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ABSTRACT
The overall test for lack of fit in autoregressive-moving average models
proposed by Box and Pierce (1970) is considered. Tt ic shown that a substan-
tially improved approximation results from a simple modification of this test.
Some consideration is given to the power of such tests and their robustness
when the innovations are non-normal. Similar modifications in the overall

tests used for transfer function-noise models are proposed.
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SIGNIFICANCE AND EXPLANATION

Very many physical situations are described by a series of numbers occurring
sequentially in time, the observed numbers arising from a deterministic under-
lying smoothly varying sequence perturbed by random errors. Typical examples
are observations of the position of a vehicle or missile at successive intervals
in time, and many other examples occur in connection with engineering production
and business management.

Such time-series are normally analyzed, after allowing for the deterministic
part, by assuming some underlying model for the process involved, the relevant
model in the present work being an autoregressive moving average model described
in the first paragraph of the paper. This is the model on which the Box~Jenkins
technique is based.

If the parameters in a model are estimated from an experimental time-series,
the next question is the adequacy of fit of the data by the model. In this
connection it is useful to study the residuals and their autocorrelations ;k
Box and Pierce (1970) propose an overall test for lack of fit based on approx-

by the x2 distribution where

imat i he distributi £ r) = r
imating the distribution of 0Q(r) n E Ty m-p-q

k=1
n 1is the number of observations in the time series, m is the number of lags,

and p + q is the number of parameters in the model. Recent studies have shown
that this approximation is not adequate unless n is large relative to m.

The present paper illustrates that the use of the modified test statistic
m
Q(r) = n(n+2) § (n-k) 1;2
k
k=1
The power of the overall test and its robustness to non-normality of the innova-

leads to a substantially improved approximation.

tions (i.e. random perturbations on the data) in the model are discussed briefly.
Some consideration is also given to testing for lack of fit in transfer function-
noise models, where one has two time series, variations in one series being 1

related to variations in the other.
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ON A MEASURE OF LACK OF FIT IN TIME SERIES MODELS

G. M. Ljung and G. E. P. Box

1. INTRODUCTION
Consider a discrete time series (wt} generated by a stationary auto-
regressive moving average model
O(B)wt = e(B)at (1.1)

where ¢ (B) = 1-¢1B-...~bpap, 6(B) = 1-918-...-9 Bq, Bkw =

o iy, TP {at) is

a sequence of independent and identically distributed N(O,oz) random
deviates, and where the wt's can represent the d-th difference or some other

suitable transformation of a nonstationary series {zt}.

After a model of this form has been fitted to a series wl....,wn. it
is useful to study the adequacy of the fit by examining in various ways the

residuals a ...,an and, in particular, their autocorrelations

ll

n ~ -
k t=l§ ek
£ o ————, Kk =1,2....

An informal graphical analysis of these quantities combined with over-
fitting [see, for example, Box and Jenkins (1970)] usually proves most
effective in detecting possible deficiencies in the model. In addition,
however, it is often worthwhile to look at an overall criterion of adequacy
of fit. Box and Pierce (1970) noted that if the model were appropriate and

the parameters were known, the quantity

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by
the Air Force Office of Scientific Research under Grant AFOSR 72-2363D.




O(r) = n(n+2) § (n-k)"2¢2 , (1.2)
L9 k
A k=1
where .
'zl .
a a
Sl t t-k
s n $
L
t=1

would for large n be distributed as xi since the limiting distribution of
r = (rl.....rm) is multivariate normal with mean vector zero [Anderson (1942),
Anderson and Walker (1964)], Var(rk) = (n-k)/n(n+2) and COV(tk'rﬁ) =0,

k # L. Using the further approximation Var(rk) = 1/n, Box and Pierce

suggested that the distribution of

Q(r) =n § r (1.3)

could be approximated by that of x:. Furthermore, they showed that when the

p + @ parameters of an appropriate model are estimated and the Ek's ;

% s, then

replace the r

A o ~2
Q(r) =n ] ri
k=1

would for large n be distributed as X;-p—q yielding an approximate test for lack of fit.

In applica;ions of this test, suspiciously low values of Q(f) have
sometimes been observed and studies by Ljung and Box (1976) and Davies et al.
(1977) have verified that the distribution of Q(r) can deviate from xi-p-q'
This observation was also made by Prothero and Wallis (1976, Discussion).

The observed discrepancies could be accounted for by several factors among

these departures from normality of the autocorrelations. It appears, however, .

that the main difficulty is caused by the approximation of (1.2) by (1.3).




