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In two-class pattern recognition, it is a standard technique to have
• an algorithm for finding hyperplanes which separates the two classes

in a linearly separable training set. The traditional methods find a
hyperplane which separates all points in one class from all points in
the other , but such a hyperplane is not necessarily centered in the
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\ ~20. Abstract ( Continued)

empty space between the two classes. Since a central hyperplane
does not favor one class or the other , it should have a lower error

• rate in classifying new points and is therefore better than a non-
central hyperplane. Six algorithms for finding central hyperplanes
are tested on three data sets. Although frequently used in practice,
the modified relaxation algorithm is very poor. Three algorithms,
which are defined in the paper , are found to be quite good.
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EXPERIMENTS WITH SOME ALGORITHMS THAT FIND CENTRAL
SOLUTIONS FOR PA’rTERN CLASSIFiCATION

1. INTRODUCTION

Linear discriminant functions (hyperplanes) play a very important
part in automatic pattern recognition [1,2,3,4,5,7,8:1. This paper
explores a number of improved methods of finding hyperplanes which are
better because they are more nearly central between two different
classes. This is sometimes called the problem of finding central
hyperplanes.

To c9nsider this problem in more detail, suppose we are given a
linearly separable training set of pattern vectors in two classes.
“Linearly separable” means that the two classes can be separated by
some hyperplane. There are many algorithms that will, find a solution
hyperplane, however such methods guarantee only that all points of one
class from the training set will be on one side of the hyperplane and
that all points of the other class will be on the other side. But
such a hyperplane is not necessarily centrally located in the empty
space between the two classes.

In order to understand why a central hyperplane is desirable we
• na st remember that the given points (the training set) are only a

• : sample of the universe of points that we want to classify. The purpose
of the hyperplane is to classify new points (test vectors) from the

• universe. When a new point is given, comson sense tells us to assign
it to that class which its nearby neighbors belong to. Only a central
hyperplane will do this.

Figures 1 and 2 show an example in two dimensions. The A and B
points are the training set. Figure 1 shows a poor solution hyperplane
and Figure 2 shows a much better (more central) solution hyperplane.
X represents a new point. Cousnon sense tells us that X should be in
class B, but the poor hyperplane puts it into class A. The good
hyperplane of Figure 2 correctly puts X into class B.

Of course, the ideal way to solve this kind of problem is to fit
a probability density function to each class by some process of
statistical inference, and then choose the surface of equal probability
density as the decision boundry between the two classes. However, such
a surface is not necessarily flat and the process of finding such a

4 
surface may be complex and expensive.

Not.: Manuscript submitted September 7, 1977.
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Therefore finding a centra l hyperplane is a simple approximation
which is adequate for many practical applications. In fact the central

• hyperplane may often be the optimal solution to a practical pattern
• recognition problem, when economic factors are considered.

• Slagle [7] discusses the problem of finding a central hyperplane
and presents an algorithm which is the forerunner of algorithm E below.
Yue L8] gives some algorithms which maintain a dead zone of constant
width while finding a solution hyperplane by a relaxation process.
Yue gives a heuristic procedure for trying to guess a suitable width
for the dead zone so that the hyperplane will be approximately centered.

• Unfortunately, it is easy to give simple counter examples to the
heuristic, and, if the heuristic guesses too high, no solution exists
at all.

2 • NOTATION

• We use a development and notation similar to thAt used by Msissl
[5]. Let the weight vector W (wl,...,wa,w), where V — (Wi,..., V~~)

is the vector which defines the orientation of the hyperplan. (V is
perpendicular to the hyperplane).

• We shall sometimes write W (V,w). Let the length of V be v ,
that is , ~Iv H’.

Let X be an (unaugmented ) pattern vector (x1,...,x~). Let c(X) be
the choice function ; that is, if c (X) k , the classifier puts X into
class k. We shall sometimes denote class k by ck. Once it is trained,
our classifier puts X into class 1 if V • X + w > 0 and into class 2
if V • X + w < 0. The solution hyperplane II is given by V • X + V 0.
It is well known that the distance from the origin to the hyperplane is
-w/v . Suppose that we are given a training set X1,...,X,~ of pattern
vectors. The augmented vector corresponding to the pattern vector Xj is

(X~ ,l) if X~, is in class 1.

~ (.X~,..l) if X~, is in class 2.

Now let us consider the dead zone. Roughly speaking, this is the
zone surrounding the hyperplane which contains no points from the

• :t training set.

Let b be a positive real number. We chose b — 1 in our experiments.
• b is related to the dead zone width as follows. We want to train our

classifier (that is, find a W) so that it puts Xj into class 1 if
V . Xj  + w � b and into class 2 if V . Xj  + W � -b. See Fig. 3.

