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1. SUMMARY

Rka During the reporting period (FY 1977), a High Speed Towed Array_§ystem

(HSTAS - see Figure 1) was conceived, designed, and fabricated. The system was

successfully sea tested in July of 1977 in Exuma Sound in the Bahamas aboard the R/V

Harris.

In addition to the test being successful from the point of view of equipment

operability at sea, the following program goals were achieved:

(a) The self noise results (shown in Figures 22-26) revealed tnat the 6 inch

diameter module (FAM) was always quieter than the 3 inch modules, reaching

a peak differential of approximately 15 dB in the frequency range between

80 Hz and 250 Hz at 18 knots towspeed (Figure 26). This general trend,

"which has been verified experimentally, tends to support the theory set forth

by Chase in reference to the dependence of array self noise on diameter (see

EL Section IV).

(b) The demonstration (at sea) of the ability to eliminate ownship radiated noise

SIZ interference from beam outputs by means of an adaptive filter jmployed as

V a noise canceller. Specifically, in the case of a broadband interfering signal,

a maximum cancellation of 15 dB was achieved (Figure 32), while ,or the

r•rrowband case the cane'Iation was 18 dB (Figure 33). For thds latter

effort, the R/V Harris was augmented acoustically by towing the HX-90

noise source.,

(c) ExLensive data gathering (tape recordings) occurred during the sea trial

I•; (channel outputs, beam outputs and tine multiplexed channel data) which

permitted a post sea test improvement/evaluation of the noise canceller
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hardware and software. This latter effort disclosed programming errors,T"

which when corrected resulted in an increase of the cancellation capab:lities

from the values cited above to approximately 23 dB broadband (Figure 34)

and in excess of 25 dB narrowband (Figure 35).

The array self noise and the noise canceller results taken together thus provide

a systems approach to the problem of utilizlvng a towed array behind a high speed plat-

form which injects large amounts of acoustic energy into the water. Further testing

and evaluation of the system at higher tow speeds is necessary to demonstrate the

effectiveness of the HSTAS concept.
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1I. GOALS

The goals of the program have been the following:

(a) Design, fabricate, assemble and sea test a high speed towed array system

capable of operating at speeds in the vicinity of 35 knots.

(b) Acquire self-noise data from two different diameter hoses in the same

array (3 inch and 6 inch).

(c) Demonstrate the operation of an adaptive noise canceller configured to

operate in the Post Beamformer Interfereves Cancellation (PIC) mode to

reduce ownships noise so that array self-noise levels can be measured

at high speed.

NOTES: 1. All three goals were met during the July 1977 Sea Test within the

operational constraints of the R/V Harris.

2. Goal (b) above requires some added detail. Although it wuld have been

desirable to not only demonstrate the relative difference in self-noise

performance between the two hose diameters but also to have the lowest

(quietest) configuration available, this was not possible due to economic

considerations. More specifically, the cost of acquiring a 6 inch diam-

eter hose utilizing the "state of the art" hose-wall was beyond the fiscal

reach of the current program. Thus, it was decided to forego the

Dr •absolute performance and focus only on the relative effect of diameter.

This was achieved by fabricating A-1 the acoustic module hoses from

rubber rather than PVC which is known to produce lower self noise levels

at the water temperatures of Exuma Sound.

3



IIi ADMINISTRATIVE INFORMATIONj The High Speed Towed Array System (HSTAS) shown in figure 1 is the result

I •of a cooperative funding effort between the Navy (ONR) and Hughe3 Aircraft. More

specifically the principal components of the system had the following sources of

support:

4-Component Source

1. Towed Array ONR (GFE Telemetry from PME 124)

2. Tow Cable GFE-NUSC/NLL

S. Receiver GFE-PME 124

4. Beamformex Hughes

5. MINIPRO - Adaptive Noise Hughes
Canceller

The ONR funded portion of the HSTAS Program (towed array) was carried out

under Contract Number N00014-71-C-0223 Mod. P00014 (8 March 1977). The Hughes

hardware (Beamformer and MINIPRO) was developed under the Hughes Aircraft IR&D

Program in the area of Passive Sonar Development prior to the award of the ONR

Contract.

