
RADC-TR-77-369, Volume I (of three)

Final Technical Report

November 1977

FACTORS IN SOFTWARE QUALITY
Concept and Definitions of Software Quality

Jim A. McCall
Paul K. Richards

CD Cene F. Walters

General Electric .ompany

Approved for public release; distribution unlimited.

DOG
ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

'r4 3 197)

This report has been reviewcd by the RADC Information Office (01) and is
releasable to the National Technical Information Service (NTIS). At NTIS it
will be releasable to the general public, Including foreign nations.

RADC-TR-77-369, Vol I (of three) has been reviewed and approved for
publication.

APPROVED:

JOSEPH P. CAVANO
Project Engineer

APPROVED: (2 /3
ALAN R. BARNUM, Assistant Chief
Information Sciences Division

FOR THE COMMflANDER:

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (ISIS) Griffiss AE NY 13441. This will assist us in maintaining
a current mailing list.

Do not return this copy. Retain or destroy.

SCCURT SIFICATION OF THIS PAGE (35..., Date Entered)

REOR SameENA~O PAGE .. SWOR tIML910

I. #iStRIU NO.EEN (.1 tNl ReCTALG Nt)

47. TITESUTI S TATEMENT "'nor ththtoiet~di lckN fdln e eot

'rACR PrSotWRQAY EngineerS

Softwaretion QfSftaeuality .rwmn WW ,W Br

Sofwar Measurement

al hiercical defnto ofj-7--#1 fatr fetnotaeqaiywsciled

a f t e r a n e x t e n s i l i e a t r s e r h 7 6h e' d e i i i o o e r h c m t e a g

orened carterstis o h oetlvlo h otaeoineat
oIrs, metrics IO were-ADAON0 develoAe thatNT PRouldT Teidpneto hrgamn Ag-

uage.~~~~~~~~~~~~AE Ths meaurbl crtei weecletdadvaiae snualAi
Fonrdal bses.Ahndokwa eertdtatwl b sfu oAioc

p~~SCRT ILSSCTO O. TONROLIN PAGEC (NAME. Data ADRES'2.RPOT eI -

ssuCINv CLMSPICATIOM OF THIS p*sffib bet Raft4

acquisition managers for specifying the overall qu&Uty of a software systes.

lohI w -Kf D V

JUT~flIIIN -J JAN 23 1918

1SUIUTION/AVAILABILITY "00

ULSSIIED
SILCURITY CLASSIFICA7ICw OP THIS PA@64'Uhfm Date Rawe

PREFACE

This document is the final technical report (CDRL A003) for the Factors in

Software Quality Study, contract number F030602-76-C-0417. The contract was
performed in support of the U.S. Air Force Electronic Syst s Division's

(ESD) and Rome Air Development Center's (RADC) mission provide standards

and tech'nical guidance to software acquisition man rs.

The report was prepared by J. 1cCaJ.. ichards, and G. Walters of the
Sunnyvale Operations, ion Systems Programs, General Electric

Company. Signi nt contributions were made by A. Breda, S. Reiss, and

R .C o l
e n s o

.

Tech cal guidance was provided by J. Cavano, RADC Project Engineer and

C rc tatn A. French, ESD Technical Monitor.

The report consists of three volumes, as followsj

Volume I Concept and Definitions of Software Quality

Volume 11 Metric Data Collection and Validation,

Volume III Preliminary Handbook on Software Quality for an)

Acquisition Manager,

The objective of the study was to establish a concept of software quality

and provide an Air Force acquisition manager with a mechanism to quantita-

tively specify and measure the desired level of quality in a software
product. Software metrics provide the mechanism for the quaptitative specifi-

cation and measurement of quality.

This first volume describes the process of developing our concept of

software quality and what the underlying software attributes are that

provide the quality, and defines the metrics which provide a measure of

the degree to which the attributes exist.

t/i

i/t

F IJ

TABLE OF CONTENTS

Section Page
1 INTRODUCTION/EXECUTIVE SUMMIARY. 1-1

1.1 Task Overview 1-1
1.2 Task Objectives. 1-1

1.3 Acknowledgment of Previous Work 1-4

1.4 Contribution to State of Knowledge 1-4
1.5 Conclusions of the Study. 1-5
1.6 Further Research 1-8

2 DETERMINATION OF QUALITY FACTORS. 2-1

2.1 Definition of Terms. 2-1
2.2 Identification of Quality Factors in the Literature 2-3

2.3 The Process of Grouping Candidate Factors 2-3
2.4 Results and Rationale After Grouping Quality Factors 2-6

3 DEFINITIONS OF QUALITY FACTORS. 3-1

3.1 Conceptualization of Factors fti Software Quality 3-1
3.2 Relationship of Factors to Air Force Applications 3-4
3.3 Relationship of Factors to Life-Cycle Phases 3-10

*4 DEFINITION OF CRITERIA. 4-1

4.1 Defining Factors with Criteria. 4-1
4.2 Relationship Between Factors 4-6

5 EXAMINATION OF SOFTWARE PRODUCTS THROUGHOUT THE
LIFE CYCLE PHASES. 5-1

5.1 Software Products as Sources for Metrics. 5-1

5.2 Range of Software Pt~oducts 5-4

TABLE OF CONTENTS (Continued)

Section Page

6 DEFINITIONS OF METRICS. 6-i1
6.1 Development of Metrics. 6-1

6.2 Description of Metrics. 6-5I
6.3 Summarization of Metrics. 6-71

REFERENCES. Ref-i

BIBLIOGRAPHY. t... Bib-i

APPENDIX A: FACTORS IN THE LITERATURE WITH DEFINITIONS A-1

APPENDIX B: DOCUMENTATION CHARACTERISTICS B-1

LIST OF FIGURES

Figure Number Title Page

1.2-1 Specifying and Measuring Quality Software 1-3
2.1-1 Relationship of Software Quality to Cost 2-2

3.1-1 Allocation of Software Quality Factors to
Product Activity 3-2 -,

4.1-1 Relationship of Criteria to Software Quality
Factors 4-2

5.1-1 Impact of Error 5-2
5.1-2 Concept of Metrics 5-3

6.1-1 Choosing a Metric 6-2
B-1 Software Products B-8

LIST OF TABLES

Table Number Title Page
2.2-1 Candidate Software Quality Factors Extracted

from the Literature 2-4
2.2-2 Sources for Software Quality Factors 2-5

2.4-1 Grouping of Software Quality Factors to Achieve
Unambiguous Set 2-7

3.1-1 Definition of Software Quality Factors 3-5

3.2-1 Categorization of Software in Air Force Systems 3-6

3.2-2 Importance of Software Quality Factors to
Specific Air Force Applications 3-8

3.3-1 The Impact of not Specifying or Measuring
Software Quality Factors 3-11

4.1-1 Criteria Definitions for Software Quality Factors . . . 4-4

4.2-1 Impact of not Applying Criteria In Specifying
Software Quality 4-7

4.2-2 Effect of Criteria on Software Quality Factors 4-8

4.2-3 Relationships Between Software Quality Factors 4-10
5.2-1 Reference Documents 5-5I 6.2-1 Software Quality Metrics 6-7

6.3-1 Summarization of Metrics 6-72
A B-1 Cross Reference Between Identified Documents and

References Where They are Described.........B-9

v

EVALUATION

The Air Force is constantly striving to improve the quality of its
software systems. Producing high quality software is a prerequisite for
satisfying the stringent reliability and error-free requirements of com-
mand and control software. To help accomplish this, a more precise def-
inition of software quality is needed as well as a way to derive metrics
for quantifying software for objective analysis. This effort was initi-
ated in response to the need to better understand those factors affecting
software quality and fits into the goals of RADC TPO No. 5, Software Cost
Reduction in the area of Software Quality (Metrics). General Electric
classified over the complete range of software development both user-
oriented and software-oriented characteristics which were related to Air
Force applications and life-cycle phases. Programming-language independ-
ent metrics were defined using Air Force data bases. Finally, formal
methodology for the validation of the metrics was developed and used.

The significance of this work is that through the establishment of
quality measurement a beneficial impact will occur on the evaluation and
implementation of a software product at each stage of development. Trade-
offs between technical value and cost will be more easily understood. In
addition, Air Force acquisition managers, with the aid of a handbook de-
livered as part of this contract, will be able to specify requirements to
software developers more completely and then determine whether those re-
quirements are being satisfied early enough for corrective action. As
quality measurement becomes more vigorous in the future, the Air Force will
be capable of establishing software product and service standards for
itself and Its contractors.

JSPH P. CAVANO
Project Engineer

*1

vi

SECTION 1

INTRODUCTION/EXECUTIVE SUN44ARY

1.1 TASK OVERVIEW

The Factors in Software Quality task was conducted in support of the

U.S. Air Force Electronic Systems Division's (ESO) and Rome Air Development

Center's (RADC) mission to provide standards and technical guidance to soft-

ware acquisition managers. ESD sponsored the task and RADOC provided

technical project management.

The impetus for this effort and other related work in the analysis of soft-

ware quality can be traced to recommendations for such research made jointly

by DOD, industry, and university .fepresentatives at the Symposium on the High
Cost of Software IWULFW731 in September, 1973, at the Joint Logistics Commanders

Electronic Systems Reliability Workshop (by members of the Software Reliability

Working Group) [FIND75] in May, 1975, and more recently by the DOD R&D Panel.

1.2 TASK OBJECTIVES
In the acquisition of a new software system, a major problem facing a System

Program Office (SPO) is to specify the requirements to the software developer,

and then to determine whether those requirements are being satisfied as the

software system evolves. The parameters of the specification center about the

technical definition of the application and the software role within the over-

all system. Following this, a realistic schedule and costs are negotiated.

While the application functions, cost, and schedule aspects of development

can be objectively defined, measured, and assessed throughout the development

of the system, the quality desired has historically been definable only in

subjective terms. This occurs because the SPO has no quantifiable criteria

against which to judge the quality of the software until he begins to use the

system under operational conditions.

1-1

As represented in Figure 1.2-1, the objective of this study was to provide

guidelines in how to objectively specify the desired amount of quality at

the system requirements specification phase. By levying measurable quality

criteria on the developer, the SPO will be able to subsequently evaluate the

quality of the software not only when the system becomes operational, but

also as each phase of the proj. .t is completed. As a result of corrective

actions the SPO may choose to invoke, these early measurements can signifi-

cantly reduce impact on life cycle cost and schedule.

The figures drawn with solid lines represent the questions the SPO can now ask

and can obtain objective answers. The figures drawn with dashed lines repre-
sent areas which cannot presently be addressed. The objective of this task was

to provide the mechanism to answer the question of how good the software is
more precisely and earlier in the life cycle. The results of this task

provide the basis for the SPO to specify and evaluate the software quality

quantitatively, as is illustrated with the dash-lined figures.

The approach taken to quantify software quality is summarized as follows:

I., Determine a set of quality factors which jointly comprise software

quality. (Section 2,3)

2. Develop a working, hierarchical definition by identifying a set of

criteria for each factor. (Section 4)
3. Define metrics for each criterion and a normalization function which

relates and integrates the metrics for all of the criteria of a
factor to an overall rating of that factor. A scaling of the metrics'

contributions to this rating will result in a figure of merit for

each factor. (Section 5,6,7)

4. Validate the metrics and normalization functions by utilizing the

historical data of two Air Force systems. (Section 7,8)

5. Translate the results of this effort into guidelines that can be used

by Air Force Program Offices to specify the quality of the software

product required and to measure to determine if the development effort

is leading toward that level of quality. (Volume III)

1-2

-IW -rm mum~ ,NT W.- --

CY

4A 4D

0 La

La Lij IA

Iu

LL9L vi1

In taking this approach, we established a comprehensive framework which
facilitates the incorporation of future efforts and refinements to thg

metrics and their correlation to the quality factors. Also, recoanendations
are made on how the metrics should be collected.

The results of this task provide the SPO with a mthodology for specify-

ing the quality he wants in the software and the prOtedures for determining
if he is realizing the level of quality that was specified. By achieving

this goal, the SPO will have objective insight into the software quality

throughout the acquisition process.

1.3 ACKNOWLEDGMENT OF PREVIOUS WORK
In establishing the framework for this study of factors in software quality,
we are attempting to incorporate the work that others have done previously

in this area. An extensive literature search was conducted. The references

are listed following the Appendices and the major references are abstracted

in the bibliography.

We used other RADC sponsored efforts, particularly those in the area of
reliability and maintainability, as input to this task. The planned approach

was to concentrate in those areas where little work has been done.

1.4 CONTRIBUTION TO STATE OF KNOWLEDGE

This study has been directed at expanding upon the current state of knowledge

about software quality. The following aspects of our approach are identified

as expansions to the work to date:

e Provide a global view of software qdality - most previous efforts have

evaluated subsets.
* Provide a formal methodology for the validation of metrics.

* Relate the quality factors to Air Force applications.

s Relate the quality factors to the life cycle phases.

1-4

* Define metrics which are programming language independent.

9 Identify metrics which can be applied early in the development

phase (during requirements analysis and design).

e Attempt to choose criteria that are as independent and unambiguous
as possible.

* Attempt to quantify the correlation of subjective criteria to the

quality factors.

e Identify automated metric data collection tools.

* Provide a framework for factors in software quality that can be used

in future research efforts.

1.5 CONCLUSIONS OF THE STUDY

The effort represents a conceptual study investigating the factors of soft-

ware quality. Our intent was to build upon the significant contributions

of other efforts in recent years related to understanding software quality.

The main thrusts of this study were the formulation of an SPO-oriented concept

of factors in software quality and the establishment and application of

metrics oriented toward the early phases of development. The measures are

indicators of the progress toward the desired quality. They also give

an early indication of the quality factors that are not realizdd~n testing

or during initial operation but have a large cost impact later in theiife

of a product, e.g., portability, reusability, or interoperability.

The complete procedure of establishing a framework for factors in software

quality, defining the factors, relating them to Air Force applications and

the life-cycle phases, establishing criteria, defining them, using them

to identify the relationships and tradeoffs between factors, defining metrics,

establishing their relationship to the quality factors, and validating the

relationship was an iterative process. It has been described in this

report in a sequential manner only for clarity and simplicity. It will

continue to evolve as more experience is gained through the application of

metrics to more software developments.

1-5

The framework established is flexible and expandable. It provides a complete

view of software quality. It provides a mechanism for specifying and measur-

ing the quality of a software product. The following benefits can be
realized from this conceptualization of factors in software quality:

* it is a simple, comprehensive tool for an acquisition manager to use -

guidelines for its use are provided in the form of a handbook.

(Volume III)

e it provides the acquisition manager with a life-cycle view of his

software product, forcing consideration of such factors as main-

tainability and portability in the system specification phase.

* it provides a mechanism for performing high-level tradeoff studies

early in the life cycle (requirements analysis, performance require-

ments analysis, and preliminary design) to help in determining the

product's required capabilities and performance characteristics.

e as the software development process technology advances and new

development techniques are introduced, the metrics can easily and

logically be modified or added.

The set of metrics established provides a comprehensive coverage of the char-

acteristics of a software product. As they exist, they represent an excellent

guideline for testers, quality assurance personnel, and independent verifi-

cation and validation efforts. They also incorporate an extensive composite

of a number of texts on good programming practices and style.

The specific results of the validation phase of the study allow the conclusion

that software metrics are a viable concept. The regression analysis showed

significant correlation for some metrics with related quality factors.

Quantitative metrics can be applied to intermediate products of the soft-

ware development which exist as early as the requirement analysis. As

more disciplined, software engineering approaches are taken toward the

development of software, the more applicable quantitative metrics become.

1-6

The establishment of generalized precise normalization functions was beyond

the scope of the study. The limiting factors were that the sample of mod-

ules and systems was not large enough, general enough, nor had the two

systems, which were used, been through all of the quality factors related

activities (e.g., moved to another environment, linked to another system,

etc.). The sample was representative of two large-scale developments so
the experience of applying the metrics contributed considerable knowledge

to the software quality technology. One other'limiting factor was that

the measures were biased high because the metrics were applied after the

two systems had been delivered. So, even though the metrics were applied

to software products delivered during the development they had been updated

to reflect all of the changes and fixes made to the system as a result of

testing and operational experience. A definite recommendation of this

study then is to apply the metrics during the actual development of a soft-

ware system to further validate their relationship to the resulting quality.

In deriving the set of metrics, the number of metrics became a significant

consideration. The concept of applying the same metric successively

during the development phases helped contain the problem of an unwieldy

number of metrics. The fact that many of the metrics can be collected

automatically assists in making the present set more manageable.

A large number of existing software support tools were identified that pro-

vide metric data collection capabilities. Significantly, several tools

were identified, and some applied, which automate the collection of metrics

in the requirements analysis and design phases of the development. Several

other tools can be developed. Because many tools do exist that provide a

subset of the overall capabilities of data collection required, an integrated

approach must be developed to effectively collect metric data in any soft-

ware development environment.

1-7

Some very practical, beneficial results from the application of the metrics in

their current form have been Identified. When the metrics are applied to the

set of software products available at various times during the development,

they can be used as indicators. Low measurements identify modules or charac-

teristics which should be investigated and the scores justified. The meth-

odology for regression analysis described can be used in conjunction with

this metric indicator concept. The analysis provides an indication of what

specific software characteristics vary in a particular environment relative

to variations in software quality, i.e., which characteristics vary signi-

ficantly and cause variation in the software quality.

This information is beneficial to software developers in writing their

design and programming standards and conventions. It is also beneficial

to QA personnel in identifying areas or modules requiring attention during

development and concentrated testing.

An SPO can use the quantitative nature of the metrics and the framework

of the software quality factors to specify the required level of software

quality quantitatively. By specifying the software quality in terms of

the metrics, the SPO is specifying the desired characteristics of the

software. The characteristics are essentially independent of method or

philosoply of software development so there are no unjustified restrictions

placed on the software developer.

The software quality metrics represent the introduction of a more disci-

plined engineering approach to software quality assurance. They provide

a quantitative tool for the inspection and evaluation of software products

during the development phase.

1.6 FURTHER RESEARCH
Several areas for further research were identified during this effort.

1-8

The exercise of determining the set of metrics revealed several areas requiring

further investigation. Within the transition phase, the two quality factors,

reusability and interoperability, are relatively untouched in the literature.

Little research has been conducted to determine what constitutes reusability

and interoperability or what software attributes provide these qualities.

It is felt that further research in these areas could have potentially high

life-cycle cost benefits.

A second area where we feel further research would be beneficial is in

measuring various aspects of efficiency. Because many of the attributes of

efficiency have a negative effect on all other quality factors, it is an

important consideration of the software quality concept. Most current

measures of efficiency are dynamic measures requiring execution of the

code. In deriving some static measures we realized that an integrated

set of both dynamic and static measures are necessary to judge the degree

of efficiency. Further work is required to develop this type of measure.

Further research, application, and experience are required to formalize

the normalization functions. This report has stressed the methodology

of deriving and validating the normalization functions to encourage the

application of these techniques to other software developments. Use on

future developments will add to the data base for the establishment of

generalized normalization functions, as well as provide indication to the

SPO and software developer of their progression toward a high quality

product. It will also contribute to the error data collection technology

and experience.

As previously mentioned, the metrics should be applied during a software

development to obtain more realistic measures. It is also recommended

that the metrics be applied to specific projects involving (1) software

conversions from one environment to another to validate the metrics

related to portability, (2) efforts linking two systems to validate the

interoperability metrics, and (3) efforts upgrading a system to validate

the reusability metrics. These efforts would not only provide a chance

1-9

for validation of the particular metric$ but also give considerable insight
into additional metrics in these high-payoff, late-lfe-cycle-impact
quality factors.

1-10

SECTION 2

DETERMINATION OF QUALITY FACTORS

2.1 DEFINITION OF TERMS

To be consistent in our determination of factors, criteria, and metrics, we

first established a set of working definitions. This was done in order to

provide a framework from which to more objectively judge candidate quality

factors. The working definitions are as follows:

@ Software: the programs and documentation associated with and result-

ing from the software development process.

* Quality: a general term applicable to any trait or characteristic,

whether individual or generic, a distinguishing attribute which indi-

cates a degree of excellence or identifies the basic nature of

somethi ng.

* Factor: a condition or characteristic which actively contributes to

the quality of the software. For standardization purposes, all factors

will be related to a normalized cost to either perform the activity
characterized by the factor or to operate with that degree of quality.

For example, maintainability is the effort required to locate and

fix an error in an operational program. This effort required may be

expressed in units such as time, dollars, or manpower. The following

rules were used to determine the prime set of quality factors:
- a condition or characteristic which contributes to software quality,

- a user-related characteristic,
- related to cost either to perform the activity characterized by

the function or to operate with that degree of quality,

- relative characteristic between software products.

The last rule, that a factor is a relative characteristic between software

products, requires a brief explanation. Figure 2.1-1 illustrates the relation-
ship between a factor and the cost to achieve different levels of that quality

factor. As an example, we will assume the curve describes the cost to level-of-

quality relationship for the factor, reliability. A much lower level of reli-

ability, which costs less to achieve, may be as acceptable to a management

2-1

COST$

MIS

1 Rating of Factor 0

Figure 2.1-1 Relationship of Software Quality to Cost

information system (MIS) acquisition manager as a much higher level is to a

command and control (C2) manager due to the nature of the applications. So,

while the C2 final product may have a higher degree of reliability according

to our measures, it is no more acceptable to its user than the MIS system with

its lower reliability is to its user. This relationship is further illustrated

in Section 3 where the quality factors are related to specific Air Force

applications.

a Criteria: attributes of the software or software production process

by which the factors can be judged and defined. The following rules

were applied to the determination of criteria:

- attributes of the software or software products of the development

process; i.e., criteria are software oriented while factors are

user oriented,
- may display a hierarchical relationship with subcriteria,

- may affect more than one factor.

o Metrics: measures of the criteria or subcriteria related to the
quality factors. The measures may be objective or subjective. The
units of the metrics are chosen as the ratio of actual occurrences

to the possible number of occurrences. Metrics will be discussed

further in Section 6.

2-2

I-

2.2 IDENTIFICATION OE QUALITY FACTORS IN THE LITERATURE

*A literature search was conducted to assemble all current definitions and to

identify any applicable discussions with respect to software quality factors.
Table 2.2-I summarizes the list of terms extracted from the literature and

represents the baseline of potential or candidate quality factors referenced
in this study.

This list of approximately 55 terms was used as the starting point for deter-

mining the prime set of factors. The next task was to apply the definitions

given in Section 2.1 to the list of candidate factors. The intent of this

exercise was to put into place a standard by which to judge terms with regard

to consistency, redundancy, suitability, etc. The results of applying the

definitions to the candidate terms is discusted in further detail below, where

the rationale for terms such as understandability, modularity, and complexity

is explained.

In Table 2.2-2 we provide a brief cross-reference of definitions and authors

quoted. The total set of definitions analyzed in this report appears in

Appendix A where work by various researchers in the software community are

quoted or paraphased.

