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Abstract
N

» One of the most difficult tasks facing computer scientists is that of
designing systems and making sure that they perform their intended functions
correctly. As computer systems have grown in size and comple. ity, the
problems of system design and verification have become increasingly acute.
Formal specifications, which are precise descriptions of a system's function,
provide a basis for understanding system operation as well as for proving
correctness.

Although there has been much work in formal specification and
verification of computer programs, relatively little research has been done on
system specification. A particular class of asynchronous systems, known as
packet communication systems, has been chosen as the subject of this study.
Packet communication systems are composed of independently operating units
that interact only by transmitting packets of information. These systems
possess a number of desirable structuring properties that make them suitable
for formal analysis.

We have developed a model for formally describing the behavior of
packet systems and for proving correctness. The model is based on the fact
that packet systems may be viewed both externally, in terms of their
interaction with the outside world, and internally, in terms of their
structural composition from smaller units... A packet system is shown to be
correct by proving that its formal characteri2ations corresponding to these two
views are equivalent.

Our model is used to prove the correctness of three sample packet
systems, and a general characterization of acyclic systems is stated and proved.
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CHAPTER 1: INTRODUCTION

1.1. System design and specification :

The fields of computer hardware and software both deal with the
same fundamental goal: building systems to perform designated functions. A
hardware system is constructed from physical components, while a software
system is realized by writing programs in a language implemented on some
computer. As both hardware and software systems have grown in size and
capability over the years, their structure and operation have grown

tremendously in co;nplexity. This has made the task of designing systems

increasingly difficult, especially so for large, high-performance systems. It is
important that both system designers and users have confidence that their
systems perform their functions as intended. System testing, debugging and
modification constitute a significant fraction of the time and expense involved
in designing systems. The issues of making certain that a system being
designed will operate correctly are thus of particular importance to both

hardware and software system designers.

Verifying the logical correctness of system designs has been

accomplished in practice mostly by "seat. of the pants" techniques. The

drawbacks of such an informal approach are clear: one can be intuitively
certain that a system design is correct, but this is far from a guarantee of
correctness. There are numerous "horror stories" about systems that had to be
redesigned or scrapped because their designs had serious conceptual errors that

went undetected in the verification process. Such errors indicate a lack of




Gy

understanding on the part of the designers as to exactly what functions the

systems are supposed to perform. In order to have a sound understanding of
the way a system operates, and in order to be sure that it behaves correctly,
it is necessary to make use of precise descriptions of a system's logical
function. It is for Jjust this reason that the discipline of formal
specifications has arisen. Specifications are descriptions of the behaviori
desired of a system, and a system is shown to be correct by verifyiﬁg that it
satisfies its specifications, i.e. operates as it is intended to behave. There are
two significant benefits that may be realized by using formal specifications. -
First, it becomes possible to develop formal verification methodologies, which
makes it feasible to prove that systems are correctly designed to perform their
intended tasks. Second, formal descriptions provide a model through which
complex systems can be better understood. Thus, the task of system ;iesign
may be facilitated thrcugh the study of formal system specification and

verification techniques.

Formal specification techniques cannot be wused blindly without
considering the nature of the systems being described. For large, complex
systems, the specifications may become so complicated as to make correctness
proofs intractably difficult. However, this problem can be alleviated by
treating only those systems that satisfy "nice" properties. By insisting on
appropriate system constraints that must be satisfied, one can identify classes
of systems that have more orderly and structured design with no real sacrifice
in functional capability. Through judicious use of this concept of structured
system design, the system designer can be assured of working with systems

that can be more easily understood, described and verified.
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Formal specifications have been the center of much research activity
within the software field [Rustin, 1972; Liskov and Berzins, 1976]. In
addition, an entire discipline known as structured programming has arisen to
study ideas of structured system design and their ramifications on the
Programming process [Dijkstra, 1972; Wortman, 1977]. However, there has
been relatively little research in corresponding areas of the hardware field.
One might explain this difference by saying that there is a much greater
concentration of theoreticians specializing in software than hardware, but
there is a more crucial underlying reason. Design costs for hardware systems
have long been overshadowed by the costs of materials, fabrication and
assembly. Once a machine is into production, the design process is ended; all

further costs lie in replication and maintenance. For these. economic reasons,

the physical construction of systems has been the dominant factor in hardware
development. With software, on the other hand, design costs have always
predominated, since everything is realized on paper. Moreover, software
systems are designed for specific applications; if the problems to .be handled
are changed, then the programs must often be rewritten or redesigned.
Hardware systems are general-purpose in that for a change in application it is 4
the program and not the machine that is modified. Software is thus far more

transient than hardware, which makes design costs even more important for

software. It is therefore no wonder that the initiatives for studytng design

and specification methodologies have been strongest in the software field. |

The rapid developments in semiconductor technology over the past
few years are beginning to alter the economic balance in hardware

development. Integrated circuit chips can be mass-produced at extremely low
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cost. Construction costs for hardware systems are dropping dramatically as
new fabrication techniques are com.ng into practice. Since design costs are
remaining essentially the same, they are becoming more and more significant
in relation to system development. This means that system design techniques
and approaches will soon be on the cutting edge of hardware technology. For
large and complex systems, whose logical functions are especially difficult to
comprehend and work with, the approaches to system design are even more
crucial. It is therefore important to open up a thorough investigation of
formal specification and structured system design methodologies for hardware
systems. And since much of the initiative in this area has come from
software research, it is natural to look for ways to apply new technologies

used in software design to the hardware field.

