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EXPERIMENTS WITH SOME ALGORITHMS THAT FIND CENTRAL
SOLUTIONS FOR PATTERN CLASSIFICATION

1. INTRODUCTION

Linear discriminant functions (hyperplanes) play a very important
part in automatic pattern recognition [1,2,3,4,5,7,8]. This paper
explores a number of improved methods of finding hyperplanes which are
better because they are more nearly central between two different
classes. This is sometimes called the problem of finding central
hyperplanes.

To consider this problem in more detail, suppose we are given a
linearly separable training set of pattern vectors in two classes.
"Linearly separable" means that the two classes can be separated by
some hyperplane. There are many algorithms that will find a solution
hyperplane, however such methods guarantee only that all points of one
class from the training set will be on one side of the hyperplane and
that all points of the other class will be on the other side. But
such a hyperplane is not necessarily centrally located in the empty
space between the two classes.

In order to understand why a central hyperplane is desirable we
m:st remember that the given points (the training set) are only a
sample of the universe of points that we want to classify. The purpose
of the hyperplane is to classify new points (test vectors) from the
universe. When a new point is given, common sense tells us to assign
it to that class which its nearby neighbors belong to. Only a central
hyperplane will do this.

Figures 1 and 2 show an example in two dimensions. The A and B
points are the training set. Figure 1 shows a poor solution hyperplane
and Figure 2 shows a much better (more central) solution hyperplane.

X represents a new point. Common sense tells us that X should be in
class B, but the poor hyperplane puts it into class A. The good
hyperplane of Figure 2 correctly puts X into class B.

Of course, the ideal way to solve this kind of problem is to fit
a probability density function to each class by some process of
statistical inference, and then choose the surface of equal probability
density as the decision boundry between the two classes. However, such
a surface is not necessarily flat and the process of finding such a
surface may be complex and expensive.

Note: Manuscript submitted September 7, 1977.
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Fig, 1 - A poor solution line for a training set of
two-dimensional pattern vectors
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Therefore finding a central hyperplane is a simple approximation
which is adequate for many practical applications. In fact the central
hyperplane may often be the optimal solution to a practical pattern
recognition problem, when economic factors are considered.

Slagle [7] discusses the problem of finding a central hyperplane
and Eresents an algorithm which is the forerunner of algorithm E below.
Yue (8] gives some algorithms which maintain a dead zonme of constant
width while finding a solution hyperplane by a relaxation process.

Yue gives a heuristic procedure for trying to guess a suitable width
for the dead zone so that the hyperplane will be approximately centered.
Unfortunately, it is easy to give simple counter examples to the
heuristic, and, if the heuristic guesses too high, no solution exists
at all.

2. NOTATION

We use a development and notation similar to that used by Meisel
[5]. Let the weight vector W = (Wj,...,W,,W), where V = (w],...,W,)
is the vector which defines the orientation of the hyperplane (V is
perpendicular to the hyperplane).

We shall sometimes write W = (V,w). Let the length of V be v,
that is, ||V || = v.

Let X be an (unaugmented) pattern vector (xl,...,xn). Let c(X) be
the choice function; that is, if c(X) = k, the classifier puts X into
class k. We shall sometimes denote class k by cy. Once it is trained,
our classifier puts X into class 1 if V «- X+ w > 0 and into class 2
if V. X+ w<0, The solution hyperplane H is given by V - X + w = O,
It is well known that the distance from the origin to the hyperplane is
-w/v. Suppose that we are given a training set X1seeesXp of pattern
vectors. The augmented vector corresponding to the pattern vector Xj is

Cxi,l) if X1 is in class 1.
Y, =
. (-Xi"l) if X, is in class 2,

Now let us consider the dead zone. Roughly speaking, this is the
zone surrounding the hyperplane which contains no points from the
training set.

Let b be a positive real number. We chose b = 1 in our experiments.
b is related to the dead zone width as follows. We want to train our
classifier (that is, find a W) so that it puts Xj into class 1 if
V.Xj+w2b and into class 2 if V - Xy + w < -b., See Fig. 3.

This can be accomplished by training the classifier so that
WYy 2b for all i = 1,...,m. That is, we want e; > O where

P
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ej =W+ Yy -b. Recall that e;/v is the n-dimensional distance from

the pattern X; to the appropriate hyperplane dead zone boundary. Half
of the dead zone width is b/v.
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3. BROADENING THE DEAD ZONE OF A SOLUTION HYPERPLANE

Each of the six algorithms we shall describe uses a broadening sub-
algorithm or a centering subalgorithm to try to improve the solution it
finds. The broadening subalgorithm increases, if necessary, the breadth
of the dead zone just enough so that one of its boundaries passes
through the nearest training vector. More formally, let h = minje;.