2.3 THE PROCESS OF GROUPING CANDIDATE FACTORS

The list of potential factors established in Table 2.2-1 was known to contain

obvious redundancy and some terms which do not comply with all of the rules

identified for the prime set of factors. It was also felt that the list was

far too long to represent a manageable set of factors. For this reason, some

guidelines were generated to aid in grouping the factors into a smaller, con-

cise number of entries which still cover the comprehensive set of software

quality factor characteristics desired. The guidelines used were:

e User-oriented terms are potential factors; software-oriented terms
are potential criteria.

e Synonyms that are Identified are grouped together.

2-3

iable 2.2-1 Candidate Software Quality Factors
Extracted from the Literature

PORTABILITY AUGMENTABI LITY

TRANSFERABILITY INTEGRITY
ACCEPTABILITY SECURITY
COMPLETENESS PRIVACY

CONSISTENCY USABILITY

CORRECTNESS OPERAB IL ITY

AVAILABILITY HUMAN FACTORS
RELIABILITY COMMUNICATIVENESS
ACCURACY STRUCTUREDNESS

ROBUSTNESS MODULARITY

EFFICIENCY UNIFORMITY
PERFORMANCE GENERALITY
CONCISENESS REUSABILITY

UNDERSTANDAB I LITY TESTABILITY

SELF-DESCRIPTIVENESS INTEROPERABILITY

CLARITY CONVERTIBILITY

LEGIBILITY MANAGEABILITY

MAINTAINABILITY COST

STABI LITY ACCOUNTABILITY

ADAPTABILITY SELF-CONTAINEDNESS

EXTENSIBILITY EXPRESSION

MODIFIABILITY VALIDITY

ACCESSIBILITY TIME

FLEXIBILITY COMPLEXITY

EXPANDABILITY
PRECISION DOCUMENTATION

TOLERANCE REPAIRABILITY

COMPATABIL ITY SERVICEABILITY

2-4

AiI1I~3~I!-T

A1 11 NI'33

AIiB 9l 0 - -10 0
Ail ig1sn3d

0 - -ol

La. S3NaOf)i)nmis 0

S3VINI Nv~f *---------- -0

*~ AlISV48IdO

Z-A-~l3S- -- T I ;--+--

- AilgVanVJX 0. -

go AI.113I. 0
3: I Iflivis"56W - -.

owii -- -0

@4- - 00~higui~ * 00.

ev 0 -. * 0 ---

4 Ui1SV IVII
AI!130 0 -

C-.. SS3WAiiI4iiS30-313S -- -

* -T A1I19 WbIS?3ON1 * 0 _

-~ -. _ __ _ o _

0 ~SS3N1flO -.

73hi -a ~ - - £tli
0 0 0 1* 0 * 1 1*

____ 1 I iii I 0 0 :jzi
A0fII4 Od* '03*

i2-5

@ Logically similar terms are grouped together.

s Required a manageable number of groups - the prime set of factors

should be small in number to maintain a simple framework in which

the SPO can work most effectively.

A central issue in the grouping process was to identify only user-oriented terms

as potential factors. This has the advantage of defining for the SPO a set of

user-oriented terms for specifying the relative amount of quality desired in the

product. It also enabled us to significantly reduce the number of potential

factors. In defining software-oriented terms as criteria, then, we also could
establish more realistic standards by which to judge the final software product

which will be, in turn, easier to measure.

2.4 RESULTS AND RATIONALE AFTER GROUPING QUALITY FACTORS

Table 2.4-1 provides the results of the grouping process. The underlined terms

were chosen as the group names. They were chosen because they were the most

descriptive or, if a hierarchical relationship existed in the group, the higher

member was chosen.

Three groupings were determined not to be candidates for a quality factor:
Understandability, Complexity, and Modularity. Complexity and modularity are

software-oriented rather than user-oriented terms. The user is interested

in such things as how fast the program runs (efficiency) and how easy it is

to maintain (maintainability), not how modular it is. Modularity is not an

end item quality or performance characteristic. Since it is software oriented,

it contributes to several of the candidate quality factors, and is therefore

a candidate for a criterion. Similarly, complexity is a candidate for a

criterion (simplicity will be used to connote a positive attribute).

j Understandability was initially identified as a quality factor. Upon further

analysis (relating factors to Air Force applications and to life-cycle phases),
we decided that it was not quantifiable. Measuring how well software is under-

stood is extremely difficult and associating a cost would be even more difficult.

The reasons for wanting to understand a program really are related to using,
maintaining, or changing the program. Thus, the quantifiable attributes of

understandability will be used as criteria of other factors.

2-6

Table 2.4-1 Grouping of Software Quality Factors
to Achieve Unambiguous Set

CORRECTNESS UNDERSTANDABILITY PORTABILITY

Acceptability Clarity Transferability

Completeness Legibility Compatability

Consistency Self-Descriptiveness

Expression

Validity

Performance

RELIABILITY MAINTAINABILITY REUSABILITY

Availability Stability Generality

Accuracy Manageability Utility

Robustness Conciseness

Precision Repairability

Tolerance Serviceability

EFFICIENCY FLEXIBILITY INTERODERABILITY

Adaptability

Extensibility

Accessibility

Expandability

Augmentability

Modifiability

INTEGRITY COMPLEXITY

Security
Privacy

USABILITY TESTABILITY MODULARITY

Operability Accountability Structuredness

Human Factors Uniformity

Communicativeness Self-Containedness

Convertibility

DOCUMENTATION COST TIME

2-7

Integrity, security, and privacy were grouped together. Integrity is inter-

preted as the ability of the software to protect against unauthroized access -

software integrity. Another conmmon interpretation, data base integrity, (the

ability of the software to maintain an accurate data base in a multiaccess

environment) falls under the major category of reliability. Privacy is the

ability to control the use of data. An authorized person may access data and

then use it in an unauthorized manner. To date, little software has been

developed for providing the capability to control usage of data. In this

respect, privacy is outside the scope of this study. We will maintain it as

a part of the quality factor called integrity for future expansion.

Two other groupings, cost and time, provide the baseline for evaluating the

factors. It costs more and takes more time to develop a more reliable system.
A system that is not flexible costs more and takes longer to change. Cost

and time, therefore, were not considered candidates for quality factors, but
form the basis for correlating metrics with the various levels of quality.

Documentation is one of the vehicles for providing the various qualities.

Specific documents enhance the maintainability, others the testability,

and so on. Documentation was not considered a quality factor but a product

of the software development process which can be evaluated to obtain a
measure of quality.

2-8

SECTION 3

DEFINITIONS OF QUALITY FACTORS

3.1 CONCEPTUALIZATION OF FACTORS IN SOFTWARE QUALITY

Through evaluation and analysis of the groupings of factors, three different

orientations that one could take in looking at a delivered software product

were recognized. These three orientations took on added significance because

of their relevance to an SPO. The SPO's interaction with a delivered soft-
ware product can be described in terms of only three distinct activities as
foll1ows:

Software Product Activities

* Product Operation

e Product Revision

* Product Transition

This scheme was adopted as the framework about which we would further evolve

our software quality research. Figure 3.1-1 illustrates the concept derived.

The questions in parentheses provide the relevancy or interpretation of the

factors to an SPO.

To date, the major emphasis has alays been on initial product operation.

Specifications and testing only stress factors such as the correctness or

reliability. There is, however, a growing recognition of the longer-term

implications in our software development, such as the flexibility or main-

tainability of the software product. Analyses of life-cycle costs have shown

that the costs of maintenance and redesign exceed the cost of initial develop-

ment [LIEBE72] and that the cost of fixing errors after a system is operational

is up to 30 times greater than if the error was caught during system testing.

Several software developers state as policy a rule of thumb that if a mod-

ification requires X% of the lines of code to be revised, a total redesign is

undertaken; X varies between 20 and 50 percent. All of these facts point to

the conclusion that our software systems are not designed and developed with

the required emphasis on maintainability, flexibility, portability, etc.

3-1

0--

-6-

641C i 6i 1 -
seE>DC lc 4

w- V) u6

664-

-J 4-

6-4) .j s-.

UJU

8.4.

b-4J

LL..

3-2a

Significant impacts to the total cost of a system during the life of the

system can be realized because of the following reasons:

* maintenance and operations costs are very high

* major program modifications are required

* there is a change of mission

* a change occurs in the hardware

* there is a change of users, either a new Air Force user or

new contractor

An occurrence of any of the above events usually requires redesign, recoding,

and retesting. The size of the impact of one of these events on total system

cost is a function of the quality factors associated, in particular, with

product revision and product transition. In order to minimize the impact,

these factors must be taken into account in the initial program development.

The Air Force Systems Command, in order to provide more of a focus on these

problems, has initiated efforts to improve their total life-cycle management

techniques [AIRF76]. The Naval Sea Systems Command has initiated the PATHWAY

Program, in which they recognize the importance of portability and reusability

in a software product [PATH76].

This conceptualization of factors in software quality provides a mechanism for

the SPO to quantify these concerns for the longer life-cycle implications of

the software product. For example, if the SPO is sponsoring the development

of a system in an environment in which there is a high rate of technical break-

throughs in hardware design, portability should take on an added significance.

If the expected life cycle of the system is long, maintainability becomes a

cost-critical consideration. If the system is an experimental system where

the software specifications will have a high rate of change, flexibility in

the software product is highly desirable. If the functions of the system are

expected to be required for a long time, while the system itself may change

considerably from time to time, reusability is of prime importance in those

modules which implement the major functions of the system. With the advent

3-3

of more networks and communication tapabilities, more systems are being re-

quif d to interface with others and the cohcept Of interopetabtltty is extremely

Important. All of these considerations can be accoumodated in the framework

derived.

The formal definitions for each of the quality factors are described in

Table 3.1-1.

3.2 RELATIONSHIP OF FACTORS TO AIR FORCE APPLICATIONS

We conducted further evaluation of the framework and the quality factors by

examining their applicability to Air Force applications. To make this

evaluation, a categorization of Air Force applications was derived. This

categorizition is shown In Table 3.2-1. Several references [AIRF76, THEE75,

SACI16, SACKH61] Were utilized in deriving this scheme. We found, however,

that the factors vary considerably within the categories as well as between

categories, depending on the specific application. So we chose specific sys-

tem representative of the categories and had several people familiar with

Air Force missions identify the importance of the factors to the specific soft-

ware product. The ratings shown in Table 3.2-2 are the means of the individual

ratings and were calculated as follows:

V - Very High - 6 points

H - High - 4 points

M - Medium - 3 points

L - Low - I point

n

Average rating r I _t

n

where r1 - individual ratings

n = total nuimber of people rating

3-4

Table 3.1-1 Definition of Software Quality Factors

CORRECTNESS Extent to which a program satisfies its specifications

and fulfills the user's mission objectives.

RELIABILITY Extent to which a program can be expected to perform

its intended function with required precision.

EFFICIENCY The amount of computing resources and code required by

a program to perform a function.

INTEGRITY Extent to which access to software or data by
unauthorized persons can be controlled.

USABILITY Effort required to learn, operate, prepare input, and
interpret output of a program.

MAINTAINABILITY Effort required to locate and fix an error in an

operational program.

TESTABILITY Effort required to test a program to insure it performs

its intended function.

FLEXIBILITY Effort required to modify an operational program.

PORTABILITY Effort required to transfer a program from one hardware

configuration and/or software system environment to

another.

REUSABILITY Extent to which a program can be used in other

applications - related to the packaging and scope of the

functions that programs perform.

INTEROPERABILITY Effort required to couple one system with another.

3-5

0: 1' a
4-P.0U. 4A 91vu . , C L -CLb c A ;' .

.31,~ 41 Qu an e fLr
4' am IL-~.L4

o 'A ; 4V~ C S.AC .- OAU 0ito
QC U 4C) L6 Om'L.

L6-I

-- 'A-

a, L- ac a~
in .~ ~ '&'mu.-o ~ - ~a m

0

to. 4.

0 a:) a,

01 V' 4 4
4,A S.0

004'

UA~z 1. -I

s

n CD

a0 X
U, N

3-6

-CA ox 5.L
C ~ ~ ~ . C LPC
I a 5-4-

0 n on8 4-1

CA .9 I VC A LIE LL

4n 0 44.-
LL 3.-~

.th a..U In
1 A

IJ cI1
48 I-

CL .nIII 0 C 101

3.- 4A- . M -0

4-)-

4-)

0 06 44.8

* CPI L..4 .

4J I.-A@ O
4to fAI 4.8 a!JqATIt

0 &A. 4n.8

3-

z~% z x-i~l

5~3 z ..a z a .a .. z..a0 .a .

4c. - - - - - -

2w3 . 0 a

L~a = = = = =~ = ~IF
all

40 0 4

*1 .5 - - - -4

= ~ ~ ~ ~ - gKK23~~~ 7=7 ===
La1 W A

40 .

a OVID~= =

443 Ina 2 c

2 =. 0 'A

* I'l r- 1 K!1

CYs

UcU

16 C -i6 4

CC g, v-
ZZL an ME

a. Rq A . ,a49a9 Aa

3-8I

Rating in matrix was assigned according

to following:

AverageRating Rating in Matrix

1< -<2 L

2 - - <2.5 L-M

2.55 - <3.5 M

3.5 M-H

3.5< - 54.5 H

4.5< - -<5 H-V

5< - 6 V

The representative set of missions is shown against the set of software quality

factors. The missions range from a software test bed laboratory facility to

a man-rated space mission (STS). The ratings illustrate the relative qualities

that are evidenced by the specified goals of the systems.

As shown, the factor of reliability is absolutely critical for the success and

safety required for the spacecraft and early warning applications. On the
other hand, while reliability is always a desirable quality, the degree necessary

for success in the management information system and test bed applications
decreases relative to the other missions. The amount of efficiency required

is determined not only by the application itself but also by the computing

resources available and loading expected during a given mission. On-board

processors, because of size limitations, usually have to realize a high degree

of efficiency. A communication network, handling large volumes of data at a
high rate, has to be efficient in its data switching and handling capabilities.

As another example, a large space mission application dedicated to a particular

hardware as well as software environment may not consider portability an essen-

tial factor, whereas, in the test bed facility, the ability to transport soft-

ware to and from other configurations could well be one of the most important

considerations in the entire system.

3-9

In filling out Table 3.2-2, we found that very few highs (H) or very highs (V)

were given to quality factors in the product revision or product transition

categories. This illustrates the lack of attention given these areas in past

software development. The average ratings were calculated to point out this

fact. The quality factors associated with product operation all received

high or very high ratings. These were expected and are probably justified

by the current practices and procedures in use today and utilized in specify-

ing software development projects. The quality factors associated with

product revision rated somewhat lower and, except for a few high-to-very high

and very high ratings in maintainability and testability, would have been

even lower. The quality factors associated with product transition all rated

medium to low. This, too, points to the lack of attention given to the

problems associated with software conversions.

There may be more basic system characteristics that have more effect on the

factors than the categorization scheme. A partial list with the factors

that are extremely important is provided below:

* if human lives are affected (Reliability, Correctness, Testability)

e very high system development cost (Reliability, Flexibility)

* long life cycle (Maintainability, Portability, Flexibility)

* real time application (Efficiency)

* on-board application (Efficiency, Reliability)

e processes classified information (Integrity)

* interrelated systems (Interoperability).

3.3 RELATIONSHIP OF FACTORS TO LIFE-CYCLE PHASES
Further evaluation of the framework and quality factors was needed to insure

coverage of the entire life cycle of a software product and to determine if

early indication of the quality was possible. Table 3.3-1 identifies where

, the factors should be measured (A) and where the greatest impact due to poor

quality can be expected (X).

For instance, the reliability of a system is immediately in jeopardy if a

contractor does not understand the mission requirements or does not detect this

3-10

m 1C VC VC.

t'

w

00

& .u-

4I 6IJA

-~~ 2-C3

or-

OL~~S an44 44 4

to w .

I.- - In

C-0

3-C~

A. O.ULL 0

10.-.

3-1

fact during requirements analysis or system design phases. The system may
then proceed through code and debug and even into test and operation before
the impact of this failure is recognized. The cost and effort involved in
reevaluation, redesign, recoding, and retesting is significantly greater than
if realized earlier. Maintainable and efficient code can be achieved only

by designing and coding these properties into the software.

From the table we see that all of the factors can be measured during the
design phase. Most of the research in metrics to date has been in the code
and debug area. Determination of quality is more subjective in nature at
the design level than during the code and debug phase, where metrics can be
applied to code. This identifies where emphasis for research should be
placed to take advantage of the cost savings of early detection of poor
quality. As an example of a more objective measure in the design phase,

a traceability matrix, which relates performance and design requirements to
the original system requirements specification, can be effectively utilized
to evaluate the quality of work performed by the contractor during require-

ments analysis.

3-12

SECTION 4

DEFINITION OF CRITERIA

4.1 DEFINING FACTORS WITH CRITERIA

The establishment of criteria for each factor has a four fold purpose. First,

the set of criteria for each factor further defines the factor. Second,

criteria which affect more thar. one factor help describe the relationships

between factors. Third, the criteria allow a one-to-one relationship to be

established between metrics and criteria. Lastly, the criteria further

establish the working hierarchical nature of the framework for factors in

software quality.

As the software development technology progresses, other metrics,

criteria or even factors may be identified as relevant to the needs of an

SPO. The framework being established allows for and facilitates this kind i
of expansion or refinement by its hierarchical nature.

The set of criteria for each quality factor are shown in Figure 4.1-1. The

factors are identified in ellipses and the criteria are identified in rectan-

gles. These criteria were derived utilizing the software-related terms from

Table 2.4-1, examining the definition of each factor and expanding it into

independent attributes, and by identifying criteria with which we can poten-

tially associate objective measures.

For example, the attributes or standards for reliability are error tolerance,

consistency, accuracy, and simplicity. Integrity connotes protection which

implies two forms of protection: access control and access audit.

.1 The definitions of the criteria are provided in Table 4.1-1.

4-1

CORRECTNESS

Troceaojlity CnsistencyJ Cql'teness.

RELIABILITY

Ero oerance Consistenc Accurecy Simp1ict

EFFICIENCY

Exacuti on Effipc Storage Efficiency

LEGEND
SFactor INERTY

r-1Criteria

Access Control- Access Auditl

USABILITY

Traiing Comnunicativeness Operability

MAINTAINABILITY

LCons is t~ncy LSimplicity I Conciseness I4odulart Self-Descriptiveness

1329A-2

Figure 4.1-1 Relationship of Criteria to Software Quality Factors

4-2

F i ~rty Sef-Descriptiveness FMachine Indepen;ence Software System

Figure 4.1-1 Relniationshi ofCrtri oSoftar Quaityacors(cntined

4-3

Table 4.1-1 Criteria Definitions for Software Quality Factors

RELATED
CRITERION DEFINITION FACTORS

TRACEABILITY Those attributes of the software that provide Correctness
a thread from the requirements to the imple-
mentation with respect to the specific
development and operational environment.

COMPLETENESS Those attributes of the software that Correctness
provide full implementation of the functions
required.

CONSISTENCY Those attributes of the software that Correctness
provide uniform design and implementation Reliability
techniques and notation. Maintainability

ACCURACY Those attributes of the software that Reliability
provide the required precision in calcula-
tions and outputs.

ERROR TOLERANCE Those attributes of the software that Reliability
provide continuity of operation under
nonnominal conditions.

SIMPLICITY Those attributes of the software that Reliability
provide implementation of-functions in the Maintainability
most understandable manner. (Usually Testability
avoidance of practices which increase

_complexity.)

MODULARITY Those attributes of the software that Maintainability
provide a structure of highly independent Flexibility
modules. Testability

Portability
* Reusability

Interoperability

GENERALITY Those attributes of the software that Flexibility
provide breadth to the functions performed. Reusability

EXPANDABILITY Those attributes of the software that
provide for expansion of data storage
requirements or computational functions. Flexibility

INSTRUMENTATION Those attributes of the software that Testability
provide for the measurement of usage or
identification of errors.

SELF- Those attributes of the software that Flexibility
DESCRIPTIVENESS provide explanation of the implementation Maintainability

of a function. Testability
Portability
Reusability

4-4

Table 4.1-1 Criteria Definitions for Software Quality Factors (Continued)

RELATEDCRITERION DEFINITION FACTORS

EXECUTION Those attributes of the software that Efficiency
EFFICIENCY provide for minimum processing time.

STORAGE Those attributes of the software that Efficiency
EFFICIENCY provide for minimum storage requirements

during operation.

ACCESS CONTROL Those attributes of the software that Integrity
provide for control of the access of
software and data.

ACCESS AUDIT Those attributes of the software that Integrity
provide for an audit of the access of
software and data.

OPERABILITY Those attributes of the software that Usability
determine operation and procedures con-
cerned with the operation of the software.

TRAINING Those attributes of the software that Usability
provide transition from current operation
or initial familiarization.

COMMUNICATIVENESS Those attributes of the software that Usability
provide useful inputs and outputs which
can be assimilated.

SOFTWARE SYSTEM Those attributes of the software that Portability
INDEPENDENCE determine its dependency on the software Reusability

environment (operating systems, utilities,
input/output routines, etc.)

MACHINE Those attributes of the software that Portability
INDEPENDENCE determine its dependency on the hardware Reusability

system.

COMMUNICATIONS Those attributes of the software that Interoperability
COMMONALITY provide the use of standard protocols

and Interface routines.

DATA COMMONALITY Those attributes of the software that Interoperability
provide the use of standard data repre-
sentations.

CONCISENESS Those attributes of the software that Maintainability
provide for implementation of a function
with a minimum amount of code.

4-5

4.2 RELATIONSHIP BETWEEN FACTORS

The conceptualization of the factors in software quality implies some relation-

ships between the factors. Those grouped under Product Operation, Product
Revision, and Product Transition are related simply by association with those

aspects of a software product's life cycle. These relationships are very high
level, user-oriented interactions.

The criteria, especially those common to more than one factor, provide a much

more detailed understanding of the factors and their relationships to one

another. Table 4.2-1 depicts when the criteria should be measured (6) and when

impact of poor quality will be realized (X) during the life-cycle phases.

This table is an expansion of Figure 3.3-1, the impact of not specifying or
measuring software quality factors.

The effect of each criteria on each factor was evaluated and the results are

displayed in Table 4.2-2. If the existence of the attributes characterized

by the criterion positively impact a given factor, a (o) was placed in the matrix.

If the existence of the attributes characterized by the criterion negatively

impacts the factor, a (e) was placed in the matrix. If there was no relationship

between the criterion and factor, if the relationship was not clear, or if it
was highly dependent on the application, a blank was placed in the matrix.

These criterion/factor relationships are the basis for the factor-to-factor

relationships. If all of the criteria of one factor have positive impacts on

another factor, then the relationship of those two factors is very positive.

Conversely, if all of the criteria of one factor have negative impact on another

factor, these two factors display a negative (tradeoff) relationship.

As an example, consider the factors of portability and efficiency. Two criteria

of efficiency, execution efficiency and storage efficiency, have negative
impacts on portability. Conversely, two criteria of portability, software

4-6

LLS.

s-I

01 ~6-

L 5

1*5X1

a

U7 so cm -

4.21

vu
1,

a..

