

AD A 0 4 8 9 7 3 OFFICE OF NAVAL RESEARCH NO. NODO14-76-C-0390 Contract Task No. NR 053-608 TECHNICAL REPORT, NO. 98 TR-98 Synthesis of Electron-Deficient Biferracarboranes By ' C. G./Salentine and M. F./Hawthorne DDC RORM Prepared for Publication JAN 20 1978 in ORIA Th Inorganic Chemistry F Department of Chemistry University of California Los Angeles, California 90024 January 1978 10 Reproduction in whole or part is permitted for any purpose of the United States Government Approved for Public Release; Distribution Unlimited 4B

[Contribution No. 3829 from the Department of Chemistry, University of California, Los Angeles, California 90024

Synthesis of Electron-Deficient Biferracarboranes

By

C. G. Salentine and M. F. Hawthorne*

Department of Chemistry University of California Los Angeles, California 90024

Abstract

The polyhedral expansion of $3,1,2-C_5H_5FeC_2B_9H_{11}$ produced three new electron-deficient biferracarboranes $(C_5H_5Fe)_2C_2B_9H_{11}$, $(C_5H_5Fe)_2C_2B_8H_9(OH)$ and $[C_5H_5FeC_2B_9H_{11}FeC_2B_9H_{11}]^{-}$. All three complexes contained formal Fe(III) atoms and were diamagnetic. The proposed structures, based on spectroscopic and crystallographic data, contain non-bonded iron atoms. These complexes constitute the first examples of long-range electron-spin coupling through a carborane polyhedron.

CESSION	for White Section
NVILIO.,	Buff Seture
··S·1 104	ofr3
ev DISIZZ	TOUCHT INTER THE SECOND
	1
5	

Ferracarboranes have been synthesized containing formal Fe(II) and Fe(III) oxidation states.¹ Those of formula $[Fe(C_2B_nH_{n+2})_2]^{2-}$ and $[C_5H_5FeC_2B_nH_{n+2}]^-$ contain formal Fe(II) and are readily air-oxidized to the stable Fe(III) complexes $[Fe(C_2B_nH_{n+2})_2]^-$ and $C_5H_5FeC_2B_nH_{n+2}$. These latter Fe(III) metallocarboranes can be viewed as two-carbon carboranes in which a $\{C_5H_5Fe\}$ vertex has replaced a {BH} vertex. Because $\{C_5H_5Fe(II)\}$ is formally "isoelectronic" with {BH}, the Fe(III) complexes represent polyhedra containing one electron less than the required 2n+2 framework electrons.² A result of this electron deficiency is that polyhedral rearrangements have not yet been observed in this class of metallocarboranes. Crystallographic studies^{1d} have shown that these Fe(III) metallocarboranes possess regular closo-polyhedral geometries, indicating that one-electron deficiency has little or no effect upon polyhedral structure.

Prior to this work, only one electron-deficient biferracarborane had been reported,³ the two-electron deficient species $(C_5H_5Fe^{III})_2C_2B_6H_8$ prepared by polyhedral expansion of 4,5- $C_2B_7H_9$. This curious compound was initially obtained in a paramagnetic (μ_{eff} = 3.05 B.M.) form presumably containing two unpaired electrons. It underwent a slow transformation to a diamagnetic species and a crystal structure³ of the diamagnetic complex showed a unique 10-vertex closo-polyhedral geometry incorporating an iron-iron bond (2.571(1) Å), much different from the bicapped square antiprismatic geometry usually observed in 10-vertex carboranes and metallocarboranes. The structure was described as a derivation of a tricapped trigonal prism, the next lower polyhedron for which the biferracarborane did satisfy the electronic requirements. Recently, structurally novel 14-vertex nido-biferracarboranes which do satisfy the polyhedral electronic requirements were reported.⁴

As a continuation of our studies⁵ of electronic effects upon geometry in metallocarborane polyhedra, we report here the synthesis of several new electron-

deficient biferracarboranes incorporating two formal iron (III) metal atoms into twelve- and thirteen-vertex metallocarborane polyhedra.

Results and Discussion

The Polyhedral Expansion of $3-(\eta^5-C_5H_5)-3-Fe-1,2-C_2B_9H_{11}$.