A particular class of systems called packet communication systems,
which are described in the next section, has been chosen as the domain for
the research presented here. Packet communication systems are based on a set
of structural properties which provide for the building of large,
high-performance systems and which also support the development of a
theoretical framework for formal specification and verification. In this thesis,
we shall develop techniques for formal specification of the beh;vior of packet
communication systems. We shall also take a look at how the formal
specifications may be applied towards verifying the logical correctness of these
systems. Because there has been so little formal study of methodologies for

hardware system design, specification and verification, the research here may

be considered as the first step in a new direction.
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1.2. Packet communication architecture and its background

Packet communication architecture is a set of principles according to
which systems may be designed and structured. The systems satisfying these
pPrinciples are collectively known as packet communication systems; for
brevity, they shall also be called packet systems. As introduced by Dennis in
[Dennis, 1975b], packet systems are essentially interconnections of
independently functioning units that interact only by sending each other
packets of information. The information contained in a packet may have

arbitrarily complex structure.

In .this research, we have taken a particular point of view,
regarding packet systems as being physically composed from hardware units.
Some of the important concepts underlying packet communication architecture
are particularly advantageous when applied to the design and implementation
of hardware systems. It is equally valid, though, to implement packet
systems in software. There are no existing techniques for formally specifying
or verifying packet systems viewed from the software standpoint, so our
work here may also be seen as an advance in the study of software

specification as well.

There are two particular notions from the study of structured
programming that are directly supported by the principles of packet
communication architecture: modularity and hierarchy. These notions play a

large role in the suitability of applying formal specification techniques to

packet systems.
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Modularity is an approach for structuring programs or systems by
composing them from smaller units called modules. The basic idea is that the
use of a module is separated from the internal details of its implementation.
In this way, a module can be developed and changed without affecting other

modules. The concepts of modularity are discussed in more detail in

[Myers, 1975; Yourdon, 1975; Dennis, 1972b]. An example of a mechanism
for supporting modularity in software systems is the notion of data
abstraction [Liskov and Zilles, 1974]. A desirable design goal for modular ,
systems is that individual modules be as self-contained and independent as

possible. This goal can be realized by making interaction among different

modules as simply structured as possible through clean, well-defined
interfaces. Although the advantages of modularly structured systems are clear,
the issues of deciding where to draw module boundaries present an open

problem. We shall not investigate this problem here.

The notion of hierarchy relates to how systems may be viewed and
described. A hierarchically structured system is one that may be stratified
into different levels of conceptual detail. Each level makes use of
mechanisms whose internal details are hidden away in lower levels. Each
mechanism within the system is used at higher, more abstract levels than
where it is defined. In this way, low-level detail is isolated so that it will
not interfere with higher-level conceptual views of the system. The basic
principles and concepts of hierarchy in systems have been presented by Parnas

[Parnas, 1974; Parnas, 1975].
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The properties of modularity and hierarchy make systems in general
easier to understand and work with. Each module in a hierarchical and
modular system has a set of "neighbor" modules with which it communicates.
The behavior of a given module depends on the conventions by which it
interacts with its neighbors, but it is completely independent of the internal
characteristics of the other modules in the system. Consequently, the designer
of a module need not worry about what goes inside any other modules; the
only relevant concerns are the intemal construction and the interface
conventions for the particular module being designed. In this way, design
information is partitioned along the boundaries of the modules, insulating the
system designer from irrelevant detail. This insulation is further enhanced in
hierarchical system structures. Each level of abstraction in the hierarchy is

isolated from the other levels. The designer of a module has to know the

external behavioral characteristics of the submodules from which the module.

is composed, but the internal structures of the submodules should be totally
irrelevant to the desigx{ of the given module. Thus, systems that are both
modular and hierarchical have two dimensions along which design details are
partitioned. When the structure of a system prevents certain design
infermation from affecting areas it does not concern, the system design is
simpler to understand. Conceptual simplicity is an important design goal

whenever system specification and verification are to be taken into account.

Although the concepts of modularity and hierarchy have been given
far less theoretical attention in relation to hardware than software, they are
almost universally regarded as fundamental to good hardware design practice.

Hardware systems have for a long time been built up from modules such as

|
{

|
|
|
:
|
|
|
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adders, clocks and shift registers, and now there is an even greater variety af
off-the-shelf component chips to use as modules. At a higher level of
abstraction, a typical microcomputer is composed of a micx;oprocessor, some
RAM storage, I/0 drivers and interface elements. Each of these components
can be treated as a module, and these modules can themselves be decomposed.
For example, the processor has as submodules an adder, various registers,
gating logic, an instruction decoder and other components; these submodules
can in turn be further decomposed. This example shows how digital system
design exhibits hierarchical and modular properties. In general, these
properties are realized by intelligent system design, but they are difficult to
achieve when designing large computing systems. Features such as virtual
memory, multi-user environments, parallel programming and the sharing of
data among different processes are difficult to realize; they are usually
implemented in practice either by simulating them in software or by adding
new components as afterthoughts to a basic Von Neumann machine. The
interactions among these added components are anything but modular in
nature, which is one of the reasons why large computing systems are so
difficult to build. Packet communication architecture, as we shall see,

provides direct support for hierarchy and modularity.

Packet systems are both modular and hierarchical in structure. The
modules in a packet system are simply the independently operating units that
comprise it. Packet systems can easily be structured so that their modules
correspond to the conceptual units in the designer's view of the system.
Further, the principles of packet communication architecture allow the

modules that form a packet system to be viewed individually as systems that
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may themselves be decomposed into interconnected component modules. This
hierarchical property of packet systems provides some of the major conceptual
foundations of the approach to specification and verification that will be
developed, By making hierarchy and modularity - explicit, packet
communication architecture not only facilitates formal specification and

verification, but in addition serves to encourage good system design practice.