The program sponsor was Mr. G. Boyer of OYR Code 222. The program at

1 Hughes was manvged by Mr. S. Berlin of the Data Processing Products Division of

the Gruund Systems Group at Fullerton, California. Valuable assistance was pro-

vided by Mr. J. S. Diggs of MAR Incorporated in RockviUe, Maryland.

44&V
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IV. THEORETICAL CONSIDERATIONS

In Section II, Goals; goal (b) was to "acquire self-noise data from two different

diameter hoses in the same array (3" and 6"). The motivation for this goal origi-

nated in a deire to verify experimentally the theoretical predictions of Chase 1

regarding thi: dependence of towed array self-noise on hose diameter.

The self noise level perceived by the hydrophone is due (neglecting tow cable

strum and array free-end effects) to the turbulent boundary layer on the exterior

surface of the hose. This boundary layer has a power spectral density distribution

that is continuous in wave number k = 2 Ir/X. However, following Reference 1, thtee

regions of this spectrum are identified for study in connection with the present

problem. They are:

1. Convective component (k t-_S)

2, Resonant wavenupber component (kr kr(w))

3. Low wavenumber component (ka s 1)

where: k = wavenumber

w 27rf = frequency

a= Hose wall radius

Subscript r = Denotes hose-fluid resonance

"TheU = Towed array velocity

The first component mentioned above occurs in the frequency region of the

boundary layer spectrum where most of the energy Is. However, for a towed array

in which the scattering is minimized by reducing the size of interior components, the

contribution from the convective term becomes negligible as explained in Reference 1.

To be more specific, the convective component of the flow noise spectrum is

Proportional to:

5
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where: Cr

"where: U = Towvelocity

E = Elastic modulus (hose)

h = Hose wall thickness

Aa = Distance from boundary layer to sensor

a = Hose radius

P = Fluid density

The FAM (Figure 9) configuration shown in cross-section is a practical .xample

of an attempt to achieve a low scattering cross-section.

The second component of the turbulent boundary layer spectrum, the energy at

resonant wave numbers (kr) is also shown in Reference 1 to be a negligible contributor

to the noise level perceived I the hydrophone. In this case the level transmitted

through the hose is shown to be proportional to:

2 Eh and • = Hose loss tangent (damping).

Finally, the third region of the boundary layer spectrum (low wave numbers)

is the one that would be expected to contribute most significantly to the noise level

at the hydrophone in the absence of scattering. The contribution of this component is

also inversely proportional to • and CO as was the case for the resonant component.

6•-ic



Furthermore, in reference 2 the dependence of the low wavenumber componokit

of the boundary layer pressure field on hose radius is given by the following expression:

ckca-4UJo5

Thus, a doubling of the hose radius (v) would be expected to result in a 12 dB decrease

in hydrophone self-noise if it is due largely to the low wave number component of the

pressure field.

It is to be emphasized that the foregoing brief summary of the theoretical model

of towed array self noise applies to the case of a low scattering configuration only.

The FAM cross-section shown in Figure 9 does indeed approximate this latter ideal.

The control modules however (Figure 4), were more densely packed with respect to

the effective scattering cross-section of the interior components. Perfect scaling

between t-. FAM and control modules did not exist because the funding did not allow

for geometrically scaled electronics and hydrophones to be acquired. The hose

diameter, wall thickness and reinforcing cord arrangement were scaled in the ratio

of 2 to 1 (Fit.M to Control). Further experimentation and analysis will be needed to

fully resolve the question of what the impact of the lack of complete scaling is on the

measured data.

7
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Figure 2 is a plot extracted from reference 1 which summarizes Chase's predictions

about the effects of diameter on towed array self-noise levels. On this figure, the

pertinent cases are labelled "0"1 and "1" with each group of three curves correspond-

ing to a different tow.'ng speed (15, 30 and 60 knots).

The work being reported on in this final report had as one of its goals an experi-

mental assessment of the predictions briefly reviewed above. In order to measure

the flow noise, the biases Injected by a high speed tow L,'Ap have to be removed. The

adaptive canceller to do this is discussed in Section V. B. 3.