The reduction of $3-(n^5-c_5H_5)-3-Fe-1,2-c_2B_9H_{11}$ with three equivalents of sodium followed by treatment with NaC₅H₅ and FeCl₂ afforded a mixture of products. Two neutral biferracarboranes were isolated by column chromatography on silica gel, and a third anionic bimetallic species was precipitated from water as the tetramethylammonium salt.

$$\begin{array}{c} c_{5}H_{5}FeC_{2}B_{9}H_{11} \xrightarrow{3Na} C_{10}H_{8} \xrightarrow{C_{5}H_{5}} (C_{5}H_{5}Fe)_{2}C_{2}B_{9}H_{11} \\ I \\ + [C_{5}H_{5}FeC_{2}B_{9}H_{11}FeC_{2}B_{9}H_{11}]^{-} + (C_{5}H_{5}Fe)_{2}C_{2}B_{8}H_{9}(OH) \\ II \\ II \\ III \\ III$$

The golden orange-brown crystalline I exhibited a mass spectrum with a cutoff at m/e 376 corresponding to the ${}^{12}C_{12}{}^{1}H_{21}{}^{11}B_{9}{}^{56}Fe_{2}{}^{+}$ ion. Elemental analysis also confirmed this empirical formula. The diamagnetism of I was indicated from its nmr spectra. The 60 MHz 1 H nmr spectrum (in $CD_{2}Cl_{2}$) showed a sharp resonance at τ 5.14 and a broad resonance at τ 10.81 of relative areas 5:1. These were assigned to equivalent cyclopentadienyl groups and equivalent carborane C-H groups, respectively. The 80.5 MHz 11 B nmr spectrum contained resonances of area 1:2:4:2 at -113.1, -42.4, -22.4 and -5.7 ppm, relative to $Et_{2}0 \cdot BF_{3}$. This high degree of symmetry within a 13-vertex polyhedron considerably limits the structural possibilities. Although fluxionality within a less symmetric polyhedron 1c is one possible explanation of the nmr data, the 11 B nmr spectrum of I was unchanged to -75°. The resonance at -113 ppm almost certainly arises from a low-coordinate

-2-

boron atom adjacent to two metal vertices (see references 3 and 5a). The proposed fluxional process¹c would "average" the low-coordinate boron position in the intermediate structure and a very low field resonance would not be expected in the ¹¹B nmr spectrum. Based on the above, we therefore postulate that I is not fluxional in solution, in contrast to other 13-vertex metallocarboranes such as $4 - (n^5 - C_5 H_5) - 4 - Co - 1, 6 - C_2 B_{10} H_{12}^{1C}$ and $4, 5 - (n^5 - C_5 H_5)_2 - 4, 5 - Co_2 - 1, 6 - C_2 B_9 H_{11}^{6}$

The observed diamagnetism of I would tend to imply the existence of a metal-metal bond;³ however, preliminary X-ray crystallographic results⁷ indicate an Fe-Fe distance of ~3.20 Å. The preceding considerations lead to a proposed structure for I, $4,5-(n^5-C_5H_5)_2-4,5-Fe_2-2,3-C_2B_9H_{11}$, as shown in Figure 1. The metal atoms reside at their favored high-coordinate positions

Figure 1

in the 13-vertex polyhedron. The structure with carbon atoms at the 10,11 positions is not possible because replacement of one $C_5H_5^-$ ligand with a $C_2B_9H_{11}^{2-}$ ligand (complex II, <u>vide infra</u>) would render the carborane C-H groups nonequivalent in II, and they remain equivalent. The 12,13 positions for the carbon atoms are less likely because the starting material contained both carbon atoms adjacent to iron.

The low-coordinate 1-position in the structure proposed for I is occupied by boron - this is the first 13-vertex <u>closo</u>-metallocarborane synthesized that does not have carbon at its favored low-coordinate position.⁸ Isolation of such a thermodynamically unstable species is possible with the <u>electron</u>-<u>deficient</u> ferracarboranes because they have been found not to undergo polyhedral rearrangement. rearrangement.

The proposed geometry for the two electron-deficient I has the same gross structure as found for $C_5H_5CoC_2B_{10}H_{12}$ which obeys the 2n+2 electron rule. Considering the structural result of $(C_5H_5Fe)_2C_2B_6H_8$,³ it is possible that I could adopt a different polyhedral geometry. While this proposed structure is necessarily tentative, it agrees well with the available data. A single-crystal X-ray diffraction study of complex II has been initiated and may provide further structural information.

Complex I represents the first diamagnetic metallocarborane containing two paramagnetic centers not within bonding distance. The diamagnetism appears to be a result of spin pairing by interactions fo the two iron atoms through the carborane ligand. Studies by Taube⁹ and Day¹⁰ have suggested that two metals can interact strongly through conjugated pi-electron systems. The first example of complete electron delocalization through a bridging ligand in an organometallic complex was shown¹¹ recently for the bisfulvalenediiron dication, $[(C_{10}H_8)_2Fe_2]^{2+}$, which contains two Fe(III) centers separated by about 3.9 Å, and yet is diamagnetic. The cyclic voltammogram of I showed a reversible reduction at $E_{p/2} = -0.59V$ and an irreversible oxidation at $E_{p/2} = +1.36V$. The reduction is presumably to a mixed-valence Fe(II)-Fe(III) system. Further investigation of the reduced species is under way.