A modified test based on the criterion

= s v -1-2
o(r) = n(n+2) ¥ (n-k) N

k=1

was recommended by Ljung and Box (1976) but its usefulness was gquestioned

by Davies et al. (1977) on the ground that the variance of é(?) exceeds

that of the x:-p-q distribution. Our studies show however that the modified

test provides a substantially improved approximation that should be adequate

for most practical purposes.

2. MEANS AND VARIANCES OF Q(r) AND Q(r)

To examine the overall test, it is useful to initially consider the

quantities Qf(r) and O(r) which involve the white noise autocorrelations r.

Since the limiting distribution of r is N(g,n-lrm), Q(r) and Q(r) are

asymptotically distributed as X; and have expectation m and variance 2m.

For finite values of n, Q(r) has expectation m, whereas

m
BO(r) =n J E() = 2o -Tthy (2.1)
k=1

Clearly, unless n is large relative to m, EQ(r) can be much smaller than m.

The variances are

m m~1 m
Var Q(r) = n2 z Vat(ri) + 2n2 Z 2 Cov(ri,ri)
k=1 k=1 f=k+1

m
Var Q(r) = nz(n+2)2 ¥ (n-k)-zvar(ri)
k=1

m-1

+ 2n2(n+2)2
k

% r2)
R i

(M BN

m
7 (k)" n-0) Yeov(x
1 2=k+1



where for fixed n, Cov(r:.ri) is non-zerc. The univariate and bivariate

moments of the rk's needed to evaluate (2.2) can be obtained using the

identity
)J

i
E((Z aja, ) (Zaa, ,
2.1+3
E(Z at)

(2.3)

[see, for example,

which follows from independence of the rk's and [ az

Anderson (1971), p. 304). Taking Var(at) = 1 without loss of generality,

L a: is distributed as xi and E(I ai)HJ = n(n+2) ... (n+2i+23j~2). The

term in the numerator of (2.3) can be evaluated by multiplying term by term

taking the expected value. Using this procedure, it can be verified that for

k < n/2

var (e2) = 80305K) + 3k _(no?
k n(n+2) (n+4) (n+6) 2 2
n (n+2)

Cov(r

r2 (n-k) (n-2) + 4(n-2) + 8(n-k-2) _ (n-k) (n-%)
g |

2
) =
k n(n+2) (n+4) (n+6) nz(n*2)2

] The exact variances of Q(r) and Q(r) are readily evaluated using (2.2)

and (2.4). By ignoring terms of order higher than 1/n it may be shown that

large relative to m,

approximately, for n

varQ(r) = 2m{1 + 5—’;39}

2m - 5

VarQ(r) = 2m{l + At

The variance of é(r) exceeds 2m but the absence of a location bias

makes its distribution much closer to x; than that of Q(r). This is

illustrated in Figure 1 which compares Monte Carlo distributions of Q(r)



Fig. 1. Monte Carlo distributions of Q(r) and é(r) and
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and é(r) based on 1000 replications to the x: distribution for m = 30

and n = 100. The means and variances of the observed distributions are
2 2

Q(f) 60.47 and SQ(;)
closely with the corresponding theoretical values 24.85, 30.00, 63.15 and

Q(r) = 24.97, O(f) = 30.17, s = 88.25 and agree quite

91.48. Also shown by dashed lines in Figure 1 is a distribution of the form
axi for which both the mean and variance is adjusted to correspond with that
of é(r). 1t is seen that there is perhaps a somewhat better agreement in

the upper tail area but the main improvement results from adjusting the mean.

3. THE TEST STATISTICS Q(r) AND Q(r)
Box and Pierce (1970) showed that the residual autocorrelations

i = (r ..,Em)' from a correctly identified and fitted model can to a

) i
close approximation be represented as
£~ (I-Dr (3.1)

where I - D is an idempotent matrix of rank m-p-g. Using this relationship,

the expectation of Q(r) is
EQ(r) =~ E{nr'(I-D)r} = tr{n(I-D)C} ,
where C 1is the exact covariance matrix of r. The matrix D has its

largest elements in the upper left corner with the remaining elements dij

decreasing to zero as i and/or j increases. The matrix DC 1is therefore

nearly equal to n-ID. Using this approximation and noting that EQ(r) = tr(nC),

we have
EQ(r) ~ EQ(r) - p-q . (3.2)
Combining (2.1) and (3.2), the expected value of Q(r) is approximately

mn m+ 1
3 o {1 =~ }

TE P (3.3)

EQ(x) = -
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which indicates that the distribution of Q(r) can deviate markedly from

2

X
m-p-q
tions it can be shown that

unless n is large relative to m. However, using the same approxima-

EQ(r) > EQ(r) - p-q
= m-p-q .
Tt may be expected therefore that the distribution of Q(r) might be
approximated by the X;-p-q distribution.

