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ABSTRA CT

The overal l test for lack of fit in autoreqressive—movzng average models

proposed by Box and Pierce (1970) is considered . It i shnwn t h a t  a substan-

tially improved approximation result’- from a si rn~~l •  modi fication of this ~~~~~~

Some consideration is given to the power of such te~~~ and ~k i r  robustness

when the innovations are non—normal. Similar modif~~ d tI r~ns in the ov e r a l l

tests used for transfer function—no se modeI~ are ’ ~rnjcsu’d .

AMS (1405) Subject Classifications: Primary 62M1fl; Secondary 62E15. (~2E2 S

Key Words: Autoreqressive-movinq averaqe models ;  Residual autocorrelations;
Tests for lack of fit; Transfer funrtion—nolse models

Work Uni t Number 4 (Probability, Statistics and Combinatorics)

*~u~ S~cIu

~~~ ~fC~~:~ fl

‘~~~~~ 
~~~~ C 

- 
V

Sponsored by the Uni ted  States Army undcr  c’n ’t r a~~t No. UAr~G 2) _ i _r ’_
~

the Air Force Office of Scient ific Ro~ e~ rch under  Gran t  AFOS R 72 — f l ’~~U .

—~~~~~~~~~~~ - - -~~~~~~~~~~~~~~~~~~~
- .— —

~~~~~~~~~~~~~ -~~~~~~~~~~ “~~~



‘~~~ iN ~~
’} AN D EXPLAN A T!OP J

Very many phys ica l  s i t u a t i o n s  are  described by a s . - r i i s  of numbers o ’~ urrinq

sequentially in time, the observed numbers ari’~inq from a deterministic und.~r-

lying smoothly varying sequence corturbed by random errors. Typica l examples

are observations of the position of .~ vehicle or missil e at successive intervals

in time, and many other examples occur in connection with eng i neer i ng production

and business management.

Such time—series are normally analyzed , after allowinq for the deterministic

part, by assuming some underlying model for the process involved , the relevant

model in the present work bein¼j an autoreqressive movi ng average model described

in the first paragraph of the paper . This is th ,  model on wh i  h the B o x - 1 r i k i n ~.

technique is ba sed .

If the parameters i n ~ model are estimated from an exper imental t 1 m . . - s i . I i e ..~.

the next question is the adequacy of f i t  of the data by rh . - model . In th it~

connection it is useful t c ,  study the residuals and their , i i t  ‘ ‘i r ’  ~. i t i ~~n r~~.

Box and Pierce (1970) propose an overall test for lack of f i t  ba sed nn apprrix-

imati~ng the distribution of Q(~~) n ~ r~ by the x~_ 
- 

d t ri ~~~t i n where
k=l 

p q

n i~ the number of observa tions in t h e  t- im~’ s ’r i ’ s . m is  t~~ number of laqs ,

and p + q is the number of parameters in the model. Re~’ent st idies have shown

that this approximation is not adequa t unless n is l~~rp relative to m.

The present paper illustrates that the use of the modified t~ ’st statistir

Q(~
) = n(n+2) 

k=l 
(n—k)

1
r~ leads to a substan t i a l l y  improved approximation .

The power of the overall test and its robustness to non—normality of the innova-

tions (i.e. random perturbations on the da ta ) in the model are discussed briefly.

Some considera tion i s also given to  testinq for lack of fit i n  transfer function—

noise models, where one has two time series . var iations in one Serb s heinq

related to variations in the other .

_ _ _ _ _ _  
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ON A MEASURE OF LACK OF FIT TN TIME SERIES MODELS

G. M. Ljung and G. E. P. Box

1. INTRODUCTION

Consider a discrete time series {w
~
} generated by a stationary auto-

regressive moving average model

8(B )a~ (1.1)

where •(B) l-~~ B-. . ~~~~~~ 9(8) — 1
~
9
1
B
~
. . -9~8q~ Bkw

t 
= W

t k s 
~~~~~ 

is

a sequence of independent and identically distributed N (O,o
2
) random

deviates, and where the w
e
’s can represent the d—th difference or some other

suitable transformation of a nonstationary series {z
~~

}.