One of the most important design goals for packet systems is that
the modules within a system operate as independently as possible. In support
of this goal, it is required that modules communicate with each other by
passing packets asynchronously. This principle eliminates the need for a
centralized control facility to coordinate the action of all the modules, which
greatly simplifies system structure, Moreover, it provides for concurrent
operation of the modules, leading to enhanced system performance. A module,
while awaiting response from other modules in order to perform certain tasks,
can busy itself with other tasks for which the required responses have
already arrived. An operation may proceed as soon as the information it needs
is received, as opposed to what happens with conventional architectures, in
which operations cannot be performed until they are explicitly initiated by
the sequential control. It is this distinction that prdvides for concurrency and
thus allows packet systems to make more effective use of the available

resources than do conventional large systems.

The microcomputer example given above exhibits a number of
hierarchical levels of abstraction. It may be noted that the interfaces between

modules at different levels of the hierarchy have completely different
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characteristics. At the top level, one deals with transmission of applications
data; within the microprocessor, microinstructions are passed; and at a still

lower level, it is basic logical signals that are passed and gated. In digital

systems as they are currently designed, interface protocols depend on the speed
at which the various modules process control and data signals. This
dependence limits the degree of modularity that can be achieved in existing
systems, since a module's interface with its outside world is not free of

internal speed and timing considerations. ) |

Packet systems are not subject to such limitations; one of their
important properties is that the timing characteristics of an individual module
in a packet system do not affect the operation of any other module. A
module in a packet system can be replaced with another unit that performs
the same task orders of magnitude faster or slower than the original module,
and this change will not alter the logical functioning of the system. Packet
systems are thus speed independent, which removes from the designer the
burden of having to take into account the speed and timing properties of
system components in order to assure logical correctness. Speed independence
enhances the degree of modularity in a system and thus provides an additional
element of structuring in sysiems, which further assists system design and
verification. It should be noted that a system must operate asynchronously in
order to achieve the goal of speed independence. Packet systems, since they

are speed independent, can accommodate a uniform protocol for communication

P —

of packets among their component modules. This uniformity of interface

provides the basis for the method of system specification that will be

described here.
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The idea of building systems by connecting independent modules
under an asynchronous and speed-independent discipline is not new. An early
exposition was given by Muller [Muller, 1963]. There was a major research
effort several years later directed towards realizing systems that were to be
Physically constructed from  hardware . units called macromodules
[Ornstein, 1967].  Patil has investigated logical designs for modules with
which asynchronous systems may be built [Dennis and Patil, 1971], and more
recently he has been working with applying programmable logic arrays to this
task [Patil, 1975]. All of these designs differ from packet communication
architecture in that control signals and data values are passed through the
systems separately, traveling on two distinct sets of communication pathways.
In packet systems, the notions of control and data are unified, eliminating the
need for separate pathways. This is yet another respect in which the
principles of packet communication architecture serve to simplify system

structure.

Since packet systems operate concurrently, a significant area of
application for packet communication architecture lies in realizing computer
systems that provide direct support for parallel programming. If different
parts of a program can be executed in parallel, then it is advantageous to run
the program on a machine for which the hardware can overlap their
execution. In this way, one can optimize running speed and utilization of
resources such as memory, processing elements and peripheral devices. The
study of data flow computation has precisely this goal in mind. Data flow is

the representation of programs in such a way as to make the data

dependencies and inherent parallelism explicit. Given any two operations (),

ciinal i ik vt
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and O, in a data flow program, it should be immediately apparent from the
program structure whether O; should be performed before O,, whether O,
needs results of O, in order to be performed, or whether O, and O, are
independent (can be done in parallel). Data flow programming has been
treated extensively in the literature; for both exposition and references, see
[Dennis, 1975a; Weng, 1975].  Substantial effort has gone into studying
designs for machines that can directly and efficiently execute data flow
programs [Rumbaugh, 1975; Dennis, 1974; Dennis, 1977; Arvind, 1975;
Plas, 1976]. On such a machine, there is no sequencing of instructions; an
instruction may be executed any time after its operands become available.
This is essentially the same principle as the one underlying the operation of
modules within a packet system; in fact, the concepts of packet systems have
been directly influenced by the research in developing architectures to

implement data flow.

The conceptual compatibility between the ideas of data flow and
packet communication architecture yields a natural connection between them.
In a packet system, the activity that takes place within a module is initiated
by the arrival of the appropriate data packets. There is no explicit sequencing
of operations in data flow programs, and it should be practical to implement
them on systems that do not require ordered sequences of instructions as their
programs. This is one of the motivating factors behind the conception of
packet communication architecture. Most of its concepts are far from new or
original, but it is the combination that makes it suitable for realizing data

flow computation in hardware. Conversely, data flow is a natural way to

represent programs that will run on processors designed according to the
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principles of packet communication architecture. Thus, there is a

commonality between data flow and packet systems that arises because they

share similar goals and principles.

There 1s one more property of packet systems that should be noted
here. The behavior of a packet system (or of any of its modules) is
observable in terms of the packets it sends out in response to the packets it
receives. In general, gacket ss;stems are nondeterminate, which means that
given the packets received by a module, there may be several distinct but
equally valid responses to the input. Nondeterminacy is one of the factors
that make the behavior of packet systems difficult to wunderstand and
formalize. This will have a definite bearing on the approach taken here

towards specification and verification.

This concludes the overview of the basic ideas of packet
communication architecture. The principal reason why packet systems were
chosen fdr this research is that their design is structured in a way that
supports system specification and verification. The next section preseats an
overview of some of the major concepts and techniques that have been

developed for formal specification of computer programs and systems.

1.3. Formal specifications

Much of the research concerned with formally describing the
activity within computer systems has dealt with programming language
specifications. There are essentially three basic approaches to describing the

behavior specified by a piece of program text: axiomatic, denotational and
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operational. Each approach may be applied to verifying the correctness of

program text as well as serving as a pure descriptive vehicle.