This can be accomplished by training the classifier so that
4 W • Y~ � b for all i — l,...,m. That is, we want ej � 0 where

4
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ei a w Yj  - b. Recall that ei/v is the n-d imensiona l distance from
• the pattern Xj to the appropriate hyperplane dead zone boundary. Half

of the dead zone width is b/v.

3. BROADENING THE DEAD ZONE OF A SOLUTION HYPERPLANE

Each of the six algorithms we shall describe uses a broadening sub-
algorithm or a centering subalgorithm to try to improve the solution it
finds. The broadening subalgorithm increases, if necessary, the breadth

• of the dead zone just enough so that one of its boundaries passes
through the nearest training vector. More formally, let h — minjei.
The boundary B1 and the boundary B2 are moved a distance h/v away
from the dead zone D and towards class 1 and class 2 respectively. The
new half width = b/v ’ = b/v + h/v. Hence, v ’ = bv/(b + h) a cv where
c = b/(b + h). The distance of the solution hyperplane from the origin
should be preserved. Hence, -w’/v ’ = -w/v. Therefore, w ’ = v ’w/v a cw.
We meet all the conditions by setting W ’ = cW.

4. CENTERING AND OVERCENTERING A SOLUTION

Four of the algorithms use the concept of centering the weight
vector W, and the sixth algorithm also uses the concept of over-
centering. We now define fg-centering from which centering and
overcentering are defined later. Intuitively, fg-centering of W
moves the boundary B1 a distance f/v away from the dead zone D and
moves the boundary B2 a distance g/v away from D. Let v’ be the new
v after the fg-centering. The new half width of the dead zone is
b/v 1 a b/v + f/(2v) + g/(2v). Hence, v’ Zbv/(2b + f + g) — cv where
c 2b/(2b + f + g). Therefore, V ’ = CV. The new distance of the
solution hyperplane H from the origin is -w’/v’ = ?~ (-v/v + f/v -

• w/v - g/v). Hence, w ’ = (2w + g - f) c/2. Therefore, the fg-centering
of W is the computation of a new W, namely, (V’,w’).

Centering is defined as fg-centering where f a mine (ci) and
g = min

~2(ej). Intuitively , centering expands the dead zone as much
as possible until it bumps into a training point (vector) in c1 and a
training point in c2.

• 5. THE ALGORITHMS TO BE TESTED

The six algorithms to be compared are broadened modified relaxation,
• centered modified relaxation, broadened accelerated relaxation, centered
P 

accelerated relaxation, extended centered accelerated relaxation, and
centered overcentered accelerated relaxation. The first two are based
on modified relaxation [2,4,5]. The next two are based on accelerated
relaxation Li]. The last two we introduce here.

6
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A. Broadened Modified Relaxation. This algorithm examines the training
set pattern vectors Y j  one at a time. Let Wk be the weight vector
after the kth examination. Let W0 be arbitrary , for example ,
W0 = (O,O,...,0).

Wk~P 
(e~_c)y~/s~ if e~ < 0

Wk+l
Wk otherwise

• where c > 0 and s
~ 

a br~ 2 .
The algorithm continues until the training set is linearly separated
or has been examined P t imes. When a solution is found, it is

• broadened. This algorithm (without the broadening) is often used in
practice, because it can be proved [2 ,4 ,5:1 that, if the two classes
in the training set are linearly separable, the algorithm will find a
solution in a finite number of steps. • In our implementation, we set
P = 100, c — 0.1, and, with the help of advice from [4], p a 1.999.
If c is dropped from the above equation , this algorithm without the
broadening becomes the (unmodified) relaxation algorithm.

B. Centered Modified Relaxation. This is the same as broadened
modified relaxation, except that the solution is centered at the end
instead of broadened.

• C. Broadened Acceferated Relaxation. The accelerated relaxation
algorithm due to C. L. chang L1J has two parts, the relaxation phase
and the acceleration phase. These two parts are repeated alternately.
The process begins with an arbitrary initial weight vector W~. After
one complete pass through the set of all training vectors, W~ becomes
W~, in general W~ becomes W~41. The relaxation process of algorithm

• A is used during this pass. WR is the result of the relaxation
process and WA is the result of the acceleration process.

• During the acceleration phase W~~1 becomes 
W~~1. This is

done by constructing a line from the point W~. to W~ and then
extending this line beyond WL . A search is then made along this
extension for the interval of best separation score. ~~~~ is the

• • center of the interval. The procedure is repeated up to 30 times or• until it converges (which means that the training set is linearly
• separated). In general, accelerated relaxation is much faster than

• 
• modified relaxation [1]. Our algorithm broadens the solution found by

• the accelerated relaxation algorithm.

D. Centered Accelerated Relaxation. This is the same as the broadened
acceLerated relaxation algorithm,~~xcept that the solution is centeredat the end instead of broadened.

