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• computer programs, relatively little research has been done on system

specification. A particular class of asynchronous systems, known as packet
communication systems, has been chosen as the subject of this study. Packet
communication systems are composed of independently operating units that
interact only by transmitting packets of information. These systems possess
a number of desirable structuring properties that make them suitable for
formal analysis.
We have developed a model for formally describing the behavior of packet
systems and for proving correctness. The model is based on the fact that
packet systems may be viewed both externally in terms of their interaction
with the outside world and internally, in terms of their structural
composition from smaller units. A packet system is shown to be correct by
proving that its formal characterizations corresponding to these two views
are equivalent.
Our model is used to prove the correctness of three sample packet systems and
a general characterization of acyclic systems is stated and proved.
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• Abstract

One of the most difficult tasks facing computer scientists is that of
designing systems and making sure that they perform their intended functions •
correctly. As computer systems have grown in . size and comple,. Aty, the
problems of system design and verification have become increasingly acute.

• Formal specifications, which are precise descriptions of a system’s function,
provide a basis for understanding system operation as weli as for proving
correctness.

• Although there has been much work in formal specification and
verification of computer pr ograms, relatively little research has been done on
system specification. A particular class of asynchronous systems, known as
packet communication systems, has been chosen as the subject of this study.
Packet communication systems are composed of independently operating units
that interact only by transmitting packets of information. These systems
possess a number of desirable structuring properties that make them suitable
for formal analysis.

We have developed a model for formally describing the behavior of
packet systems and for proving correctness. The model is based on the fact
that packet systems may be viewed both externally, in terms of their
Interaction with the outside world, and internally, in terms of their
structural composition from smaller units. ~~A packet system is shown to be
correct by proving that its formal cheracteriIations corresponding to these two
views are equivalent. \

Our model is used to prove the correc~~ess of three sample packet
• systems, and a general characterization of acyclic sy ems Is stated and proved.

Thesis Supervisor: Jack B. Dennis
Title: Professor of Computer Science and Engineering



.3 .

Acknowledgments

The hardest part of this research was the interminably long time
spent grappling with vague, abstruse notions, trying to find appropriate
underlying concepts. During this period, I needed -- and received --
assistance from many people around me.

. Professor Jack Dennis, my research supervisor, showed a remarkable
technical insight in working with me on developing new approaches for new
areas. I am grateful that he matched my stubbornness by insisting I

• investigate certain ideas that seemed barren at first but later bore fruit.
Professors Liba Svobodova and Vaughan Pratt , my readers, have both

been tremendously helpful In evaluating my ideas and approaches. They
shared generous amounts of time with me and made sure I kept my ideas in
the proper perspective.

All three of my committee members made substantial contributions
to the form and content of this document, pointing out obscurities, errors and
misconceptions to be corrected.

I wish to thank my fellow graduate students for listening patiently
to many versions of my presentations of my ideas, progressing from the
unclear to the coherent. Thanks to Bill Ackerman, Valdis Berzins, Andy
Boughton, Dean Brock, Clement Leung, Glen Miranker, Craig Schaffert, Ken
Weng and a number of other students for helping me clarify my ideas and
come up with the right definitions and proofs.

The MIT Laboratory for Com puter Sc~ence has been a stimulating
environment to work In. Thanks are due for their generous financial support
throughout the research as well as for the use of their computer facilities in
preparing this document.

My parents gave me constant advice, support and encouragement,
standing by me when I needed it and stimulating my confidence in myself
through their confidence In me.’

Finally, I wish to express my appreciation and gratitude to Toby, my
fiancee and wife to be, for patiently bearing with me for two and a half long
and difficult years, giving me emotional support and companionship, and
believing in me.

~~~~~
— - =

~~~
-

~~~~~ ~~~~~~~~~~~~~~~~~ 
zi~~i ~~~i: IJ



-1
. 4

Table of Contents

Abstract . 2

Acknowledgments 3

Contents 4

Chapter 1: Introduction 5
1.1. System design and specification 5
1.2. Packet communication architecture and its background 9
1.3. Formal specifications 17
1.4. The approach to be presented 21

Chapter 2: Packet Systems and their Structure 26
2.1. Overview 26
2.2. A closer look, at packet systems 29
2.3. Correctness 34
2.4. Structural descriptions 38

Chapter 3: Specifications for Packet Modules 41
3.1. The slice relation approach 41
3.2. Streams and their operations 44
3.3. Examples 48

• 3.4. Evaluation 54

Chapter 4: Specifications for Packet Systems 56
4.1. Internal specifications 56
4.2. Execution sequences (introductory) 60
4.3. Properties of execution sequences 68
4.4. Execution sequences (formally) 78
4.5. Characterization of internal specifications 84

- Chapter 8: Proving Packet Systems Correct 86
5.1. Setting up a correctness proof , 86
5.2. Proof for the system iD 89
5.3. Correctness of a cyclic system 94
5.4. Proof for a nondeterminate system 100
5.5. Proving correctness of more complex packet systems 109

Chapter 8; ConclusIons 120
6.1. Review of the research 120
6.2. Future work 124
6.3. Parting shots 129

Bibliography 131

Glossary 136

Biographical Note 138

~ 

~~ EJ~~~~~~~~~_~_~ ~~~ —.  —- -— ~~~~~~~~~
-

~~~~~-~~- --- ~~~~~~~~~~~~~



CHAPTER 1; INTRODUCTION

1.1. System design and specification

The fields of computer hardware and software both deal with the

same fundamental goal: building systems to perform designated functions. A

hardware system is constructed from physical components, while a sof tware

system is realized by writing programs in a language implemented on some

computer. As both hardware and software systems have grown in size and

capability over the years, their structure and operation have grown

tremendously in complexity. This has made the task. of designing systems

increasingly difficult, especially so for large, high-performance systems. It is

important that both system designers and users have confidence that their

systems perform their functions as intended. System testing, debugg ing and

modification Constitute a significant fraction of the time and expense involved

in designing systems. The issues of making certain that a system being

designed will operate correctly are thus of particular importance to both

hardware and software system designers.

Verifying the logical correctness of system designs has been

accomplished in practice mostly by ‘~seat- of the pants” techniques. The

• drawbacks of such an informal approach are clear: one can be intuitively

certain that a system design is correct , but this is far from a guarantee of

correctness. There are numerous “horror stories” about systems that had to be

redesigned or scrapped because their designs had serious conceptual errors that

went undetected in the verification process. Such errors indicate a lack of

• • • • --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- -----~~~~~~——--• —~~~~ •~~~~~~~~~~~~ •~~~ • --~~~~~~~
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understanding on the part of the designers as to exactly what functions the

systems are supposed to perform. In order to have a sound understanding of

the way a system operates, and in order to be sure that it behaves correctly,

it is necessary to make use of precise descriptions of a system’s logical

function. It is for Just this reason that the discipline of f ormal

specif ications has arisen. Specifications are descriptions of’ the behavior

desired of a system, and a system is shown to be correct by verifying that it

satisfies its specifications, i.e. operates as it is intended to behave. There are

two significant benefits that may be realized by using formal specifications. -

First, It becomes possible to develop formal verification methodologies, which

makes it feasible to p rove that systems are correctly designed to perform their

intended tasks. Second, formal descriptions provide a model through which

complex systems can be better understood. Thus, the task of system design

may be facilitated thrcu.gh the study of formal system specification and

verification techniques.

Formal specification techniques cannot be used blindly without

considering the nature of the systems being described. For large, complex

systems, the specifications may become so complicated as to make correctness

proofs intractably difficult. However, this problem can be alleviated by

treating only those systems that satisfy “nice” properties. By insisting on

appropriate system constraints that must be satisfied, one can identify classes

of systems that have more orderly and structured design with no real sacrifice

in functional capability. Through Judicious use of this concept of structured

system design, the system designer can be assured of working with systems

that can be more easily understood, described and verified.

I
-~~~~~~~~~~
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Formal specifications have been the center of much research activity

within the software field [Rustin , 1972; Liskov and Berzins, 1976]. In

additi on , an entire discipline known as structured programming has arisen to

study ideas of structured system design and their ramifications on the

programming process [Di,jkstra, 1972; Wortman, 1977]. However , there has

been relatively little research In corresponding areas of the hardware field.

One might explain this difference by saying that there is a much greater

concentration of theoreticians specializing In software than hardware, but

there Is a more crucial underlying reason. Design costs for hardware systems

have long been overshadowed by the costs of materials, fab rication and

assembly. Once a machine is into production , the design process is ended: all

further costs lie in replication and maintenance. For these- economic reasons,

the physical construction of systems has been the dominant factor in hardware

development. With software , on the other hand, design costs have always

predominated, since everything is realized on paper. Moreover , software

systems are designed for specific applications; if the problems to be handled

are changed, then the programs must often be rewritten or redesigned.

Hardware systems are general-purpose in that for a change in application it is

the program and not the machine that is modified. Software is thus far more

transient than hardware, which makes design costs even more important for

software. It Is therefore no wonder that the initiatives for studying design

and specification methodologies have been strongest in the software field.

The rapid developments in semiconductor technology over the past

few years are beginning to alter the economic balance in hardware

development. Integrated circuit chips can be mass-produced at extremely low

-~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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• cost. Construction costs for hardware systems are dropping dramatically as

new fabrication techniques are com~ng into practice. Since design costs are

remaining essentially the same, they are becoming more and more significant

in relation to system development. This means that system design techniques

and approaches will soon be on the cutting edge of hardware technology. For

large and complex systems, whose logical functions are especially difficult to

comprehend and work with, the approaches to system design are even more

crucial. It is therefore Important to open up a thorough investigation of

formal specification and structured system design methodologies for hardware

systems. And since much of the initiative in this area has come from

software research, it is natural to look for ways to apply new technologies

• used In software design to the hardware f~ald.

• A particular class of systems called packet communication systems,

• which are described In the next section, has been chosen as the domain for

the research presented here. Packet communication systems are based on a ‘set

- 
• of structural properties which provide for the building of large,

high-performance systems and which also support the development of a

theoretical framework for formal specification and verification. In this thesis,

we shall develop techniques for formal specification of the behavior of packet

• communication systems. We shall also take a look, at how the formal

specifications may be applied towards verifying the logical correctness of these

systems. Because there has been so little formal study of methodologies for

hardware system design, specification and verification , the research here may

be considered as the first step in a new direction.

_ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _  •

_ _ _ _ _



— 
~~~~~~~-- -~~~-—~~ ~~~~~~~~~~~~~~~~~~ 

— -

• - 9 -

• 1.2. Packet communication architecture and its background

Packet communication architecture is a set of principles according to

which systems may be designed and structured. The systems satisfying these

principles are collectively known as p acket communication s,ystezns; for

brevity, they shall also be called packe t systems. As Introduced by Dennis In

[Dennis, 1975b ], packet systems are essentially interconnections of

independently functioning units that interact only by sending each other

packets of information. The information contained in a packet may have

arbitrarily complex structure.

In this research , we have taken a particular point of view,

regarding packet systems as being physically composed from hardware units.

Some of the important concepts underlying packet communication architecture

are particularly advantageous when applied to the design and implementation

• of hardware systems. It is equally valid , though , to implement packet

• systems in software. There are no existing techniques for formally specifying

or verifying packet systems viewed from the software standpoint , so our

work here may also be seen as an advance in the study of software

specification as well.

There are two particular notions from the study of structured

programming that are directly supported by the principles of packet

communication architecture: modularity and hierarchy. These notions play a

large role in the suitability of’ applying formal specification techniques to

packet systems.

— _ _ _ _ _ _ _ _
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Modularity is an approach for structuring programs or systems by

composing them from smaller units called modules. The basic idea is that the

use of’ a module is separated from the internal details of’ its implementation.

In this way, a module can be developed and changed without affecting other

modules. The concepts of’ modularity are discussed in more detail in

• [Myers, 1975; Yourdon , 1975; Dennis, 1972b]. An example of a mechanism

for supporting modularity in software systems Is the notion of’ data

abstraction [Liskov and Zilles, 1974]. A desirable design goal for modular

systems is that individual modules be as self-contained and independent as

possible. This goal can be realized by making interaction among different

• modules as simply structured as possible through clean, well-defined

interfaces. Although the advantages of modularly structured systems are clear ,

the issues of deciding where to draw module boundaries present an open

problem. We shall not investigate this problem here.

The notion of hierarchy relates to how systems may be viewed and

described. A hierarchically structured system is one that m a y  be stratified

into different levels of conceptual detail. Each level makes use of’

mechanisms whose internal details are hidden away in lower levels. Each

mechanism within the system is used at higher , more abstract levels than

where it is defined . In this way, low-level detail is isolated so that it will

not interfere with higher-level conceptual views of the system. The basic

principles and concepts of hierarchy in systems have been presented by Parnas

[Parnas , 1974~ Parnas, 1975].
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The properties of modularity and hierarchy make systems in general

easier to understand and work with. Each module in a hierarchical and

modular system has a set of “neighbor” modules with which it communicates.

The behavior of a given module depends on the conventions by which it

interacts with its neighbors, but it is completely independent of the internal

characteristics of’ the other modules in the system, Consequently, the designer

of a module need not worry about what goes Inside any other modules; the

only relevant concerns are the Internal construction and the interface

conventions for the particular module being designed. In this way, design

information is partitioned along the boundaries of the modules, Insulating the

system designer from irrelevant detail. This insulation is further enhanced in

hierarchical system structures. Each level of abstraction in the hierarchy is

isolated from the other levels. The designer of a module has to know the

external behavioral characteristics of the submod ules from which the module.

is composed, but the internal structures of the submodules should be totally

irrelevant to the design of the given module. Thus, systems that are both

modular and hierarchical have two dimensions along which design details are

partitioned. ‘When the structure of’ a system prevents certain design

information from affecting areas it does not concern, the system design is

simpler to understand. Conceptual simplicity is an important design goal

whenever system specification and verification are to be taken into account.

Although the concepts of modularity and hierarchy have been given

fa r less theoretical attention in relation to hardware than software, they are

almost universally regarded as fundamental to good hardware design practice.

Hardware systems have for a long time been built up from modules such as
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adders, cloclu and shift registers, and now there is an even greater variety of

• off-the-shelf component chips to use as modules. At a higher level of’

abstraction , a typical microcomputer is composed of a mIcroprocessor, some

RAM storage, I/O drivers and interface elements. Each of’ these components

can be treated as a module, and these modules can themselves be decomposed.

For example, the processor has as submodules an adder , various registers,

• gating logic, an instruction decoder and other components; these subxnodules

can in turn be further decomposed. This example shows how digital system

design exhibits hierarchical and modular properties. In general , these

properties are realized by intelligent system design, but they are difficult to

achieve when designing large computing systems. Features such as virtual

memory, multi-user environments, parallel programming and the sharing of

data among different processes are difficult to realize; they are usually

implemented in practice either by simulating them in software or by adding

new components as afterthoughts to a basic Von Neumann machine. The ‘

interactions among these added components are anything but modular in

nature , which is one of the reasons why large computing systems are so

dif ’ficult to build. Packet communication architecture, as we shall see,

provides direct support for hierarchy and modularity.

Packet systems are both modular and hierarchical in structure. The

modules In a packet system are simply the independently operating units that

comprise it. Packet systems can easily be structured so th4t their modules

• correspond to the conceptual units in the designer’s view of the system.

Further , the principles of packet communication architecture allow the

modules that form a packet system to be viewed individually as systems that
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• may themselves be decomposed into interconnected component modules. This

hierarchical property of packet systems provides some of the major conceptual

foundations of the approach to specification and verification that will be

• developed. By making hierarchy and modularity explicit , packet

communication architecture not only facilitates formal specification and

verification , but in addition serves to encourage good system design practice.

• One of’ the most important design goals for packet systems is that

the modules within a system operate as independently as possible. In support

of this goal , it is required that modules communicate with each other by

passing packets asynchronously. This principle eliminates the need for a

centralized control facility to coordinate the action of all the modules, which

greatly simplifies system structure. Moreover, it provides for concurrent

operation of’ the modules, leading to enhanced system performance. A module ,

while awaiting response from other modules in order to perform certain tasks,

can busy itself’ with other tasks for which the required responses have

already arrived. An operation may proceed as soon as the information it needs

is received , as opposed to what happens with conventional architectures, In

which operations cannot be performed until they are explicitly initiated by

the sequential control. It is this distinction that provides for concurrency and

thus allows packet systems to make more effective use of the available

resources than do conventional large systems.

The microcomputer example given above exhibits a number of’

hierarchical levels of abstraction. It may be noted that the interfaces between

modules at different levels of the hierarchy have completely different



- 1 4 -

characteristics. At the top level, one deals with transmission of’ applications

data; within the microprocessor . microinstructions are passed ; and at a still

• lower level, it is basic ogical signals that are passed and gated. In digital

systems as they are currently designed , interface protocols depend on the speed

at which the various modules process control and data signals. This

dependence limits the degree of’ modularity that can be ac~iieved in existing

systems, since a module’s interface with its outside world is not free of

• internal speed and timing considerations.

Packet systems are not subject to such limitations; one of their

important properties is that the timing characteristics of an Individual module

in a packet system do not affect the operation of any other module. A

module in a packet system can be replaced with another unit that performs

the same task orders of magnitude f’aster or slower than the original module,

and this change will not alter the logical functioning of the system. Packet

systems are thus speed independent , which removes from the designer the

burden of having to take into account the speed and timing properties of

• system components in order to assure log;cal correctness. Speed independence

enhances the degree of modularity in a system and thus provides an additional

element of structuring in systems, which further assists system design and

verification. It should be noted that a system must operate asynchronously in

order to achieve the goal of speed Independence. Packet systems, since they

are speed independent , can accommodat. a uniform protocol for communication

of packets among their component modules. This uniformity of interface

provides the basis for the method of system specification that will be

described here.

‘1

_ _ _  ---•-~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The idea of building systems by connecting independent modules

under an asynchronous and speed-independent discipline is not new. An early

exposition was given by Muller [Muller, 1983]. There was a major research

effort several years later directed towards realizing systems that were to be

physically constructed from hardware units called rnacroznodules

[Ornstein , 1967]. Patti has investigated logical designs for modules with

which asynchronous systems may be built [Dennis and Patil , 1971], and more

recently he has been working with applying programmable logic arrays to this

task (Patil , 1975]. All of these designs differ from packet communication

architecture in that control signals and data values are passed through the

systems separately, traveling on two distinct sets of communication pathways.

In packet systems, the notions of control and data are unified, eliminating the

need for separate pathways. This is yet another respect in which the

principles of packet communication architecture serve to simplify system

structure.

Since packet systems operate concurrently, a significant area of

application for packet communication architecture lies in realizing computer

systems that provide direct support for parallel programming. If different

parts of a program can be executed in parallel , then it is advantageous to run

the program on a machine for which the hardware can overlap their

execution. In this way, one can optimize running speed and utilization of

resources such as memory, processing elements and peripheral devices. The

• study of data f low computation has precisely this goal in mind. Data flow is

the representation of programs in such a way as to make the data

dependencies and inherent parallelism explicit. Given any two operations ‘~~i

I
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and °2 in a data flow program, it should be immediately apparent from the

program structure whether 0~ should be performed before 02, whether 01
needs results of °2 in order to be performed, or whether O~ and °2 are

independent (can be done In parallel). Data flow programming has been

treated extensively in the literature; for both exposition and references, see

[Dennis , 1975a; Weng, 1975). Substantial effort has gone into studying

designs for machines that can directly and efficiently execute data flow

programs [Rumbaugh , 1975; Dennis, 1974; Dennis, 1977; Arvind , 1975;

Plas, 1976]. On such a machine, there is no sequencing of Instructions; an

instruction may be executed any time after its operands become available.

This is essentially the same principle as the one underlying the operation of

modules within a packet system; in fact , the concepts of’ packet systems have

been directly influenced by the research in developing architectures to

implement data flow.

The conceptual compatibility between the ideas of data flow and

packet communication architecture yields a natural connection between them.

In a packet system , the activity that takes place within a module is initiated

• by the arrival of the appropriate data packets, There is no explicit sequencing

of operations In data flow programs, and it should be practical to implement

them on systems that do not require ordered sequences of’ instructions as their

programs. This Is one of the motivating factors behind the conception of

packet communication architecture. Most of’ its concepts are far from new or

original , but it is the combination that makes it suitable for realizing data

flow computation in hardware. Conversely, data flow is a natural way to

represent programs that will run on processors designed according to the

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _
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principles of packet communication architecture. Thus, there is a

commonality between data flow and packet systems that arises because they

share similar goals and principles.

There is one more property of’ packet systems that should be noted

here. The behavior of a packet system (or of any of’ its modules) Is

observable in terms of the packets it sends out in response to the packets it

receives. In general , packet systems are nondeterminate, which means that

given the packets received by a module, there may be several distinct but

equally valid responses to the input. Nondeterminacy is one of’ the factors

that make the behavior of packet systems difficult to understand and
I

formalize. This will have a definite bearing on the approach taken here

towards• specification and verification,

This concludes the overview of the basic ideas of packet

communication architecture, The principal reason why packet systems were

chosen for this research is that their design is structured in a way that

supports system specif’ication and verification. The next section presents an

overview of some of the major concepts and techniques that have been

developed for formal specification of’ computer programs and systems.

1.3. Formal specifications

• Much of the research concerned with formally describing the

activity within computer systems has dealt with programming language

specifications. There are essentially three basic approaches to describing the

behavior specified by a piece of program text : axiomatic, denotational and

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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operational. Each approach may be applied to verifying the correctness of

program text as well as serving as a pure descriptive vehicle.

Axiomatic specifications capture the effect of’ executing a program

by comparing properties of the system state before and after execution. The

paradigm “if assertion A is true before program text P is executed, then

assertion B is true after P is executed” describes the meaning of program text

P. Special rules of inference are set up to describe the meanings of various

combinations of program texts in terms of their components’ meanings; these

rules incorporate the basic semantic properties of constructs such as iteration

and conditionals. This approach became known through the work of Floyd

[Floyd , 1967] and Hoare [Hoare , 1969] in which it was used to prove

correctness of simple flowchart-like programs that manipulated integers. The

assertions they used related values of program variables. There has been a

substantial amount of more recent research in axiomatic specifications.

Dijks t ra [Dljkstra , 1976] has built up an entire methodology of programming

around the Ideas of axiomatic specification. Owicki and Gries [Owicki, 1976]

extended Hoare’s techniques to parallel programs; their assertions made use of

auxiliary state variables to keep track of interprocess coordination. Greif’

[Greif , 1975] took a different approach to parallel programs, using a partial

time-ordering on events to express coordination properties.

Denotational specifications capture the effect of a program by

viewing the objects they model as abstract mathematical entities. This

approach provides a formal mathematical description of the computational

notions being treated. An early denotational approach to specifications for

•~~~~~. : i~~ ~~~~~~~~~~~~~~~~~~~~~~~~ ~L 1 .
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programming languages was the application of a mathematical formalism

• known as lambda calculus towards describing the semantics of’ A~Lgol 60

programs [Landln , 1965]. The best known work in denotational specifications

has followed from the research of Scott and Strachey [Scott and

Strachey, 1971). Mathematical results from lattice theory are used in the

construction of complex domains over which programs are represented as

functions. Programs are proved equivalent by showing that their functions

coincide. A tutorial presentation of the Scott-Strachey approach is given in

(Tennent, 1976].

Operational specifications deal with the changing states within

computer systems as computations are performed. This is done by means of a

state-transition model in which a state represents information present in the

system at a given moment in time. The action of a program is captured by

the sequence of transitions of the model. The sequence of states the model

passes through as a program Is executed defines the action of’ an interpre ter

for the program. The idea of using such an interpreter to define the meaning

of programs in some language originated with McCarthy [McCarthy, 1962). A

well-known approach to operational specifications is the Vienna Definition

Language (VDL) described in [Wegner , 1972b ], which uses an interpreter that

manipulates tree-structured system states. Dennis’ Common Base Language

• [Dennis, 1971] is similar, dealing with more general directed graphs in place

of trees. Another approach to operational specifications is due to Parnas

• [Parnas , 1972], This approach distinguishes two kinds of operations: those

that yield state information , and those that alter the state of the system.

Parnas applied his approach to operations on abstract data in programming

___ 
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languages; this was extended to the domain of’ systems in [Robinson . 1975).

Verification is achieved within an operational framework by proving that the

• behavior of the interpreter In question is equivalent to the behavior of ,one

that is known to perform the desired function. The Ideas underlying

verification by interpreter equivalence were developed by Mim er

[Mim er , 1971) and are also presented in [Wegner , 1972a].

Although hardware specification has not received as much attention

as software specification, there has been a substantial amount of study of

computer hardware description languages (CHDL’s). The approaches taken

towards hardware specification have been almost entirely operational. The

language APL, before It was ever implemented as a programming language,

was used as a hardware description language to specify the operation of

IBM/360 computers [Falkoff, 1964]. Another CHDL , called ISP, was developed

by Bell and Newell [Bell and Newell, 19713 to describe the operation of’ a

large number of different computers, Both of these CHDL’s describe their

target systems at the instruction set level, treating machine words as a basic

data type with operations for byte extraction and bitwise arithmetic and

logical functions, On the other hand, the language PMS, which was also

developed by Bell and Newell [Bell and Newell, 19713, describes the structure

of computer systems in terms of’ their component processors, memories,

controllers and I/O devices, This is an example of a CHDL describing systems

from a higher-level conceptual point of view. DDL [Dietmeyer , I 974) is an

example of a lower-level CHDL that defines the behavior of elements such as

multipliers by specifying them as interconnections of basic logic gates.

________
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Most of the CHDL’s have been developed with two particular goals

in minds automated system design, and system testing by means of

simulation. However, the microprogram certification project at IBM has

developed an approach to hardware system specification that is directed

towards formal verification of system design [Blrman , 1974). For both the

instruction execution level and the microprogram level, a VDL-style interpreter

is used to supply formal specifications. These two interpreters are then

proved equivalent in exactly the same way that correctness is proved in

operational specifications for programming languages as described above. The

proof techniques for this approach are additionally described in

[Leeman , 1975; Leeman, 1977]. Rumbaugh takes a similar approach to the

iBM group In proving the correctness of a data flow processor

• [Rumbaugh , 1975). He shows that an interpreter for his machine is

equivalent to one that models the operations in a data flow language.

1.4. The approach to be presented

The research in specifications that has been reviewed here cannot be

• directly applied to the task of’ formally describing and verifying packet

systems. The principal reason for this Is that conventional techniques are not

equipped to handle the asynchronous operation of’ packet systems. The

concurrency in packet systems makes it difficult to verify their correctness:

in order to e~ ~ablish some property of a packet system, it must be shown true

for all possible sequencings of packet transmissions and receptions within the

system. Most existing techniques for formal specifications do no~t . lend

themselves to this kind of task, Moreover , the notion of sequencing of
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actions, which is fundamental to nearly all the approaches that have been

taken towards formal specifications, is not present in the context of packet

systems.

There is a descriptive formalism, Petri nets , that has been developed

specifically for specifying asynchronous behavior within systems. Petri nets

[Peterso n, 1977) are directed graphs in which markers called tokens pass

along the arcs and through the vertices to model the occurrence of various

events. Although they have received much attention in this regard

[PaUl , 1970; Hack, 1976], they cannot be directly applied to verifying packet

systems, Petri nets convey only control information for use in coordinating

concurrent activities; the nature of these activities is left uninterpreted. In

particular , they do not treat data values that are passed within packet

systems, Also, although many mathematical properties have been established

for Petri nets, no methodology has been developed for applying them to

system verification. Most of their practical applications have been in

connection with simulating asynchronous behavior rather than proving

p~~pertles of systems. For these reasons, Petri nets do not seem to meet the

goals of specification and verification of packet systems,

Within a packet system, the modules receive and process Input

packets, generate new packets for output and send them out , all

• asynchronously and in parallel . The kind of approach that seems most suited

• to specifying this kind of behavior Is basically operational in nature . The

state of a packet system describes which packets have been passed between

which modules (and may also convey any coordination information relevant to

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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the correct operation of the system). However , unlike conventional

operational models, the transitions between states need to be governed not by

an externally supplied sequence of instructions to be processed by the system,

but rather by the presence or absence of packets as needed for processing.

This means that an operational model for a packet system must take Into

account the many possible sequences of execution that could arise from the

flow of packets.

Describing the internal operation of packet systems is not sufficient

by itself for verification purposes. There must also be a method for

specifying the logical function a system is expected to perform. This function

concerns the system’s input/output behavior as seen by the outside world in

terms of’ packets received and sent out, Of the three kinds of approaches to

specifications as discussed in the previous section , a denotational approach

seems best suited for our needs because it can be easily tailored to describe

• sequences of’ packets that have been passed between various modules. Because

of this flexibility, a denotational approach will also interface nicely with the

hierarchical structuring of’ packet systems. Thus, we shall be working with

two kinds of specifications for packet systems: operational specifications to

describe the internal operation , and denotational specifications to describe their

behavior in relation to the outside world. Verification of correctness for a

packet system will be -demonstrated by proving that these two sets of

specifications for the system agree with each other.

A recent research effort is specifically directed towards formally

describing the structure and behavior of packet communication systems. The

-—- -~~~~~~~~~-~~~~~~~ ~~~~~~~~~~~~~~~~~~
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descriptions are expressed In a formalism called AOL (~ rchttecture ~escription

~anguage), which is introduced in (Leung, 1977]. There are two ways In

which a system may be described in AOL: structurally and behaviorally. A

structural description characterizes how the system is formed as an

interconnection of modules. A behavioral description is an operational

characterization of the system’s interaction with the outside world, describing

reception, processing and transmission of individual packets. The notation

used here is similar to the programming language Pascal (Wirth, 1971], and

• the underlying semantics are also based on the principles of data flow. As a

first approach to placing packet systems on a formal foupdation, ADL is both

helpf ul and illuminating. However, the concept of specifying the internal

operation of a packet system has not been developed within the ADL

framework. This idea, which has not been studied previously, is crucial for

verifying the correctness of systems in a hierarchical and modular fashion.

The development of this concept is the most significant contribution of our

research. The denotational approach to be used in our treatment for

specifying the function of systems turns out to be more convenient to use

than the operational approach found in AOL.

The body of this thesis consists of four chapters. Chapter 2

describes the basic properties of packet systems in more detail. The notion of

correctness is defined, and a formalism for describing the structural

composition of packet systems Is also presented. Chapter 3 presents the
-
, denotational part of the packet system specifications. The behavior of a

packet system or module is formally defined as a relation between the pickets

it receives as input and the corresponding packets sent out in response.