I- 3- J

0. 41 C01

0 o-

c -x

N 4-7

Table 4.2-2 Effectof Criteria on Software Quality Factors

QALITYFACTORS

CRITERIA .4

TRACEABILITY 0 0 10 - - 1

COMPLETENESS -00

CONSISTENCY 0"0 0 0 0 0
ACCURACY a i ,

ERROR TOLERANCE 0 0 * 0
S1I4PLICITY 0 0 .00 0 0 0 "0

MODULARITY • 0 0 0 0 0 0
GENERALITY * 0 * 0 0 0
EXPANDABILITY 0 0
INSTRUMENTATION O 0 0 0
SELF-DE§CRIPTIVENESS O0 10 0 10 0
EXECUTION

EFFICIENCY 0 O
STORAGE EFFICIENCY 0 S
ACCESS CONTROL - 10 0O
OPERABILITY . 0 0
TRAINING 0 1 0

COMMHUNICATIVENESS 0 0 0 0 0
SOFTARE SYSTEm
INDEPENDENCE 0 0 0 0 0
4ACHINEINDEPENDENbE. 0 10 0 0

-COMMUJNICATIONS

COMMONALITY 0

DATA COMMONALITY 0 0
CONCISENESS 0 0 0 -

ACCESS AUDIT * 0

LEGEND - Attributes associated with criteria have:
* Negative effect on quality factor 0 Positive effect on quality factor

4-8

system independence and machine independence, negatively impact efficiency.

The relationship between eff~iiiency and portability is quite obvious in that

when a high degree of portability exists, you can expect a low degree of

efficiency. Where some criteria of a factor impact another factor positively
and some negatively, further analysis is required to determine the net effect

of the impact.

Table 4.2-3 displays the results of the criteria versus factors analysis at
the factor versus factor level. In this table, the (o) indicates that with

the existence of a high degree of one factor you would expect a high degree of

another factor. A (e) indicates that with a high degree of one factor you

would expect a low degree of the other factor.

Looking at portability versus efficiency situation, we find a (e) entered in

the matrix shown in Table 4.2-3. This indicates the tradeoff situation already

discussed. This table then describes the general relationships between factors.

Specific cases must be analyzed along these lines to determine the specific

tradeoffs. A discussion of the tradeoffs generally found follows:

Integrity vs Efficiency - the additional code and processing required to

control the access of the software or data usually lengthens run time

and require additional storage.

Usability vs Efficiency - the additional code and processing required to
ease an operator's task or provide more usable output usually lengthen

run time and require additional storage.

Maintainability vs Efficiency - optimized code, incorporating intricate

coding techniques and direct code, always provides problems to the

maintainer. Using modularity, instrumentation, and well commented high

level code to increase the maintainability of a system usually increases

the overhead resulting in less efficient operation.

Testability vs Efficiency - the above discussion applies to testing.
Portability vs Efficiency - the use of direct code or optimized system

software or utilities decreases the portability of the system.

4-9

* I Table 4.2-3 Relationships Between Software Quality Factors

FA TR
._____________________ 1#__

____ ___

Ski %________________

4-101

Flexibility vs Efficiency - the generality required for a flexible
system increases overhead and decreases the efficiency of the system.
Reusability vs Efficiency - the above discussion applies to reusability.
Interoperability vs Efficiency - again the added overhead for conversion

from standard protocol and standard data representations, and the use
of interface routines decreases the operating .efficiency of the system.
Flexibility vs Integrity - flexibility requires very general and flexible
data structures. This increases the data security problem.

Reusability vs Integrity - as in the above discussion, the generality
required by reusable software provides severe protection problems.

Interoperability vs Integrity - coupled systems allow for more avenues of
access and different users who can access the system. The potential for

accidental access of sensitive data is increased as well as the opportu-
nities for deliberate access. Often, coupled systems share data or software

software which compounds the security problems as well.

4-11/4-12

SECTION 5

EXAMINATION OF SOFTWARE PRODUCTS THROUGHOUT THE LIFE CYCLE PHASES

5.1 SOFTWARE PRODUCTS AS SOURCES FOR METRICS

One of our main considerations in establishing metrics for the criteria

defined in the previous section is the availability of data or software

products which provide the sources for the collection of the metrics.

Software products include the source code (the most obvious and researched

source of metrics to date), documentation including requirements specifi-

cations, design specifications, manuals, test plans, problem reports and

correction reports, and reviews.

The most accurate source of measures of the qualities of a software product

is naturally its operational history. If after two years of operation a

software product must be converted to a new hardware system and the cost

to accomplish this is 100 % of the initial development cost, it can be

stated that from a portability aspect, this product was of poor quality.

Testing provides very quantitative measures of the qualities of a software

product. The completeness of the testing has always been a concern though.

Most testing is oriented toward insuring the software product runs as

efficiently as necessary, performs functionally well (correctness), and

does not fail (reliability). Extensive testing usually also reveals the

usability and testability of the product although not often with the people

who will be using the system or testing changes to it. Under special cir-

cumstances tests may be oriented toward evaluating the integrity of a product.

In most cases though, with the pressures of tight budgets and schedules,

testing is never as thorough as desired. Even when it reveals problems,

the costs to correct those problems (often involving redesign as well as

recoding and retesting) are very high.

5-1

,f

The importance of finding errors earlier in the life cycle is well known,

since the cost to fix an error increases rapidly as the life cycle prog-

,esses. This is shown in Figure 5.1-1. In the same manner, detection of

unacceptable quality early is critical to achieving a high quality end

product.

1 Impact
Cost to fix
to after
fix ,1 &ees delivery

Figure 5.1-1. Impact of Error

It is the intent of this study to concentrate on the early phases of the

development life cycle for metrics which will provide an indication of

the progression toward the desired product quality. The earlier in the

life cycle the more "indicative only" these metrics will be. Obviously

if a design specification is perfectly written but poorly implemented the

resulting software product will not exhibit a high level of quality. Metrics
collected during the implementation phase will help prevent or detect a

poor implementation. This concept of successive application of metrics

is explained further in Section 6. These concepts are illustrated in

Figure 5.1-2.

5-2

.4J

44)
.4L 4J4--

o C

4.)A

0.~a 4. 01 4

.0 4

0. ai0

oAm104A

W C cr S-
-j c

4J 4J 0
oA t go 4)

Lai o~ 4.)014 I

.4J I-.

4414J

oL 4J 0111010

4j 4) M5

C10 4J 0-

Mclr 0 >1

0

5- 1 4C- L

404J 4)JhU

*-.0 to

05 04)- u

5-3

5.2 RANGE OF SOFTWARE PRODUCTS

While the source code is the primary source for metrics during the develop-

ment phase, documentation and reviews are generally available earlier and

if available provide sources for metrics. The results of simulations at

the requirements analysis and design stages are extremely valuable indi-

cators of the quality of the final product. However, because simulation
is mre of a tool to aid in the development and testing (functional vali-
dation) of the requirements and design and is not universally used, it

is considered to be out of the scope of this study and not a source for

formal metrics. /

/

The range of documents varies widely between SPO's'and applications.

Several standard documents are required by DOD/AF' regulations. The

following references were used to compile the rFpnge of documents

identified in Table 5.2-1.

BOEHB73 Boehm, B., et al, "Characteristics of Software Quality",
Document #25201-6001-RU-00, NBS Contract #3-36012,
28 December 73.

COMP69 "Computer Program Development and Configuration
Management", AFSCF Exhibit 375-2, March 69.

COMP66a "Computer Program Development and Configuration
Management for the Manned Orbit Laboratory Program",
SAFSL Exhibit 20012, September 66.

COMP66b "Computer Program Subsystem Development Milestones",
AFSCF SSD Exhibit 31-47B, April 66.

CONF64 "Configuration Management during Definition and
Acquisition Phases", AFSCM 375-1, June 64.

CONF66 "Configuration Management of Computer Pr9grams",
ESD Exhibit EST-1, Section H, April 66. "

DOCU74 "Documentation Standards", Structured Programing
Series Vol. VII and Addendum, RADC-TR-74-300, September
74 and April 75.

DODM72 "DOD Directive for Automation, Policy, Technology,
and Standard", DOD Manual 4120.17-M, December 72.

HAGAS75 Hagan, S., "An Air Force Guide for Monitoring
and Reporting Software Development Status,"
NTIS AD-A016488, September 75.

5-4

~49

4J

C) 414V1
4A C C.0

39LLJ 41 t) 0m 0
0c- 0 -

Ui.. to
P" L&J c - a I

(DLA 4 - 4 U) 4>

C)14 IV 4

0n~ M. 0 4

o toL (
44.) 0004- 4
40 4.) 4..u 4) U

to LI .0 5.. u4
uI ce coJ1 c 4 4).t

CL c- CL 4.) = >.,.. U -4C -
W) 0. CL- u 3 0. 41 04A +

4E V)n 0k..- U U cm 4.CL)) U 0
in 0C 0.41 c m > w w 0 I& 4) E

C) 4J 0 C. 4 14 4) 0 4)0 CL w 4)u c C o 0
(D4 rC 0) to> 4 0 4E tm 41 (A- ccC f V) u0 u 1 0 4 41 (D

Lj 4 > ~ 4)* -cc- to W E CL CC 410
I--. e Ca . M~n S.Cf 4- 4 = L.

**Vf 410 0414 41 w ~ 0~ m- tm 41 M (D
W : . LC- C c O C-. C3 41 Q.0 C C.C C

00 , In 0) to 0 ?) 0 C 0
41 I =o - x >L) D 4114 CD .0w u 0

U. LA c 4.) S- c. 0 0 CM. 4) 0. M
W 4J 041 041C 0) 4J 04-1) (A1go

-j 14C C- 0C-- to - 41041)4J 0 M. Cu 0
CO W- 0 E4- 4-L.0 4) CC E0 cc

%-.) C -4 0) -- i 'a .M . 4) I 0. --
>4J 00 I C (V 0 41CC + 1. 41 0 $-0 4 0 CL 00

41 +-)I 0 0d 0. - S-Z M (V 0 #0. 0 CL 0 0 . 1.. 0

V)V 3 g6 m 3 u :-a.c)m U c

00
I--

4)

00

.4-
E1

W) 4) .

-5-5

MIL170 "Military Standard Configuration Management Practices
for Systems, Equipment, Munitions and Computer Programs",
MIL-STD-483, December 70.

MIL168 "Military Standard Specification Practices", MIL-STD-
490, October 68.

PILIM68 Piliglan, M.S., et al, "Configuration Management of
Computer Program Contract End Items", ESD-TR-68-107,
January 68.

SCHOW76 Schoeffel, W., "An Air Force Guide to Software Docu-
mentation Requirements," NTIS AO-A027 051, June 76.

TACT74 "Tactical Digital Systems Documentation Standards,"
Department of the Navy, SECNAVINST 3560.1, August 74.

The table illustrates the considerable difference in the quantity of docu-

ments among different software system developments. The documents are
specified by the AF regulations or SPO-local regulations listed above.

Each ot the document types for a long life/high cost software system are

characterized briefly in Appendix B. Figure B-I identifies the documents
on a software development timeline that were developed for the two soft-

ware systems which were utilized to validate the metrics. This figure

identifies the most comprehensive set of documents required during soft-

ware developments. Table B-i identifies which documents are required by

or described in each of the references.

In order to make the metrics widely applicable, a representative set of

documents (sources for metrics) for any software development had to be

chosen. It was decided that there are basic documentation requirements

regardless of the size or cost of the project. Certainly low cost/short

life projects incorporate several of the above document characteristics

into one document. The documents may not be in as much detail. They are,

nevertheless, desirable because of their contribution to a high quality
product. Thus while the quantity of documents may vary with the size of the

system development effort, the documentation should provide the information

contained in the documentation summarized in Appendix B. If it does not,

5-6

less information is known about the system, how it is progressing, and later

how others will maintain, change, move it, etc. The metrics described in the

next section are not based on the availability of specific documents but

rather on the availability of the information contained in the documents.

5/

II
- -.- 8".--

.....4 --
--- - - L #A

SECTION 6

DEFINITIONS OF METRICS

6.1 DEVELOPMENT OF METRICS

The criteria were defined as the attributes of the software which provide or

determine a characteristic of the final software product. Metrics are defined

to provide a measure of these attributes. Where more than one attribute or

source for metrics are found for any one criterion, subcriteria are established.

The subcriteria further clarify the metric and maintain a one-to-one relation-
ship with the metrics. This further enhances the hierarchial nature of the

framework for factors in software quality.

Essentially, there are two types of metrics and both are utilized in this study.

The first type, like a ruler, is a relative quantity measure. The second type

is a binary measure which determines the existence (1) or absence (0) of some-

thing. The units of a metric are important to avoid ambiguity and obtain a

meaningful metric. The following rule was used in choosing the units of a metric.

THE UNITS OF THE METRIC WILL BE

CHOSEN AS THE RATIO OF ACTUAL

OCCURRENCES TO THE POSSIBLE

NUMBER OF OCCURRENCES.

Once stated, this rule seems obvious, yet many studies have failed because they

did not comply with this rule. To not comply results in poor correlation

between the criterion and the factor. To illustrate the types of metrics and the

application of the above rule, the following two elementary examples are provided.

(1) The subcriterion, number of unconditional branches, could relate to

the criterion, simplicity. Figure 6.1-1 identifies potential metrics
for this subcriterion. The metric, the number of GOTO statements/

executable statements is the most unambiguous because GOTO state-

ments are a proper subset of the set of executable statements.

Blank cards, comment cards, and declarative statements are

6-1

a-0 A
cc

- CA

zez
cnn

w 5

0w

L

LA. Z. 9 8 .

6-2-

not potential GOTO statements so that the metrics, GOTO statements/

cards and GOTO statements/statements, invite ambiguities to the

correlation of GOTO statements with the associated quality factor.

GOTO statements/routine and GOTO statements/block do not reveal the

size of the set of possible occurrences and, therefore, are ambiguous
themselves. This is an example of the first type of metric which

provides a relative quantity as a measure. It also provides a nor-
malization of the metric so that any measurement is between 0 and 1.

(2) The metric, use of structured code, is an example of a binary metric

and will be given a 1 if present; i.e., the target program utilizes

structured coding techniques or a structured preprocessor and,

if absent, a 0. The stated rule still holds in these cases as

the presence of structured code/possible occurrence of structure

code can be viewed as a 1/1 = 1 case. The binary case is to be

used where ambiguity or subjectivity may enter the measurement. In

the example discussed, measuring the degree to which the code is

structured would be subjective and not provide any enhancement to

the relationship of structured code to the associated quality

factor. A binary metric can also be used to identify an attribute

(criteria) which if missing even once in a module or system is very

detrimental to the resulting quality of the software product.
I

Thus both type metrics are consistent with the rule for choosing units. In

addition, the metrics have been chosen to be as objective in nature as possible.

There are a few exceptions. In these cases, we have attempted to make the

subjective metric as quantitative and simple to apply as possible.

The metrics were also chosen to be language independent. The above two

examples are consistent with this rule. If a structured language which did

not have a GOTO-like construct was utilized both metrics would be 1 indicating

the advantage of using that language.

6-3

....

Our process of developing metrics involved the following steps:

(1) Incorporation of work sponsored by RADC in the areas of reliability
([THAYT76], [SHOOM75], [SULLJ73]), portability ((MEALG68], [MARSS70])

and maintainability as well as other significant efforts in the

areas of metrics ([BOEHB73], [ELSHJ76], [KOSAS74], [RUBER68],

[GILBT76]) and software design ([YOURE75], [MYERG75], [NERG76],

[VANTD74], [KERNB74]). Other references are in the Reference Section.

(2) Incorporation of metrics (oriented primarily to source code and

configuration management) which our management have been using

for several years.

(3) Application of research in complexity measures [RICHP76] and soft-

ware physics ([LOVET76a], [FITZA76]) that we have conducted in the

past several years and has been conducted by others ([DUNSH77],

[ELSHJ76], [HALSM72]).

(4) Evaluation of all of the software products available during a soft-

ware development (Section 5) with a more global view of software

quality provided by the framework established in the first two

phases of this report.

(5) Utilization of measures or data available from state-of-the-art

software support tools applicable during the requirements analysis

and design phases of development ([BROON76], [DAVIC76], [NBS74],

[PANZD76], [NODA75], [REIFD76], [CHANP76], CRICHP74], [TIECD76]).

(6) Application of the described concepts of a metric.

The metrics established are explained in paragraph 6.2. Not all of the

metrics identified were supported by the validation. However, since the

validation was performed with a limited sample and further evaluation and

experience is required, the entire set of metrics established are presented.

(For further discussion, see Volume I1.)

6-4

6.2 DESCRIPTION OF METRICS

6.2.1 IDENTIFICATION OF METRICS

G. Myers [MYERG76) states that the "single major cause of software errors

is mistakes in translating information." TRW (THAYT76], through an extensive

analysis of error data, states that most "errors were design and requirements

errors, as opposed to coding errors and errors made during the correction of

other errors." An internal survey we conducted substantiated these points

[LOVET76). The documents and reviews discussed in section 5 represent the

translation steps from users needs and desired qualities to system imple-

mentation; requirements analysis, design, implementation. Our metrics

are oriented toward these steps. Since the metrics are indicators of the

progression toward good quality, we found that in some cases a metric

would be applied at all three phases of development. Each measurement

constitutes a unique metric. Thus, during the requirements phase, collec-

tion of a set of metrics will provide a measure of the progression toward

the desired levels of quality at that point in time. The metrics estab-
lished are identified in this manner (according to phases) and in relation-

ship to the criteria/subcriteria in Table 6.2-1.

The metrics can be applied at two levels in most cases, at the module

level or the system level. The SPO will utilize the metrics at the

system level to obtain an overall measure of how the system is progressing

with respect to a particular quality factor. At the system level the SPO

will be interested in which metrics or metric elements scores are unusually

low. It may be there is a general failure to comply with a standard by

all designers. Corrective action could be taken to alleviate this type of

problem. The SPO may also be interested in a module by module metric

value. A particular metric's low score at a system level may not be caused

by a general failure but rather by particular modules having unusually

low scores. In this case the SPO would want to be aware of which modules

are problems so that particular corrective actions or more emphasis could

be placed on the development of those modules. The metrics which cannot

be applied at both levels are noted in the table.

6-5

To illustrate how this table should be read, a few examples will be dis-

cussed. The first metric identified in the table corresponds to the cri-

terion, traceability. The metric is the number of itemized requirements

traced divided by the total number of itemized requirements. This metric

has significance and can be measured at two points in time, during the

design and implementation phases. During the design phase, the identification

of which itemized requirements are being satisfied in the design of a module

should be documented. A traceability matrix is one way of providing this

trace. During the implementation phase, identification of which portions

of code implement each itemized requirement should be made. Some form of

automated notation, prologue comments or imbedded comments, is commonly used

to provide the trace at this level. The bold line boxes under design and

implementation value columns represent these two measurements. The value

columns are used because both measurements are relative quantity or calculated;

the ratio of the itemized requirements traced to total number of requirements.
A metric which is a binary measure would be placed in a bold line box in

the yes/no column. An example of a binary measure is SI.2, the use of a

structured language or a structured preprocessor (paragraph 6.2.2.6). A

1 or 0 would be placed in the yes/no column tor this metric. Some metrics

are checklist type metrics in that there are several elements which must be

measured and then sunmarized/normalized. The summarization/normalization is

done in the summary line which is labeled, Metric Value. To be consistent,

the final value of each metric is placed in the summary line. The next

example will illustrate a combination of these different situations.

The metric associated with the design structure relative to the criterion

simplicity (see page 6-12) illustrates the various combinations a metric

can assume. Several elements make up the metric. These elements are

measured in the design and Implementation phases. It is possible to have

a metric which is only measured during one phase. Some of the elements are

applied by a binary measure (yes/no column) and some are applied by a relative

quantity measure, In which case the measure is indicated in parentheses.

The overall metric value for the system is indicated in the summary line.

Explanations of each of the metrics and metric elements can be found in the

following paragraphs. Further information and examples are available in

Section 8 and Appendix D, where collecting metric data is described.

~6-6

ic11
z ~ J _ _ _ _ __ _ _ L _ _ _

nmnnn
LL- 1 1 1 1 I I I I I

LAJ

00

in- LIa_
C o 8

- 0 u

to (A C 3 400
u of

tA u0# U 4 4 CL) S
'4 'AW 0 0 4 j - #

Lai 0 43e 5 0 (A - =
6 1 4- Ugo c L1 063 4'

4. . w 0v =1" c 0 0
L. -t (C 4 4- w = .z i m s

0 V)' -i %- u 0.43

4'~c .0 43 *j A i2
OE U l at 4 c4 w* 4- 4j 0

w. C4. m (A 4 C 4 0) 0a W'4 (A C 3 oo

-0 060 0.3 ' U

4J.-3 4 4-3 - - - L. u

A.0 cc~ CL C3-~ f-)
'aW 2'.

dw 0@3 w L

(A~- 6-7

LJUiL Ii LIUJU
n

00 l

Li0 Z C_ N.C-

30. 4J

-P IV 1
s 00 s

4) 0~ 4 .! 4. I~ -L
- 0 .4L IV

.-(IA UI- so4
4J... 4-. Z_ -7 1~ 00 41C U

w m ou 0 0 a a o eC
4-- 0-8 u -! . 9*

5.0 * og a 4 o3, U a A . 0 0

mII wLI C7 .t I 0o0 41I c 214 t s U
W- #A). 4) #A - S 4mou4 - - W .

(n Go 0 C 00 04 IV0 0. 4 - 0 -44J 9- 4J -- ~ s4 g 20, in
c ~ w m

0~ ~~~~ 41)) U. ~ * *

S' V A "k t 4*Sf Mk A S. mb 4n c 0 ,

4J d0 C0 0.-U . -4 4 .' I ~ E
in ~ 0 ~ 0 ' ~ Lj I C 0 0

UC -.n

C504 5
'a Li V)

6ini

z0 UL

J ,

za '5oLi

1 1 14J4

4J

01 L. LUL.L
v 1; __________a)_____

'o 0 0L S - z a

C341 40. CL tj a
4J =3 U -L -J
Q 0 44 M1 = ,.0~-L .0 0 - 433 I- 4 4

m4 W% 4- ClCa0
4u 4 4 -E 4. 0 4

440. - 4- CL .-4 w w3 Q.n..0 .0 44 g d A gLaC 4, 41 %
>w 0 0. 4 4b a) In 0 0 Mb-

W ' . 0 L A 4, 44' 0 .0

S- UI - aiR = 0 4, LL 4a 04- - U -i u ~ .
%..a Ua- 4- 4-0 4) 0. 410 41 OV 0o5 .x

r-I I.- r-'4 0. .0. N 0.in Nc to. mA 04' 4,0 04 1- 0
In% 41 41 0:!(- V II

- ~ ~ ~ M w-0 0 0CMI- * ~ 1 . I
(.3 0 4' 41CC C Li .- *I~~~L W Ln41 1 , NLI.V 44

N 4, * C0 .-.- .-. - ~ .- I 4, 0 4n
*~~4 tn4.40 0 4' 0 ~ C

'0 I- -'4- -0.. ..- 0 W O In OVdtc X1 4-4:0 i 1. 3..

43 ~ ~ V U V ~ 4-4 4, 4' 4' C

4-), IC ,L L J ' 0 U 3 / W * CI- . .
W AJO~I

Cie co cc3 l 4 J ~ -

-via_ __ _

__4I ___ALIILL ; LI U
LI-,

_ _ _ _ _ __.t=

I-a

L V

in 0

4-- 01 4-1 4

m - 4) LL

go s 4! 4?

