R 1S
—
PR R L e ——]

AD No.

0DC FILE_COPYs

RADC-TR-77-369, Volume I (of three)
Final Technical Report
November 1977

FACTORS IN SOFTWARE QUALITY
Concept and Definitions of Software Quality

Jim A. McCall
Paul K. Richards
Gene F. Walters

Genzral Electric .ompany

7

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

This report has been reviewcd bv the RADC Information Office (OI) and is
recleasable to the National Technical Information Service (NTIS). At NTIS it
will be releasable to the general public, including foreign nations.

RADC-TR-77-369, Vol I (of three) has been reviewed and approved for
publication.

e _fugd P (i

JOSEPH P. CAVANO
Project Engineer

T o I A

ALAN R. BARNUM, Assistant Chief
Information Sciences Division

FOR THE COMMANDFR: f% >
A

JOHN P, HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (ISIS) Griffiss AFB NY 13441. This will assist us in maintaining

a current mailing list.

Do not return this copy. Retain or destroy.

g2 ndepis s o v s v -3 »

'”ﬁﬁ SI o " i " O
SECUNIT SIFICATION OF THIS PAGE (When Dete Entered) eov———————
REPORT DOCUMENTATION PAGE B s
/g . R N NO., IPIENT'S CATALOG NUMBER
R=77~-36 - .L
4 TITLE (and M‘“o‘ €0
(dr -r Final fechnical Aep®rt.
L FACTORS IN_SOFTWARE_QUALITY e ume Aug 76 - Jul 77
Concepts and Definitions of Softvlre Quality. . T
: N/A ¢
AL LLOR ' - K OR GRAN
Jim A.JMcCal
Paul K./RicHards '5 rwz-n-c-ﬁ 417 /7""“J
Gene F. Haltcrs
. B BN NAME AND AODRESS ::gga.wolal.u!u'l’ n&: TY. TASK
General Electricﬁw oF
450 Persian Drive
Sunnyvale CA 94086 / L/ 7 q S D - 301
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT /
Rome Air Development Center (ISIS) N L1
Griffiss AFB NY 13441 158
[T MONTTORING AGENCY NAME & Controlling Otfice) | 15. SECURITY CLASS. (of this cppodt)
UNCLASSIFIED
Same % DECLASSIFICATION/ DOWNGRADING |
SCHEDULE

16. OISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if ditferent from Repoet)

Same

10. SUPPLEMENTARY NOTES
RADC Project Engineer:
Joseph P. Cavano (ISIS)

19. KEY WOROS (Continue on reverse side |l necvssary and identily by dblock number)

Software Quality
Quality Factors
Metrics

Software Measurements

20. ABSTRACY (Continue on reverse side if mcou;ﬁ identify by bleck number)

An hierarchical definition of factors affecting software quality was compiled
after an extensive literature search. The definition covers the complete range
of software development and is broken down into non-oriented and software-
oriented characteristicas. For the lowest level of the software-oriented fact-
: ors, metrics were developed that would be independent of the programming lang-
; uage. These measurable criteria were collected and validated using actual Air
Force data bases. A handbook was generated that will be useful to Air Force

- FORM
3 DD (\an 73 73 zoimion oF 1 nov 68 13 osoLETE SIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Dare Entered)

: o |
1 ,%WW 5P

T A e b A b

' __—_w______ e) N
S | SECUMTY CLASHFICATION OF THIS PAGE(When Dete Eatored) _
A
'?"| acquisition managers for specifying the overall quality of a software system.
B
3 !
' MEEIN W L, ‘ %
m X DDC
e att Sectiss [|
WIARNOUNCED w] .
JUSTIFIGATION. oo
n e
SITRIBUTION /AVAILABILITY Co9gS
Wil AVAIL mad/ur SEGIAL
| '.
- 1
L |
! %
_ [
-l ’ d
.
|
A
L]

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entersd)

“ PREFACE
‘This document is the final technical report (CDRL A0O3) for the Factors in
Software Quality Study, contract number F030602-76-C-0417., The contract was
performed in support of the U.S. Air Force Electronic Systgms Division's
(ESD) and Rome Air Development Center's (RADC) mission provide standards
and technical guidance to software acquisition man

The report was prepared by J. McCal :’ﬁ?chards. and G. Walters of the
Sunnyvale Operations, ion Systems Programs, General Electric

Company. Significdnt contributions were made by A. Breda, S. Reiss, and
R. Colenso.

T AR Nt B s b @ ot i o i o s 4
‘ ST TR e Caiigiap it is ol

¢ Techpitcal guidance was provided by J. Cavano, RADC Project Engineer and
Captain A. French, ESD Technical Monitor.

The report consists of three volumes, as fol]owsj

o Volume I Concept and Definitions of Software Quality

t , Volume II Metric Data Collaction and Validatioq}

' Volume III Preliminary Handbook on Software Quality for an) i
Acquisition Manager,

The objective of the study was to establish a concept of software quality

and provide an Air Force acquisition manager with a mechanism to quantita-
tively specify and measure the desired level of quality in a software

product. Software metrics provide the mechanism for the quantitative specifi-
cation and measurement of quality.

software quality and what the underlying software attributes are that
provide the quality, and defines the metrics which provide a measure of
.- the degree to which the attributes exist.

¥
3
|

4
(
!
{
: :’ ’ This first volume describes the process of developing our concept of
|
|
!

i/t

TABLE OF CONTENTS

o aEn b o s e b 4 e s e

§ Section | Page
P 1 INTRODUCTION/EXECUTIVE SUMMARY e e R 5
3
i 1.1 Task Overview e e e e e e e 1-1
; 1.2 Task Objectives . . . v & v & v v 4t v vt e b s e e ee . 1-1
i : 1.3 Acknowledgment of Previous Work 1-4 .
I 1.4 Contribution to State of Knowledge 1-4 1
: 1.5 Conclusions of the Study. ¢« v ¢ ¢ ¢ ¢« s s o . 1-5 3
1.6 Further Research ¢ v v ¢ v e v v v v 0 o v .. 1-8 3
2 DETERMINATION OF QUALITY FACTORS v . ¢ ¢ v ¢ ¢ v ¢ o o o . 2-1
2.1 Definitionof Terms « « ¢ v 4 ¢ v ¢ o o & & 00 2-1
2.2 ldentification of Quality Factors in the Literature 2-3
2.3 The Process of Grouping Candidate Factors 2-3
2.4 Results and Rationale After Grouping Quality Factors. 2-6
i 3 DEFINITIONS OF QUALITY FACTORS . . . & &« v « v v v v o e o s o o 3-1
' 3.1 Conceptualization of Factors fh Software Quality. 3-1
3.2 Relationship of Factors to Air Force Applications 3-4
3.3 Relationship of Factors to Life-Cycle Phases. 3-10
i 4 DEFINITION OF CRITERIA . . « + o o v v v v e e e e e e oo a-1
i 4.1 Defining Factors with Criterda. 4-1
i } 4.2 Relationship Between Factors. 4-6
:
:: 5 EXAMINATION OF SOFTWARE PRODUCTS THROUGHOUT THE
53‘ LIFE CYCLE PHASES. + .« &+ v & v ¢ v o ¢ o v o o v o v o o o s o o 5-1
» 5.1 Software Products as Sources for Metrics. 5-1
! 5.2 Range of Software Products. 5-4

11

i

|

: ;

o ;
]
b |
3

4 | TABLE OF CONTENTS (Continued)
Section Page ;
’ 6 DEFINITIONS OF METRICS. « . o v v v v o v v e e e o e e e e 6-1)
6.1 Development of Metrics e e e e e e e e - 6-1 é
6.2 Description of Metrics ¢ ¢« v v e 0 v v .. 6-5 4
6.3 Summarizationof Metrfcs 6-71 i
REFERENCES . . ¢ & & 4 ¢ v e e e o o o o o s s o o 6 o o o s e+ . «» Ref-1
BIBLIOGRAPHY . . o v v o v e v e e e e e e U Bib-1 |
. k
APPENDIX A: FACTORS IN THE LITERATURE WITH DEFINITIONS A-1 i
APPENDIX B: ODOCUMENTATION CHARACTERISTICS « s s e e e e e . B-1
{
.:l
{

iv

.‘_.—-v——.h-

TR e TETERE TR TR TR
B s

Figure Number

1.2-1
2.1-1
3.1-1

4.1-1

5.1-1
5.1-2
6.1-1
B-1

Table
2.2-1

2.2-2
2.4-1

3.1-1
3.2-1
3.2-2

3.3-1

4.1-1
4.2-1

4.2-2
4.2-3
5.2-1
6.2-1
6.3-1
B-1

Number

LIST OF FIGURES

Title

Specifying and Measuring Quality Software

Relationship of Software Quality to Cost
Allocation of Software Quality Factors to-

Product Activity., & ¢ ¢ v ¢ ¢t o 4 o v ..

Relationship of Criteria to Software Quality

Factors . . ¢« &« v & v v & ¢ ¢ e 2 s o o .« e s e
Impact of Error ¢ ¢ ¢ ¢« ¢ 4 ¢ ¢ o o s o o o &

Concept of Metrics ¢ ¢« ¢« ¢ v ¢ ¢ ¢ o &

ChoosingaMetric v v oo
Software Products &« ¢« v ¢ v ¢ 4 b e v e e .

LIST OF TABLES

Title
Candidate Software Quality Factors Extracted

from the Literature o e s a e
Sources for Software Quality Factors

Grouping of Software Quality Factors to Achieve

Unambiguous Set + ¢ v v ¢ v ¢ v ¢ 0 o

Definition of Software Quality Factors

Categorization of Software in Air Force Systems . .

Importance of Software Quality Factors to

Specific Air Force Applications

The Impact of not Specifying or Measuring

Software Quality Factors
Criteria Definitions for Software Quality Factors . . .

Impact of not Applying Criteria in Specifying

Software Quality ¢ ¢« ¢ v v ¢ ¢ v o o o &

Effect of Criteria on Software Quality Factors
Relationships Between Software Quality Factors

Reference Documents v v ¢« ¢ ¢ o o + &
Software Quality Metrics ¢ . ¢« ¢« ¢ v o ¢ & &
Summarization of Metrics e e

Cross Reference Between Identified Documents and

References Where They are Described

Page
1-3
2-2

4-2
5-2
5-3
6-2
B-8

Page

2-4
2-5

3-5
3-6

3-8

3-1

4-7
4-8
4-10
5-5
6-7
6-72

| EVALUATION 4

The Air Force is constantly striving to improve the quality of its _
software systems. Producing high quality software is a prerequisite for .
satisfying the stringent reliability and error-free requirements of com- 4
mand and control software. To help accomplish this, a more precise def-
inition of software quality is needed as well as a way to derive metrics
for quantifying software for objective analysis. This effort was initi-
ated in response to the need to better understand those factors affecting
software quality and fits into the goals of RADC TPO No. 5, Software Cost
Reduction in the area of Software Quality (Metrics). General Electric
classified over the complete range of software development both user-

oriented and software-oriented characteristics which were related to Air k|
Force applications and life-cycle phases. Programming-language independ-

ent metrics were defined using Air Force data bases. Finally, formal ;
methodology for the validation of the metrics was developed and used. !

The significance of this work is that through the establishment of
quality measurement a beneficial impact will occur on the evaluation and
implementation of a software product at each stage of development. Trade-
offs between technical value and cost will be more easily understood. In
addition, Air Force acquisition managers, with the aid of a handbook de-
livered as part of this contract, will be able to specify requirements to
software developers more completely and then determine whether those re-
quirements are being satisfied early enough for corrective action. As
quality measurement becomes more vigorous in the future, the Air Force will
be capable of establishing software product and service standards for
jtself and its contractors.

-¢/4;iﬁ¢b¢r5;?? (;;;QEILC
JOSEPH"P. CAVANO
Project Engineer

i
B
-
-v‘ »
-
L

vi

- - —.._..L“’ - .

B S e bl b ek
. . m e e
C e i et i

SECTION 1
INTRODUCTION/EXECUTIVE SUMMARY

1.1 TASK OVERVIEW

The Factors in Software Quality task was conducted in support of the

U.S. Air Force Electronic Systems Division's (ESD) and Rome Air Development
Center's (RADC) mission to provide standards and technical guidance to soft-
ware acquisition managers. ESD sponsored the task and RADC provided
technical project management.

The impetus for this effort and other related work in the analysis of soft-
ware quality can be traced to recommendations for such research made jointly

by DOD, industry, and university representatives at the Symposium on the High
Cost of Software [NULFN73] in September, 1973, at the Joint Logistics Commanders
Electronic Systems Reliability Workshop (by members of the Software Reliability
Working Group) [FIND75} in May, 1975, and more recently by the DOD R&D Panel.

1.2 TASK OBJECTIVES : .

In the acquisition of a new software system, a major problem facing a System
Program Office (SP0O) is to specify the requirements to the software developer,
and then to determine whether those requirements are being satisfied as the
software system evolves. The parameters of the specification center about the
technical definition of the application and the software role within the over-
all system. Following this, a realistic schedule and costs are negotiated.

While the application functions, cost, and schedule aspects of development
can be objectively defined, measured, and assessed throughout the development
of the system, the quality desired has historically been definable only in
subjective terms. This occurs because the SPO has no quantifiable criteria
against which to judge the quality of the software until he begins to use the
system under operational conditions.

1-1

; 2 N
fan e L e SR L i
o B e — . e 1 am -

As represented in Figure 1.2-1, the objective of this study was to provide
guidelines in how to objectively specify the desired amount of quality at
the system requirements specification phase. By levying measurable quality
criteria on the developer, the SPO will be able to subsequently evaluate the
quality of the software not only when the system becomes operational, but
also as each phase of the proje.t is completed. As a result of corrective
actions the SPO may choose to invoke, these early measurements can signifi-
cantly reduce impact on life cycle cost and schedule.

The figures drawn with solid lines represent the questions the SPO can now ask

and can obtain objective answers. The figures drawn with dashed lines repre-

sent areas which cannot presently be addressed. The objective of this task was

to provide the mechanism to answer the question of how good the software is 1
more precisely and earlier in the 1ife cycle. The results of this task

provide the basis for the SPO to specify and evaluate the software quality
quantitatively, as is illustrated with the dash-lined figures.

The approach taken to quantify software quality is summarized as follows:

1. Determine a set of quality factors which jointly comprise software
quality. (Section 2,3)

2. Develop a working, hierarchical definition by identifying a set of
criteria for each factor. (Section 4)

3. Define metrics for each criterion and a normalization function which
relates and integrates the metrics for all of the criteria of a
factor to an overall rating of that factor. A scaling of the metrics'
contributions to this rating will result in a figure of merit for
each factor. (Section 5,6,7)

4. Validate the metrics and normalization functions by utilizing the
historical data of two Air Force systems. (Section 7,8)

5. Translate the results of this effort into guidelines that can be used
by Air Force Program Offices to specify the quality of the software
product required and to measure to determine if the developﬁent effort
is leading toward that level of quality. (Volume III)

1-2

1-3

4eM3j0S A3jlend Bupansesy pue Bupazoads |-2°L unbig

2- 2601
JONVN3LNIVW { INIWd073A30 YVALH0S | SISATVNY
anv ONY NOLLYDI4122dS
NOLLV340 AR SLNGHIUIND3Y

NOILVIINddY
A3123dS

LIYYMLAO0S ¢9NI1139

amL SI
0dS 3HL
0009 MOM Q&w&@ s | S1 LyHM
P \@\x

In taking this approach, we established a comprehensive framework which
facilitates the incorporation of future efforts and refinements to thé
metrics and their correlation to the quality factors. Also, reconmendations
are made on how the metrics should be collected.

The results of this task provide the SPO with a methodology for specify-
ing the quality he wants in the software and the procédures for determining
if he is realizing the level of quality that was specified. By achieving
this goal. the SPO will have objective insight into the software quality
throughout the acquisition process.

1.3 ACKNOWLEDGMENT OF PREVIOUS WORK

In establishing the framework for this study of factors in software quality,
we are attempting to incorporate the work that others have done previously
in this area. An extensive literature search was conducted. The references
are listed following the Appendices and the major references are abstracted
in the bibliography.

We used other RADC sponsored efforts, particularly those in the area of
reliability and maintainability, as input to this task. The planned approach
was to concentrate in those areas where little work has been done.

1.4 CONTRIBUTION TO STATE OF KNOWLEDGE

This study has been directed at expanding upon the current state of knowledge
about software quality. The following aspects of our approach are fdentified
as expansions to the work to date:

e Provide a global view of software quality - most previous efforts have
evaluated subsets.
Provide a formal methodology for the validation of metrics.
Relate the quality factors to Air Force applications.

o Relate the quality factors to the 1ife cycle phases.

e S S PR T T I T e

LR s oy 42
B

.

Define metrics which are programming language independent.
Identify metrics which can be applied early in the development
phase (during requirements analysis and design).

o Attempt to choose criteria that are as independent and unambiguous
as possible.

e Attempt to quantify the correlation of subjective criteria to the
quality factors.
Identify automated metric data collection tools.
Provide a framework for factors in software quality that can be used
in future research efforts. '

1.5 CONCLUSIONS OF THE STUDY

The effort represents a conceptual study investigating the factors of soft-
ware quality. Our intent was to build upon the significant contributions
of other efforts in recent yearsurelatgd to understanding software quality.
The main thrusts of this study were the formulation of an SPO-oriented concept
of factors in software quality and the establishment and application of
metrics oriented toward the early phases of development. The measures are
indicators of the progress toward the desired quality. They\ijso give

an early indication of the quality factors that are not rea]izéd\jg\testing
or during initial operation but have a large cost impact later in the-life
of a product, e.g., portability, reusability, or interoperability.)

The complete procedure of establishing a framework for factors in software
quality, defining the factors, relating them to Air Force applications and

the life-cycle phases, establishing criteria, defining them, using them

to identify the relationships and tradeoffs between factors, defining metrics,
establishing their relationship to the quality factors, and validating the
relationship was an iterative process. It has been described in this

report in a sequential manner only for clarity and simplicity. It will
continue to evolve as more experience is gained through the application of
metrics to more software developments.

1-§

The framework established is flexible and expandable. It provides a complete
view of software quality. It provides a mechanism for specifying and measur-
ing the quality of a software product. The following benefits can be
realized from this conceptualization of factors in software quality:

e it is a simple, comprehensive tool for an acquisition manager to use —
guidelines for its use are provided in the form of a handbook.
(volume III)

e it provides the acquisition manager with a 1ife-cycle view of his
software product, forcing consideration of such factors as main-
tainability and portability in the system specification phase.

e it provides a mechanism for performing high-level tradeoff studies
early in the life cycle (requirements analysis, performance require-
ments analysis, and preliminary design) to help in determining the
product's required capabilities and performance characteristics.

e as the software development process technology advances and new
development techniques are introduced, the metrics can easily and
logically be modified or added.

The set of metrics established provides a comprehensive coverage of the char-
acteristics of a software product. As they exist, they represent an excellent
guideline for testers, quality assurance personnel, and independent verifi-
cation and validation efforts. They also incorporate an extensive composite
of a number of texts on good programming practices and style.

The specific results of the validation phase of the study allow the conclusion
that software metrics are a viable concept. The regression analysis showed
significant correlation for some metrics with related quality factors.
Quantitative metrics can be applied to intermediate products of the soft-
ware development which exist as early as the requirement analysis. As

more disciplined, software engineering approaches are taken toward the
development of software, the more applicable quantitative metrics become.

ekl a 1

b s L

- ST TR T AT R TR e e T
-t TR TR TR TR

The establishment of generalized precise normalization functions was beyond
the scope of the study. The limiting factors were that the sample of mod-
ules and systems was not large enough, general enough, nor had the two
systems, which were used, been through all of the quality factors related
activities (e.g., moved to another environment, linked to another system,
etc.). The sample was representative of two large-scale developments so
the experience of applying the metrics contributed considerable knowledge
to the software quality technology. One other 1imiting factor was that

the measures were biased high because the metrics were applied after the
two systems had been delivered. So, even though the metrics were applied
to software products delivered during the development they had been updated
to reflect all of the changes and fixes made to the system as a result of
testing and operational experience. A definite recommendation of this
study then is to apply the metrics during the actual development of a soft-
ware system to further validate their relationship to the resulting quality.

In deriving the set of metrics, the number of metrics became a significant
consideration. The concept of applying the same metric successively
during the development phases helped contain the problem of an unwieldy
number of metrics. The fact that many of the metrics can be collected
automatically assists in making the present set more manageable.

A large number of existing software support tools were identified that pro-
vide metric data collection capabilities. Significantly, several tools

were identified, and some applied, which automate the collection of metrics
in the requirements analysis and design phases of the development. Several
other tools can be developed. Because many tools do exist that provide a
subset of the overall capabilities of data collection required, an integrated
approach must be developed to effectively collect metric data in any soft-
ware development environment.

e o mat e a Anshaist ot~ sn

Some very practical, beneficial results from the application of the metrics in
their current farm have been identified. When the metrics are applied to the

set of software products available at various times during the development,

they can be used as indicators. Low measurements identify modules or charac-

teristics which should be investigated and the scores justified. The meth-
odology for regression analysis described can be used in conjunction with
this metric indicator concept. The analysis provides an indicatfon of what
specific software characteristics vary in a particular enviromment relatfve
to variations in software quality, i.e., which characteristics vary signi-
ficantly and cause variation in the software quality.

This information is beneficial to software developers in writing their
design and programming standards and conventions. It is also beneficial
to QA personnel in identifying areas or modules requiring attention during
development and concentrated testing.

An SPO can use the quantitative nature of the metrics and the framework

of the software quality factors to specify the required level of software
quality quantitatively. By specifying the software quality in terms of
the metrics, the SPO is specifying the desired characteristics of the
software. The characteristics are essentially independent of method or
philosoply of software development so there are no unjustified restrictions
placed on the software developer.

The software quality metrics represent the introduction of a more disci-
plined engineering approach to software quality assurance. They provide
a quantitative tool for the inspection and evaluation of software products
during the development phase.

1.6 FURTHER RESEARCH
Several areas for further research were identified during this effort.

1-8

Kot

P A

The exercise of determining the set of metrics revealed several areas requiring
further investigation. Within the transition phase, the two quality factors,
reusability and interoperability, are relatively untouched in the 1iterature.
Little research has been conducted to determine what constitutes reusability
and interoperability or what software attributes provide these qualities.

It is felt that further research in these areas could have potentially high
life-cycle cost benefits. |

A second area where we feel further research would be beneficial is in
measuring various aspects of efficiency. Because many of the attributes of
efficiency have a negative effect on all other quality factors, it is an
important consideration of the software quality concept. Most current
measures of efficiency are dynamic measures requiring execution of the
code. In deriving some static measures we realized that an integrated

set of both dynamic and static measures are necessary to judge the degree
of efficiency. Further work is required to develop this type of measure.

Further research, application, and experience are required to formalize
the normalization functions. This report has stressed the methodology
of deriving and validating the normalization functions to encourage the
application of these techniques to other software developments. Use on
future developments will add to the data base for the establishment of
generalized normalization functions, as well as provide indication to the
SPO and software developer of their progression toward a high quality
product. It will also contribute to the error data <ollection technology
and experience.

As previously mentioned, the metrics should be applied during a software
2 development to obtain more realistic measures. It is also recommended
' that the metrics be applied to specific projects involving (1) software
conversions from one environment to another to validate the metrics
: related to portability, (2) efforts 1inking two systems to validate the F
; interoperability metrics, and (3) efforts upgrading a system to validate
the reusability metrics. These efforts would not only provide a chance i

L o i
T N S i

',1
R
|
|

for validation of the particular metrics but also give considerable insight
into additional metrics in these high-payoff, late-l{fe-cycle-impact
quality factors.

SECTION 2
k. i
] DETERMINATION OF QUALITY FACTORS

. 2.1 DEFINITION OF TERMS
To be consistent in our determination of factors, criteria, and metrics, we
first established a set of working definitions. This was done in order to

provide a framework from which to more objectively judge candidate quality
factors. The working definitions are as follows: 3

e Software: the programs and documentation associated with and result-
ing from the software development process.

e Quality: a general term applicable to any trait or characteristic,
whether individual or generic, a distinguishing attribute which indi-
cates a degree of excellence or identifies the basic nature of
something.

e Factor: a condition or characteristic which actively contributes to
the quality of the software., For standardization purposes, all factors
will be related to a normalized cost to either perform the activity
characterized by the factor or to operate with that degree of quality.

‘ For example, maintainability is the effort required to locate and

Y fix an error in an operational program. This effort required may be

expressed in units such as time, dollars, or manpower. The following
rules were used to determine the prime set of quality factors:

a condition or characteristic which contributes to software quality,

a user-related characteristic,

- related to cost either to perform the activity characterized by
the function or to operate with that degree of quality,

i - relative characteristic between software products.

™

products, requires a brief explanation. Figure 2.1-1 illustrates the relation-

ship between a factor and the cost to achieve different levels of that quality 3
factor. As an example, we will assume the curve describes the cost to level-of-

quality relationship for the factor, reliability. A much lower level of reli-

ability, which costs less to achieve, may be as acceptable to a management

1 1 The last rule, that a factor is a relative characteristic between software
]

2-1

S 0 b L

E T TR

Lo FTT L

Callst
e B ———— e o ..

-

CoST

MIS

1 Rating of Factor 0

Figure 2,1-1 Relationship of Software Quality to Cost

information system (MIS) acquisition manager as a much higher level is to a
command and control (C2) manager due to the nature of the applications. So,
while the C2 final product may have a higher degree of reliability according

to our measures, it is no more acceptable to its user than the MIS system with
its lower relijability is to its user. This relationship is further illustrated
in Section 3 where the quality factors are related to specific Air Force
applications.

2-2

o Criteria: attributes of the software or software production process

by which the factors can be judged and defined. The following rules

were applied to the determination of criteria:

- attributes of the software or software products of the development
process; i.e., criteria are software oriented while factors are
user oriented,

- may display a hierarchical relationship with subcriteria,

- may affect more than one factor.

o Metrics: measures of the criteria or subcriteria related to the

quality factors. The measures may be objective or subjective. The
units of the metrics are chosen as the ratio of actual occurrences
to the possible number of occurrences. Metrics will be discussed
further in Section 6.

et - -

|
|
f
I

| 2.3 THE PROCESS OF GROUPING CANDIDATE FACTORS

~ cise number of entries which still cover the comprehensive set of software

2.2 IDENTIFICATION OF QUALITY FACTORS IN THE LITERATURE {

A literature search was conducted to assemble all current definitions and to ;
identify any applicable discussions with respect to software quality factors. E
Table 2.2-1 sumparizes the 1{ist of terms extracted from the literature and
represents the baseline of potential or candidate quaiity factors referenced
in this study.

This 1ist of approximately 55 terms was used as the starting point for deter- ,
mining the prime set of factors. The next task was to apply the definitions 3
given in Section 2.1 to the 1ist of candidate factors. The intent of this

exercise was to put into place a standard by which to judge terms with regard
to consistency, redundancy, suitability, etc. The results of applying the {
definitions to the candidate terms is discus$ed in further detail below, where ‘
the rationale for terms such as understandability, modularity, and complexity :
is explained.

In Table 2.2-2 we provide a brief cross-reference of definitions and authors
quoted. The total set of definitions analyzed in this report appears in
Appendix A where work by various researchers in the software community are
quoted or paraphased.

The 1ist of potential factors established in Table 2.2-1 was known to contain
obvious redundancy and some terms which do not comply with all of the rules
jdentified for the prime set of factors. It was also felt that the list was
far too long to represent a manageable set of factors. For this reason, some
guidelines were generated to aid in grouping the factors into a smaller, con-

quality factor characteristics desired. The guidelines used were:
e User-oriented terms are potential factors; software-oriented terms

are potential criteria.
o Synonyms that are identified are grouped together,

2-3

SR N .

lable 2,2-1 Candidate Software Quality Factors

Extracted from the Literature

PORTABILITY AUGMENTABILITY
TRANSFERABILITY INTEGRITY
ACCEPTABILITY SECURITY
COMPLETENESS PRIVACY
CONSISTENCY USABILITY
CORRECTNESS OPERABILITY
AVAILABILITY HUMAN FACTORS
RELIABILITY COMMUNICATIVENESS
ACCURACY STRUCTUREDNESS
ROBUSTNESS MODULARITY
EFFICIENCY UNTFORMITY
PERFORMANCE GENERALITY
CONCISENESS REUSABILITY
UNDERSTANDABILITY TESTABILITY
SELF-DESCRIPTIVENESS INTEROPERABILITY
CLARITY CONVERTIBILITY
LEGIBILITY MANAGEABILITY
MAINTAINABILITY cosT

STABILITY ACCOUNTABILITY
ADAPTABILITY SELF-CONTAINEDNESS
EXTENSIBILITY EXPRESSION
MODIFIABILITY VALIDITY
ACCESSIBILITY TIME

FLEXIBILITY COMPLEXITY
EXPANDABILITY

PRECISION DOCUMENTATION
TOLERANCE REPAIRABILITY
COMPATABILITY SERVICEABILITY
2-4

T - -
ALLIIEVEIVAN - = ﬁ + 1 f

- R b Ty e § b 4 4 -ttt
_Aimevivawod L--}-«[-—- i $- S , J .