After a model of this forui has been fitted to a series w ,...,w , it1 n

is useful to study the adequacy of the fit by examining in various ways the

residuals a
1
,...,a and , in particular , their autocorrelations

r
k 

t=~:l
a
t
a
t~~ 

, k = 1,2 

An informal graphical analysis of these quantities combined with over-

fitting Isee, for example , Box and Jenkins (1970)1 usually proves most

effective in detecting possible deficiencies in the model. In addition,

however, it is often worthwhile to look at an overall criterion of adequacy

of fit. Box and Pierce (1970) noted that if the model were appropriate and

the parameters were known, the quantity

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024 and by
the Air Force Office of Scientific ~esearch under Grant AFOSR 72—2363D.
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Q (r) = n(n~2) ~ (n—k ) r , ( 1 . 2)
k=l k

where

n

~ 
a~a

t=k+lr =—

k n
r 2
/

t= 1

would for large n be distributed as since the limiting distribution of

r = (r
1
,...,r )  is multivariate normal with mean vector zero (Anderson (1942),

Anderson and Walker (1964)), Var(r
k
) = 

~~~~~~~~~~ and Cov (r
k.rL

) 0,

k * t. Using the further approximation Var(rk
) — 1/n, Box and Pierce

suggested that the distribution of

Q(r) = 

k l  
r~ 

(1 .3)

could be approximated by that of Furthermore, they showed that when the

p + q parameters of an appropriate model are estimated and the rk s

replace the r
k
s
~ 

then

Q(r) 
Ic

would for large n bedistributed as X~_p_q yieldinq an approximate test for lackof fit.

In applications of this test, suspiciously low values of Q(r) have

sometimes been observed and studies by Ljung and Box (1976) and Davies et al.

(1977) have verified that the distribution of Q(~
) can deviate from X~_p_q~

This observation was also made by Prothero and Wallis (1976, Discussion).

The observed discrepancies could be accounted for by several factors among

these departures from normality of the autocorrelations . It appears, however ,

that the main difficulty is caused by the approximation of (1.2) by (1.3).

- ~~~~~~~~~~~~~ ~~~~~~~~~~~~ .—~~~~~~~~~~~~~~~~ --“—- ~~~~~~~~~~~~~~~~~~~~~~~~ —
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A modified test based on the criterion

Q (r) n(n+2) ~ (n—k) 1
r~

k—I.

was recommended by Ljung and Box (1976) but its usefulness was questioned

by Davies et al. (1977) on the ground that the variance of Q (i~) exceeds

that of the x 2 distribution. Our studies show however that the modifiedm-p-q

test provides a substantially improved approximation tha t should be adequate

for most practical purposes.

2. MEANS AND VARIANCES OF Q (r) AND ~.(r)

To examine the overall test, it is useful to initially consider the

quantities Q(r) and ~ (r) which involve the white noise autocorrelations r.

Since the limiting distribution of r is N (O,n 11), Q (r) and Q(r) are

asymptotically distributed as and have expectation m and variance 2m.

For finite values of n, ~ (r) has expectation m , whereas

EQ(r) = n 
k=1 

E(r~) = 
2 ~ 

- (2.1)

Clearly, unless n is large relative to m, EQ (r) can be much smaller than in.

The variances are

Vat Q(r) = n2 ~ Var (r~~) + 2n2 
m~l 

~ Cov(r~ ,r~)
k=l k=l Z=k+1

and (2.2)

Var ~ (r) = n
2
(n+2)

2 
~ (n-k) 2Var(r~)

k=l

+ 2n2(n+2)
2 ~ 

~ (n-k ) ’(n-~)
1COV (r~ ,r~) ,

k~=1 i=k+l

— 3—
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where for fixed n, Cov(r~ ,r~) ii non—zero. The univariate arid bivariate

moments of the rk
s needed to evaluate (2.2) can be obta i ned using the

identity

i _
E{(1 a

~
a
~_k) ( . .  a~a)~~~~

E(r kr &
) = 2 i+i 

(2 .3)
E(E a

~
)

which follows from independence of the r
k
s and E a~ (see, for example.