The second product isolated from the polyhedral expansion reaction was the diamagnetic green complex, II. Elemental analysis was consistent with the formulation $[(CH_3)_4N][C_5H_5FeC_2B_9H_{11}FeC_2B_9H_{11}]$. The 60 MHz ¹H nmr spectrum, measured in d₆-acetone, exhibited resonances of area 12:5:2:2 at τ 6.57, τ 5.06, τ 7.50 and τ 10.27, assigned to tetramethylammonium, cyclopentadienyl, carborane C-H and carborane C-H protons, respectively. The carborane C-H resonance at

-4-

 τ 7.50 was within about 1 ppm to that observed^{1a} for [3-(η^5 -C₅H₅)-3-Fe-1,2- $C_2B_0H_{11}$], and the resonance at τ 10.27 was within 1/2 ppm to that observed for I. The 80.5 MHz ¹¹B nmr spectrum of II also closely corresponded to a superposition of the ¹¹B spectra of I and $[3-(n^5C_5H_5)-3-Fe-1,2-C_2B_9H_{11}]^{-1}$. Doublets corresponding to the $n^5-1, 2-C_2B_9H_{11}^2$ ligand were observed in areas 1:1:4:2:1 at -7.7, +0.5, +4.8, +17.5 and +20.6 ppm. Resonances corresponding to the C2B9H11 bimetallic cage were observed in areas 1:1:1:2:2:2 at -110.1, -46.1, -39.8, -23.9, -22.6 and -5.8 ppm, assigned by comparison with the 11 B nmr spectrum of I. The area 4 resonance in the ¹¹B nmr spectrum of I, at -22.4 ppm, was split into two area 2 peaks in II at -23.9 and -22.6 ppm. Likewise, the area 2 resonance of I at -42.4 ppm was split into two area 1 peaks in II at -46.1 and -39.8 ppm. These data are consistent with a structure for II entirely analogous to I, with a $C_{\rm p}H_{\rm p}$ ligand replaced by a 1,2- $C_2B_0H_{11}^2$ ligand (see Figure 1). This substitution allows an assignment of the ¹¹B nmr spectrum of complex I: the area 1 resonance at -113.1 ppm is due to B1; the area 2 resonance at -42.4 ppm is due to B10, B11; the area 4 resonance at -22.4 ppm is due to B6, B7, B8, B9; and the area 2 resonance at -5.7 ppm is due to B12, B13. Thus II is formulated as $[(CH_3)_4N][4-(n^5-n^5)_4N][4$ $C_{g}H_{g})-5-(\eta^{5}-1,2-C_{2}B_{g}H_{11})-4,5-Fe_{2}-2,3-C_{2}B_{g}H_{11}].$

The third product of the reaction was a brown crystalline material, isolated in low yield by column chromatography, $(C_5H_5Fe)_2C_2B_8H_9(0H)$, III. The mass spectrum showed a cutoff at m/e 380 corresponding to the ${}^{12}C_{12}{}^{11}H_{20}{}^{11}B_8{}^{56}Fe_2{}^{16}0^+$ ion. A high resolution mass spectrum confirmed the formula; calcd for ${}^{12}C_{11}{}^{13}C^{1}H_{20}{}^{-11}B_8{}^{57}Fe_2{}^{16}0^+$: 383.1000, found: 383.1003. This biferracarborane was also diamagnetic, showing one cyclopentadienyl resonance in the ${}^{1}H$ nmr spectrum (d₆acetone) at τ 4.99. The 80.5 MHz ${}^{11}B$ nmr spectrum contained doublets of area 2:2:2:1:1 at -26.4, -19.3, -17.3, -3.6 and -0.8 ppm and indicated that OH substitution had occurred at a carborane carbon atom. The infrared spectrum contained a peak at ~3500 cm⁻¹ assigned to v_{0-H} . Assuming a gross icosahedral

-5-

geometry for III, there are only four possibilities for the structure:

$$1-0H-2, 3-(n^{5}-C_{5}H_{5})_{2}-9, 10-Fe_{2}-1, 7-C_{2}B_{8}H_{9},$$

$$1-0H-9, 10-(n^{5}-C_{5}H_{5})_{2}-9, 10-Fe_{2}-1, 7-C_{2}B_{8}H_{9},$$

$$1-0H-3, 6-(n^{5}-C_{5}H_{5})_{2}-3, 6-Fe_{2}-1, 2-C_{2}B_{8}H_{9}, \text{ and}$$