R T !
" NOTS193Wd tte

T T T Wi viNmn000 Yy i
T TTTIR09 1T Py TTT 1

Wil o

By NUYS WV PR B (N W L o W -4 4 l
ATTATTV 1 1
PR — R N UUR NOU EENE WD [SupS THpy Y b - B
wnszux!J 11 1 ° +11 '"j
Smomvivo- s o [T T TT T B
TALTTTEVINGIV | ’ : . E
BN VORI F T PY 1
BRFVYRITTICI V) A —r ® N
nhiehubiaupuns NS W N9 X) e - i
L Atmedonwtf 1 L e .
MTIwIS] o
ALTTI6VSATY ° Py
AL1TWYINID. ® S
L ALTNB03TNA ® — %
’ TTAITEVIAGOM ’
I35 ETTRINTY PY PY

T SSINIATIVIINANROI | @
®

D00
: e
t
—— - -

SHOLIVE NWWAH
YR ITTTELT) | |

all118vsn
Y 7 YT)
BNYSETRE S ° 1 . ° +

T TIEIIN ° Py °
AITTIRVINWONY | 4 1
.. 4. B S IO

|

T TSI
VR 28I
BN VAR ITTLEIVE) . Y
ALTITGVLAVaY °
ATIEVIS
TANTIEWIVININ] @ e le ‘_o_
IR T T 3
SSINIATLTERIC- 135 | @ ! 1
’ ALTSVT Py ®
ALTTTGVONVISEION | @ Py ® *
SSINISIONGT | o
TINVWE0I43d Y [
ON3131341| @
SSINLSAT0R

ANV | ¢ Y ®

: TR el (e o| [olel o ® - o (o |®
ALTTTGVIIVAY Py PY
$SINLDI4E0D ° ° "y PY
ANILSTSNO | @]
| SSNIITIaN0 | o 7
! ALTTTaVIdI0V ° P ° °
[YSRTC TEELITTY
ST TINGG | e

/

—q 4.

Table 2.2-2 Sources for Software Quality Factors

A

—
i@
HE
K
i
‘L
K
HRD
1
' e
., |@
| @

@
!
[]
®
]
|
|
i)

DENNJ 70

3

L 75

2
WOLFA?3

GOODY75
DENNJ 70
HAGUS 26
KERNB74
KOSYD74
KOSAS74 |
LIEBE72 i -
LIGHN76
LISKB?3
MARSS 70
MEALG68
MYERG?S, 76|
RICHP74
RUBYR6S
THAYT76
YOURE 7S

SAD USARTS
ur!

Thaser
USA
-:p'la"
wutf

FIND7S
SUPP73
SAMS75
SCHOJ 76

EONAN7S

CANDIDAT

FACTORS
BOEHE76
CASEJ74
copL?s
DENNC TS

AUTHORS

NSSC PATHMAY PATN76

Poole

Culpepper

Dennis
Schonfel der

JLC/SRWG
Kernighan
Kosy
Ledgard
Lieglein
Light
Liskov
Marshall
Mealy
Richards
Ruby
SADPR-85
L AT
fourdon
A

Soehm
Casey
Edwards
Goodenough
Goos

Hague

~.—— ———— .

Logically similar terms are grouped together,

Required a manageabie number of groups - the prime set of factors

should be small in number to maintain a simple framework in which
! the SPO can work most effectively.

A central issue in the grouping process was to identify only user-oriented terms
as potential factors. This has the advantage of defining for the SPO a set of
user-oriented terms for specifying the relative amount of quality desired in the
product. It also enabled us to significantly reduce the number of potential
factors. In defining software-oriented terms as criteria, then, we also could
establish more realistic standards by which to judge the final software product
which will be, in turn, easier to measure.

2.4 RESULTS AND RATIONALE AFTER GROUPING QUALITY FACTORS

Table 2.4-1 provides the results of the grouping process. The underlined terms
were chosen as the group names. They were chosen because they were the most S
descriptive or, if a hierarchical relationship existed in the group, the higher !
member was chosen, '

Three groupings were determined not to be candidates for a quality factor:
Understandability, Complexity, and Modularity. Complexity and modularity are
software-oriented rather than user-oriented terms. The user is interested

in such things as how fast the program runs (efficiency) and how easy it is

to maintain (maintainability), not how modular it is. Modularity is not an
end item quality or performance characteristic. Since it 1s software oriented,
it contributes to several of the candidate quality factors, and is therefore

a candidate for a criterion. Similarly, complexity is a candidate for a
criterion (simplicity will be used to connote a positive attribute).

Understandability was initially identified as a quality factor. Upon further
analysis (relating factors to Air Force applications and to life-cycle phases),
we decided that it was not quantifiable. Measuring how well software is under-
stood is extremely difficult and associating a cost would be even more difficult.
The reasons for wanting to understand a program really are related to using,
maintaining, or changing the program. Thus, the quantifiable attributes of
understandabiiity will be used as criteria of other factors.

2-6

g

H
¢
{
3
i
|
t
i

ez T

¥

Table 2.4-1 Grouping of Software Quality Factors

to Achieve Unambiguous Set

CORRECTNESS

Acceptability
Completeness
Consistency
Expression
Validity
Performance

RELIABILITY
Availability
Accuracy
Robustness
Precision
Tolerance

EFFICIENCY

INTEGRITY
Security
Privacy

USABILITY
Operabiltity
Human Factors
Communicativeness
Convertibility

DOCUMENTATION

UNDERSTANDABILITY

Clarity
Legibility

Self-Descriptiveness

MAINTAINABILITY
Stability
Manageability
Conciseness
Repairability
Serviceability

FLEXIBILITY
Adaptability
Extensibility
Accessibility
Expandability
Augmentability
Modifiability

TESTABILITY
Accountability

cosT

PORTABILITY
Transferability
Compatability

REUSABILITY
Generality
Utility

INTEROPERABILITY

COMPLEXITY

MODULARITY
Structuredness
Uniformity
Self-Containedness

TIME

2-7

Integrity, security, and privacy were grouped together. Integrity is inter-
preted as the ability of the software to protect against unauthroized access -
software integrity. Another common interpretation, data base integrity, (the
ability of the software to maintain an accurate data base in a multiaccess
environment) falls under the major category of reliability. Privacy is the
ability to control the use of data. An authorized person may access data and
then use it in an unauthorized manner. To date, little software has been
developed for providing the capability to control usage of data. In this
respect, privacy is outside the scope of this study. We will maintain it as

a part of the quality factor called integrity for future expansion.

Two other groupings, cost and time, provide the baseline for evaluating the
factors. 1t costs more and takes more time to develop a more reliable system.
A system that is not flexible costs more and takes longer to change. Cast

§ and time, therefore, were not considered candidates for quality factors, but

' form the basis for correlating metrics with the various levels of quality.
Documentation is one of the vehicles for providing the various qualities.

i Specific documents enhance the maintainability, others the testability,

' and so on. Documentation was not considered‘a quality factor but a product
of the software development process which can be evaluated to obtain a
measure of quality.

R it

T

T PRI 4T AT TR e WY TR 1 Doy T ‘M:.W .m'-

SECTION 3
DEFINITIONS OF QUALITY FACTORS

3.1 CONCEPTUALIZATION OF FACTORS IN SOFTWARE QUALITY

Through evaluation and analysis of the groupings of factors, three different
orientations that one could take in looking at a delivered software product
were recognized. These three orjentations took on added significance because
of their relevance to an SPO. The SPO's interaction with a delivered soft-
ware product can be described in terms of only three distinct activities as
follows:

Software Product Activities
¢ Product Operation
e Product Revision
® Product Transition

This scheme was adopted as the framework about which we would further evolve
our software quality research., Figure 3.1-1 illustrates the concept derived.
The questions in parentheses provide the relevancy or interpretation of the
factors to an SPO.

To date, the major emphasis has always been on initial product operation.
Specifications and testing only stiess factors such as the correctness or
reliability. There is, however, a growing recognition of the longer-term
implications in our software development, such as the flexibility or main-
tainability of the software product. Analyses of life-cycle costs have shown
that the costs of maintenance and redesign exceed the cost of initial develop-
ment [LIEBE72] and that the cost of fixing errors after a system is operational
is up to 30 times greater than if the error was caught during system testing.
Several software developers state as policy a rule of thumb that if a mod-
jfication requires X% of the lines of code to be revised, a total redesign is
undertaken; X varies between 20 and 50 percent. All of these facts point to
the conclusion that our software systems are not designed and developed with
the required emphasis on maintainability, flexibility, portability, etc.

2sct A34A133Y 3ONPOUJ 03 S403OR4 A3L|RNY B4RMISOS O UOLIRIO([Y |-[°E Sunbiy

(ENILSAS YIHIONY HLIM LI
JOVRIAINT OL 378V 38 1 IM) ALINISVHIMONILNI
(:3¥WML40S ML 30 3M0S

3S WY 38 1 NI ALIIgYSN3Y
A.u”wa 0l “u.:ez %0) (11 N 1 WD) ALINIBYSN
[2
(¢3S LI SI1) ALT¥9IIN]
11 3sn |y 31 MM AL119Y140d
0l 3 !) {(éNyD LI SY TI3m sy
JYVMOYYH AW NO NMY LI 11IM) AIN3IO1443

(¢MIL 3HL 40 TV

AT3LVENJIV 11 00 11 S300) ALITIGVIIY
(ZINVM 1

LVHM 00 LI S30Q) SSINLIFYY0I

(¢11 1S31 1 NYD) ALINIgvisSaL
(¢11 3ONVHD 1 MYD) ALITIGIX3S
(é11 X14 1 NW2) ALITTSYNIVINIVM

NOISIAN
1J2na0Nd

Significant impacts to the total cost of a system during the life of the
system can be realized because of the following reasons:

maintenance and operations costs are very high

major program modifications are required

there is a change of mission

a change occurs in the hardware

there is a change of users, either a new Air Force user or
new contractor

An occurrence of any of the above events usually requires redesign, recoding,
and retesting. The size of the impact of one of these events on total system
cost is a function of the quality factors associated, in particular, with
product revision and product transition. In order to minimize the impact,
these factors must be taken into account in the initial program development.

The Air Force Systems Command, in order to provide more of a focus on these
problems, has initiated efforts to improve their total life-cycle management
techniques [AIRF76]. The Naval Sea Systems Command has initiated the PATHWAY
Program, in which they recognize the importance of portability and reusability
in a software product [PATH76].

This conceptualization of factors in software quality provides a mechanism for
the SPO to quantify these concerns for the longer life-cycle implications of
the software product. For example, if the SPO is sponsoring the development
of a system in an environment in which there is a high rate of technical break-
throughs in hardware design, portability should take on an added significance.
If the expected life cycle of the system is long, maintainability becomes a
cost-critical consideration. If the system is an experimental system where
the software specifications will have a high rate of change, flexibility in
the software product is highly desirable. If the functions of the system are
expected to be required for a long time, while the system itself may change
considerably from time to time, reusability is of prime importance in those
modules which implement the major functions of the system. With the advent

?
{
;
i‘
j
!

of more networks and communication tapabilities, more systems are being re-
quired to interface with others and thie coiicept of interoperabiiity is extremely
important. A1l of these considerations can be accommodated in the framework
derived.

The formal definitions for each of the quality factors are described in
Table 3.1-1.

3.2 RELATIONSHIP OF FACTORS TO AIR FORCE APPLICATIONS

We conducted further evaluation of the framework and the quality factors by
examining their applicability to Air Force applications. To make this
evaluation, a categorization of Air Force applicationis was derived. This }
categorizdtion is shown in Table 3.2-1. Several references [AIRF?G. THEE?S, i
SAC176, SACKHG?] were utilized in deriving this scheme. We found, however,
that the factors vary considerably within the categories as well as between
categories, depending on the specific application. So we chose specific sys-
tems representative of the categories and had several people familiar with

Air Force missions identify the importance of the factors to the specific soft-
ware product. The ratings shown in Table 3.2-2 are the means of the individual
ratings and were calculated as follows:

V - Very High - 6 points

H - High - 4 points ;
M - Medium - 3 points ‘
L - Low -

1 point

n
Average rating = POE

B

where ryo individual ratings
n = total number of people rating

Table 3.1-1 Definition of Software Quality Factors

CORRECTNESS

RELIABILITY

EFFICIENCY

INTEGRITY

USABILITY

MAINTAINABILITY

TESTABILITY

FLEXIBILITY
PORTABILITY

REUSABILITY

INTEROPERABILITY

Extent to which a program satisfies its specifications
and fulfills the user's mission objectives.

Extent to which a program can be expected to perform
its intended function with required precision.

The amount of computing resources and code required by
a program to perform a function.

Extent to which access to software or data by
unauthorized persons can be controlled.

Effort required to learn, operate, prepare input, and
interpret output of a program,

Effort required to locate and fix an error in an
operational program.

Effort required to test a program to insure it performs
its intended function.
Effort required to modify an operational program.

Effort required to transfer a prbgram from one hardware
configuration and/or software system environment to
another.

Extent to which a program can be used in other
applications - related to the packaging and scope of the
functions that programs perform.

Effort required to couple one system with another.

. (STWIwL)
wayshs Gujpuey g |043U0) 343404)
39vS

(J1nQ) 1023u0) J03da24IJU] dnydwg
HIQ) 40pey UOZIJOH Y3 JaAQ

(OWION) 35Uajaq 43y URDJIIY YIION LO43U0) D}gsva) J}Y aupy |eay
Mmuss waysAs $405$3304d ONINIW
1043u0) § bujusep Juloqdly bujuaey Ljuv3 sepay PUD JUCLH YIpM (xoy Qv SNOILVIION]

SMed 3104
WY Avaay-paseyq dueg 0400 | SILIIYIA PIIO| L4 A|3j0uny
(SMIMWg) wa3sAs

Sujuaen L1aw3 a11SSiW d1IsHLeg U0 1Y suwpy ey
(1d11) uoj3e3auduagu] pue 3IMIOITT3LN]
Buj$383044 UOjISEIOJU] |BD}3OR) Jsuajag adedg jup Jo pxey JONISSII0¥d VIVG HOSM3IS

3504 PUBVENO) JUIOQULY PIDURAPY) ey
(SH) wayshs TOUSNOD OHY GHVIWOD
pusemo) Auw3|14W Leuoiiey 1043U0) puv pueuIo) pxey WIILIVL/II93LVHLS

(S22} W3 S4S |043U0) $405599044
¥ putmso) AamajLiW LM Plaop PuU3 JUCL4 - SyJOMIaN
(SB1Le) weIsAS UDLINGLUISIE
usi3muoju] [R24300) JujOp W) Leay
(AL H11vS) dJomyay
U0LIMMIOJU] |¥30] PAYWOINY JVS SY4OMII} UO|IRI | UNIIO) PUE A0 0D | SNOT1VIINNWMO)

{os3uo) Auojusaug

w93 8AS Juauabrumy uojjewsojul s33354607 ya3eq 40 N3LSAS
PUTaN0) 341145y LIRI4LIN - SHIOWN soueuy a3 (eay/suyl-ug NOTLWW4O0JNT
*43) Sujssadoug wIeg uoiIe|teIsul 19uuosaag L1XeU 03 OUdLy LN3WTOVNWN
1 JouiBd) w9)sAS uodean SELIN “258 bupuguay
331430
U0LIdpaud 40Py —-ucu..:._m._xu bujuueld uo|sSSip SWi3 |ead4 40 yojeg
‘wayshs
Bujme)p |93)3d0-0433313 |8 ‘258 dojemus Juby |4 1xeN NOTLIVINWIS/AGNLS
(MSN) sxJom sJemijos LeuojieN ISNOH 3uwm3 105 *4a3eq 03
] 0009H 20wy qe1 any 2ARYSHWLY /XM O 04Dy 038 1S31/iIN3Md013A30
$3dWVX3 J14123dS SHILSAS dV 40 S3dAL $311S1Y2LIVUVHD $314093LVD
] WILdAL
_ SWIISAS ad404 JLY Ul d4eMIJO0S JO uoijeziaobajey |-2°€ alqel
i

- Cm et s emn e . g m—— g =~ —— ~

A i i b ik) L s e p .

3-7

]
,v
¥

SANSVIWIIIUNCY I}U043ID|]I
depey
$493y6td SL-4 ‘9l-4 ‘Bl-d swaysAs uodeap gy |eay
Jaquog wnipaW JyS (L1L-84 1043u0) ubiLd Suofje3s punodb |xey
(31L104S S1S) SJINOIAY INHOBUIY
wISAS uojejsodsueay ddedg $33411930§ 40$$3204d pav0q UO juiy /14V4I39VdS QINNW
(XW) 3L1SSIW padjueapy
W81 uewRdInuLy
(Sd9) wa3sAs bujuoy3}sod (eqo1D 4343 eapN MWy Ledy
(5350) waasAg
puRuano) 33411a3es asudjaq SO }SSIN-1IUY SYJOMISN
(d$Q) weaboaq js0ddng asuajaq SLISSIN Suoi3e3s punosd |xey
(dsSwa) wa3sAs SISSIH
11930 |v2}60(040333W Isudjag S9ljiLo3es 40553204d pdeoq uo july /714v4I3IvdS Q3NHWIND
SIVIWVX3 J14173dS SWILSAS 4V 40 S3dAL mu:.m_zm#w%m_“_nu SITY093ILYI
1

(Panuijuod) swa3sAS ad404 ALy UL B4BMIJOS 4O uoLjeziuobae) |-z°¢ alqey

T

w 1 n W) #H H H N AH| A-H SHOLIVS 40 SNLIVY 39VE3AY
539 YAepeJ BUIMO|10j UjP4aay
1 1 1 [Hi| u H H AH| A A *uoj3ebiARu [@}343U} (043u0 3:8.: oEB.E
suodeam pue uojiebjavu sap
welabod S
wi| 1 A nl Al W W A A Wi - m_:...._squpwu._. -
]l w1} A W] AH] W K] n A A $9311 19305 PIUALIQ Isuayag 5.&3 3doddng Isuaseq -ds0
1 1 1 H Wi H N WH| w H suoj3e0} (ddy Bujddey *soy3vam| -_231 asus;a0 - 4540 |
"1 -1 1 1 1 A Wl W Wil W AK| A A wa3sAS Uodean aajsuass0 HEDT NMILOKIM
Py - N coac—a—e—m
o -y 1043u0) J}j30d) A}Y °swa3shs
"W N : | N 'l Wl A HH| H A A n..:x.: ‘spiy uojIeb ARy |eujud) lzamso.:!a.. pue
HS - A cs_oﬁ 3t e STaeodto RE% 2uieil - SO
234038} N))] Wl w H A N A N dJy "JIpuRued V34337 IR vopInIsadaniu] § buyssad
L4 Jo 404 Bujssadosd eyep adusbiyiaju - ulp {3 -
VUNIS0de; a6 ow_%a:u»-
AR Lle J@ 336423 329330 "WIISAS
40 |98 N 1 1 " :.4 " H H H A a..".:!. ue 9IuUR| | jAINS depey UOZ}JOH 3P JaAQ
uojjed f TN 31 qQeA JALN <0 Pl
31 wl 1 1 N Wi Rl an| AH| oA | Ah R 0G41Y 22 siqeajadns MLI0GA1Y PROSCIDY o)
,_._oLB"s_._._ % _.:.Ee.; 1
|] b} R | H] H A-R A AR A-H H §m>.m uoL3ed jumnuo) 3pIM PLION
] W W W W] n H HW]| H H N 3304044Y 40 uO}3ILIOLLY | U0} IO U] PuL.L.O)
“339 *SuD}30w0ad| FI3T]
L B Lk IR 1] wH H H 1] W H *syuewub 550 *SN3e)s |auuosaag] Y 3¢ wysAg jauvossag
J6TE{RINS
1 1 1 u W W Ml 1 H H H Sujued) 0144 6114 30114 syenpesg
- waysAS
: 1 W H N Rl w11 H w1 N WT 1 adky qoq ou/peg 3saL/auaudojanag RSN/0COSH J0VN
o 7T F3 N
g /8 /8/5 §/5 $/8/8 NOLLVNV1.X3 RS TN
F/8/5/8/8/5/5/8/§/6/¢
§/5/5/5/5/8/5/7/% §5/2
I =~ J =4 - >
J ~4
/ WLLISWEL L0/ NOISIAZS 130084 [/ NOLLV340 LONGONd / _
SWOLV
suoj3edy |ddy 32404 ALy 1319345 03 S403d%4 A3ijenh 34em)jog JO duRJodw] 2-2°¢ IlqeL

T T U L T I NI T Ol Ry Spr)

3.8

o R

1 A e

it 12

Rating in matrix was assigned according
to following:

Average Rating Rating in Matrix

1< - <2 L
E‘ . 2< - <2.5 L-M
2.5 - 3.5 M
3.5 M-H

| 3.5¢ - <4,5 H
4,5 - <5 H-v

5< - 6 v

The representative set of missions is shown against the set of software quality
factors. The missions range from a software test bed laboratory facility to

a man-rated space mission (STS). The ratings illustrate the relative qualities
that are evidenced by the specified goals of the systems.

1 As shown, the factor of reliability is absolutely critical for the success and
safety required for the spacecraft and early warning applications. On the
, other hand, while reliability is always a desirable quality, the degree necessary
for success in the management information system and test bed applications
decreases relative to the other missions. The amount of efficiency required
is determined not only by the application itself but also by the computing
resources available and loading expected during a given mission. On-board
i processors, because of size limitations, usually have to realize a high degree
i of efficiency. A communication network, handling large volumes of data at a
' high rate, has to be efficient in its data switching and handling capabilities.
As another example, a large space mission application dedicated to a particular
hardware as well as software environment may not consider portability an essen-
1 tial factor, whereas, in the test bed facility, the ability to transport soft-
' ware to and from other configurations could well be one of the most important
4 considerations in the entire system.

PO

3-9

R AR S BN by TARE TR gy -

ST T TR TR e T

L i

Rade o ARl
o .

In filling out Table 3.2-2, we found that very few highs (H) or very highs (V)
were given to quality factors in the product revision or product transition
categories. This illustrates the lack of attention given these areas in past
software development. The average ratings were calculated to point out this
fact. The quality factors associated with product operation all received
high or very high ratings. These were expected and are probably justified

by the current practices and procedures in use today and utilized in specify-
ing software development projects. The quality factors associated with
product revision rated somewhat lower and, except for a few high-to-very high
and very high ratings in maintainability and testability, would have been
even lower. The gquality factors associated with product transition all rated
medium to low. This, too, points to the lack of attention given to the
problems associated with software conversions,

There may be more basic system characteristics that have more effect on the
factors than the categorization scheme. A partial 1ist with the factors i
that are extremely important is provided below: (4

if human lives are affected (Reliability, Correctness, Testability) j
very high system development cost (Reliability, Flexibility) !
long life cycle (Maintainability, Portability, Flexibility) 4
real time application (Efficiency)

on-board application (Efficiency, Reliability)
processes classified information (Integrity)
interrelated systems (Interoperability).

3.3 RELATIONSHIP OF FACTORS TO LIFE-CYCLE PHASES

Further evaluation of the framework and quality factors was needed to insure
coverage of the entire life cycle of a software product and to determine if
early indication of the quality was possible. Table 3.3-1 identifies where
the factors should be measured (4) and where the greatest impact due to poor
quality can be expected (X).

For instance, the reliability of a system is immediately in jeopardy if a
contractor does not understand the mission requirements or does not detect this E

3-10]

pazi|ead s} A3Ltenb Jood jo Joedup asaym - X

paanseaw 3q plnoys sa03oej Ajr(enb asaym - v
ON3931m.

X - X | v ALII8VYIJONILNT
X v v ALITISVSA3Y
X v v ALITI8V1¥0d
X X v/ v ALITISIX3 W
X X X v v ALIIgVISAL
X X v v ALITIQYNIVINIVH
X X X \v v ALIISYSN .

X v v v ALTY¥931NI

X v v AON3ID1343

X X X v v v ALIIGVITNY

X X X v v v SSINLITYY0D
9n83a SYOLIV4

NOI1ISNVYL JINVNILNIVW NOILVY3d0 1531] N9IS3a SISATYNY | S3SYHd
W3LSAS 3009 SIwb3y | 3VAI-1IN
NOILVY3dO | NOILVNTYA3 1IN31d013A30

$403004 A3}|end 24eM3305 Bujunseay 40 Hupkypoads J0u jo oedu] Ayl L-E°E wSu..P

fact during requirements analysis or system design phases. The system may
then proceed through code and debug and even into test and operation before
the impact of this failure is recognized. The cost and effort involved in
reevaluation, redesign, recoding, and retesting is significantly greater than
if realized earlier. Maintainable and efficient code can be achieved only
by designing and coding these properties into the software.

From the table we see that all of the factors can be measured during the
design phase. Most of the research in metrics to date has been in the code
and debug area. Determination of quality is more subjective in nature at
the design level than during the code and debug phase, where metrics can be
applied to code. This identifies where emphasis for research should be
placed to take advantage of the cost savings of early detection of poor
quality. As an example of a more objective measure in the design phase,

a traceability matrix, which relates performance and design requirements to
the original system requirements specification, can be effectively utilized
to evaluate the quality of work performed by the contractor during require-
ments analysis.

SECTION 4
DEFINITION OF CRITERIA y

4.1 DEFINING FACTORS WITH CRITERIA

The establishment of criteria for each factor has a four fold purpose. First,
the set of criteria for each factor further defines the factor. Second,
criteria which affect more thar, one factor help describe the relationships

| between factors. Third, the criteria allow a one-to-one relationship to be
established between metrics and criteria. Lastly, the criteria further

establish the working hierarchical nature of the framework for factors in
software quality.

As the software development technology progresses, other metrics,

criteria or even factors may be identified as relevant to the needs of an
SPO. The framework being established allows for and facilitates this kind
of expansion or refinement by its hierarchical nature.

? The set of criteria for each quality factor are shown in Figure 4.1-1. The f
: factors are identified in ellipses and the criteria are identified in rectan-
gles. These criteria were derived utilizing the software-related terms from
Table 2.4-1, examining the definition of each factor and expanding it into 1
independent attributes, and by identifying criteria with which we can poten- 4
tially associate objective measures.

For example, the attributes or standards for reliability are error tolerance,
consistency, accuracy, and simplicity. Integrity connotes protection which
implies two forms of protection: access control and access audit.

e RS i

i Mt st e

The definitions of the criteria are provided in Table 4.1-1.

¥
e R e ————e -

-

a-1

s A T, MY 4T Y I g P

—

4-2

CORRECTNESS

[Traceability | [Consistency | [Completeness |

RELIABILITY

[_Error Tolerance | [Consistency | [Accuracy 1 [simlicity |

{_Execution Efficiency | [Storage Efficiency |

LEGEND
O Factor @
3 Criteria

[_Access Control | [Access Audit |

[Training | | Commnicativeness] [operabitity |

[Consistency] [Simplicity | | Conciseness | [Modularity | belfTescriptivenesﬂ

1320A-2
Figure 4.1-1 Relationship of Criteria to Software Quality Factors

. :;:v':‘:!‘

— T T o A Y B
SO o - SR ll, ik ot .37 - T Ml i AT b il WS e Do ot sl i S 3 TR

Modularity

| seneratity | [Expandability | [se1f-Descriptiveness |

EModularity] |_Instrumentation]

Simplicity

[?e'l f-Descriptivenes sJ

PORTABILITY

Modularity

r Self-Descripti veneil [Machine Independenil Software System '

Independence
REUSABILITY
Generality Modularity Software System Machine Self-Descri ptiveness
l r j Independence Independence r J

INTEROPERABILITY

[wdularity | [Commnications Commonality |

| pata Commonality |

LEGEND

O Factor
[Criteria

13298

Figure 4.1-1 Relationship of Criteria to Software Quality Factors (continued)

o e 3 WS - o . TR WO ki) N &

4-3

W - WO . P A A

e

Table 4.1-1 Criteria Definitions for Software Quality Factors
RELATED
CRITERION DEFINITION FACTORS

TRACEABILITY Those attributes of the software that provide| Correctness
a thread from the requirements to the imple-
mentation with respect to the specific
development and operational environment.

COMPLETENESS Those attributes of the software that Correctness
provide full implementation of the functions
required.

CONSISTENCY Those attributes of the software that Correctness
provide uniform design and implementation Reliability
techniques and notation. Maintainability

ACCURACY Those attributes of the software that Reliability
provide the required precision in calcula-
tions and outputs.

ERROR TOLERANCE | Those attributes of the software that Reliability
provide continuity of operation under
nonnominal conditions.

SIMPLICITY Those attributes of the software that Reliability
provide implementation of-functions in the Maintainability
most understandable manner. (Usually Testability
avoidance of practices which increase
complexity.)

MODULARITY Those attributes of the software that Maintainability
provide a structure of highly independent Flexibility
modules. Testability

Portability
Reusability
Interoperability

GENERALITY Those attributes of the software that Flexibility
provide breadth to the functions performed. Reusability

EXPANDABILITY Those attributes of the software that
provide for expansion of data storage
requirements or computational functions. Flexibility

INSTRUMENTATION | Those attributes of the software that Testability
provide for the measurement of usage or
identification of errors.