~~~~~~~~~~~~~ ~~~~~
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Chapter 4 motivates and defines the central concepts of the research, giving

an operational characterization of the actions that take place within a packet

system. Chapter 5 shows how the specification model developed in the two

- 
. preceding chapters may be applied to the task of verifying correctness of

• packet systems. Three sample systems are proven correct, and a theorem Is

• presented to show how the model may be simplified in certain cases.

________________________________________ 
_______



ri~~~~~~~ •IT1J~~~~~~~ ~~~~~~~~~~

-2 6 -

CHAPTER 2* PACKET SYSTEMS AND THEIR STRUCTURE

2.1. Overview

In this chapter the concepts of packet communication architecture

• - will be elucidated in detail. We shall clarify the notion of a packet system

and develop a means for formally describing the structural composition of

such a system. We will also informally introduce the concept of correctness

for packet systems. The machinery needed to formally define and prove

correctness will be developed in Chapters 3 and 4.

Packet communication architecture is a discipline dealing with a

special class of systems known as packet systems. Packet systems are

composed of’ independently functioning units, known as modules, which

interact only by passing information to each other. The information is passed

in the form of units called packets. There Is no centralized facility for

coordinating the action of the modules. Data processing and communication

within packet systems are asynchronous, and the various modules operate

concurrently.

• In a packet system, the various modules are interconnected through

one-way data paths known as channels. A channel connects two modules in

a specified direction and is used to pass data from the first module to the

second, Channels leading into a module are called input channels for the

module, and channels leading out are called out put channels. A packet system

has its own set of input and output channels connecting it to the outside

_ _ _
_ _- - -- _ _  - 
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world. The other ends of these channels are never explicitly designated.

The structure of a packet system is determined by the way it is

composed from modules and channels, and always remains fixed for a

particular system, Modules and channels within a system are uniquely

named. figure 2.1-1 depicts a packet system DAS composed from three

modules D, A and S. There is one system input channel X and two system

output channels Y and Z. The internal channel U connects module D to

module A , and channel V connects module D to module S.

DAS
L 

• Figure 2.1-1: A samp’e packet system DAS .

All data treated by a packet system appear in the form of packets,

which are passed along the various channels of the system. Each packet

carries a value of some type. The modules in a packet system all have the

same basic principle of operations a module receives packets on Its Input

channels, processes them internally and generates packets to be sent out on its

output channels. This principle applies to entire packet systems Just as It

does to their individual component modules. Packet systems are data-driven

In the sense that the progress of a computation in a packet system is

_ _ _  • —.-- -—.—-— — - ~~~
- - -  -----
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determined by the passage of packets through the system.

There are two ingredients which together determine the behavior of

a packet system: its structure and the behavior of its modules. Thus, for

instance, in order to describe how the system DAS acts, one must first decide

what the modules 0, A and S do. We now describe the behavior of these

three modules.

All three modules receive and pass integer-valued packets. Module

A , upon receiving a packet from its input channel U, adds one to the value

• and sends out the incremented value as a packet on Its output channel V.

Module S behaves identically except for subtracting one instead of adding.
,1

Module D duplicates the packets it receives on X, sending out identical copies

on U and V.

Given these descriptions, it Is not hard to figure out how system

DAS acts. Any packet input from X is copied onto internal channels U and V.

The packet passed on U will be incremented and sent out on Y; the packet

passed on V will be decremented - and sent out on Z. Thus each packet

received by DAS causes two packets to be generated: a packet with value one

greater on V and a packet with value one less on Z.

It may occur to some readers here that these characterizations are

incomplete. There is ambiguity In describing what happens when several

packets are to be processed in sequence: in what order are resulting packets

generated and passed? In our example we can resolve such questions by

stipulating that the relative order of packets on a channel is always preserved.

Precise methods for dealing with questions of this nature will be described in
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the next chapter,

2.2. A closer look at packet systems

In this section the workings of packet systems will be examined in

greater detail. The first thing we discuss is one of the fundamental

properties they satisfy: the internal resources of a pa cket module or packet

system may be allocated and utilized in any arbitrary manner as long as the

specif ied operations will be p erf ormed correct ly. Consider, for example, the

system DAS from the previous section when it is in a state depicted in figure

2.2-1. An input packet with value 2 has been received on the X channel and

processed by the 0 module, leaving copies of the packet on channels U and V.
Another packet with value $ is still waiting on channel X to be processed by

the system. 

L

OAS 

FIgure 2.2-1: A sample state of syst em DAS.

• There are three actions that should now be performed within the system:

( I )  module A absorbing and processing the packet on channel U~ (2) module S
processing the packet on V~ and (3 )  system DAS accepting the packet from
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channel X and initiating its processing in module 0. The crucial property of

packet systems exhibited here Is that these three actions may be performed in

any order , serially or concurrently, and the correct operation of system DAS

will be completely independent of whatever particular order is chosen. It is

this property that makes the behavior of packet systems genuinely

asynchronous.

We can gain a better understanding of the action of packet systems

by taking a more detailed view of the operation of their component modules.

When a module receives a packet from one of its input channels, it begins to

process the packet internally. Sometimes the only effect of the packet’s

absorption is that the module’s internal state may change. In general , though, F

the module’s semantics may require that it generate one or more packets to be

sent out on its output channels in reply to the packet received. The

sequences of packets generated by a module in reply to a packet received are

said to be the module’s response to that packet. It is important to note that

a module’s response to a particular packet may depend on previous packets

input as well as the designated one. There may be an arbitrary finite delay

between the time a module receives a packet and the time the module

generates and sends out its response to that packet, The fact that packet

modules and systems must be able to tolerate such delays is an essential
• consequence of their asynchronous operation.

There is a special protocol that must be fulfilled In packet systems

for the transmission and receipt of packets through the various modules and

channels. Suppose a channel C connects module Ml to module M2 , as

---- . • • -~~—---—-- ~~-—-- --—-- 
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illustrated here:

Figure 2.2—2 : A channe’ In a packet system.

It is desirable for module Ml to have some way of knowing wh en it has

successfully sent a packet out on channel C. The convention that has been

adopted is that when a packet sent on C from Ml is received by module M2 ,

-. 
M2 will send a signal to Ml on channel C in the reverse direction to indicate

that it now has the packet safely in hand. Such a signal is known as an

acknowledge signal , it is not until Ml receives an acknowledge signal for a

particular packet that it knows it is done with the process of generating and

sending that packet. Thus, from the point of view of ~nodule Ml . there are
three discrete steps In the transmission of a packet: generation, sending and

receipt of acknowledgment, it should be noted that module M2 cannot
generate output to packets it receives from channel C until it has sent back

on C an acknowledge signal for those packets. There is a caveat with regard

to acknowledge signals: although they are sent in response to every packet

transmission in a packet system, we regard them as part of the hardware and

not available to be manipulated by system designers.

The channels in a packet system are assumed to have certain special

characteristics as transmission medIa. The first, and simplest, is that any time

a packet is sent out on a channel , it will eventually be received at the other

end. A packet generated to be sent out from some module In a packet system 

• - — -—- - •—--————-—----- ~~~— - ____
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can never be called back. This means that whenever a module generates a

packet to be sent out , It will receive an acknowledge signal for the packet

within some finite span of time. It is assumed that the channels never

“break” and that acknowledge signals will always be received by the

appropriate modules. Failure of mechanism, for the purposes of verification,

invalidates the entire system function, The issues of fault tolerance in

systems are 
- 
beyond the scope of this research. Thus, packet communication

architecture requires that every packet generated by some module must

actually be sent out and acknowledged within some finite time interval. It

should be noted that this requirement is a consideration of correctness rather

than performance, because packet systems are speed-independent.
/

A second important property of channels is that if a module receives

a packet from one of its input channels, then that packet must have been sent

out on that ~hannel at some previous time. Thus, for example, module M2

may not receive a packet from channel C unless module Ml had already sent

that packet out on C. Another way of stating this property is that ne

channel may generate spurious packets of Its own .

A third characteristic of channels is that they act as FIFO queues,

which means that if the module Ml above sends a packet x out on channel C

and then sends another packet y out on C at a later time, then M2 must

receive and acknowledge x before y. We make the further assumption that

the channels have unbounded buffering capacity, which means that there is

no limit to the number of packets that can be on the channel C at any given

moment of time and be awaiting receipt by the “target” module M2.

____________
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Physically speaking, this assumption is not realizable in general , because no

real device can have Infinite capacity, let alone a high-speed transmission

medium. However , if we assume the unbounded buffering, then we rule out

the possibility of system deadlock caused by packets piling up in certain

channels and inhibIting further packet output into those channels. Unbounded

buffering is therefore a convenient assumption to make. -

Finally, we shall assume that for each channel In a packet system

there is a designated set (type) of packets that may be passed on the channel.

For example, one channel may carry only integer packets, while another

channel may accept only packets that consist of an employee name together

with a corresponding identification number .

There is an extremely important property of packet systems which

we will be treating, namely nondeterminacy. A module or system ir said to

be nondeterminate if its semantics allow two or more distinct possible

responses to a given packet input. A simple example of a nondeterminate

module Is one that models the toss of a coin. it has one input channel and

one output channel , and its response to any packet received will be a single

packet with either the value “heads” or the value “tails.” The choice Is

arbitrary and independent of the Input packet. Nondeterminate modules and

systems are very difficult to work with because the multiplicity of possible

results is cumbersome to model mathematically. We will explicitly allow for

nondetermln. .e modules and systems in our treatment.

A certain class of nondeterminate system behavior will be of

particular interest because it arises frequently in the design of packet systems. 

_ _ _ _  
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This kind of behavior concerns the relative order of packets sent out on a

channel. Consider a system In which the task of generating and sending out

packets in response to Inputs taken from a specific channel Is relatively

complicated or time-consuming. One would naturally wish to allow the

processing of distinct inputs to proceed concurrently if possible. But then it

may turn out that responses to a recent input will be ready to be sent out

before responses to inputs received earlier. Moreover , it cannot be determined

in advance whether or not such “cutting ahead” behavior will actually occur. • -

- it is possible to Impose a synchronization discipline that will force the outputs

into a desired order , but in doing so all the advantages of asynchronous

processing of different inputs are lost. Thus, if the system application and / -

design can tolerate “cutting ahead ,” it is wise to allow it. In general, then ,

providing for nondeterminate behavior that Involves different alternative

orderings of generated output packets should often in practice become an

attractive design goal for packet communication architecture.

2.3. Cos-h-ectness

The notion of correctness for packet systems bears a close

relationship to the ways the issues of system structuring and composition are

treated within the framework of packet communication architecture, At a

very intuitive level, a system Is correct if It satisfies certain conditions laid

out for It in advance. For packet systems, these conditions take the form of

behavioral specifications. As we mentioned in the preceding chapter , a packet

system’s behavior is observable by the way it responds to its inputs. More

precisely, the behavior is a relationship between inputs received and outputs

~~~~~~~~~~~~~~~~~ ~~~
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generated in response to those inputs. A packet system, therefore, is correct if

this relation satisfies a given set of specifications. The nature of such

specifications will be discussed in detail in subsequent sections,

It is important to note that one cannot prove correctness of a system

without some knowledge of its internal workings. If a system Is viewed as a

“black box” (figure 2.3-1),

w V

x 2
—

SYS 
. 

-

FIgure 2,3-1: NBlack boxN view of a packet system.

then the only things that can be seen are packets entering and leaving. There

• is simply not enough information available to determine whether or not a

system is behaving correctly. Since modules operate asynchronously and with

arbitrary finite delays, one cannot tell if additional output packets are

forthcoming. For example, suppose a system has already sent out all the

packets it should transmit in response to some particular input. The module

only appears to be behaving correctly, since there is no guarantee that an

invalid packet will be unexpectedly sent out later. Even if this were

determinable, observation alone could never suffice t~ ~isctde whether the

system would respond correctly in all situations, Th. only way to tie down

- I
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the notion of correctness for a particular packet system, therefore, is to open

the system up and look inside:

: ~~~~~~~~~~~~~~~~~~~ 
____

~ I
: sYs

I 

Figure 2.3-2: Interna’ view of the same packet system.

If we view the system as being realized in terms of its component modules,

then the following fundamental correctness principle becomes evident:

.4 packet system is correct if  its given struc tural
decomposition satisf ies the behavioral specif ications f or
the system whenever the component modules satisfy
their own respective behavioral specif ications.

The notion of a system’s decomposition satisfying a set of specifications is not

yet formally defined; it will be treated in detail in Chapter 4, The notion of

a module satisfying specifications Is simply that of a physical device acting as

in tended. The above correctness principle defines only a relative nature of

- 
- system correctness. An obvious question that arises is how to establish the

correctness of the modules in order to show the system correct. We already

have the answer to this question: Just as with the system Itself , correctness

of the component modules can be established only in terms of their own
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respective internal structures.

A significant ramiuication of this approach is that packet systems

and modules are really two different views of the same thing: a module is

revealed to be a system when one examines its internal structure , and
P

ignoring the composition of a packet system is just the same as regarding it

as a module. There is an underlying source for this conceptual unity, which

is that packet communication architecture supports the hierarchical structuring

and composition of systems. Packet systems can (and should) be designed so

that there are distinct and well-structured levels of decomposition , each level

consisting of systems built up from simpler modules. In this sense, our

fundamental correctness principle for packet systems supports a top-down

verification methodology in which correctness proofs are broken down level

by level into their natural logical and conceptual constituents. Logically

distinct lines of argument are isolated so that they cannot interfere with one

another. Thus the notion of modular and hierarchical system structure is

carried through in the approaches we take to correctness and verificatioj~.

It may seem for a moment that there is a potential infinite regress

In working with smaller and smaller modules within modules, but this can

never arise. There is always a well-defined bottom level to the hierarchy in

which the modules are regarded as implementing primitive operations such as

adding and gating. At this point , correctness has been reduced to the way the

primitive functions are defined,

Our approach to correctness and verification of packet systems

allows a system to be viewed in two different ways: internally, in terms of
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its structural composition from modules, and externally, by concealing the

internal workings. The idea of distinguishing between internal and external

views of systems is closely related to the notion of data abstractions in

programming languages [Liskov and Zilles, 1974), As we shall see in

Chapter 3, it is fairly straightforward to construct behavioral specifications

for a packet system viewed externally. However, in order to establish

correctness of a system, we need to show that the external characterization

agrees with the system’s structure. It Is a difficult task to formally describe

the behavior of a system in terms of its internal composition, We shall

address this task in Chapter 4.

2.4. Structural descriptions 
-)

The only means we have used so far to describe the structure of

packet systems is through informal block diagrams. If any general assertions

are to be made involving system composition, we will need a more precise

vehicle for structural description. Such a technique is introduced in this

• sectio n.

The structure of a packet system may be modeled in very

straightforward fashion by a directed graph in which nodes representing

modules are connected by directed arcs representing channels. Figure 2.4-1

shows a samp)e packet system together with the directed graph that models it.

Note that the directed graph has an extra node labeled “
*

“, This gives

explicit representation to the system’s “outside world ,” which serves as both

the source of system Input channel X and the target of system output channel

V. The graph may look like Just another stylized drawing of the system, but

____ - 
- • 
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FIgure 2.4-1: A packet system and its directed graph .

It i’ a mathematical object of specific characteristics, Formally spea~ung, a

:‘‘.t~d graph is an ordered pair of the form (N , A> in which N is the set of

its nodes and A is the set of its arcs. Each arc in A is an ordered tr iple

containing a source node, an arc name and a target node. An arc aEA has the

form (a .source , a .name , a .target) . For example, the graph in figure 2.4-1 is

& 
the ordered pair

((*, D , E ,F} , ((*, X , D ) ,  (D ,P,E), (E ,Q, F) ,  (F ,R,D), (E ,Y ,*))) .

It is easy to see that for each node n in the directed graph we can define the

sets of arcs leading into and out of n . These sets are given by

I inputs(n) = (a€A: a,target n) and outputs(n) (a€A : a.source = n).

- 
The directed graph characterization thus mathematically specifies how the

- modules in a system are interconnected.

- 

- 

There are two additional properties of packet sy stems that can be

I ~ incorporated into our formal structural descriptions. First , we can model the