04 -*. 0 W! 21 Vr - 1 . o
.- ~C 4,, #a -4v-. 0

C 4J a 0 iv D J 0.04 44 C 4 4 0 .w. C. 4, 0,c #a =.'4 ;4 s. a

*0~~~ L. 004 40 WoJI
42 z" -0 w X, u0 0.4-.11'= 4,.- C4

.30 - S w to ~ u W tC
in 45 0 -0 43~ ' .. '4L0 w -. 04- u+ CAL. X

to 44' Lo

'4- Ci -. -A L p4- L6 .- o~-.-4 a0 4I 4c a, - W .g J

10 -0 4-7 0 4 J 0414 0 -
CU 4J - - u. go WVI-LL -j 41. 4J4,I ~ 1 C 6 a~ ',

S. - ! ; 4- 4 i.- ql. 41
t;L s.I u- LI - 0 o C

C ie M S . a ,iG 4 E a 4 4 1

LIL

6-10L L3 w - j a

I- La E _ _ _ _ _

I-o _ _ _ _ _ _ _ _ _ _ _

z

SU

Ci LJ

4- -4-

o I4J

.3.- -U 0

1- 4 4 3

~~IL D, 3.
V- 4- do o 4

a% (4 - U. E) - S- a4~~~4 4% .-)
06 E.-'-. =) 44)r

LL. #304 4o 04) u 044 04

1-J in S-C6 L. 06Ax. E 0 E OV34 4) E.0C -di 00 04 CU I f
I. > 5 3- L.S fA a - nk

0-- 4- . - v)0 0.1 4- 41 4)

U. 4)0 0'4. w a)o
4- > >3 =- I- > >

C'-) ~ ~ 0 0 > > 4J * > >
Ix a u u I W E 0 0L. -) 4

a, 4)0 04- G) a;
-- ixJ 4)4)1 *. . Q.314)4

C- - -4 UJ -
t &J - -j.3-

V.) U.)t

2.U- * c

-

jj Li

~6-1

oL&J

w

LML

I--

C. 41
41

in

L~C 02 a 0

K~~~ 0 c .

r 0 01
4J~ LIP S..