The adequacy of this approximation was gquestioned by Davies et al. (1977)
on the ground that the variance of é(;) exceeds 2(m-p-q). However, results
from a simulation study reported in the next section suggest that the reduction
in the location bias results as before in a markedly improved approximation
that should be adequate for most practical purposes. It also appears that the
expression for the variance given by Davies et al., which is not exact, over-
estimates the variance of {(r). For example, for fitting a first order
autoregressive model to white noise, Davies et al. obtain for m = 20, n = 50,

100 and 200, Varé(f) = 58.80, 50.08 and 44.20, respectively, while our

study gives Varé(f) = 46.84, 43.20 and 41.97, respectively.

4. SOME NUMERICAL RESULTS

Comparison of the Overall Tests

A Monte Carlo study was conducted by generating 4000 sets of observations
{wl,...,wn} from the first order autoregressive model wt -~ ¢wt_l = ag,

estimating ¢ by the approximate maximum likelihood estimator

)
w W
B gez "t




[Box and Jenkins (1970), p. 279], and calculating autocorrelations of the

-

- ~2 - ¥ -
i = = -‘ B asspDe i
residuals a1 (19 )wl. a, = w, Weoy? t 2, n. The statistics Q(r)
and 6(;) were then calculated.

Table 1 shows the proportion of Q(f) and é(fl values exceeding the

2

upper i) 5, ii) 10 and iii) 25 percentage points of the Xm=1

distribution for a few combinations of n and m and for ¢ = .5. The
table also gives the means and variances of the observed distributions. It
seems clear that although the variance of Q(f) exceeds 2(m~1) a test based
on this statistic would for smaller sample sizes provide a considerable

improvement over the previousiy used Q(f) test.

An Alternative Test Based on Q(r)

The above results suggest that a closer approximation to the distribution
of Q(f) should be obtainable by appropriately adjusting the mean of the
approximating distribution. Furthermore, Table 1 shows values of VarQ(;)

which are nearly twice the mean, suggesting the approximation

e { R
() ™ Xgo ()
with EQ(f) given by (3.3). Empirical significance levels obtained using

this approximation and the criterion 6(;) are compared in Table 2. The

agreement is quite close.

A Power Calculation

The two criteria Q(f) and é(f) differ essentially in the weighting
which is applied to the autocorrelations ;k' é(f) giving more emphasis to
later autocorrelations. This would perhaps be an advantage if serial correla-

tion occurs at high lags k. However, for large n this difference should




Table 1. Empirical means, variances and significance levels of the statistics

Q(x) and 6(?): data generated from the model w, - .Sut_l =a,.
Level Level
n m mean variance 5.0 10.0 25.0 mean variance 5.0 10.0 25.0
50 10 7.48 13.79 223 4.7 13.4 8.82 19.11 53 9.5 23.0
20 13.96 27.50 T3 2.3 6.4 18.58 47.76 6.1 10.4 23.2
100 10 [ 8.14 16.04 3.4 7.0 18.2 8.83 18.88 5.0 D0 2301
20 16.26 35.45 NS 5:0' 23.F 18.63 46 .46 5.8 10.2 22.8
30 23.53 S5.74 1.7 3.6 9.k 28.58 81.71 Te2 11,6 23.4
200 10 8.57 16.76 4.2 g3 2105 8.92 18.16 5.0 9.8 23.9
20 17.46 36.36 3.5 6.9 17.6 18.66 41.51 5.4 10.0° 22.7
30 26.11 56.01 2.9 5.6 14.2 28.66 6737 559 10,5 23.8




m-1

O(r) ~ x

data generated from the model

2 -
Xp-1

2 -~
EQ(r)

-

~ and Qix) =
QlxY >~

2
EQ(r)

X

Empirical significance levels based on the approximations
Q(r) ~

w - = «
o TR
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be rather small. TIf the type of discrepancies to be expected is known, tests
specifically aimed at detecting these discrepancies should be used. Such
specific tests will of course be much more powerful. This point is illustrated
in Table 3 which empirically compares the power of the overall tests and the
method of "overfitting" [Box and Jenkins (1970)]). The results are based on

data generated from a second order autoregressive model, with a first order
model being fitted to obtain Q(r) and O(r). As might be expected, the
overall tests are much less powerful than overfitting which tests the hypothesis
that the second order autoregressive coefficient is zero. A smaller value of m

improves the power of the overall tests for this particular alternative.