SELF- Those attributes of the software that Flexibility

DESCRIPTIVENESS | provide explanation of the implementation Maintainability
of a function. Testability

Portability
Reusability

Table 4.1-1

Criteria Definitions for Software Quality Factors (Continued)

RELATED
CRITERION DEFINITION FACTORS
EXECUTION Those attributes of the software that Efficiency
EFFICIENCY provide for minimum processing time.
STORAGE Those attributes of the software that Efficiency
EFFICIENCY provide for minimum storage requirements
during operation.
ACCESS CONTROL Those attributes of the software that Integrity
provide for control of the access of
software and data.
ACCESS AUDIT Those attributes of the software that Integrity
provide for an audit of the access of
software and data.
OPERABILITY Those attributes of the software that Usability
determine operation and procedures con-
cerned with the operation of the software.
TRAINING Those attributes of the software that Usability
provide transition from current operation
or initial familiarization.
COMMUNICATIVENESS Those attributes of the software that Usability
provide useful inputs and outputs which
can be assimilated.
SOFTWARE SYSTEM Those attributes of the software that Portability
INDEPENDENCE determine its dependency on the software Reusability
environment (operating systems, utilities,
input/output routines, etc.)
MACHINE Those attributes of the software that Portability
INDEPENDENCE determine its dependency on the hardware Reusability
system.,
COMMUNICATIONS Those attributes of the software that Interoperability
COMMONALITY provide the use of standard protocols
and interface routines.
DATA COMMONALITY Those attributes of the software that Interoperability
provide the use of standard data repre-
sentations.
CONCISENESS Those attributes of the software that Maintainability

provide for implementation of a function
with a minimum amount of code.

e -y 1 Sormaomtanar sy

4,2 RELATIONSHIP BETWEEN FACTORS

The conceptualization of the factors in software quality implies some relation-
ships between the factors. Those grouped under Product Operation, Product
Revision, and Product Transition are related simply by association with those
aspects of a software product's life cycle. These relationships are very high
level, user-oriented interactions.

The criteria, especially those common to more than one factor, provide a much
more detailed understanding of the factors and their relationships to one
another. Table 4,2~1 depicts when the criteria should be measured (4) and when
impact of poor quality will be realized (X) during the life-cycle phases.

This table is an expansion of Figure 3.3-1, the impact of not specifying or
measuring software quality factors.

The effect of each criteria on each factor was evaluated and the results are
displayed in Table 4.2-2, If the existence of the attributes characterized

by the criterion positively impact a given factor, a (o) was placed in the matrix.
If the existence of the attributes characterized by the criterion negatively
impacts the factor, a (o) was placed in the matrix. If there was no relationship
between the criterion and factor, if the relationship was not clear, or if it
was highly dependent on the application, a blank was placed in the matrix.

These criterion/factor relationships are the basis for the factor-to-factor
relationships. If all of the criteria of one factor have positive impacts on
another factor, then the relationship of those two factors is very positive.
Conversely, if all of the criteria of one factor have negative impact on another
factor, these two factors display a negative (tradeoff) relationship.

As an example, consider the factors of portability and efficiency. Two criteria

of efficiency, execution efficiency and storage efficiency, have negative
impacts on portability. Conversely, two criteria of portability, software

4-6

s

poz|®a s} A3jLend yood Jo Joudwy 3uym X Pa.nsead 3q PLNOUS BIJIILLD YN © :ONIDIT

-
Y Y —T TTSUSTIU0Y |
X Y VA V] KT TCUGEIDY e
) 7 ~ T [ITTeUsEEsY SUOT T TUNGEDY |
X ¥/ </ SIWPUSTSPUT SUTYIOH |
i — Y17 R
X X v v} SSaUIAJEI LU
X V2 YV —BUTUTe] |
X X AV VA v/ RYFTRvISaY |
R A A Bkl
X AV v v ~OITUOY SSI0IY |
Y v | v TUSTSTIFT IBUIOTS
X v \V; A5U3151333 UoInNIeN] |
) § X X v/
— X X X X V] \V
) 4) § v q
) 4 X v 4
—X X X X \v2 Ava
X X X X N ~/
X X v} v/ \v/ “9OURISTO JoIT |
X X \V/ VYV v/ KICINS3Y |
X X ¥ v v ASUSTS TS0 |
X X v v va ~SSSUTISTAS |
X X X \V/ \V/ \V/ AT T |
NOILISNVML | 3ONVNIINIW | NOILv¥3dO Wiats awwuwu n1si | STSATVY VI¥3LIN)
NOTLVY3d0 NOILVATVA3 INMd013A30 u._ww%_u_u:

A3pren) ademyjos buifyioads up eLud3ta) bupAddy jou jo 3oedur (-2°p d1qel

Table 4.2-2

Effect of Criteria on Software Quality Factors

QUALITY
FACTORS

CRITERIA

RELIABILITY
EFFICIENCY
INTEGRITY
USABILITY
PORTABILITY

INTEROPERABILITY

TRACEABILITY

COMPLETENESS

CONSISTENCY

Ol O] mintainasiLiry
Ol (Of restsiLITY

Ol O] rexisiLITy
Ol 10| revsasiLivy

ACCURACY

ERROR TOLERANCE

o| ©

SIMPLICITY

OO IQIO|O| correcess
O

o0

MODULARITY

Ol0
OO0
Q@)

GENERALITY

OO[

EXPANDABILITY

INSTRUMENTATION

“SELF-
DESCRIPTIVENESS

o
O| |0]|0|0O
Of |0l0|0I0

@)
OO0
O

L EFFICIENCY

STORAGE EFFICIENCY

®/®0

ACCESS CONTROL

OPERABILITY.

TRAINING

COMMUNICATIVENESS

eli®lelle]

—SOPTWARE STSTER

ST
INDEPENOENCE

MACHINE
NDEP.

eee (ee00/000 00000

0O|0]O
O[O0

COMMONALITY

DATA COMMONALITY

O| |0|O0|0|0
O[O0 |0

CONCISENESS

@) o o

ACCESS AUDIT

@O

LEGEND - Attributes associated with criteria have:

@ regative effect on quality factor QO rositive effect on quality factor
-

system independence and machine independence, negatively impact efficiency.
The relationship between eﬁfi;jency and portability is quite obvious in that
when a high degree of portability exists, you can expect a low degree of
efficiency. Where some criteria of a factor impact another factor positively
and some negatively, further analysis is required to determine the net effect
of the impact.

Table 4.2-3 displays the results of the criteria versus factors analysis at
the factor versus factor level. In this table, the (o) indicates that with
the existence of a high degree of one factor you would expect a high degree of
another factor. A (e) indicates that with a high degree of one factor you
would expect a low degree of the other factor.

Looking at portability versus efficiency situation, we find a (o) entered in
the matrix shown in Table 4.2-3. This indicates the tradeoff situation already
discussed. This table then describes the general relationships between factors.
Specific cases must be analyzed along these lines to determine the specific
tradeoffs. A discussion of the tradeoffs generally found follows:

Integrity vs Efficiency - the additional code and processing required to
control the access of the software or data usually lengthens run time
and require additional storage.

Usability vs Efficiency ~ the additional code and processing required to
ease an operator's task or provide more usable output usually lengthen
run time and require additional storage.

Maintainability vs Efficiency - optimized code, incorporating intricate
coding techniques and direct code, always provides problems to the
maintainer. Using modularity, instrumentation, and well commented high
level code to increase the maintainability of a system usually increases
the overhead resulting in less efficient operation.

Testability vs Efficiency - the above discussion applies to testing.
Portability vs Efficiency - the use of direct code or optimized system
software or utilities decreases the portability of the system. .

Table 4.2-3 Relationships Between Software Quality Factors

"

FACTORS

CORRECTNESS

RELIABILITY O

EFFICIENCY §' ‘

INTEGRITY

USABILITY

¢ MAINTAINABILITY

TESTABILITY

0j|0{0]|0O
0[{0|Q|O

FLEXIBILITY

O1]0j0
O[0|0|O

PORTABILITY

. REUSABILITY

INTEROPERABILITY

D

If a high degree of quality is present for factor,

y ‘ what degree of quality is expected for the other:
| O - g @O -

Blank = No relationship or application depandent

n

4-10

L

e —— e~

Flexibility vs Efficiency - the generality required for a flexible

system increases overhead and decreases the efficiency of the system.
Reusability vs Efficiency - the above discussion applies to reusability.

Interoperability vs Efficiency - again the added overhead for conversion

from standard protocol and standard data representations, and the use

of interface routines decreases the operating.efficiency of the system.
Flexibility vs Integrity - flexibility requires very general and flexible
data structures. This increases the data security problem.

Reusability vs Integrity ~ as in the above discussion, the generality
required by reusable software provides severe protection problems.
Interoperability vs Integrity - coupled systems allow for more avenues of
access and different users who can access the system. The potential for
accidental access of sensitive data is increased as well as the opportu-
nities for deliberate access. Often, coupled systems share data or software
software which compounds the security problems as well.

4-11/4-12

SECTION 5

EXAMINATION OF SOFTWARE PRODUCTS THROUGHOUT THE LIFE CYCLE PHASES

5.1 SOFTWARE PRODUCTS AS SOURCES FOR METRICS .
One of our main considerations in establishing metrics for the criteria

defined in the previous section is the availability of data or software

* products which provide the sources for the collection of the metrics.

Software products include the source code (the most obvious and researched :
source of metrics to date), documenta;ion including requirements specifi- 3
cations, design specifications, manuals, test plans, problem reports and ;
correction reports, and reviews.

The most accurate source of measures of the qualities of a software product
is naturally its operational history. If after two years of operation a
software product must be converted to a new hardware system and the cost
to accomplish this is 100 ¥ of the initial development cost, it can be
stated that from a portability aspect, this product was of poor quality. %
Testing provides very quantitative measures of the qualities of a software ‘
product. The completeness of the testing has always been a concern though.
Most testing is oriented toward insuring the software product runs as
efficiently as necessary, performs functionally well (correctness), and
does not fail (reliability). Extensive testing usually also reveals the
? usability and testability of the product although not often with the people
who will be using the system or testing changes to it. Under special cir-
cumstances tests may be oriented toward evaluating the integrity of a product.
In most cases though, with the pressures of tight budgets and schedules,

f testing is never as thorough as desired. Even when it reveals problems,
¥ the costs to correct those problems (often involving redesign as well as
- recoding and retesting) are very high.

The importance of finding errors earlier in the life cycle is well known,
since the cost to fix an error increases rapidly as the life cycle prog-

résses. This is shown in Figure 5.1-1. In the same manner, detection of
unacceptable quality early is critical to achieving a high quality end

product,
T Impact
Cost to fix
to after
fix delivery

g Figure 5.1-1. Impact of Error

It is the intent of this study to concentrate on the early phases of the
development life cycle for metrics which will provide an indication of

the progression toward the desired product quality. The earlier in the

. life cycle the more "indicative only"” these metrics will be. Obviously

) if a design specification is perfectly written but poorly implemented the
resulting software product will not exhibit a high level of quality. Metrics
collected during the implementation phase will help prevent or detect a

) poor implementation. This concept of successive appiication of metrics

' is explained further in Section 6. These concepts are illustrated in

Figure 5.1-2.

bt v €7y o,

e e L

;~ 5-2

SO}J33W 40 3daduo) 2-(°G d4nbi4

*soLa3aW
9Say3 UO SIIRUJUIOUOCD Apnis
A3i1enb aJaem3j0s uip su03oey

)\/|\‘II’
aA1393fqQ **** BA}3BLqnS

U0l aJdoy

A3L1enb jo suopied
-lpui aAjjezjjuendb apraoad
saseyd asayy Supanp SILJAI9N

saJanseau
aALjelijuendb sou
sapiAaoad BuLysa)

A3riend
40 uotjezi|eay

uojjLsueay
UOLS LAY
uojjedadp 3s91 apo) ubisag SuUaWaJ jnbay
NOILVY3dO NOILVYNTVAI INIWd0TIAIA oy

[—— C e e g ————— = -

5-3

" E—

., T

f
m
:
i
!
é
i
8
!
3

5.2 RANGE OF SOFTWARE PRODUCTS

While the source code is the primary source for metrics during the develop-
ment phase, documentation and reviews are generally available earlier and
if available provide sources for wetrics. The results of simulations at
the requirements analysis and design stages are extremely valuable indi-
cators of the quality of the final product. However, because simulation

is more of a tool to aid in the development and testing (functional vali-
dation) of the requirements and design and is not universally used, it

is considered to be out of the scope of this study anﬁ not a source for

formal metrics. /

!

The range of documents varies widely between SPO's and applications.
Several standard documents are required by DOD/AF;regulations. The
following references were used to compile the rznge of documents
identified in Table 5.2-1.

BOEHB73 Boehm, B., et al, "Characteristics of Software Quality",
Document #25201-6001-RU-00, NBS Contract #3-36012,
28 December 73.

CoMP69 "Computer Program Development and Configuratibn
Management", AFSCF Exhibit 375-2, March 69.

COMP66a “Computer Program Development and Configuration
Management for the Manned Orbit Laboratory Program",
SAFSL Exhibit 20012, September 66.

COMP66b "Computer Program Subsystem Development Milestones",
AFSCF SSD Exhibit 51-47B, April 66.

CONF64 "Configuration Management during Definition and
Acquisition Phases", AFSCM 375-1, June 64.

CONF66 “"Configuration Management of Computer Prqérams“.
ESD Exhibit EST-1, Section H, April 66. «

DOCU74 "Documentation Standards", Structured Programming
Series Vol. VII and Addendum, RADC-TR-74-300, September
74 and April 75.

DODM72 "DOD Directive for Automation, Policy, Technology,
and Standard", DOD Manual 4120.17-M, December 72.

HAGAS75 Hagan, S., "An Air Force Guide for Monitoring
and Reporting Software Development Status,"
NTIS AD-A016488, September 75.

P AP IRARIRIINE > Ty Y W RIS AT

e

5-5

Oowsy [ejiwsued] uoLledL)Lpow
1sanbay abuey) aseg ejeg
3sanbay abuey) oodwo)

L33 pusued]
ajepdn uoLjejuawnd0Q
Ju0day wd|qoad 4eM}J0S SWMO04
JU3WNI0Q UOLSJUIA PISLAIY jJ40day wapqodd ubrsag L043u0) uojyeuandyjuo)

JUBWNI0Q ddejUdUl Joeuad(

ueld
3s3] adue3daddy pue uoL3epLiep

(03 311ng) dads ubisag pajlelag
leLadlel MILARY ubLsag [edLl3tu)
(03 pLing) dads ubisaq palielaq

Letaajey
M3LAdY ubisag Aueutwl|add

JU3WNI0Q [043U0) dDBJUBIUT
uoL3eaL1aads ubLsag AaeuLsl|d4d

apiLny s,J9sM ue|d juswabeuey aseg ejeq
(03 311ng) 23ds ubjsag payielaq ue|d uotjejuswndog
(03 pLing) 29ds ubisag pajtelaq SUOLJUDAUOY) B Spuepuels
29ds ublsag Adeurut}sad uorjedtjLoads sjuswadinbay walsAs SuoL3eIL4109ds
SW3LSAS JYWYML40S SWILSAS TAHVML40S
1502 M01/3417 LYOHS 1502 H9I4/3417 9NOT

S3UBWNJ0Q dJUaUAIAY [-2°G alqel

S s eews

MILI70 “Military Standard Configuration Management Practices
for Systems, Equipment, Munitions and Computer Programs",
MIL-STD-483, December 70.

MILI68 "Military Standard Specification Practices", MIL-STD- o
490, October 68. ?
E |

PILIM68 Piligian, M.S., et al, "Configuration Management of

Computer Program Contract End Items", ESD-TR-68-107, .
January 68. :

SCHOW76 Schoeffel, W., "An Air Force Guide to Software Docu-
mentation Requirements," NTIS AD-A027 051, June 76.

TACT74 “Tactical Digital Systems Documentation Standards,"
Department of the Navy, SECNAVINST 3560.1, August 74.

The table illustrates the considerable difference in the quantity of docu-
ments among different software system developments. The documents are
specified by the AF regulations or SPO-local regulations listed above.

Each ¢ the document types for a long 1ife/high cost software system are
; charzcterized briefly in Appendix B. Figure B-1 identifies the documents
' on a software development timeline that were developed for the two soft-
ware systems which were utilized to validate the metrics. This figure
identifies the most comprehensive set of documents required during soft-

ware developments. Table B-1 identifies which documents are required by ;
or described in each of the references.

In order to make the metrics widely applicable, a representative set of

documents (sources for metrics) for any software development had to be

chosen. It was decided that there are basic documentation requirements

| regardless of the size or cost of the project. Certainly low cost/short

.i 1ife projects incorporate several of the above document characteristics

a into one document. The documents may not be in as much detail. They are,

" nevertheless, desirable because of their contribution to a high quality

product. Thus while the quantity of documents may vary with the size of the
system development effort, the documentation should provide the information
contained in the documentation summarized in Appendix B. If it does not,

less information is known about the system, how it is progressing, and later
how others will maintain, change, move it, etc. The metrics described in the
next section are not based on the availability of specific documents but
rather on the availability of the information contained in the documents.

o
L T AT e S S S S RN

~x mery

I
¥
£
i

5-7/5-8

T s s st a Al

Pecedis Fge FLamrh "fM

4. m""‘"’ L dMln g e AT Aot

SECTION 6
DEFINITIONS OF METRICS

6.1 DEVELOPMENT OF METRICS

The criteria were defined as the attributes of the software which provide or
determine a characteristic of the final software product. Metrics are defined
to provide a measure of these attributes. Where more than one attribute or
source for metrics are found for any one criterion, subcriteria are established. i
The subcriteria further clarify the metric and maintain a one-to-one relation-
ship with the metrics. This further enhances the hierarchial nature of the
framework for factors in software quality.

Essentially, there are two types of metrics and both are utilized in this study.
The first type, like a ruler, is a relative quantity measure. The second type

is a binary measure which determines the existence (1) or absence (0) of some-
thing. The units of a metric are important to avoid ambiguity and obtain a
meaningful metric. The following rule was used in choosing the units of a metric.

THE UNITS OF THE METRIC WILL BE
CHOSEN AS THE RATIO OF ACTUAL
OCCURRENCES TO THE POSSIBLE
NUMBER OF OCCURRENCES.

Once stated, this rule seems obvious, yet many studies have failed because they
| did not comply with this rule. To not comply results in poor correlation

between the criterion and the factor. To illustrate the types of metrics and the
; application of the above rule, the following two elementary examples are provided.

f (1) The subcriterion, number of unconditional branches, could relate to
the criterion, simplicity. Figure 6.1-1 identifies potential metrics
for this subcriterion. The metric, the number of GOTO statements/
executable statements is the most unambiguous because GOTO state-
ments are a proper subset of the set of executable statements.

Blank cards, comment cards, and declarative statements are

6-1

'
i
i
{
s
!

AD018/50109 #

ININIIVIS
F1EVINOINI/SOLOD #

ANILNOY/S0LOD #
ININIIVIS/SOLOD #
SAEVO/SOLOD #

Lonlbooebhoenbhooobiutad

SOIMLINW JT4ISSOd

e s bt AN =Y. o e e b gl oo 35 e i o

J1433K e Bugsooyy |-1°9 auanb 4

an3 82

MINL3Y d8E L2

92

INNIINGD @92 S2

) w2

WASXWW = [£2

L = 9VIIN 22

=1 gL 12

) gz

@dz 0109 61

p+(1+0) LdNx 2+l = 8l

3 L1

g1 0109 ((0)LdN °DI° WASN) 41 91
dgae 0109 (@ °b3° (r)idN) 41 . Sl
vl

WASXWYW‘I = [d@2 0a £1

) 2

082 = WASXWW 1L

@ = 9V 4N g1

6

5 8

JOSWAS 3H1 40 7 (£

1IND H19N3T 3HL ¥04 LdN %2078 V1VO N¥H1 HO¥VIS 7 9
7 §

(dg2) LdN NOISNIWIG ¥
LdN/8V110d/NOWW0D , £

2

(9V4IN* I WASN)RISEYL 3INILNO¥ANS l

6-2

. — -

F e L RS

not potential GOTO statements so that the metrics, GOTO statements/
cards and GOTO statements/statements, invite ambiguities to the
correlation of GOTO statements with the associated quality factor.
GOTO statements/routine and GOTO statements/block do not reveal the
size of the set of possible occurrences and, therefore, are ambiguous
themselves. This is an example of the first type of metric which
provides a relative quantity as a measure. It also provides a nor-
malization of the metric so that any measurement is between 0 and 1.

(2) The metric, use of structured code, is an example of a binary metric
and will be given a 1 if present; i.e., the target program utilizes
structured coding techniques or a structured preprocessor and,
if absent, a 0. The stated rule still holds in these cases as
the presence of structured code/possible occurrence of structure
code can be viewed as a 1/1 = 1 case. The binary case is to be
used where ambiquity or subjectivity may enter the measurement. In
the example discussed, measuring the degree to which the code is
structured would be subjective and not provide any enhancement to
the relationship of structured code to the associated quality
factor. A binary metric can also be used to identify an attribute
(criteria) which if missing even once in a module or system is very
detrimental to the resulting quality of the software product.

Thus both type metrics are consistent with the rule for choosing units. In
addition, the metrics have been chosen to be as objective in nature as possible.
There are a few exceptions. In these cases, we have attempted to make the
subjective metric as quantitative and simple to apply as possible.

The metrics were also chosen to be language independent. The above two
examples are consistent with this rule. If a structured language which did
not have a GOTO-Tike construct was utilized both metrics would be 1 indicating
the advantage of using that language.

6-3

T

Our process of developing metrics involved the following steps:

(1)

(2)

(3)

(4)

(8)

(6)

Incorporation of work sponsored by RADC in the areas of reliability
([THAYT76], [SHOOM75], [SULLJ73]), portability ([MEALG68], [MARSS70])
and maintainability as well as other significant efforts in the
areas of metrics ([BOEHB73], [ELSHJ76], [KOSAS74], [RUBER68],

[GILBT76]) and software design ([YOURE75], [MYERG75], [MYERG76],

[VANTD74], [KERNB74]). Other references are in the Reference Section.

Incorporation of metrics (oriented primarily to source code and
configuration management) which our management have been using
for several years.

Application of research in complexity measures [RICHP76] and soft-
ware physics ([LOVET76a], [FITZA76]) that we have conducted in the
past several years and has been conducted by others ([DUNSH77],
[ELSHI76], [HALSM72]).

Evaluation of all of the software products available during a soft-
ware development (Section 5) with a more global view of software
quality provided by the framework established in the first two
phases of this report.

Utilization of measures or data available from state-of-the-art
software support tools applicable during the requirements analysis
and design phases of development ([BROON76], [DAVIC76], [NBS74],
[PANZD76], [NODA75], [REIFD76], [CHANP?76], [RICHP74], [TIECD76]).

Application of the described concepts of a metric.

The metrics established are explained in paragraph 6.2. Not all of the
metrics identified were supported by the validation. However, since the
validation was performed with a 1imited sample and further evaluation and
experience is required, the entire set of metrics established are presented.
(For further discussion, see Volume II.)

6-4

R AR T g a

. constitutes a unique metric. Thus, during the requirements phase, collec-

6.2 DESCRIPTION OF METRICS

6.2.1 IDENTIFICATION OF METRICS *
G. Myers [MYERG76] states that the “"single major cause of software errors

is mistakes in translating information." TRW [THAYT76], through an extensive
analysis of error data, states that most "errors were design and requirements
errors, as opposed to coding errors and errors made during the correction of p
other errors." An internal survey we conducted substantiated these points

[LOVET?76]. The documents and reviews discussed in section 5 represent the

translation steps from users needs and desired qualities to system imple-

mentation; requirements analysis, design, implementation. Our metrics

are oriented toward these steps. Since the metrics are indicators of the

progression toward good quality, we found that in some cases a metric

would be applied at all three phases of development. Each measurement 1

tion of a set of metrics will provide a measure of the progression toward
the desired levels of quality at that point in time. The metrics estab-
lished are identified in this manner (according to phases) and in relation-
ship to the criteria/subcriteria in Table 6.2-1.

The metrics can be applied at two levels in most cases, at the module

level or the system level. The SPO will utilize the metrics at the

system level to obtain an overall measure of how the system is progressing
with respect to a particular quality factor. At the system lTevel the SPQ
will be interested in which metrics or metric elements scores are unusually
Tow. It may be there is a general failure to comply with a standard by

all designers. Corrective action could be taken to alleviate this type of
problem. The SPO may also be interested in a module by module metric
value. A particular metric's low score at a system level may not be caused
by a general failure but rather by particular modules having unusually

low scores. In this case the SPO would want to be aware of which modules
are problems so that particular corrective actions or more emphasis could
be placed on the development of those modules. The metrics which cannot

be applied at both levels are noted in the table.

o B e m———

-

To illustrate how this table should be fead, a few examples will be dis-
cussed. The first metric identified in the table corresponds to the cri-
terion, traceability. The metric is the number of itemized requirements
traced divided by the total number of itemized requirements. This metric

has significance and can be measured at two points in time, during the

design and implementation phases. During the design phase, the identification
of which itemized requirements are being satisfied in the design of a module
should be documented. A traceability matrix is one way of providing this
trace. During the implementation phase, identification of which portions

of code implement each itemized requirement should be made. Some form of
automated notation, prologue comments or imbedded comments, is commonly used
to provide the trace at this level. The bold 1ine boxes under design and
implementation value columns represent these two measurements. The value
columns are used because both measurements are relative quantity or calculated;
the ratio of the itemized requirements traced to total number of requirements.
A metric which is a binary measure would be placed in a bold line box in

the yes/no column. An exampie of a binary measure is SI.2, the use of a
structured language or a structured preprocessor (paragraph 6.2.2.6). A

1 or P would be placed in the yes/no column for this metric. Some metrics
are checklist type metrics in that there are several elements which must be
measured and then summarized/normalized. The summarization/normalization is
done in the summary line which is labeled, Metric Value. To be consistent,
the final value of each metric is placed in the summary line. The next
example will illustrate a combination of these different situations.

The metric associated with the design structure relative to the criterion
simplicity (see page 6-12) illustrates the various combinations a metric
can assume. Several elements make up the metric. These elements are
measured in the design and implementation phases. It is possible to have

a metric which is only measured during one phase. Some of the elements are
applied by a binary measure (yes/no column) and some are applied by a relative
quantity measure, in which case the measure is indicated in parentheses.
The overall metric value for the system is indicated in the summary line.
Explanations of each of the metrics and metric elements can be found in the
following paragraphs. Further information and examples are available in
Section 8 and Appendix D, where collecting metric data is described.