41~r CL 01w 1 -L

&A lu W- 4U 4.-

4 41 laC 4-1 CL 'U 4
0J 0" fa

4J o- lb- -; Mb.ne) V) LJ :I. 1m '-.E 41>I.. W~El IViU 10

0) Li.... 9)~*~ CC- 4) 0 6 0
I1- 4 CU~4 41 10 ~441 No U LI

-4 U_ W1 =) 0 * 0 04. u1 U i 80LU410 UV c 41 400 VC-
* ~~~ in I'- 4h. ~ 0 1 0

u 4 LE 0, Z 1 r- -2 #A t
u 0.0 'a V1 ~

4)~~u 0n- 41-12~Ci
-0)~ 06 w-4 a41

Li
V... 0 0- U. 1-

.0 01 -00 C C,4
4) 040 c4 L. E

U, -% - C3 LAJ LL. 4J O

Ln~

I'- cc
&A.- CLM 2

'hi

0 M -..

V) ZC3

6-12

jr-pj

uj cmI I I 1 1 1

Lc LJ aUL

4A cwALL

~54-

IMO .I
0 0

S 4n 0 4

A.- W J 0 - -

OR- - ac 'LZ - 4

0 >Ef 1 0 o (

.3 0 30 1 - 4L -4A >- - S -
CA CLt W - . -) W

w ~ 4n- 0t 4

Ow OLAJ CL4 o

U. 0. t 0

toU . LLJ =D06

IxI

w

C i'30. --

10t
"k 4) U

40

4J 4J do U

I. CJ to
w .0' fa ,

00 q

o ~ ~ L 4aC J *'
V) .~ - 4.

091.-

* I 6i1j

c aej A

L -i -)

(JJ

0
CIO O Lm

acJ I. 4

S -

Ia4J

0'

v)) 41

a.- l .V r
@3~~ .0l. ~ E

go u* S. E I
10 V l

4D, v ES SL
4., Cc El. - V 42 S .04C -A . x ja- Wl E

4J El t 0 OW~ El - - OE. 4-. C.0' ~ ~ ~ 4 C, 4-nE1 ~ . ~ E EV) 9 L E i W ES El 0Si to) .0-4 0-fl -- n

_E cIi 4J r0c 4' 0 0' El' O-'
El.-4 4'.Mk4 icc'4 El 0E~ to~ US 4J l~S

C L'. _0 UJ -3 =0. ~ 0 la :3 0Z: 0k a> 'Oj4J '0E -4' 0.J Z L~~ 0 O412 in 4
4J =m- 4' I R. 4. 0

@3 4J ck El I -N I _0=C* I 0.1 4'JC I O I

= -_ 0-

j iun -1 lul) to CC

LI3
S Y I.- .

I- :-- cx

IA ua

0:0 4c LJ L, c

6-15

,LaU H UU _

3wD H EE
cc S

bc ~ -__

_ _ _

a h a

48sU

I- U -I

0 . J I c S 48 * 0 3.o 40

4.) 44 m +', - 40 U
4-1-g 0 a 0 0

0- 1 M M"Rk = 4C_ "_ 06

0 0,2 V" 3. -
FA " ao . # t #-V

Li. to 2. a) W. ng.- I a) -"k-

In~~ C -~ 43 4AC) O E ~ .l 0
U 7U

-0L 4 0 R O- 4.R4
-J; CL c b 4.

to8 - U qn J 4 k - 0

I - =
ri x

to - -; - -

I--

inaL
to m I M I

of~~~ 3o .- c

SM
In z

6 wM~s: q U

- LI

4J
ix

-m #A.

1
4

- Ia~ ~-4-
41> m4

m JI
GoE 1 V n:0 u -+

40M

In 7,
ee 2. 4.1 v4~ 41 .t

.3D --- .u a,-
S w -0 1 01 V

4. 4J1 o-' E n > 0A
o .- - CX r 0

0E IA m .

4r_4. 4J J 4 J 014.8
4J 001 4 0. 01 0 . j.

cm a1 iU C) 0 U 4 0

*0 CL 4.U4 C 1
C~ ~ ; CL =34~ -C - 1 5

U) -
01' 0 I.- U)c0

4I- 4. .8u 0 0

.!: Uc 04) -coC01~

'U g I-- 3 z
.0 ~ ~ ~ (In JL .LJ f . 4 n0

I.--------------

-6 1

m Fil
W ~ ' i i L iI

- -i

41 vi 0

CA I- fi Vu. 4J 4J JO4
L4D

4-) 4

In U) (A w mW 04

j 41 00g

V* in 4a C 0
,a 4*A 41 4 MI o1W4n =0 4 0 0 a Z C4 0

4.1 4 0 IS r U) 'c Ii U)* - *9 . 0 M U 4) .0n 4 W .01 00 0 1 U1 4 'u r- i go - J S
mi-U)AW. L -CL 4 *'@) w L. .0 @ = , 0J4

4J i 4J W " al ou 41w - 43 C.
L. 41 CA$

.0 . L.O inW u 4- 4J 4)4 c00 u
U)4k10L * L~ Rk0 u f

0 0 064 4U0 00 W c W0Ia
tU o +A) -. &5-P0 .64*0 CDc :. L a o

>) SL4 U) U. I- i.) *
C=-4 44 -L 2. LU .4 0, = C " !::me(Af u -5 C4. * I- CA 00 4 fa. arc

Em go0 0 0 -to to- - 4

CO) 4*4 CL S.- Z.) 0V) 00 .

L-1
LU~~~~. CC.a.- o 0 - 0L

A - m &n 0 E
t~w ~ >.- w ~ >- cc

l LU- I

in LU aL

or 0.- w) -j Co-

u LU20 LU I

-z 0.

6-18

C- m
z

-L Lj

w

-- .

0 11

40
.. (7n

'C

a w

03 .0 41 : ,w -

"k '5J - 0 Z~

0I -. 4-J 4J 4,w
P . t 43% 0 CL0 g C-, 4jv'

4- C9 40: 4J c W L
1. r- 0 r, .. a 4- _

a,~4 41.03-1

.J -- v-e u u5 'A30 W- 03 31,0Q3.'

0 4A 0 0 uC- 2- WU A 4QAIA ia. -t %A -b CRC cC sZ M 4 C 0 & .. I -.. v-'7 O
U-- 4n W C%4J -00 0 4= JEf 4J r O Jr

-4 r.' Z CL-O A~ ='4 03. 0.-5..2I J -0 IA4J 1 41:i k -21-

AIk6 -'5 C IAUL0

M ~ 53N

L. L63

5.36

I-6-19

J. L .j

LAJl

i LA =_

_ _ __
_

o j

-
LA. CA:

4 J

(~)_j

79
4,

w, CISU

U

C

I 4

vi- C

.

LLAJ

CA~ diI

Ln c

S_ w IAA
or

4JJ 4, in 95

#a ISO.. c* c

:o ~ ~ C 0 oGoV i

4A
I4 L.. - l S 1 1 ,

(6-20 d u ~

_j 4 41 4J01 4 L& 4j j 4

4'i - ' - = I ,

CIOl

LhLii _ _ _ _ _ _ _ _ _<1 ~ ~ ~ ~ 1 ___o__ __ __ __ __ __

4C- zX omJ

LL J

4-)

4, 4/1

W 4J :3

-0 4--

4- 0 E CLU

V) n a 41i- -i

U4J O

= a Lj

4.) - L-Ou4

44x c

6-2

LiU

rO

LU Li
0LU

4J 41

WJ LIL - . l A >
m E.- 4) 0 - -u . -C - 4

UtC li 4.1 4
do n1 41 r- r x4
4- 0 -0 - 0 U

4..) 41 41 u 4- @3 (D 4 1

CL* @1 In 4))i M 1t
4) cm 10 -0 n c 0 4-

4n . 4).. C - en. G
oA # .j 1 0 1 41 u CL 00 0 41 ".. d

01 6-4) C.4 r- C U

4-b 4)060 >1 -. 41 00 U41d w - 0 W u le Le-nJ 4- 4- 4
5-I U LI r- 4J en C W 0 1 4

0 - 4 0. E# me. = qk 414 GU)LL .0 =. 0 n L ~ U 0
1- 4- CM CL Io ~

LU 21C 4. U- ca 1
Z i C u CD 4 n U u 4 4*>

CL. .) e n 4 J -

3 e ~ a 5. 1. . ~ 4

L 3 LI 4'. 00 40

5r I--C Cm 4-4 0

.0 ~ ~ u 0 LU .L Z.. 0II C .

X- L.

Lai U)

6-2

U.- _ _ _ _ _ _

4. C, E 4-)4-t

loo - - %- w 61
'AJ :3# - 4
4)'0 ...IJ 4

4-' 4-1 0 U

CL a E
04 -' 1 -M0 d

4j~~ C .4)4
3.. CL Z.- -~ r.0 c u ' .#

4-0 4010 C

40 Z.- CL 4.in)W . Gj

IM) 0- V) qk 4 C 0C 4k t
u 1 0 j4.)- u

.0~ ~~~~~ q0 4)4 u~ .0 U~U . 0U 4
__ 4) T0 a. 4)CL to x0 xU)

-W 1O 6.1 COO u3) c -. Eru L L 0 0 ~ 0 C0uVz
M. V)0 4J 00.. 1, 4(J 0 0 4.

0 U A .=, =0 to- 'a 0 L if L.
'.~u *w~ 0 CL.4 4. w03 00 0

to' 0..+4' 4 0 4h W - i (0 (O 4 -
4.- .~004) C ::). z. 0.- .- i :w M-. :M

M.~ 4.1 Ul uU M. C;) ; w . 4) I
cc I- ad CC

to)
U, -' o 1.1 14 0 ~ .- Z . .' 14

*' .. .J S

R)1J ~ ~ -1

S 6-23

LI

Hg

U uu U

4-1U

0) n 3 6n4 nH
4, 91

c b 1 '

V) 41 4
V-4 Im4 . 4 & U 10 u

LL. cA X s . 01 *si .0 1

43~ ~ ~ ~ 04 0h S.0a0+ 14b h
4-1. 4J w I , Z 0

.0 .5 4) 4nI ILIcn 41 L. 'U 0

C, 0'U: U

I.- _) C
-L - L

- I -L

6-24_ _ _ _ _ _ _ _

o

LJ

0

(AA 4)
(A 4A

* 4j c3 4

UU 0 L. 0 @3
*0 4 @0 S (A 0 -

4-3 al '- C.L 3- 0. 4041

> 0. >-t

S. 0. M3 c 4
4. E~J .@

4-

V) wu u ' 0

U OW - C 41 0 .S 00 0 u o i U u. 0 0
C.) CJ3 in U3 4- 4

RS w(to3414CA
4lU A z 3 CL 4.) US S.c. 41 I 0 4-00 >~ . W WS (4J 41

00 4J 000>

LU . >..

>.J

LL) knI

m Go V

-.. 0 a

0~ ~6-2-

o LJ"Irk

U La_ __

IW--OM-r, - -i-U.J ii I
-j - i i IW)LL i U L

- L-

__a_ c

&Ao fi

U 0 Un UABJLIL __ __ -AVi

41 _ _ _ _ _ _ . _ _ _ _ _ _ _ __M_ _ _C

*1A 0 0 'A 4 9
W., C 1 41 4

>1 4A to $-'n c afo,In CC 01 *0 In L 0
CT 01. In C 41 4A. 4+

a o " 8. -0 0 C 4J1 0 on-c +
01 C03i

2 t. 20 CL ; 44J, 4.

.0 4-3 4) 01 4)4J 0 - t 15 24- 4J 0 ; 1 C04 1 to1 u 4 C L .- s - 0
so + 0 UL W .- S-C

0 : $ 34 J W 4. Ch 4 1 * . 4 . 4 1 " -c 4 1 5
q..I -n00 C GI6 Z~ 00 C36 r.Eoo-u 13 C 4' - + 44 40 cm Lp C - C CLLI) G' 4O" a-~ 0+1 2 f ~. C01~- El W, I-In CL..)4- 0- 44- 0 0 0 In C e. un .- C uLUI 010 (JO > 0 -a1 4Al I C n C I

ui In o L C c m4- 4+ = -'~j C
:0~- W- f!

0
-L. .! - - L1 0WS- 41'4

4J -+ 0 L W o i. L4J w 1 2 C 49 C+a I n go 0

CL-o4= Cot .0- CW -1 .0 Lz 40 I - 40 a

Euj
~ ~-"~0 -,I Z *~ ~ InZ JO~ 1f W LI- ~ ~ ~ ~ ~ ~ t U.

L ;- ~- ~ ~ CJ'

z

cxLJzLEHU] I

4J 4J j

_ _ _ _ _CA_ _ _ c I S- _ _ _ _
_ _ _ _ _ _ _ _F_ _al

oJ (Do a

Or 0U- U4U-
C C

4- 0.

4-) W 4. c ,
L~~~ Cij 7,' n i

4- C0 '04 4) S - 0 4-
0.. uj .- 94- 4- 4- .0 .1 -

C. 0 w) 4) 0) =10 0
4-- (D I r S > 4.14- *I.M W0 Ii. 0.

cc 4-) wi o 5- 4 4J 0, ad 3 CC :i_

a (U L. S 4. 0 4) 0Co- -
la 4J (a LW C.' 0 . O ~ ~> 0 4-0.. z0Ci C 4- > .0.4.1 U. .I-u -0. > - .- 41C 0 M41-.

4.1 4-lJw0i n o ~ *

>to
. ! .; Q) C)6-27

4J 4J

LIE

La

Si

0 VC

u 4.1

41 '4-

'A .41; 4

EU E

- di 4.;

0

4444 Z
4j 0

LO.

cll L-10

a 'n -

j.

3 L&J OM

4-)D LUU __ _

QQ
0

U) 0

-J-
-3 S- 4

CC

U 't- :3 S- 03 Scm -) CU -: 0 () "n wa 0

ri " L) C 0 0 C 0

M m 'o E. I o
C\J 11 4 4- 0 4-- 0CEL
4- L, 0 I - 20C (A 0 04

V) 0. 1.At S g
o- _ r 0 - S-. -

L.-- o ~ -0 ()I- 0. a' C) 'T m 0 I

M- CS) CL 4
L)~ S-

V) >- c
0V .0

VSL.

LUL

.-. L)

V;3 LAJ

L'i

6-2

'I -J

- ~ I S-__ ___

4J44-) c1
z L... r_ _ _ _ _ _ _ _ _

CC
>.S (1CU A.-

m~ 4. 1 t) 1

CL a, 0 m

4- 4) 4cm. 'a 30 4
w 0 0 -0 m j4)wS-

cm -6- w 0
-4 = 4,, - 0 4

44-

0 .) '0 00

o ~.~'U0 M

L ~ ~ ~ V n 0 0

06030-

I.I

C>I (A CJL

ix L
44 w

LJ4 41 III l l

Co: 4,40 V II4

S_ S- LL 41;
Ci EA

4-'4 :3 a) 4 0)). '0 0
a - Fa-- E C-L 4- . -)

o ~ ~ ~ S u S-C C00 .4 0 ~l 0
0/ m ~ 0C E-' L/)4-

o4-C J -~ 4-~ 4- 01* 41' 4

(1' 12 4- M N- W) 'a ~ 0
41 41 0 -04' >-i .. 0)

4) 4' 9-C c- 0 0 '0
-4., z S. Z) 0 -0Jf '0 4J = 4-'C

V)C 0 0 z -CG 410 C - S-
42 C-0 a' V',* cu~ CA 0 0 Ae 4

Or 0-) 0 C C 0 4 .' 4-' C lu

wJ 0, cu4 C:) 00> 4, 0

0 -u 4)~ A' .0 -W~J (
r_ 11 0 - M - 1t

UU
LUS_00II a'. L4J 0C.U InJ '

LW LU C L"

C>)0

6-31

-----------------------t-. - - --- ---.-

L.J

L'J

.Z)

C

L CU

4-)

r_) a

0 o

a) .r
.0

c'U

4_'

m C)

S.- E

3 U ~ .Ud) =1

0 -

IfC

6-32I

6.2.2 EXPLANATIONS OF METRICS

Each metric and each metric element are described in the following paragraphs.

Indication is provided if the metric is applied at the system level or the

module level and during which phases.

6.2.2.1 Traceability

TR.l Cross reference relating modules to requirements (design and imple-
mentation phases at system level).

During design, the identification of which itemized requirements are satis-

fied in the design of a module are documented. A traceability matrix is an

example of how this can be done. During implementation, which itemized require-

ments are being satisfied by the module implementation are to be identified.

Some form of automated notation, prologue comments or imbedded comments, is

used to provide this cross reference. The metric is the number of itemized

requirements traced divided by the total number of itemized requirements.

6.2.2.2 Completeness

CP.l Completeness Checklist (All three phases at system level).

This metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Unambiguous references (input, function, output).

Unique references to data or functions avoid ambiguities such as

a function being called one name by one module and by another

name by another module. Unique references avoid this type of

ambiguity in all three phases.

(2) All data references defined, computed, or obtained from an

external source.

Each data element is to have a specific origin. At the

requirements level only major global data elements and a few

specific local data elements may be available to be checked.

The set of data elements available for completeness checking at

the design level increases substantially and is to be complete

at implementation.

6-33

(3) All defined functions used.
A function which is defined but not used during a phase is

either nonfunctional or a reference to it has been omitted.

(4) All referenced functions defined.

A system is not complete at any phase if dummy functions are
present or if functions have been referenced but not defined.

(5) All conditions and processing defined for each decision point.

Each decision point is to have all of its conditions and alter-

native processing paths defined at each phase of the software

development. The level of detail to which the conditions and alter-

native processing are described may vary but the important element

is that all alternatives are described.

(6) All defined and referenced calling sequence parameters agree.

For each interaction between modules, the full complement of

defined parameters for the interface is to be used. A par-

ticular call to a module should not pass, for example, only five

of the six defined parameters for that module.

(7) All problem reports resolved.

At each phase in the development, problem reports are generated.

Each is tn be closed or a resolution indicated to ensure a

complete product.

(8) Design agrees with requirements.

Continual updating of the requirements documentation and the

design documentation is required so that the current version of

the source code (see element (9)), the current version of the

design documentation, and the current version of the require-

ments documentation agreee.

6-34

(9) Code agrees with design.

See element (8).

6.2.2.3 Consistency

CS.l Procedure Consistency Measure (design and implementation at system

level).

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Standard Design Representation.

Flow charts, HIPO charts, Program Design Language - whichever form

of design representation is used, standards for representing the

elements of control flow are to be established and followed. This

element applies to design only. The measure is based on the number of

modules whose design representation does not comply with the standards.

(2) Calling sequence conventions.

Interactions between modules are to be standardized. The stan-

dards are to be established during design and followed during

implementation. The measure is based on the number of modules

which do not comply with the conventions.

(3) Input/Output Conventions.

Conventions for which modules will perform I/O, how it will be

accomplished, and the I/O formats are to be established and

followed. The measure is based on which modules do not comply with

the conventions.

(4) Error Handling Conventions.

A consistent method for error handling is required. Conven-
tions established in design are followed into implementation.

The measure is based on the number of modules which do not

comply with the conventions.

6-35

CS.2 Data Consistency Measure (Design and implementation at system level)
The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Standard data usage representation.
In concert with CS.1 (1), a standard design representation for

data usage is to be established and followed. This is a design metric

only, identifying the number of modules which violate the standards.

(2) Naming Conventions.
Naming conventions for variables and modules are to be established

and followed.

(3) Unit Consistency.

Units of variables are to be chosen to be consistent with all

uses of the variables. The measure is based on the number of
! modules in which consistent units are not utilized. This can be

measured at both design and implementation.

(4) Consistent Global Definitions.

Global data elements are to be defined in the same manner by all

modules. The measure is based on the number of modules in which

the global data elements are defined in an inconsistent manner

for both design and implementation.

(5) Data Type Consistency.

A data element defined as a particular data type is to be used as that

data type in all occurrences. A common violation of this rule is found

in arrays where several data types are defined. The measure is based

on the number of modules which utilize data types inconsistently.

6-36

L ' --. . T... - I --::---: ... -r " -,, -.. " '- - -"-

6.2.2.4 Accuracy

AV.l Accuracy Checklist (requirements, design, implementation phases at

system level). Each element is a binary measure indicating existence, or

absence of the elements. The metric is the sum of the scores of the

following applicable elements divided by the number of applicable elements.

(1) Error analysis performed and budgeted to module (requirements

phase only).

An error analysis must be part of the requirements analysis performed

to develop the requirements specification. This analysis allocates

overall accuracy requirements to the individual functions to be

performed by the system. This budgeting of accuracy requirements

provides definitive objectives to the module designers and

implementers.

(2) A definitive statement of requirement for accuracy of inputs,

outputs, processing, and constants (requirements phase only).

See explanation above (1).

(3) Sufficiency of Math Library (design phase only).

The accuracy of the math library routines utilized within the

system is to be checked for consistency with the overall

accuracy objectives.

(4) Sufficiency of numerical methods (design and implementation

phase).

The numerical methods utilized within the system are to be consis-

tent with the accuracy objectives. They can be checked at design

and implementation.

(5) Execution outputs within tolerances (implementation phase only

requiring execution).

A final measure during development testing is execution of mod-

ules and checking for accuracy of outputs.

6-37

U~ ~ ~ ~ ~ ~ ~ ~ ~~~~~At - , --------.-.----- -- --

6.2.2.5 Error Tolerance

ET.1 Error Tolerance Control Checklist (design and implementation phases

at system level).

The metric is the sum of the scores given to the following elements divided

by the number of applicable elements.

(1) Concurrent processing centrally controlled.

Functions which may be used concurrently are to be controlled

centrally to provide concurrency checking, read/write locks, etc.

Examples are a data base manager, I/O handling, error handling,

etc. The central control must be considered at design and then

implemented.

(2) Errors fixable and processing continued.

When an error is detected, the capability to correct it on-line

and then continue processing, should be available. An example is

an operator message that the wrong tape is mounted and processing

will continue when correct tape is mounted. This can be measured

at design and implementation.

(3) When an error condition is detected, the condition is to be passed up to

calling routine.

The decision of what to do about an error is to be made at a I
level where an affected module is controlled. This concept is

built into the design and then implemented.

ET.2 Recovery from Improper Input Data Checklist (all three phases at

system level). The metric is the sum of the scores of the following appli-

cable elements divided by the number of the applicable elements.

6-38

(1) A definitive statement of requirement for error tolerance of

input data.

The requirements specification must identify the error tolerance

capabilities desired (requirements phase only).

(2) Range of values (reasonableness) for items specified and checked

(design and implementation phases only).

The attributes of each input item are to be checked for reason-

ableness. Examples are checking items if they must be numeric,

alphabetic, positive or negative, of a certain length, nonzero,

etc. These checks are to be specified at design and exist in

code at implementation.

(3) Conflicting requests and illegal combinations identified and checked

(design and implementation phases only).

Checks to see if redundant input data agrees, if combinations of param-

eters are reasonable, and if requests are conflicting should be docu-
mented in the design and exist in the code at implementation.

(4) All input is checked before processing begins (design and imple-

mentation phases only).

Input checking is not to stop at the first error encountered but to con-

tinue through all the input and then report all errors. Processing is

not to start until the errors are reported and either corrections are

made or a continue processing command is given.

(5) Determination that all data is available prior to processing.

To avoid going through several processing steps before incomplete
input data is discovered, checks for sufficiency of input data
are to be made prior to the start of processing.

* ET.3 Recovery from Computational Failures Checklist (all three phases at

system level). The metric is the sum of the scores of the following appli-

cable elements divided by the number of applicable elements.

6-39

(1) A definitive statement of requirement for recovery from compu-

tational failures (requirements phase only).
The requirement for this type error tolerance capabilitYare to

be stated during requirements phase.

(2) Loop and multiple transfer index parameters range tested before

use. (design ahd implementation phase only).
Range tests for loop indices and multiple transfers are to be

specified at design and to exist in code at implementation.

(3) Subscript checking (design and implementation phases only).

Checks for legal subscript values are to be specified at design
and coded during implementation.

(4) Critical output parameters reasonableness checked during

processing (design and implementation phases only).
Certain range-of-value checks are to be made during processing to

ensure the reasonableness of final outputs. This is usually done
only for critical parameters. These are to be identified during

design and coded during implementation.

ET.4 Recovery from Hardware Faults Checklist (All three phases at system
level). The metric is the sum of scores from the applicable elements divided
by the number of applicable elements.

(1) A definitive statement of requirements for recovery from hardware
faults (requirements only).

The hatidling of hardware faults such as arithmetic faults, power
failure, clock interrupts, etc., are to be specified during require-

ments phase.

6-40

(2) Recovery from Hardware Faults (design and implementation phases

only).
The design specification and code to provide the recovery from

the hardware faults identified in the requirements must exist

in the design and implementation phases respectively.

ET.5 Recovery from Device Errors Checklist (all three phases at system

level). The metric is the score given to the applicable elements below

at each phase.

(1) A definitive statement of requirements for recovery from device

errors (requirements only).
The handling of device errors such as unexpected end-of-files

or end-of-tape conditions or read/write failures are specified

during the requirements phase.

(2) Recovery from Device Errors (design and implementation phases

only).

The design specification and code to provide the required

handling of device errors must exist in the design and implementation

phases respectively.

6.2.2.6 Simplicity
SI.1 Design Structure Measure (design and implementation phases at system

level). The metric is the sum of the scores of the applicable elements

divided by the number of applicable elements.

(1) Design organized in top down fashion.

A hierarchy chart of system modules is usually available or easy

to construct from design documentation. It should reflect the
accepted notion of top down design. The system is organized

* in a hleracrchal tree structure, each level of the tree represents

lower levels of detail descriptions of the processing.

6-41

(2) No duplicate functions.

Descriptions of functions to be performed by each module at

design and the actual function performed by the coded module
is to be evaluated to ensure it is not duplicated by other

modules.

(3) Module independence.

The processing done within a module is not to be dependent on the

source of input or the destination of the output. This rule can

be applied to the module description during design and the coded

module during implementation. The measure for this element is

based on the number of modules which do not comply with this rule.

(4) Module processing not dependent on prior processing.

The prccessing done within a module is not to be dependent upon

knowledge or results of prior processing, e.g., the first time

through the module, the nth time through, etc. This rule is

applied as above at design and implementation.

(5) Each module description includes input, output, processing,

limitations.

Documentation which describes the input, output, processing, and

limitations for each module is to be developed during design and
available during implementation. The measure for this element is

based on the number of modules which do not have this information

documented.

(6) Each module has single entrance, single exit.

Determination of the number of modules that violate this rule at

design and implementation can be made and is the basis for the metric.

(7) No global data.

This is a binary measure which identifies the complexity added to a

system by the use of global data. If no global data exists, this

measure is 1, if global data does exist, it is 0.

6-42

SI.2 Use of structured language or structured language preprocessor (Imple-

mentation phase). The metric is a binary measure of the existence (1)

or absense (0) of structured language code.

A structured language or structured language preprocessor provides con-

structs similar to the IFTHENELSE, DOWHILE, DOIUNTIL, and CASE statements

associated with structured programing.

SI. 3 Data and Control Flow Complexity measure (Design and implementation

phases).

This metric can be measured from the design representation (e.g., flowcharts)

and the code automatically. Path flow analysis and variable set/use informa-

tion along each path is utilized. A variable is considered to be 'live' at a

node if it can be used again along that path in the program. The com-

plexity measure is based on summing the 'liveness' of all variables along

all paths in the program. It is normalized by dividing it by the maximum

complexity of the program (all variables live along all paths).

(See [RICHP76] and page D-16 of Volume II.)

SI.4 Measure of Simplicity of Coding Techniques (Implementation phase

applied at module level first). The metric at the system level is an

averaged quantity of all the module measures for the system. The module

measure is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Module flow top to bottom.

This is a binary measure of the logic flow of a module. If it

flows top to bottom, it is given a value of 1, if not a 0.

(2) Negative Boolean or complicated Compound Boolean expressions

used.

Compound expressions involving two or more Boolean operators and

negation can often be avoided. These types of expressions add

to the complexity of the module. The measure is based on the

number of these complicated expressions per executable statement

in the module.

6-43

(3) Jumps in and out of loops.

Loops within a module should have one entrance and one exit.

This measure is based on the number of loops which coaply with this

rule divided by the total number of loops.

(4) Loop index modified.

Modification of a loop indeX not only complicates the logic of a

module but causes severe problems while debugging. This measure

is based on the number of loop indices which are modified divided

by the total number of loops.

(5) Module is not self-modifying.

If a module has the capability to modify its processing logic it becomes

very difficult to recognize what state it is in when an error occurs. In

addition, static analysis of the logic is more difficult. This measure

emphasizes the added complexity of self-modifying modules.

(6) All arguments passed to a module are parametric.

This is a binary measure, 1 if all parameters are parametric,

0 if they all are not. This measure is based on the iJtential

problems that can arise if constants or global data are used as

arguments.

(7) Number of statement labels.

This measure is based on the premise that as more statement labels

are added to a module the more complex it becomes to understand.

(8) Unique names for variables.

This is a binary measure which is given a 1 if unique names are

.4 used, and a 0 if they are not.

6-44

(9) Single use of variables.

A variable is to be utilized for only one purpose, i.e., in one

manner. This measure is a binary measure; 1 if variables are

used in only one way and 0 if they are used for multiple purposes.

(10) No mixed-mode expressions.

If mix-mode expressions are used greater complexity is introduced.

This measure is a 1 if no mix-mode expressions are used in a
module, and a 0 if mix-mode expressions are used.

(11) Nesting level.

The greater the nesting level of decisions or loops within a mod-

ule, the greater the complexity. The measure is the inverse of

the maximum nesting level.

(12) Number of branches.

The more paths or branches that are present in a module, the

greater the complexity. This measure is based on the number of

decision statements per executable statements.

(13) Number of GOTO's.

Much has been written in the literature about the virtues of

avoiding GOTO's. This measure is based on the number of GOTO

statements per executable statement.

(14) No extraneous code exists.

This is a binary measure which is 1 if no extraneous code exists

and 0 if it does. Extraneous code is code which is nonfunctional4 or cannot be executed.

6I

~6-45

(15) Variable mix in a module.

From a simplicity viewpoint, local variables are far better than

global variables. This measure is the ratio of internal (local)

variables to total (internal (local) plus external (global))

variables within a module.

(16) Variable density.

The more uses of variables in a module the greater the complexity

of that module. This measure is based on the number of variable

uses in a module divided by the maximum possible uses.

6.2.2.7 Modularity

M0.1 Stability Measure (Design phase at system level).

This measure is based on G. Meyer's ([MYERG76]) categorization of modules by

their module strength and coupling. Module strength is a measure of the cohe-

siveness or relationship of the elements within a module. Module coupling is

a measure of the relationship between modules. The metric combines these two

measures to calculate the expected number of modules that would require modifi-

cation if changes to any one module were made divided by the total number of

modules.

MO.2 Modular Implementation Measure (design and implementation phases at sys-

tem level). The metric is the sum of the scores of the following applicable

elements divided by the number of applicable elements.

(1) Hierarchical Structure.

* The measure refers to the modular implementation of the top down design

structure mentioned in SI.1 (1). The nierarchical structure obtained

should exemplify the following rules: Interactions between modules

are restricted to flow of control between a predecessor module and its

* immediate successor modules. This measure is based on the number of

violations to this rule.

(2) All modules do not exceed a standard module size (100) (Implementa-

tion phase only).
The standard module size of 100 procedural statements can vary. 100
was chosen because it has been mentioned in the literature frequently.

This measure is based on the number of modules which exceed the

standard size established.

6-46

(3) All modules represent one function.

The concept of modularity is based on each function being imple-

mented in a unique module. This measure is based on the number

of modules which represent more than one function. This can be

determined at both design and implementation.

(4) Controlling parameters defined by calling module.

The next four elements further elaborate on the control and

interaction between modules referred to by (1) above. The

calling module defines the controlling parameters, any input

data required, and the output data required. Control must also be
t.

returned to the calling module. This measure and the next three are

based on the number of violations to these rules. They can be

measured at design and implementation.

(5) Input.data controlled by calling module.

See (4) above.

(6) Output data provided to calling module.

See (4) above.

(7) Control returned to calling module.

See (4) above.

(8) Modules do not share temporary storage.

This is a binary measure, 1 if modules do not share temporary
storage and 0 if they do. It emphasizes the loss of module inde-

pendence if temporary storage is shared between modules.

6.2.2.8 Generality

GE.1 Extent to which modules are referenced by other modules (design and

4; implementation at system level). This metric provides a measure of the gen-

erality of the modules as they are used in the current system. A module

is considered to be more general in nature if it is used (referenced) by

more than one module. The number of these common modules divided by the

total number of modules provides the measure.

6-47

Q .2 Implemntation for Generality Measure (design and implementation
phases). This metric is the sum of the scores of the following applicable

elements divided by the number of applicable elements.

(1) Input, processing, output functions are not mixed in a single

function.
A module which performs I/O as well as processing is not as
general as a module which simply accomplishes the processing.
This measure is based on the number of modules that violate
this concept at design and implementation.

(2) Application and machine dependent functions are not mixed in
a single module (implementation only).

Any references to machine dependent functions within a module

lessens its generality. An example would be referencing the
system clock for timing purposes. This measure is based on the