7
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E. Extended Centered Accelerated Relaxation. The resulting weight
vector from centered accelerated relaxation (algorithm D) is given as
the initial weight vector to the modified extended relaxation algorithm
given by equation (3) below with c = 0.1, p = 1.999, and the number P
of passes through the training set being ten. The weight vector obtained

• is then centered. Thus, the major part of this algorithm is the modified
extended relaxation algorithm, which is described in the rest of this
section.

Before describing the modified extended relaxation algorithm precisely,
we discuss the intuitive idea upon which it is based. The relaxation
algorithm (See Algor~thm A Above) is frequently used in practice. It

• obtains a discriminating hyperplane by trying to minimize the
• (approximate) relaxation risk R where R is the relaxation loss

averaged over the training set. We now present a very simple pattern
recognition training set in order to illustrate the advantage of our

• approach (extended relaxation) over the relaxation approach. Consider
the two-class two-pattern one-dimensional pattern recogt4tion training

• set shown in Fig. 4. It consists of two patterns (points) X1 a 2 and
= 6 with X1 in class 1 and X2 in class 2. Intuitively, the best

point to divide class 1 from class 2 is X = 4, the midpoint of the
interval from X1 to X2. The classifier should classify a pattern
from the test set into class 1 if it lies to the left of X = 4 and
into class 2 if to the right. It turns out that our approach yields
X = 4, whereas the relaxation approach may choose the dividing point
X anywhere in the open ii1terval (2,6). Our particular implementation
of relaxation (algorithm A) chooses x = 3.0, which is poor.

For the simple training set we are considering, Fig. 5 shows the
part of the relaxation loss (for the training set) due to the position
of the left boundary B1 of the dead zone. We are considering the
simple case when the loss is taken to be proportional to the square
of the distance between B1 and X1, when X1 is on the wrong side of B1;
the loss is zero, when X1 is on the correct side of B1. Fig. 6
shows the part of the loss due to the position of the right boundary
B2 of the dead zone. It is clear that the total loss is zero as long
as both dead zone boundaries are in the closed interval [2,6L There-
fore, the dividing point X may be any point in the open interval (2,6).

• 
In our new (extended relaxation) approach, we use a loss function

like the one shown in Fig. 7 and Fig. 8. Instead of being zero when
X1 is on the correct side of B1, the loss is a small positive fraction
of the square of the distance Setween B1 and X1. This and the similar
fact about X2 and B2 account for the two gently sloping semiparabolas

• , in Fig. 7 and Fig. 8 respectively. It is clear that the losses are

• minimized (zero in fact) only when the dead zone boundaries are
• B1 = 2 and B2 a 6. This yields the central dividing point X — 4 and

• • its advantages. We next generalize these ideas to more points and
higher dimensions.

8
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We now define the extended relaxation loss and derive the
(approximate) extended relaxation risk from this loss. We shall then
derive the extended relaxation a lgorithm as an a lgorithm that works on
minimizing this risk. Finally , we modify the extended relaxation
a lgorithm to obtain the modified extended relaxation a lgorithm . Let
L[j ,k] be the loss associated with classifying a pattern into class j
when it is actually in class k. Let s — II~I2 — 1 + ~Xft’. The defining
equation for the extended relaxation loss is the following, where

• k—  1,2.

te2/s if e � 0

L[c(X),k] —

e2/s otherwise

• When t is zero this degenerates to the relaxa tion loss. We use the
following expression for t , which empirically we have found to be

- reasonably good. t — 0.73/(l + is) where is is the number of tra ining
samples. The (approximate) risk is the average loss over the traini ng

I set as follows.

R(W ) — (l/ m)Et ~~~~ /s1 +~~~~/sj] (1)

ej �O e~<0

We shall now use the usua l gradient technique to deriv e an a lgorithm
that works on minimizing the extended relaxation risk. Let W~ be the

I 

weight vector at iterati on L • W~~ 1 W~ - q gra d ROJ L) we have

WL+l — (2q /ia)Et~~~ ei’~its j . +E e~Y~/s~ J (2)
e~<0

Let p — 2q/m. When t is zero this degenerates to the many—at-a-time
relaxa tion algorithm. In the many-at-a-time modified relaxation
algorithm, a positive constant c is subtracted from to guarantee
finite convergence in the linearly separable case. We do the analogous
thing to (2) to obtain the many-at-a—time modified extended relaxation
algorithm. The positiv, constant c is added to e~ when � 0.

- 
1 W L+l~ W L 

- p[t~~~(ej+c)Yj/s~ ~~~~ 
0 

(ej-c) ~~~~~

This algorithm can be changed in the usua l way to the following
• • one—at—a-time algorithm .

Li

14
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— tp(e1+c )Y j /s i if e~ � 0

• - W — 
(3)

k+l
Wk - p(e j_c) Yj /si otherwise

This is our modified extended relaxation algorithm. It is the major
component of our extended centered accelerated relaxation algorithm,
as explained at the beginning of this section.