6-6

T AT e AT YA £, 4 T R EINE K A% T AR R

reS—

v s A, R

6-7

e
. N

6

1 > .
D D D } Jusud|d 403 34005 w = INTYA ITYLIK WILSAY

*ubysap y3pm saaube apo) (6) -
*sjuauaJnbas y3m sasube ubisag (g)
*paAL0Sa4 sjdodaa warqouad [ty ()

*aauabe sadjaweded
aouanbas Bul[|ed paduldazad pue pausap (LY (9)

*Juiod uoLsoap yoed
40} paujjap bupssadoad pue suoiljpuod Ly (S)

"pautap suop3ouny paduasasad |1y (p)

*pasn suoj3ouny paurysp L1y (g)

“3J4N0S [BUJAIIXI uR WOJS PIULRIQqO
40 “pajndwed ‘pauLjop SIIUBUIaJ RIEP LY (2)

*(and3no
‘u0130uny “3ndui) sasuauayad snonbpqueun (1)

3) *1SIINI3HI SS3NIL3TIWOT L °dI SSINIL31dW0I

0000000 8
00000000

0ooog -

3uL| 8Aoqe se aweS :INTYA IIYLIW WILSAS

sjuswaanbaa # 10303 ‘
Paded] S3UdWeJ jNDIJ POZIWal} #)

[|-
0 B |

*S3udwdJ jnbau 03 sainpow buije|ad IdUBLIJAU SSO4) | “Yl ALITIEYIDVYL
d 40 L Ut g %0 t ,
INVA {on/s3a] 3MVA {on/san| 3TVA |on/san e NoL3L1¥DanS
ILVINIWITdwI] N91S30 S1N03Y

SSINLIIYY0ID (S)Y0LIVY
SJ1433 A3renh auem3yos 1-2°9 a|qe]

U s s P T 615 o 3

SJUWIID I|qedijdde Jo § = « u:._<puw%mu:

oo g

SJUaW3|3 o(qed}(dde JO SaJ03S JO wns
3| 93¢ 0}A SaLnpou n—v
-Aouassuod adA3 eieg (S)

mo—svﬂ__u_.600¢ 0—v
SN IV[OFA So[npoE ¥
"Su0j3{ulsap [0qOLD JuaIs|suo) (3)

|_.v *A2ua3s|suod pun (£)

Sa|npow § [©303 Y .
BN 930 (0}A So|hpol —v *SUO}IUBAUCD BujueN (2)

mu_avo._:—ﬂou -—
Ao:: SFVL0]A SI(Npow 7 V
*uop3RIudsaudaa abesn eep paepueis (1)

3UNSVIW AONILSISNOD VIV 2 "SI | ADN3ISISNOD viva

SJUWD D I|qed)|dde 3O ¢
SJUD |9 9| qed}dde Jo $9403S jO

= INTYA JIUL3
W31SAS

000 |0

Joodoyogod ol

a[n4 23¢(O1A SoLnpow #
*SU0JIUdAU0D Buj|puey Jdoudl (p)

mu_zmosn_seu -
?-E 33Q|0}A SI[Npoul § _v
*SU0|3udAu0d 3Indino/ indul (g)

ma_amgm_sou ..
Aa:: 9JR[O[A S9|Nnpow § _.v
*SUO|JUaAU0D ddudnbas Buje) (2)

A ~_sainpow § (v303 -_v

A sapnpou g |30} i} &
314 939101A SI[hpowl §
*u0}303UISIUd34 UBLSIP paepuRlS (1) G%..h_wwg
JUNSVIW AINILSISNOD TUNAII0W 1 °SI /AINILSTSNGD
50 L 9% 1 0 %0 L
INVA Jon/saa| ITVA | onssan| 31TVA Jon/san TYLIN MOI¥3L1E2ENS
1LVININITaWI] 91530 SINDIY NOI¥ILIYD
ALITIGVNIVINIW :(S)¥012V4

‘ALITIGVITIRY *SS3NLI3UY0D

(PanuLjuc)) soLu3an A3LLend a4eM3j0s 1-2°9 diqe)

A et b oo P, s, i 2 i R R

——rae e

Siuawa|d alqedtdde SINTYA JIYL3NW
{9 s{qedT(dde woJdy S 1e30] W3LSAS

Jad

Jod

‘dup3nod Bugiged 03 dn passed aq prnoys
3} *Pa3D313p S| UOLILPUOD JOU4D UR UBYY (€)

*panuLjuod
6upssasoud pue afqexiy aq pLnoys saoud3y (2)

*paL|043u0d
AL 1e43udd Bupssadoud Juasanduod Auy ()

108LNOD

SASITAI3H) I0¥ANOD IONVYITOL ¥OW¥3 1 “13 | /3IINVYITOL yOuW3
Sjuowa{s aiqeatidde g 2INWA IIYLIN
D D D SJUdW3 |3 3| qed}|dde wouy [e30} 9403G W3ILSAS
3 "S3JURUI 03 UyILM sINdIN0 uO{INJAXI ()
ﬁH”Hu HH _ *SPOY3aW (RIj4aWNU 4O A2Uapd1yng (%)
HHHHU Aaeaqr) yaew jo Aduapdpyyns ()
*$3URISUOD pue
*bujssasoud *syndino *synduj 3o Adeandoe
ﬁH“Hu 404 JuBWBL(NbaL JO JUIILIS BALTIULIP ¥ (2)
3 npout
D 03 pa3abpnq pue pswuojsad spskieue x04u3 (1)
SISITDIDIHD AIVHNIOY | “aAv AJVundoY
gu 1 g ¥ 1 9 30 1 .
WA Jonssaa| 314 [on/saa| 34 [on/san YL NOI 312080
T11VININITdW] N91S30 SIWOY
ALTIISVINY :(s)yolovid
(panut3uo)) sotu3ay A3Lpen) suem3yos 1-2°9 2|qel
i ke it RV - A

aa bt d - e Lcl ool

of

SINTYA JIULIN
W3LSAS

D D ’ D sjuawala @ qedjydde #
Suawa |3 3|qedj|dde wosy 3105s [e30]

mw_avos*_muoa

(swopretom A ssrmpo 1)
*bulssasoud Bupunp payossys

SS3Ud(qeuosead suajsweded ndino edat3pu) {t)

A mmw:vo&a.muou -_v
SUOLIR{OLA YIim SI[hpoul #
*bugxdayd 3diaasqng (g)

So|npoul § {e303 -—v
SUOLIRIOLA YItM SInpow § .

*8sn 340339 pajsay abupd
sJajaweand xapuL Jajsuedl 9|diI|nu pue dooy (2)

*S3Jdn|jey |euojjeinduod Woay A43A0I94

J [
U 0

i
i

b
4
{
¢
H
{
¢

J40) JUaWRL[NDIL JO JUBWSIRIS DALILULLII S3¥NY4
] $ JUSUBAINDAL Jo JuaudIRIS SALILULIAP ¥ (1) WNOILVANAN0D
SISITII3HD STNMIVA WNOLLYLINGWOD WOY4 AH3A023Y € °13 JT18VY3IA0IY
SJuduPa ajqedl|dde SINTVA JI¥LIM
3]] SIUSWS(9 91qed][dde WoUj 8.035 [€30] WILSAS

-buissadoud 03 aopuad
alqeieAe st ejep (e jey3 uorjeurwsalaqg (§)

sulbaq bupssasoud auojaq pazoayd st 3nduy Ly (v)
‘p3%23Yd> pue patjijuapi

3 [

| I _

H”HHU HHHHHH uojjeulquod (@63 || pue s3sanbau 6ujIdfL4u0] (f)
- (.

PO pue pajjliads
S} Joj (ssauajqeuosead) san|ea jo abuey (2)
. *R3ep Indup 3O 3IURUI|0] JOUUD
HHH”u 40} JudWBLEAbAUL 4O JuBWIIRIS IA[IULSAP Y (1)

SISITNIFHD VIVO INANI Y¥3IdOYAWI WO¥4 AW3IA0I ¢ “13 Yiva 1NdNI
g0 L du t ¢ 30 1
IMWA [onssan] IVWA | on/sax] 3N lon/sa STeLM NOI¥aLIEENS
INOTLVINIHI 1dN] N91530a SIND3Y m.w
o

ALIIAVITN :(S)y0lov4

(Panui3juo)) soLazal A3L|end aaemyjos 1-2°9 3(qey

g

Sjuawa|d d[qed}|dde 4 13NTYA JIYL3W
WILSAS

*S40449 3D4A3p wouy A4dA039Y (2)

*SU0AU3 FDLASP WOUS A4DA0IDU
404 Ju3W3L nbau 40 JuawEIeTS BALLul4ag (L)

{ASITXJ3H) SHOWYI IITAIQ WONS AYIA0IIY G "L3

sjuswala d|qeot|dde & SANTYA 1YL
STUBI |9 a(qest(dde woay 34035 [€30] WILSAS

]

]

{30012 ‘aun|jey Jamod *s3iney opjauy]ide
*-6°3) syine; aJempiey wouy AuaA0d3y (2)

*S3Lnes dJdempaey wody A4dA0234

SNOTLIONQD
SNLV1S 301A30

[J] 4o0s juswoainbau jo Juawaieds anpdjupgap v (1) PE——
SISITIJIHI SLINYA JYYMOYVH WO¥S A¥3A0I ¢ °i3 318Y43IN0238
@ 40 | @ 490 1 2401
INWA [onssaa] INTVA [on/saa| 37TYA [on/saa 1YL3W NOT¥ILIEIENS
1LVININITdW] ND1S30 S1W03Y

ALITIGVINZY (S)¥0Ldvd

(p3NULL0Y) SOoL4al A1LLen]) B4em3joS T1-2°9 3|qe)

6-11

MR T T

o

—__Seinpow g :3NTVA JIMiM
$34035 9| Npoui 4O Wng W3LSAS

‘0 = pasn jou 3t °| =
pasn 41 -anpow Juawd|dw} 03 pasn .40Ssdd0ud
-3.d abenbue| pIanzonuys Jo 3benbuej pIundnJig

Y0SS3I0YJIUd ¥O IOVNONYT Q3dNLINYLS 40 3Sh 2 °IS

VR Gy R,)

SJuauwald a|qeatjdde S3NVA JTdi3W
Sjuswale 9|qeay[dde woJj 903§ [€30) W3LSAS

YR 1 ATV A

e WE

‘ejep Leqoib oN ()
{__SaLnpow § {v303 -1
\3|nd 93¢ 0FA Sa[npow § v
*34%3 a(buys ‘ajuedjua afbuis sey 3(npow yoe3 (9)
sajnpow # [e303 -
?:c. 93e|0LA SI|hpow g _v
*suopjewpy ‘bBugssasoud
andino “yndu} sapniou} uoyjdiddsap alnpow yae3 (g)
A S9|Npow § |e303 _
3int IIRIOLA s3|npow # L - bugssasoad
4044d U0 Judpuadap jou bupssasoud agnpoy (v)
Sajnpow # [e303 -1
T:C B3R|0LA SILnpow ¢ v
*aLnpow 4o dduapuadapul (g)

D *suoL3duny ajeaiydnp oN (2)

D D "uojysey umop doj up pazjuebuo ubpssg (1) JUNLINULS NOISIG
*YNSYIW JWNLONYLS NODIS3Q /ALIJINGRIS

@90 [W % 40 1
IMVA {on/saaf 3MVA [onssaa] 3N VA fow/sau SIY13W NOT¥3LINIENS

/NOT¥ILIND
O1LVINIHI1dT] W91S30 S1R03Y 0

. ALITIBVISIL :(S)u01IV4
ALTTIBYNIVINIVW ‘ALITIGVITIY

(panuiLjuo)y) sorajay A3ienh ademijos 1-2°9 alqel

i 00
00 000

i

sjusu

-3jels 3|qeindaxag

SYouRAqH - [/ "sayauesq 40 Jaquny
13A3| buijsau xew

L *l2Ad| bupysapy

*SuoLssaudxa apow paxiw ON

*sa|qei4er 30 asn a|buls

*S3|qeldeA 40y saweu anbjup

mu:wsoumumopaouaumxw\m-
A s.aqe| # ~v
*S|aqe] juswllels Jo Jaquny
*Jt43aweded

aJe 3|npow e 03 passed sjuawnbae ||y

*Buihyipow-31as Jou S} 3 npoy

\ wnomh*_uuou -
(PoT31pow seotpuy door 7 ~ Y
*Patyipow xapui doo
. 5doo] # je3j03
{sdoo| 31x8 afbuis/Kaqu atbuis)
*sdoo| 30 3no pue uj sdwnp
Amacmsouﬂm 31qe3ndaxd # _
9A0q0 jO §)
*pasn suoissaadxa ueajoog
punodwod paled} |dwod 40 upa(oog dAp3ebay

‘w0330q 03 doj MOLj 3npoy

(2t)

(L)
(ot)
(6)
(8)
()
(9)
(s)
(v)

(€)

(2)
(1)

(31npow Aq) ALIDITAWIS ONIGOD 40 FNSYIW ¢ IS

]

$5|npow
LPOU 4583 105 saansesw A3(X3 [duod JO Wwng

*3NTVA JTHLIW

W3LSAS

]

9°¢°2°9 -eded 995 ‘31npow AQ) IJYNSYIN ALIXIWOD € "IS

ALIJIdWIS 3003

ALIX37dK0J MO
T0YLINOD GNY VLVQ

200 0 00

@ 90 1 980 1 d %0 1
on/s3af IVVA §on/saa] INTVA Jon/saa L3N NOIY3LINDENS
NOTLVININ3IdWI] _ W91530 SIHO3Y
GINNIINOD :(S)¥OLIVH

S P SR

(PanuL3u0)) SILu3aW A3Liend auemijos T-2°9 alqel

S3npou §

3| hpoul SINTWA JINLIN

yoead 40y saanseau A310}{dwis apod j0 wng W3LSAS
Sjudwo |3 ajqed}|dde # SINIVA OTYLIW
SIUSUB|@ QU {Gde wod) 4005 (R3O 3000

Amﬁgﬂﬂum UNXO‘
SolquejdeA § v- 1

*A3Lsuap alqetaep (9i)

3-..233.
wmﬂmwmuwmuﬂmmmwmmﬂqw opavoEoc_x*sopanv;~>Am—v
D "SIS|X3 3P0d SNOBURLIX3 ON (i)

SJUWALRYS | qRINIAXD §# . ‘

(Q3NNIINOD) ¥ ‘IS

g 00 {0j0

¥ 90 1 R §u0 1
ITA Tow/s3a) 3TVA | gw/saa] 3VA lon/sa THL3M NOI¥ILINIGNS
TIVINMI o] W91530 ST /NOTY3L1¥D

6-14

Q3NNIINGD :(S)¥010Vd

(panui3uoj) s3t43aW A3Liend adeM3jos [-2°9 31qe)

6-15

A 35.5_:28:%: "m3§uamz
SJUSWa |3 a|qedtdde wouj a40dS Pmuohv W3L1SAS

H””“H " 36e4035 Aueaodway aueys jou op sajnpoy (g)
A S3|npow ¢ 10307 -
a{na 31e|0}A sanpouw ¢ —V
*3|npow Bul|[eD 03 P3UANIIL [043uU0) (/)

mur:vos*—nuou -
Am_as 9}P|0}A S3aNpoW # _v
*atnpow buyied o3 papiroud e3ep ynding (9)

A mmr:vosunﬁou -_
alnu ajeioia safnpow § v
*a[npow bup|jed Aq pa||o43uod ejep nduj (s)

mmﬁbuoeﬁpnuou -
9LNa dR|OLA Sa|npouw # pv
* ILhpow

6upLed Aq paujjap sua3aweaed bug)joajudy (v)

mmbuvostpnuou -
Aopas 91RJOLA S3|npoul § _v
TuoL3dung duo Judsaddasa sanpow |1y (€)

Amﬂ_zmoE m _mucu -1
00t < sa|npou ¢ v

0o ggn |0

0000 00d {0

" (001) 2z1s
aLNpow paepueys paadxa Jou op sagnpow L[y (2)
sa|npow § (30} .
Aa:u;mso_: 30 SUOLIR|OLA ¥ Fw
] $34n3INGs (RIYIRIALH (1) NOILYINIWI1dHI
JUNSVIN NOLLYINIWITIWI ¥VINGOW 2 *OW 3V INGOW
] 2A0Ge A43U3 @ WRS :3INTYA JIYLIW HILSAS
(ZE N 3ON3ONIJIONI
pabuey> sa(npou § pa3oedx3 40 334930
(1 JUNSYIW ALITIGVIS | “OW /ALT¥YINC0N
980 9 80 1 7 80 1
INWA Jonssan] 3NVA | gu/saa] 3R Jonssan ITYLIM MOI¥L1¥anS
| TCTUEERERT! YR SIH03Y

ALITISVY3IJOYILINT *ALINIGYSN3Y :(S)Y0LIV4
‘ALITIBVINOd *ALITIBVISIL
*ALITISIX3TS “ALITISUNIVINIVW

(PanuUL3U0)) SOLUIBW A3LLeND dJeMigos 1-2°9 3lqel

e g et - v @+ = - -~

i T e et e SRR e, o

SIuUaWBd ajqedy|dde = 3NIVA JIY.13W
SJUSUD |3 3|qed}|dde WOL4 84005 |930) W31SAS

mopzvoe‘bsou --v
3(NJ4 dJP[OfA S3{npoul §
*3JU0 PauLJIP 3q PLRoys sIueISuod 1y (§)
~ [(_Solnhpow ¢ |e303 ;v
Paiui(sa[npow ¢
D *Pajjwg| anLeA vep jou Bupssadeud (¥)

] (

mo_,svea_.nuou -_v
Paliug{ sa(npow §
*pajjul| aun| oA eIep 30u 6uyss3Idcdd (€)

3—%2:38 -

3N 3ICL0TA S3[ApOw # —v
*ajnpow a|bus © u} paxiw Jou Jue

SUO}3dun) Juapuadap-aujydew pue uoi3ed}(ddy (2)

A mmnawg‘ﬁmus n_.v
J|nA 23R |OLA so[npowm §

‘ainhpow ajbuirs e u} paxiw

00 000010

] 30U 34e suoj3ouny 3ndano ‘Bujssadoud *Induf (1) T —
ISITHIIHD ALITVHINID 803 HOILVININITHI g °39 NOI LVANIWI1dHI
) A0 3uj! S WES :3NIVA JIULIW KILSAS
A sajnpou § _SSV
SO [NpoW UOWOD #
S3IN00W SIINIWI4
3] Y3HLO0 A9 Q3DN3UIA3Y SI 3TNOW HITHM OL IN3LX3 1 °39 /ALTTVE3NTD
9 %0 1 X g8
INVA Jonssaa| IVA | onssan| 3MVA Jonssan YL . MIE3LTSS
Tivinaaiael| __ wois3c SIN03Y NOI¥3LI¥)

6-16

ALITIOVSNIY *ALINI8IX3Td :(S)Y0loVi

m. © (panui3u0)) sotulay A3L|end auemijos T-2°9 dlqel

6-17

sjuswala 3|qed} dde §
= 3NIVA JIUL3M
1 Sjuswa|3 atqedj(dde wodj 34035 [e30f WALSAS
w3y buissadoad [e303
Avwauwssouca Ay 91943 jo u::oscv

‘paj3Luwwodun A3ideded paads jo Judddad (g)

sa{hpow § |e303 - .—V
USATJAp 9(qe] 30U Sa|npow §
] “UBALJp 31qe3 S3LNPOW (2)
A sajnpou 4 (0303
91N 33C[0IA SILNpPoL § v

*otujaweded ade 6uLssad0Ud |043UOD YILYyM
sainqiaije bujwpy “aduabaanuod “Adeanddy (1)

SJYNSYIW ALITIGISNILX3 ¢°X3

sjuawala a|qedLydde _
SJUdW3 [3| qedtdde wouy 8402s |ejo) 3NTVA JTYLIN

i

0 0 /[0j0 0 0 [0
i

W31SAS
AJowaw 3{qe[LPAR }O0 junowe |30}
A Pa33 1 LOJUN AJOWaw jO Junowy .
*paj3iumodun A3ioeded AJouwsw jO JUId4A4 (Z2) ALITIGISNILX3
so|npou § 10303 e NOILV1NGWOI
3|4 9IR|0LA Sa|npow § v
*(3Lhpow Aq) sjudwadinbad/uoiiedtyidads ’
NOISNVdX3
H””Hu abeu03s jo juspuadapur bupssasousd esibol (1) JOVHOLS VLVD-
:3UNSY3IN NOISNVAX3 39WH0LS Viva 1°X3 /ALIT18VONVdX3
@3 1 ¢ ¥ 1 LR
_ 3NWA fonss3a] ITVA [on/sanf 3VA fon/s3x 1YL NOT3L 104N
3 01LVININITdWI] N91S30 S1W03Y

ALITIGIX3Td :(S)¥OLIVY

m (P3NULIUO)) $O1u3aN AILLBND BuEMIJOS [-2°9 2GRl

[SV

sJuawBld 3jqed}jdde § = INTVA JI¥L3IW
SIUBWA |3 a|qed}dde wouj 3U0Is |[eJ0] W3LSAS

i

‘uMoy AJeuwns
up syndino puw sinduj 3$33 JO uoyIRDLSLIUSP] (2)

A sajnpow jo # |0303
paIncaxs aq 03 Sa|npow §
(soL4euads 353} [|@ 40j) 36e4ar0d ajnpoy (L) 1904405

JUNSY3N ONILSIL W3LSAS € °NI ONIL1SIL W31SAS

SJuawd |3 ajqed}|dde # = INTVA JIYLIN
SJuswe(d aqed} |dde wo4j 3403S (301 W3LSAS

i TRV . e !

S3udWIALNbaL juad 2303
Pa1S3) 3q 03 sjuawadinbad #
*abeuanod
(obeaols 3 bujwll) sjusulainbas dduRULO4I3d (Z)

Amuuumguuc* # 0303

Pa3s93 9q 03 #
PaIsH s3cejaqup 3Lnpod (1) 140ddnS SNILS3L

JUNSYIW ONILSIL NOILVU9IINI 2 NI NOILYd93iNI
sa|npow § 10303

aLhpow yoed = INTYA JIYLIW
403 sasnseaw Hul3sal a[npow jO ung WILSAS

ppywaper v

sjuswd|d a|qedy|dde § = 3MIVA J1413K
Sluawd |3 3a|qedtdde wo4j 34025 |R}0) 3TINA0KW

sddjauwedcd # |30
Avoumwu Auepunoq 3q 0] SJ933weaed uv
*pa3say Auepunoq sudjaweded Indul (LY (2)

(syied 4 (€103)

pa3se3 9q 03 syied
abesanod uzed (1) wzhhmmkhwmummm

(3tnpow Aq) UNSVIW ONILSIL 3INCOW L "NI | /NOILYINZWNYLSNI

00 0/0100 1070
00 /djigjoo [0j0

d 40 (@40 1 du0 L
INVA [on/s3a] IVMA | on/san] 3MVA [on/sas I NOT¥3LINIENS

NOILVINIWI 1dWl| _ N91S30 SIND3Y : /NOTY3LI¥)
ALIT1EVLISIL :(S)Y¥oldvd

(panuijuo)) sata3an A3pLenh ademyjos 1-2°9 3lqei

6-19

A mo—svoE§Pcuou -—v
3[4 338 04A SaLnpow #
HHHHU "PIJUSWMIOD 3p0d Juapuddap aurudew (1Y (¥)
Sa(npow ¢ [e303 -_v
3(Nd 23C[0}A Sa|npoul §
* pajuduIOd
D SUOJJRULISAP § |0JUOD JO Sd3ysued} LY ()

A 3.%2.:0@ -—v
3N 33°|01A S?|Npow #
. *JAIUURW WAOJJUN UL 3POD WO 40 33S SuUdMO) (2)

A nopavoe\\hmwou -Fv
a{N4 dIR|O0}A S3|hpow §

$30UILISIY

$34npadoad AuaA0034 J044T -

SJuaWRJ pnbas Adeuanddy

SUO§3}43S3J puR SUOLIRILUWLT

suojidwnssy -
uojjoung -
syndang -
sandu] -
asodangd -
ajeq -
: Jdoyyny -
A3qQUNU UOLSJLIA/AURY B3| NPOY -
13QE42Sap YOLyM SIuBUMOD
H””Hu anbojoad pajeusoy paepuels aaey sainpoy () S INIWOD
JUNSYIW SINIWWOD 40 SSINIAILI3L4I 2 °aS 40 SS3AN3AILI3I443
] Sa|npow § [ejo3
| D JLNpow Yyoed = 3NTVA JIYLIW
404 SI4NSedW Juduw0d JO A3pjuenb jo wng W3ILSAS
Aﬁxco_acocv soup| ¢ _c«o_v SINIFNC)
(#uefquou) SJuauwOd 30 § 40 ALILNVND/SS3N
] (3Lnpow Aq) SINIWWOI 40 ALIINVAL L *0S | -3AILdI¥IS3G-413S
1 % ¥ L du 1 . 10 Y0 L
1 WA Lonssaa] INWA Lonssan] IV lon/saa J1ULIN zw.ﬂuwnwwwuwm
[CTCECERECT] TSN S1W03Y

ALINIGYSNIY *ALITISVINOd :(S)¥0LIV4
ALITIGYIS3IL *ALITIQUNIVINIVW
*ALINIBIXIVY

_ (PanuLlu0)) soLu3dN A3Llend auemijos 1-2°9 alqel

A sauil # |e103 _ ﬂv
sauj| juswajels
dldiI(hw + SUOLIRNULIUOD #
‘auj| 43d juswaieys aug (G)

A mupavas‘\rm»ou a_v
N4 93V 0}A Sa|npow #
* pajuapui pue paxydolq AL(edtbo| apod adunos (p)

sajnpow § |e303
Aw_ag 2I0[0JA So|Npoul § -—v
* pajuasaudaa Aj4ddoud (euoyiduny .0 [RI}SAYd
40 9A}3d}40S3P (DjUOWIUN) SIWRU BLqRjJep (f)
Sa|npow § |v303 -
31N 93[OJA SO |Npoul § pv
“pamo(|0j
SILNPOW JO UOLIRZLUREAO 404 JRULO PARPURIS (Z2)
S3|Npou § 10303 .
5505 75041b 3 (R S3(npoa 7 ~1)
- pasn abenbue| 4apao ybiy (1) JOVNONVT

3UNSYIN NOILYIN3IW3TdWI 30
JOVNONYT NOILVINIWITdWI 40 SSINIAILJI¥ISIA € QS SSIN3AI141YIS30

sjusuwa(a a|qedydde 4 = 3NVA JI¥13W
SJuduR |3 3|qed}|dde woay S34035 |eioL W3LSAS

mwh:ves*—ouou -
3| N4 AJR{OLA sainpou § &
‘9benbue] ul pagidasap

uoijesado jeadas 3snf j0u Op sIusuwo) (/)

Mmbmvae*_muou -,v
Aong 31 0IA S3|npow #
PIIUIWMIOD SI|qRLARA PAURLIBP L|R 4O S3INQLIY (9)

(Brpou f 1803))

31Nd 932[0}A Sa|npow ¢
*PaURUWOD SIUBWSIRIS TOH P4RPURIS-UOU [y (§)

U000 oogb 0f

9 80 9 %0 1 % %0 1
on/s3a] 3NVA | gy/53,) INVA oy/s3a J14L3W MOTd3LINANS -
W0TIVININI1dWI| __ N91s3a SIROTY 8
o

(G3NNIINOD) ALITISYSAIY :(S)y0LIVS
*ALITISYINOd “ALITIGVLISIL
‘ALITISYNIVINIVW *ALITISIXIYS

(PANULIUY) $OLUI0W AL(eNh SJemM3jos T-2°9 BLqeL

HHHHHH SJUdWR |9 3|qedydde # = JNTVA OT4LIW
sjuawad(a a(qedt{dde wouay 3.400S |e30) W3LSAS

morsvos*Fuuo» -
9LNa 23B[OIA SBLNPOW § _v
H”H”u *saweu se pasn spJaomA’y abenbue| on (9)

%0 9401 %40 (
INWA fonrsaa] 3NVA |onssan] 301VA [on/saa OTHL3H NOIY¥3L1¥IANS

OTLviININITanI] N91S3a S1H03Y /NOIY3LI¥I

(Q3NNIINOD) ALITISYSNIY :(S)YOLIVY
*ALITIGVINOd ‘ALITISY1SIL
*ALITISYNIVINIVW ‘ALINISIX34

(panutjuo)) sotsja A3L(end asemijos T1-2°9 3(qel

mu:wsmamum:o_m*uwvm—muop-
SUSINS UoTSI5ep a5t T L)

*Papod A13ua1d1333 sjuawalels uolsidag (/)

mucmswwmmWwpmwuaomxm_muou-
Auvou 91qeIndaxa |euor3ounjuou ¢ —v

*3p0d 3[qEINIAXSD |PUOLIDUNJUOU JO 3944 (9)
D D * sdooi up Bupydoedun/Bupyded 934q/31q 30 94d ()
AmAu_Lw>o 30 nV
L

"sAe|4an0 JO JaquNN ()
D Amco?mmm.axm punodwod #

35uo -pv
ueyl aJow paulap uolssIudxa punodwod #

*8JUo0 pautjap suoissaudxa punoduwo) (g)
*pasn abenbue(

0 0 01

M”“”u Alquasse/ua|1dwod Bulziwgido adueuwsojdad (2)
sjusudjels dooy # LeIOF _ v
Anao— ui sjuswelels Judpuadap doojuou # t
) ~doo{
H“”””H hHH”u. 40 3n0 3day suoijendwod juapuadap door-uoN (|)
(aLnpou £q)
*JUNSV3N ADNITII443 9NISS3D0¥d IAIIVYILI 2 °33 ONISS320¥d
ALIVYELT
H 3A0GR Bui| S aweS = INIYA JTVLIW
W31SAS
H”H”u N9IS30 OL G3ILVIOTIV SINIWIWINDIY IINVWHOINId L °33 SIM3WIYINdIY
/A0r3101443
NOILINJ3X3
gy L @ ¥ ! ¢ ¥ ¢
INVA Jon/saa] INVA | gn/saa 3MVA lon/san STHLM MOL¥3LIANS N
HOILVANINI TdW] ND1S30 S1W03Y &
L7 -]

AINIIII443 :(S)¥010v4

(Panuijucy) sata3ay A3lend ademyjos 1-2°9 3lqel

e ez« AT e e - remen, -

e e A

SaLnpol § 19303 = 3NVA J1913W
IP3uD{3 Yyoea 404 Sauansesw abesn ejep jo uns WILSAS

6-23

] . sjuaua|a 2| qedjjdde ¢ = INVA JIYLIW
STUowad 9[qed}(dde WL} 84035 €307 TINA0W

010

* buissasoud
D D U391 443 40y PAOUBLISBL U0 PIXBPUl BIRQ ()
' Amcoﬂfu% 34UN UOWOJUN JO $3JUILINIIO a\—v
_U - 9dAy/s3Lun jo adioyd uowo)d (p)

Am uBuWIIeYs 3]qeINIaXd § -_.v

SuU0LSSaJdxd Spow XjWw #
* suoLssaudxa apow-xiuw oN (€)

S91qeL4RA § {0303
pade|Jap usym pazi e Tul

*paJed3p UdYM PaziLel3Lu} sa|qeiaep (2)
_HU D " bupssadoud uapdLy4d 4oy padnoub eeq (L)
(atnpow Aq) :3¥NSYIW AIN2IIIJ43 39VSA VIvVa € °33 30vsSn viva

sa|fipow § (€307

Sjuawalad ajgedtjdde § jejo03 = INTYA J1Y¥13W
SjuBWd |3 3alqed}(dde wouj 34035 |e}03 300

D aLnpou Yyoea 40} = INTVA JIHLINW
saunseaw 5uissadoud aAaIvLaIL JO wns W31SAS

.ospcouauuxo - _v .
Swiy adeyugt SO

*sabeyuil s0 {6)

WLy U0{Indaxa - _.v
2w}y beyuil oLnp

'sabejui| alnpoW (8)

Jo gy 000

@ w0 1 980 1 980 [
INVA Jonssaa] ITVA [gu/saa] 3MVA |on/san UL MOL3LIugNS
M ILVINIWITdWI] N9IS30 S1H03Y NOT¥3LI¥D

AINIIDI443 :(S)¥OLIV4

(p3nuL3uo)) soL43ay .>.u:.gc aueM1jos 1-2°9 a|qel

: SI|npowt # (0303 = INTVA JIYL3MW
D _.|I|U Jed J40j saunsesw AJU3|dL 44 abedols Jo wns W31SAS
SjusuB|ad aigedydde = INVA IT8L13W
—] 70 3 9[qed) [00¢ oMy S469% [6303 IINOOW
o SIUSUB LD 03 - v
SJuSUR |3 ejep Juepunpad t
D . ‘SJUSWD{S eIEp Juepunpad 30 dauy (ii)
‘pasn
D sbenbue| A|quasse/uadwod Bupziugido abeaols (o1)

A sju W RLE) ..&
SIUDNRIVYS 93804 |ANp §

*S3pod 3jedg|dnp ou (g)
D D A sjusualeys § |eiol - _.v
(.