$$1-0H-8, 10-(n^{5}-C_{5}H_{5})_{2}-8, 10-Fe_{2}-1, 2-C_{2}B_{8}H_{9}.$$

The first two possibilities contain adjacent iron atoms, while the last two contain adjacent carbon atoms. Because the starting material contained adjacent carbon atoms, and it has been shown (<u>vide supra</u>) that a direct iron-iron bond is not necessary for diamagnetism, we favor the last two possibilities over the first two. Also, because the carbon atoms were adjacent to iron in the starting material, 1-0H-3,6-(n^5 -C₅H₅)₂-3,6-Fe₂-1,2-C₂B₈H₉ is the most probable structure of III. Traces of water or hydroxide in the polyhedral expansion reaction mixture could have resulted in the production of III, analogous to the synthesis of 3,6-(n^5 -C₅H₅)₂-3,6-Co₂-1,2-C₂B₈H₁₀ by treatment of 3-(n^5 -C₅H₅)-3-Co-1,2-C₂B₉H₁₁ with KOH, C₅H₅⁻ and CoCl₂.¹² The geometry found for III could also be easily generated from I by removal of the low-coordinate boron position with the formation of the C2-C3 bond (Figure 1). As with I, it is possible that the geometry of III may deviate significantly from icosahedral, as III is also two-electron deficient.

Isolation of a stable derivative of $(C_5H_5Fe)_2C_2B_8H_{10}$ led to attempts to prepare the parent compound. The polyhedral expansion of $1-(n^5-C_5H_5)-1-Fe-2,3-C_2B_8H_{10}$ with $C_5H_5^-$ and FeCl₂ produced unstable ferracarboranes which rapidly decomposed to ferrocene in solution; use of $[C_5H_5FeC_6H_6]^+$ as a FeC_5H_5 source produced a red compound which eluted from silica gel in dichloromethane. The mass spectrum showed a cutoff at m/e 364 corresponding to $(C_5H_5Fe)_2C_2B_8H_{10}$. The 60 MHz ¹H nmr spectrum contained two broad peaks of equal area in the cyclopentadienyl region and indicated that the compound was paramagnetic. Cyclic

-6-

voltammetry showed a reversible reduction at $E_{p/2} = -0.56V$ and a quasi-reversible reduction at $E_{p/2} = -1.40V$. This complex was also unstable, even in the solid state, and decomposed in a few days to $1 - (n^5 - C_5H_5) - 1 - Fe - 2, 3 - C_2B_8H_{10}$. Apparently, the bimetallocarborane resulting from polyhedral expansion of $1 - (n^5 - C_5H_5) - 1 - Fe - 2, 3 - C_2B_8H_{10}$, which contains non-adjacent carbon atoms, did not have a stable isomeric arrangement of heteroatoms within the polyhedron. It is interesting that the only other paramagnetic biferracarborane, $(C_6H_5Fe)_2C_2B_6H_8$, was also unstable with respect to transformation to a diamagnetic form.

Among the results of these studies is the important observation that paramagnetic metal centers not within bonding distance may participate in longrange coupling through a carborane cage. The greater stability and ease of purification of complex I as compared to the bisfulvalendiiron dication¹¹ make it an attractive candidate for further physical studies.

Experimental Section

Physical Measurements

Ultraviolet-visible spectra were measured with a Cary 14 spectrophotometer. Infrared spectra were determined using a Perkin Elmer Model 137 sodium chloride spectrophotometer. Proton nmr spectra were obtained on a Varian A-60D spectrometer. The 80.5 MHz ¹¹B nmr spectra were obtained with an instrument designed by Professor F. A. L. Anet of this department. Electrochemical data were obtained on an instrument described previously.¹³ Mass spectra were measured using an Associated Electrical Industries MS-9 spectrometer.

Elemental analyses were carried out by Schwarzkopf Microanalytical Laboratories, Woodside, N. Y.

-7-

Materials

Literature methods were used to prepare $3 - (n^5 - C_5H_5) - 3 - Fe - 1, 2 - C_2B_9H_{11}$,^{1a} $1 - (n^5 - C_5H_5) - 1 - Fe - 2, 3 - C_2B_8H_{10}$ ^{1b} and $[C_5H_5FeC_6H_6][PF_6]$.¹⁴ Anhydrous sublimed ferric chloride and hydrogen reduced iron powder were obtained from Matheson, Coleman and Bell. Tetrahydrofuran (THF) was distilled from lithium aluminum hydride and stored under nitrogen prior to use. All other solvents were reagent grade and used without further purification. Naphthalene, Spectroquality acetonitrile and tetramethylammonium chloride were obtained from Matheson, Coleman and Bell. Sodium hydride, as a 50% dispersion in mineral oil was obtained from ROC/RIC Chemical Corp. Dicyclopentadiene was obtained from Aldrich Chemical Co. and converted to cyclopentadiene immediately prior to use. THF solutions of sodium cyclopentadienide were prepared as previously described^{1C} and immediately used. Sodium metal was purchased from Allied Chemical Co. Silica gel powder, 60-200 mesh, was obtained from J. T. Baker Chemical Co. for use in column chromatography. Preparative thick-layer chromatography was performed with Chrom AR Sheet 1000 purchased from Mallinckrodt Chemical Co.