Anderson (1971), p. 304). Taking Var(a
~
) = I without loss of generality,

E a~ is distributed as and E(E a~)
’’
~ n (n+2) ... (n+2i+2j—2) . The

term in the numerator of (2.3) can be evaluated by multiplying term by term

taking the expected value. Using this procedure, it can be verified that for

k< n /2

2 
— 
6(3n—5k) + 3th—k)2 — 

(n—k)2
Var(r

k
) — 

n(n+2) (n+4) (n+6) 2 2
n (n+2)

and (2.4)

2 2 
- 

(n-k) (n-&) + 4(n-t) + 8(n-k-~) (n-k)(n-1)
Cov(r

k
.r

L
) - n(n+2)(n+4)(n+6) 

- 
2 2

n (n+ 2)

The exact variances of Q(r) and Q(r) are readily evaluated using (2.2)

and (2.4). By ignoring terms of order higher than 1/n it may be shown that

approximately, for n large relative to in,

VarQ(r) = 2m{1 + 
in

and

- 2 m — 5
VarQ(r) = 2m{l + }

The variance of Q(r) exceeds 2m but the absence of a location bias

makes its distribution much closet to than that of Q(r). This is

illustrated in Figure 1 which compares Monte Carlo distributions of Q(r)

-4-
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Fig. 1. Monte Carlo distributions of Q(r) and Q(r) and
approximations; 1000 replications, n — 100 and

in — 30; 
_____  x~~

, ---- ax~ (a — 1.52, b 19.68).
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and Q(r) based on 1000 repl ications to the distribution for m 30

and n = 100. The means and variarn ’~ s of the observed distributions are

Q(r) = 24.97, ~(~ ) 30.17, S~~()  
60.47 and 5Q (~~) 

88.25 and agree quite

closely with the corresponding theoretical values 24.85, 30.00, 63.15 and

91.48. Also shown by dashed lines in Figure 1 is a distribution of the form

ax~ for which both the mean and variance is adjusted to correspond .ith that

of Q(r). It is seen that there is perhaps a somewhat better agreement in

the upper tail ~irea but the main improvement results from adjusting the mean.

3.  THE TEST STATISTICS Q(r) AND Q(r)

Box and Pierce (1970) showed that the residual autocorrelations

r Cr 1
, . . . ,r )’ from a correctly identified and fitted model can to a

close approximation be represented as

r ~ (I — D)r (3.1)

where I - D is an idempotent matrix of tank m-p-q . Using this relationship,

the expectation of Q(r) is

EQ(i~) E{nr ’(I—D)r} = tr{n (I—D)C}

where C is the exact covariance matrix of r. The matrix D has its

largest elements in the upper left corr..~r with the remaining elements d
1~

decreasing to zero as i and/or ) increases . The matr ix DC is therefore

nearly equal to n
1
D. Using this approx imation and noting that EQ (r) = tr(nC),

we have

EQ (r )  E Q (r )  - p-q . (3.2)

Combining (2.1) and (3.2), the expected value of Q(r) is approximately

EQ( ) 11 - 
m + l

) - p-q , (3.3)



which indicates that the distribution of Q(r) can deviate markedly from

X~_p_q unless n is large relative to in. However , using the same approxima-

tions it can be shown that

EQ( ) EQ(r) - p-q

m-p-q

It may be expected therefore that the distribution of ç(r) might be

approximated by the X~_p_q 
distribution.