SIUdWIL]S |BUOLIIUNJUCU #
*9pod> [euol3dunjuou jo <aa4 (g)
*pasn buyyoed ejeq ()
pazi13n Juswabeuew Liowai ojweulg (9)

Bg&bvczgmrﬂucﬂ
¥7ep PosAun JO Junowy -pv

D - ‘uojyejuaubas ejeq (5)
1

.

00
]

um..usa.,_mo.aauop-
YIbUa| IUSLDSS WNELXen &

“uopjejuawbas weabouad (v)

A s3|qejJdea § {2303 -_V

9JU0 UeY] SJ0il pauljSp SoLqelJeA §
"3ouo A uo pauljep eiep uounio) (£)

0 00

D D ‘pasn sallyLidey abesoys temuip (2)
D ‘ubysap 03 pajedo|e SIUBWBL{NbaU abea03s (1)
| . (3Lnpow Aq) :3yNSVIW AINIIII43 IDWIOLS | °3S JAINIIDIJ43 39VHOLS
gd 1 VS f ¥ 1 .
3MVA | onrsaa| 3TVA | gu/sax| 31TVA [on/saa TULIN NOT¥3LI¥IANS

/NOTYILIYD

11VININI W] N91$30 S1W03Y
AIN3III343 :(S)u01ovd

6-24

(Penuijuo)) sorujay A3rLenh auem3zos [-2°9 alqel

6-25

W,.
e
+

Sjuawa (@ 3{ged}(dde 4 = INTYA J1¥L13W
] D D . sjuswa(a a(qedt(dde WOU} 94075 (€307 WILSAS
‘uoL3R|OLA
]] [sse99e 40 vorzesipur a3°1palL 40y SUOLSLAOLY (2)
—I|||I_ D D *$$33%e Buljuodas pue Buipaodad Joy SuoLstAodd ()
*LISITHI3HD 110NV SSADIW L'WY L1anv SS320Y
SIUdW3J9 3|qedt|dde 4 = IMYA 1YL
D D _H_ Sjuswaia a|qedtdde woA} 34035 (2303 W3LSAS
D D _U *PApLAOAd $)SBY SS04I2 U0L399304d Aunwdy (€)
*(s300y Adearad *sajqey uoljezidoyine)
D D D papraocud S|043u0> $S53308 3seq ejeq 2)
*(spaomssed *s,q1)
1 D D _HU papLaoad s[043U0D $S3ITR (/] J3s() (1)
_ $LSTTNI3IHD TOYINOD SSIYIY L°IoV TOYINQD SSIIW
g ¥ 1 @30 1 TR .
INVA fonssaa] 3TWA | ogy/s3a| 31TVA [on/s3a STYLIN NOTH3LV80S
INOILVINIWI TdKI N91S30 SIWO3Y

ALTU93INT :($)¥0lovd

3 (Panui3uo)) soLuazay A3Lienh auemijos 1-2°9 alqel

SJudele Jjqedljdde
SIUMP|I 9| qed}|

= INWA I1Y13W
e Wody 3402S [e303 W3LSAS

‘3U}|-U0 JLQqefeAR
uoijeuiojul dlysoubetp pue ,dlay, uaLdLyyng (g)

‘PapiAcUd s3S|I4axa paje|nus Ju3siieay (2)

*SA3ULRIULRW *SUISN PUd *S407e43d0
404 pado|aAdp |ejuajew Bupupeds/sueid uossa (1)

*1SITII3HD ONINIVYL

L "

Sjuawa]d Ijqeatjdde

= INTYA ITYLIW
SJUaWR(d a|qedy|dde wous 84035 [€103 WI1SAS

[0

U0

[

‘paepuels
sasuodsad pue Jud3sisuod sabessaw uo0jedadg (L)

‘paulejulow suoiydeaajul ;o 6oy Adod paey (9)
P23qL40s8p saunpadoud umop 4ed3 pue dn 33s qop (s)
A of 404 dSwil j1e303 v

sua)3de 4ojedado 4oy swp3 - |
*91qeuoseas suoLyde sojedado o Jaquny (p)

Buissadsoud anuijuod pue ‘AjLpow ‘3Aes ‘snje}s
ure3qo ‘3dnuuaajuy 03 4o03edado 40y suotsiaodd (g)

*Jojesado 03 paqruosap Lajeisdosdde
S3SuU0dsad pue SUOLILPUOD uOLUd [V (2)

*(SMOLJ SAL3RUURY|R pue L Pwuou)
paqLaasap uojjedado jo sdays {|y (L)

P1SITHII3HI ALITIOVH3IdO

l °d0

ONINIWSL

ALTIave340

INTVA

T
WA 1 on/s3a

NTVA

6 Yo
ON/S3A

1813w

01 LV.INIHI 1dW]

N91S3g

S L

U3y

NOT¥3LIYOeNS
/NG1W3LIWI

ALITIGYSA

:(S)yoLov4

_Gm:::.as SOL U .b:s_c aJuem3yos 1-2°9 3atqel

»>

-
6-27

‘uolIeulwexd
Hasl vy ojeuedds 5 1110 o wrdnoub fedatbol (g)

A SIRL.OY JndIN0 JUSUD S, LD nv
l

‘spenoy Indine waogiup (p)
STLUR pajuBLA0 J3SN BARY sInding (g)

SOLGRL POJUILID
43s5n dALIdLaISAp anbtun aaey synding (2)

] 'S1043U63 3NdIN0 241323125 (L) IDVANTINT
INSYIW FOVANZLNI INALNO ¥ISR 2 “WD 10d1N0 ¥3sn

poo O
000 O

SJuowd{d ajqedy(dde s SINWA JIEL3W

] |] Sjusta|e 2[qes}(dde Woay 94035 (6303 W3ISAS

TRLPAW JUGASILP
D woas Induy Buphyioads 4oy uoisiaoug (9)

*andup jo pua edi1boj
pauLsap A(31941dxa AqQ pajeuiwdal 3ndup (§)

*u0!3NJAX3
93 Jdolud 4asn Aq payjraaA 9q ued ndul (p)

mw;oovnusncpapuaou -
Am:wa»*ucmvp 3195 j0u aJe jeyy ¢ pv

*BulhyLjuapy 41as paodas Indul yoey (g)

SIPUMOJ PJ40334 3ndul JUULIS4LD *v
l

*uaogiun sjeunoy Induy (2)

o0
J00

S4d}aueded
siLhejsp #

mvouv
*pauiyap sanjea 3ynesaq (1)

00 0
00 0

EN)EHEFLD
ANdNT ¥3sn
$UASYIW JDVIYIINT INANT ¥3SA L WO |/SSINIATLVIINNKMOID

g ¥ L @y L

2
on/s3a| IMVA [on/s3a STYLIN NOTA3LIuDGNS

¢ d0 t
3NVA ON/SIA INTVA

INO11VINIRIT1dW] ND1S30 S1W0D3d
ALITISYSN :(S)¥0L1DV4

(PanuL3u0)) soLajaW A3Llend auemisos [-2°9 3(qel

ber e v B R A ——

sjusua|a a1qedtdde = INTYA IId13N
SjuBwa|o 3]qed||dde woa) 2i03S [e303 W3LSAS

1
.

]
]

L]

‘eLpam

JUB4344LP 03 IndIND Buidnpad Aoy UOLSLAOAY (/)
* snonbiqueun sy s3nd3no

pue s3besssw u044d UIBMIBG dLYSUO4IRLDY (9)

MNWA

RR
ON/S3A

W 1
30WA | on/s3a

VIR
INTvA ON/S3A

HO1LVINIWI1dH]

N9IS3d

S0

J1HLIW

NOIY¥311438ns
/NOI¥3L1N6D

ALITI8VYSA

1(S)¥0Lvs

(Panutjuo)) soLuiap A3L|end) adem3jos 1-2°9 a(qel

o—_— - VR v .

o

N
[]

O

[—

Sjudud|@ djqedLdde # = INTYA ITYL3W
Sluawa|a a|qedt|dde woudj 3403S (e]0} W31SAS
A sajnpou # {0303
$33U519434 SO U3IM Sa(npou F - _v

"S3IUBUY3L w3IsAs Bupjedado woay s34y (p)

mmﬁsvoek~muou-
5(nd d1eloLa a(npow § ~ |

‘pasn abenbue| jo 13sqns paepuels *uouwwo) (¢)

s3|npow & |e310)}
posn sauiinod Adeaqiy # - L

00 000
g0 oo |0

*S3ULIN0U
Adeaql| waysAs adem3jos uo aouapuadag (2)
suedbodd = |P10]

weaboud A1L[13n = swesboad § - _v

queuboud ALLLLIN wa3sAs auaem} 0S UG 23u3puads
PR : pusdag (1) /3ON3ANId3CNT
*3YNSV3W JINIONIJ3ANT WILSAS I¥YMIL0S | °SS W31SAS 3WVML40S

#uo l ¥ 8 d0 |
INWA Tonssan] 3TVA {onssaa| 3MVA lon/sax ITYLIW KOLu Ludars
11YLNIWIdW] N9IS3 S1K03Y 3

AITVI8VSAY * ALT118VI¥04 :($)3040V4

 (PaNuL3u0)) $O1.419K A1L(EN) 3UeMI40S [-2°9 B1qel

Sjusuwa|s ajgeddde 4 =3NTVA 3INCOW
SJUSWa|9 91qed! |dde wody 34035 12303 zuhw>m

-

]
]

SGEEES“ .
9|na 832 |0LA Sa[npow # _V

‘juSpuadapul 3upyoew uoijejudsaadas eieq (v)

A uwsuosmkss . V
31Na 31eLO[A Sanpow § ~ L

ZLS 433JBJRYD puUR DUOM 40 Juspuadapui si 3poj (€)

A mwpzvosmﬁmuOu ,-
SIDUAARI34 O/1 YJiM SaLnpou # Pv

$3JUdJ4R Jau 3ndino/Indul woay Iauy (2)

sauLyoew
43436 uo alqe|jeAe pasn abenbue| Huiuweabodd (|[)

3IR30N3430NT

13UNSY3W IONIONIJIONI INTHOVW | “IW INTHIWW
% 40 L ¢ ¥ L ¢ %0 (
3TWA |onssaa] 3MWA | gnssan 37VA [on/saa -~ NOL¥3L LS
LIVINIWIWWI] N91S30 S1Wy3d NO1Y3L1¥

ALTTISYSN3Y ‘ALITISYLI¥0d :(S)y0IOV4

(Panui3uo)) soLalay A3LLeny auemisos 1-z°9 3|qey

6-30

SJudIa |3 3)qedtdde # = 3NIVA JIYLI3N
Sjudwd (9 a(qedi(dde wo.y 3102 [e303 W3ILSAS

Acopamﬁm:mxu ui0443d 0} pasn sainpow # V
L

‘uoljeisuea3 yoea uwiosad o3 dlnpow 3buts (¢)

‘PaMOL (04 pue payst|qelss
suoLjejuasasdas buowe spaepuels uotjesued) (2)
*SWIYSAS
43430 Y3LM UOJIBILUNWOD 40} UOLIRIUDSIUAI
elep p4PpUR]S 40) JuUdWRIEIS SALILULA] (1)

SISTINOIHI ALITVNOWKOD ViVa L "2Q

sjuouP(d a|qedt|dde # = ANTYA ITYLIN
SjuduWR d 9(qelt|dde wos} 84005 (e303 W3ILSAS

M

==

]

Auuagso 40} pasn sajnpow av
L

*3nd3ne 404 ddejudjul 3 npow 3Lbuls (p)

A Indul Joj pasn $atnpow *v
l

+3ndul J0j 3dey4d3ul 3npow 3Lbuis (g)
‘pamMo{ (04 pue paYs|{qelsa spuepuels (0203044 (2)

*SWa3sSAs J43yl0 Y LM UOLIRD L UNWIWOD
404 Judwadtnbad yo juswaleys AALILuLyaad (1)

$1STINI3HI ALITUNOWAOI SNOTLVIINNWWOD L °3)

ALTTYNOWKHOD
viva

ALITYNOWWOD
SNOTLVIINNIAO0D

ETH
INWA | on /534

% 90 1
3NWA | on/sIA

@30 1
INWA | /534

HO1LV.LN I3 Tdi]

N91S30

SL1AUIY

JIYL3W

NOId311428NS
/NOIY3LIYD

ALITI8VY3d0¥IINT < (S)¥0L1IVd

(p3nuLIuc)) Satula ATL(eNY S4emi40s [-2°9 I(qel

6-31

e

M 408 2

.

3

sajnpow ¢ |e}03

= INTYA JIY1IN

I|Npow Y33 403 34nsesw s,peaIS[eH ung W31SAS
PaA43sqo yibua ajnpow
P9AL3SqO Y3bUS| S[NpOW-paje|nd|ed Y3bua| s npow -_v
[(3LApow Q) WNSYIW S,AVILSTYH L 0D SSINISIIMDD
$ 490 L 0¥ 1 g 40 L
3NVA on/saaf 31V [onssaa] 37V fon/san INULIN NOLNaLL NS
IO TLVININI 1dW N91$30 SIWOTY N I

ALITIGYNIVINIWW :(S)d01DV4

(panuLjuo)) soLa3ay A3L[en) auemdjos 1-2°9 dlqel

6-32

6.2.2 EXPLANATIONS OF METRICS

Each metric and each metric element are described in the following paragraphs.
Indication is provided if the metric is appiied at the system level or the
module level and during which phases.

6.2.2.1 Traceability
TR.1 Cross reference relating modules to requirements (design and imple-
mentation phases at system level).

During design, the identification of which itemized requirements are satis-

fied in the design of a module are documented. A traceability matrix is an
example of how this can be done. During implementation, which itemized require-
ments are being satisfied by the module implementation are to be identified.
Some form of automated notation, prologue comments or imbedded comments, is

used to provide this cross reference. The metric is the number of itemized
requirements traced divided by the total number of itemized requirements.

6.2.2.2 Completeness

CP.1 Completeness Checklist (A1l three phases at system level).
This metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

(1) Unambiguous references (input, function, output).
Unique references to data or functions avoid ambiguities such as
a function being called one name by one module and by another
name by another module. Unique references avoid this type of
ambiguity in all three phases.

A11 data references defined, computed. or obtained from an
external source.

Each data element is to have a specific origin. At the
requirements level only major global data elements and a few
specific local data elements may be available to be checked.
The set of data elements available for completeness checking at
the design level increases substantially and is to be complete
at implementation.

‘ A1l defined functions used.
A function which is defined but not used during a phase is
either nonfunctional or a reference to it has been omitted.

(4) A1l referenced functions defined.
A system is not complete at any phase if dummy functions are
present or if functions have been referenced but not defined.

(5) A1l conditions and processing defined for each decision point.
' Each decision point is to have all of its conditions and alter-
native processing paths defined at each phase of the software .
development. The level of detail to which the conditions and alter- ‘
i native processing are described may vary but the important element
is that all alternatives are described.

(6) A1l defined and referenced calling sequence parameters agree.
For each interaction between modules, the full complement of
defined parameters for the interface is to be used. A par-
ticular call to a module should not pass, for exampie, only five
of the six defined parameters for that module.

(7) A1l problem reports resolved.
At each phase in the development, problem reports are generated.

Each is to be closed or a resolution indicated to ensure a
complete product.

(8) Design agrees with requirements.

' Continual updating of the requirements documentation and the
design documentation is required so that the current version of
the source code (see element (9)), the current version of the
design documentation, and the current version of the require-
ments documentation agreee.

(9) Code agrees with design.
See element (8).

6.2.2.3 Consistency

€S.1 Procedure Consistency Measure (design and implementation at system
Tevel).

The metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

(1) Standard Design Representation.
Flow charts, HIPO charts, Program Design Language - whichever form
of design representation is used, standards for representing the
elements of control flow are to be established and followed. This
element applies to design only. The measure is based on the number of
modules whose design representation does not comply with the standards.

(2) Calling sequence conventions.
Interactions between modules are to be standardized. The stan-
dards are to be established during design and followed during
implementation. The measure is based on the number of modules
which do not comply with the conventions.

(3) Input/Output Conventions.
Conventions for which modules will perform 1/0, how it will be
accomplished, and the I/0 formats are to be established and
followed. The measure is based on which modules do not comply with
the conventions.

(4) Error Handling Conventions.
A consistent method for error handling is required. Conven-
tions established in design are followed into implementation.
The measure is based on the number of modules which do not
comply with the conventions.

6-35

e v -) P - Psadint . - - - - R s

PRI Tagion:

CS.2 Data Consistency Measure (Design and implementation at system level)
The metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

(1) Standard data usage representation. {
In concert with CS.1 (1), a standard design representation for '
data usage is to be established and followed. This fs a design metric
only, identifying the number of modules which violate the standards.

(2) Naming Conventions.
Naming conventions for variables and modules are to be established
and followed.

(3) Unit Consistency. ‘
Units of variables are to be chosen to be consistent with all k
uses of the variables. The measure is based on the number of
modules in which consistent units are not utilized. This can be
measured at both design and implementation.

(4) Consistent Global Definitions.
Global data elements are to be defined in the same manner by all
modules. The measure is based on the number of modules in which
the global data elements are defined in an inconsistent manner
for both design and implementation.

(5) Data Type Consistency.
A data element defined as a particular data type is to be used as that
data type in all occurrences. A common violation of this rule is found
in arrays where several data types are defined. The measure is based
on the number of modules which utilize data types inconsistently.

6-36

|
1
f4
2
&
B

1

6.2.2.4 Accuracy
AV.1 Accuracy Checklist (requirements, design, implementation phases at

system level). Each element is a binary measure indicating existence, or
absence of the elements. The metric is the sum of the scores of the
following applicable elements divided by the number of applicable elements.

(1)

(2)

(3)

(4)

(5)

Error analysis performed and budgeted to module (requirements

phase only).

An error analysis must be part of the requirements analysis performed
to develop the requirements specification. This analysis allocates
overall accuracy requirements to the individual functions to be
performed by the system. This budgeting of accuracy requirements
provides definitive objectives to the module designers and
implementers.

A definitive statement of requirement for accuracy of inputs,
outputs, processing, and constants (requirements phase only).
See explanation above (1).

Sufficiency of Math Library (design phase only).

The accuracy of the math 1library routines utilized within the
system is to be checked for consistency with the overall
accuracy objectives.

Sufficiency of numerical methods (design and implementation
phase) .

The numerical methods utilized within the system are to be consis-
tent with the accuracy objectives. They can be checked at design
and implementation.

Execution outputs within tolerances (implementation phase only
requiring execution).

A final measure during development testing is execution of mod-
ules and checking for accuracy of outputs.

6-37

6.2.2.5 Error Tolerance

ET.1 Error Tolerance Control Checklist (design and implementation phases

at system ievel).

The metric is the sum of the scores given to the following elements divided
by the number of applicable elements.

(1) Concurrent processing centrally controlled.
Functions which may be used concurrently are to be controlled
centrally to provide concurrency checking, read/write locks, etc. _
Examples are a data base manager, I/0 handling, error handling, {
etc. The central control must be considered at design and then
implemented.

(2) Errors fixable and processing continued.
When an error is detected, the capability to correct it on-line
and then continue processing, should be available. An example is
an operator message that the wrong tape is mounted and processing
will continue when correct tape is mounted. This can be measured g
at design and implementation.

(3) When an error condition is detected, the condition is to be passed up to
calling routine. ‘
The decision of what to do about an error is to be made at a
level where an affected module is controlled. This concept is
built into the design and then implemented.

ET.2 Recovery from Improper Input Data Checklist (all three phases at
system level), The metric is the sum of the scores of the following appli-
cable elements divided by the number of the applicable elements.

6-38

Fer,

- m———

(1)

(2)

(3)

(4)

A definitive statement of requirement for error tolerance of
input data.

The requirements specification must identify the error tolerance
capabilities desired (requirements phase only).

Range of values (reasonableness) for items specified and checked
(design and implementation phases only).

The attributes of each input item are to be checked for reason-
ableness. Examples are checking items if they must be numeric,
alphabetic, positive or negative, of a certain length, nonzero,
etc. These checks are to be specified at design and exist in
code at implementation.

Conflicting requests and illegal combinations identified and checked
(design and implementation phases only).

Checks to see if redundant input data agrees, if combinations of param-
eters are reasonable, and if requests are conflicting should be docu-
mented in the design and exist in the code at implementation.

A1l input is checked before processing begins (design and imple-
mentation phases only).

Input checking is not to stop at the first error encountered but to con-
tinue through all the input and then report all errors. Processing is
not to start until the errors are reported and either corrections are
made or a continue processing command is given.

Determination that all data is available prior to processing.

To avoid going through several processing steps before incomplete
input data is discovered, checks for sufficiency of input data
are to be made prior to the start of processing.

ET.3 Recovery from Computational Failures Checklist (all three phases at
system level), The metric is the sum of the scores of the following appli-
cable elements divided by the number of applicable elements.

6-39

= (1) A definitive statement of requirement for recovery from compu-
? tational failures (requirements phase only).

The requirement for this type error tolerance capabilityare to

be stated during requirements phase.

(2) Loop and multiple transfer index parameters range tested before
use, (design and implementation phase only).
Rarige tests for loop indices and multiple transfers are to be
specified at design and to exist in code at implementation.

(3) Subscript checking (design and implementation phases only).
Checks for legal subscript values are to be specified at design
and coded during implementation.

(4) Critical output parameters reasonableness checked during
processing (design and implementation phases only).
Certain range-of-value checks are to be made during processing to
énsure the reasonableness of final outputs. This is usually done
only for critical parameters. These are to be identified during
design and coded during implementation.

o il

ET.4 Recovery from Hardware Faults Checklist (A1l three phases at system
level). The metric is the sum of scores from the applicable elements divided
by the number of applicable elements. |

(1) A definitive statement of requirements for recovery from hardware :
faults (requirements only). j
The handling of hardware faults such as arithmetic faults, power -
failure, clock interrupts, etc., are to be specified during require- ;
ments phase.

“A-.I-

6-40

(2) Recovery from Hardware Faults (design and implementation phases
only).
The design specification and code to provide the recovery from
the hardware faults identified in the requirements must exist
in the design and implementation phases respectively.

e e e A A e
i

ET.5 Recovery from Device Errors Checklist (all three phases at system

; level). The metric is the score given to the applicable elements below
3 at each phase.

(1) A definitive statement of requirements for recovery from device
errors (requirements only).
The handling of device errors such as unexpected end-of-files
or end-of-tape conditions or read/write failures are specified
during the requirements phase.

(2) Recovery from Device Errors (design and implementation phases
only).
! The design specification and code to provide the required

handling of device errors must exist in the design and implementation
phases respectively.

6.2.2.6 Simplicity
SI.1 Design Structure Measure (design and implementation phases at system

' level). The metric is the sum of the scores of the applicable elements
divided by the number of applicable elements.

[
* (1) Design organized in top down fashion.
f ;‘ A hierarchy chart of system modules is usually available or easy
to construct from design documentation. It should reflect the
! accepted notion of top down design. The system is organized
! in a hieracrchal tree structure, each level of the tree represents
| lower levels of detail descriptions of the processing.

6-41

BRI,

6-42

(2)

(3)

(4)

(5)

(6)

(7)

No duplicate functions.

Descriptions of functions to be performed by each module at

design and the actual function performed by the coded module .
is to be evaluated to ensure 1t is not duplicated by other

modules.

Module independence.

The processing done within a module is not to be dependent on the
source of input or the destination of the output. This rule can
be applied to the module description during design and the coded
module during implementation. The measure for this element is
based on the number of moduies which do not comply with this rule.

Module processing not dependent on prior processing.

The prccessing done within a module is not to be dependent upon
knowledge or results of prior processina, e.g., the first time
through the module, the nth time through, etc. This rule is
applied as above at design and implementation.

Each module description includes input, output, processing,
Timitations.

Documentation which describes the input, output, processing, and
limitations for each module is to be developed during design and
avajlable during implementation. The measure for this element is
based on the number of modules which do not have this information
documented.

Each module has single entrance, single exit.
Determination of the number of modules that violate this rule at
design and implementation can be made and is the basis for the metric.

No global data.

This is a binary measure which identifies the complexity added to a
system by the use of global data. If no global data exists, this
measure is 1, if global data does exist, it is 0.

R S SRR

SI.2 Use of structured language or structured language preprocessor (imple-
mentation phase). The metric is a binary measure of the existence (1)

or absense (0) of structured language code.

A structured language or structured language preprocessor provides con-
structs similar to the IFTHENELSE, DOWHILE, DOUNTIL, and CASE statements
associated with structured ﬁrogramming.

SI1.3 Data and Control Flow Complexity measure (Design and implementation
phases) . \

This metric can be measured from the design representation (e.g., flowcharts)
and the code automatically. Path flow analysis and variable set/use informa-
tion along each path is utilized. A variable is considered to be 'live' at a
node if it can be used again along that path in the program. The com-
plexity measure is based on summing the ‘'liveness' of all variables along

all paths in the program. It is normalized by dividing it by the maximum
complexity of the program (all variables live along all paths).

(See [RICHP76] and page D-16 of Volume II.)

SI.4 Measure of Simplicity of Coding Techniques (Implementation phase
applied at module level first). The metric at the system level is an
averaged quantity of all the module measures for the system. The module
measure is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

(1) Module flow top to bottom.

This is a binary measure of the logic flow of a module. If it
flows top to bottom, it is given a value of 1, if not a 0.

(2) Negative Boolean or complicated Compound Boolean expressions
used,
Compound expressions involving two or more Boolean operators and
negation can often be avoided. These types of expressions add
to the complexity of the module. The measure is based on the
number of these complicated expressions per executable statement
in the module.

6-43

T @ RN L e gy

e e o aht A A o kS S

Jumps in and out of loops.

Loops within a module should have one entrance and one exit.

This measure is based on the number of oops which comply with this
rule divided by the total number of loops.

Loop index modified.

Modification of a loop index not only complicates the logic of a

module but causes severe problems while debugging. This measure

is based on the number of loop indices which are modified divided
by the total number of loops.

Module is not self-modifying.

If a module has the capability to modify its processing logic it becomes
very difficult to recognize what state it is in when an error occurs. In
addition, static analysis of the logic is more difficult. This measure
emphasizes the added complexity of self-modifying modules.

A1l arguments passed to a module are parametric.

This is a binary measure, 1 if all paraméters are parametric,
0 if they all are not. This measure is based on the , jtential
problems that can arise if constants or global data are used as
arguments.

Number of statement labels. ,
This measure is based on the premise that as more statement labels
are added to a module the more complex 1t becomes to understand.

Unique names for variables.
This is a binary measure which is given a 1 if unique names are
used, and a O if they are not.

rm N6 STV oI

(9)

(10)

(11)

(12)

(13)

(14)

Single use of variables.

A variable is to be utilized for only one purpose, i.e., in one
manner. This measure is a binary measure; 1 {f variables are
used in only one way and 0 if they are used for multiple purposes.

No mixed-mode expressions.

If mix-mode expressions are used greater complexity is introduced.
This measure is a 1 if no mix-mode expressions are used in a
module, and a 0 if mix-mode expressions are used.

Nesting level.
The greater the nesting level of decisions or loops within a mod-

ule, the greater the complexity. The measure is the inverse of
the maximum nesting level.

Number of branches .
The more paths or branches that are present in a module, the
greater the complexity. This measure is based on the number of

"decision statements per executable statements.

Number of GOTO's.

Much has been written in the literature about the virtues of
avoiding GOTO's. This measure is based on the number of GOTO
statements per executable statement.

No extraneous code exists.
This is a binary measure which is 1 if no extraneous code exists

and 0 if it does. Extraneous code fs code which is nonfunctional
or cannot be executed.

6-45

(15) variable mix in a module.
From a simplicity viewpoint, local variables are far better than
global variables. This measure is the ratio of intermal (local)
variables to total (internal (local, plus external (global))
variables within a module.

Variable density.

The more uses of variables in a module the greater the complexity
of that module. This measure is based on the number of variable
uses in a module divided by the maximum possible uses.

6.2.2.7 Modularity

MO.1 Stability Measure (Design phase at system level).

This measure is based on G. Meyer's ([MYERG76]) categorization of modules by
their module strength and coupling. Module strength is a measure of the cohe-
siveness or relationship of the elements within a module. Module coupling is

a measure of the relationship between modules. The metric combines these two
measures to calculate the expected number of modules that would require modifi-
cation if changes to any one module ware made divided by the total number of
modules.