The Polyhedral Expansion of $3-(n^5-C_5H_5)-3-Fe-1,2-C_2B_9H_{11}$

Into a nitrogen-flushed three-necked 500 ml round-bottomed flask equipped with a mechanical stirrer and nitrogen inlet was placed 2.53 g (10.0 mmol) $3,1,2-C_5H_5FeC_2B_9H_{11}$ followed by 100 ml THF. To this was added freshly cut sodium metal (0.70 g, 30 mmol) and 1.0 g naphthalene. The solution was stirred six days under nitrogen, yielding an orange-green color with all the sodium consumed. To this solution was added a THF solution of 35 mmol NaC₅H₅ followed by a THF slurry of 30 mmol FeCl₂ (prepared by refluxing 0.70 g Fe powder with 3.24 g FeCl₃ for 18 hr under nitrogen). The mixture was stirred 16 hr under nitrogen, then oxygen was bubbled through the solution for 20 min. The solution was filtered through Celite and added to 40 g silica gel. Solvent was removed and the

-8-

solids were placed atop a 4 x 30 cm silica gel chromatography column prepared in hexane. Elution with hexane produced a yellow band containing 1.6 g ferrocene. Elution with 20% CH_2Cl_2 /hexane developed a large red-purple band which yielded 0.98 g of a mixture of starting material and $(C_5H_5Fe)_2C_2B_9H_{11}$, I. These were separated by thick-layer chromatography to yield 290 mg of the less polar starting material and 647 mg (17%) of I as shiny metallic copper-colored plates, dec. above ~180⁰ without melting. <u>Anal</u>. Calcd for $C_{12}H_{21}B_9Fe_2$: C, 38.51; H, 5.66; B, 26.00; Fe, 29.84. Found: C, 38.15; H, 5.50; B, 25.00; Fe, 28.61. High resolution mass measurement; calcd for ${}^{12}C_{12}{}^{1}H_{21}{}^{11}B_9{}^{56}Fe_2{}^{+}$: 376.1168. Found: 376.1202. Infrared spectrum (Nujol mull): 3070(w), 2600(w), 2510(vs), 2470(vs), 1420(s), 1120(w), 1130(w), 1070(m), 1060(w) 1025(s), 1010(m), 965(m), 935(w), 925(w), 910(w), 905(w), 885(m), 875(w), 860(w), 850(s), 835(s), 755(w), 738(m), 728(m), 720(m) cm⁻¹.

A yellow-brown band was eluted from the column in 60% CH_2Cl_2 /hexane which upon rotary evaporation of solvent produced 60 mg (1.6%) of green-brown crystals of III, $(C_5H_5Fe)_2C_2B_8H_9OH$, m.p. >300°. <u>Anal</u>. Calcd for ${}^{12}C_{12}H_{20}{}^{11}B_8{}^{56}Fe_2{}^{16}O^+$: 380.0957. Found: 380.0973. Calcd for ${}^{12}C_{11}{}^{13}C^1H_{20}{}^{11}B_8{}^{57}Fe_2{}^{16}O^+$: 383.1000. Found: 383.1003. Infrared spectrum (Nujol mull): 3450(w), 3090(w), 2490(vs), 1425(m), 1415(m), 1275(m), 1150(m), 1110(s), 1070(s), 1045(w), 1020(m), 1015(m), 988(m), 938(w), 882(m), 844(s), 720(w), 688(m) cm⁻¹.

The silica gel was then extracted with CH_3CN , yielding a deep green solution. Removal of CH_3CN followed by addition of H_2O , filtration and addition of excess $(CH_3)_4NC1$ produced a green precipitate. The precipitate (150 mg) was dissolved in acetone and stripped onto silica gel and chromatographed on a 2 x 15 cm silica gel column. Elution with CH_2Cl_2 removed impurities while elution with 10% acetone/ CH_2Cl_2 eluted the green band. Addition of <u>n</u>-propanol to the filtrate followed by slow rotary evaporation produced 84 mg (1.6%) of dark green crystals of II, $[(CH_3)_4N][C_5H_5FeC_2B_9H_{11}FeC_2B_9H_{11}]$, m.p. >300°. <u>Anal</u>. Calcd for $C_{13}H_{39}$ - $B_{18}Fe_2N$: C, 30.28; H, 7.62; B, 37.73; Fe, 21.66; N, 2.72. Found: C, 30.17;

-9-

H, 7.76; B, 36.51; Fe, 21.74; N, 2.69. Infrared spectrum (Nujol mull): 3100(w), 2500(vs), 1490(s), 1425(m), 1290(w), 1155(w), 1125(w), 1070(m), 1060(w), 1035(m), 1025(m), 995(m), 977(m), 950(m), 883(m), 860(w), 840(s), 760(m), 740(m), 724(m) cm⁻¹. Polyhedral Expansion of $1 - (n^5 - c_5 H_5) - 1 - Fe - 2, 3 - c_2 B_8 H_{10}$.