~~~~~~ packet type restrictions for the channels by associating a type description with

each channel, Second , we can specify packets initially present on the

• channels with an initial packet sequence for each channel. Both properties

• are handled easily In the directed graph model by adding extra fields to the

~ 

---— —
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arcs.

The above mathematical model for packet system structure -may be

sugared into a structural description language. The description language we

use here is patterned after the structural portion of A,DL as presented in

[Leung , 1977). For the system we have been discussing in this section, If we

assume that all channels carry only integer valued packets and that there is

one packet with value zero initially present on channel R, then the formal

description of its structure may be represented as follows:

System SYS
Inputs X(lnteger)
outputs Y(-integer)
internals PC-Integer), Q(Integ.r), R(lnt eger)

Submodu 1 es
- P inputs X, R; outputs P

E Inputs P; outputs Q, Y
F inputs Q; outputs R

Initially R<O)

While descriptions of this form do not explicitly name the source and target

modules for each channel, these are very easily determined since each internal

channel in the system must appear exactly once in a submodule input list and

-
• exactly once in a submodule output list.

This section has presented structural specifications for packet

systems. The next two chapters present a model for behavioral specifications.
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CHAPTER 3: SPECIFICATIOIJS FOR PACKET MODULES

3.1. The slice relation approach

Because of the way a packet system is built up from component

modules, the behavior of a system will be a function of its structure and the

behavior of the modules in it, In this chapter we shall develop a method for

formally specifying the behavior of packet modules. Specifications d~fine j  by

this method will be called external specif ications because they describe the

behavior of packet modules without considering their internal structural

composition. -

A packet module has a fixed number of input channels on which it

receives packets to be processed , and there are a fixed number of output

channels on which it sends out packets In response to the Inputs it has

received. A formal behavioral specification for a module must be able to

rigorously determine for each input exactly what is a valid output response.

Because packet systems are in general nondeterminate, the potential
- • multiplicity of valid output responses rules out a direct functional mapping.

Instead , we shall supply external specifications for a module M in the form of

a relation EXTM that formally relates inputs to the semantically valid

corresponding outputs. Such a relation will be called an external

characteristic relation for the module P4.

The most obvious approach is to use a relation from Input packets to

output packets, but this does not suffice in even the simplest case: consider a
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module ID that “does nothing,” that is, sends out its input packets untouched.

~~~~~~~~~~~~

Figure 3.1-1: The Identity module ID.

The identIty relation EXT~0 on packets defined by the equation

(p, ci) E EXT~D if and only if p = q

does not completely describe the behavior of the module ID. If ID receives as

input a packet with value I followed by a packet with value 2, there are

two different possible responses: ID can send out the 1 followed by the 2. or

it can send out the 2 first and the 1 later. Thus a specification for the

module must describe the sequencing of packets in order to completely capture

its behavior. For example , if we intend for the module ID to preserve the

relative order of the packets it receives, then its behavior would be correctly

specified by the identity relation EXT~0 taken over the domain of sequences of

packets rather than individual packets. Such sequences are required in

general to describe the behavior of a module when it depends on a memory of

previou s packets received in order to decide how to respond to a given packet.

We therefore need to develop some mathematical machinery for manipulating

sequences of packets. We will us~ the term stream to denote a sequence of

packets, The mathematics of streams will be discussed in the next section.

In general , the behavior of a module is specified by a binary

relation that relates presented inputs to valid output responses. For the

module ID , we see that presented input may be correctly modeled by a stream 
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of packets passed on the Input channel X. For a module with an arbitrary

number of input channels, In order to model presented input we need a

• • separate packet stream for each input channel. We therefore define an in put

• slice for a module M to be a collection of streams, one for each input channel

of M. Similarly, an output slice has as its components one stream for each

output channel. Thus the formal specifications for a module M will consist

of a binary relation between Input slices and output slices. This relation is

called the characteristic relation for M. We reserve the notation EXTM from

now on to denote the characteristic relation for a module M. The slice

relation approach to module specifications is not original , and a corresponding

definition may be found in [Dennis, 1972a]. ‘1

- As an example, an input slice for the module J shown below is a

pair (u,v) in which U and V are packet streams for channels U and V,

respectively; an output slice fut J has the form (z), where Z is a packet

stream over Z.

Thus the characteristic relation EXT~ for J will have elements of the form

((u,v), (z)).

Slices distinguish the time ordering between packets passed on each

individual channel but not between packets on different channels. It may

seem that crucial behavioral information is lost by not imposing a total

ordering on all packet transmissions into and out of a module, but this turns

_ _ _ _ __ _  — ---~~~~~~~~~~~~~~~~~~ -~~~~-~~~~~~~~~— -
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out not to be the case. If a packet p1 is sent out on a channel Cl in some

packet system before packet p2 is sent out on channel C2, there is no

guarantee that p1 will arrive ahead of p2 in their race to their respective

destinations. This is because asynchronous packet systems impose no

constraints on transmission times along channels, allowing for different

channels with different characteristics suited to their needs. Thus, the extra

information obtained from interstream packet ordering is rendered useless by

the properties of channels in a packet communication system. The use of

slices in our model, then, provides exactly the informatIon needed for proper

behavioral specifications,

3.2. Streams and their operations

In this section the basic definitions, operations and mathematical

properties of streams are laid out in detail. Because of the technical nature of

the material , an index to the notations and technical terms is provided in an

Appendix.

For any arbitrary packet module, we take as given for each of its

input and output channels a well-defined space (set) of packet values that

may be passed along that channel. The space, which we call a channel space

for the channel , is identif ted with the channel and shares the same name.

Similarly, elements of a ~.e nn.’ space are identified with packets passed on

the channel.

We will define a stream to be a sequence of packets passed on a

part icular channel. Individual packets in a stream Z will be referred to by
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expressions of the form z( I]. A stream z will be denoted by an expression of

the form (z(l], 2(2] , . .  .) . Streams may be finite or (countably) infinite.

The size of a stream z, written #2, is the number of packets in it. Two

streams are equal if they have the same size and corresponding packets in

them are equal. This means that a stream is uniquely determined by its size

and by its elements and their ordering. The space of streams for a channel Z

is denoted by Z’. Formally, we have:

Def inition: A set S of natural numbers is said to be an initial segment of
the natural numbers iff for any I E S, j � I implies j  € S.

Def inition: A stream over a space Z is a function mapping some initial
segment of the natural numbers into Z. The space of all streams over Z is
denoted by Z~.

Def inition: The empty stream over a space Z, denoted by € or by 0, Is the
unique stream over Z having empty domain and no elements.

Def inition: If 1 is in the domain of a stream z, we define the i-th element
• of z, denoted z[ 1], to be the image of i under 2.

Observe that z( 1] Is undefined if I is not in the domain of Z, and that if 2(1)
is defined then Z( J] is defined for all J ~ I.

Def inition: For any stream 2, the size of 2, denoted #2, is the number of
elements in the domain of Z. If the domain of Z is infinite, then we say

Note that z( 1] is defined if and only II I < i � #2. In particular , 2(1] is
defined for all natural numbers if and only if #2 ~

Def inition, Two streams z and z’ are said to be equal, written 2 • 2’, 1ff
#2 • #2’ and 2(1] • z ’(I] for all I ~ #Z.

_  _  

_ _ _ _ _ _ _ _
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In our treatment, we shall regard the token “so” as a distinguished

natural number whose arithmetic properties are defined in an obvious manner ,

such as I � so and so + I ~ so for all natural numbers I. The value so may

or may not be counted in the range of natural number quantifiers; this

depends on context. Because all streams are countable, an expression such as

Z( .0] has no meaning, even when 2 Is an infinite ctream.

An important relation over streams is the prefix relation. Stream z

is a prefix of stream z’ whenever z “occurs” at the beginning of 2’, as shown

below:

( z j  I

In such a case, the stream difference z’ - Z shall be the portion of 2’

occurring after the prefix z.

For any stream 2, we use the special notation z( k :m] to denote the

segment of 2 consIsting of the k-th through m-th elements of 2 in order.

Z (k :m )  is a st7eam of size m-k+l , and we allow the special case of an infinite 
—

stream when m $ so, If k ) in , then Z(k:m ) is the empty stream. As a special
- 

case, whenever k � #2, z( 1: k 3 is the unique prefix of 2 of length k. This

means that 2(1: k 3 ( t )  • z( 1) for each I � It.

Given streams Z 1 and 22 we can form their concatenation Z~ 
@ Z~,

which is a stream consisting of the packets In z~ followed by the packets In

Z~. The formal definitions now follow:

- -  ~~~~~~~~~~ ~~It I1~ 
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DefinItion: Given two streams z, z’ over the space 2, we say 2 is a pref ix of
2’, denoted z PREFIX 2’, if and only if

(2) #z � #z’ and
(2) 1 � #z •> z’(-l) • 2( 1).

Definition: For any stream 2, if k � in ~ #Z, then Z [k:m ] is the unique
stream of size m-k+ l such that Z (k :m ) ( i ]  • z( k+I- l]  for each t i n  its domain.

Def inition: Given streams z and z’ for which z PREFIX 2’, we define the
dIff erence 2’ - 2 by z’ - z • Z’(l.#Z :#z ’].

Definition: For any two streams z~ and 22 over the same space Z, their
concatenatIon Z~ 

@ z2 is the unique stream z of size #Z~ + #22 satisfying
z ( 1]  • (If  I ~ #z 1 then Z 1 ( l ]  else Z2 ( I -#Z l ]).

There are two stream operations we will use which Count and find

particular packets in a stream: count (p , z) is the number of packets in Z

equal to packet p, and Indax(p , z ,j )  is the position in 2 of the J-th occurrence

of packet p. They are defined by:

Definition; count(p, z) • card(1 � #z: z I l )  • p).

Definition: lridex(p , z ,j )  • (If 31 � #2: z(1 ] • p & count (~ r l : I - i ] ,z) • j —i
then I else undefined).

This is well-defined since if such I exists, then it is uniquely determined.

Two more important relati ons over streams are the subsequence and

merge relations . A stream Z i is a subsequ.nc. of stream 22 if the elements of

Z~ occur in the same relative order within 22. They do not have to occur

contiguously. A stream 2 is a merge of streams z~ and 22 if and only if Z~
and 22 occur in z as disjoint subsequences and together exhaust 2. All merges

of 2~ and 22 are of length #z 1 + #Z~. The formal definitions ares 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Definit Ion: Given two streams z 1 and 22 over the space Z, we say Z i is a
subsequence of z2, denoted z 1 SUBSEQ Z2, if and only if there exists a function
f  that maps the domain of z 1 into the domain of Z2 such that

(1) k 1 ( k2 s> f(k 1) ( f(k2) and
(2) for each k � #z1, Z 1[k] $ z2(f (k)] .

A ftnctlon f satIsfying properties (1) and (2) will be called an insert ion.
Any subset S of the domain of a stream z defines a unique subsequence of 2
which is formed simply by arranging the elements of z indexed by S in
increasing order.

Def inition: Given three streams 2, Z~, 22 over a common space Z, we say z is
a merge of z 1 and Z~ if and only if the domain of Z can be partitioned into
two disjoint subsets, one defining z~ 

as a subsequence of Z and the other
defining 22 as a subsequence of 2.

f

This concludes the presentation of the fundamentals of streams.

33. Examplea

In this section we exhibit some elementary packet modules with

their specifIcations. The first module we describe is the distrlbut• module D

(figure 3.3-1).

FIgure 3.3-1: The distribute module D.

Input slices for D belong to S’ (streams over S) and output slices belong to

x Y’ (pairs of streams over R and Y, respectively). This gives us the space

for th. characteristic relation EXT0 ~ ((5 ) x (R’ x Ys)). Within a packet 