M0.2 Modular Implementation Measure (design and implementation phases at sys-
tem level). The metric is the sum of the scores of the following applicable
elements divided by the number of applicable elements.

(1) Hierarchical Structure.
The measure refers to the modular implementation of the top down design
structure mentioned in SI.1 (1). The nierarchical structure obtained
should exemplify the following rules: Interactions between modules
are restricted to flow of control between a predecessor module and its
immediate successor modules. This measure is based on the number of
viglations to this rule.

A11 modules do not exceed a standard module size (100) (Implementa-
tion phase only).

The standard module size of 100 procedural statements can vary. 100
was chosen because it has been mentioned in the literature frequently.
This measure is based on the number of modules which exceed the
standard size established.

(3) A1l modules represent one function.
The concept of modularity is based on each function being imple-
mented in a unique module. This measure is based on the number
of modules which represent more than one function. This can be
determined at both design and implementation.

Contrc1ling parameters defined by calling module.

The next four elements further elaborate on the control and
interaction between modules referred to by (1) above. The

calling module defines the controlling barameters, any input

data required, and the output data required. Control must also be
returned to the calling module. This measure and the next three are
based on the number of violations to these rules. They can be
measured at design and implementation.

Input. data controlled by calling module.
See (4) above.

Output data provided to calling module.
See (4) above.

Control returned to calling module.
See (4) above.

Modules do not share temporary storage.

This is a binary measure, 1 if modules do not share temporary
storage and 0 if they do. It emphasizes the loss of module inde-
pendence if temporary storage is shared between modules.

6.2.2.8 Generality

GE.1 Extent to which modules are referenced by other modules (design and
implementation at system level). This metric provides a measure of the gen-
erality of the modules as they are used in the current system. A module

is considered to be more general in nature if it is used (referenced) by
more than one module. The number of these common modules divided by the
total number of modules provides the measure.

GE.- 2 Implementation for Generality Measure (design and implementation
phases). This metric is the sum of the scores of the following applicable
elements divided by the number of applicable elements.

(1) Input, processing, output functions are not mixed in a single
function.
A module which performs I/0 as well as processing is not as
general as a module which simply accomplishes the processing.
This measure is based on the number of modules that violate
this concept at design and implementation.

(2) Application and machine dependent functions are not mixed in
a single module (implementation only).
Any references to machine dependent functions within a module
lessens its generality. An example would be referencing the
system clock for timing purposes. This measure is based on the
number of modules which violate this concept at design and
implementation.

(3) Processing not data volume limited.
A module which has been designed and coded to accept no
more than 100 data item inputs for processing is certainly
not as general in nature as a module which will accept any
volume of input. This measure is based on the number of modules
which are designed or implemented to be data volume limited.

(4) Processing not data valye limited.
A previously identified element, ET.2 (2) of Error Tolerance dealt
with checking input for reasonaoleness. This capability is required
to prevent providing data to a function for which it is not defined
or its degree of precision is not acceptable, etc. This .s necessary
capability from an error tolerance viewpoint. From a generality
viewpoint, the smaller the subset of all possible inputs to
which a function can be applied the less general it is. Thus, this

.

measure is based on the number of modules which are data value
limited. This can be determined at design and impImentation.

A1l constants should be defined once.

This element, in effect, defines a constant as a parametric value.
At one place in the module or data base it can be changed to accom-
modate a different application of the function of that module,
e.g., to calculate a mathematical relationship at a greater degree
of precison or to represent the constant of gravitation of a
different planet than earth, etc. Thus, if this rule is fol-
lowed, the effort required to apply the module in a different
environment is smaller. The measure is based on the number of
modules which violate this concept during design and
implementation.

6.2.2.9 Expandability

EX.1 Data Storage Expansion Measure (design and implmentation phase at
system level). The metric is the sum of the scores of the following appli-
cable elements divided by the number of applicable elements.

(1) Logical processing independent of storage specification/require-
ments. The logical processing of a module is to be independent
of storage size, buffer space, or array sizes. The design pro-
vides for variable dimensions and dynamic array sizes to be defined
parametrically. The metric is based on the number of modules con-
taining hard-coded dimensions which do not exemplify this concept.

Percent of memory capacity uncommitted (implementation only).

The amount of memory available for expansion is an important mea-
sure. This measure identifies the percent of available memory
which has not been utilized in implementing the current system.

EX.2 Extensibility Measure (design and implementation phases at the system
level). The metric is the sum of the scores of the following applicable
elements divided by the number of applicable elements.

[P
Y et

. (1) Accuracy, convergence, timing attributes which control processing

f-j are parametric.

3 A module which can provide varying degrees of convergence or timing

to achieve greater precision provides this attribute of extensibil- £
ity. Hard-coded contrui parameters, counters, clock values, etc. ‘
violate this measure. This measure is based on the number of mod-

ules which do not exemplify this characteristic. A determination

can be made during design and implementation.

(2) Modules table driven.
The use of tables within a module facilitates different representa-
tions and processing characteristics. This measure which can be
applied during design and implementation is based on the number of
modules which are not table driven.

(3) Percent of speed capacity uncormitted (implementation oniy).
A certain function may be required in the performance requirements<
specification to be actomplished in a specified time for overal’
timing objectives. The amount of time not used by the current

implementation of the function is processing time av: "~hle for

potential expansion of computational capabilities. “syre

identifies the percent of total processing time tha:)
uncommi tted.

- 6.2.2.10 Instrumentation

3 i IN.1 Module testing measure (design and implementation phases, first at mod-
ule level then system level). The system level metric is an average of all

1 module measures. The module measure is the average score of the following

i two elements:

) (1) Path coverage.

Plans for testing the various paths w.thin a module should be made
during design and the test cases act.ally developed during imple-
mentation. This measure identifies the number of paths planned to
be tested divided by the total rumber of paths.

f (2) Input parameters boundary tested.
The other aspect of mudule testing involves testing the input

6-50

& %- ranges to the module. This is done by exercising the module at the
: various boundary values of the input parcmeters. Plans to do this
must be specified during design and coded during implementation.
The measure is the number of parameters to be boundary tested
divided by the total number of parameters.

IN.2 Integration Testing Measure (design and implementation phases at system
level). The metric is the averaged score of the following two elements.

(1) Module interfaces tested.
One aspect of integration testing is the testing of all module to
module interfaces. Plans to accomplish this testing are prepared
during design and the tests are developed during implementation.
The measure is based on the number of interfaces to be tested
divided by the total number of interfaces.

(2) Performance requirements (timing and storage) coverage.
The second aspect of integration testing involves checking for com-
pliance at the module and subsystem level with the performance
! requirements. This testing is planned during design and the tests
are developad during implementation. The measure is the number
of performance requirements to be tested divided by the total
number of performance requirements.

6-51

IN.3 System Testing Measure (design and implementation phases at the system
level). The metric is the averaged score of the two elements below.

(1) Module Coverage.
One aspect of system testing which can be measured as early as the
design phase is the equivalent to path coverage at the module level.
For all system test scenarios planned, the percent of all of the
modules to be exercised is important.

Identification of test inputs and outputs in summary form.

The results of tests and the manner in which these results are
displayed are very important to the effectiveness of testing. This
is especially true during system testing because of the potentially
large volume of input and output data. This measure simply identi-
fies if the capability exists to display test inputs and outputs

in a summary fashion. The measure can be applied to the plans

and specifications in the design phase and the development of

this capability during implementation.

6.2.2.11 Self Descriptiveness

SD.1 Quantity of Comments (implementation phase at module level first and
then system level). The metric is the number of comment lines divided by the
total number of lines in each module. Blank lines are not counted. The
average value is computed for the system level metric.

ar—2 RO e e LD e, S

Ve e e

e g N

SD.2 Effectiveness of Comments Measure (implementation phase at system level).
The metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

(1)

(2)

(3)

(4)

(5)

Modules have standard formatted prologue comments.

The items to be contained in the prologue coments are listed in
Table 6.2-1. This information is extremely valuable to new
personnel who have to work with the software after development,
pe~forming maintenance, testing, changes, etc. The measure at

the system level is based on the number of modules which do not
comply with a standard format or do not provide complete information.

Comments set off from code in uniform manner.

Blank lines, bordering asterisks, specific card colums are some of
the techniques utilized to aid in the identification of comments.
The measure is based on the number of modules which do not follow
the conventions established for setting off the comments.

A1l transfers of control and destinations commented.

This form of comment aids in the understanding and ability to follow
the logic of the module. The measure is based on the number of
modules which do not comply.

A1l machine dependent code commented.

Comments associated with machine dependent code are important not
only to explain what is being done but also serves to identify
that portion of the module as machine dependent. The metric is
based on the number of modules which do not have the machine
dependent code commented.

A1l non-standard HOL statements commented.
A similar explanation to (4) above is applicable here.

6-53

(6) Attributes of all declared variables commented.
The usage, properties, units, etc., of variables are to be explained

in comments. The measure is based on the number of modules which do .
not follow this practice.

(7) Comments do not just repeat operation described in language.
Comments are to describe why not what. A comment, increment A by 1,
for the statement A=A+l provides no new information. A comment,
increment the table look-up index, is more valuable for under-
standing the logic of the module. The measure is based on the
number of modules in which comments do not explain the why's.

SD.3 Descriptiveness of Implementation Language Measure (implementation
phase at system level). The metric is the sum of the scores of the following
applicable elements divided by the number of applicable elements.

(1) High Order Language used.
An HOL is much more self-descriptive than assembly language. The

measure is based on the number of modules which are implemented, Q
in whole or part, in assembly or machine language.

e g pa

(2) Standard format for organization of modules followed.
A specific format ordering such as prologue comments, declarative
; statements, executable statements is to be uniformly used in
modules. This measure is based on the number of modules which do
not comply with the standard format established.

(3) variable names (mnemonics) descriptive of physical or functional
property represented.
While the metric appears very subjective, it is quite easy to
identify if varfable names have been chosen with self-descriptive-
ness in mind. Three variable names such as NAME, POSIT, SALRY

; are far better and more easily recognized as better than Al, A2,

' A3. The measure is based on the number of modules .hich do not

utilize descriptive names.

e e — e e — -

6-54

I

oA R

g‘,
3
!
&
§
i .

(4) Source code logically blocked and indented.
Techniques such as blocktng, paragraphing, indenting for specific
constructs are well established and are to be followed uniformly
within a system. This measure is based on the number of modules
which do not comply with a uniform technique.

(5) One statement per line.
The use of continuation statements and multiple statements pe.~ line
causes difficulty in reading the code. The measure is the number
of continuations plus the number of multiple statement lines divided
by the total number of lines for each module and then averaged over
all of the modules in the system.

(6) No language keywords used as names.
Some languages allow keywords to be used as statement labels or as
variables. This practice is confusing to a reader. The measure is
based on the number of modules in which a keyword is used in this
manner.

6.2.2.12 Execution Efficiency

EE.1 Performance Requirements allocated to design (design phase at system
level). Performance requirements for the system must be broken down and
allocated appropriately to the modules during the design. This metric simply
identifies if the performance requirements have (1) or have not (0) been
allocated during the design.

EE.2 Iterative Processing Efficiency Measure (design and implementation
phases at module level first). The metric at the module level is the sum of
the scores of the following applicable elements divided by the number of
elements. At the system level it is an averaged score for all of the modules.

(1) Non-loop dependent computations kept out of loop.

Such practices as evaluating constants in a loop are to be avoided.
This measure is based on the number of non-loop dependent statements

6-55

e

6-56

(2)

(3)

(4)

(5)

(6)

found in all Toops in a module. This is to be measured from a
detailed design representation during design and from the code
during implementation. .

st i

Performance Optimizing Compiler/Assembly language used (implementation
only).

This is a binary measure which identifies if a performance optimizing
compiler was used (1) or if assembly language was used to accomplish
performance uptimization (1) or not (0).

Compound expressions defined once (implementatfon only).

Repeated compound expressions are tobe avoided from an efficiency
standpoint. This metric is based on the number of compound
expressions which appear more than once.

Number of overlays.

The use of overlays requires overhead as far as procesging time.
This measure, the inverse of the number of overlays, rqflects that
overhead. It can be applied during design when the ov \lay scheme
is defined and during implementation.

Free of bit/byte packing/unpacking in loops.

This 1s a binary measure indicating the overhead involved in bit/byte
packing and unpacking. Placing these activities within loops should
be avoided if possible.

Free of nonfunctional executable code (implementation only).

Segments of executable code which do not perform a relevant function
are obvious inefficiencies. They arise most often during redesign
or editing when updates are made without complete removal of obsolete
code. This element can be measured at implementation only and is
based on the number of nonfunctional, yet executable lines of code.

LT e R e My W T

(7) Decision Statements efficiently coded (implementation only).
This measure is based on the number of inefficiently coded decision
statements divided by the total number of decision statements. An
example of an inefficiently coded decision statement is not having
the most frequently exercised alternative of an IF statement be the
THEN clause.

(8) Module linkages (implementation only, requires execution).
This measure essentially represents the inter-module communication
overhead. The measure is based on the amount of execution time
spent during module to module communication.

(9) Operating System linkages (implementation only, requires execution).
This measure represents the module to 0S communication overhead.
The measure is based on the amount of execution time spent during
module to 0S communications.

EE.3 Data Usage Efficiency Measure (design and implementation phases applied
at module level first). The metric at the module level is the sum of the
scores of the following applicable elements divided by the number of applicable
elements. The system metric is the averaged value of all of the module metric
values.

(1) Data grouped for efficient processing.
The data utilized by any module is to be organized in the data base,
buffers, arrays, etc., in a manner which facilitates efficient
processing. The data organization during design and implementation is
to be examined to provide this binary measure.

(2) variables initialized when declared (implementation only).

This measure is based on the number of variables used in a module
which are not initialized when declared.

6-57

R — e T v ey

(3)

(4)

(5)

Efficiency is lost when variables are initialized during execution
of a function or repeatedly initialized during iterative processing.

No mix-mode expressions (implementation only).

Processing overhead is consumed by mix-mode expressions which are
otherwise unnecessary. This measure is based on the number of mix-
mode expressions found in a module.

Common choice of units/types.

For similar reasons as expressed above (3) this convention is to be
followed. The measure is the inverse of the number of operations
performed which have uncommon units or data types.

Data indexed or referenced for efficient processing.

Not only the data organization, (1) above, but the 1inkage scheme
between data items effects the processing efficiently. This is a
binary measure of whether the indexing utilized for the data was
chosen to facilitate processing.

6.2.2.13 Storage Efficiency

SE.1 Storage Efficiency Measure (design and implementation phases at module
Tevel first then system level). The metric at the module level is the sum of
the scores of the following applicable elements divided by the number of

applicable elements. The metric at the system level is the averaged value of
all of the module metric values.

(1)

Storage Requirements allocated to design (design phase only).

The storage requirements for the system are to be allocated to the
individual modules during design. This measure is a binary measure
of whether that allocation is explicitly made (1) or not (0).

f
t
}
g_

(2)

(3)

(4)

(5)

(6)

(7)

Virtual Storage Facilities Used.

The use of virtual storage or paging techniques enhances the

storage efficiency of a system. This is a binary measure of whether
these techniques are planned for and used (1) or not (0).

Common data defined only once (implementation only).

Often, global data or data used commonly are defined more than
once. This consumes storage. This measure is based on the number
of variables that are defined in a module that have been defined
elsewhere.

Program Segmentation.

Efficient segmentation schemes minimize the maximum segment length
to minimize the storage requirement. This measure is based on

the maximum segment length. It is to be applied during design when
estimates are available and during implementation.

Data Segmentation.

The amount of data referenced by a module in the form of arrays, %
input buffers, or global data, often is small compared to the »
size of the storage areas required. This represents an ineffi-

cient use of storage. The measure is based on the amount of un- -
used data divided by the total amount of data available to a ‘
module.

Dynamic memory management used.

This is a binary measure emphasizing the advantages of using dy-
namic memory management techniques to minimize the amount of
storage required during execution. This is planned during design
and used during implementation.

Data packing used (implementation only).

While data packing was discouraged in EE.2 (5) in loops because of
the overhead it adds to processing time, in general it is bene-
ficial from a storage efficiency viewpoint. This binary measure
applied during implementation recognizes this fact.

6-59

(8) Free of nonfunctional code (implementation only).
Nonfunctional code, whether executable (see EE.2 (6)) or not, con-
sumes storage space so it 1s undesirable. This measure is based on . q
the number of 1ines of code which are nonfunctional.

— e ke

(9) No duplicate code.
Duplicate code should be avoided for the same reason as (8) above.
This measure which is to be applied during design and implementation is
based on the amount of duplicate code.

(10) Storage optimizing compiler/assembly language used (fimplementation
only).
This binary measure is similar to EE.2 (2) except from the viewpoint
of storage optimization.

(11) Free of redundant data elements (implementation only).
This measure pertains to the data base and is based on the number
of redundant dita elements.

_ 6.2.2.14 Access Control

E AC.1 Access Control Checklist (all three phases at system level).

‘ The metric is the sum of the scores of the following applicable elements
divided by the number of applicable elements.

o (1) User 1/0 Access controls provided.
» Requirements for user access control must be identified during the
requirements phase. Provisions for identification and password
¢ checking must be designed and implemented to comply with the require-
;1 ments. This binary measure applied at a1l three phases identifies

i

!

|

whether attention has been placed on this area.

(2) Data Base Access controls provided.
This binary measure identifies whether requirements for data base

6-60

controls have been specified, designed and the capabilities imple- i
mentated. Examples of data base access controls are authorization
tables and privacy locks.

(3) Memory protection across tasks. 3
Similar to (1) and (2) above, this measure identifies the progression i
from a requirements statement to implementation of memory protection
across tasks. Examples of this type of protection, often times pro-
vided to some degree by the operating system, are preventing tasks from
invoking other tasks, tasks from accessing system registers, and the
use of privileged commands.

6.2.2.15 Access Audit)
M.1 Access Audit Checklist (all three phases at system level).
The metric is the averaged score of the following two elements.

(1) Provisions for recording and reporting access. :
A statement of the requirement for this type capability must exist in 3
the requirements specification. It is to be considered in the design
specification, and coded during implementation. This binary metric
applied at all three phases identifies whether these steps are
being taken. Examples of the provisions which might be considered
would be the recording of terminal linkages, data file accesses,
and jobs run by user identification and time.

(2) Provisions for immediate indication of access violation.
In addition to (1) above, access audit capabilities required
might include not only recording accesses but immediate identifica-
tion of unauthorized accesses, whether intentional or not. This
measure traces the requirement, design, and implementation of
provisions for this capability.

6-61

14
1
i

L iy il

- —_‘J.“ - - - -

- ‘_—4-—.._

6.2.2.16 (QOperability
OP.1 Operadility Checklist (all three phases at system level).

The metric is the sum of the scores of the following applicable elements
divided by tie number of applicable elemen*s.

6-62

(1)

(2)

(3)

(4)

A1l steps of operation described.

This binary measure applied at all three phases identifies whether
the operating characteristics have been described in the require-

ments specification, and if this description has been transferred

into an implementable description of the operation (usually in an

operator's manual). The description of the operation should cover
the normal sequential steps and all alternative steps.

A1l error conditfons and responses appropriately described to
operator.

The requirement for this capability must appear in the requirements
specification, must be considered during design, and coded during
implementatfon. Error conditions must be clearly identified by
the system. Legal responses for all conditions are to be either
documented and/or prompted by the system. This is a binary mea-

sure to trace the evolution and implementation of these capabilities.

Provisions for operator to interrupt, obtain status, save, modify,
and continue processing.

The capabilities provided to the operator must be considered during
the requirements phase and then designed and implemented. Examples
of operator capabilities include halt/resume and check pointing.
This is a binary measure to trace the evolution of these
capabilities.

Number of operator actions reasonable (implementation only, re-
quires execution).

The number of operator errors can be related directly to the number
of actions required during a time period. This measure is based on
the amount of time spent requiring manual operator actions divided
by the total time required for the job.

Job set up and tear down procedures described (implementation only).
The specific tasks involved in setting up a job and completing it
are to be described. This is usually documented duriny the imple-
mentation phase when the final version of the system is fixed.

This is a binary measure of the existence of that description.

Hard copy log of interactions maintained (design and implementation
phases).

This is a capability that must be planned for in design and coded
during implementation. It assists in correcting operational errorc,
improving efficiency of operation, etc. This measure identifies
whether it is considered in the design and implementation phases (1)
or not (0).

Operator messages consistent and responses standard (design and
implementation pkases).

This is a binary measure applied during design and implementation to
insure that the interactions between the operator and the system are
simple and consistent. Operator responses such as YES, NO, GO, STOP,
are concise, simple, and can be consistently used throughout a system.
Lengthy, differently formated responses not only provide difficulty
to the operator but also require complex error checking routines.

6.2.2.17 Training
TG.1 Training Checklist (design and implementation at system level). The

metric is the sum of the scores of the following applicable elements divided by
the number of applicable elements.

(1) Lesson Plans/Training Material developed for operators, end users,
maintainers (implementation phase only).
This is a binary measure of whether this type documentation is
provided during the implementation phase.

(2) Realistic simulated exercises provided (implementation only).
This is a2 binary measure of whether exercises which represent the
operational environment, are developed during the implementation
phase for use in training.

Sufficient 'help' and diagnostic information available on-line.
This is a binary measure of whether the capability to aid the
operator in familiarization with the system has been designed and
buflt into the system. Provision of a 1ist of legal commands or a
list of the sequential steps involved in a process are examples.

6.2.2.18 Communicativeness

CM.1 User Input Interface Measure (all three phases at system level).

The metric is the sum of the scores of the following applicable elements divi-
ded by the number of applicable elements.

(1) Default values defined (design and implementation).
A method of minimizing the amount of input required is to provide
defaults. This measure, app'ied during design and implementation,
is based on the number of defaults allowed divided by the total
number of input parameters.

Input formats uniform (design and implementation).

The greater the number of input formats there are the more difficult
the system is to use. This measure is based on the total number of
input formats.

Each input record self-identifying.

Input records which have self-identifying codes enhance the accuracy
of user inputs. This measure is based on the number of input
records that are not self identifying divided by the total number of
input records. It is to be applied at design and implementation.

st

(5)

(6)

Input can be verified by user prior to execution (design and
implementation).

The capability, displaying input upon request or echoing the input
automatically, enables the user to check his inputs before
processing. This is a measure of the existence of the design and
implemenfétion of this carability.

Input terminated by ekplicitly defined logical end of input (design
and implementation).

The user should not have to provide a count of <input cards. This is
a binary measure of the design and implementation of this capability.

Provision for specifying input from different media.

The flexibility of input must be decided during the requirements
analysis phase and followed through during design and implementation.
This is a binary measure'of the existence of the consideration

of this capability during all three phases.

f CM.2 User Output Interface Measure (a1l three phases at system level).

The metric is the sum of the scores of the following applicable elements divided
by the number of applicable elements.

(1)

(2)

i
¥
i
i
H

Selective Qutput Controls.
The existence of a requirement for, design for, and implementation
of selective output controls is indicated by this binary measure.

Selective controls include choosing specific outputs, output formats,
amount of output, etc.

Outputs have unique descriptive user oriented labels (design and
implementation only).

This is a binary measure of the design and implementation of unique
output labels. In addition, the labels.are to be descriptive to the
user. This includes not only the labels which are used to reference

an output report but also the title, column headings, etc. within that
report.

6-65

st

i i

(3)

(4)

(5)

(6)

(7)

6.2.2.19

Outputs have user oriented units (design and implementation).
This is a binary measure which extends (2) above to the individual
output items.

Uniform output labels (design and implementation).
This measure corresponds to CM.1 (2) above and 1§ the inverse of
the number of different output formats.

Logical groups of output separated for user examination (design

and implementation).

Utilization of top of page, blank 1ines, 1ines of asterisks, etc.,
provide for easy identification of logically grouped output. This
binary measure identifies if these techniques are used during design
and implementation.

Relationship between error messages and outputs is unambiguous
(design and implementation).

This is a binary measure applied during design and implementation
which identifies if error messages will be directly related to the
output.

Provision for redirecting output to different media.

This is a binary metric which identifies if consideraticn is given
to the capability to redirect output to different media during
requirements analysis, design, and implementation.

Software System Independence

SS.1 Software System Independence Measure (design and implementation phases
at system level). The metric is the sum of the scores of the following applic-
able elements divided by the number of applicable elements.

(1)

6-66

Dependence on Software System Utility programs.
The more utility programs that are used within a system the more
dependent the system is on that software system environment. A

(2)

(3)

(4)

SORT utility in one operating system is unlikely to be exactly
similar to a SORT utility in another. This measure is based on
the number of programs used that are utility programs divided by
the total number of programs in the system. It is to be applied
during design and implementation.

Dependence on Software System Library Routines.

For similar reasons as (1) above an integration function provided
by one operating system may not be exactly the same as an integra-
tion function provided by another system. Thus the more library
routines used the more dependent the system is on its current
software system environment. This measure, applied at design and
implementation, is based on the number of library routines used
divided by the total number of modules in the system.

Common, standard subset of language used.

The use of nonstandard constructs of a language that may be available
from certain compilers cause conversion problems when the software is
moved to a new software system environment. This measure represents
that situation. It is based on the number of modules which are

coded in a non-standard subset of the language. The standard sub-
set of the language is to be established during design and adhered

to during implementation.

Free from Operating System References.

This measure is based on the number of modules which contain calls

to the operating system. While (1) and (2) above identify the

nurmber of support-type programs and routines which might have to be
recoded if a change in scftware system environments took place,

this measure identifies the percent of application oriented modules
which would probably have to be changed. The metric is to be applied
during design and implementation.

e = -

.

6.2.2.20 MWachine Independence

MI.1 Machine Independence Measure (design and implementation at system level).
The metric 1s the sum of the scores of the following applicable elements
divided by the number of applicable elements.

6-68

(1) Programming language used available on other machines.

(2)

(3)

(4)

This is a binary measure identifying 1f the programming language
used is avaflable (1) on other machines or not (0). This means
the same version and dialect of the language.

Free from input/output references.

Input and output references bind a module to the current machine con-
figuration. Thus the fewer modules within a system that contain
input and output references, the more localized the problem becomes
when conversion is considered. This measure represents that fact
and is based on the number of modules within the system that contain

1/0 references. It is to be applied during design and implementation.

Code is independent of word and character size (implementation only).
Instructions or onerations which are dependent on the word or
character size of the machine are to be either avoided or param-
etric to facilitate use on another machine. This measure applied

to the source during implementation is based on the number of
modules which contain violations to the concept of independence of
vord and character size.

Data representation machine independent (implementation only).

The naming conventions (length) used are to be standard or com-
patible with other machines. This measure is based on the number
of modules which contain variables which do not conform to standard
data representations.

[PV R SRS S RN P

6.2.2.21 Communications Commonality
CC.1 Communications Commonality Checklist (all three phases at system

level).

The metric is the sum of the scores of the following applicable

elements divided by the number of applicable elements.

(1) Definitive statement of requirements for communcation with other

(2)

(3)

(4)

systems (requirements only).
During the requirement phase, the communication requirements

with other systems must be considered. This is a binary measure of
the existence of this consideration.

Protoccl standards established and followed.

The communcation protocol standards for communication with other
systems are to be established during the design phase and followed
during implementation. This binary measure applied at each of
these phases indicates whether the standards were established and
followed.

Single module interface for input from another system.

The more modules which handle input the more difficult it is to
interface with another system and implement standard protocols.

This measure based on the inverse of the number of modules which
handle input is to be applied to the design specification and source
code.

Single module interface for output to another system
For similar reasons as (3) above this measure is the inverse of
the number of output modules.

6.2.2.22 Data Commonality
DC.1 Data Commonality Checklist (all three phases at system level). The

metric is the sum of the scores of the following applicable elements divided
by the number of applicable elements.

6-69

T A S O e S LIRS P 3k Tl o e

g (1) Definitive statement for standard data reprasentation for communica-

2 tions with other systems (requirements only).

This is a binary measure of the existence of consideration for

standard data representation between systems which are to be interfaced. °

This must be addressed and measured in the requirenehts phase. '

] o)

2

(2) Translation standards among representations established and followed
(design and implementation).
More than one translation from the standard data representations used
for interfacing with other systems may exist within a system. Standards
for these translations are to be established and followed. This binary

measure identifies if the standards are established during design and
followed during implementation. ‘

(3) Single module to perform each translation (design and {mplementation).
For similar reasons as CC.1 (3) and (4) above, this measure is the
inverse of the maximum number of modules which perform a translation. i

4 6.2.2.23 (Conciseness

C0.1 Halstead's Measure (implementation phase at module level first then system .

level). The metric is based on Halstead's concept of length ([HALSM77]). 1

The observed length of a module is
No = Nj + Np where:

i N1 = total usage of all operators in a module
i N2 = total usage of all operators in a module

The calculated length of a module is {
Nc = njlogany + n2logany where: i
ny = number of unique operators in a module
n2 = number of unique operators in a module

|
|
' :i The metric is narmalized as follows:

Ne - N]
] 1 - ‘_fi___gl_ or, i
']
i N. - N
K 0 if ' CNO ol greater than 1 ?