This reaction was performed as above with 0.98 g (4.06 mmol) 1,2,3- C_5H_5 -FeC₂B₈H₁₀. To the reduced solution was added, as a solid, 6.5 g (19 mmol) [$C_5H_5FeC_6H_6$][PF₆]. The mixture was stirred 120 hr under nitrogen and worked up as above. Elution of the chromatography column with hexane produced ferrocene, and elution with 20% CH₂Cl₂-hexane yielded 60 mg starting material. A red band eluted in CH₂Cl₂. Addition of a small amount of hexane followed by rotary evaporation of the solvent produced 90 mg red-purple crystals, m.p. >310^o, whose mass and ¹H nmr spectra were consistent with the formulation (C_5H_5Fe)₂C₂B₈H₁₀. No 80.5 MHz ¹¹B nmr spectrum was observable for the paramagnetic species. The elemental analysis and magnetic susceptibility were close to that expected for $C_5H_5FeC_2B_8H_{10}$, due presumably to solid state decomposition.

Acknowledgement

We are grateful to the Office of Naval Research for financial support.

-10-

References

- See, for example, the following: (a) M. F. Hawthorne, et al., <u>J. Amer</u>. <u>Chem. Soc</u>., <u>90</u>, 879 (1968); (b) W. J. Evans, G. B. Dunks, and M. F. Hawthorne, <u>ibid</u>., <u>95</u>, 4565 (1973); (c) D. F. Dustin, G. B. Dunks, and M. F. Hawthorne, <u>ibid</u>., <u>95</u>, 1109 (1973); (d) A. Zalkin, D. H. Templeton, and T. E. Hopkins, <u>ibid</u>., <u>87</u>, 3988 (1965).
- 2. R. W. Rudolph, Acc. Chem. Res., 9, 446 (1976).
- K. P. Callahan, W. J. Evans, F. Y. Lo, C. E. Strouse, and M. F. Hawthorne, J. Amer. Chem. Soc., 97, 296 (1975).
- 4. (a) W. M. Maxwell, R. F. Bryan, and R. N. Grimes, <u>J. Amer. Chem. Soc.</u>, <u>99</u>, 4008 (1977); (b) W. M. Maxwell, R. Weiss, E. Sinn, and R. N. Grimes, <u>ibid</u>., <u>99</u>, 4016 (1977).
- (a) C. G. Salentine, C. E. Strouse, and M. F. Hawthorne, <u>Inorg. Chem.</u>, <u>15</u>, 1832 (1976); (b) C. G. Salentine and M. F. Hawthorne, <u>ibid.</u>, <u>15</u>, 2872 (1976).
- 6. W. J. Evans and M. F. Hawthorne, Inorg. Chem., 13, 869 (1974).
- 7. K. P. Callahan, preliminary crystallographic study of complex II.
- M. F. Hawthorne, K. P. Callahan, and R. J. Wiersema, <u>Tetrahedron</u>, <u>30</u>, 1795 (1974).
- 9. C. Creutz and H. Taube, <u>J. Amer. Chem. Soc.</u>, <u>95</u>, 1086 (1973), and references therein.
- 10. B. Mayoh and P. Day, J. Amer. Chem. Soc., 94, 2885 (1972).
- C. LeVanda, K. Bechgaard, D. O. Cowan, U. T. Mueller-Westerhoff, P. Eilbracht,
 G. A. Candela, and R. L. Collins, <u>J. Amer. Chem. Soc.</u>, 98, 3181 (1976).
- 12. J. Plešek, B. Štibr, and S. Hermanek, Syn. Inorg. Metal. Chem., 3, 291 (1973).
- T. E. Paxson, M. K. Kaloustian, G. M. Tom, R. J. Wiersema, and M. F. Hawthorne, J. Amer. Chem. Soc., 94, 4882 (1972).
- R. B. King, "Organometallic Syntheses," Vol. 1, Academic Press, New York, N. Y., 1965, p. 138.

Table I

Çomplex	λ_{max} , nm (log ϵ) ^a	E _{p/2} (V) <u>vs</u> sce ^b	
	705(1, (0), 545(2, 20), 430(2, 25)	0.50 mod	
•	/25(1.60), 545(3.30), 418(3.30),	-0.59 red	
	349(3.64), 275(sh, 4.20),	+1.36 ox ^C	
	237(4.46), 206(4.35)		
11	790(1.60), 594(3.445), 447(3.425),	-0.70 red	
	371(3.72), 280(sh, 4.32),	+1.07 ox ^C	
	248(4.415), 211(4.41)	+1.76 ox ^C	
111	756(1.70),575(sh, 2.34),	d	
	419(3.16), 350(sh, 3.60),		
	248(4.505), 223(490)		

Electronic Spectra and Electrochemical Data

^a measured in spectroquality CH₃CN.