Axiomatic specifications capture the effect of executing a program
by comparing properties of the system state before and after execution. The
paradigm "if assertion A4 is true before program text P is executed, then
assertion B is true after P is executed" describes the meaning of program text
P, Special rules of inference are set up to describe the meanings of various
combinatiqns of program texts in terms of their components' meanings; these
rules incorporate the basic semantic properties of constructs such as iteration
and conditionals. This approach became known through the work of Floyd
[Floyd, 1967] and Hoare [Hoare, 1969] in which it was used to prove
correctness of simple flowchart-like programs that manipulated integers. The
assertions they used related values of program variables. There has been a
substantial amount of more recent research in axiomatic specifications.
Dijkstra [Dijkstra, 1976] has built up an entire methodology of programming
around the ideas of axiomatic specification. Owicki and Gries [Owicki, 1976]
extended Hoare's techniques to parallel programs; their assertions made use of
auxiliary state variables to keep track of interprocess coordination. Greif
[Greif, 1975] took a different approach to parallel programs, using 5 partial

time-ordering on events to express coordination properties.

Denotational specifications capture the effect of a program by
viewing the objects they model as abstract mathematical entities. This
approach provides a formal mathematical description of the computaticnal

notions being treated. An early denotational approach to specifications for

Ry
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pProgramming languages was the application of a mathematical formalism
known as lambda calculus towards describing the semantics of Algol 60
programs [Landin, 1965). The best known work in denotational specifications
has followed from the research of Scott and Strachey [Scott and
Strachey, 1971]. Mathematical results from lattice theory are used in the
construction of complex domains over which programs are represented as
functions. Programs are proved equivalent by showing that their functions
coincide. A tutorial presentation of the Scott-Strachey approach is given in-

[Tennent, 1976].

e

Operational specifications deal with the changing states within
computer systems as computations are performed. This is done by means of a
state-transition model in which a state represents information present in the
system at a given moment in time. The action of a program is captured by
the sequence of transitions of the model. The sequence of states the model
passes through as a program is executed defines the action of an interpreter
for the program. The idea of using such an interpreter to define the meaning
of programs in some language originated with McCarthy [McCarthy, 1962]. A
well-known approach to operational specifications is the Vienna Definition
Language (VDL) described in [Wegner, 1972b], which uses an interpreter that
manipulates tree-structured system states. Dennis' Common Base Language
[Dennis, 1971] is similar, dealing with more general directed graphs in place
of trees. Another approach to operational specifications is due to Parnas
[Parnas, 1972]. This approach distinguishes two kinds of operations: those

that yleld state information, and those that alter the state of the system.

Parnas applied his approach to operations on abstract data in programming
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languages; this was extended to the domain of systems in [Robinson, 1975].
Verification is achieved within an operational framework by proving that the
behavior of the interpreter in question is equivalent to the behavior of one
that is known to perform the desired function. The ideas underlying
verification by interpreter equivalence were developed by Milner

[Milner, 1971] and are also presented in [Wegner, 1972a].

Although hardware specification has not received as much attention
as software specification, there has been a substantial amount of study of
computer hardware description languages (CHDL's). ¥ The approaches taken
towards hardware specification have been almost entirely operational. The
language APL, before it was ever implemented as a programming language,
was used as a hardware description language to specify the operation of
IBM/360 computers [Falkoff, 1964]. Another CHDL, called ISP, was developed
by Bell and Newell [Bell and Newell, 1871] to describe the operation of a
large number of different computers. Both of these CHDL's describe their
target systems at the instruction set level, treating machine words as a basic
data type with operationg for byte extraction and bitwise arithmetic and
logical functions, On the other hand, the language PMS, which was also
developed by Bell and Newell [Bell and Newell, 1971], describes the structure
of computer systems in terms of their component processors, memories,
controllers and I/0O devices. This is an example of a CHDL describing systems
from a higher-level conceptual point of view. DDL [Dietmeyer, 1974] is an
example of a lower-level CHDL that defines the behavior of elements such as

multipliers by specifying them as interconnections of basic logic gates.
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Most of the CHDL's have been developed with two particular goals
in mind: automated system design, and system testing by means of
simulation. However, the microprogram certification project at IBM has
developed an approach to hardware system specification that is directed
towards formal verification of system design [Birman, 1874]. For both the
instruction execution level and the microprogram level, a VDL-style interpreter
is used to supply formal specifications. These two interpreters are then
proved equivalent in exactly the same way that correctness is proved in
operational specifications for programming languages as described above. The
proof techniques for this approach are additionally described in
[Leeman, 1975; Leeman, 1977]. Rumbaugh takes a similar approach to the
IBM group in proving the correctness of a data flow processor
[Rumbaugh, 1875]. He shows that an interpreter for his machine is’

equivalent to one that models the operations in a data flow language.

1.4. The approach to be presented

The research in specifications that has been reviewed here cannot be
directly applied to the task of formally describing and verifying packet
systems. The principal reason for this is that conventional techniques are not
equipped to handle the asynchronous operation of packet systems. The
concurrency in packet systems makes it difficult to verify their correctness:
in order to esiablish some property of a packet system, it must be shown true
for all possible sequencings of packet transmissions and receptions within the
system. Most existing techniques for formal specifications do not. lend

themselves to this kind of task. Moreover, the notion of sequencing of
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actions, which is fundamental to nearly all the approaches that have been
taken towards formal specifications, is not present in the context of packet

systems.