~~~~~~~~~~
-— - -

_ • •- -—
~~~~~~~~ 

- .  -
~~~~

- -

— •-— ----~~~~~ - —-.~~~
-

~~~~~~~~~~~
—- - -



¶

- 49 -

system, module D has the general function of distributing- packets throt gh the

system to places where they need to be routed. There are no restricUons On

the type of packets that may be passed through D. The behavior of module D

Is to pass unchanged copies of input packets from S onto both output channels

V and R. The response of D to an input stream S is the generation of two

output streams r and y identical to S. As with all the modules we describe

here, this works for infinite streams as well as finite streams. Thus the

behavior of D is defined by

- . 
((a) , (r,y)) € EXTD < >  r a y • a.

We give a couple of examples of the behavior of C, showing input streams S

together with valid responses r and ~ :
f

$ • (8,1,6,4), r • (8,1,6,4), y • (8 , 1,6 ,4);
S a <1 ,2,3, ... ) , r • (1,2,3, . . . ), y • (1,2 , 3, . . .) .

The negatIon module N (figure 3.3-2) processes boolean-valued

packets, sending out for each input value b a packet whose value is the

logical negation not C b).

X
~~I

Y

FIgure 3.3-2: The negation module N.

An output stream y will be a termwise negation of the corresponding input

stream x. Formally, EXTN c (CX ’) x 0”)) and

((x), (y)) € EXTN ($> #y • #x and y ( i )  • not(x[ I )) Vi � #y.

An example of the behavior of module N Is:

— - --~~~~ - - 

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _____ _____ _; — - —
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x • (true ,false ,true,true ,false), y • (false , true ,false , false , true) .

The adder module A (figure 3.3-3) pairs up integer-valued packets

114 corresponding positions in Its input streams x and r , adds the pairs and

sends th€ sums Out as a stream on S.

FIgure 3.3-3: The adder module A.

If one input stream is longer than the other , the extra packets absorbed from

the longer input stream are not reflected in the output response. This is

specified by EXTA ç (CX ’ x R’) x (S’)) and

((x,r)9 (s)) € EXT~ <~ Os • min(#x, Or) and s(1] • x(I) + r(1] Vi � 0$.

As examples, we have:

x = (8 , 1, — 6) , r $ (3,—5,6), 5 a (1l , 4 ,O);
x = (4,—9 ,0,—18), r • ( ) , 8 • C

x • (l ,3,5,...,21— l ,...), r a (2,4,6,...,21 ,...), $ $ (3,7,ll ,...,41—l ,...).

A slightly more complicated module is the cumulative adder module

C (figure 3.3-4) for which each packet generated for output on V Is the sum

of all packets received on X so far.

x 

~II~I1
Figure 3.3-4: The cumulative adder module C.

We specify the behavior by EXTc ç ((X’) x (Y’)) and

_____________________________________ 
____________ 

_________________________________
— 

~~~~~~~~~~~JT:I~~~~~1J~~



ri -—
~
T -

~~~
•--

- 51-

((x), (y)) € EXIc <~> #y • OX and y [ l ]  $ x (J)  VI � #y.

As examples of the action of C, we have:

• (4 ,2 , —l , O , — 6 ,3), y • (4 ,6 , 5,5,-1,2);
K • ( ), y • ( )

~
x • (l ,3, 5, 7 , . . ., 2 1—l , . ..) , y a (1,4 ,9.16,...,12 ,...).

One of the modules we will be discussing later on is the f eedback

modlf led f irst module F (figure 3.3-5), which handles integer packets.

U

9

Y

Figure 3.3-5: The feedback modified first module F.

Packets input from U are copied directly Onto output channel V. In addition ,

the value of the first packet input from U (if there is any) is suitably

modified and the resulting value is output as a packet on V. For the purposes

of this example, we shall say that the first packet value is modified by

adding the number four to it. The behavior of F is specified by

EXT, ç ((U’) x (V’ x Y’)) and

((U), (v,y)) € EXTF <=> y • U and #v • min(l,#u) and v(1) • u(i]+4 VI � #v .

As examples, we have:

U $ €, V a € , y € (empty streams);
u • (1,2 ,3), v • (5)~ Y U ,2 ,3.

A module with an interesting logical function is the true gate T

(figure 3.3-6). which pairs up integer data inputs from channel X with

_ _  _ _ _
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boolean control inputs from channel C. If the control signal value is true ,

the corresponding data input from X is passed out on Z. If the control signal

is fal se , the data packet is discarded. Thus the control signal stream C filters

out specified elements of the data stream X. C must carry boolean packets,

and X and Z may pass packets of any type as long as they agree.

Figure 3.3-6: The true gate T.

The behavior of T is specified by EXTT ~ (CX ’ x C’) x (Z’)) and

((x,c), (z)) € EXIT <z> #z • count(true , cE l :#x) )
and z[i] • x(index(true,c,1)) Vi � #z.

As examples, we have:

x (1 , 2 ,3, 4 , 5> , C = (true ,false ,true ,true ,false), z a (1,3,4);
K = (6,7), C • (false ,true ,true), z (7);
x • (8 ,9,10 ,11>, C • (false ,true ,true), 2 • (9 ,10).

The above modules are all determinate, since for any input slice

there is exactly one output slice that constitutes a valid response. Their

behavior is therefore functional. Our specification technIque may be applied

to nondeterminate modules as well, as we now show.

The nondeterminate merge module J (fig . 3.3-7) sends out all the

packets it receives from Input channels U and V onto output channel Z. The

relative ordering of packets on each of U and V is preserved , but the packets

I
--
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coming from these two channels are arbitrarily interleaved on output . There

is no restriction on the type of packets that may be passed through J.

±Ej~
L

Figure 3.3-7: The nondeterminate merge module J.

We may specify the behavior of J by EXT~ ç ((U’ x V’) x (Z )) and

((u,v), (z)) € EXT~ <~) 2 is a merge of U and v ,

where the notion of a merge of two streams was defined in the previous

section to be a stream containing the two given streams as disjoint

subsequences. The size of an output stream z will always be the sum of the

sizes of the corresponding input streams U and V.

As an example of the behavior of J , if it is given as inputs the two

streams U : (1 , 2) and V (3,4), then there are six possible valid output

responses: (1 ,2,3,4), (1 ,3,2,4>, (1 ,3,4,2), (3,1,2.4), (3,1,4,2) and (3,4,1,2).

The output response (1,4,2,3), however, is not valid , sin:e the relative

ordering of 3 before 4 in the input stream V has not been preserved on

output.

In practice, a wide variety of nondetermlnate behavior can be

realized by constructing systems formed by interconnecting various determinate

modules with instances of the module J. In this sense, the nondeterminate

merge module J is often viewed as a canonical “source” of nondeterminacy in

packet systems.

L 
_ _ _ _ _ _ _ _
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3.4. Evaluation

We have seen how the slice-relation approach to module

specifications works for some simple cases. In this section we address the

question of applicability of our method to more complicated modules.

The examples we presented treated only packets of elementary types

(integer and boolean). One of the areas of flexibility in packet communication

architecture is that systems may be easily designed to process packets which

are arbitrarily complex data structures, such as personnel records. Data items

in the various fields of a structure-valued packet m a y  be processed

concurrently in different internal sections of a system. Direct support for

handling packets with arbitrarily complex structure is equally easy in our

specification model. All that needs to be added are stream and packet

op€? rators for building and decomposing structures, and this is well understood

and straightforward: structures are essentially labeled cartesian products of

their components, and basic operations on structures have been found in

programming languages for a long time.

The basic question to be discussed here is how effectively our

specification techniques can model the functional capabilities of modules that

are to be physically realized in hardware within packet systems. We claim

that the slice-relation descriptive formalism has sufficient power of expression

to model the behavior of any realizable packet module. There are several

factors that substantiate this claim. Our technique allows the use of arbitrary

mathematically defined functions and predicates on packet values and streams.

Basic operations on packet values may be composed through the use of

.
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conditional expressions and recursion on streams. This places at our disposal

the functional capabilities of the textual language used to model data flow

schemas in (Weng, 1975]. Thus, from the standpoint of Turing computability,

the slice-relation approach can model behavior of any desired complexity.

Moreover, a module’s characteristic relation acts as a predicate that asks of an

output slice “is this a correct response to the presented input?” Thus,

external characteristic relations are the way our model mathematIcally

determines correctness of modules in packet systems.

The above arguments say nothing about the complexity of behavioral

descriptions in our model. It is an unfortunate fact that as processes one

wishes to model increase in complexity, the eff ort required to formally

specify them increases even more rapidly. Altho~agh this appears to be the

case with packet modules as well as with computer programs, it is hoped that

the hierarchical composition of packet systems can reduce the str’~c’ural

complexity to be handled if not the functional complexity. Behavioral

specifications for the structural composition of packet modules into systems

are treated in the following chapter.

t
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CHAPTER 4; SPECIFICATIONS FOR PACKET SYSTEMS

4.1. Internal specifications

The external specifications described in the previous chapter

constitute a formal way of defining how a packet system is to interact with

its outside world. The most important conceptual property here is that a

• system is correct whenever is satisfies its external specifications. As we

mentioned earlier , correctness of a system cannot be established by outside

observation alone; it is necessary to analyze the internal operation of a system

in order to prove correctness.

— Structurally speaking, a packet system consists of a collection of

component modules interconnected by channels. The behavior of a - system is

determined by two things: its structure and the behavior of its component

modules. A formal description of a system’s behavior which is based entirely

on these two ingredients will be called a set of internal specif ications for

the system because it expresses the system’s action in terms of its internal -

composition.

In order to show a system Is correct , two steps must be taken.

First , one must produce a set of Internal specifications for the system. These

internal specifications then must be proved equivalent to the system’s external

specifications. The logical reasoning involved here is that the component

modules are assumed to be correct from the beginning; this assumption is then

used throughout the system correctness proof. If one wishes to demonstrate

the correctness of a component module, it Is decomposed structurally into its

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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own components; this module’s correctness is verified in the exact same

manner as the entire system. In this way the hierarchical system structuring

provided in packet communication architecture supports hierarchical

structuring of system verification.

To formally derive the internal specifications for a packet system,

two pieces of Information are needed; ( 1)  a structural description of the

system, and (2) the external specifications for each of its component modules.

It is not necessary to examine the component modules internally, since they

are assumed correct. The internal specifications will take the identical form

as the external specifications, namely a - binary relation between input slices

and output slices.

At first glance, coming up with internal specifications for a packet

system may appear to be a straightforward task. Consider, (or example, the

system Si shown in figure 4.1-1. 

Sl

Figure 4.1-1: System Si acts by functiona’ composition

Suppose that module F applies a function f to each packet value x received on

• X, sending the resulting value f (x )  out as a packet on V. If F preserves

packet ordering, its characteristic relation EXT, would contain all ordered pairs

(Cx), (y)) for which y Is the stream obtained from stream x by applying f to

_ _ _ _ _  

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~
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each packet of x in sequence. In other words,

((x) , (y)) € EXTF (a> #y a ~ and y[ I) a f(x[ I)) VI � #y.

• If module G applies a function g in the same manner, i.e.

-
• 

((y), (z)) € EXT0 <a> ~Z a #y and z(i) a g(y( 1]) VI 
~ 

#2,

then it is easy to see that for each packet entering the system Si , first f and

then g is applied. The behavior of Si , then, is the functional composition Of

modules F and C. It is therefore a trivial matter to show that the internal

specifications for Si match the characteristic relation -

((x), (z)) E EXTs1 <a) #2 #X and z[l] a g(f(x(1])) VI � #2.

One could take a far more complicated example, such as a system to compute

roots of quadratic equations which is composed from modules that take square

roots, multiply by four, divide two values, and the like. There would be

long chains of functional composition, but producing internal specifications

would present no major problems. Even for a nondeterniinate system, one

could simply compose relations instead of functions. So it seems, at least so

far , that internal specifications are simple indeed to determine.

There turns out to be a very large fly in the ointment .

Figure 4.1-2 depicts a system structure for which functional or relational

composition is of no use whatsoever. The cyclic interconnection structure

imposes mutual data dependencies between channels Q and R. Packets passed

on channel R from module B depend on the packets received by B from

channel Q, while the packets passed on Q depend on earlier packets received

• by module A from channel R. It is a distinctly nontrivial task to express the

stream R in terms of the remaining streams X, Q and 2, since packets passed

on R will in general depend on packets previously passed on R. This kind of

_ _ _ _ _ _  -- - . - -  ~~~~~~~~~~
- - _ - - _-___  —---- - ----- -- - •—-.- • __ ____ - - - - -- - - --~~--——— — -~~
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Figure 4.1-2: Cyc~1c data dependencies

dependency introduces mutually recursive systems of equations expressing the

channel streams in terms of one another. Gilles Kahn (Kahn, 1974] has found

a way to solve systems of this kind through the use of a mathematical theory

of fixpoints. His technique, however, requires that the modules be

determinate, and there is no straightforward way to apply his techniques to

nondeterminate systems. The task of deriving internal specifications for a

packet system is a challenging problem, and a new approach is required.

The approach we will be using is based on an operational view of

systems. We model the operation of a system by recording the progress of a

computation in a series of internal system states. The system’s response to

particular presented input is characterized by a time-ordered progression of

internal states, which we call an execution sequence. In general, there are a

large number of possible execution sequences that correspond to a particular

system response to some presented input. A system property we would want

to prove must be shown to hold over all possible execution sequences that

may be taken by the system, The next section informally introduces some of

— ~~~~~~~~~:~~~~
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- 
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the basic characteristics of execution sequences.

4.2. Execution sequences (introductory)

The progress of a computation in a packet system is modeled by the

succession of internal states in an execution sequence. We will be defining

internal states so that a state incorporates for each channel the cumulative

stream of packets generated to be passed on that channel. This determines, in

particular, for each state the input slice presented to the system and the

output slice generated by the system so far.

A property we wish execution sequences to have is that one can 
—

construct a system state that represents the computation running to

completion. For such a state, the output slice represents one of the system’s

possible ultimate responses to its presented input. Such an execution sequence

• will be said to realize that particular output response to the system’s

presented input. It will then be a straightforward task to produce the

system’s internal specifications, which are given by the relation between input

slices and corresponding output slices realized by some execution sequence.

• A particular kind of physical event we wish to model in an

execution sequence is the transmission of a packet on some channel. The act

of a module sending a packet out on a channel may occur at any moment

between the time the packet is generated by the module and the time the

module receives an acknowledge signal for the packet. For any given instant

of time during such an interval, the packet may or may not have been sent

out already, and we cannot determine which is the case Thus, our execution

______________ ____________ 
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sequences will capture two kinds of events2 gen.r~ttion of a packet and

receipt “1 the acknowledge signal. Because we do not know the actual

moment of transmission, a packet will be regarded as only p otentially present

on the channel during the interval between these two events.

Each state in an execution sequence must reflect the relevant events

that have occurred in the system. The events described above are associated

with particular channels, so we may partition state information into

components relating to the individual channels in the system. To model a

state, we give for each channel the cumulative sequence of events of each

kind (packet generation and acknowledgment) that have taken place. Packet

generation events are handled by giving the stream of generated packets for

each channel. Since the channels act as FIFO queues, the packets that have

been acknowledged are always given by a prefix of the generated packet

stream. We can this prefix the acknowledged pref ix of the stream. Thus

every state in an execution sequence consists of a generated packet stream for

each channel together with its ackn~wlsdged prefix.

Another significant property of execution sequences is that they are

to exhibit the behavior of the component modules of the system. At any

state , for each module the generated packet streams on the module’s output

channels must constitute a valid response by that module to the input packets

it has received (and acknowledged).

A transition from one state to the next in an execution sequence

models the physical occurrence of a module receiving new input and

generating new output packets in response. If there are no more packets

— - -  -- • --- —--
~~~------- ~~
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generating new output packets in response. If there are no more packets

waiting to be absorbed by modules in the system, the system state will

remain constant. •

We now give some examples of execution sequences for a particular

system S shown in figure 4.2-1.