The adequacy of this approximation was questioned by Davies et al. (1977)

on the ground that the variance of Q(r) exceeds 2(m-p-q). However , results

from a simulation study reported in the next section suggest that the reduction

in the location bias results as before in a markedly improved approximation

that should be adequate for most practical purposes. It also appears that the

expression for the variance given by Davies et al., which is not exact, over-

estimates the variance of ~~~~~~~~ For example. for fittzng a first order

autoregressive model to white noise, Davies et al. obtain for in — 20, n — 50,

100 and 200, VarQ(~ ) = 58.80, 50.08 and 44.20, respectively, while our

study gives VarQ(r) = 46.84, 43.20 and 41.97, respectively.

4. SOME NUMERICAL RESULTS

Comparison of the Overall Tests

A Monte Carlo study was conducted by generating 4000 sets of observations

{w
1
,.. .,w }  from the first order autoregressive model w~ - 

~
w
~ _1 

= a
~
.

estimating 0 by the approximate maximum likelihood estimator

n

= : ~ ~ 
t~ 2

t
~
’t
~~

—7—
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(Box and Jenkins  ( 1970) , p. 2 7 9 ) ,  and calculatinq autocorrelatj~ons of the

res iduals  a
1 

— (1.4 2 )w
1
, a

~ ~ 
w~ — •w

~~1
. t = 2 i. The statistics .(r)

and Q(r) were then calculated .