There is a descriptive formalism, Petri nets, that has been developed
specifically for specifying asynchronous behavior within systems. Petri nets
[Peterson, 1977] are directed graphs in which markers called tokens pass
along the arcs and through the vertices to model the occurrence of various
events, Although they have received much attention in this regard
[Patil, 1970; Hack, 1976], they cannot be directly applied to verifying packet
systems. Petri nets convey only control information for use in coordinating
concurrent activities; the gature ©of these activities is left uninterpreted. In
particular, they do not treat data values that are passed within packet
systems. Also, although many mathematical properties have been established
for Petri nets, no methodology has been developed for applying them to
system ;r'csriflcation. Most of their practical applications have been in
connection with simulating asynchronous behavior rather than proving
pﬂperties of systems. For these reasons, Petri nets do not seem to meet the

goals of specification and verification of packet systems.

Within a packet system, the modules receive and process input
packets, generate new packets for output and send them out, all
asynchronously and in parallel. The kind of approach that seems most suited
to specifying this kind of behavior is basically operational in nature. The
state of a packet system describes which packets have been passed between

which modules (and may also convey any coordination information relevant to
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the correct operation of the system). However, unlike conventional
operational models, the transitions between states need to be governed not by
an externally supplied sequence of instructions to be processed by the system,
but rather by the presence or absence of Packets as needed for processing.
This means that an operational model for a packet system must take into
account the many possible sequences of execution that could arise from the

flow of packets,

Describing the internal operation of packet systems is not sufficient
by itself for wverification purposes. There must also be a method for
specifying the logical function a system is expected to perform. This function
concerns the system's input/output behavior as seen by the outside world in
terms of packets received and sent out. Of the three kinds of approaches to
specifications as discussed in the previous section, a denotational approach
seems best suited for our needs because it can be easily tailored to describe
sequences of packets that have been passed between various modules. Because
of this flexibility, a denotational approach will also interface nicely with the
hierarchical structuring of packet systems. Thus, we shall be working with
two kinds of specifications for packet systems: operational specifications to
describe the internal operation, and denotational specifications to describe their
behavior in relation to the outside world. Verification of correctness for a
pPacket system will be ‘demonstrated by proving that these two sets of

specifications for the system agree with each other.

A recent research effort is specifically directed towards formally

describing the structure and behavior of packet communication systems. The
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descriptions are expressed in a formalism called ADL (Architecture Description
Language), which is introduced in [Leung, 1977]. There are two ways in
which a system may be described in ADL: structurally and behaviorally. A
structural description characterizes how the system is formed as an
interconnection of modules. A behavioral description is an operational
characterization' of the system's interaction with the outside world, describing
reception, processing and transmission of individual packets. The notation
used here is similar to the programming language Pascal [Wirth, 1971], and
the underlying semantics are also based on the principles of data flow. As a
first approach to placing packet systems 'on a formal foupdation, ADL is both
helpful and illuminating. However, the concept of specifying the internal
operation of a packet system has not been developed within the ADL
framework. This idea, which has not been studied previously, is crucial for
verifying the correctness of systems in a hierarchical and modular fashion.
The development of this concept is the most significant contribution of our
research. The denotational approach to be used in our treatment for
specifying the function of systems turns out to be more convenient to use

than the operational approach found in ADL.

The body of this thesis consists of four chapters. Chapter 2
describes the basic properties of packet systems in more detail. The notion of
correctness is defined, and a formalism for describing the structural

composition of packet systems is also presented. Chapter 3 presents the

‘ denotational part of the packet system specifications. The behavior of a

packet system or module is formally defined as a relation between the packets

it receives as input and the corresponding packets sent out in response.
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Chapter 4 motivates and defines the central concepts of the research, giving
an operational characterization of the actions that take place within a packet
system. Chapter 5§ shows how the specification model developed in the two
preceding chapters may be applied to the task of verifying correctness of
pPacket systems. Three sample systems are proven correct, and a theorem is

presented to show how the model may be simplified in certain cases.
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CHAPTER 2: PACKET SYSTEMS AND THEIR STRUCTURE

2.1. Overview

In this chapter the concepts of packet communication architecture
will be elucidated in detail. We shall clarify the notion of a packet system
and develop a means for formally describing the structural composition of
such a system. We will also informally introduce the concept of correctness
for packet systems. The machinery needed to formally define and prove

correctness will be developed in Chapters 3 and 4.

Packet communication architecture is a discipline dealing with a
special class of systems known as packet systems. Packet systems are
composed of independently functioning units, known as modules, which
interact only by passing information to each other. The information is passed
in the form of units called packets. There is no centralized facility for
coordinating the action of the modules. Data processing and communication
within packet systems are asynchronous, and the various modules operate

concurrently.

In a packet system, the various modules are interconnected through
one-way data paths known as channels. A channel connects two modules in
a specified direction and is used to pass data from the first module to the
second. Channels leading into a module are called input channels for the
module, and channels leading out are called output channels. A packet system

has its own set of input and output channels connecting it to the outside
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world. The other ends of these channels are never explicitly designated.

The structure of a packet system is determined by the way it is
composed from modules and channels, and always remains fixed for a
particular system. Modules and channels within a system are uniquely
named. Figure 2.1-1 depicts a packet system DAS composed 'from three
modules D, A and S. There is one system input channel X and two system
output channels Y and Z. The internal channel U connects module D to

module A, and channel V connects module D to module S.

-----------------------------

v

v

Figure 2.1-1: A sample packet system DAS.

All data treated by a packet system appear in the form of packets,
which are passed along the various channels of the system. Each packet
carries a value of some type. The modules in a packet system all have the
same basic principle of operation: a module receives packets on its input
channels, processes them internally and generates packets to be sent out on its
output channels. This principle applies to entire packet systems Jjust as it

does to their individual component modules. Packet systems are data-driven

in the sense that the progress of a computation in a packet system is
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determined by the passage of packets through the system.

There are two ingredients which together determine the behavior of
a packet system: its structure and the behavior of its modules. Thus, for
instance, in order to describe how the system DAS acts, one must first decide
what the modules D, A and § do. We now describe the behavior of these

three modules.

