ~ is nonempty,

and we take x ’ to be any point of that intersection. We know that

0 t A x ’ + a +
L

which ii equivalent to

x ’ € (AC .) + a + a*c 
1

U A — A ’ ) x ’ + (a—a ’))

But since x ’ ~ V .

I

-16—
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(A—A’ )x ’ + (a— -I ’) II max t Ii A—A’ ! , a—a ’’ 1 1(1 + Ix ’ !

l
(l + l ix ’!! )

and so by upper Lipschitz continuity,

dlx ’ , S(A ,a)] ‘ (A—A ’ ) x ’ + (a—a ’)!!

Now let x
0 

be the closest point to x ’ in S(A ,a); then

(A—A’ )x ’ + (a—a ’) ii (A—A’ )x
0 

+ Ca—a ’)!! + (AA ’) (x ’— x )

‘( 1  + p )  + c ’ h l x ’ _x , Il
A ccordinul -.’, as ll x ’_ x 11 U = d (x ’,S(A ,a)) we have

d ( x ’,S(A ,a)) ‘(1 + -,u) + 1-r ‘dfx ’ ,S(A ,a))

yielding

I

d ( x ’ ,S (A ,a)J At ’ (l  — 
~t ’)

1 ( l  + p )

~~I : cn x ’ was arbi trary in S (A’ ,a ’) n q’, we have (4.3).

F in a l l y ,  we observe tha t for a l l  small  i ‘ , S ( A ,a ’ )  ‘t ‘V is - u n f u r l m r

S(A,a) + ‘p which is contained in V. If S(A’ .a’) also met the complement of +

then it would be disconnected; thus if SCA ’ ,a’) is con- - ” ted it must lie entirel y in

~~, so tha t we may replace ‘P by ~ n in (4.3). In particular, if A ’ is positive

semidefinite then A’ (.) + a ’ + 
~

ni.
~

( .)  is maximal monotone , so that S(A ’ ,a ’ )  is - °nm-

vex as the inverse image of 0 under this operator. This completes the proof.

One might wonder , since the boundedness of V is used at only one place in t i n

pr oof , whether a refinement of the technique would permit replacement of V by

in all cases. The following example shows that this cannot be done even for n 1 :

take C — P~ , A — (0) and a — (1), so that the problem is

0 (0)x + (11 + (x)

p 
+

whose solution set is S((01,(l1) = (01. However , it is readily checked that for any

‘0

—17—
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> 0, S (t r 1 . 1 1 1 )  — (0, ~~~; t m ; w’- cannot tak.- ‘V = P in this case .

Theorem 2 r i v i t - , in a n t  I ‘m la r , a o u i n t n ; i l n • t . -  stabil ity theory for convex quadra—

I

tic p rograssning (including linear ~iroqranvning) and for linear complementarity (-rn)hl ’m4

with ; n -  m t m v e ‘, - m m1 ,- fm n m t e matr Li -”-; t his extends earlier work of Daniel (3) on

s t r i c tly  -uin v . x ; m n t r . n t  m p rograimninq , and i , f  the  author  ( 1 1)  on l inear  progra imning .

Stat m l r t , i ’ -,;u l ’ - , f i r  mor’- general nonlinear proqrasuninq problems are developed in

Part II - f t h m s  aI’-r.

It mi ght be worth f-outing cu t  that the strong form of Theorem 2 (i.e., with A ’

restric ted tn be positive semidefinit.’) can sometimes be shown to hold because of the

f irm of t u -  problem. For example , consider the quadratic prograssning problem

mrtinimiz ’ ~ (x, ,,xI + (q,x> + < p , y )

(4.4)

suhjei -t to Bx + Dy d

(we ~ul t also have added equality constraints , constrained variables, etc. but have

omitted these for simplicity) . Here Q is m in , B is r is and D is r s.

The formulation of (4.4) as a generalized equation is (taking 0 to he syssnetric)

Q 0 ST1 x q

0 ‘ 0 0 D y + p + 
~~~

(x.y .u) . (4.5)

-D 0 u dj

w 1. r -  = ~
m ~~~ . The matrix shown in (4.5) is then the matrix A of

Theorem 2; it is positive semidefinite if and only if Q is positive semidefinite

(i..., if and on ly  if the problem (4.4) is convex). Now, if p is actually positive

defini te then for all small perturbations of the data of (4.4) (i.e. • of Q,q,p,B,D, and

d) the matrix in (4.5) will remain positive semidefinite and the strong form of

Theorem 2 w i l l  hold . The point here is that the structure of the problem prevents the

type of perturbation which could destroy the positive semidefiniteness of A. This

coninent , of course , applies in particular to all linear progranveing problems (11).

I i 
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