At a system level the metric is the averaged value of all the module metric
values. 3
6-70 1

» . b aitali cidid o
— B o p————n. e ~

o LA e T PO G R Dy . 2

¢
!
1
r

6.3 SUMMARIZATION OF METRICS

Table 6.3-1 provides summary figures for the metrics that have been
established.

41 metrics have been established for the 11 factors and 23 criteria. These 41
metrics are comprised of 175 elements or specific characteristics of a soft-
ware product that can be measured at various times during development to give
an indication of the progression toward a desired level of quality. The
metrics are applied during the three phases of development as shown. Thus

25 characteristics of the software product are measured during the require-
ments analysis phase, 108 during the design phase, and 157 during
implementation.

6-7

s ol it e

t6uganp patdde
sjuamal3 40 "ON

:buganp pajdde
6€ €1 SOL433W 4O "ON

P e T T

NOILVININITdWI SININIUINDIY J9YHIN0D ISVHJ

0¢ €l

SISVHd ¢ S3SVHd € 1TV ‘ONIYNA Q3I7ddY SIIYLIW 40 "ON

T4 |87 8¢ € [

SINIWIT3 40 “ON SJIY¥1IW 40 “ON VIY3LI¥Ians 40 "ON VIY3LIYI 40 "ON S¥01Ivd 40 "ON

SOLUI3W JO UOLeZIJOUNING {-€°Q B|qRL

ABERD72

ACQU71

AIRF76

ALGEC77

AMORW73

BELLD74

BELLT76

BENSJ76

BOEHB73a

BOEHB76

BOEHB73b

BOLEN76

BOULD61

BRADG?75

BROON76

BROWJ73

BROWP72

REFERENCES

Abernathy, D.H., et al, "Survey of Design Goals for Operating Systems",
Georgia Tech, GITIS-72-04, 1972,

"Acquisition and Use of Software Products for Automatic Data Processing
Systems in the Federal Government", Comptroller General of the U.S.,
Report to the Congress, June 1971.

"Air Force Systems Command”, Aviation Week & Space Technology, 19 July 1976.

Algea, C., "ATP - Analysis of JOVIAL (J4) Routines", Internal GE Working
Paper, March 1977,

Amory, W., Clapp, J.A., "An Error Classification Methodology", MITRE Tech
Report, June 1973,

Bell, D.E., Sullivan, J.E., "Further Investigations into the Complexity of
Software", MITRE Tech Report MTR-2874, June 1974,

Bell, T., et al, "An Extendable Approach to Computer-Aided Software Require-
ments Engineering", 1976 Software Engineering Conference.

Benson, J., "Some Observations Concerning the Structure of FORTRAN Programs",
International Symposium on Fault Tolerant Computing, Paris, June 1975.

Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., MacLeod, G.S., Merritt,
N.J., "Characteristics of Software Quality", Doc. #25201-6001-RU-00, NBS
Contract #3-36012, 28 December 1973.

Boehm, B., Brown, J., Lipow, M., "Quantitative Evaluation of Software
Quality", 1976 Software Engineering Conference.

Boehm, B.W., "Software and its Impact: A Quantitative Approach", Datamation,
April 1973,

Bolen, N., "An Air Force Guide to Contracting for Software Acquisition",
NTIS AD-AQ20 444, January 1976.

Boulanger, D.G., "Program Evaluation and Review Technique", Advanced Manage-
ment, July-August 1961.

Bradley, G.H., et al, "Structure and Error Detection in Computer Software",
Naval Postgraduate School, NTIS AD-AO14 334, February 1975.

Brooks, N., et al, "Jovial Automated Verification System (JAVS)", RADC-
TR-20, February 1976.

Brown, J.R. and Buchanan, H.N., “The Quantitative Measurement of Software
Safety and Reliability", TRW Report SS-73-06, August 1973.

Brown, P., "Levels of Language for Portable Software"”, Communications of
the ACM, December 1972,

Ref-1

CASEJ74

CHANP76

CHENL74

CLAPJ74

COHEA72
COMP69

COMP66a

COMP66b

CONF64

CONF66

CONNJ75

COOLW62

CORRA74

CULPL75

DAVIC76

DAVIR73

DENNJ70

Casey, J.K., "The Changing Role of the In-House Computer Application
Software Shop", GE TIS #74AEG195, February 1974.

Chang, P., Richards, P.K., "Software Development and Implementation Aids",
GE TIS #76CIS01, January 1976.

Cheng, L., Sullivan, J.E., "Case Studies in Software Design", MITRE Tech
Report MTR-2874, June 1974.

Clapp, J.A., Sullivan, J.E., "Autométed Monitoring of Software Quality”,
Proceedings from AFIPS Conference, Vol. 43, 1974,

Cohen, A., "Modular Programs: Defining the Module", Datamation, March 1972.

"Computer Program Development and Configuration Management", AFSCF Exhibit
375-2, March 1969.

"Computer Program Development and Configuration Management for the Manned
Orbit Laboratory Program", SAFSL Exhibit 20012, September 1966.

"Computer Program Subsystem Development Milestones”, AFSCF SSD Exhibit
61-47B, April 1966.

"Configuration Management During Definition and Acquisition Phases",
AFSCM 375-1, June 1964.

"Configuration Management of Computer Programs", ESD Exhibit EST-1,
Section H, 1966.

Connolly, J., "Software Acquisition Management Guidebook: Regulations,
Specifications, and Standards", NTIS AD-AO16 401, October 1975.

Cooley, T., Multivariate Procedures for the Behavioral Sciences, John
Wiley and Sons, Inc., N.Y.,

Corrigan, A.E., "Results of an Experiment in the Application of Software
Quality Principles”, MITRE Tech Report MTR-2874, June 1974.

Culpepper, L.M., "A System for Reliable Engineering Software", International
Conference on Reliable Software, 1975.

Davis, C., Vick, C., "The Software Development System", 1976 Software
Engineering Conference.

Davis, R.M., "Quality Software can Change the Computer Industry Programs
Test Methods", Prentice-Hall, 1973, Chapter 23.

Dennis, J.B., Goos, G., Poole, J., Gotlieb, C.C., et al, "Advanced Course
on Software Engineering”, Springer-Verlag, New York 1970.

e

DIJKE69a Dijkstra, E.W., "Complexity Controlled by Hierarchical Ordering of 4
Function and Variability" Software Engineering, NATO Science Committee
Report, January 1969.

DIOKE72 Dijkstra, E.W., "The Humble Programmer®, Communications of the ACM,
October 1972.

- DIJKE69b Dijkstra, E.W., "Structured Programming”, Software Engineering Techniques,
NATO Science Committee Report, January 1969.

DIJKE72 Dijkstra, E.W., "Notes on Structured Programming", Structured Programming,
Dahl, Dijkstra, Hoare, Academic Press, London 1972.

DOCU74 "Documentation Standards", Structured Programming Series Volume VII and
1 Addendum, RADC-TR-74-300, September 1974 and April 1975.

1 DODM72 “DOD Manual for DOD Automated Data Systems Documentation Standards", DOD
A Manual 4120.17M, December 1972.

DROSM76 Drossman, M.M., "Development of a Nested Virtual Machine, Data Structure
Oriented Software Design Methodology and Procedure for its Evaluation“,
USAFOSR/RADC Tech Report, 11 August 1976.

DUNSH77 Dunsmore, H., Ganon, J., "Experimental Investigation of Programming
Complexity", Proceedings of ACM/NBS Sixteenth Annual Technical Symposium,
June 1977.

EDWAN75 Edwards, N.P., "The Effect of Certain Modular Design Principles on Test-
ability", International Conference on Reliable Software, 1975.

_s ELEC75 “"The Electronic Air Force", Air Force Magazine, July 1975.

ELSHJ76 Elshoff, J.L., "Measuring Commercial PL/1 Programs Using Halstead's
Criteria"“, SIGPLAN Notices, May 1976.

! ELSHJ76b Elshoff, J., "An Analysis of Some Commercial PL/1 Programs", IEE Trans-
actions on Software Engineering, Volume SE-2, No. 2, June 1976.

S ENDRA75 Endres, A., "An Analysis of Errors and their Causes in Systems Programs®,
i International Conference on Reliable Software, 1975.

FAGAM76 Fagan, M., “Design and Code Inspections and Process Control in the Develop-
ment of Programs", IBM TR 00.2763, June 1976.
Reliability Working Group, November 1975.

FITZA76 Fitzsimmons, A., Love, T., "A Review and Critique of Halstead's Theory of

x
: “ FIND75 "Findings and Recommendations of the Joint Logistics Commanders", Software
' Software Physics", GE TIS #761SP004, December 1976.

! ' FLEIJ72 Fleiss, J.E., et al, "Programming for Transferability", RADC-TR-72-234,
. September 1972.

Ref-3

B Fiw T T o-ng-;‘ SR e g, T W

FLEITE6

GILBT76

G00DJ74

600DJ75

GOVE74

HAGAS75

HAGUS76

HALSM77

HALSM73

HALSM72

HAMIM76

HANEF72

HODGB76

JONEC77

KERNB74

KESSM70

KNUTD68
KNUTD71

Ref-4

Fleishman, T., "Current Results from the Analysis of Cost Data for
Computer Programming", NTIS AD-637 801, August 1966.

611b, T., Software Metrics, Winthrop Computer Systems Series, 1976.

Goodenough, J., "Effect of Software Structure on Software Reliability,
Hodifigg;}ity. and Reusability: A Case Study", USA Armament Command,
March .

Goodenough, J., “"Exception Handling Design Issues", SIGPLAN Notices,
July 1975,

“Government/Industry Software Sizing and Costing Workshop-Summary Notes",
USAFESD, 1-2 October 1974,

Hagan, S., "An Air Force Guide for Monitoring and Reporting Software
Development Status”, NTIS AD-AQ16 488, September 1975.

Hague, S.J., Ford, B., "Portability-Prediction and Correction*, Software
Practices & Experience, Vol. 6, 61-69, 1976.

Halstead, M., Elements of Software Science, Elsevier Computer Science
Library, N.Y., 1977.

Halstead, M., "Algorithm Dynamics", Proceedings of Annual Conference of
ACM, 1973.

Halstead, M., "Natural Laws Controlling Algoritim Structure", ACM SIGPLAN,
February 1972.

Hamilton, M., Zeldin, S., "Integrated Software Development System/Higher
Order Software Conceptual Description", ECOM-76-0329-F, November 1976.

Haney, F.M., "Module Connection Analysis - A Tool for Scheduling Software
Debugging Activities", Proceedings of the 1972 Fall Joint Computer
Conference, Vol. 41, Part 1, 173-179, 1972,

Hodges, B., Ryan, J., "A System for Automatic Software Evaluation®, 1976
Software Engineering Conference.

Jones, C., "Program Quality and Programmer Productivity", IBM TR 02.764,
January 1977.

Kernighan, B., Plauger, P., The Elements of Programming Style, McGraw-
Hi1l, 1974,

Kessler, M.M., "An Investigation of Program Structure", IBM Federal
Systems Division, Internal Memo, February 1970.

Knuth, D.E., The Art of Computer Programming Vol. 1, Addison-Wesley, 1968, .

Knuth, D.E., "An Empirical Study of FORTRAN Programs", Software Practice
& Experience, Vol. 1, pp 105-133, 1971.

¥
B R s

KOSAS74 Kosarajo, S.R., Ledgard, H.F., "Concepts in Quality Software Design”,
NBS Technical Note 842, August 1974,

KOSYD?74 Kosy, D., “Air Force Command and Control Information Processing in the
1980s: Trends in Software Technology", Rand, June 1974.

KUESJ73 Keuster, J., Mize, J., Optimization Techniques with FORTRAN, McGraw-Hill,
N.Y., 1973.

! LABOV66 LaBolle, V., "Development of Equations for Estimating the Costs of
Computer Program Production", NTIS AD-637 760, June 1966.

LAPAL73 LaPadula, L.J., "Software Reliability Modeling and Measurement Techniques”,
MTR-2648, June 1973.

LARSR75 Larson, R., "Test Plan and Test Case Inspection Specification", IBM
TR 21.586, April 1975.

LEWIE63 Lewis, E., Methods of Statistical Analysis, Houghton Mifflin Company,
Boston 1963.

LIEBE72 Lieblein, E., "Computer Software: Probier.. and Possible Solutions",
CENTACS USAECOM Memorandum, 7 Novembe: 1972.

LIGHW76 Light, W., “Software Reliability/Quality Assurance Practices", Briefing
given at AIAA Software Management Corferences, 1976.

LISKB75 Liskov,]B., "Data Types and Program Correctness", SIGPLAN Notices,
4 July 1975.

LISKB73 Liskov, B.H., "Guidelines for the Design and Implementation of Reliable
Software Systems", MITRE Report 2345, February 1973.

3 LOVET76a Love, T., Bowman, A., "An Independent Test of the Theory of Software
i Physics", SIGPLAN Notices, November 1976.

LOVET76b Love, T., Fitzsimmons, A., "A Survey of Software Practioners to Identify
Critical Factors in the Software Development Process", GE TIS 76ISP003,
p December 1976.

MANNJ75 Manna, J., "Logical Analysis of Programs", International Conference on
Reliable Software, 1975.

MARSS70 Marshall, S., Miilstein, R.E., Sattley, K., "On Program Transferability",
Applied Data Research, Inc., RADC-TR-70-217, November 1970.

MCCAT76 McCabe, T., “A Complexity Measure", 1976 Software Engineering Conference.

MCCRD72 McCracken, D.D. and Weinberg, G.M., "How to Write a Readable FORTRAN
Program", Datamation, October 1972,

T EW P R T T T
J .
‘_ - e W ———— s | e — -

-

3 Ref-5

MCKI1J?77

MCNEL7S

MEALG68

MILI70

MILI68

MILLE74

MULOR70

MYERG73

MYERG75

MYERG76

NBS74
NELSR74

NELSR75

NODA75

06D1J72
OSTEL74

0STLB63
PADED56

McKissick, J., Price, R., "Quality Contral of Computer Software",
1977 ASQC Technical Conference Transactions, Philadelphia 1977.

McNeely, L., "An Approach to the Development of Methods and Neasures
for Quantitatively Determining the Reliability of Software", Ultra
Systems Concept Paper, February 1975.

Mealy, G.H., Farber, D.J., Morehoff, E.E., Sattley, "Program Trans-
ferability Study", RADC, November 1968.

"Military Standard Configuration Management Practices for Systems,
Eggapment, Munitions and Computer Programs”, MIL-STD-483, December
"Military Standard Specification Practices", MIL-STD-490, October 1968.

Miller, E., et al, "JOVIAL/J3 Automated Verification System (JAVS)
System Design Document", GRC, March 1974.

Mulock, R.B., "A Study of Software Reliability at the Stanford Linear
Accelerator Center, Stanford University”, August 1970.

Mye;;, G.J., "Characteristics of Composite Design”, Datamation, September
1973.

Myers, G.J., Reliable Software through Composite Design, Petrocelli/
Charter, 1975,

Myers, G.J., Software Reliability: Principles and Practices, John Wiley
& Sons, New York, 1976.

"Analyzer - Computation and Flow Analysis", NBS Tech Note 849, 1974.

Nelson, Richard, "A Plan for Quality Software Production", RADC Internal
Paper, June 1974,

Nelson, R., Sukert, A., "RADC Software Data Acquisition Program", RADC
Paper presented at Fault Tolerant System Workshop, Research Triangle
Institute, November 1975.

"NODAL - Automated Verification System", Aerospace TOR-0075(5112)-~1, 1975.

Ogdin, J.L., "Designing Reliable Software", Datamation, July 1972.

Osterweil, L., et al, "Data Flow Analysis as an Aid in Documentation,
?;;:rtion Generation, and Error Detection", NTIS PB-236-654, September

Ostle, B., Statistics in Research, Iowa State University Press, °

Paden, D., Linquist, E., Statistics for Economics and Bus:r.
Hi11, New York, 1956. - -

. ———— — — .

PANZD76

PARIR76

PARND72a

PARND71

PARNL75

PARND72b

PATH76

PET72
PILIMGS

POOLL77

PROG7&

RAMAC75

REIFD75

REIFD76

RICHF74

RICHP74

RICHP75

RICHP76

Panzl, D., "Test Procedures: A New Approach to Software Verification",
1976 Software Engineering Conference.

Pariseav, R., "Improved Software Productivity for Military Systems
through Structured Programming", NTIS AD-A022 284, March 1976.

i o

Parnas, D.L., "A Technique for Software Module Specification with
Examples", Communications of the ACM, Vol. 15 No. 5, 1972.

Parnas, D.L., "Information Distribution Aspects of Design Methodology",
Proc IFIP Congress 1971.

Parnas, D.L., "The Influence of Software Structure on Reliability",
International Conference on Reliable Software, 1975. :

Parnas, D.L., "On the Criteria to be used in Decomposing Systems into
Modules", Comm. of the ACM, Vol. 15, No. 12, December 1972.

Pathway Program - Product Quality Assurance for Shipboard Installed.
Computer Programs, Naval Sea Systems Command, April 1976.

ok ki s

"PET - Automatic Test Tool", AFIPS Conference Proceeuings, Vol. 42, 1972.

Piligian, M.S., et al, “Configurat:on Management of Computer Program
Contract End Items", ESD-TR-68-107, January 1968.

Poole, L., Borchers, M., Some Common Basic Programs, Adam Osborne and
Associates, Berkeley, 1977.

Program Design Study "Structured Programming Series" (Vol. VIII), RADC
TR-74-300, 1975.

Ramamoorthy, C., Ho, S., "Testing Large Software with Automated Software
Evaluation Systems", 1976 Software Engineering Conference.

Reifer, D.J., "Automated Aids for Reliable Software", International
Conference on Reliable Software, 1975.

Reifer, D., "Toward Specifying Software Properties", IFIP Working
gonference on Modeling of Environmen.al Systems, Tokyo, Japan,
pril 1976.

Richards, F.R., "Computer Software Testing, Reliability Models, and
Quality Assessment", NTIS AD-A0O1 260, July 1974.

Richards, P., et al, "Simulation Data Processing Study: Language and
Operating System Selection", GE TIS 74CIS09, June 1974.

Richards, P., Chang, P., "Software Development and Implementation Aids
IR&D Project Final Report for 1974", GE TIS 75CISO1, July 1975.

Rirhards, P., Chang, P., “Localization of Variables: A Measure of
mplexity"”, GE TIS 76CIS07, December 1976.

Ref-7

-

[e —— T P ';«Tv - IR TR - ST)

e —— s

ROSED76

RUBER68

SABIM76

SACI76
SACKH67

SAL1J77

SALVA75

SAMS75

SCHNN72

SCHNN75

SCHOJ76

SCHOW76

SHOOM75a

SHOOM75b

SMITR74

SOFT75

Ref-8

e B ..

Rosenkrantz, D., "Plan for RDL: A Specification Language Generating
System”", GE Internal Document, March 1975.

Rubey, R.J., Hartwick, R.D., "Quantitative Measurement of Program
Quality", Proceedings of 23rd National Conference, ACM, 1968.

Sabin, M.A., "Portability - Some Experiences with FORTRAN", Software-
Practice & Experience, Vol. 6, pp 393-396, 1976.

"SAC in Transition”, Aviation Week and Space Technology, 10 May 1976.

Sackman, H., Computers, System Science, and Evolving Society, J. Wiley
& Sons, 1967. '

Saiinger, J., "Initial Report on the Feasibility of Developing a Work
Measurement Program for the Data Processing Departments", Blue Cross/
Blue Shield Internal Paper, January 1977.

Salvador, A., Gordon, J., Capstick, C., "Static Profile of Cobol Programs",
SIGPLAN Notices, August 1975.

"SAMSO Program Management Plan Computer Program Test and Evaluation",
February 1975.

Schneidewind, N.F., "A Methodology for Software Reliability Prediction
and Quality Control", Naval Postgraduate School, NTIS AD-754 377,
November 1972.

Schneidewind, N.F., "Analysis of Error Processes in Computer Software",
International Conference on Reliable Software, 1975.

Schonfelder, J.L., "The Production of Special Function Routines for a
Multi-Machine Library", Software-Practice and Experience, Vol. 6,
pp 71-82, 1976.

Schoeffel, W., "An Air Force Guide to Software Documentation Requirements",
NTIS AD-A027 051, June 1976.

Shooman, M.L., Bolskey, M.1., "Software Errors: Types, Distribution, Test
1nd Correction Times", International Conference on Reliable Software,
975.

Shooman, M., "Summary of Technical Progress - Software Modeling Studies*®,
RADC Interim Report, September 1975,

Smith, R.,"Management Data Coliection and Reporting - Structured Programming
Series (Vol. IX)" RADC TR-74-300, October 1974.

"Software Engineering Handbook", GE Special Purpose Computer Center,
September 1975,

A T AR RS COR ORDIIIL Sy, T VBT - e ™ WA e S

SPAC76

STEWD74

SULLJ73

SUPP73

SZABS76

TACT74

TALIW71

TEICD76

THAYT76

THAYT75

USAR75

VANDG74

VANTD74

VOLKW58

WALTG/4

WALTG76

WAGOW?73

“GE Space Division Task Force on Software", Engineering and Management
June 28 Report, 1976.

Steward, D.W., "The Analysis. of the Structure of Systems“, GE TIS
74NED36, June 1974,

sullivan, J.E., "Measuring the Complexity of Computer Software", MITRE
Tech Report MTR-2648, June 1973,

“"Support of Air Force Automatic Data Processing Requirements through
the 1980's", SADPR-85, July 1973.

Szabo, S., "A Schema for Producing Reliable Software", International
Symposium on Fault Tolerant Computing, Paris, June 1975.

“Tactical Digital Systems Documentation Standards", Department of the
Navy, SECNAVINST 3560.1, August 1974.

Taliaferro, W.M., "Moduiarity: The Key to System Growth Potential",
Software Practices and Experience, July-September 1971.

Teichroew, D., "PSL/PSA A Computer-Aided Technique for Structured
Documentation and Analysis of Information Processing Systems", 1976
Software Engineering Conference.

Thayer, 1.A., Hetrick, W.L., Lipow, M., Craig, G.R., "Software Reliability
Study", RADC TR-76-238, August 1976.

Thayer, T.A., "Understanding Software through Empirical Reliability
Analysis", Proceedings, 1975 National Computer Conference.

"US Army Integrated Software Research and Development Program", USACSC,
January 1975,

VanderBrug, G.J., "On Structured Programming and Problem-Reduction®,
NSF TR-291, January 1974 (MF).

Van Tassel, Dennie, Program Style, Design, Efficiency, Debugging ande
Testing, Prentice-ﬁali, Inc., New Jersey, 1974.

Volk, W., Appiied Statistics for Engineers, McGraw-Hill Book Co., Inc.,
New York, 1958.

Walters, G.F., et al, "Spacecraft On-Board Processor/Software Assessment",
GE TIS 74CIS10, June 1974,

Walters, G.F., "Software Aids Index", GE Internal Working Paper,
December 1976.

Wagoner, W.L., "The Final Report on a Software Reliability Measurement
Study", Aerospace Report TOR-0074, August 1973.

Ref-9

e WEINGTY

WHIPL?S

WILLN?76
WOLVR72
WULFW73
YOURE75

ZAHNC75

Ref-10

.

\

Weinberg, L.H.. “The Psychology of Computer Programming®, NY, Van
NostnmkReinhold. 197.

Whipple, L{. "AFAL Operational Software Concept Development Program®,
Briefing ;iven at Software Subpanel, Joint Deputies for Laboratories
Committed, 12 February 1975.

Willmouth, N., "Software Data Collection: Problems of Software Data
Collection”, RADC Interim Report, 1976.

Wolverton, R.W., Schick, G.J., "Assessment of Software Reliability”,
TRW Report SS-72-04, September 1972.

Wulf, W.A., "Report of Workshop 3 - Programming Methodology". Proceedings
of a Symposium on the High Cost of Software, September 1973. .

Yourdon, E., Techniques of Program Structure and Desi n, Prentice-Hall,
Inc., Englewood qu?‘?s, New aersey. T9785.

Zagn]. ci§7;5tructured Control in Programming Languages", SIGPLAN Notices,
uly .

R T R R N ot

e vl e

P

T ST e w s

BIBLIOGRAPHY

Abernathy, David H., et al.
Survey of Design Goals for Operating Systems
GITIS-72-04, Georgia Institute of Technology, 1972

Discusses the general design goals and their inherent tradeoffs that should
be accounted for in the development of Operating Systems. Provides an
examination and identification of the design goals of a number of current
operating systems. The discussions of the tradeoffs between design goals
are relevant to any system development effort.

Boehm, B.W., et al.
Characteristics of Software Quality
TRW 25201-6001-RU-00, 28 Dec 1973

TRW report for National Bureau of Standards. Establishes a definitive
hierarchy of related characteristics of software quality and, for each
characteristic, defines metrics which, (1) ca. be used to provide a
quantitative measure for any FORTRAN program, (2) are anomaly-detecting
related to the source code, and (3) can be used to define overall software
quality. A comprehensive set of examples of good and bad programming
practices, related to the anomaly-detecting metrics, is provided. The
process of correlating the metrics with the quality characteristics is

not explained.

Clapp, J., et al.
MITRE Series on Software Engineering
June 1973

A collection of small studies done by MITRE for ESD. Provides an initial
framework for investigation of the problems associated with Software
Reliability. Provides some measures of software complexfty.

Bib-1

ity

et ¢ ——

Dennis, J.B., Goos, G., Poole, P.C., Gotlieb, C.C., et al.
Advanced Course of Software Engineering - Lecture Notes
Springer-Verlag, N.Y., 1973

A consolidation of experts' lectures on current topics in Software
Engineering. Examples, definitions, and different view points of the
solutions to problems are provided.

e

Drossman, M.M. ‘

Development of a Nested Virtual Machine, Data Structure-Oriented Software
Design Methodology and Procedure for Evaluation :

USAFOSR/RADC TR, Aug 1976 i

Provides a brief summary of work done to date in the area of a methodology
for software system design. Presents a data-oriented approach to this
subject with an example. The approach emphasizes top down successive
refinement of the data structure. Outlines a plan for evaluation of

the concept.

Fagan, M.
Design and Code Inspections and Process Control in the Development of Programs.
I8M TR 00.2763, June 1976

A manageable, implementable plan for formalizing inspections of documents
and code produced during a software development is presented. The concept
of inspections is compared with the less formal practice of walk-thrus.

Gilb, T.
Software Metrics
Winthrop Computer Systems Series, 1976

A significant contribution to the field of software quality metrics has

been made by this book, even though its presentation detracts from its

effect. It provides the most information about the field in one docu-

ment to date, summarizing previous efforts and introducing some

interesting concepts of tests for software qualities. .

Bib-2

Goodenough, J.
Effect of Software Structure on Software Reliability, Modifiability, and

Reusability, A Case Study.
U.S. Army Armament Command, March 1974

Provides discussion of program structuring concepts and language design
features that enhance reusability, modifiability, and reliability.
ITlustrates concepts by case studies.

Halstead M.
Elements of Software Science
Elsevier Computer Science Library, 1977

This text presents a composite of the work done in the area of software
physics or software science. The theory and results of various
experiments are provided. Several chapters are devoted to describing
applications of the theory.

Kernighan, B., Plauger, P.
The Elements of Programming Style
McGraw-Hill, N.Y., 1974

A comprehensive text on the do's and don'ts of programming. Full of

examples which illustrate techniques of expression, structure, input and
output, efficiency and instrumentation, and effective documentation. Provides
many examples of common faults and errors made during the programming

process.

Kosaraju, S.R., Ledgard, H.F.
Concepts in Quality Software Design
National Bureau of Standards Technical Note 842, August 1974

Provides a hierarchy of factors in quality software. The factors

represent both measurable qualities and controllable software produc-
tion characteristics. Brief examples and explanations of the factors
are provided and then the areas of prime concern to the authors, top-

down programming, proof of correctness, and structured programming are
discussed in detail.

Kosy, D.

AF Command and Control Information Processing in the 1980s:
Trends in Software Technology

RAND R-1012-PR, June 1974

A revised and expanded version of the CCIP-85 volume on software. It

describes the current (1972) state-of-the-art and forecasts the technology
i into the 1980's. Identifies quantitative and nonquantitative measures of
software quality. Relates many software problems to Air Force requirements. 1

Lieblein, E.
Computer Software: Froblems and Possible Solutions
CENTACS, U.S. Army ECOM Memorandum, November 1972

A discussion of the problem areas in DOD software development and identi-

fication of potentially beneficial areas of research and implementation of
state-of-the-art techniques as solutions.

Myers, G.J.
Reliable Software Through Composite Design
Petrocelli/Charter, 1975

Describes a set of quality factors for software and identifies which of
these factors are influenced by his concept of composite design. Illustrates
and defines composite design and provides a classification scheme for look-
ing at software in relationship to how well it is designed.

Myers, G. J.
Software Reliability: Principles and Practices
John Wiley & Sons, N.Y., 1976

.

A very thorough review of the software reliability state-of-the-art. 1
The book covers reasons why reliability is a major concern in the ‘
industry, a working definition of software relfability, principles

and practices for designing reliable software, how software should be

4 tested, and briefly a wide range of topics which influence software
reliability.

e B e ——— —

-

Bib-4

NN 1o T T S e MR -\ € g o AN TSI, ™ AT

Reifer, D.