All three modules receive and pass integer-valued packets. Module
A, upon receiving a packet from its input channel U, adds one to the value
and sends out the incremented value as a packet on its output channel Y.
Module S behaves identically except for subtracting one instead of adding.
Module D duplicates the packets it receives on X, sending out identical copies

on U and V.

Given these descriptions, it is not hard to figure out how system
DAS acts. Any packet input from X is copied onto internal channels U and V.
The packet passed on U will be incremented and sent out on Y; the packet
passed on V will be decremented' and sent out on Z. Thus each packet
received by DAS causes two packets to be generated: a packét with value one

greater on Y and a packet with value one less on Z.

It may occur to some readers here that these characterizations are
incomplete. There is ambiguity in describing what happens when several
packets are to be processed in sequence: in what order are resulting packets
generated and passed? In our example we can resolve such questions by
stipulating that the relative order of packets on a channel is always preserved.

Precise methods for dealing with questions of this nature will be described in
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the next chapter,
2.2. A closer look at packet systems

In this section the workings of packet systems will be examined in
greater detail. The first thing we discuss is one of the fundamental
pProperties they satisfy: the internal resources of a packet module or packet
system may be allocated and utilized in any arbitrary manner as long as ihe
specified operations will be performed correctly. Consider, for example, the
system DAS from the previous section when it is in a state depicted in figure
2.2-1. An input packet with value 2 has been received on the X channel and
processed by the D module, leaving copies of the packet on channels U and V.

Another packet with value 5 is still waiting on channel X to be processed by

the system.

Figure 2.2-1: A sample state of system DAS.

There are three actions that should now be performed within the system:

(1) module A absorbing and processing the packet on channel U; (2) module S

processing the packet on V; and (3) system DAS accepting the packet from
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channel X and initiating its processing in module D. The crucial property of
packet systems exhibited here is that these three actions may be performed in
any order, serially or concurrently, and the correct operation of system DAS
will be completely independent of whatever particular order is chosen. It is

this property that makes the behavior of packet systems genuinely

asynchronous.

We can gain a better understanding of the action of packet systems
by taking a more detailed view of the operation of their component modules.
When a module receives a packet from one of its input channels, it begins to
process the packet internally. Sometimes the only effect of the packét's
absorption is that the module's internal state may change. In general, though,
the module's semantics may require that it generate one or more packets to be
sent out on {ts output channels in reply to the packet received. The
sequences of packets generated by a module in reply to a packet received are
sai¢ to be the module's response to that packet. It is important to note that
a module's response to a particular packet may depend on previous packets
input as well as the designated one.. There may be an arbitrary finite delay
between the time a module receives a packet and the time the module
generates ‘and sends out its response to that packet. The fact that packet
modules and systems must be able to tolerate such delays is an essential

consequence of their asynchronous operation.

There is a special protocol that must be fulfilled in packet systems
for the transmission and receipt of packets through the various modules and

channels. Suppose a channel C connects module Ml to module M2, as
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illustrated here:

Ml M2

Figure 2.2-2: A channel in a packet system.

It is desirable for module Ml to have some way of knowing when it has
successfully sent a packet out on channel C. The convention that has been
adopted is that when a packet sent on C from M! is received by module M2,
M2 will send a signal to M1 on channel C in the reverse direction to indicate
that it now has the packet safely in hand. Such a signal is known as an
acknowledge signal, It is not until M1 receives an acknowledge signal for a
particular packet that it knows it is done with the process of generating and
sending that packet. Thus, from the point of view of imoduie M1, there are
three discrete steps in the transmission of a packet: generation, sending and
receipt of acknowledgment. It should be noted that module M2 cannot
generate output to packets it receives from channel C until it has sent back
on C an acknowledge signal for those packets. There is a caveat with regard
to acknowledge signals: although they are sent in response to every packet
transmission in a packet system, we regard them as part of the hardware and

not available to be manipulated by system designers.

The channels in a packet system are assumed to have certain special
characteristics as transmission media, The first, and simplest, is that any time
a packet is sent out on a channel, it will eventually be received at the other

end. A packet generated to be sent out from some module in a packet system
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can never be called back. This means that whenever a module generates a
packet to be sent out, it will receive an acknowledge signal for the packet
within some finite span of time. It is assumed that the channels never
"break” and that acknowledge signals will always be received by the
appropriate modules. Failure of mechanism, for the purposes of verification,
invalidates the entire system function. The issues of fault tolerance in
systems are beyond the scope of this research. Thus, packet communication
architecture requires that every packet generated by some module must
actually be sent out and acknowledged within some finite time interval. It
should be noted that this requirement is a consideration of correctness rather

than performance, because packet systems are speed-independent.

A second important property of channelé is that if a module receives
a packet from one of its input channels, then that packet must have been sent
out on that channel at some previous time. J Thus, for example, module M2
may not receive a packet from channel C unless module M1 had already sent
that packet out on C. Another way of stating this property is that ne

channel may generate spurious packets of its own.

A third characteristic of channels is that they act as FIFO queues,
which means that if the module Ml above sends a packet x out on channel C
and then sends another packet y out on C at a later time, then M2 must
receive and acknowledge x before y. We make the further assumption that
the channels have unbounded buffering capacity, which means that there is

no limit to the number of packets that can be on the channel C at any given

moment of time and be awaiting receipt by the “target" module M2.
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Physically speaking, this assumption is not realizable in general, because no
real device can have infinite capacity, let alone a high-speed transmission
medium. However, if we assume the unbounded buffering, then we rule out
the possibility of system deadlock caused by packets piling up in certain
channels and inhibiting further packet output into those channels. Unbounded

buffering is therefore a convenient assumption to make.