I I
I I -

- 

- 

/

FIgure 4.2-1: A sample packet system S

J is the nondeterminate merge module and F is the feedback modified first

module; both of these modules were described in the previous chapter.

Nondeterminate systems such as S may generate different output responses to a

given presented input. This will be reflected in our examples.

An execution áquence is represented by a table in which the rows

are the internal states and the columns correspond to channels. Each entry in

the table is the appropriate stream of generated packets with a heavy dot

marking the end of the acknowledged prefix .

Execution sequence A, shown in figure 4.2-2, models a particular

response of system S to the input stream (1,2) presented on channel X. We

also give a corresponding series of snapshots that illustrate the internal system

r

_ _ _
- ———- — -, ~~~~~~~~ - - • •- —— —- - . - - —-- -r - --- - fl.fl -a 
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states during the computation.

state X U V V

0 .12 .

1 1.2 .1 •

2 1.2 1. .5 .1

3 12. 1.2 .5 .1

4 12. 12. .5 .12

5 12. 12.5 5. .12

6 12. U5. 5. .125
I

7 12. 125. 5. 125.

Figure 4.2-2: Sample execution sequence A for system S.

The snapshots, shown in figure 4.2-3, depict the first seven internal system

states captured in execution sequence A. In state 0, the sequence (1 ,2) of

input packets has not yet entered the system to be processed, and no packets

have been acknowledged (all the heavy dots are at the left end of the channel

streams). In state 1, the first packet (with value 1) has been received and

acknowledged by module J , and a copy has been generated to be sent on

channel U. This copy is, by the time of state 2, received and acknowledged

by module F. F generates a copy for output on Y, and also a packet with

value 5 (1+4) for output on V (since the packet 1 was the first packet

received by F on U). Zn state 3, the input packet 2 will be passed by J onto

U, and in state 4 it is generated as output on V. Note that no further packets

are generated for channel V. By state 5, the packet with value 5 has been
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I I
I I

X I  U X I  U

_ _ _ _  
_ _ _ _

state o state 1

p p I

1 
H~~~~R

- 

~~~~~~~~ 
) I

;

state 2 state 3

I I I
I I I

u X U

~
RL 

!.J 

~~~~~~~~~~~~~~~~~~~~~

state 4 state 5

‘i~r
I. J

state 6

figure 4.2-3: Snapshots for execution sequence A.
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processed by J, and by state 6 it has been passed throu.gh F. State 6 shows

that system S~s response (1, 2 , 5) to its input (1 ,2) has been completely

generated for output. By state 7 (not shown), these packets have been sent

out and acknowledged by their outside world recipient.

We now present another execution sequence that models the

response of system S to the same presented input stream (1, 2) . Execution

sequence B, shown in figure 4.2-4, is identical to execution sequence A

except for states 2 and 4.

sta te X U V V

0 ~~~~

1 1.2 .1

2 12. .12

3 ‘2. 1.2 .5 .1

4 12. 1.25 5’ .1

5 12. 12.5 5. .12

6 12. 125. 5. .125

7 12. 125. 5. 125.

Figure 4.2-4 : Sample execution sequence B for system S.

— 
From state 1 to state 3, this execution sequence has module .i receive and

process the packet 2 before module F processes the packet I , reversing the

order of these two events from the way they were In execution sequence 4.

Similarly, from state 3 to state 5 here, J takes In the packet S before F 

-~~~~~~~~~~~~~~~—-~~~~~~~~ --~~~~~
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processes the packet 2. The snapshots of states 2 and 4 for execution

sequence B are shown in figure 4.2-5.

I I I I
I I I I

x~~~ u u

2

state 2 state 4

Figure 4.2—5:  Snapshots for execution sequence B.
I

Observe that the two distinct execution sequences A and B model two distinct

computations for the system S. both resulting in the same system response

( 1 , 2 .5) to the presented input (1,2). On the other hand , execution

sequence C, shown in figure 4.2-6, models a computation in which the

system produces a different response (1 , 5 ,2) to the same input . This sequence

is identical with execution sequence A through state 2, but now module J

processes the packet 5 from channel V before it takes the packet 2 from

channel X. This difference is what causes the change in system response.

Snapshots for the resulting states 3 through 6 for execution sequence C are

shown in figure 4.2-7.

It is important to note that at any time during a computation in a

packet system, a packet that has been generated to be sent out on some

channel may or may not actually have been sent out already. After the

packet is acknowledged we know it has been sent out , but before

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~
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state X U V V

0 .12 ‘

1 1.2 .1

2 1.2 1. .5 .1

3 1.2 1.5 5’ ‘1

4 1.2 15. 5. .15

5 12. 15.2 5. .15

6 12. 152. 5. .152

7 12. 152. 5. 152.

Figure 4.2-6: Sample execution sequence C for system S.-

I I I
I I I

u u

? !~~J ~~
state 3 state 4

I I I
I I I

X U U

L

~

J
state 5 state 6

Figure 4.2-7: Snapshots for execution sequence C.

-
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acknowledgment It is only poten tially i-n the channel. “Potential’ packets are

guaranteed to have been by some future time eventually passed on the

channel In the relative order given , but we can draw no stronger conclusions.

This means that in all the snapshots we have depicted here, the packets

shown on the various channels were at the indicated time only potentially

present.

This concludes our informal introduction to execution sequences. In

the next section we shall motivate and discuss the properties that will be

used to characterize them formally.

4.3. Properties of execution sequences

In order to formally define execution sequences for a packet system ,

we need to carefully motivate and discuss several properties that characterize

them. We shall be using as an example a particular packet system C

composed from the modules A and 0 as shown iii figure 4.3-1. The left half

of the figure shows the system structure pictorially, while the right half is a

textual representation that provides a formal structural description of the

system. -Once we characterize execution sequences for C, its internal

specifications will be the binary relation between presented input slices and

the corresponding output slices that are realized as the system s response to

the given input by some execution sequence. This, of course, will provide a

formal behavioral specification for C expressed In terms of the above

structural description of C and in terms of the characteristic relations EXTA
and EXT0 for the component modules A and 0. In the previous chapter , we
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System C
X I 

~~~~~~~~~~ 
V Inputs X(lnteger)

A D outputs Y (lmteger)
internals S(integer), R(integer)

Submodules
A inputs X, R; outputs S

0 R : 0 inputs 5; outputs R , V
C Initia lly R<0>

L 

Figure 4.3-1: Realization of a sample packet system C

specifically defined the external specifications for A and D, but in our

treatment here the characteristic relations shall be viewed abstractly.

An execution sequence is a time-ordered progression of internal

states of a packet system, and a state gives particular information about each

channel in the system. The state information for a channel Z at any given

moment contains, as we mentioned earlier, both the stream of packets

generated to be passed on Z and its acknowledged prefix. The space of

streams of packets passed on Z is denoted by Z’ and includes infinite as well

as finite streams. For any stream z € Z’, we denote its acknowledged prefix

by 2a, A channel state for Z will then be an ordered pair of the form (Z,Za ).

-
‘ The state information for a system is simply the collection of state

information on all of its channels. For our sample system C, defin e the space

CSYS to be the cartesian product of the channel packet stream spaces Xa , S~,

R’ and Y’. Elements of CSYS~, which are called system slices, are denoted $

(the dollar sign Is pronounced ‘slice” !) and are tuples of the form (x,e,r,y) ,

where x, s, r and y are streams of integer packets. A system state will

consequently be an ordered pair of the form ($ ,$a ), where the acknowledged

prefix ~a of the slice $ is the tuple whose components are the acknowledged
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prefixes of the respective components of S.

We have already defined input and output slices for modules in a

packet system. The space of input slices for a module Is the cartesian product

of the channel stream spaces for the module s input channels; output slices are

similarly built up from the module’s output channel stream spaces. For the

module A in our example, these two space.~ are AIN ’ z (X’ x R’) and

AOUT’ (S’); for the module 0 they are DIN ’ s CS’) and DOUT’ (R’ x Y’).

The same thing can be done for the system C by viewing it as a module:

CIN’ = (X’) and COLJT’ ~ (Y’). Thus the characteristic relations for the system

C and its two component modules A and 0 are given by EXTc ç (X’) x

EXTA ç ((X’ x R’) x (S’)) and EXT0 ç ((S’) x CR’ x Y’)). We will have

((x) , (y)) € EXTc if and only if the output stream y is a valid response to the

Input stream x under the semantic properties of the system C.

Execution sequences for a packet system will be of the form

((5 , $.a)), where 1 takes on natural number values starting from zero.

will be the acknowledged prefix of the i-th system slice $~ 
There are a

number of semantic properties which an execution sequence must satisfy in

order to correctly model the action of a packet system. We describe them

here In terms of the sample packet system C, noting that the generalization to

arbitrary packet systems presents no difficulty. For the system C, the

components of system slice $1 are denoted by $~ s (X 1, ~~~ 
r1, y ) .

The first condition an execution sequence must satisfy is that there

be a valid initial system state. To express the property that no packets have

been processed at the start , we require that the initial state ($o,$oa ) have an

- 
- 

- - -
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empty acknowledged prefix 50a The components of $~ corresponding to input

channels must match the presented input slice. In our case, this means that

x0 must be equal to a given stream x of inputs. And it must also be the case

that the other components of $~, agree with the initial configuration defined

j by the system structure. For system C, this requires that we have

S0 Yo € (empty streams) and r0 (0) (stream of one zero-valued packet).

An execution sequence is supposed to reflect a system’s response to a

particular presented input slice, and this input slice appears in its entirety

within the Initial system slice $~. In order for the execution sequence to

realize a response to precisely this input and nothing more, we must have at

each system state the identical input slice as at the beginning, which for the

system C means that x~ = x0 for all i. Physically, this requirement amounts

to the outside world suspending additional input to the system until t}~e

system completes its response to the input already presented.

The third condition that must be fulfilled is agreement with the

semantic properties of the component modules of the system. What this

means is that for all states it must be true of each module that the packets

that have been received and acknowledged by that module are related through

the module’s characteristic relation to the output packets generated by that

module. In our system, the semantics for the A module Impose the condition

— 
((X~a, r,a), (se )) € EXTA, and the D module forces ((5 1a ), (r 1—r0, y,)) € EXT0. (The

reason we specifically remove the stream r0 Is that it represents a packet~ j
stream that is initially present but is not generated as output by any module.)

These conditions must hold for each I Indexing some state in the execution

_ _ _  
_ _ _  _ _
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sequence, starting from the initial state with 1.0.

The fourth property that should hold within an execution sequence

is rather complex. We wish to state precisely the requirement that state

transitions within an execution sequence must agree with the system

structure. Each state ($ ,~~, $,.~~ ) must follow from its predecessor <~~, 51a> in

a manner consistent with the physical arrangement of the system’s channels.

Once a packet is sent out along a channel , it can never be “unsent” or called

back. For each channel Z in the system, packets can on~y be added in going

from one state to another. Moreover , since the channels act as FIFO queues,

new packets cannot disturb the relative order of previous packets. Thus, for

each channel Z, the channel stream Z must be a subsequence of Z,.~ for all 1.

This requirement also holds separately for the acknowledged prefixes on each

channel, since acknowledged packets cannot become “unacknowledged,” so we

must also have ~~ as a subsequence of Zft~~ for all i.

It would greatly simplify the technical development in the

following section if we could strengthen this fourth condition to require that

z be a pref ix  of z,,~ rather than any subsequence. As it stands now, we are

requiring that a module can only send out additional packets in response - to

new input packets received. Insisting on a prefix property would impose a

time restriction on the intervals from packet generation to packet transmission,

forcing packets to be sent out on channels in the exact same order in which

their respective processes of generation were initiated. Unfortunately, this

turns out to be too strong a stipulation. If a module such as M

(figure 4.3-2) receives from its input channel X first a packet p and later a

~
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packet q, it may very well take M longer to produce a packet p ’ in response

to p than to produce a packet q’ in response to q.

- x 

~LEI1- ~
FIgure 4 .3-2 : A module M.

This could occur naturally in applications such as a cache/bulk memory or an

information retrieval system. In order for M to derive the benefits of

asynchronous operation , its behavior should be specified nondeterminately so

that either stream (p’,q’) or (q ’,p ’) will be a valid response to the input stream

(p ,q) . FIgure 4.3-3 depicts the two corresponding execution sequences, which

should both be valid.

state X V state X - V

0 ‘pg • 0 ‘pg

1 p.q ‘p 1 p.q .p ’

2 pg. .p ’q ’ 2 pg.  .q ’p ’

3 pg. p ’c~’’ 3 pg. q ’p ’.

(a) (b)

Figure 4.3-3: Two execution sequences for M.

In execution sequence (a), channel stream Yt ~ (p ’) is a prefix of channel

stream Y2 ~ (p’,q’). However, in sequence (b). the packet q’ has cut ahead of

- 
- the packet p’ by the time state 2 occurs. This is legal, since the p ’ packet is

1-
~ 

_ _ _ _ _  
_ _ _ _  

_ _ _  
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only potentAally present on V during state 1. So for sequence (b),  Y~ • 
(p ’) is

a subsequence and not a prefix of Y2 2 (q ’,p ’). In fact, there is no way to

realize the response described by execution sequence (b) if we insist that y

be a prefix of Y2. We need the generality of the subsequence relation to

realize “cutting ahead” behavior of this nature in packet systems. Thus we

cannot strengthen the requirement that each channel stream in an execution

sequence be a subsequence of its successor.

We can , on the other hand , strengthen this subsequence property to

use the prefix relation in the case of acknowledged prefixes of channel states.

The “cutting ahead” behavior as described above cannot occur within the

acknowledged prefix of a channel stream, since we know that all the pac]~ets

here have already been passed. This means that in any execution sequence ,

the only way may differ from z,a is through the appending of newly

acknowledged packets to the end of the stream. Thus z,a cannot be j ust any

subsequence of z~.~a; it must be a prefix.

The fifth and final condition that must be satisfied by an execution

sequence is that no channel may receive acknowledgment for a packet that

was never generated as output to be sent on that channel. This Is guaranteed

by requiring that for each I the acknowledged prefix Z,,~a must be an initial

segment of the previous stream Z1 on all channels Z.

The notion of execution sequences that has been developed here

models the progress of a computation within a packet system, but there is one

final element that is missing: the idea of ultimate result of a computation.

We must identify when a packet system finishes reacting to its input as well

~

--  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~-— --~~~--- --~~ - -
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as handle the cases of infinite inputs and infinite responses to finite inputs.

This will be done by developing the concepts of limits and completeness for

execution sequences.

For any packet system, we may define a relation PRECEDES on system

states by ($~, $C ) PRECEDES ($~, $~) 1ff ~~~ PREFIX $~ and S, SUBSEQ $,).

Intuitively, increasing values wIth respect to PRECEDES indicate forward

progress of a computation within a packet system. In particular,

~l PRECEDES S2 must hold whenever system state S2 is reachable from system

state SI in some computation through the processing of additional packets.

We may observe that PRECEDES is a transitive relation. Furthermore, by

‘ondition (4) above, an execution sequence is monotonically increasing with

respect to PRECEDES . An upper bound of an execution sequence, then,

corresponds to a computation that has progressed at least as far as all the

states in the sequence, while a least upper bound indicates that no extraneous

computation is taking place. We define a limit of an execution sequence to

be a least upper bound with respect to the PRECEDES relation. Thus, a limit

of an execution sequence corresponds to a system state in which all the

computation specified by the sequence runs to completion. This notion applies

to infinite as well as finite computations. We use the notation

Urn { ($ I,  $,a)) • sup {($;, $1a)) to denote the limit (least upper bound) of an
PREC~OES

execution sequence when it is well-defined and unique.

It may be observed that the PREFIX relation is a partial order and

that for any execution sequence (($~, $
a)) the sequence ($,5) is monotonically

increasing with respect to PREFIX and always has a uniquely defined least

______________ _______ _______
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uppe r bound ~~ • ~~~ ~~~~ These facts are proved In the next section.

However, least upper bounds are not necessarily well defined with respect to

PREC EDES. We therefore need some additional properties to be satisfied by an

execution sequence in order to guarantee that limits exist and are well

defined.

Consider a system state ($, ~a > in which ~a is a proper prefix of S.

The nonempty difference slice $ - $~ would represent packets that have been

generated but not yet acknowledged, Such a state can never represent a

complete computation, since it specifies packets still awaiting processing by

various internal modules, If the system Is to fully respond to its inputs, all

the packets that have been generated at any time during a computation must

eventually be acknowledged. We thus define an execution sequence (($~, $,
a))

to be complete if and only if for each 1 there exists a j  such that

5, SU BSEQ $,~ . This J will be the state by which time all packets that have

been generated by the time of state I will have been sent out and

acknowledged. In general , in any state ($, $a ) for which $ $a , there are

no generated packets waiting for processing and acknowledgment, so the

system cannot perform any further actions. We prove in the next section

that any complete execution sequence (($~, $~a)} has a unique and well

defined limit 
~
$c,, $ 8 ) for which $ ,, • $~~~. This result will be known as

the Limit Existence Theorem, Thus the notion of a computation running to

completion within a packet system is always well defined.

The limit of a complete execution sequence should always represent

the state of the system upon completing its ultimate output response to the

—
~~~~~