number of modules which violate this concept at design and

implementation.

(3) Processing not data volume limited.

A module which has been designed and coded to accept no

more than 100 data item inputs for processing is certainly
not as general in nature as a module which will accept any

volume of input. This measure is based on the number of modules
which are designed or implemented to be data volume limited.

(4) Processing not data value limited.
A previously identified element, ET.2 (2) of Error Tolerance dealt

with checking input for reasonaoleness. This capability is required

to prevent providing data to a function for which it is not defined
or its degree of precision is not acceptable, etc. This ,s necessary

capability from an error tolerance viewpoint. From a generality
viewpoint, the smaller the subset of all possible inputs to
which a function can be applied the less general it is. Thus, this

6-48

measure is based on the number of modules which are data value

limited. This can be determined at design and implmentation.

(5) All constants should be defined once.
This element, in effect, defines a constant as a parametric value.

At one place in the module or data base it can be changed to accom-

modate a different application of the function of that module,

e.g., to calculate a mathematical relationship at a greater degree

of precison or to represent the constant of gravitation of a

different planet than earth, etc. Thus, if this rule is fol-
lowed, the effort required to apply the module in a different

environment is smaller. The measure is based on the number of

modules which violate this concept during design and

implementation.

6.2.2.9 Expandability

EX.1 Data Storage Expansion Measure (design and implmentation phase at
system level). The metric is the sum of the scores of the following appli-

cable elements divided by the number of applicable elements.

(1) Logical processing independent of storage specification/require-

ments. The logical processing of a module is to be independent

of storage size, buffer space, or array sizes. The design pro-

vides for variable dimensions and dynamic array sizes to be defined

parametrically. The metric is based on the number of modules con-

taining hard-coded dimensions which do not exemplify this concept.

(2) Percent of memory capacity uncommitted (implementation only).
The amount of memory available for expansion is an important mea-

sure. This measure identifies the percent of available memory
which has not been utilized in implementing the current system.

EX.2 Extensibility Measure (design and implementation phases at the system

level). The metric is the sum of the scores of the following applicable
elements divided by the number of applicable elements.

6-49

I

(1) Accuracy, convergence, timing attributes which control processing

are parametric.

A module which can provide varying degrees of convergence or timing

to achieve greater precision provides this attribute of extensibil-

ity. Hard-coded contru; parameters, counters, clock values, etc.

violate this measure. This measure is based on the number of mod-

ules which do not exemplify this characteristic. A determination

can be made during design and Implementation.

(2) Modules table driven.

The use of tables within a module facilitates different representa-

tions and processing characteristics. This measure which can be

applied during design and implementation is based on the number of

modules which are not table driven.

(3) Percent of speed capacity uncommitted (implementation only).

A certain function may be required in the performance requirements

specification to be accomplished in a specified time for overal'
timing objectives. The amount of time not used by the current

Implementation of the function is processing time av, -h)le for
potential expansion of computational capabilities. sure

Identifies the percent of total processing time thal

uncommitted.

6.2.2.10 Instrumentation

IN.1 Module testing measure (design and implementation phases, first at mod-

ule level then system level). The system level metric is an average of all

module measures. The module measure is the average score of the following

two elements:

(1) Path coverage.

Plans for testing the various paths v.thin a module should be made

during design and the test cases act,.ally developed during Imple-

mentation. This measure identifies the number of paths planned to

be tested divided by the total number of paths.

(2) Input parameters boundary tested.
The other aspect of mudule testing involves testing the input

6-60

...'" " ' "I -I ' . ..

ranges to the module. This is done by exercising the module at the

various boundary values of the input parLeters. Plans to do this

must be specified during design and coded during implementation.
The measure is the number of parameters to be boundary tested

divided by the total number of parameters.

IN.2 Integration Testing Measure (design and implementation phases at system
level). The metric is the averaged score of the following two elements.

(1) Module interfaces tested.

One aspect of integration testing is the testing of all module to

module interfaces. Plans to accomplish this testing are prepared

during design and the tests are developed during implementation.
The measure is based on the number of interfaces to be tested

divided by the total number of interfaces.

(2) Performance requirements (timing and storage) coverage.

The second aspect of integration testing involves checking for com-

pliance at the module and subsystem level with the performance

requirements. This testing is planned during design and the tests
are developed during implementation. The measure is the number
of performance requirements to be tested divided by the total

number of performance requirements.

6-51

-..

IN.3 System Testing Measure (design and implementation phases at the system

level). The metric is the averaged score of the two elements below.

(1) Module Coverage.

One aspect of system testing which can be measured as early as the

design phase is the equivalent to path coverage at the module level.

For all system test scenarios planned, the percent of all of the

modules to be exercised is important.

(2) Identification of test inputs and outputs in summary form.

The results of tests and the manner in which these results are

displayed are very important to the effectiveness of testing. This

is especially true during system testing because of the potentially

large volume of input and output data. This measure simply identi-

fies if the capability exists to display test inputs and outputs

in a summary fashion. The measure can be applied to the plans

and specifications in the design phase and the development of

this capability during implementation.

6.2.2.11 Self Descriptiveness

SD.1 Quantity of Comments (implementation phase at module level first and

then system level). The metric is the number of comment lines divided by the

total number of lines in each module. Blank lines are not counted. The

average value is computed for the system level metric.

6-52

SD.2 Effectiveness of Comments Measure (implementation phase at system level).
The metric is the swu of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Modules have standard formatted prologue comments.
The items to be contained in the prologue conments are listed in
Table 6.2-1. This information is extremely valuable to new

personnel who have to work with the software after development,
pe-forming maintenance, testing, changes, etc. The measure at
the system level is based on the number of modules which do not
comply with a standard format or do not provide comolete information.

(2) Comments set off from code in uniform manner.

Blank lines, bordering asterisks, specific card columns are some of
the techniques utilized to aid in the identification of comments.

The measure is based on the number of modules which do not follow

the conventions established for setting off the comments.

(3) All transfers of control and destinations commented.

This form of comment aids in the understanding and ability to follow

the logic of the module. The measure is based on the number of

modules which do not comply.

(4) All machine dependent code commented.

Comments associated with machine dependent code are important not
only to explain what is being done but also serves to identify

that portion of the module as machine dependent. The metric is
based on the number of modules which do not have the machine

dependent code commented.

(5) All non-standard HOL statements commented.

A similar explanation to (4) above is applicable here.

6-53

(6) Attributes of all declared variables commented.

The usage, properties, units, etc., of variables are to be explained

in comments. The measure is based on the number of modules which do
not follow this practice.

(7) Comments do not just repeat operation described in language.

Comments are to describe why not what. A comment, increment A by 1,

for the statement A-A+1 provides no new information. A comment,

increment the table look-up index, is more valuable for under-

standing the logic of the module. The measure is based on the

number of modules in which comments do not explain the why's.

SD.3 Descriptiveness of Implementation Language Measure (implementation

phase at system level). The metric is the sum of the scores of the following

applicable elements divided by the number of applicable elements.

(1) High Order Language used.
An HOL is much more self-descriptive than assembly language. The

measure is based on the number of modules which are implemented,
in whole or part, in assembly or machine language.

(2) Standard format for organization of modules followed.

A specific format ordering such as proloque comments, declarative
statements, executable statements is to be uniformly used in

modules. This measure is based on the number of modules which do
not comply with the standard format established.

(3) Variable names (mnemonics) descriptive of physical or functional

property represented.
While the metric appears very subjective, it is quite easy to

identify if variable names have been chosen with self-descriptive-

ness in mind. Three variable names such as NAME, POSIT, SALRY

are far better and more easily recognized as better than Al, A2,
A3. The measur. is based on the number of modules ,ich do not

utilize descriptive names.

6-54

(4) Source code logically blocked and indented.

Techniques such as blocking, paragraphing, indenting for specific

constructs are well established and are to be followed uniformly

within a system. This measure is based on the number of modules

which do not comply with a uniform technique.

(5) One statement per line.

The use of continuation statements and multiple statements pe,- line

causes difficulty in reading the code. The measure is the number

of continuations plus the number of multiple statement lines divided
by the total number of lines for each module and then averaged over

all of the modules in the system.

(6) No language keywords used as names.
Some languages allow keywords to be used as statement labels or as

variables. This practice is confusing to a reader. The measure is

based on the number of modules in which a keyword is used in this

manner.

6.2.2.12 Execution Efficiency

EE.l Performance Requirements allocated to design (design phase at system

level). Performance requirements for the system must be broken down and

allocated appropriately to the modules during the design. This metric simply

identifies if the performance requirements have (1) or have not (0) been

allocated during the design.

EE.2 Iterative Processing Efficiency Measure (design and implementation

phases at module level first). The metric at the module level is the sum of
the scores of the following applicable elements divided by the number of
elements. At the system level it is an averaged score for all of the modules.

(1) Non-loop dependent computations kept out of loop.

Such practices as evaluating constants in a loop are to be avoided.
This measure is based on the number of non-loop dependent statements

6-55

found in all loops in a module. This is to be measured from a

detailed design representation during design and from the code

during implementation.

(2) Performance Optimizing Compiler/Assembly language used (implementation

only).
This is a binary measure which identifies if a performance optimizing

compiler was used (1) or if assembly language was used to accomplish
performance uptimization (1) or not (0).

(3) Compound expressions defined once (implementation only).
Repeated compound expressions are tobe avoided from an efficiency

standpoint. This metric is based on the number of compound
expressions which appear more than once.

(4) Number of overlays.
The use of overlays requires overhead as far as procesing time.

This measure, the inverse of the number of overlays, r flects that

overhead. It can be applied during design when the ov lay scheme
is defined and during implementation.

(5) Free of bit/byte packing/unpacking in loops.

This is a binary measure indicating the overhead involved in bit/byte

packing and unpacking. Placing these activities within loops should

be avoided if possible.

(6) Free of nonfunctional executable code (implementation only).
Segments of executable code which do not perform a relevant function

are obvious inefficiencies. They arise most often during redesign

or editing when updates are made without complete removal of obsolete

code. This element can be measured at implementation only and is
based on the number of nonfunctional, yet executable lines of code.

6-56

(7) Decision Statements efficiently coded (implementation only).

This measure is based on the number of inefficiently coded decision

statements divided by the total number of decision statements. An

example of an inefficiently coded decision statement is not having

the most frequently exercised alternative of an IF statement be the

THEN clause.

(8) Module linkages (implementation only, requires execution).

This measure essentially represents the inter-module communication

overhead. The measure is based on the amount of execution time

spent during module to module communication.

(9) Operating System linkages (Implementation only, requires execution).

This measure represents the module to OS communication overhead.

The measure is based on the amount of execution time spent during

module to OS communications.

EE.3 Data Usage Efficiency Measure (design and implementation phases applied

at module level first). The metric at the module level is the sum of the

scores of the following applicable elements divided by the number of applicable

elements. The system metric is the averaged value of all of the module metric

values.

(1) Data grouped for efficient processing.

The data utilized by any module is to be organized in the data base,

buffers, arrays, etc., in a manner which facilitates efficient
processing. The data organization during design and implementation is

to be examined to provide this binary measure.

(2) Variables initialized when declared (Implementation only).

This measure is based on the number of variables used in a module

which are not Initialized when declared.

6-57

II 1 11 , j " 11 , '

Efficiency is lost when variables are Initialized during execution

of a function or repeatedly initialized during iterative processing.

(3) No mix-mode expressions (implementation only).

Processing overhead is consued by mix-mode expressions which are

otherwise unnecessary. This measure is based on the number of mix-
mode expressions found in a module.

(4) Common choice of units/types.

For similar reasons as expressed above (3) this convention is to be

followed. The measure is the inverse of the number of operations

performed which have uncommon units or data types.

(5) Data indexed or referenced for efficient processing.

Not only the data organization, (1) above, but the linkage scheme

between data items effects the processing efficiently. This is a

binary measure of whether the indexing utilized for the data was

chosen to facilitate processing.

6.2.2.13 Storage Efficiency

SE.1 Storage Efficiency Measure (design and implementation phases at module

level first then system level). The metric at the module level is the sum of

the scores of the following applicable elements divided by the number of
applicable elements. The metric at the system level is the averaged value of

all of the module metric values.

(1) Storage Requirements allocated to design (design phase only).

The storage requirements for the system are to be allocated to the

individual modules during design. This measure is a binary measure

of whether that allocation is explicitly made (1) or not (0).

6-58

(2) Virtual Storage Facilities Used.

The use of virtual storage or paging techniques enhances the

storage efficiency of a system. This is a binary measure of whether
these techniques are planned for and used (1) or not (0).

(3) Common data defined only once (implementation only).

Often, global data or data used comionly are defined more than
once. This consumes storage. This measure is based on the number

of variables that are defined in a module that have been defined

elsewhere.

(4) Program Segmentation.

Efficient segmentation schemes minimize the maximum segment length
to minimize the storage requirement. This measure is based on

the maximum segment length. It is to be applied during design when

estimates are available and during implementation.

(5) Data Segmentation.
The amount of data referenced by a module in the form of arrays,

input buffers, or global data, often is small compared to the

size of the storage areas required. This represents an ineffi-

cient use of storage. The measure is based on the amount of un-

used data divided by the total amount of data available to a
module.

(6) Dynamic memory management used.

This is a binary measure emphasizing the advantages of using dy-

namic memory management techniques to minimize the amount of

storage required during execution. This is planned during design

and used during implementation.*1
(7) Data packing used (implementation only).

While data packing was discouraged in EE.2 (5) in loops because of

the overhead it adds to processing time, in general it is bene-

ficial from a storage efficiency viewpoint. This binary measure

applied during implementation recognizes this fact.

6-59

(8) Free of nonfunctional code (implementation only).

Nonfunctional code, whether executable (see EE.2 (6)) or not, con-

sumes storage space so it is undesirable. This measure is based on

the number of lines of code which are nonfunctional.

(9) No duplicate code.

Duplicate code should be avoided for the same reason as (8) above.
This measure which is to be applied during design and implementation is

based on the amount of duplicate code.

(10) Storage optimizing compiler/assembly language used (implementation

only).

This binary measure is similar to EE.2 (2) except from the viewpoint

of storage optimization.

(11) Free of redundant data elements (implementation only).

This measure pertains to the data base and is based on the number
of redundant dita elements.

6.2.2.14 Access Control
AC.1 Access Control Checklist (all three phases at system level).

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) User I/O Access controls provided.
Requirements for user access control must be identified during the
requirements phase. Provisions for identification and password

checking must be designed and implemented to comply with the require-

ments. This binary measure applied at all three phases identifies
whether attention has been placed on this area.

(2) Data Base Access controls provided.

This binary measure identifies whether requirements for data base

6-60

controls have been specified, designed and the capabilities imple-

mentated. Examples of data base access controls are authorization

tables and privacy locks.

(3) Memory protection across tasks.

Similar to (1) and (2) above, this measure identifies the progression

from a requirements statement to implementation of memory protection

across tasks. Examples of this type of protection, often times pro-

vided to some degree by the operating system, are preventing tasks from

invoking other tasks, tasks from accessing system registers, and the

use of privileged commands.

6.2.2.15 Access Audit

AA.1 Access Audit Checklist (all three phases at system level).

The metric is the averaged score of the following two elements.

(1) Provisions for recording and reporting access.
A statement of the requirement for this type capability must exist in

the requirements specification. It is to be considered in the design

specification, and coded during implementation. This binary metric

applied at all three phases identifies whether these steps are

being taken. Examples of the provisions which might be considered

would be the recording of terminal linkages, data file accesses,
and jobs run by user identification and time.

(2) Provisions for immediate indication of access violation.
In addition to (1) above, access audit capabilities required

might include not only recording accesses but immediate identifica-

tion of unauthorized accesses, whether intentional or not. This

measure traces the requirement, design, and implementation of

provisions for this capability.

£ 6-61

°I,- i

6.2.2.16 Operabilty1t~

OP.1 Operability Checklist (all three phases at system level).

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elemen~s.

(1) All steps of operation described.

This binary measure applied at all three phases identifies whether

the operating characteristics have been described in the require-

ments specification, and if this description has been transferred

into an implementable description of the operation (usually in an

operator's manual). The description of the operation should cover

the normal sequential steps and all alternative steps.

(2) All error conditions and responses appropriately described to

operator.

The requirement for this capability must appear in the requirements

specification, must be considered durinq design, and coded during

implementation. Error conditions must be clearly identified by

the system. Legal responses for all conditions are to be either

documented and/or prompted by the system. This is a binary mea-

sure to trace the evolution and implementation of these capabilities.

(3) Provisions for operator to interrupt, obtain status, save, modify,

and continue processing.

The capabilities provided to the operator must be considered during

the requirements phase and then designed and implemented. Examples

of operator capabilities include halt/resume and check pointing.

This is a binary measure to trace the evolution of these

capabilities.

1 (4) Number of operator actions reasonable (implementation only, re-
: quires execution).

The number of operator errors can be related directly to the number

of actions required during a time period. This measure is based on

the amount of time spent requiring manual operator actions divided

by the total time required for the job.

6-62

(5) Job set up and tear down procedures described (implementation only).

The specific tasks involved in setting up a job and completing it

are to be described. This is usually documented duriny the imple-

mentation phase when the final version of the system is fixed.
This is a binary measure of the existence of that description.

(6) Hard copy log of interactions maintained (design and implementation

phases).

This is a capability that must be planned for in design and coded

during implementation. It assists in correcting operational errors,

improving efficiency of operation, etc. This measure identifies

whether it is considered in the design and implementation phases (1)

or not (0).

(7) Operator messages consistent and responses standard (design and

implementation pIases).
This is a binary measure applied during design and implementation to

insure that the interactions between the operator and the system are

simple and consistent. Operator responses such as YES, NO, GO, STOP,

are concise, simple, and can be consistently used throughout a system.

Lengthy, differently formated responses not only provide difficulty

to the operator but also require complex error checking routines.

6.2.2.17 Training

TG.l Training Checklist (design and implementation at system level). The
metric is the sum of the scores of the following applicable elements divided by

the number of applicable elements.

(1) Lesson Plans/Training Material developed for operators, end users,

maintainers (Implementation phase only).
This is a binary measure of whether this type documentation is

provided during the implementation phase.

6-63

(2) kealistic simulated exercises provided (implementation only).

This is a binary measure of whether exercises which represent the

operational environment, are developed during the implementation

phase for use in training.

(3) Sufficient 'help' and diagnostic information available on-line.

This is a binary measure of whether the capability to aid the

operator in familiarization with the system has been designed and
built into the system. Provision of a list of legal commands or a

list of the sequential steps involved in a process are examples.

6.2.2.18 Communicativeness

CM.1 User Input Interface Measure (all three phases at system level).

The metric is the sum of the scores of the following applicable elements divi-

ded by the number of applicable elements.

(1) Default values defined (design and implementation).
A method of minimizing the amount of input required is to provide

defaults. This measure, applied during design and implementation,

is based on the number of defaults allowed divided by the total

number of input parameters.

(2) Input formats uniform (design and implementatiO).

The greater the number of input formats there are the more difficult

the system is to use. This measure is based on the total number of

input formats.

(3) Each input record self-identifying,

Input records which have self-identifying codes enhance the accuracy

of user inputs. This measure is based on the number of input

records that are not self identifying divided by the total number of
input records. It is to be applied at design and implementation.

6-64

(4) Input can be verified by user prior to execution (design and

implementation).

The capability, 4isplaying input upon request or echoing the input

automatically, enables the user to check his inputs before

processing. This is a measure of the existence of the design and

implementation of this capability.

(5) Input terminated by explicitly defined logical end of input (design

and implementation).

The user should not have to provide a count of Input cards. This is

a binary measure of the design and implementation of this capability.

(6) Provision for specifying input from different media.

The flexibility of input must be decided during the requirements

analysis phase and followed through during design and implementation.

This is a binary measure of the existence of the consideration

of this capability during all three phases.

CM.2 User Output Interface Measure (all three phases at system level).

The metric is the sum of the scores of the following applicable elements divided

by the number of applicable elements.

(1) Selective Output Controls.
The existence of a requirement for, design for, and implementation

of selective output controls is indicated by this binary measure.

Selective controls include choosing specific outputs, output formats,

amount of output, etc.

(2) Outputs have unique descriptive user oriented labels (design and

implementation only).

This is a binary measure of the design and implementation of unique

output labels. Ia addition, the labels.are to be descriptive to the

user. This includes not only the labels which are used to reference

an output report but also the title, column headings, etc. within that

report.

6-65

"I

(3) Outputs have user oriented units (design and implementation).

This is a binary measure which extends (2) above to the individual

output items.

(4) Uniform output labels (design and implementation).

This measure corresponds to CM.1 (2) above and is the inverse of

the number of different output formats.

(5) Logical groups of output separated for user examination (design

and implementation).

Utilization of top of page, blank lines, lines of asterisks, etc.,

provide for easy identification of logically grouped output. This

binary measure identifies if these techniques are used during design

and implementation.

(6) Relationship between error messages and outputs is unambiguous

(design and implementation).

This is a binary measure applied during design and implementation

which identifies if error messages will be directly related to the

output.

(7) Provision for redirecting output to different media.

This is a binary metric which identifies if consideraticn is given

to the capability to redirect output to different media during
requirements analysis, design, and implementation.

6.2.2.19 Software System Independence

SS.1 Software System Independence Measure (design and implementation phases
at system level). The metric is the sun of the scores of the following applic-

4able elements divided by the number of applicable elements.

(1) Dependence on Software System Utility programs.

The more utility programs that are used within a system the more

dependent the system is on that software system environment. A

6-66

SORT utility in one operating system is unlikely to be exactly

similar to a SORT utility in another. This measure is based on

the number of programs used that are utility programs divided by

the total number of programs in the system. It is to be applied

during design and implementation.

(2) Dependence on Software System Library Routines.
For similar reasons as (1) above an integration function provided

by one operating system may not be exactly the same as an integra-

tion function provided by another system. Thus the more library
routines used the more dependent the system is on its current

software system environment. This measure, applied at design and

implementetion, is based on the number of library routines used

divided by the total number of modules in the system.

(3) Common, standard subset of language used.
The use of nonstandard constructs of a language that may be available

from certain compilers cause conversion problems when the software is

moved to a new software system environment. This measure represents

that situation. It is based on the number of modules which are

coded in a non-standard subset of the language. The standard sub-

set of the language is to be established durinq desiqn and adhered

to during implementation.

(4) Free from Operating System References.

This measure is based on the number of modules which contain calls

to the operating system. While (1) and (2) above identify the
number of support-type programs and routines which might have to be

recoded if a change in software system environments took place,

this measure identifies the percent of application oriented modules

which would probably have to be changed. The metric is to be applied

during design and implementation.

6-67

6.2.2.20 Machine Independence

MI.A Machine Independence Measure (design and implementation at system level).

The metric is the sum of the scores of the following applicable elements

divided by the number of applicable elements.

(1) Programing language used available on other machines.