Toward Specifying Software Properties

IFIP torking Conference on Modeling of Environmental Systems,
Tokyo, Japan, Apr 76

—nle
O AR BRI

A concept of specifying software properties and relating them to
functional and performance requirements is presented. The presentation
of a heuristic approach is very conceptual in nature. The conflicting
characteristics of several of the software properties are discussed.

Rubey, R., Hartwick, D.
Quantitative Measurement of Program Quality
Proceedings of ACM National Conference, 1968

One of the initial efforts in the software quality field. Provides a
concise mathematical approach to software attributes and corresponding
metrics.

Thayer, T.A., et al.
Software Reliability Study
RADC TR-76-238, August 1976

RADC sponsored study to quantify Reliability by correlating source code
metrics with the error history of that code. Several AF systems were
utilized to perform the correlation. Identifies the metrics, how they
can be collected, a categorization of errors, and provides a survey of
existing reliability models.

Wulf, W.A.
Programming Methodology - Report of Workshop 3

Proceedings of a Symposium of the High Cost of Software 17-19
September 1973

N e s+ B — e P
.

A tri-service sponsored symposium which identified quality attributes to be
used to compare programs. Recommended areas for future research which
would add to the state-of-knowledge.

Yourdon, E.
Techniques of Program Structure and Design
Prentice-Hall, Englewood Cliffs, N.J., 1975.

A comprehensive text on top-down structured programming. Discusses the
characteristics of a good program, modular programming, and how to program
with simplicity and clarity in mind. A good source for the do's and don'ts
of programming.

Proceedings of the 1975 International Conference on Reliable Software
IEEE, 1975

Papers by several authors: Dijkstra, Ramamoorthy, Culpepper, Parnas,
Edwards, Endres, Manna, Reifer, provide various views on the problems,
techniques, and solutions to different aspects of software quality.

Support of Air Force Automatic Data Processing Requirements through the
1980's (SADPR-85)
MITRE, July 1973

* A study performed to identify the ADP requirements for AF base level
operations through the 1980's. The interesting portion of the study as
far as this effort is concerned is Appendix VII which identified the
configuration evaluation criteria. A scheme of criteria or qualities
with associated priorities were established to compare various proposed

i configurations for providing the ADP requirements.

i 4

iy

‘_.‘-_._- o

Bib-6

[N

APPENDIX A

QUALITY FACTORS REFERENCES
IN THE LITERATURE WITH
DEFINITIONS

The quality factor definitions or discussions contained in this appendix
were found in the literature or generated during this effort to provide
additional interpretations. The authors of the quoted or paraphrased
definitions are indicated in parentheses.

We wish to emphasize that any errors, omissions, or misleading statements
in the quoted or paraphrased definitions contained herein are completely
and solely our responsibility and not those of the authors referenced.

-

STV YR Tt

e — e

e WImSATTD. T TR

PORTABILITY/TRANSFERABILITY

- programs must be readily transferable among different equipment configura-
tions (Goodenough/Culpepper)

- degree of transportability is determined by number, extent, and complexity
of changes, and hence the difficulty in implementing a software processor
?hich gan mechanically move a program, between a specified set of machines

Hague

- machine - independence (Marshall)

- measure of the ease of moving a computer program from one computing environ-
ment to another (Meahy, Poole)

- how quickly and cheaply the software system can be converted to perform
the same functions using different equipment (Kosy)

- an appropriate environment can be provided on most computers (Goos)

- extent that it can be operated easily and well on computer configurations
other than its current one (Boehm)

- moving software from one computer (environment) to another (Lieblein)

- measure of the effort required to install a program on another machine,
another operating system, or a different configuration of the same
machine (Wulf)

- external (black box) form, fit, and function characteristics of a program
module which permit its use as a building block in several computer piograms
(NSSC PATHWAY)

- relates to how quickly and easily a software system can be transferred from
one hardware system to another (USA ISRAD)

- ease of conversion of a system from one environment to another; the
relative conversion cost for a given conversion method (Gilb)

ACCEPTABILITY

- how closely the ADP system meets true user needs (Kosy)

- measure of how closely the computer program meets the true needs of the
user (SAMSO)

- relates to degree to which software meets the user's needs including the
clarity and unambiguity of the specifications and the effectiveness of the
man-machine interface (USA ISRADge .

- does the software meet the need of the user (Light)

COMPLETENESS

- extent to which software fulfills uverall mission satisfaction (McCall)

- extent that all of its parts are present and each of its parts are fully
developed (Boehm)

A-2

b

1
|
i
|

= g ¢ RPN SN

CORRECTNESS

CONSISTENCY

degree to which software satisfies specifications (McCall)

extent that it contains uniform notation, terminology, and symbology with-
zn itself and the extent that the content is traceable to the requirements
Boehm)

correctness of its description with respect to the objgctive of the soft- ;
ware as specified by the semantic description of the linguistic level it k.
defines (Dennis) ;

the coding of a computer program module shich properly and completely
implements selected overall system requirements (NSSC PATHWAY)

relates to degree to which software is free from design and program defects
(USA ISRAD)

the program is logically correct (Rubey)

AVAILABILITY

fraction of total time during which the system can support critical func- 3
tions (SADPR-85) ‘

error recover and protection (Liskov)

probability that a system is operating satisfactorily at any point in
time, when used under stated conditions (Gilb)

RELIABILITY

-~

includes correctness, testing for errors, and error tolerance (Ledgard)

the probability that the seftware will satisfy the stated operational
requirements for a specified time interval or a unit application in the
operational environment (JLC SRWG)

the probability that a software system will operate without failure for
at least a given period of time when used under stated conditions (Kosy)

extent to which a program can be expected to perform its intended functions
satisfactorily (Thayer)

ability of the software to perform its functions correctly in spite of
fatlures of computer system components (Dennis)

probability that a software fault does not occur during a specified time

Interval (or specified number of software operational cycles) which causes
deviation from required output by more than specified tolerances, in a 3
specific environment (Thayer) ¢4

measure of the number of errors encountered in a program (Myers)

RELIABILITY, Continued

probability that the system will perform satisfactorily for at least a
given time interval, when used under stated conditions (Gilb)

extent to which a program is debugged, can get whatever degree of
reliability one is willing to pay for (Casey)

the probability that the computer program will satisfactorily execute
{or at)]east a given period of time when used under specific conditions. 4
SAMSO .

tasks are broken into easily manageable modules and programming internal
to most modules remains constant (Whipple)

the degree of assurance that the software will do fts job when integrated
with the hardware (Light)

ACCURACY

where mathematically possible a routine should give an approximation that
is as close as practicable to the full machine precision for whatever
machine it is running on (Schonfelder)

extent that its outputs are sufficiently precise to satisfy its intended
use (Boehm)

the mathematical calculations are correctly performed (Rubey)

measure of the quality of freedom from error, degree of exactness
possessed by an approximation or measurement (Gilb)

ROBUSTNESS

routines should be coded so that when it is not possible to return a result
with any reasonable accurracy or there is danger of causing some form of
machine failure they should detect this and take appropriate actions
(Schonfelder) '

quality of a program that determines its ability to continue to perform
despite some violation of the assumptions in its specifications (Wulf)

program should test input for plausability and validity (Kernighan)

EFFICIENCY

A-4

measure of the execution behavior of a program (execution speed, storage
speed) (Myers)

execution time, storage space, # instructions. processing time (Kosy)

?ste:t)that software fulfills its purpose without waste of resources
oehm

the ratio of useful work performed to the total energy expended (Gilb)

EFFICIENCY, Continued

- reduction of overall cost - run time, operation, maintenance (Kernighan)
- extremely fast run time and efficient overlay capabilities (Richards)

- computation time and memory usage are optimized (Rubey)

PERFORMANCE

- the effectiveness with which resources of tha host system are utilized
toward meeting the objective of the software system (Dennis)

refers to such attributes as size, speed, precision; e.g., the rate at which
the program consumes accountable resources (Wulf)

CONCISENESS

- the ability to satisfy functional requirements with 2 minimum amount of
software (McCall)

- extent that no excessive information is present (Boehm)

UNDERSTANDABILITY

ease with which the implementation can be u.derstood (Richards)

reduced complexity, reduced redundancy, clear documentation/notation
(Goodenoughg

extent that the purpose of the product is clear to the evaluator (Boehm)

Documentation remains current (Whipple)
the program's intelligible (Rubey)

SELF-DESCRIPTIVENESS
CLARITY

- measure of how clear a program is, i.e. how easy it is to read, understand,
and use (Ledgard)

refers to the ease with which the program (and its documentation) can be
understood by humans (Wulf)

T TP g e GG (-2 AP,
. 4

e

CLARITY, Continued

-~ extent that it contains enough information for a reader to determine its
objectives, assumptions, constraints, inputs, outputs, components, and
status (Boehm)

LEGIBILITY

- extent that its functions and those of its components statements are
easily discerned by reading the code (Boehm)

MAINTAINABILITY

- ?easur§ of the effort and time required to fix bugs in the program
Myers

- ?ow e§sy it is to locate and correct errors found in operational use
Kosy

- ?xtent)that the software facilitates updating to satisfy new requirements
Boehm

- maintenance involves

(1) correction *o heretofore latent bugs

(2) enhancements

(3) expansion

(4) major redesign (Lieblein)

- ease with which a change can be made due to ;.

(1) bug during operation

2; non-satisfaction of users requirements

changing requirements

4) obsolecence/upgrade of system (McCall)

- probability that a failed system will be restored to operable condition
within a specified time (Gilb)

STABILITY

- the "ripple effect" or how many modules have to be changed when you make
a change (Myers)

- measure of the lack of percievable change in a system in spite of the
occurrence in the environment which would normally be expected to
cause a change (Gilb)

ADAPTABILITY

- how much time and effort are required to modify a software systém (Kosy)

- measure of the ease with which a program can be altered to fit differing
user images and system constraints (Poole)

ADAPTABILITY, Continued

- measure of the ease of extending the product, such as adding new user
functions to the product (Myers?

a measure of the effort required to modify a computer program to add,
change or remove a function or use the computer program in a different
environment (includes concepts of flexibility and portability) (SAMSO)

relates to ability of software to operate inspite of unexpected input
or external conditions (USA ISRAD)

EXTENSIBILITY

- extent to which system can support extensions of critical functions
(SADPR-85)

MODIFIABILITY

measure of the cost of changing or extending the program (Myers)

operational experience usually shows the need for incremental software
improvements (Goodenough)

extent that it facilitates the incorporation of changes, once the nature
of the desired change has been determined (Boehm)

quality of a program that reduces the effort required to alter it in
order to conform to a modification of its specification (Wulf)

internal (detailed design) characteristics of a program module are
arranged so as to permit easy change (NSSC PATHWAY)

use of HOL reduces programmer's task and human errors and allows smaller
units to be tested permitting easier de-bugging (Whipple)

the program is easy to modify (Rubey)

ACCESSIBILITY

- ?xtent)that software facilitates the selective use of its components
Boehm

FLEXIBILITY
EXPANDABILITY
AUGMENTABILTITY

- extent to which system can absorb workload increases and decreases which
require modification (SADPR-85)

%he a?ility of a system to immediately handle different logical situatfons
Gilb

FLEXIBILITY
EXPANDABILTTY
AUGMENTABILIT

Y, Continued j

- how easily the software modules comprising the system or subsystem
can be rearranged to change the system's functions without modifying
any of the modules (Kosy?

- ease of changing, expanding, or upgrading a program (Yourdon)
- the software modules must be usable in a variety of contexts (Culpepper)

- includes changeability; e.g., the ease of corrgc@ing bugs, maintenance
because of changing specifications, and portability to move to another
system (Ledgard)

- extent that software easily accommodates expansions in data storage require-
ments or component computational functions (Boehm) }

- attributes of software which allow quick response to changes in algorithms
(Richards)

- ability to reuse the software and transfer it to another processor (jncludes
reuse, adaptability, transferability and versatility of software) (Light)

INTEGRITY ;

- how much the operation of one software subsystem can protect the oper-
ation of another (Kosy)

- a measure of the degree of protection the computer program offers against
unauthorized access and loss due to controllable events (includes the
concepts of privacy and security) (SAMSO)

- relates to ability of software to prevent purposeful or accidental
damage to the data or software (USA ISRAD)

- ability to resist faults from personnel, the security problem, or from
the environment, a fault tolerance issue (Light)

- probability of system survival when subjected to an attack during a time
interval (Gilb)

SECURITY

- the ability to prevent unauthorized access to programs or data (Kosy)

- extent to which access to software, data, and facilities can be controlled
(SADPR-85)

- measure of the probability that one system user can accidentally or
intentionally reference or destroy data that is the property of another
user or inteiface with the operation of the system (Myers)

A-8

ey e

SECURITY, Continued

- relates to the ability of the software to prevent unauthorized access to
the system or system elements (USA ISRAD)

PRIVACY

- the extent to which access to sensitive data by unauthorized persons can
be controlled and the extent to which the use of the data once accessed
can be controlled (McCall)

- relates to the protection level for data in the system and the individual's
right to review and control dissemination of data (USA ISRAD)

USABILITY
OPERABILITY
- measure of the human interface of the program (Myers)

- ease of operation from human viewpoint, covering both human engineering
and ease of transition from current operation (SADPR-85)

- how suitable is it to the use (Kosy)

- software must be adequately documented so that it can be easily used
and maintained (Culpepper)

- extent that it is convenient and practicable to use (Boehm)
- the program is easy to learn and use (Rubey)

HUMAN FACTORS

- every program presents an interface to its human users/operators, by
human factors we refer collectively to all the attributes that make this
interface more palatable: ease of use, error protectedness, quality of
documentation, uniform syntax, etc. (Wulf)

- extent that software fulfills its purpose without wasting user's time
and energy or degrading their morale (Boehm)

- measure of the product's ease of understanding, ease of use, difficulty
of misuse, and frequency of user's errors (Myers)

COMMUNICATIVENESS

- extent that software facilitates the specifications of inputs and provide
outputs whose form and content are easy to assimilate and useful (Boehm)

[

STRUCTUREDNESS
MODULARTTY —

ability to combine arbitrary program modules into larger modules without
knowledge of the construction of the modules (Goos)

the software must consist of modules with well defined interfaces. Inter-
actfons between modules must occur only at those interfaces (Culpepper)

extent that it possesses a definite pattern of organization of its
independent parts (Boehm)

how well a program is organized around its data representation and flow
of control (Kernighan)

there is no interference between program entities (Rubey)

formal way of dividing a program into a number of sub units each having
? well)defined function and relationship to the rest of the program
Mealy

UNIFORMITY

module should be usable uniformly (Goodenough)

GENERALITY
REUSABILITY

measure of the scope of the functions that a program performs (Myers)

building programs from reusable software modules can significantly reduce
production costs (Goodenough)

how broad a class of similar functions the system can perform (Kosy)

standardized modules can be 1ifted from one program and used in another
without extensive re-coding or re-testings (Whipple)

degree to which a system is applicable_in different environments (Gilb)

TESTABILITY

A-10

instrumentation and debugging aids (Liskov)
minimize testing costs (Yourdon)

provision of facilities in the design of programs which are essential to
testing complex structures (Edwards)

extent that software facilitates the establishment of acceptance criteria
and supports evaluation of its performance (Boehm)

a measure of the effort required to exercise the computer program to see
how well it performs in a given environment and if it activally solves the
problem it was supposed to solve {SAMSO)

9 %
N

A

2.

B

e

s

%

.

T

e

mriet v —al nnar e ks 1y

TESTABILITY, Continued
- measure of our ability to test software (Light)

INTEROPERABILITY

- how quickly and easily one software system can be coupled t~ another (Kosy)

-. relates to how quickly and easily one software system can be coupled to
another (USA ISRAD)

CONVERTIBILITY

- degree of success anticipated in readying people, machines, and procedures
to support the system (SADPR-85)

MANAGEABILITY

- degree to which system lends itself to efficient administration of its
components (SADPR-85)

cosT

- includes not only development cost, but also the costs of maintenance,
%rain;ng, documentation, etc., on the entire life cycle of the program
Wulf

- there are three major categories of cost:
Economy of operation - relates to cost or operating system

Economy of modification - relates to cost of making changes to software to
meet new requirements or correct defects resulting in errors in require-
ments, design, and programming

Economy of development - relates to cost of entire development cycle from
identification of requirement to initial operation

- development and maintenance costs (Myers)
- implementation cost and operational cost (Gilb)

ACCOUNTABILITY

- extent that code usage can be measured (Boehm)

A-N

SELF-CONTAINEDNESS

- extent to which a program performs all its explicit and implicit functions
within itself (Boehm)

EXPRESSION

- how a program is expressed determines in large measure the intelligibility
of the whole (Kernighan)

VALIDITY

- relates to degree to which software implements the user's specifications
(USA ISRAD)

TIME

- two major categories of time:

Modification Time - relates to total elapse time from point when new
requirement or modification is identified the change is implemented
and validated

Development Time - relates to total elapsed time of development
(USA ISRAD)
- development time (Myers)
- what is the expected life span of system (Gilb)

COMPLEXITY

- relates to data set relationships, data structures, central flow, and
the algorithm being implemented (Richards)

- measure of the degree of decision-making logic within a system (Gilb)

DOCUMENTATION

- quality and quantity of user publications which provide ease of under-
standing or use (Myers)

PRECISION
- the degree to which calculated results reflect theoretical values (Gi1b)

g S ATV ARG R

I B AR IRt ot LN

TOLERANCE

- measure of the systems ability to accept different forms of the same

information as valid or withstand a degree of variation in input with-
out malfunction or rejection (Giib)

COMPATABILITY

measure of portability that can be expected of systems when they are
moved from one given environment to another (Gilb)

REPAIRABILITY

probability that a failed system will be restored to operable condition

within a specified active repair time when maintenance is done under
specified conditions (Gilb)

SERVICEABILITY

- degree of ease or difficulty with which a system can be repaired (Gilb)

A-13/A-14

]
3

APPENDIX B
DOCUMENTATION CHARACTERISTICS

SOFTWARE SYSTEM REQUIREMENTS SPECIFICATION AND REVIEW

This document describes the functional requirements and capabilities of the
software system. The data requirements, essentially from the view point of
the end user, are described. It includes the operational constraints and
considerations imposed on the software by the hardware system. It con-
stitutes the primary interface between the user/customer and the developer,
during both formal and informal reviews. As such, it is a primary reference
during the design and development of a software system. Because of this, any
revisions are continually made to keep it as current as possible.

STANDARDS AND CONVENTIONS

This document provides guidelines for the design and implementation of
computer programs. A standard is defined to be a rule which must be
followed to produce an acceptable product. A convention is defined to
be a recommended procedure which will enhance the quality of a program's
operation or its documentation. Many of the checklist type metrics
described are related to standards and conventions. The implications

of standards and conventions go beyond the production of correct and
reliable software in their goal of achieving a consistent, standardized
product which will be easier to maintain and understood by personnel

several years after delivery.

DOCUMENTATION PLAN

The Documentation Plan defines the purpose, scope, usage, content and

format of all deliverable documentation. When used in conjunction with

the associate contractor's Contract Data Requirements List (CDRL), it
provides direction for the preparation of CDRL items as well as establish-
ing acceptance criteria for appropriate documents. This document, by virtue
of its being referenced in the SOW and CDRL, becomes an integral part of
the contract. Its contents are:

B-1

.....

1 Chapter I --- Descriptions of documents which explain the technical ;
| aspects of software requirements, design and development,

and computer listings of the approved software routines

and data structure and data.

Chapter II -- Describes those documents which relate to the overall ¢
management of the contract.

Chapter III - Describes those documents which enable the contractor to
report items of interest to other agencies and organizations
as well as to the customer.

Chapter IV -- Describes those documents which deal directly with the
management, execution and results of the contractor's
official testing program.

Chipter V --- Presents descriptions of a11 documents and forms which
‘ allow the contractor to exercise proper configuration
Y control of all the software, data and documentation.

Appendix A -- Presents a discussion of document issuing, updating and
1 revision procedures.

Appendix B ~- Depicts the format of the computer usage forecast and
utilization report.

Appendix C -- Depicts all of the configuration control forms.

oo MANAGEMENT PLAN
- This document describes the managerial approach and procedures that will be
2 ‘ followed by the contractor to perform the contract tasks. It covers the

entire spectrum of activities from development, validation, to operation
and maintenance.

PRELIMINARY DESIGN SPECIFICATION

This document presents the implementation concepts at the subsystem level.
The performance characteristics of the software system are considered.

The components of the system described are as follows:

B-2

v . % T T
e W ——— e e — . -

-

% !

e ST AR

Scope

Overview of the System
Function Design

Data Base Design
Operational Design

RFQ Compliance

PRELIMINARY DESIGN REVIEW
Performance characteristics, changes to system specification, changes to

preliminary design, testing plans, and interface requirements are discussed
and approved at PDR. All of these items are documented for future reference
and required changes identified as action items for resolution.

DETAILED DESIGN SPECIFICATIONS (Parts I and 11)

The detailed design specification describes the design at the beginning of
the coding (build to - Part I) phase and at the end (built to - Part II).
The Part I specifications provides a subsystem description which illustrates
the design and operating concepts. Typically it covers:

Subsystem Description 3
Requirements Satisfaction 3
Design Concepts :
Operating Concepts

Function Description 1
Subsystem Input/Output

Subsystem Storage and Timing

Subsystem Limitations

It also presents a detailed description of each function in the subsystem
as follows:

Purpose

Description

Usage

Inputs

Processing

Outputs

Storage, Timing and Restrictions

B-3

3 j f Part II is an updated version of the Part I specifications plus the actual
1istings of the functions implementation.

CRITICAL DESIGN REVIEW

Involves review and approval of the Detailed Design (Part I), the test plan
procedures, and any problem reports and their resolutions. The problem
reports may involve requirements, design, and coding problems.

VALIDATION AND ACCEPTANCE TEST SPECIFICATION

Validation and acceptance testing is directed at the verification of satis-
faction of the contract baseline requirements. It provides the testing
strategy and design to provide a validation of the functional operation

of the software. A typical outline is as follows:

Introduction

Purpose

Scope

Reference

Testing Structure

Test Program Controls
Development Testing Summary
V & A Testing

Test Support

{ USER'S MANUAL/OPERATOR'S MANUAL

These documents provide the user/operator all of the information required

i to use the software and operate the system. They include descriptive data
about the Data Base, deck setups, commands, inputs, outputs, error messages,
recovery techniques, training and instructional information sources, and

] :l maintenance. The documents are handbook oriented and become an operational :
; tool during system operation. :

INTERFACE CONTROL DOCUMENT
The purpose of this document is to identify all system, subsystem, and

; function-level interfaces and describe all pertinent data associated with
them. It formally specifies them for review at COR and for implementation.
| B-4

CONFIGURATION MANAGEMENT PLAN

The primary objective of this plan is to establish and implement a formal
set of uniform procedures which will provide each subsystem developer with
the maximum latitude for the independent management of the software con-
figuration for which they are contractually responsible, yet, imposes the
necessary degree and depth of control for ensuring that the identity and
integrity of the entire software system is maintained. The document
describes the multiple configuration management baselines, the critical
events during the development timeline, and the configuration controls and
procedures employed during software development and testing.

DATA BASE MANAGEMENT PLAN

This plan describes the roles, responsibilities and schedules necessary

to insure accurate, complete and timely preparation and delivery of
COMPOOLS, Data Bases and Data Base User's Guides to support the software
system from initial design through operation. Included in this effort

is the development of the Data Definition Specification which describes the
data interfaces and structures at the element level and the Data Base
User's Guide which provides the user with descriptive information required
to use and change the Data Base.

PROBLEM IDENTIFICATION AND CORRECTION REPORTS

Design Problem Report (DPR)

The DPR is the primary means of documenting problems in the critical
design review material and transmitting that information to the appro-
priate contractor for corrections. DPR's will be superseded by the use
of the SPR upon approval of the proposed design documentation by the
customer.

Software Problem Report
The SPR will be utilized:

A. To report suspected problems in an existing software routine, Auxil-
jary COMPOOL, data base, and/or approved baseline documentation.

. et e———— e o

!
!
4§

B. At the option of the customer, to notify developers of new or
proposed design requirements and to authorize the initiation of
preliminary design review materials.

C. To report suspected problems in the system software and associated
documentation.

Document Update Transmittal (DUT)

The DUT is the primary means by which proposed changes to existing docu-
mentation are transmitted for review and approval of the customer. A DUT
package consists of the DUT form and change pages in preliminary form, and
is normally initiated in response to a DPR or SPR.

COMPOOL Change Request (CCR)

The CCR is utilized to request, coordinate, and control all changes to the
official COMPOOL. The CCR will be written in response to an SPR that
requires a COMPOOL change. (The CCR will be referenced on the MTM initiated
in response to the SPR.

Data Base Change Request (DBCR)

The DBCR is utilized to request, coordinate, and contro: all changes to the
official data base. It is the only method of coordinating data base changes
between the users of the data base and the agency responsible for implemen-
tation and maintenance. The DBCR is also utilized to close cut an SPR that
requires a data base change. (The DBCR will be referenced on the MTM
initiated in response to the SPR.)

Modification Transmittal Memorandum (MTM)
The MTM is utilized for the following:

A. To supply an explanation intended to close an SPR where no corrections
or revisions are required.

B. To transmit changes for incorporation into existing programs.

B

e

B
|

€. To transmit a new or modified routine for inclusion on an official
tape.
D. To indicate a need for revisions to documentation.

E. An explanation indicating that an accompanying COMPOOL change or
data base change is to close out an SPR.

TRAINING MATERIAL
Training can include lesson plans, exercises, and courses of instruction

covering both user and operator aspects of the system,

8-7

;
?
'
]
E
;
¢
!_,
&
f
g
;
a
[4
:_
i

$3ONpOUg d4eM3JOS [~§ d4nb}4

1-xbon
AL
N AIIAR W 1S A nIIAS (¥04) MITATY EILE]
e ¥ amen v st U WIS WILIG VIS AMINITK Y SINONIRN 3MLI0S T e
1SIND3Y IR ISV VIVD o
g IO 00400 o m.g
O WLLINGIWL NOLLYILIION © SINO4I SISATVIN TUWRLIOS o W3
2UVCN LEBIN0E @ SINOITM N304 TAVALIOS © WO IVNS 1 2000
SIN0JTU WITH0NI WOISIG ©
»WEw mIBEsve ISR WIISVE
NSLIVWRL ARG WWOTIVESS Y 100084 AWLIOS 7 WIS GIVIN 7 SINBGUINDIY TVALIOS 7 SMITIV
SINBGMINDZY 1S3 ©
(0L 17108) 11 1¥vé JdS WBIS30 OINVINW ®
73dS SINIMIMINON ISVE WIVO ©
INBII00 INVSUIINI YOIVU3HO ©
ANINN00
IOINGD TWAMINT @
e Susn ©
w&w&m E!y_smwu..
ViV ASYNINI)
13043 1531 CIvAEANE O (1 1yvd) 334S WSISI0 AMVNINITRNG WOLIVINEIN0S
N4 INBOIVIM ove Sﬂ .
v
190434 ISIL NIUSASHAS © W OISVE VIVG ©
Wi NOLIVANIMRIOD ©
W 1531 CUWSALNT @ : SNOLLNIANDD ¥ SCUVOWIS ©
INDTVNWL ©
{01 11108) 11 1¥vé 23S W153G 0I1V1I0 ® e
SNOLIVOI4103dS SWOILVOIS19345
(SNAGIN0NS 3 SIS 1SIL) 3345 1531 TMLdIIW ¥ NOLLVOITVA ® W3LSAS SN
3000 3OS @ TAVALIOS ® 0SS ©
NO11SISINL MI1SIE NIISAS SISA VW
9IN1LSIL 9n830 BISA WIS WOLLYIL41334S
WO1SIARY NOTIVN93LN] SINMRINDY SINBNNINDN 00NN
NOLIN30 IS WIISASHNS ANTHIJ0TIAI0 3 3000 0311V AYYNIRI TR WISAS VRIS WRISAS SHDLLINN
MSLLYTIVISNT
NN
“N911Ve340 ‘IS3L NAUSAS INHII0NE wIsu WLLINIIN
b *NOILV¥3LNI SISV
WILINER NO1IVATVAD ININ01IAI0 WLIVILING
©
|
@

.~

Table B-1 Cross Reference Between Identified Documents and References
Where They are Described

Software System Requirements
Specification

Software Requirements Review

Standards and Conventions

Documentation P]an

Management Plan

Preliminary Design
Specification

Preliminary Design Review

Detailed Design
Specifications

Critical Design Review

Validation and Accep-
tance Test Specifi-
cation and Review

User's/Operator's
Manual

Interface Control
Document

Configuration Management
Plan

Data Base Management
Plan and User's Guide

Problem Reports

Training Material

1670

B-9/8-10

. N oy
7/”5&%(1/&/6 P(g&g ?A Zm’/f UM

i . e

- AT, s

MISSION
of
Rome Atr Development Center

RADC plans and conducts research, exploratory and advanced
development prograns in comman., control, and communications %
(c3) activities, and in the ¢’ areas of information sclences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveilllance of ground and aerospace objects, intelligence
data collection and handling, information system technology,
lonospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility. 3
3

1050 A 9P 5 ¥ IS I W AF I A IS LA XA D

Printed Ly
United States Air Force
Hanscom AFB, Mass. 01731