F. Centered Overcentered AcceLerated Relaxa t ion. This a lgorithm
carries out algorithm D (centered accelerated relaxation), overcenters
the solution (tha t is, expands the dead zone a little more than
centering would), carries out algorithm D again, overcenters again,
etc. We now define overcentering . Let V — min~~ (ej ) Let g ’’ be the

• next strictly larger such minimum. Let g’ — mine (ej ). Let g ’’ be
the next strictly larger such minimum. Suppose t~at f ’ ’  - f ’  ~ g ’’ - g ’.
(The other case is defined analogously.) Overcentering is defined as
f ’  g ’’ - centering.

The centered overcentered accelerated relaxation algorithm uses
the accelerated relaxation algorithm a total of Icmax times , where
kmax is typically five. The algorithm is the following:

• (1) Set 1o~iax.

* 
(2) Set W0’’ a (0,0,...,0).

• (3) Set k =  1.
(4) Starting with W~’1, let the solution found by the

• accelerated relaxation algorithm be Wk.
(5) Obtain Wk’ by centering Wk.
(6) Type the centrality criteria c1 and c2 for Wk ’. (See

Section 6.)
(7) If k — kmax, type the best results (the result s for the

best C1, and the results for the best C2) and stop.
(8) Obtain W ’’ by overcentering Wk

’.

(9) Set k a  k +  1.

• (10) Go to (4) .

• 6 • CENTRALITY CRITERIA

The concept of the cent ra l hyperplane has never been precisely
defined. It remains an intuitive notion . Nevertheless , we need a

• definite measure of centrality in order to compare the various
4 algorithms. We compromise by giving two distinct quantitative

measures of centrality but we do not specify the relative importance
of these criteria .

15
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Suppose that we have a solution hyperplane W • Y - b — 0. We
assume that the solution has been broadened or centered. Our first

• centrality criterion is half the dead zone width C1 (W) — b/v . The
larger this criterion is, the more central the solution hyperplane
H tends to be.

We now obtain our second centrality criterion from Equation (1)
for the extended relaxation risk. Recall that we apply a criterion
only if the solution with dead zone correctly classifies every vector
in the trajniqg set, that is , on ly if ci � 0 for all i. We obtain
C2(W) — t 41 ct/s i. The smaller this criterion is , the more centra l
the solut ion t~yperplane tends to be.

7. ~CPERIMENTS WITH ThE ALGORITHMS.

Each of the six algorithms was run on each of three data sets.
The iris data consists of four measurements on each of sixty irises ,
the first twenty from each of three classes. This is a subset of the
famous set treated by R. A. Fisher [3]. The Fig. 9 data consists of
the artificial set shown in Fig. 9. This set was chosen because it is
simple to consider and yet it is difficult for many algorithms to get
an optima l solution according to our criteria . The JU data consists
of eight measurements on each of thirty hand printed J’s and thirty
hand printed U’s. This set is described and used in [6].

The results for all three data sets are summarized in Table 2.
Percentages are averaged over the three data sets. That is , each
entry is a third of the sum of the three percent entries taken from
Table 1 and the two tables for the iris and JU data sets.

8. CONCLUSIONS

The conclusions are based on experiments with three specific data
sets and therefore may not be true in general. However, they do not go
against intuition.

(1) The last three algorithms are substantially better than the
first three. If computer time is available, one should try algorithms
D, E, and F and take the best result obtained.

(2) If computer time is short, one should use algorithm D, which
is fast and is central but not the most central solution.

(3) Although slower than algorithm D, algorithms E and F find the
most central solutions.

(4) Centering improves the solution tremendously and takes very
• little time. This can be proved by comparing algorithm A and B and by

• comparing algorithms C and D in Table 2.
(5) Although frequently used, the modified relaxation algorithm is

particularly bad . It is slow and finds solutions that are not at all
• central.

4 (6) The broadened accelerated relaxation algorithm is the fastest,
but the solutions are not at all central.
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Fig. 9 - Artificial data set. The members of Class A are
• (-5, 30), (0, 30), (5 , 30), (10, 30), and (15, 30). The mem-

bers of Class B are (-20 , 10), (—15 , 10), (—10 , 10), ( — 5 , 10),
(0, 10), and (5, 10).
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• Kind of Avg. 7. for Avg. Z for Avg. ~t forI Relaxation t ime C1 C2I Algorithm

I Broadened 110 75 212.1
Modified

Centered 118 104 83.9
Modified

Broadened 63 
• 

54 272.9
Accelera ted

Centered 71 118 16.0
Accelerated

~ ctended 114 123 6.3
Centered
Accelerated

Centered 125 - 126 8.8• I Over Centered
Accelerated

Table 2. St~~ ary of Results. Percentages are
Averaged Over the Three Data Sets .
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