— :  11 
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7resented input. For a given Input slice, we call such a state a limit state ,

and we say that the slice consisting of the streams for the system output

channels in a limit state is an ultimate output slice, The presented input slice

and the ultimate output slice may each be finite or infinite. If either is

Infinite, there will be infinitely many states In a complete execution sequence

and the limit state will not be one of the states in the sequence. We shall

adopt the convention that execution sequences will always be infinite. If

both the presented input and ultimate output slices are finite, then the limit

state will be an element of the execution sequence, and all succeeding

elements will be identical to this state.
I

There is a class of pathological conditions under which the limit of

~ complete execution sequence fails to represent the system’s ultimate output

response to the presented input . Consider the case of a module M 
-

(fIgure 4.3-4),

_!~_~~~~~ 
Q)

FIgure 4.3-4: A discontinuous modu1e.

which outputs the empty stream for finite input but which echoes any

infinite input stream. The external characteristic relation EXTM is given by

EXT~ ç ((P*) x (Q’)) and
(( p), (q ) )  € EXT~ s> (#p ~ and q~€) or (#p ~ and q=p).

In response to input streams p, of increasing finite length, M will not send

out any packets at all, and the limit of a complete execution sequence

~~~~~~~~~ _ __  
~~~~~~~~~~~~~~~ T :i 1~t: 

_ _ i~
_ __ 

—

. 
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modeling this behavior will exhibit an empty ultimate output stream q~,. But

this disagrees with M’s specified nonempty response to infinite input . The

problem lies in the way EXTM is specified; we may avoid this by requiring

that all modules in packet systems be continuous , which means that the

responses to an increasing sequence of input streams must tend to an

appropriate , well-defined limit. When this is the case, we are guaranteed

that the limit of a complete execution sequence does in fact properly capture

the system’s ultimate output response.

We now have described all the relevant characteristics of execution

sequences. The mathematical development follows In the next section.

4.4. Execution sequences (formally)

— 
We now give the formal characterization for the notion of execution

sequences that has been developed. First , we show an example; afterwards,

we give the definition for the general case. Consider the sample system C, -

which was discussed in the previous section and is shown here again:

System C
X I 

~~~~~~~~~~~ 
S 

~~~~~~~~~~~ 
Y In puts X( inte ger)

A D ou tputs Y( i n teger)
interna ls  S ( In teger) , R( i nte ger)

Submodules
A inputs X, R; outputs So R D inputs S; outputs R , V

C Initial ly R(O> 

FIgure 4.4-1: RealIzation of a sample packet system C

we have the following characterization: 

_T~~
_ _ 

------ - - — 
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An infinite sequence {(S~, $1a)) in which for each natural number I

= (X 1a , s1a , r,a . y,ä ) is an acknowledged prefix of 5, (x ,, s,, r ,, y,) will be
an execution sequence for C if and only if the following five conditions hold:

(1) (initIal state] 50a = ( € E E E )  S~ = Yo = E , r0 = (0)
(2) (input suspension] x , = x0 for all i

(3) (consistency] Vi:((x,8, r,a), (~ )) E EXTA and ((~ a) (r ..r0 y)) ~ EXT 0
(4) (FI FO J 5,a PRE F IX $,.~~ and $~ SUBSE Q ~~ for all I

(5) (connection] 5 a  PREFIX $ for all I

An execution sequence ((S. $~a)) for system C is complete if and only if
Vi ~j: S~ SUBSEQ 51a~

Note that although the PREFIX and SUBSEQ relations were defined over streams ,
they are being applied to system slices here. The intent is for these relations
to be taken componentwise over all channel streams , which means that one
slice Is a prefix of a second if and only if each compoi~ent channel stream in
the f irst  slice is a pref ix of the matching channel stream in the second slice.
Subsequences are treated in the same way.

The above formal characterization of execution sequences for the

system C may be extended to arbitrary packet systems with no difficulty.

The formal structural definition for a packet system is of the general form

System SYS
inputs W(—-- ), ..., X ( — - - )
outputs Y(-—-), ... , Z(---)
Internals U(---), . ..,

Submodu les

M In puts P, ..., Q; outputs R , ..., S

I n i t i a l l y  U <u O> , . ,., V<vO> , Y<yO> , .. ., Z<zO >.

t The parenthesized items are channel packet types and may be arbitrary. (The

use of consecutive letters in the alphabet separated by ellipses, such as

“P . ...,  Q” allows an arbitrary number of items in between, so that for

_ _ _  
_
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example a submodule M of the system may have any number of input

cha nnels.)

The generalized definitions now become:

Def init ion:  A sequence ~~~ $1a)) of system states for a system SYS whose
structural description is as given above will be an execution sequence for SYS
if and only if

( 1) (initial state] 50a = (€ €) ~~~~ uO, ... , V0 = vO, Yo yO , ..., z,~ = zO
(2)  (input suspension) V i :  w, = w0, ..., x~ x0
(3) (consistency] For each module M In SYS we have

Vi ; ((p,a,~.,q a) (r —r0,...,s1—s0)) € EXTM
(4)  (FIFO J 51a PREFIX 5 a  and $~ SUBSE Q ~~ for all I
(5) (connection] 5~1 a PR EFIX 5, for all I

Def inition: An execution sequence ((S., $.a )) for a system SYS is complete if
and only if VI 3,j: S~ SUBSEQ $,a~

We will thus be able to give internal specifications for any packet system.

The relations PREFIX and SIJBSEQ were defined in section 3.2. We

now proceed to derive the basic mathematical properties for these two

relations and the PRECEDES relation. This will lead up to a proof of the Limit

Existence Theorem , which states that limits exist and are well-defined for

complete execution sequences.

Lemma 1: For any space Z, the PREFIX relation is a partial ordering over ZB.

Proof : The reflexive and transitive propert ies are clearly satisfied. Now if
Z PREFIX Z, and Z PREFIX Z , then #Z � #~~‘ and #Z ’ ~ #Z , so #Z = ~ N . Whi ch
m.’dns z and z’ have the same domain. But then for I � N we have

= z[ I ) .  which means z and z’ coincide over their common domain. This
- r ~~.3s Z ~ Z and establishes the antisymmetry property, completing the proof.

ma: A sequence (z) of streams is said to be monotone if for each I,

~~~~~~ z,.~. 

- ~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Lemma 2: Any monotone sequence (z~) of streams has a unique and well
defined least upper bound.

Proof : Each stream Z, is a function that may be regarded as a set of ordered
pairs of the form (k , z,( k ]). Let z be the set-theoretic union of all the Z~.
Then z will be a function , since any two ordered pairs (k , z~(k]) and
(k z1( k]) must coincide (by monotonicity). It is immediately apparent that
zcZ’ and z is an upper bound for {z~) under PREFIX. Moreover , z will be a
least upper bound, since any upper bound for (z~) must contain all the Z1
set-theoretically and hence their union z. Finally, uniqueness follows from
the antisymmetry property derived in Lemma 1.

Lemma 3: PREFIX is a subrelation of SUBSEQ.

Proof : The insertion function required by the formal definition of SUBSEQ is
simply the Identity function.

It is easy to see that the SUBSEQ relation is reflexive and transitive. However,

it is not necessarily antisymmetric! Consider the two Infinite streams (OO1 1) ’°

and (O l O l ) ~~, each consisting of infinitely many zeros and ones. These

streams are distinct, but each is a subsequence of the other. Thus, SUBSEQ is

not a partial ordering relation.

The relations PREFIX and SUBSEQ both apply to streams, but the

PRECEDES relation will be taken over channel states, which we now define.

Def inition~ A channel state for a channel Z in a packet system is an ordered
pair of the form (Z,z )  in which z and Z are sequences of packets and
za PREI LX z.

Def inition: For two channel states (Z~,Z1a) and ~~~~~~ we say
(z ,z a> PREC EDES (Z~.1,Z~1a) if and only if z, SUBSEQ z~1 and Z,a PREFIX Z6.1 a .

Def inition: A sequence ((Z~,Z~a )) 01 channe l states is said to be monotone if
and only if (Z,,Z,a ) PR ECEDES (Z..1,Z,.1a ) for all 1.

Def inition: A sequence ((Z~,Z1a )) of channel states is said to be complete if

___________ __________ _______
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and only if VI 3J s.t. Z , SUBSEQ r1
a.

It is extremely important to note that the relation PRECEDES fails to be a

partial order because of its SUBSEQ component. This is easily seen in the case

of the two channel states ( ( O O l l ) ~~, e) and ( ( O l O l ) ~ , e) , each having an

infinite stream and an empty acknowledged prefix. These states are distinct

and each precedes the other , so the antisymmetry property fails here. Thus

least upper bounds for a monotone sequence of channel states are not

necessarily well defined. However, completeness is a sufficient condition to -

guarantee that the least upper bounds exist and are unique. The following

theorem proves this fact.

Theoremz It ((Z ~,Z1~) )  ~s a monotone and complete sequence of channel states
and If Z~ a sup {z~~), then ~~~ ((Z , Z a)) is well defined and unique and

PREFIX PRECEDES
equal to ~~~~~~
Pr oof : Since Z , is by definition an upper bound for (Z e), we have

(2) Vii Z,~ PREFIX z~ .

Now given any 1, by completeness we have
(2) 3j: Z, SUBSEQ Zj6.

But 2 a PREFIX Z~, which by Lemma 3 implies
(3 )  z~ SUBSEQ Z~.

Since SUBSEQ is transitive, equations (2) and (3)  yield
(4) Z~ SIJBSEQ z~.

The combination of equations (2) and (4) establishes (Z Ic,ZC~
) as an upper

bound f o r  ((z~,z1 )) und er the PRECEDES relation.
In order to show that this upper bound is In fact a least upper

bound , we must establish that for any channel state (Z,Z’) for which
(5) V i :  (z, ,z a ) PRECEDES (z,z’),

it must be the case that (z~,z~,
) PRECEDE S (Z,za ). Now equation (6) implies

Z SUBSEQ Z and Zé’ PREFIX z’, Then the l.ast upper bound ~~ of (z1a) must be
a pref ix of th. upper bound Z 5, I.•.

_ _ _ _ _
_ _ _ _  
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(6) ~~ PREF IX za~
But since (Z,za ) is a channel state, za PREFIX z , so Z~, PREFIX z, which implies

(7) Z~ SUBS EQ z.
The combination of equations - (6 )  and (7) yields the result
(z~ ,z~ ) PRECEDES (z ,za ) , so we now have established that (Z~ ,z ,,) is a least
upper bound for (Z ,,Z~a).

The proof is not yet complete , since the PRECEDES relation is not
necessarily antisynimetric and we must therefore explicitly guarantee the
well-definedness and uniqueness of the least upper bound we produced. This
will follow directly if we show that for any channel state (z ,Z5) , whenever
(Zm,Zco) PRECEDES (z ,Za) and (z,za > PRECEDES (z6,,z~,) then it must be true that
z = = z~ . Now z~ PREFIX za PR EFIX z , implies za = zn,. Also , the
combination Z a PREF IX Z SUBSEQ Za, implies #za � #z ~ #z~,, and this “sq ueeze”
condition forces #za = #z. But since za PR EFIX z , we must have za = z. Thus
z = = ~~~ which sets up the required antisyinmetry condition and
guarantees uniqueness of the least upper bound. This completes the proof.

All of the results established here have been stated for individual

channels in a packet system. However , we may apply them to the internal

behavior of an entire system in a rather straightforward manner. As an

example, a system slice $ is a prefix of a slice 5’ if and only If each

component stream in $ is a prefix of the corresponding component stream in

$‘. All properties of the PREFIX stream relation are Just as valid for the

PREFIX slice relation. Similarly, all properties of the stream relation SUBSEQ

hold for slices. Moreover , all properties of the PRECEDES relation on channel

states apply to system states. In particular , the following theorem , which we

call the Limit Existence Theorem, holds:

Theorem: If ((5,, $,a)) is a complete execution sequence for a packet system ,
and it $~, ~ sup ($~), then sup ((SI, $ a )) is well defined and unique —PRE F IX PRECEDES
and equal to ~~~ $~~) .

I
— —~~ 

- - — - - -
~~ 

-
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We now give a formal definition for the notion of continuity,

which was mentioned in the previous section. Continuity is a property of a

module’s external characteristic relation , so we define it for binary relations

over slices:

Def inition: A relation ~ on slices is continuous if whenever $ = SUp (5),
P R E F I X

where the sequence (Si) of slices satisfies $~ PREFIX $ .~ for all i, then
€ <=> 3 a sequence ($~‘) of streams such that

( 1) ($~,$‘) € for all I;
(2) 5,’ SUBSEQ $.,~~

‘ for all I; and

~~~~~~ ~~~
‘ = ($‘) is uniquely defined.