Finally, we shall assume that for each channel in a packet system
there is a designated set (type) of packets that may be passed on the channel.
For example, one channel may carry only integer packets, while another
channel may accept only packets that consist of an employee name together

with a corresponding identification number.

There is an extremely important property of packet systems which
we will be treating, namely nondeterminacy. A module or system ic said to
be nondeterminate if its semantics allow two or more distinct possible

responses to a given packet input. A simple example of a nondeterminate

module is one that models the toss of a coin. It has ome input channel and

one output channel, and its response to any packet received will be a single
pPacket with either the value "heads" or the value "tails." The choice is
arbitrary and independent of the input packet. Nondeterminate modules and

systems are very difficult to work with because the multiplicity of possible

GEUEE——

results is cumbersome to model mathematically. We will explicitly allow for

nondetermineie modules and systems in our treatment.
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A certain class of nondeterminate system behavior will be c_>f

particular interest because it arises frequently in the design of packet systems.
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This kind of behavior concerns the relative order of packets sent out on a
channel. Consider a system in which the task of generating and sending out
packets in response to inputs taken from a specific channel is relatively
complicated or time-consuming. One would naturally wish to allow the
processing of distinct inputs to proceed concurrently if possible. But then it
may turn out that responses to a recent input will be ready to be sent out
before responses to inputs received earlier. Moreover, it cannot be determined
in advance whether or not such “"cutting ahead" behavior will actually oc'cur.
It is possible to impose a synchronization discipline that will force the outputs
into a desired order, but in doing so all the advantages of asynchronous
processing of different inputs are lost. Thus, if the system application and
design can tolerate "cutting ahead,” it is wise to allow it. In general, then,
providing for nondeterminate behavior that involves different alternative
orderings of generated output packets should often in practice become an

attractive design goal for packet communication architecture.
2.3. Corsectness

The notion of correctness for packet systems bears a close
relationship to the ways the issues of system structuring and composition are
treated within the framework of packet communication architecture. At a
very intuitive level, a system is correct if it satlsﬂe; certain conditions laid
out for it in advance. For packet systems, these conditions take the form of
behavioral specifications. As we mentioned in the preceding chapter, a packet

system's behavior is observable by the way it responds to its inputs. More

precisely, the behavior is a relationship between inputs received and outputs
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generated in response to those inputs. A packet system, therefore, is correct if
this relation satisfies a given set of specifications. The nature of such

specifications will be discussed in detail in subsequent sections.

It is important to note that one cannot prove correctness of a system
without some knowledge of its internal workings. If a system is viewed as a

"black box" (figure 2.3-1),
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Figure 2.3-1: "Black box" view of a packet system.

then the only things that can be seen are packets entering and leaving. There
is simply not enough information available to determine whether or not a
system is behaving correctly. Since modules operate asynchronously and with
arbitrary finite delays, one cannot tell if additional output packets are
forthcoming. For example, suppose a system has already sent out all the
packets it should transmit in response to some particular input. The module
only appears to be behaving correctly, since there is no guarantee that an
invalid packet will be unexpectedly sent out later. Even if this were
determinable, observation alone could never suffice tc decide whether the

system would respond correctly in all situations. The only way to tie down
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the notion of correctness for a particular packet system, therefore, is to open

the system up and look inside:

=
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Figure 2.3-2: Internal view of the same packet system.

If we view the system as being realized in terms of its component modules,

then the following fundamental correctness principle becomes evident:

A packet system is correct if its given structural
decomposition satisfies the behavioral specifications for
the system whenever the component modules satisfy
their own respective behavioral specifications.

The notion of a system's decomposition satisfying a set'of specifications is not
yet formally defined; it will be treated in detail in Chapter 4. The notion of
a module satisfying specifications is simply that of a physical device acting as
intended. The above correctness principle defines only a relative nature of
system correctness. An obvious question that arises is how to establish the
correctness of the modules in order to show the system correct. We already
have the answer to this ques;iom Just as with the system itself, correctness

of the component modules can be established only in terms of their own
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respective internal structures.

A significant ramification of this approach is that packet systems
and modules are really two different views of the same thing: a module is
revealed to be a system when one examines its internal structure, and
ignoring the composition of a packet system is just the same as regarding it
as a module. There is an underlying source for this conceptual unity, which
is that packet communication architecture supports the hierarchical structuring
and composition of systems. Packet systems can (and should) be designed so
that there are distinct and well-structured levels of decomposition.. each level
consisting of systems built up from simpler modules. In this sense, our
fundamental correctness principle for packet systems supports a top-down
verification methodology in which correctness proofs are broken down level
by level into their natural logical and conceptual coﬂstituents. Logically
distinct lines of argument are isolated so that they cannot interfere with one
another. Thus the notion of modular and hierarchical system structure is

carried through in the approaches we take to correctness and verification.

It may seem for a moment that there is a potential infinite regress
in working with smaller and smaller modules within mcdules, but this can
never arise. There is always a well-defined bottom ievel to the hierarchy in
which the modules are regarded as implementing primitive operations such as
adding and gating. At this point, correctness has been reduced to the way the

primitive functions are defined.

Our approach to correctness and verification of packet systems

allows a system to be viewed in two different ways: internally, in terms of
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its structural composition from modules, and externally, by concealing the
internal workings. The idea of distinguishing between internal and external
views of systems is closely related to the» notion of data abstractions in
programming languages [Liskov and Zilles, 1974]. As we shall see in
Chapter 3, it is fairly straightforward to construct behavioral specifications
for a packet system viewed externally. However, in order to establish
correctness of a system, we need to show that the external characterization
agrees with the system's structure. It is a difficult task to formally describe
the behavior of a system in terms of its internal composition. We shall

address this task in Chapter 4.
2.4. Structural descriptions

The only means we have used so far to describe the structure of
packet systems is through informal block diagrams. If any general assertions
are to be made involving system composition, we will need a more precise
vehicle for structural description. Such a technique is introduced in this

section.