- ^b cyclic voltammetry in CH_3CN with 0.1 M $(C_2H_5)_4N^+PF_6^-$ supporting electrolyte, platinum button electrode; reversible waves except where noted; red = reduction, ox oxidation.
- ^c irreversible wave.
- d all waves irreversible, none well-defined.

Figure 1. The proposed structure and 80.5 MHz ¹¹B nmr spectrum of I, 4,5- $(n^5-C_5H_5)_2-4$,5-Fe₂-2,3-C₂B₉H₁₁.

	READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
REPORT NUMBER	D. J. RECIPIENT'S CATALOG NUMBER
Technical Report 98	· · · · · · · · · · · · · · · · · · ·
TITLE (and Subtitio)	S. TYPE OF REPORT & PERIOD COVERED
	Interim
nthesis of Electron-Deficient Biferracarboranes	A. PERFORMING ORG. REPORT NUMBER
AUTHOR(e)	S. CONTRACT OR GRANT NUMBER(s)
C. G. Salentine and M. F. Hawthorne	N00014-76-C-0390
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT. PROJECT, TASK
The University of California	AREA & WORK UNIT NUMBERS
Department of Chemistry 🗸	NR 053-608
Los Angeles, California 90024	
CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Chemistry Branch	January II, T9/8
UTTICE OF Naval Research	13. NUMBER OF PAGES
MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unalagaified
	Unclassified
	15. DECLASSIFICATION/DOWNGRADING SCHEDULE
DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution statement (of the obstract entered in Block 20, if different f	ution unlimited
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribu DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, 11 different f	ution unlimited
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution Statement (of the obstract entered in Block 20, if different is	ution unlimited
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribu DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different f SUPPLEMENTARY NOTES	ution unlimited
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribu DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different i SUPPLEMENTARY NOTES	ution unlimited
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution statement (of the obstract entered in Block 20, if different is SUPPLEMENTARY NOTES	ution unlimited
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution statement (of the ebetrect entered in Block 20, if different is SUPPLEMENTARY NOTES	ution unlimited
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different to SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse eide 11 necessary and identify by block number	ution unlimited
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different is SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse eide if necessary and identify by block number Electron-deficient	ution unlimited
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different f SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse eide 11 necessary and identify by block number Electron-deficient Biferracarboranes	ution unlimited
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different to SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary and identify by block number Electron-deficient Biferracarboranes Diamagnetic Enoric	v)
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different is SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse olds if necessary and identify by block number Electron-deficient Biferracarboranes Diamagnetic Ferric Long-range coupling	ution unlimited
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution statement (of the obstract entered in Block 20, if different is DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different is SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse olde if necessary and identify by block number Electron-deficient Biferracarboranes Diamagnetic Ferric Long-range coupling MESTRACT (Continue on reverse olde if necessary and identify by block number	vition unlimited
Approved for public release; distribution statement (of the abstract entered in Block 20, 11 different is . DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different is . SUPPLEMENTARY NOTES . SUPPLEMENTARY NOTES . Electron-deficient Biferracarboranes Diamagnetic Ferric Long-range coupling . MestRACT (Centinue on reverse side 11 necessary and identify by block number The polyhedral expansion of 3.1.2-C5H5FeC2BgH11 eficient biferracarboranes (C5H5Fe)2C2BgH11, (C5H 2BgH11FeC2BgH11] ^C). All three complexes contained iamagnetic. The proposed structures, based on sp raphic data, contain non-bonded iron atoms. Thes irst examples of long-range electron-spin coupling efform.	produced three new electron- form Reports produced three new electron- 5Fe)2C2BgHg(OH) and [C5H5Fe- formal Fe(III) atoms and were ectroscopic and crystallo- e complexes constitute the g through a carborane poly-
DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution statement (of the obstract entered in Block 20, if different if DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different if SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde if necessary and identify by block number Electron-deficient Biferracarboranes Diamagnetic Ferric Long-range coupling MESTRACT (Continue on reverse elde if necessary and identify by block number The polyhedral expansion of 3,1,2,-C5H5FeC2BgH11 ficient biferracarboranes (C5H5Fe),2C2BgH11, (C5H BgH11FeC2BgH11] ^C . All three complexes contained amagnetic. The proposed structures, based on sp aphic data, contain non-bonded iron atoms. These rst examples of long-range electron-spin couplin dron.	produced three new electron- 5Fe) ₂ C ₂ B ₈ H ₉ (OH) and [C5H ₅ Fe- formal Fe(III) atoms and were ectroscopic and crystallo- e complexes constitute the g through a carborane poly-
Approved for public release; distribution statement (of this Report) Approved for public release; distribution statement (of the obstract entered in Block 20, if different if DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different if SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse eide if necessary and identify by block number Electron-deficient Biferracarboranes Diamagnetic Ferric Long-range coupling Mastract (Continue on reverse eide if necessary and identify by block number The polyhedral expansion of 3,1,2-C5H5FeC2BgH11 eficient biferracarboranes (C5H5Fe)2C2BgH11, (C5H 2BgH11FeC2BgH11) ⁽⁵⁾ . All three complexes contained iamagnetic. The proposed structures, based on sp raphic data, contain non-bonded iron atoms. Thes irst examples of long-range electron-spin couplin edron.	produced three new electron- 5Fe)2C2BgHg(OH) and [C5H5Fe- formal Fe(III) atoms and were ectroscopic and crystallo- e complexes constitute the g through a carborane poly-