4.5. Characterization of interna’ specifications

Now that we have defined execution sequences for any packet

system, it is simple to produce a system’s internal specifications. The internal

specifications for a packet system SYS are a binary relation INT sys from system

Input slices to system output slices, which we call the system~s internal

characteristic relation. For the sample system C we have been discussing, we

have INT O c ((X’) x (~ *)), and the Internal specifications may be formally

characterized by ((x), (y)) € INTO if and only if there is a complete execution

sequence (($
~, $ â)) for C such that x0 = x and y , y, where x0 and y~, are

defined by $~ = (x0, s~, r0, yo) and $ , ~ 
~~ 

($1a) = (x~, se,, r~ , y~). Note

that x0 represents the initial input presented to C and that y,~ represents the

ultimate output yielded by C. We can easily generalize this ~o an arbitrary

system by quantify ing the condition X0 x over all input c~~nnels X and

quantifying the condition y~, = y over all output channels Y. Note that the

defi nition of INT 5~5 is in effect parameterized by the structural description of

— 
— -
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system ~YS and by the characteristic relations of the component modules in

sys.
The development of internal specifications for packet systems is now

complete. We have two ways of formally describing the behavior of a packet

syst4m: externally, in terms of its interaction w~th the outside world , and

internally, in terms of its structure and composition. We can apply this to

correctness proofs by observing that a system SYS is correctly realized by its

internal structure if and only if its (external) characteristic relation EXT 5~5

and its internal characteristic relation lNT 5~5 are identical. A correctness proof

for a packet system Will therefore consist of a demonstration that each of

these two relations is contained in the other.

Aside from the obvious application to system verification , the formal

specifications we have developed for packet systems are valuable in achieving

a freq uently overlooked objective: understanding the behavior of these

systems. Our operational approach lets us model the activity within a system

step by step. The “dot notation ” tables for execution sequences are a useful

pedagogical toot, aiding in a person ’s conceptualization of what goes on An

packet systems. It is hoped that even without going through a process of

formal verh”ication, designers of’ asynchronous, nondeterminate systems will

find the te hniques developed here to be of assistance in building packet

systems.

I - —-- — a _ -~~ — — - 
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CHAPTER 61 PROVING PACKET SYSTEMS CORRECT

6.1. Setting up a correctness proof

In this chapter we discuss the application of our specification model

to the problem of proving packet systems correct. A packet system is an

interconnection of component modules, and its behavior is formally given by

its internal specifications. Such a system will be correct if it also satisfies a

given set of external specifications. Correctness of a packet system, therefore,

is the agreement between a set of internal specifications and a set of external

specifications,

To prove correctness of a particular system SYS, one must show that

its external characteristic relation EX15y~ and its Internal characteristic re~at1on

INT 5~5 coincide. The proof naturally separates into two parts , namely the

inclusions tNTsys ç EXT5~5 and EXT5~5 ç ~NT9~5. The first inclusion states that

all system responses to given input satisfy the external specifications. This

will be proved by showing that for any complete execution sequence for SYS ,

the Initial input slice and the ultimate (limit state) output slice are related by

EXT5~5. We call this the consistency portion of the proof , since it verifies

that complete execution sequences model the behavior intended for the system.

The other inclusion states that all behavior allowed by the external

specifications may be realized by some complete execution sequence. This is

called the synthesis portion of the proof , since it involves construction of an

appropriate execution sequence to realize each instance of system behavior. 

____________________________
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The simplest example we can give of a correctness proof is for a

system ID composed from two copies Ni and N2 of the negation module N

described in section 3.3. The structure of this system is shown in

figure s.i-i.

System ID
i nputs X(boo l ean )x : 1 V Z outputs Z(boolean)

~~N l N 2 f—~ 
) interna’s Y(boo~e an)

Submodules
ID NI inputs X; outputs Y

N2 inputs Y; outputs Z
Initially empty

Figure 5.1-1: A simple system ID to be proved correct

The behavior of ID is trivial: any boolean packet value coming in on channel

X Is twice negated , thus remaining unchanged. Since both Ni and N2

preserve stream ordering and since the channels are all FIFO, the system ID

sends out on Z the identical stream received on X. So to demonstrate the

correctness of ID , we will have to show that its internal characteristic

relation INT 10 matches the external characteristic relation EXT10 ç ((X *) x (Z~))

given by

(( x), (z)) € EXT10 <~~ z = x.

For the component modules Ni and N2 , the external characteristic relations

EXT N I ç ((X ’) x (Y’)) and EXT N2 c ((Ye) x (Zt)) are given by

((x), (y)) € EXT N I <=> #y #x and y [ i ]  = not(x(1)) Vi  � #Y

and ((y), (z)) € EXTN2 <:) #Z = #y and z(i) = not(y[~)) Vi � #z.

Note that all three channel spaces X, Y and Z are equal to the set

(true , fa~se) of boolean values.

1 
_ _  _ _ _ _  

_ _ _  
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We can formally state the correctness theorem for the given

realization of’ system ID. The definition of’ the relation 1NT 10 is incorporated

into the following statement.

Theorem: ( (x) ,  (z)) € EXT10 (> ((x), (z)) £ INT 10 -

3 a complete execution sequence 
~~~~ $,a)) for ID such that x0 = X and

= z, where x0 and Z~, are defined by ~~ (x0, Yo. z0) and
$ SLJ? {$,a) (x ,, ~~ z ,).

We recall the definitions of execution sequence and completeness, stating them

for our particular system ID; A sequence of the form ((s.. $,a)) in which for

each ~ ~,a (X,a , y.a , z 5) is a prefix of S = (x , y~, z)  will be an execution

sequence for ID if and only if the following five conditions hold:

(1) (initial state) 50a = (e,€,€), Yo = = €
(2) (input suspension) X X0 for all 1
(3) (consistencyJ ((X1a), (y )) € EXTNI and ((y a~, ( z ) )  € EXT NZ for all I
(4) (FIF 0J ($, $a ) PR ECEDES <$.~~

, 5 1 a > for all I
(5) (connection) 5 a  PREFIX 5, for all I

An execution sequence es,, $,a )) for ID is complete if and only if

V- 1 3J s.t. $~ SUBSEQ 5a Note that whenever this is true, the Limit Existence

Theorem guarantees that we will also have ~ ip ((S $a )) = ($,~a , $~,, a ) ,

where $ 
~~~ 

($ a)

The statement of the correctness theorem for the system ID is now

complete, and we are ready to begin developing a proof.
-

~~ 1

- 

- - - - 
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6.2. Proof for the system ID

We must show that for the system ~D the external relation EXT10

and the internal relation 1NT10 coincide. The consistency portion of the proof

involves showing that INT ID c EXT ID, which means that for any complete

execution sequence for ID the initial input X0 and the ultimate output Z ,,

satisfy the characteristic relation EXT10. In proving this, we need to establish

a particular property that will be an important ingredient in all our

correctness proofs. This property, which we shall call the Limit Size Lemma ,

concerns the size of channel sequences in a limit state for a system.

Essentially, it asserts that the size of each channel stream in the limit state of

an execution sequence is the limit of the sizes of the streams for that channel

as one proceeds through the states in the execution sequence. Note that this

property is not limited to the particular system ID, but rather holds for any

system we will wish to prove correct. The Limit Size Lemma is proved by

using the least upper bound property of the limit state to establish the least

upper bound property for the sequence sizes.

Lemma: In a complete monotone sequence 
~~~i. z1a,) of channel states for a

packet system, if z~ su~ (z~ ), then #z~, = sup {#z1) = sup (#Z a).

Proof : The sequence (#z 8) is a nondecreasing sequence of natural numbers
and must either be eventually constant or else increase without bound. In
the fi rst ca..e, there exists a j such that Vk>j: ~~~~ which implies

= si. p (#Z 1~). Now for any k>j, the combination #zk a ~~1a and
- 

- 
z,a PREFIX Z~ forces z1a = zk a . Thus z0, = ~~~ (z a) = z a and

#z ,. = ~~~
In the second case, ~~~ (#Z ,a) ~o• We claim #Z~ ~~~~. If this is

false, then 3N: #Z , = N. But then (V i :  z a PREFIX z~ ) implies
( V I :  #Z ,a 

~ #z~, N), which would make N an upper bound for (#z a).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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cont radicting sup (#Z ,a) 
~~~. Thus #z~, = = sup (#Z a). - -

Now by the Limit Existence Theorem , we have
U = 

PREC& S 
((z , Z a)), which implies V i :  (z , Z a ) PRECEDES (Z~,Z~). In

particu la r . V i :  z SUBSEQ z ,, so V I :  #Z ~ #z~,, which makes #Z ,, an upper
bound for (#z). But Vi :  z1a PR E FIX Z, implies V i :  #~ a � #Z,, so any upper
hound for (#z ) must be an upper bound for (#z,a) and must therefore be no
less tha n the least upper bound #z~. This makes #z~ a least upper bound for
(#z,) as well as for (#z a), which completes the proof.

Corollary : If k<~ and k � #z ,, then there exists an i such that #z,a 
~ k.

Proof : Suppose that for all I we had #Z a ( k. This would imply
V I :  #Z C < k-i , which makes k-i an upper bound for Ciz a) . But by the
Limit Size Lemma, #Z~, is the least upper bound , so we must have
#z0, � k- ~ < k , which contradicts the hypothesis for finite k.

Now that we have proved this lemma, the consistency proof f or

system ID is easy. We shall use the abbreviation LSL in this proof and all

others to denote use of the Limit Size Lemma.

Consistency proo f : If we are given a complete execution sequence as in the
statement of the correctness theorem for ID, we must show that if x x0 and
Z = Z~,,, then ((x), (z)) € EXT10. This is true if and only if z = x, i.e.

= ix and z ( i ]  x [ i]  Vi < #z,
so we must verify both a size property and an element property of Z .

We first note that by the input suspension property of an execution sequence ,
= x for all I, so we must also have x , x. In particular , ix , ix.

But then we have
= sup(#z,) (LSL)
= sup(#y a) (by EXTNZ)
= #y~, (LSL )
= sup(#y,) (LSL)

sup(#x,5) (by EXTNI)
= ix ,, (LSL)
• ix,

.-

_________  ~~~~~~ -  
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which establishes the desired size property.

The element condition is equally easy. For any natural number
k � #z, by the corollary to LSL we have 31: #~ a � k. Now we have

Z ( k ]  = z~ (k]

= Z a (k)  (since z,a PR EFIX z,~)
= Z,f k 3  (since z a PREF IX z1)
= not(y1atk)) (by EXT N?)
= not(y,(k]) (since y,a PREFIX y,)
= not(not(x ,a[k))) (by EXTN Z )

nOt(not(x[k])) (since X e PREFIX x)
= 4k].

This is the required element condition , and the consistency portion of the
proof is now complete.

The above consistency proof may appear to be relatively intricate for

such a trivial system as ID , but it really isn’t. All we really had to do was

set up two simple chains of equality that traced the internal data paths and

applied the behavioral properties of’ the component modules. For noncyclic

systems, this presents no real difficulties.

The synthesis portion of the correctness proof for ID involves

showing that EXT10 c 1NT 10. For each given input stream X and each

corresponding output stream z, we need to construct an execution sequence for

ID to realize the appropriate system behavior. Thus , given streams x and Z for

which ((x) , 1’z)) c EXT 10 we must realize the internal behavior of ID by a

matching execution sequence $O”~”$j”~ In which each system state $~ is a

3—tuple (x ,, y,. ;) of dotted channel states. (The dot , as we mentioned earlier ,

separates the acknowledged prefix from the rest of a channel stream.)

_ _
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Our strategy is to produce a general order in which the component

modules absorb and process packets. The order we choose for these actions in

the systc zn ID is as follows: (1) Module Ni receives a packet p from channel

X and generates its negation not(p) for output on Y; (2) Module N2 receives

the not (p) packet from V and generates a packet with value not(not(p)) = p for

output on Z; (3 )  The outside world receives and acknowledges the p packet

from Z. This sequence of actions is repeated once for each packet in the

presented input stream X. Thus the execution sequence we shall generate for

the given streams x and z will be cyclic of period three .

Synthesis p roof : Given streams x and z for which ((x), (z)) € EXT 10 we note
th at this means z = x. Let k=#x (note that k may be infinite ) . - let y be
the unique st ream of size k for which each element is given by
y[i] = not(x[i]).

For each natural number i starting from zero , define
(0)  $3, = (X[l:i]’X[i+l:k], y(l:i)., Z[l:i).).

This formula gives every third state in the execution sequence. For 1=0 , it

reduces to the case of the initial system state
so = ( .x , .,

since the stream segments indexed by the expression ~ 1: 1] = ~ 1:0] ar e all
empty.
For each natu ral number i starting from one, define

( 1) 53.2 * (x [ l : i ] .x [ I + l : k ) , y ( l : i — l ) . y [ I ], z [ l : l — l ) . )  and

(2) $3,~ :(x [ l : i ] .x [ 1+ l :k ] , y t l :j j . , z [1 :I_ i ] .zE I ]).
These two formulas give all the system states whose indices are respectively
one more and two more than the multiples of three.

Together , the formulas (0) ,  ( 1 )  and (2 )  define an infinite sequence of system
states $~,...,$,,... which may be verified in an extremely tedious and extremely
strai ghtforward manner to in fact be a complete execution sequence for the
system ID. We will not go into the details here , since the remainder of the
proof is neither interesting nor illuminating. We shall , however , make some

_________ _  
_ _  
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— - ----- -  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



~~~~~~~~~~~ TT~~~ 
_ _ _ _ _  I~~~~~~~~~~~~~~~ Z~~~~~~T~~

- 9 3 -

comments about the execution sequence we just constructed.

First , we make some observations about the states. In the i-th state

given by formula (2 ) ,  the i-th packet x [ i )  in the input stream x has j ust

been absorbed by module Ni , and its negation is seen as a newly-generated

(b ut not yet acknowledged) packet on channel Y , denoted by the “ .y[ I ]~. In

the corresponding (i-th) state given by (2) ,  this packet has been received and

acknowledged by N2 , and N2 has generated a new packet with value zt 1].

This state is followed by the i-th state given by (0), which reflects the

acknowledgment of the zt I]  packet by the outside world.

If the size Ic of’ the input stream x is finite , then the above

sequence of’ system stated will repeat endlessly after $~~~~ . All states from this

point on will be identical , namely

(*) (x. , y . , z .) .

In this terminal state , all the input packets have been processed and a

complete response has been passed to the outside world. Since the sequence of

states is eventually constant in this case, the limit is precisely this repeating

terminal state. In the case of an infinite input stream x , the states in the

infinite sequence are all distinct , and the terminal state given by (‘) above is

the limit e’~en though it does not actually occur within the sequence. In

either case, ye note that the output stream z will be identical to the input

st ream x ~y the hypothesis ((x), (z)) € EXT10.

The execution sequences produced by the synthesis proof do not

exhaust all possible sequences for the system 1D1 however, they are suff icient

to realize all legal behaviors for ID given by EXT10.

_ _ _  

. 
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