The structure of a packet system may be modeled in very
straightforward fashion by a directed graph in which nodes representing
modules are connected by directed arcs representing channels. Figure 2.4-1
shows a sample packet system together with the directed graph that models it.
Note that the directed graph has an extra node labeled “x". This gives
explicit representation to the system's "outside world," which serves as both
the source of system input channel X and the target of system output channel

Y. The graph may look like just another stylized drawing of the system, but
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Figure 2.4-1: A packet system and its diraected graph.

it i< a mathematical object of specific characteristics. Formally speaking, a
astected graph is an ordered pair of the form (N, A) in which N is the set of
its nodes and A is the set of its arcs. Each arc in A is an ordered triple
containing a source node, an arc name and a target node. An arc a€A has the
form (a.source, a.name, a.target). For example, the graph in figure 2.4-1 is
the ordered pair
({x,0,E,F}, {(x.,X,D), (O,P,E), (E,Q,F), (F,R,D), (E,Y,x)}.
It is easy to see that for each node n in the directed graph we can define the
sets of arcs leading into and out of n. These sets are given by
inputs(n) = {aeA: a.target = n} and outputs(n) = {aeA: a.source = n).

The directed graph characterization thus mathematically specifies how the

modules in a system are interconnected.

There are two additional properties of packet systems that can be
incorporated into our formal structural descriptions. First, we can model the
packet type restrictions for the channels by associating a type description with
each channel, Second, we can specify packets initially present on the
channels with an initial packet sequence for each channel. Both properties

are handled easily in the directed graph model by adding extra fields to the




arcs.

The above mathematical model for packet system structure .may be
sugared into a structural description language. The description language wé
use here is patterned after the structural portion of ADL as presented in
[Leung, 1977]. For the system we have been discussing in this section, if we
assume that all channels carry only integer valued packets and that there is
one packet with value zero initiall& present on channel R, then the formal

description of its structure may be represented as follows:

System SYS

inputs X(integer)

outputs Y(integer)

internals P(integer), Q(integer), R(integer)
Submoduies

D inputs X, R; outputs P

E inputs P; outputs Q, Y

F inputs Q; outputs R
Initially R<OD>

While descriptions of this form do not explicitly name the source and target
modules for each channel, these are very easily determined since each internal

channel in the system must appear exactly once in a submodule input list and

exactly once in a submodule output list.

This section has presented structural specifications for packet

systems. The next two chapters present a model for behavioral specifications.
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CHAPTER 3: SPECIFICATIONS FOR PACKET MODULES

3.1. The slice relation approach

Because of the way a packet system is built up from component
modules, the behavior of a system will be a function of its structure and the
behavior of the modules in it. In this chapter we shall develop a method for
formally specifying the behavior of packet modules. Specifications defined by
this method will be called external specifications because they describe the
behavior of packet modules without considering theip internal structural

composition.

A packet module has a fixed number of input channels on which it
receives packets to be processed, and there are a fixed number of output
channels on which it sends out packets in response to the inputs it has
received. A formal behavioral specification for a module must be able to
rigorously determine for each input exactly what is a valid output response.
Because packet systems are in general nondeterminate, the potential
multiplicity of valid output responses rules out a direct functional mapping.
Instead, we shall supply external specifications for a module M in the form of
a relation EXT, that formally relates inputs to the semantically wvalid
corresponding outputs, Such a relation will be called an external

characteristic relation for the module M.

The most obvious approach is to use a relation from input packets to

output packets, but this does not suffice in even the simplest case: consider a
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module ID that "does nothing," that is, sends out its input packets untouched.

I0

v

Figure 3.1-1: The identity module ID.

The identity relation EXT,D on packets defined by the equation
(p,q) € EXTjp if and onmly if p = g

does not completely describe the behavior of the module ID. If ID receives as
input a packet with value 1 followed by a packet with value 2, there are
two different possible responses: ID can send out the 1 followed by the 2, or
it can send out the 2 first and the 1 later. Thus a specification for the
module must describe the sequencing of packets in order to completely capture
its behavior. For example, if we intend for the module ID to preserve the
relative order of the packets it receives, then its behavior would be correctly
specified by the identity relation EXT\y taken over the domain of sequences of
packets rather than individual packets. Such sequences are required in
general to describe the behavior of a module when it depends on a memory of
previous packets received in order to decide how to respond to a given packet.
We therefore need to develop some mathematical machinery for manipulating
sequences of packets, We will use the term stream to denote a sequence of

packets. The mathematics of streams will be discussed in the next section.

In general, the behavior of a module is specified by a binary

relation that relates presented inputs to valid output responses. For the

module ID, we see that presented input may be correctly modeled by a stream
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of packets passed on the input channel X. For a module with an arbitrary
number of input channels, in order to model presented input we need a
separate packet stream for each input channel. We therefore define an input
slice for a module M to be a collection of streams, one for each input channel
of M. Similarly, an output slice has as its components one stream for each
output channel. Thus the formal specifications for a module M will consist
of a binary relation between input slices and output slices. This relation is
called the characteristic relation for M. We reserve the mnotation EXT, from
now on to denote the characteristic relation for a module M. The slice
relation approach to module specifications is ndt original, and a corresponding

definition may be found in [Dennis, 1972a].

As an example, an input slice for the module J shown below is a
pair (y,v) in which u and v are packet streams for channels U and V,
respectively; an output slice far J has the form (2Z), where Z is a packet

™~
stream over Z.
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Thus the characteristic relation EXT, for J will have elements of the form

(y,v), (2)).

Slices distinguish the time ordering between packets passed on each
individual channel but not between packets on different channels. It may
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