APPENDIX

TECHNICAL REPORT DISTRIBUTION LIST

No. Copies

No. Copies

Office of Naval Research Arlington, Virginia 22217 Attn: Code 472	2	Defense Documentation Center Building 5, Cameron Station Alexandria, Virginia 22314	12
Office of Naval Research Arlington, Virginia 22217 Attn: Code 102IP 1	6	U.S. Army Research Office P.O. Box 12211 Research Triangle Park, N.C. 27709 Attn: CRD-AA-IP	1
ONR Branch Office	1		
536 S. Clark Street Chicago, Illinois 60605 Attn: Dr. Jerry Smith		Naval Ocean Systems Center San Diego, California 92152 Attn: Mr. Joe McCartney	1
ONP Branch Office	1	Naval Weapons Center	1
715 Broadway		China Lako California 02555	
New York, New York 10003 Attn: Scientific Dept.		Attn: Head, Chemistry Division	
		Naval Civil Engineering Laboratory	1
ONR Branch Office	1	Port Hueneme, California 93041	•
1030 Fast Green Street		Attn: Mr. W. S. Havnes	
Pasadena, California 91106			
Attn: Dr. R. J. Marcus		Professor 0. Heinz	1
		Department of Physics & Chemistry	
ONR Branch Office	1	Naval Postgraduate School	
760 Market St., Rm. 447		Monterey, California 93940	
San Francisco, Calif. 94102			
Attn: Dr. P. A. Miller		Dr. A. L. Slafkosky	1
		Scientific Advisor	
ONR Branch Office	1	Commandant of the Marine Corps	
495 Summer Street		(Code RD-1)	
Boston, Massachusetts 02210		Washington, D.C. 20380	
Attn: Dr. L. H. Peebles			
		Office of Naval Research	1
Director	1	Arlington, Virginia 22217	
Naval Research Laboratory		Attn: Dr. Richard S. Miller	
Washington, D.C. 20390			1
Attn: Code 6100		Dr. R. M. Grimes	
	1	University of Virginia	
The Asst. Secretary of		Department of Chemistry	
the Navy (R&D)		Charlottesville, Virginia 22901	
Department of the Navy			
Room 4E736, Pentagon		Dr. M. Tsutsui	1
Washington, D.C. 20350		Texas A&M University	
	1	Department of Chemistry	
Commander		College Station, Texas 77843	
Naval Air Systems Command			
Department of the Navy		Dr. C. Quicksall	1
Washington, D.C. 20360		Georgetown University	
Attn: Code 310C (H. Rosenwasse	r)	Department of Chemistry	
		37th & O Streets	
		Washington, D.C. 20007	

TECHNICAL REPORT DISTRIBUTION LIST

No. Copies

No. Copies

Dr. D. B. Brown 1 Dr. J. Zuckerman University of Vermont University of Oklahoma Department of Chemistry Department of Chemistry Burlington, Vermont 05401 Norman, Oklahoma 73019 Dr. W. B. Fox 1 Dr. G. Geoffrey Naval Research Laboratory Pennsylvania State University Chemistry Division Department of Chemistry Code 6130 University Park, Pennsylvania Washington, D.C. 20375 16802 Dr. J. Adcock 1 University of Tennessee Department of Chemistry Knoxville, Tennessee 37916 Dr. A. Cowley 1 University of Texas Department of Chemistry Austin, Texas 78712 Dr. W. Hatfield 1 University of North Carolina Department of Chemistry Chapel Hill, North Carolina 27514 Dr. D. Seyferth 1 Massachusetts Institute of Technology Department of Chemistry Cambridge, Massachusetts 02139 Dr. M. H. Chisholm 1 Princeton University Department of Chemistry Princeton, New Jersey 08540 Dr. B. Foxman 1 Brandeis University Department of Chemistry Waltham, Massachusetts 02154 Dr. T. Marks 1 Northwestern University Department of Chemistry Evanston, Illinois 60201

1

1