Table 1 shows the ~roport ion of Q(r) and Q (r values exceeding the

upper i) 5. ii) 10 and iii) 25 per:.mtage point of the ‘
~~~

distribution for a few combinations of n and in and for 0 .5. The

table also gives the means and v~ riances of the observed distributions . It

seems clear that although the variance of Q(r) exceeds 2Cm— i) a t*•’; t based

on this statistic would for smaller sample sizes provide a ‘u z ~’ . cierable

improvement over the previousA~ used Q(r) test.

An Alternative Test Based on Q (r)

The above results suggest that a closer approx imation to ~h. dis tr ibu t ion

of Q(r )  should be obtainable by appropriately adjusting the mean of the

approximating distribution . Furthermore. Table I shows values of VarQ(r)

which are nearly twice the mean, suggesting the approximation

- 2
Q(r) XEQ(~~)

with EQ(r) given by (3.3). Empirical signif icance levels obtained using

this approximation and the cr i terion Q(r) are compared in Table 2. The

agreement is quite close.

A Power Calculation

The two criteria Q(r) and Q(r) differ essentially in the weighting

which is applied to the autocorrelations r
k
. Q(z) giving more emphasis to

later autocorrelations. This would perhaps be an advantage if serial correla-

tion occurs at hi gh lags k. However , for large ri this difference should
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Table 1. Empirical means , var iances arid significance levels of the statistics

Q(r) and Q ( ) ;  data generated from the model w~ 
- .Sw

~ ...1 
— a

~
.

Level Level

n in mean variance 5.0 10.0 25.0 mean variance 5.0 10.0 25.0

50 10 7.48 13.79 2.3 4.7 13.4 8.82 19.11 5.3 9.5 23.0
20 13.96 27.50 1.3 2.3 6.4 18.58 47.76 6.1 10.4 23.2

100 10 8.14 16.04 3.4 7.0 18.2 8.83 18.88 5.0 9.9 23.1
20 16.26 35.45 2.5 5.0 13.1 18.63 46.46 5.8 10.2 22.8
30 23.53 55.74 1.7 3.6 9.1 28.58 81.71 7.2 11.6 23.4

200 10 8.57 16.76 4.2 8.3 21.5 8.92 18.16 5.0 9.8 23.9
20 17.46 36.36 3.5 6.9 17.6 18.66 41.51 5.4 10.0 22.7
30 26.11 56.01 2.9 5.6 14.2 28.66 67.37 5.9 10.5 23.8

I

L _ 

-9-
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Table 2. Empirical siqnificance levels based on the approxima t ions

X EQ(?) and 9(r) x~ _ 1 ; data qer.~r~ ted from ~he model

— 

~~
“1-1 

= a
~~
.

- 2 - -  2Q (r )  - X EP ( r )  Q (r) 
m-l

r n = 1 0  m = 2 0  m = l 0  m = 2 0

\J..evel

\ 5.0 10.0 25.0 5.0 10.0 25.0 5.0 10.0 25.0 5.0 10.0 25.0

n 5 0  .1 4.1 8.3 21.2  4 .6  8.1 20.9 4 .7  9.3 21.4 5.9 10.1 22.5
.3 4 . 2  8.2 21.9 4 .5  8.5 2 1.4 4.9 9.0 22 .5  5.” 10.2 22.5
.5 4.4 8.7 22.2 4.6 8.6 21.7 5.3 9.5 23 .0  6 .1 10.4 23 .2
.7 4.7 9.5 23.3 5.1 9.6 22.6 5.4 10.1 23.6 6.7 11.3 24.0
.9 5.6 10.6 25.6 6.3 10.9 24.9 6.3 11.4 25.7 7 .9 12.8 25.7

n=100 .1 4 . 3  8.8 23.4 5.1 9.~3 22.2 4.7 9.3 23.5 5.9 10.0 22.7
.3 4 . 4  8.5 23.4 5 .2 9.0 22.7 4.8 9.1 23.5 i~.0 9.8 23.1
.5 4.4 8.5 23.5 5.3 9.1 22.6 4 . 7  9.3 23.4 6.0 10.1 22.9
.7 4.7 9.0 24.1 5.6 9.6 22.7 4.9 9.4 24.0 6.2 10.3 23.2
.9 5.3 9.6 25.4 6 .2  10.2 23.7  5.5 9.9 25.4 7.0 11.2 24 .1

n=200 .1 5.0 9.6 24.1 5 .2  9.8 22 .7  5 .2  9.9 2 4 . 2  5.5 10.2 23 .2
.3 4 .9  9.3 23.8 5.1 9.7 22.6  5 .2  9.6 24.0 5.4 10.1 22.8
.5 4.8 9.6 23.8 5.1 9 .4  22 .4  5.0 9.8 23.9 5.4 10.0 22 .7
.7 4 .8 9.9 24.1 4.9 10.0 2 2 . 5  5.0 10.1 24 .2  5 .3 10.5 22.8
.9 5.4  10.2 25.8 5.4 10.7 2 3 . 3  5.6 10.3 2S.8 5.7 11.1 23 .5

-10-
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be rather small. If the type of discrepanc i es to be expected is known , tests

specifically aimed at detecting these discrepa ncies should be used. Such

specific tests will of course be much more powerful. This point is illustrated

in Table 3 which empirically compares the power of the overall tests and the

method of “overfitting ” [Box and Jenkins (1970)). The results -~r~ based on

data generated from a second order autoregressive model, with a first order

model being fitted to obtain Q(r) and ~~(i). As might be •-xpt-~ t d , the

overall tests are much less powerful than overfitting which tests ‘~~~.- hyloth .Sis

that the second order autoregressive coefficient is zero. A small.-r v j l i o  of m

improves the power of the overall tests for this particular alternative .

Effec t  of nonnormality of the a
r
’s

In developing the overall test , the assumption is made tha t  the innova-

tions a
~ 

in the model are normally distributed . Circumstances occur where

this assumption is not t rue.  For example, i t  is know n tha t  stock price

innovations often have highly leptokurt ic d i s t r ibu t ions .  Whi l e  Ander -.on and

Walker (1964) show that the asymptotic normality of the r
k
’s does not require

normality of the a
r
’s. only that their variance exists, results for finite

sample sizes are lacking . An empirica l investigation was therefore conducted

into the behavior of the stat ist ic 9 (r )  when the a r ’ s have i) a double

exponential and. ii) a uniform distribution . The results, which are given in

Table 4, agree closely with those obtained under the normality assumption for

the at
’s in Table 1.

. EXTENSION TO TRANSFER FUNCTION-NOISE MODELS

To check the adequacy of a fitted model of the form

— 
(i~(B) + ~.1!1.S ( B )  ~t-b-l 0 (B ) a

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~



Table 3. Empirical power of the overa l l  tes ts  and the method
of overfitpjnri for n 100. Assumed model :
w~ — 0w~~ 1 

= true model : (1 — .7B)(1 — G 2
B ) w

~ = a .

Nominal s ignif icance level :  S percent .  
____

G
2

Test .0 .~ .1 .5 .7 .‘~

Overfi ttinq ~‘.3 12.0 59.7 93.8 99 .7 99.1

Q(r)

in = 10 4.7 6.7 28.6 72.0 96.6 99.9
= 20 5.6 7 . 3  24 .4  62.8  93.7 99.7

in = 30 6.0 7.7 22.9 58.1 91.7 99.5

2
Q(r)

in = 10 4 .9  7 .0  28 .9  7 1.6 96.2 99.9
in = 20 6 .2  8 .0 24.7  61.7 93 .2  99.6
in = 30 7 .0  9.0 23. 7 57.0 90.5 9 9 . 3

Table 4. Empirical means , variances and s ign i f i cance levels of 9(r) when the
innovations a

~ 
have 1) a double exponential and i i)  a u n i f o r m

dis tr ibut ion;  data generated from the model w~ - .Sw
~~~1 