I I
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V. SYSTEM DESCRIPTION

The High Speed Tc,;,,ed Array System consisting of a towed array, tow cable,

telemetry receiver, beamformer, noise canceller and data reduction and recording

equipment is shown schematically in Figure 1. The system functions include:

(a) Provision for simultaneously acquiring data from two different diameter

towed array modules (FAM and Control Modules).

(b) Provision for forming beams from an array with a design frequency 50%

higher than current tactical arrays. The reason that a higher design fre-

quency is desired for the HSTAS is that as tow speed increases, the self

noise of the array builds up most rapidly at the low frequency end of the

spectrun, moving higher in frequency as the tow speed is increased. Thus,

one will have to rely on higher frequency radiated target energy for detection.

"This is illustrated in Figures 22 to 26. The lowest self noise levels will

occur at the higher frequencies and therefore the design frequency (frequency

of maximum gain against ambient noise) is increased relative to a lower

speed system. Twenty single-bydrophone channels are used for beamforming

k • in the HSTAS. The number twenty is a compromise between beamwidth (60

at broadside) and hardware complexity both in the array and in the beam-

former. Multi-hydrophone groups are often used to provide some gain

against flow noiae. However, this gain varies with speed and frequency and

introduces still another variable into a relative (3 inch vs 6 inch) measure-

ment experiment like the present one. Therefore, the reason for using single

hydrophones (as opposed to groups of 2 or more) is twofold:

(i) To avoid any ambiguity about group gain as a function of speed, frequency

and array location.

9
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(ii) Space limitations within the array because the higher design frequency

rbsults in smaller distances between channels (see Figure 8).

(c) Provision for experimentally evaluating two types of hydrophone mounts

within the FAM as shown in Figure 10.

(d) Provision for making accelerometer measurements to quantitatively assess

the vibration levels in the array as a function of speed, frequency and

location (see Figure 21).

(e) Provision for monitoring the electronic noise of the array by installing

pressure insensitive capacitors in the FAM.

(f) Incorporation of an environmental module (see Figure 1) to measure array

depth and tension under tow so that the theoretical hydrodynamic calcula-

tions could be checked.

(g) Provision for assessing inter-hydrophone correlation by having several

different spacings between elements (see Figure 21).

Thus, the HSTAS design rcepresents an effective tool for investigating the relative

flow noise levels under various combinations of environmental conditions.

The primary components of the High Speed Towed Array System (HSTAS) are

shown schematically in Figure 1. For the sake of clarity the following descriptions

will be divided into two parts; the towed array and the shipboard electronics.

I10
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A. The Towed Array

The towed array consists of the eight separate modular components listed below:

Module/Component Remarks

1. Environmental Module (P, T) Hughes supplied

S2. Forward VIM GFE-NUSC/NLL

3. Forward Control Module New

4. Forward Transition Element New

5. Fat Array Module (FAM) New

6. Aft Transition Element New

7. Aft Control Module New

8. Aft VIM GFE-NUBC/NLL

1. Environmental Module

This was adapted from an array fabricated previously by Hughes and was designed

to sense static pressure (depth) and tension at the nose cone while towing.

S2 &8. Forward and Aft VIM1

.hese items were borrowed from Dr. A. E. Markowitz of NUSC/NLL who had

j ;fabricated them in connection with the STAMM Program. They are fully documented

- I • in reference 3. Their seaworthiness and vibration isolation (low frequency)

capabilities were verified during the sea test described in the cited reference.

FA
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3&7. Forward and Aft Control Modules

These items were designed and fabricated specifically for the HSTAS. Their

purpose was to provide a 3 Inch array for comparison within the array with the

6 inch diameter (FAM) self -noise levels. Control modules were placed in front of

andbehind the FAM in order to verify that the change in array diameter had no

impact on self-noise levels, which it did not. Figure 3 is a photograph of the interior

of one control module showing six single channel telemetry cans, four single element

hydrophones and two accelerometers (one on each module bulkhead). Also visible in

this photograph are the strength members, coaxial cable and individual sensor leads.

Figure 4 is a view of the cross-section of a control module at the location of a

hydrophone* installation. Visible in this latter photograph are the hydrophone mount,

hydrophone, strength members and reinforcing fabric in the hose wall.