The boundary B; and the boundary B, are moved a distance h/v away

{ from the dead zone D and towards class 1 and class 2 respectively. The
new half width = b/v' = b/v + h/v. Hence, v' = bv/(b + h) = cv where

¢ =b/(b + h). The distance of the solution hyperplane from the origin
should be preserved. Hence, -w'/v' = -w/v. Therefore, w' = v'w/v = cw.
We meet all the conditions by setting W' = cW.

4. CENTERING AND OVERCENTERING A SOLUTION

Four of the algorithms use the concept of centering the weight
vector W, and the sixth algorithm also uses the concept of over-
centering. We now define fg-centering from which centering and
overcentering are defined later, Intuitively, fg-centering of W

L moves the boundary B; a distance f/v away from the dead zone D and
moves the boundary By a distance g/v away from D. Let v' be the new )
i v after the fg-centering. The new half width of the dead zone is
' b/v' = b/v + £/(2v) + g/(2v). Hence, v' = 2bv/(2b + £ + g) = cv where
c=2b/(2b + £ + g). Therefore, V' = cV. The new distance of the
solution hyperplane H from the origin is -w'/v' = ¥ (~w/v + f/v -
w/v - g/v). Hence, w' = (2w + g - £) ¢/2. Therefore, the fg-centering
of W is the computation of a new W, namely, (V',w').

; Centering is defined as fg-centering where f = miucl(ei) and

i g = mian(ei). Intuitively, centering expands the dead zone as much

e as possible until it bumps into a training point (vector) in ¢ and a
i training point in cj.

5. THE ALGORITHMS TO BE TESTED _

centered modified relaxation, broadened accelerated relaxation, centered
accelerated relaxation, extended centered accelerated relaxation, and
centered overcentered accelerated relaxation. The first two are based
on modified relaxation [2,4,5]. The next two are based on accelerated

{

'1 The six algorithms to be compared are broadened modified relaxation,

|

ﬁ
; relaxation [1]. The last two we introduce here.
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A. Broadened Modified Relaxation. This algorithm examines the training
set pattern vectors Y; one at a time. Let W, be the weight vector
after the k' examination. Let WO be arbitrary, for example,

Wy = (0,0,...,0).

s & <
W, =P (ei c)yi/si if e, 0
Vi,r =
wk otherwise

where ¢ > 0 and s; = HyiHZ-

The algorithm continues until the training set is linearly separated
or has been examined P times. When a solution is found, it is
broadened. This algorithm (without the broadening) is often used in
practice, because it can be proved [2,4,53 that, if the two classes
in the training set are linearly separable, the algorithm will find a
solution in a finite number of steps. ' In our implementation, we set
P =100, ¢ = 0.1, and, with the help of advice from [4], p = 1.999.
If ¢ is dropped from the above equation, this algorithm without the
broadening becomes the (unmodified) relaxation algorithm.

B. Centered Modified Relaxation. This is the same as broadened
modified relaxation, except that the solution is centered at the end
instead of broadened.

C. Broadened Accelerated Relaxation. The accelerated relaxation
algorithm due to C. L. Chang (1] has two parts, the relaxation phase
and the acceleration phase. These two parts are repeated alternately.
The process begins with an arbitrary initial weight vector WA, After

one complete pass through the set of all training vectors, wg becomes
W§, in general wﬁ becomes W§+1. The relaxation process of algorithm

A is used during this pass. WR is the result of the relaxation
process and wA is the result of the acceleration process.

During the acceleration phase w§+l becomes Wﬁ+1. This is
done by constructing a line from the point wﬁ to W§+1 and then

extending this line beyond W%+1. A search is then made along this

extension for the interval of best separation score. w94q_15 the
center of the interval. The procedure is repeated up to 30 times or
until it converges (which means that the training set is linearly
separated). In general, accelerated relaxation is much faster than
modified relaxation [1]. Our algorithm broadens the solution found by
the accelerated relaxation algorithm.

D. Centered Accelerated Relaxation. This is the same as the broadened
accelerated relaxation algorithm, except that the solution is centered
at the end instead of broadened.
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E. Extended Centered Accelerated Relaxation. The resulting weight
vector from centered accelerated relaxation (algorithm D) is given as

the initial weight vector to the modified extended relaxation algorithm
given by equation (3) below with ¢ = 0.1, p = 1.999, and the number P

of passes through the training set being ten. The weight vector obtained
is then centered. Thus, the major part of this algorithm is the modified
extended relaxation algorithm, which is described in the rest of this
section.