This is a binary measure identifying if the programming language

used is available (1) on other machines or not (0). This means
the sam version and dialect of the language.

(2) Free from input/output references.

Input and output references bind a module to the current machine con-
figuration. Thus the fewer modules within a system that contain

input and output references, the more localized the problem becomes
when conversion is considered. This measure represents that fact

and is based on the number of modules within the system that contain

1/0 references. It is to be applied during design and implementation.

(3) Code is independent of word and character size (implementation only).
Instructions or operations which are dependent on the word or

character size of the machine are to be either avoided or param-

etric to facilitate use on another machine. This measure applied

to the source during implementation is based on the number of

modules which contain violations to the concept of independence of
word and character size.

(4) Data representation machine independent (implementation only).

The naming conventions (length) used are to be standard or com-

patible with other machines. This measure is based on the number
of modules which contain variables which do not conform to standard
data representations.

6-68

6.2.2.21 Communications Commonalit,

CC.1 Communications Comonality Checklist (all three phases at system

level). The metric is the sum of the scores of the following applicable

elements divided by the number of applicable elements.

(1) Definitive statement of requirements for conmnuncation with other

systems (requirements only).

During the requirement phase, the communication requirements

with other systems must be considered. This is a binary measure of

the existence of this consideration.

(2) Protocol standards established and followed.

The conmuncation protocol standards for communication with other

systems are to be established during the design phase and followed

durinq implementation. This binary measure applied at each of
these phases indicates whether the standards were established and

followed.

(3) Single module interface for input from another system.
The more modules which handle input the more difficult it is to

interface with another system and implement standard protocols.

This measure based on the inverse of the number of modules which

handle input is to be applied to the design specification and source

code.

(4) Single module interface for output to another system
For similar reasons as (3) above this measure is the inverse of

the number of output modules.

6.2.2.22 Data Comonality

DC.1 Data Commonality Checklist (all three phases at system level). The

metric is the sum of the scores of the following applicable elements divided

by the number of applicable elements.

6-69

(1) Definitive statement for standard data representation for comunica-

tions with other systems (requirements only).

This is a binary measure of the existence of consideration for

standard data representation between systems which are to be interfaced.

This must be addressed and measured in the requirements phase.

(2) Translation standards among representations established and followed

(design and implementation).

More than one translation from the standard data representations used
for interfacing with other systems may exist within a system. Standards

for these translations are to be established and followed. This binary
measure identifies if the standards are established during design and

followed during implementation.

(3) Single module to perform each translation (design and implementation).

For similar reasons as CC.1 (3) and (4) above, this measure is the
inverse of the maximum number of modules which perform a translation.

6.2.2.23 Conciseness

CO.1 Halstead's Measure (implementation phase at module level first then system
level). The metric is based on Halstead's concept of length (rHALSM77]).

The observed length of a module is

No * N1 + N2 where:
Ni total usage of all operators in a module
N2 - total usage of all operators in a module

The calculated length of a module is

Nc - n11og2n1 + n21og2n2 where:

nI - number of unique operators in a module

n2 - number of unique operators in a module

The metric is normalized as follows:

1 I NC Nol
1 ° or,

0
fNC - Nol greater than 10 If N

At a system level the metric is the averaged value of all the module metric

values.

6-70

6.3 SUrIARIZATION OF METRICS

Table 6.3-1 provides summary figures for the metrics that have been

established.

41 metrics have been established for the 11 factors and 23 criteria. These 41

metrics are comprised of 175 elements or specific characteristics of a soft-
ware product that can be measured at various times during development to give
an indication of the progression toward a desired level of quality. The

metrics are applied during the three phases of development as shown. Thus

25 characteristics of the software product are measured during the require-
ments analysis phase, 108 during the design phase, and 157 during

implementation.

67

6-71

L6~

b4 En LuL

inJ

LA.

22

0 U)
N u Lai

U-g

a tn

* I
2

Lu 2

C. V)

tw 4

o 0..

2 0..
a. loco-

6-12

REFERENCES

ABERD72 Abernathy, D.H., et al, "Survey of Design Goals for Operating Systems",
Georgia Tech, GITIS-72-04, 1972.

ACQU71 "Acquisition and Use of Software Products for Automatic Data Processing
Systems in the Federal Government", Comptroller General of the U.S.,
Report to the Congress, June 1971.

AIRF76 "Air Force Systems Command", Aviation Week & Space Technology, 19 July 1976.

ALGEC77 Algea, C., "ATP - Analysis of JOVIAL (J4) Routines", Internal GE Working
Paper, March 1977.

AMORW73 Amory, W., Clapp, J.A., "An Error Classification Methodology", MITRE Tech
Report, June 1973.

BELLD74 Bell, D.E., Sullivan, J.E., "Further Investigations into the Complexity of
Software", MITRE Tech Report MTR-2874, June 1974.

BELLT76 Bell, T., et al, "An Extendable Approach to Computer-Aided Software Require-
ments Engineering", 1976 Software Engineering Conference.

BENSJ76 Benson, J., "Some Observations Concerning the Structure of FORTRAN Programs",
International Symposium on Fault Tolerant Computing, Paris, June 1975.

BOEHB73a Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., MacLeod, G.S., Merritt,
N.J., "Characteristics of Software Quality", Doc. #25201-6001-RU-00, NBS
Contract #3-36012, 28 December 1973.

BOEHB76 Boehm, B., Brown, J., Lipow, M., "Quantitative Evaluation of Software
Quality", 1976 Software Engineering Conference.

BOEHB73b Boehm, B.W., "Software and its Impact: A Quantitative Approach", Datamation,
April 1973.

BOLEN76 Bolen, N., "An Air Force Guide to Contracting for Software Acquisition",
NTIS AD-A020 444, January 1976.

BOULD61 Boulanger, D.G., "Program Evaluation and Review Technique", Advanced Manage-
ment, July-August 1961.

BRADG75 Bradley, G.H., et al, "Structure and Error Detection in Computer Software",
Naval Postgraduate School, NTIS AD-A014 334, February 1975.

BROON76 Brooks, N., et al, "Jovial Automated Verification System (JAVS)", RADC-
, TR-20, February 1976.

BROWJ73 Brown, J.R. and Buchanan, H.N., "The Quantitative Measurement of Software
Safety and Reliability", TRW Report SS-73-06, August 1973.

BROWP72 Brown, P., "Levels of Language for Portable Software", Communications of
the ACM, December 1972.

Ref-1

CASEJ74 Casey, J.K., "The Changing Role of the In-House Computer Application
Software Shop", GE TIS #74AEG195, February 1974.

CHANP76 Chang, P., Richards, P.K., "Software Development and Implementation Aids",
GE TIS #76C1S01, January 1976.

CHENL74 Cheng, L., Sullivan, J.E., "Case Studies in Software Design", MITRE Tech
Report NTR-2874, June 1974.

CLAPJ74 Clapp, J.A., Sullivan, J.E., "Automated Monitoring of Software uality",
Proceedings from AFIPS Conference, Vol. 43, 1974.

COHEA72 Cohen, A., "Modular Programs: Defining the Module", Datamation, March 1972.

COMP69 "Computer Program Development and Configuration Management", AFSCF Exhibit
375-2, March 1969.

COMP66a "Computer Program Development and Configuration Management for the Manned
Orbit Laboratory Program", SAFSL Exhibit 20012, September 1966.

COMP66b "Computer Program Subsystem Development Milestones", AFSCF SSD Exhibit
61-47B, April 1966.

CONF64 "Configuration Management During Definition and Acquisition Phases",
AFSCM 375-1, June 1964.

CONF66 "Configuration Management of Computer Programs", ESD Exhibit EST-1,
Section H, 1966.

CONNJ75 Connolly, J., "Software Acquisition Management Guidebook: Regulations,
Specifications, and Standards", NTIS AD-AO16 401, October 1975.

COOLW62 Cooley, T., Multivariate Procedures for the Behavioral Sciences, John
Wiley and Sons, Inc., N.Y., 1962.

CORRA74 Corrigan, A.E., "Results of an Experiment in the Application of Software
Quality Principles", MITRE Tech Report MTR-2874, June 1974.

CULPL75 Culpepper, L.M., "A System for Reliable Engineering Software", International
Conference on Reliable Software, 1975.

DAVIC76 Davis, C., Vick, C., "The Software Development System", 1976 Software
Engineering Conference.

DAVIR73 Davis, R.M., "Quality Software can Change the Computer Industry Programs
Test Methods", Prentice-Hall, 1973, Chapter 23.

DENNJ70 Dennis, J.B., Goos, G., Poole, J., Gotlieb, C.C., et al, "Advanced Course
on Software Engineering", Springer-Verlag, New York 1970.

Ref-2

DIJKE69a Dijkstra, E.W., "Complexity Controlled by Hierarchical Ordering of
Function and Variability" Software Engineering, NATO Science Committee
Report, January 1969.

DIJKE72 Dijkstra, E.W., "The Humble Programmer", Comnications of the ACM,
October 1972.

DIJKE69b DiJkstra, E.W., "Structured Programing", Software Engineering Techniques,
NATO Science Committee Report, January 1969.

DIJKE72 Dijkstra, E.W., "Notes on Structured Programming", Structured Programing,
Dahl, Dijkstra, Hoare, Academic Press, London 197.7

DOCU74 "Documentation Standards", Structured Programming Series Volume VII and
Addendum, RADC-TR-74-300, September 1974 and April 1975.

DOD72 "DOD Manual for DOD Automated Data Systems Documentation Standards", DOD
Manual 4120.17M, December 1972.

DROSM76 Drossman, N.M., "Development of a Nested Virtual Machine, Data Structure
Oriented Software Design Methodology and Procedure for its Evaluation",
USAFOSR/RADC Tech Report, 11 August 1976.

DUNSH77 Dunsmore, H., Ganon, J., "Experimental Investigation of Programming
Complexity", Proceedings of ACM/NBS Sixteenth Annual Technical Symposium,
June 1977.

EDWAN75 Edwards, N.P., "The Effect of Certain Modular Design Principles on Test-

ability", International Conference on Reliable Software, 1975.

ELEC75 "The Electronic Air Force", Air Force Magazine, July 1975.

ELSHJ76 Elshoff, J.L., "Measuring Commercial PL/l Programs Using Halstead's
Criteria", SIGPLAN Notices, May 1976.

ELSHJ76b Elshoff, J., "An Analysis of Some Commercial PL/1 Programs", IEE Trans-
actions on Software Engineering, Volume SE-2, No. 2, June 1976.

ENDRA75 Endres, A., "An Analysis of Errors and their Causes in Systems Programs",
International Conference on Reliable Software, 1975.

FAGA 76 Fagan, M., "Design and Code Inspections and Process Control in the Develop-
ment of Programs", IBM TR 00.2763, June 1976.

FIND75 "Findings and Recommendations of the Joint Logistics Commanders", Software
Reliability Working Group, November 1975.

FITZA76 Fitzsimmons, A., Love, T., "A Review and Critique of Halstead's Theory of
Software Physics", GE TIS #761SP004, December 1976.

FLEIJ72 Fleiss, J.E., et al, "Programming for Transferability", RADC-TR-72-234,
September 1972.

Ref-3

FLEIT66 Fleislan, T., "Current Results from the Analysis of Cost Data for

Computer Programing", NTIS AD-637 801, August 1966.

GILBT76 GSlb, T., Software Metrics, Winthrop Computer Systems Series, 1976.

GOODJ74 Goodenough, J., "Effect of Software Structure on Software Reliability,
Modifiability, and Reusability: A Case Study", USA Armament Command,
March 1974.

600OJ75 Goodenough, J., "Exception Handling Design Issues", SIGPLAN Notices,
July 1975.

GOVE74 "Governmet/Industry Software Sizing and Costing Workshop-Summary Notes",
USAFESD, 1-2 October 1974.

HAGAS75 Hagan, S., "An Air Force Guide for Monitoring and Reporting Software
Development Status", NTIS AD-A016 488, September 1975.

HAGUS76 Hague, S.J., Ford, B., "Portability-Prediction and Correction", Software
Practices & Experience, Vol. 6, 61-69, 1976.

HALSM77 Halstead, M., Elements of Software Science, Elsevier Computer Science
Library, N.Y., 1977.

HALSM73 Halstead, M., "Algorithm Dynamics", Proceedings of Annual Conference of
ACM, 1973.

HALSM72 Halstead, M., "Natural Laws Controlling Algorithm Structure", ACM SIGPLAN,
February 1972.

HAMIM76 Hamilton, M., Zeldin, S., "Integrated Software Development System/Higher
Order Software Conceptual Description", ECOM-76-0329-F, November 1976.

HANEF72 Haney, F.M., "Module Connection Analysis - A Tool for Scheduling Software
Debugging Activities", Proceedings of the 1972 Fall Joint Computer
Conference, Vol. 41, Part 1, 173-179, 1972.

HODGB76 Hodges, B., Ryan, J., "A System for Automatic Software Evaluation", 1976
Software Engineering Conference.

JONEC77 Jones, C., "Program Quality and Programmer Productivity", IBM TR 02.764,

January 1977.

KERNB74 Kernighan, B., Plauger, P., The Elements of Programing Style, McGraw-
Hill, 1974.

KESSM70 Kessler, M.M., "An Investigation of Program Structure", IBM Federal
Systems Division, Internal Memo, February 1970.

KNUTD68 Knuth, D.E., The Art of Computer Programming Vol. 1, Mdison-Wesley, 1968.

KNUTD71 Knuth, D.E., "An Empirical Study of FORTRAN Programs", Software Practice
& Exper';ence, Vol. 1, pp 105-133, 1971.

Ref-4

KOSAS74 Kosarajo, S.R., Ledgard, H.F., "Concepts in Quality Software Design',
NBS Technical Note 842, August 1974.

KOSY074 Kosy, 0., "Air Force Commnd and Control Information Processing in the
1980s: Trends in Software Technology", Rand, June 1974.

KUESJ73 Keuster, J., Mize, J., Optimization Techniques with FORTRAN, McGraw-Hill,
N.Y., 1973.

LABOV66 LaBolle, V., "Development of Equations for Estimating the Costs of
Computer Program Production", NTIS AD-637 760, June 1966.

LAPAL73 LaPadula, L.J., "Software Reliability Modeling and Measurement Techniques",
MTR-2648, June 1973.

LARSR75 Larson, R., "Test Plan and Test Case Inspection Specification", IBM
TR 21.586, April 1975.

LEWIE63 Lewis, E., Methods of Statistical Analysis, Houghton Mifflin Company,
Boston 1963.

LIEBE72 Lieblein, E., "Computer Software: Probier, and Possible Solutions",
CENTACS USAECON Memorandum, 7 November 1972.

LIGHW76 Light, W., "Software Reliability/Quality Assurance Practices", Briefing
given at AIAA Software Management Conferences, 1976.

LISKB75 Liskov, B., "Data Types and Program Correctness", SIGPLAN Notices,
July 1975.

LISKB73 Liskov, B.H., "Guidelines for the Design and Implementation of Reliable
Software Systems", MITRE Report 2345, February 1973.

LOVET76a Love, T., Bowman, A., "An Independent Test of the Theory of Software
Physics", SIGPLAN Notices, November 1976.

LOVET76b Love, T., Fitzsimmons, A., "A Survey of Software Practioners to Identify
Critical Factors in the Software Development Process", GE TIS 761SP003,
December 1976.

MANNJ75 Manna, J., "Logical Analysis of Programs", International Conference on
Reliable Software, 1975.

MARSS70 Marshall, S., Miiistein, R.E., Sattley, K., "On Program Transferability",

Applied Data Research, Inc., RADC-TR-70-217, November 1970.

MCCAT76 McCabe, T., "A Complexity Measure", 1976 Software Engineering Conference.

MCCRD72 McCracken, D.O. and Weinberg, G.M., "How to Write a Readable FORTRAN
Program", Datamation, October 1972.

Ref-5

MCKIJ77 MpKissick, J., Price, R., "Quality Control of Computer Software",
1977 ASQC Technical Conference Transactions, Philadelphia 1977.

MCNEL75 McNeely, L., "An Approach to the Development of Methods and Measures
for Quantitatively Determining the Reliability of Software", Ultra
Systems Concept Paper, February 1975.

MEALG68 Mealy, G.H., Farber, D.J., Morehoff, E.E., Sattley, "Program Trans-
ferability Study", RADC, November 1968.

MIL170 "Military Standard Configuration Management Practices for Systems,
Equipment, Munitions and Computer Programs", MIL-STD-483, December
1970.

MILI68 "Military Standard Specification Practices", MIL-STD-490, October 1968.

MILLE74 Miller, E., et al, "JOVIAL/J3 Automated Verification System (JAVS)
System Design Document", GRC, March 1974.

MULOR70 Mulock, R.B., "A Study of Software Reliability at the Stanford Linear
Accelerator Center, Stanford University", August 1970.

MYERG73 Myers, G.J., "Characteristics of Composite Design", Dataniation, September
1973.

MYERG75 Myers, G.J., Reliable Software through Composite Design, Petrocelli/
Charter, 1975.

MYERG76 Myers, G.J., Software Reliability: Principles and Practices, John Wiley
& Sons, New York, 1976.

NBS74 "Analyzer - Computation and Flow Analysis", NBS Tech Note 849, 1974.

NELSR74 Nelson, Richard, "A Plan for Quality Software Production", RADC Internal
Paper, June 1974.

NELSR75 Nelson, R., Sukert, A., "RADC Software Data Acquisition Program", RADC
Paper presented at Fault Tolerant System Workshop, Research Triangle
Institute, November 1975.

NODA75 "NODAL - Automated Verification System", Aerospace TOR-0075(5112)-I, 1975.

OGDIJ72 Ogdin, J.L., "Designing Reliable Software", Datamation, July 1972.

OSTEL74 Osterweil, L., et al, "Data Flow Analysis as an Aid in Documentation,
Assertion Generation, and Error Detection", NTIS PB-236-654, September
1974.

OSTLB63 Ostle, B., Statistics in Research, Iowa State University Press,

PADED56 Paden, D., Linquist, E., Statistics for Economics and Bus-r,
Hill, New York, 1956.

Ref-6

PANZD76 Panzl, D., "Test Procedures: A New Approach to Software Verification",
1976 Software Engineering Conference.

PARIR76 Pariseav, R., "Improved Software Productivity for Military Systems
through Structured Programming", NTIS AD-A022 284, March 1976.

PARND72a Parnas, D.L., "A Technique for Software Module Specification with
Examples", Communications of the ACM, Vol. 15 No. 5, 1972.

PARND71 Parnas, D.L., "Information Distribution Aspects of Design Methodology",
Proc IFIP Congress 1971.

PARNL75 Parnas, D.L., "The Influence of Software Structure on Reliability",

International Conference on Reliable Software, 1975.
PARND72b Parnas, D.L., "On the Criteria to be used in Decomposing Systems into

Modules", Comm. of the ACM, Vol. 15, No. 12, December 1972.

PATH76 Pathway Program - Product Quality Assurance for Shipboard Installed

Computer Programs, Naval Sea Systems Connand, April 1976.

PET72 "PET - Automatic Test Tool", AFIPS Conference Proceeuings, Vol. 42, 1972.

PILIM68 Piligian, M.S., et al, "Configuration Management of Computer Program
Contract End Items", ESD-TR-68-107, January 1968.

POOLL77 Poole, L., Borchers, M., Some Common Basic Programs, Adam Osborne and
Associates, Berkeley, 1977.

PROG75 Program Design Study "Structured Programming Series" (Vol. VIII), RADC
TR-74-300, 1975.

RAMAC75 Ramamoorthy, C., Ho, S., "Testing Large Software with Automated Software
Evaluation Systems", 1976 Software Engineering Conference.

REIFD75 Reifer, D.J., "Automated Aids for Reliable Software", International
Conference on Reliable Software, 1975.

REIFD76 Reifer, D., "Toward Specifying Software Properties", IFIP Working
Conference on Modeling of Environmen.Al Systems, Tokyo, Japan,
April 1976.

RICHF74 Richards, F.R., "Computer Software Testing, Reliability Models, and

Quality Assessment", NTIS AD-AOOl 260, July 1974.

RICHP74 Richards, P., et al, "Simulation Data Processing Study: Language and
Operating System Selection", GE TIS 74CIS09, June 1974.

RICHP75 Richards, P., Chang, P., "Software Development and Implementation Aids
IRID Project Final Report for 1974", GE TIS 75CIS01, July 1975.

RICHP76 Rirhards, P., Chang, P., "Localization of Variables: A Measure of
,mplexity", GE TIS 76CIS07, December 1976.

Ref-7

ROSED76 Rosenkrantz, D., "Plan for RDL: A Specification Language Generating
System", GE Internal Document, March 1975.

RUBER68 Rubey, R.J., Hartwlck, R.D., "Quantitative Measurement of Program
Quality", Proceedings of 23rd National Conference, ACM, 1968.

SABIN76 Sabin, N.A., "Portability - Some Experiences with FORTRAN", Software-
Practice & Experience, Vol. 6, pp 393-396, 1976.

SAC176 "SAC in Transition", Aviation Week and Space Technology, 10 Kay 1976.

SACKH67 Sackman, H., Computers, System Science, and Evolving Society, J. Wiley
& Sons, 1967.

SALIJ77 Salinger, J., "Initial Report on the Feasibility of Developing a Work
Measurement Program for the Data Processing Departments", Blue Cross/
Blue Shield Internal Paper, January 1977.

SALVA75 Salvador, A., Gordon, J., Capstick, C., "Static Profile of Cobol Programs",
SIGPLAN Notices, August 1975.

SAMS75 "SAMSO Program Management Plan Computer Program Test and Evaluation",
February 1975.

SCHNN72 Schneidewind, N.F., "A Methodology for Software Reliability Prediction
and Quality Control", Naval Postgraduate School, NTIS AD-754 377,
November 1972.

SCHNN75 Schnetdewind, N.F., "Analysis of Error Processes in Computer Software",
international Conference on Reliable Software, 1975.

SCHOJ76 Schonfelder, J.L., "The Production of Special Function Routines for a
Multi-Machine Library", Software-Practice and Experience, Vol. 6,
pp 71-82, 1976.

SCHOW76 Schoeffel, W., "An Air Force Guide to Software Documentation Requirements",
NTIS AD-A027 051, June 1976.

SHOOM75a Shooman, M.L., Bolskey, M.., "Software Errors: Types, Distribution, Test
and Correction Times", International Conference on Reliable Software,
1975.

SHOO75b Shooman, M., "Summary of Technical Progress - Software Modeling Studies",
RADC Interim Report, September 1975.

SMITR74 Smith, R. ,"Management Data Collection and Reporting - Structured Programing
Series (Vol. IX)" RADC TR-74-300, October 1974.

SOFT75 "Software Engineering Handbook", GE Special Purpose Computer Center,
September 1975.

Ref-8

SPAC76 "GE Space Divi sin Task Force on Software", Engineering and Management
June 28 Report, 1976.

STEWD74 Steward, D.W., "The Analysi!. of the Structure of Systems", GE TIS
74NED36, June 1974.

SULLJ73 Sullivan, J.E., "Measuring the Complexity of Computer Software", MITRE
Tech Report MTR-2648, June 1973.

SUPP73 "Support of Air Force Automatic Data Processing Requirements through
the 1980's", SADPR-85, July 1973.

SZABS76 Szabo, S., "A Schema for Producing Reliable Software", International
Symposium on Fault Tolerant Computing, Paris, June 1975.

TACT74 "Tactical Digital Systems Documentation Standards", Department of the
Navy, SECNAVINST 3560.1, August 1974.

TALIW71 Taliaferro, W.M., "Modularity: The Key to System Growth Potential",
Software Practices and Experience, July-September 1971.

TEICD76 Teichroew, D., "PSL/PSA A Computer-Aided Technique for Structured
Documentation and Analysis of Information Processing Systems", 1976
Software Engineering Conference.

THAYT76 Thayer, I.A., Hetrick, W.L., Lipow, M., Craig, G.R., "Software Reliability
Study", RADC TR-76-238, August 1976.

THAYT75 Thayer, T.A., "Understanding Software through Empirical Reliability
Analysis", Proceedings, 1975 National Computer Conference.

USAR75 "US Army Integrated Software Research and Development Program", USACSC,
January 1975.

VANDG74 VanderBrug, G.J., "On Structured Programming and Problem-Reduction",

NSF TR-291, January 1974 (MF).

VANTD74 Van Tassel, Dennie, Program Style, Design, Efficiency, Debugging and&

Testing, Prentice-Hall, Inc., New Jersey, 1974.

VOLKW58 Volk, W., Applied Statistics for Engineers, McGraw-Hill Book Co., Inc.,
New York, 1958.

WALTG74 Walters, G.F., et al, "Spacecraft On-Board Processor/Software Asseuent",
GE TIS 74CIS10, June 1974.

WALTG76 Walters, G.F., "Software Aids Index", GE Internal Working Paper,
December 1976.

WAGOW73 Wagoner, W.L., "The Final Report on a Software Reliability Measurement
Study", Aerospace Report TOR-0074, August 1973.

Ref-9

WEING71 Weinberg, 4.M., "The Psychology of Computer Programing%, NY, Van
NostranK Reinhold, 1971.

WHIPL75 Whipple, L, "AFAL Operational Software Concept Development Program",
riefing, jiven at Software Subpanel, Joint Deputies for Laboratories

Committa 1, 12 February 1975.

WILLN76 Willmouth, N., "Software Data Collection: Problems of Software Data
Collection", RADC Interim Report, 1976.

WOLVR72 Wolverton, R.W., Schick, G.J., "Assessment of Software Reliability",
TRW Report SS-72-04, September 1972.

MLFW73 Wulf, W.A., "Report of Workshop 3 - Programing Methodology", Proceedings
of a Symposium on the High Cost of Software, September 1973.

YOURE75 Yourdon, E., Techniques of Program Structure and Design, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1975.

ZAHNC75 Zahn, C., "Structured Control in Programming Languages", SIGPLAN Notices,
July 1975.

R 1

#I

Ref-lO

BIBLIOGRAPHY

Abernathy, David H., et al.

Survey of Design Goals for Operating Systems

GITIS-72-04, Georgia Institute of Technology, 1972

Discusses the general design goals and their inherent tradeoffs that should

be accounted for in the development of Operating Systems. Provides an

examination and identification of the design goals of a number of current

operating systems. The discussions of the tradeoffs between design goals

are relevant to any system development effort.

Boehm, B.W., et al.

Characteristics of Software Quality

TRW 25201-6001-RU-00, 28 Dec 1973

TRW report for National Bureau of Standards. Establishes a definitive

hierarchy of related characteristics of software quality and, for each

characteristic, defines metrics which, (1) ca be used to provide a

quantitative measure for any FORTRAN program, (2) are anomaly-detecting

related to the source code, and (3) can be used to define overall software

quality. A comprehensive set of examples of good and bad programming

practices, related to the anomaly-detecting metrics, is provided. The

process of correlating the metrics with the quality characteristics is

not explained.

Clapp, J., et al.

MITRE Series on Software Engineering

June 1973

A collection of small studies done by MITRE for ESD. Provides an initial

framework for investigation of the problems associated with Software

Reliability. Provides some measures of software complexity.

Bib-l

I

Dennis, J.B., Goos, G., Poole, P.C., Gotlieb, C.C., et al.

Advanced Course of Software Engineering - Lecture Notes

Springer-Verlag, N.Y., 1973

A consolidation of experts' lectures on current topics in Software

Engineering. Examples, definitions, and different view points of the

solutions to problems are provided.

Drossman, M.M.
Development of a Nested Virtual Machine, Data Structure-Oriented Software

Design Methodology and Procedure for Evaluation
USAFOSR/RADC TR, Aug 1976

Provides a brief summary of work done to date in the area of a methodology
for software system design. Presents a data-oriented approach to this
subject with an example. The approach emphasizes top down successive
refinement of the data structure. Outlines a plan for evaluation of

the concept.

Fagan, H.

Design and Code Inspections and Process Control in the Development of Programs.

IBM TR 00.2763, June 1976

A manageable, implementable plan for formalizing inspections of documents
and code produced during a software development is presented. The concept

of inspections is compared with the less formal practice of walk-thrus.

Gilb, T.

Software Metrics

Winthrop Computer Systems Series, 1976

A significant contribution to the field of software quality metrics has
been made by this book, even though its presentation detracts from its
effect. It provides the most information about the field in one docu-

ment to date, summarizing previous efforts and introducing some

interesting concepts of tests for software qualities.

Bib-2

Goodenough, J.

Effect of Software Structure on Software Reliability, Modifiability, and

Reusability, A Case Study.
U.S. Anmy Armament Command, March 1974

Provides discussion of program structuring concepts and language design

features that enhance reusability, modifiability, and reliability.

Illustrates concepts by case studies.

Halstead M.

Elements of Software Science

Elsevier Computer Science Library, 1977

This text presents a composite of the work done in the area of software

physics or software science. The theory and results of various

experiments are provided. Several chapters are devoted to describing

applications of the theory.

Kernighan, B., Plauger, P.

The Elements of Programming Style

McGraw-Hill, N.Y., 1974

A comprehensive text on the do's and don'ts of programming. Full of

examples which illustrate techniques of expression, structure, input and

output, efficiency and instrumentation, and effective documentation. Provides

many examples of common faults and errors made during the programming

process.

Kosaraju, S.R., Ledgard, H.F.

Concepts in Quality Software Design

National Bureau of Standards Technical Note 842, August 1974

Provides a hierarchy of factors in quality software. The factors

represent both measurable qualities and controllable software produc-

tion characteristics. Brief examples and explanations of the factors

are provided and then the areas of prime concern to the authors, top-

down programing, proof of correctness, and structured programming are

discussed in detail.

Blb-3

Kosy, D.

AF Command and Control Information Processing in the 1980s:
Trends in Software Technology

RAND R-1012-PR, June 1974

A revised and expanded version of the CCIP-85 volume on software. It

describes the current (1972) state-of-the-art and forecasts the technology

into the 1980's. Identifies quantitative and nonquantitative measures of

software quality. Relates many software problems to Air Force requirements.

Lieblein, E.

Computer Software: Problems and Possible Solutions

CENTACS, U.S. Army ECOM Memorandum, November 1972

A discussion of the problem areas in DOD software development and identi-

fication of potentially beneficial areas of research and implementation of

state-of-the-art techniques as solutions.

Myers, G.J.
Reliable Software Through Composite Design

Petrocel li/Charter, 1975

Describes a set of quality factors for software and identifies which of
these factors are influenced by his concept of composite design. Illustrates

and defines composite design and provides a classification scheme for look-

ing at software in relationship to how well it is designed.

Myers, G. J.

Software Reliability: Principles and Practices

John Wiley & Sons, N.Y., 1976

A very thorough review of the software reliability state-of-the-art.

The book covers reasons why reliability is a major concern in the

industry, a working definition of software reliability, principles

and practices for designing reliable software, how software should be

tested, and briefly a wide range of topics which influence software

reliability.

Bib-4

Reifer, D.

Toward Specifying Software Properties

IFIP Working Conference on Modeling of Environmental Systems,

Tokyo, Japan, Apr 76

A concept of specifying software properties and relating them to

functional and performance requirements is presented. The presentation

of a heuristic approach is very conceptual in nature. The conflicting

characteristics of several of the software properties are discussed.

Rubey, R., Hartwick, D.

Quantitative Measurement of Program Quality
Proceedings of ACM National Conference, 1968

One of the initial efforts in the software quality field. Provides a

concise mathematical approach to software attributes and corresponding

metrics.

Thayer, T.A., et al.

Software Reliability Study

RADC TR-76-238, August 1976

RADC sponsored study to quantify Reliability by correlating source code
metrics with the error history of that code. Several AF systems were