= a
~~
.

i) a
~ 

double exponential ii) uniform

Level Level

n in mean variance 5.0 10.0 25.0 mean var iance 5.0 10.0 25.0

50 10 8.50 18.59 4 .7  8.6 20 .7 9.01 19.35 5.6 10.0 24 .4
20 17.77 47 .00 5 .4  8.8 19.6 18.95 52.39 7 . 3  12. 1 2 4 . 3

100 10 8.80 18.70 5.0 9.1 22.4 9.11 19.41 5.5 10.8 25.3
20 18.37 43.62 4.8 9 .2  22 .0  19.00 4 7 . 5 2  (

~.4 11.5 25.7
30 27 .94 76.60 6 .3  10.1 21.9 28.98 81.72 7 . 5  12 .4  2 5 . 3

200 10 8.86 18.78 4 . 9  10.3 2 3 . 9  9.00 19.24 5. 6 10.1 25 .7
20 18.60 4 3 . 3 3  5. 6 9 .7  2 3 . 6  18. )

~ 43 . ’ ’  •r .2 1 1 . 2  2 5 . 2
30 28.46 69.67 6.0 10.5 2 3 . 2  28 . 4 72 .2 k 6.~ 1l.t ~ 25.3

—12— 
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-

where

w( B ) = w
0 1 u

6 (8) = 1 - 6
1

B - ... —

and 0(B) and 9(8) are as in (1.1), and where the input series {cz
~
}

is assumed to be white noise, it is useful to examine, in addition to the

residual autocorrelations rk
l the crosscorrelations between the residuals

and the input series

Ti

~ a
-* t=k+l
rk n 1/2

r 2 r -2
L~~~ L~~~t=l t=l

Pierce (1968, 1972) and Box and Jenkins (1970) propose an overall test

for lack of f i t  in the transfer function w (B ) / 6 (B) based on approximating

the distribution of

S ( r ) = n  
~ 

(r
k
)

k=0

by a ~~~~~ distribution. However, arguing as above it appears that a

criterion of the form

2S(r ) = n ~ (n—k) (r
k
)

k=O

might be more appropriate . This is suggested by the fact that the distribution

of

* 2 —1 * 2S(r ) = n ~ (n—k) (r
k
) 

‘

k=0

where

-13- 
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~~ . _ _  _ _ _ _ _  
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_ _ _ _

~ 
a

* t=k+ 1 
t — k  t

rk n 
- 

n 1/2 ’
r 2 r 2
1~ ‘

~~~ ~ 
a
~tn t=l

2 *

is for large n approximately 
~~~ 

since the rk
s are asymptotically

normal with mean zero, Var(r
k
) = (n-k)/n

2 and Cov (r
k
.r
~
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(Pierce (1968)].
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