Before describing the modified extended relaxation algorithm precisely,
we discuss the intuitive idea upon which it is based. The relaxation
algorithm (See Algorithm A Above) is frequently used in practice. It
obtains a discriminating hyperplane by trying to minimize the
(approximate) relaxation risk R where R is the relaxation loss
averaged over the training set. We now present a very simple pattern
recognition training set in order to illustrate the advantage of our
approach (extended relaxation) over the relaxation approach. Consider
the two-class two-pattern one-dimensional pattern recognition training
set shown in Fig. 4. It consists of two patterns (points) X; = 2 and
X2 = 6 with X; in class 1 and X in class 2. Intuitively, the best
point to divide class 1 from class 2 is X = 4, the midpoint of the
interval from X; to X;. The classifier should classify a pattern

from the test set into class 1 if it lies to the left of X = 4 and
into class 2 if to the right. It turns out that our approach yields

X = 4, whereas the relaxation approach may choose the dividing point

X anywhere in the open interval (2,6). Our particular implementation
of relaxation (algorithm A) chooses X = 3.0, which is poor.

For the simple training set we are comsidering, Fig. 5 shows the
part of the relaxation loss (for the training set) due to the position
of the left boundary B; of the dead zone. We are considering the
simple case when the loss is taken to be proportional to the square
of the distance between B; and X5 when X; is on the wrong side of Bl;
the loss is zero, when X; is on the correct side of B;. Fig. 6
shows the part of the loss due to the position of the right boundary
By of the dead zone. It is clear that the total loss is _zero as long
as both dead zone boundaries are in the closed interval [2,6]. There-
fore, the dividing point X may be any point in the open interval (2,6).

In our new (extended relaxation) approach, we use a loss function
like the one shown in Fig. 7 and Fig. 8. Instead of being zero when
X1 is on the correct side of By, the loss is a small positive fraction
of the square of the distance %etween B; and X;. This and the similar
fact about X; and B, account for the two gently sloping semiparabolas
in Fig. 7 and Fig. 8 respectively. It is clear that the losses are
minimized (zero in fact) only when the dead zone boundaries are
B] = 2 and By = 6. This yields the central dividing point X = 4 and
its advantages., We next generalize these ideas to more points and
higher dimensions.
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Fig. 8 - Portion of the extended relaxation loss as a function of
the position of the right boundary B, of the dead zone
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We now define the extended relaxation loss and derive the
(approximate) extended relaxation risk from this loss. We shall then
derive the extended relaxation algorithm as an algorithm that works on
minimizing this risk. Finally, we modify the extended relaxation
algorithm to obtain the modified extended relaxation algorithm. Let
L[j,k] be the loss associated with classifying a patterg into class j
when it is actually in class k., Let s = HYHZ =1+ HXI . The defining
equation for the extended relaxation loss is the following, where
k=1,2,

tezls ife20

LleX),k] =

ez/s otherwise

When t is zero this degenerates to the relaxation loss. We use the
following expression for t, which empirically we have found to be
reasonably good. t = 0.73/(1 + m) where m is the number of training
samples. The (approximate) risk is the average loss over the training
set as follows.

RO = (1/m)(cYed/s, Ef/si] 1)
e;20 e;<0

We shall now use the usual gradient technique to derive an algorithm
that works on minimizing the extended relaxation risk. Let Wy be the

weight vector at iteration £, w“_l- Wy -q grad R(HL) we have
"l-l-l = w‘ = (2q/m)[t2 e1Y1/31 +Z °1Y1/'1] (2)
0120 ‘1<°

Let p = 2q/m. When t is zero this degenerates to the many-at-a-time
relaxation algorithm. In the many-at-a-time modified relaxation
algorithm, a positive constant c is subtracted from e, to guarantee
finite convergence in the linearly separable case. We do the analogous
thing to (2) to obtain the many-at-a-time modified extended relaxation
algorithm. The positive constant ¢ is added to e, when e, 2 0.

w =YW -p[tg(e-i-c)Y /s +2 (eq=c) Y, /s,
L+1 "4 3101 11e10 i - Al |

This algorithm can be changed in the usual way to the following
one-at-a-time algorithm.

14




wk - tp(e£+c )Yils1 if e, 20

Wy = p(ei-c)Yi/si otherwise

This is our modified extended relaxation algorithm. It is the major
component of our extended centered accelerated relaxation algorithm,
as explained at the beginning of this section.