utilized to perform the correlation. Identifies the metrics, how they

can be collected, a categorization of errors, and provides a survey of

existing reliability models.

Wulf, W.A.

Progranming Methodology - Report of Workshop 3
Proceedings of a Symposium of the High Cost of Software 17-19
September 1973

A tri-service sponsored symposium which identified quality attributes to be

used to compare programs. Recommended areas for future research which
would add to the state-of-knowledge.

Bib-5

I I

Yourdon, E.
Techniques of Program Structure and Design

Prentice-Hall, Englewood Cliffs, N.J., 1975.

A comprehensive text on top-down structured programing. Discusses the

characteristics of a good program, modular programming, and how to program

with simplicity and clarity in mind. A good source for the do's and don'ts

of programming.

Proceedings of the 1975 International Conference on Reliable Software

IEEE, 1975

Papers by several authors: Dijkstra, Ramamoorthy, Culpepper, Parnas,

Edwards, Endres, Manna, Reifer, provide various views on the problems,

techniques, and solutions to different aspects of software quality.

Support of Air Force Automatic Data Processing Requirements through the

1980's (SADPR-85)

MITRE, July 1973

A study performed to identify the ADP requirements for AF base level

operations through the 1980's. The interesting portion of the study as

far as this effort is concerned is Appendix VII which identified the

configuration evaluation criteria. A scheme of criteria or qualities

with associated priorities were established to compare various proposed

configurations for providing the ADP requirements.

Bib-6

APPENDIX A

QUALITY FACTORS REFERENCES

IN THE LITERATURE WITH
DEFINITIONS

The quality factor definitions or discussions contained in this appendix

were found in the literature or generated during this effort to provide

additional interpretations. The authors of the quoted or paraphrased

definitions are indicated in parentheses.

We wish to emphasize that any errors, omissions, or misleading statements

in the quoted or paraphrased definitions contained herein are completely
and solely our responsibility and not those of the authors referenced.

A-1

PORTABILITY/TRANSFERABILITY

programs must be readily transferable among different equipment configura-
tions (Goodenough/Culpepper)

degree of transportability is determined by number, extent, and complexity
of changes, and hence the difficulty in implementing a software processor
which can mechanically move a program, between a specified set of machines
(Hague)

- machine - independence (Marshall)

- measure of the ease of moving a computer program from one computing environ-
ment to another (Meahy, Poole)

- how quickly and cheaply the software system can be converted to perform
the same functions using different equipment (Kosy)

- an appropriate environment can be provided on most computers (Goos)
- extent that it can be operated easily and well on computer configurations

other than its current one (Boehm)
- moving software from one computer (environment) to another (Lieblein)

- measure of the effort required to install a program on another machine,
another operating system, or a different configuration of the same
machine (Wulf)

- external (black box) form, fit, and function characteristics of a program
module which permit its use as a building block in several computer programs
(NSSC PATHWAY)

relates to how quickly and easily a software system can be transferred from
one hardware system to another (USA ISRAD)
ease of conversion of a system from one environment to another; the
relative conversion cost for a given conversion method (Gilb)

ACCEPTABILITY

- how closely the ADP system meets true user needs (Kosy)

- measure of how closely the computer program meets the true needs of the
user (SAMSO)

- relates to degree to which software meets the user's needs including the
clarity and unaniguity of the s ecifications and the effectiveness of the
man-machine interface (USA ISRAD
does the software meet the need of the user (Light)

COMPLETENESS

- extent to which software fulfills iverall mission satisfaction (McCall)

- extent that all of its parts are present and each of its parts are fully
developed (Boehm)

A-2

CONSISTENCY

- degree to which software satisfies specifications (McCall)
- extent that it contains uniform notation, terminology, and symbology with-

in itself and the extent that the content is traceable to the requirements
(Boehm)

CORRECTNESS

- correctness of its description with respect to the objective of the soft-
ware as specified by the semantic description of the linguistic level it
defines (Dennis)

- the coding of a computer program module .hich properly and completely
implements selected overall system requirements (NSSC PATHWAY)

- relates to degree to which software is free from design and program defects
(USA ISRAD)

- the program is logically correct (Rubey)

AVAILABILITY

- fraction of total time during which the system can support critical func-
tions (SADPR-85)

- error recover and protection (Liskov)
- probability that a system is operating satisfactorily at any point in

time, when used under stated conditions (Gilb)

RELIABILITY

- includes correctness, testing for errors, and error tolerance (Ledgard)
- the probability that the software will satisfy the stated operational

requirements for a specified time interval or a Jnit application in the
operational environment (JLC SRWG)

- the probability that a software system will operate without failure for
at least a given period of time when used under stated conditions (Kosy)

- extent to which a program can be expected to perform its intended functions
satisfactorily (Thayer)

- ability of the software to perform its functions correctly in spite of
failures of computer system components (Dennis)
probability that a software fault does not occur during a specified time
interval (or specified number of software operational cycles) which causes
deviation from required output by more than specified tolerances, in a
specific environment (Thayer)

- measure of the number of errors encountered in a program (Myers)

A-3

RELIABILITY, Continued

- probability that the system will perform satisfactorily for at least a
given time interval, when used under stated conditions (Gilb)

- .extent to which a program is debugged, can get whatever degree of
reliability one is willing to pay for (Casey)

- the probability that the computer program will satisfactorily execute
for at least a given period of time when used under specific conditions.
(SAMSO)

- tasks are broken into easily manageable modules and programming internal
to most modules remains constant (Whipple)

- the degree of assurance that the software will do its job when integrated
with the hardware (Light)

ACCURACY

- where mathematically possible a routine should give an approximation that
is as close as practicable to the full machine precision for whatever
machine it is running on (Schonfelder)

- extent that its outputt are sufficiently precise to satisfy its intended
use (Boehm)

- the mathematical calculations are correctly performed (Rubey)
- measure of the quality of freedom from error, degree of exactness

possessed by an approximation or measurement (Gilb)

ROBUSTNESS

routines should be coded so that when it is not possible to return a result
with any reasonable accurracy or there is danger of causing some form of
machine failure they should detect this and take approprite actions
(Schonfelder)

- quality of a program that determines its ability to continue to perform
despite some violation of the assumptions in its specifications (Wulf)

- program should test input for plausability and validity (Kernighan)

EFFICIENCY

- measure of the execution behavior of a program (execution speed, storage
speed) (Myers)

- execution time, storage space, # instructions, processing time (Kosy)
- extent that software fulfills its purpose without waste of resources

(Boehm)

- the ratio of useful work performed to the total energy expended (Gilb)

A-4

EFFICIENCY, Continued

- reduction of overall cost - run time, operation, maintenance (Kernighan)

- extremely fast run time and efficient overlay capabilities (Richards)

- computation time and memory usage are optimized (Rubey)

PERFORMANCE

- the effectiveness with which resources of the host system are utilized
toward meeting the objective of the software system (Dennis)

- refers to such attributes as size, speed, precision; e.g., the rate at which
the program consumes accountable resources (Wulf)

CONCISENESS

- the ability to satisfy functional requirements with e minimum amount of
software (McCall)

- extent that no excessive information is present (Boehm)

UNDERSTANDABILITY

- ease with which the implementation can be u,,derstood (Richards)

- reduced complexity, reduced redundancy, clear documentation/notation
(Goodenough)

- extent that the purpose of the product is clear to the evaluator (Boehm)

- Documentation remains current (Whipple)

- the program's intelligible (Rubey)

SELF-DESCRIPTIVENESS
CLARITY

- measure of how clear a program is, i.e. how easy it is to read, understand,
and use (Ledgard)

- refers to the ease with which the program (and its documentation) can be
understood by humans (Wulf)

A-5

At CLARITY, Continued

extent that it contains enough information for a reader to determine its
objectives, assumptions, constraints, inputs, outputs, components, and
status (Boehm)

LEGIBILITY

extent that its functions and those of its components statements are
easily discerned by reading the code (Boehm)

MAINTAINABILITY

- measure of the effort and time required to fix bugs in the program
(Myers)

- how easy it is to locate and correct errors found in operational use
(Kosy)

- extent that the software facilitates updating to satisfy new requirements
(Boehm)

- maintenance involves

(1) correction to heretofore latent bugs
(2) enhancements
(3) expansion
(4) major redesign (Lieblein)

ease with which a change can be made due to

(1) bug during operation
! 2~non-satisfaction of users requirements

changing requirements
4) obsolecence/upgrade of system (McCall)

probability that a failed system will be restored to operable condition
within a specified time (Gilb)

STABILITY

- the "ripple effect" or how many modules have to be changed when you make
a change (Myers)

- measure of the lack of percievable change in a system in spite of the
occurrence in the environment which would normally be expected to
cause a change (Glib)

ADAPTABILITY

- how much time and effort are required to modify a software system (Kosy)

- measure of the ease with which a program can be altered to fit differing
user images and system constraints (Poole)

A-6

ADAPTABILITY, Continued

- measure of the ease of extending the product, such as adding new user
functions to the product (Myers)

- a measure of the effort required to modify a computer program to add,
change or remove a function or use the computer program in a different
environment (includes concepts of flexibility and portability) (SAMSO)

- relates to ability of software to operate inspite of unexpected input
or external conditions (USA ISRAD)

EXTENSIBILITY

- extent to which system can support extensions of critical functions
(SADPR-85)

MODIFIABILITY

- measure of the cost of changing or extending the program (Myers)

- operational experience usually shows the need for incremental software
improvements (Goodenough)

- extent that it facilitates the incorporation of changes, once the nature
of the desired change has been determined (Boehm)

- quality of a program that reduces the effort required to alter it in
order to conform to a modification of its specification (Wulf)

- internal (detailed design) characteristics of a program module are
arranged so as to permit easy change (NSSC PATHWAY)

- use of HOL reduces programmer's task and human errors and allows smaller
units to be tested permitting easier de-bugging (Whipple)

- the program is easy to modify (Rubey)

ACCESSIBILITY

- extent that software facilitates the selective use of its components
(Boehm)

FLEXIBILITY
E'XPANDABIL-ITY

~AUMRNTA=TnY

- extent to which system can absorb workload increases and decreases which
require modification (SADPR-85)

- the ability of a system to immediately handle different logical situations
(Gilb)

A-7

FLEXIBILITY

EXPANDABILITY
AUGTABITY, Continued

- how easily the software modules comprising the system or subsystem
can be rearranged to change the system's functions without modifying
any of the modules (Kosy)

- ease of changing, expanding, or upgrading a program (Yourdon)

- the software modules must be usable in a variety of contexts (Culpepper)

- includes changeability; e.g., the ease of correcting bugs, maintenance
because of changing specifications, and portability to move to another
system (Ledgard)

- extent that software easily accommodates expansions in data storage require-
ments or component computational functions (Boehm)

- attributes of software which allow quick response to changes in algorithms
(Richards)

- ability to reuse the software and transfer it to another processor (includes
reuse, adaptability, transferability and versatility of software) (Light)

INTEGRITY

- how much the operation of one software subsystem can protect the oper-
ation of another (Kosy)

- a measure of the degree of protection the computer program offers against
unauthorized access and loss due to controllable events (includes the
concepts of privacy and security) (SAMSO)

- relates to ability of software to prevent purposeful or accidental
damage to the data or software (USA ISRAD)

- ability to resist faults from personnel, the security problem, or from
the environment, a fault tolerance issue (Light)

- probability of system survival when subjected to an attack during a time
interval (Gilb)

SECURITY

- the ability to prevent unauthorized access to programs or data (Kosy)

- extent to which access to software, data, and facilities can be controlled
(SADPR-85)

- measure of the probability that one system user can accidentally or
intentionally reference or destroy data that Is the property of another
user or Interface with the operation of the system (Myers)

A-8

SECURITY, Continued

- relates to the ability of the software to prevent unauthorized access to
the system or system elements (USA ISRAD)

PRIVACY

- the extent to which access to sensitive data by unauthorized persons can
be controlled and the extent to which the use of the data once accessed
can be controlled (McCall)

- relates to the protection level for data in the system and the individual's
right to review and control dissemination of data (USA ISRAD)

USABILITY
OPERABILITY

- measure of the human interface of the program (Myers)

- ease of operation from human viewpoint, covering both human engineering
and ease of transition from current operation (SADPR-85)

- how suitable is it to the use (Kosy)

- software must be adequately documented so that it can be easily used
and maintained (Culpepper)

- extent that it is convenient and practicable to use (Boehm)

- the program is easy to learn and use (Rubey)

HUMAN FACTORS

- every program presents an interface to its human users/operators, by
human factors we refer collectively to all the attributes that make this
interface more palatable: ease of use, error protectedness, quality of
documentation, uniform syntax, etc. (Wulf)

- extent that software fulfills its purpose without wasting user's time
and energy or degrading their morale (Boehm)

measure of the product's ease of understanding, ease of use, difficulty
of misuse, and frequency of user's errors (Myers)

COMMUNICATIVENESS

- extent that software facilitates the specifications of inputs and provide
outputs whose form and content are easy to assimilate and useful (Boehm)

A-9

..... ~~~~~~~~~~~~1 i w IlI l - I I - -. s ,

STRUCTUREDNESS

- ability to combine arbitrary program modules into larger modules without
knowledge of the construction of the modules (Goos)

- the software must consist of modules with well defined interfaces. Inter-
actions between modules must occur only at those interfaces (Culpepper)

- extent that it possesses a definite pattern of organization of its
independent parts (Boehm)

- how well a program is organized around its data representation and flow
of control (Kernighan)

- there is no interference between program entities (Rubey)
- formal way of dividing a program into a number of sub units each having

a well defined function and relationship to the rest of the program
(Mealy)

UNIFORMITY

- module should be usable uniformly (Goodenough)

GENERALITY

REUSABILITY

- measure of the scope of the functions that a program performs (Myers)
- building programs from reusable software modules can significantly reduce

production costs (Goodenough)
- how broad a class of similar functions the system can perform (Kosy)
- standardized modules can be lifted from one program and used in another

without extensive re-coding or re-testings (Whipple)
- degree to which a system is applicable in different environments (Gilb)

TESTABILITY

- instrumentation and debugging aids (Liskov)

- minimize testing costs (Yourdon)
- provision of facilities in the design of programs Which are essential to

testing co lex structures (Edwards)

- extent that software facilitates the establishment of acceptance criteria
and supports evaluation of its performance (Boehm)

- a measure of the effort required to exercise the computer program to see
how well it performs in a given environment and if it activally solves the
problem it was supposed to solve (SANSO)

A-l0

TESTABILITY, Continued

- measure of our ability to test software (Light)

INTEROPERABIL ITY

S- how quickly and easily one software system can be coupled tr another (Kosy)

-. relates to how quickly and easily one software system can be coupled to
another (USA ISRAD)

CONVERTIBILITY

- degree of success anticipated in readying people, machines, and procedures
to support the system (SADPR-85)

fANAGEABIL ITY

degree to which system lends itself to efficient administration of its
components (SADPR-85)

COST

includes not only development cost, but also the costs of maintenance.
training, documentation, etc., on the entire life cycle of the program
(Wulf)

there are three major categories of cost:

Economy of operation - relates to cost or operating system

Economy of modification - relates to cost of making changes to software to
meet new requirements or correct defects resulting in errors in require-
ments, design, and programming

Economy of development - relates to cost of entire development cycle from
identification of requirement to initial operation

- development and maintenance costs (ers)
- implementation cost and operational cost (Gilb)

ACCOUNTABILITY

- extent that code usage can be measured (Boehm)

A-11

- " -" IIl I Il Ill Illl~ll I i - ,, , 2

I

SELF-CONTAINEDNESS

- extent to which a program performs all its explicit and implicit functions
within itself (Boehm)

EXPRESSION

- how a program is expressed determines in large measure the intelligibility
of the whole (Kernighan)

VALIDITY

- relates to degree to which software implements the user's specifications
(USA ISRAD)

TIME

- two major categories of time:

Modification Time - relates to total elapse time from point when new
requirement or modification is identified the change is implemented
and validated

Development Time - relates to total elapsed time of development

(USA ISMo)
- development time (Myers)
- what Is the expected life span of system (Gilb)

COMPLEXITY

- relates to data set relationships, data structures, central flow, and
the algorithm being implemented (Richards)

- measure of the degree of decision-making logic within a system (Glib)

DOCUMENTATION

- quality and quantity of user publications which provide ease of under-
standing or use (Myers)

PRECISION

- the degree to which calculated results reflect theoretical values (Gilb)

A-12

TOLERANCE

- measure of the systems ability to accept different forms of the same
information as valid or withstand a degree of variation in input with-
out malfunction or rejection (Gtlb)

COMPATABILITY

- measure of portability that can be expected of systems when they are
moved from one given environment to another (Gtlb)

REPAIRABILITY

- probability that a failed system will be restored to operable condition
within a specified active repair time when maintenance is done under
specified conditions (Gilb)

SERVICEABILITY

- degree of ease or difficulty with which a system can be repaired (Glb)

A-13/A-14

APPENDIX B

DOCUMENTAT ION CHARACTERISTICS

SOFTWARE SYSTEM REQUIREMENTS SPECIFICATION AND REVIEW

This document describes the functional requirements and capabilities of the

software system. The data requirements, essentially from the view point of

the end user, are described. It includes the operational constraints and

considerations imposed on the software by the hardware system. It con-

stitutes the primary interface between the user/customer and the developer,

during both formal and informal reviews. As such, it is a primary reference

during the design and development of a software system. Because of this, any

revisions are continually made to keep it as current as possible.

STANDARDS AND CONVENTIONS

This document provides guidelines for the design and implementation of

computer programs. A standard is defined to be a rule which must be

followed to produce an acceptable product. A convention is defined to

be a recommended procedure which will enhance the quality of a program's
operation or its documentation. Many of the checklist type metrics

described are related to standards and conventions. The implications

of standards and conventions go beyond the production of correct and

reliable software in their goal of achieving a consistent, standardized

product which will be easier to maintain and understood by personnel

several years after delivery.

DOCUMENTATION PLAN

The Documentation Plan defines the purpose, scope, usage, content and

format of all deliverable documentation. When used in conjunction with

the associate contractor's Contract Data Requirements List (CDRL), it

* 'provides direction for the preparation of CDRL items as well as establish-

' ,ing acceptance criteria for appropriate documents. This document, by virtue

of its being referenced in the SOW and CDRL, becomes an integral part of

the contract. Its contents are:

B-1

IiK

Chapter I --- Descriptions of documents which explain the technical

aspects of software requirements, design and development,

and computer listings of the approved software routines

and data structure and data.

Chapter II -- Describes those documents which relate to the overall

management of the contract.

Chapter III- Describes those documents which enable the contractor to

report items of interest to other agencies and organizations

as well as to the customer.

Chapter IV -- Describes those documents which deal directly with the

management, execution and results of the contractor's

official testing program.

Chcpter V Presents descriptions of all documents and forms which

allow the contractor to exercise proper configuration

control of all the software, data and documentation.

Appendix A -- Presents a discussion of document issuing, updating and

revision procedures.

Appendix B -- Depicts the format of the computer usage forecast and

utilization report.

Appendix C -- Depicts all of the configuration control forms.

MANAGEMENT PLAN

This document describes the managerial approach and procedures that will be

followed by the contractor to perform the contract tasks. It covers the
entire spectrum of activities from development, validation, to operation

and maintenance.

.PRELIMINARY DESIGN SPECIFICATION

This document presents the implementation concepts at the subsystem level.
The performance characteristics of the software system are considered.

The components of the system described are as follows:

B-2

Scope

Overview of the System

Function Design

Data Base Design

* : Operational Design

RFQ Compliance

PRELIMINARY DESIGN REVIEW
Performance characteristics, changes to system specification, changes to

preliminary design, testing plans, and interface requirements are discussed

and approved at PDR. All of these items are documented for future reference

and required changes identified as action items for resolution.

DETAILED DESIGN SPECIFICATIONS (Parts I and II)

The detailed design specification describes the design at the beginning of

the coding (build to - Part I) phase and at the end (built to - Part II).

The Part I specifications provides a subsystem description which illustrates

the design and operating concepts. Typically it covers:

* Subsystem Description
* Requirements Satisfaction

. Design Concepts

* Operating Concepts

e Function Description

* Subsystem Input/Output

* Subsystem Storage and Timing

* Subsystem Limitations

It also presents a detailed description of each function in the subsystem
as follows:

* Purpose

9 Description

* Usage

& Inputs
@ Processing

0 Outputs

* Storage, Timing and Restrictions

B-3

Part I1 is an updated version of the Part I specifications plus the actual

listings of the functions implementation.

CRITICAL DESIGN REVIEW

Involves review and approval of the Detailed Design (Part I), the test plan

procedures, and any problem reports and their resolutions. The problem

reports may involve requirements, design, and coding problems.

VALIDATION AND ACCEPTANCE TEST SPECIFICATION

Validation and acceptance testing is directed at the verification of satis-

faction of the contract baseline requirements. It provides the testing
strategy and design to provide a validation of the functional operation

of the software. A typical outline is as follows:

e Introduction

e Purpose

e Scope

e Reference

a Testing Structure

a Test Program Controls

e Development Testing Summary

a V & A Testing

e Test Support

USER'S MANUAL/OPERATOR'S MANUAL
These documents provide the user/operator all of the information required

to use the software and operate the system. They include descriptive data
about the Data Base, deck setups, commands, inputs, outputs, error messages,
recovery techniques, training and instructional information sources, and

maintenance. The documents are handbook oriented and become an operational

tool during system operation.

INTERFACE CONTROL DOCUMENT

The purpose of this document is to identify all system, subsystem, and
* function-level interfaces and describe all pertinent data associated with

them. It formally specifies them for review at COR and for implementation.

B-4

0f

CONFIGURATION MANAGEMENT PLAN

The primary objective of this plan is to establish and implement a formal

set of uniform procedures which will provide each subsystem developer with

the maximum latitude for the independent management of the software con-

figuration for which they are contractually responsible, yet, imposes the

necessary degree and depth of control for ensuring that the identity and

integrity of the entire software system is maintained. The document

describes the multiple configuration management baselines, the critical

events during the development timeline, and the configuration controls and

procedures employed during software development and testing.

DATA BASE MANAGEMENT PLAN

This plan describes the roles, responsibilities and schedules necessary

to insure accurate, complete and timely preparation and delivery of

COMPOOLS, Data Bases and Data Base User's Guides to support the software

system from initial design through operation. Included in this effort

is the development of the Data Definition Specification which describes the

data interfaces and structures at the element level and the Data Base

User's Guide which provides the user with descriptive information required

to use and change the Data Base.

PROBLEM IDENTIFICATION AND CORRECTION REPORTS

Design Problem Report (DPR)

The DPR is the primary means of documenting problems in the critical

design review material and transmitting that information to the appro-

priate contractor for corrections. DPR's will be superseded by the use

of the SPR upon approval of the proposed design documentation by the

customer.

Software Problem Report

The SPR will be utilized:

I A. To report suspected problems in an existing software routine, Auxil-

iary COMPOOL, data base, and/or approved baseline documentation.

B-5

B. At the option of the customer, to notify developers of new or

proposed design requiremenfs and to authorize the initiation of

preliminary design review materials.

C. To report suspected problems in the system software and associated

documentation.

Document Update Transmittal (DUT)

The DUT is the primary means by which proposed changes to existing docu-

mentation are transmitted for review and approval of the customer. A DUT

package consists of the DUT form and change pages in preliminary form, and

is normally initiated in response to a DPR or SPR.

COMPOOL Change Request (CCR)

The CCR is utilized to request, coordinate, and control all changes to the

official COMPOOL. The CCR will be written in response to an SPR that

requires a COMPOOL change. (The CCR will be referenced on the MTM initiated

in response to the SPR.

Data Base Change Request (DBCR)

The DBCR is utilized to request, coordinate, and contro all changes to the

official data base. It is the only method of coordinating data base changes

between the users of the data base and the agency responsible for implemen-

tation and maintenance. The DBCR is also utilized to close cut an SPR that

requires a data base change. (The DBCR will be referenced on the MTM

initiated in response to the SPR.)

Modification Transmittal Memorandum (MTM)

The MTM is utilized for the following:

A. To supply an explanation intended to close an SPR where no corrections

or revisions are required.

B. To transmit changes for incorporation into existing programs.

B-6

i

C. To transmit a new or modified routine for inclusion on an official

tape.

D. To indicate a need for revisions to documentation.

E. An explanation indicating that an accompanying COPOOL change or

data base change is to close out an SPR.

TRAINING MATERIAL

Training can include lesson plans, exercises, and courses of Instruction

covering both user and operator aspects of the system.

B-7

- I

. ..1.1

I. Ii
. !L.

1 °

PIN

in8...

1 0
.o

Table B-1 Cross Reference Between Identified Documents and References
Where They are Described

Software System Requirements . * * * . * *

Specification

Software Requirements Review t O 0

Standards and Conventions

Documentation Plan s

Management Plan 0 0

Preliminary Design * * * * * * * * * *
Specification

Preliminary Design Review * 0 • * 0 0

Detailed Design * * * * * * * * * * *
Specifications

Critical Design Review * 0 0 0 0 0 0

Validation and Accep-
tance Test Specifi- 9 * 0 0 0 0 0 0 0 0 0
cation and Review

User's/Operator's 0 0 0
Manual

Interface Control 0 0 0 0 0 *
Document

Configuration Management 0 0 0

Plan

Data Base Management 0 *0

Plan and User's Guide

Problem Reports 0

Training Material 0

1670

B-9/B-IO

.. ,v ?<___ ., ,'Z - ,>//e/

MISSION
Of

Rome Ai.- Development Center

RADC plans and conducts research, exploratory and advanced
development pz)grams in comman ., control, and communications
(C3) activities, and in the C3 areas of Information sciences
and intelligence. The principal technical mission areas
are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, Intelligence
data collection and handling, information system tochnology,
ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainabilitg and
compatibility.

Printed by
United States Air Force
Hanscom AFB, Mass. 01731