Effect of nonnormality of the at's

In developing the overall test, the assumption is made that the innova-
tions at in the model are normally distributed. Circumstances occur where
this assumption is not true. For example, it is known that stock price
innovations often have highly leptokurtic distributions. While Anderson and

'

Walker (1964) show that the asymptotic normality of the r, s does not require

normality of the a_'s, only that their variance exists, results for finite

t
sample sizes are lacking. An empirical investigation was therefore conducted
into the behavior of the statistic Q(f) when the at's have i) a double
exponential and ii) a uniform distribution. The results, which are given in
Table 4, agree closely with those obtained under the normality assumption for
the at's in Table 1.

5. EXTENSION TO TRANSFER FUNCTION-NOISE MODELS

To check the adequacy of a fitted model of the form

w(B) 6 (B)

£t 8(B) %r-b-1 " P(B) "t




PV T

Table 3.

Empirical power of the overall tests and the method
of overfittino for n = 100. Assumed model:

w, - ¢wr_1 =8 true model: (1 - .7B) (1 - GZB)wt g,
Nominal significance level: 5 percent.
G
2
Test .0 oo | o5 ] A o & 9
Overfitting 523 12.0 59.7 93.8 99.7 99.1
~ z 2
Q) ™ Xgo (£)
m = 10 4.7 6.7 28.6 72.0 96.6 99.9
m = 20 5.6 =3 24 .4 62.8 93.7 99.7
m = 30 6.0 1.7 22.9 58.1 91.7 99.5
A 2
QUEY ™ Xy
m = 10 4.9 7-0 28.9 7 96.2 99.9
m = 20 6.2 8.0 24.7 61.7 93.2 99.6
m = 30 70 9.0 23.7 57.0 90.5 99.3

Table 4. Empirical means, variances and significance levels of Q(f) when the
innovations a, have i) a double exponential and ii) a uniform
distribution; data generated from the model N = .Swt_l =a..

i) a, ~ double exponential ii) a ~ uniform
Level Level
n m mean variance 5.0 10.0 25.0 mean variance 5.0 10.0 25.0
50 10 8.50 18.59 4.7 8.6 20.7 9.01 19.35 5.6 10.0 24.4
20 A 7 17 f 47 .00 5.4 8.8 19.6 18.95 52.39 Tvd Afsd 24.3
100 10 8.80 18.70 5.0 9.1 22.4 9.11 19.41 5.5 10.8 25.3
20 18.37 43.62 4.8 9.2 22.0 19.00 47 .52 6.8 13.5 357
30 27.94 76.60 63, 10x1. 219 28.98 81.72 75 124 25.3
200 10 8.86 18.78 4.9 10.3 23.9 9.00 19.24 5.6 10.1 25.7
20 18.60 43.33 5.6 9.7 23.6 18.93 45.99 .2 11.2 2.4
30 28.46 69.67 6.0 10.:5 23.3 28.94 72.25 6.8 11.6 25.3
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where

u
W =-wB =~ .. - wB

w(B) 0 1 S J

v
§ (B) 1~ 618 - e = 6va
3 and ¢(B) and 6(B) are as in (1.1), and where the input series {at}
is assumed to be white noise, it is useful to examine, in addition to the

residual autocorrelations ;k‘ the crosscorrelations between the residuals 1

and the input series

’X‘ i
a, .a
S kg P
k n , B s 1/2
g LA
t=1 t=1

Pierce (1968, 1972) and Box and Jenkins (1970) propose an overall test
for lack of fit in the transfer function w(B)/6(B) based on approximating

the distribution of

ot R
Siie) « (r;)2
k=0 }

2 ‘ ; : : .
by a ) A distribution. However, arguing as above it appears that a
criterion of the form

~ AW m - A%k
S(r ) = n’ I (n-k) 1(rk)2
k=0

might be more appropriate. This is suggested by the fact that the distribution
of
L, %2

2 v -
Str) =n" ] (k) "(x))°,

k=0

where

1
%
1




o
* t=k+1 t-k t
r = ’

n , D 2 1/2 .

I e 1 s,

t=1 t=1
; ’ 2 2 * .
is for large n approximately Xp4y Since the rk‘s are asymptotically

*
normal with mean zero, Var(rk) = (n-k)/n2 and Cov(rk.tz) =0, £#k

{Pierce (1968)].
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