F. Centered Overcentered Accelerated Relaxation. This algorithm
carries out algorithm D (centered accelerated relaxation), overcenters
the solution (that is, expands the dead zone a little more than
centering would), carries out algorithm D again, overcenters again,
etc. We now define overcentering. Let f' = min. (ej) Let g'' be the

next strictly larger such minimm. Let g' = min. (e;). Let g'' be

the next strictly larger such minimum. Suppose tﬁat £f'' -f'2g'"" - g°',
(The other case is defined analogously.) Overcentering is defined as
f' g'' - centering.

The centered overcentered accelerated relaxation algorithm uses
the accelerated relaxation algorithm a total of kmax times, where
kmax is typically five. The algorithm is the following:

(1) Set kmax.
(2) Set wo" = (0,0,...,0).
(3) Set k = 1,

(4) Starting with W&ll, let the solution found by the

accelerated relaxation algorithm be Wk.

(5) Obtain Wk' by centering Wk.

(6) Type the centrality criteria ¢, and ¢, for Wk'. (See
Section 6.)

(7) If k = kmax, type the best results (the results for the
best C;, and the results for the best Cy) and stop.

(8) Obtain W'' by overcentering Wk'.
(9) Set k= k + 1.
(10) Go to (4).

6. CENTRALITY CRITERIA

The concept of the central hyperplane has never been precisely
defined. It remains an intuitive notion. Nevertheless, we need a
definite measure of centrality in order to compare the various
algorithms. We compromise by giving two distinct quantitative
measures of centrality but we do not specify the relative importance
of these criteria.

15




Suppose that we have a solution hyperplane W - Y = b = 0. We
assume that the solution has been broadened or centered. Our first
centrality criterion is half the dead zome width Cp W) = b/v. The
larger this criterion is, the more central the solution hyperplane
H tends to be.

We now obtain our second centrality criterion from Equation (1)
for the extended relaxation risk. Recall that we apply a criterion
only if the solution with dead zone correctly classifies every vector
in the trainipg set, that is, only if e; 2 O for all i. We obtain
CoW) =t e /si. The smaller this criterion is, the more central
t%e solution hyperplane tends to be.

7. EXPERIMENTS WITH THE ALGORITHMS.

Each of the six algorithms was run on each of three data sets.

The iris data consists of four measurements on each of sixty irises,
the first twenty from each of three classes. This is a subset of the
famous set treated by R. A. Fisher [3]. The Fig. 9 data consists of
the artificial set shown in Fig. 9. This set was chosen because it is
simple to consider and yet it is difficult for many algorithms to get
an optimal solution according to our criteria. The JU data consists
of eight measurements on each of thirty hand printed J's and thirty
hand printed U's. This set is described and used in [6].

The results for all three data sets are summarized in Table 2.
Percentages are averaged over the three data sets. That is, each
entry is a third of the sum of the three percent entries taken from
Table 1 and the two tables for the iris and JU data sets.

8. CONCLUSIONS

The conclusions are based on experiments with three specific data
sets and therefore may not be true in general. However, they do not go
against intuition.

(1) The last three algorithms are substantislly better than the
first three. If computer time is available, one should try algorithms
D, E, and F and take the best result obtained.

(2) If computer time is short, one should use algorithm D, which
is fast and is central but not the most central solution.

(3) Although slower than algorithm D, algorithms E and F find the
most central solutions.

(4) Centering improves the solution tremendously and takes very
little time. This can be proved by comparing algorithm A and B and by
comparing algorithms C and D in Table 2.

(5) Although frequently used, the modified relaxation algorithm is
particularly bad. It is slow and finds solutions that are not at all
central.

(6) The broadened accelerated relaxation algorithm is the fastest,
but the solutions are not at all central.

16
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Fig. 9 - Artificial data set. The members of Class A are
(-5, 30), (0, 30), (5,30), (10,30), and (15,30). The mem-
bers of Class B are (-20,10), (-15,10), (-10, 10), (-5, 10),
(0,10), and (5,10).
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Kind of Avg. % for Avg. 7 for Avg. 7 for

Relaxation time c1 C2
Algorithm

Broadened 110 75 212.1
Modified

Centered 118 104 83.9
Modified
Broadened 63 54 272.9
Accelerated

Centered 71 118 16.0
Accelerated

Extended 114 123 6.3
" Centered

Accelerated
Centered 125 126 8.8
Over Centered

Accelerated

Table 2, Summary of Results. Percentages are

ol oo

Averaged Over the Three Data Sets.
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