}i The hose wall of the control rrodule was designed V) be exactly one-half the

thickness and contain one-half the amount of reinforcing cord that the FAM hosewall

does. The rationale for the simple factor of two was to allow for the theoretical

determination of the effects of diameter and hosewall thickness to be made as

explained in Section IV. The engineering details (diameter, wall thickness,

material and reinforcing structure) of the control module hose are shown on Fig-

ure 4 which is the drawing from which the hose was fabricated by the vendor

(American Rubber Company of Oakland, California).

'_ _

t *The hydrophones utilized in the HSTPS. were manufactured *by EDO Western,
Salt Lake City, Utah with a nominal sensitivity of -187 dBV rel4Pa and a nominal
capacitance of 1000 pf.

12
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4&6 Forward and Aft Transition Elements

Since the HSTAS towed array has two different diameter (3" and 6") modules

in It, it is necessary to provide a hydrodynamically smooth transition a. both ends

I of the Fat Array Module (FAM) as shown schematically in Figure 1. The transition

design was not separately evaluated due to a lack of time and funds. It is the result

of the collective engineering judgment of Dr. P. P. Rispin of DTNSRDC, ONR, MAR,

Inc. and Hughes.

The transition elements are shown in Figure 6. The lateral surface of these

members is rubber and they are liquid filled (fill fluid) in order to ensure uniform

neutral buoyancy. Figure 7 is the engineering drawing that defines the transition

elements in detail.

5, Fat Array Module (FAM)

The FAM contains most of the data channels of the array (27 in all of which 20

were used for beamforming, 5 for correlation studies, and two for capacitors -

the array layout is discussed more fully in Section VII). Figure 8 is a photograph

of the interior details of the FAM. Visible in this photograph are the single

channel telemetry cans, hydrophones and mounts (two types for comparative evalua-

tion), strength memoers, coaxial and sensor cabling the module bulkheads.

The hydrophone mounting scheme used in most of the FAM data channels Is

shown in Figure 9, and Figure 10 shows the two types of hydrophone mounts compared

in the FAM; the soft polyurethane spider and the open cell reticulated

4 foam. The FAM hose is shown next to the control module hose in Figure 11.

1



In Figure 12, a detailed view of the FAM bulkhead, strength member termination and

typical hydrophone mount is shown.

The FAM hose was designed to be twice as large as the con.rol module hoses

(an diameter, wall thickness and amount of reinforcing cord) a~d to utilize the same

rubber compound (butyl). These details are shown in Figure 13 which is the engineer-

Ing drawing for the FAM hose fabrication.

B. Shipboard Electronics

The shipboard electronics (see Figure 1) portion of the HSTAS (excluding data

reduction equipment aboard the R/V Harris) consists of the following principal

components:

Component Remarks

1. Telemetry Receiver GFE-PME 124

2. Beamformer Hughes

3. Adaptive Noise Canceller Hughes

1. The Telemetry Receiver

The telemetry receiver shown in Figure 14 is the Double Side Band Amplitude

Modulated (DSA.M) receiver cabinet designed for what was known as the XTASS

Program. Both the telemetry transmitters (in the array) and the receiver cabinet

came from XTASS via PME-124. It shuld be emphasized that the telemetry trans-

I mitters and the receiver were designed (several years ago) as a towed array system.

1 ,14



The primary function of the receiver is to demodulate the frequency multiplexed

RF carriers (one for each data channel) and produce individual data channel audio

outputs at about 1 volt rins. At the receiver output the individual data chanudls can

be recorded and/or sent to the beamformer for spatial processing (beamform!ng).

The receiver cabinet al-jo contains the array power supply.

2. Beamformer

At high towing speeds, a towing platform such as the R/V Athena will inject

large amounts of acoustic energy into the water in the frequency band of interest

T (nominally 10-2000 Hz). Thus, even though the towed array is displaced several

thousand feet aft of the towship by the tow cable there is still a high probability that

the hydrophone channel outputs will be dominated by ownship radiated noise at most,

if not all, speeds. A dynamic range analysis revealed that even with the radiated

noise levels of the R/V Athena, the system would remain well below overload

(saturation). Assessment of the acoustic performance of the towed array would

not be possible without the ability to form beams and thus steer away from the

ships radiated noise field.

Besides reducing towship noise, the beamnformer provides an improvement in

signal-to-noise ratio (beam output vs. single channel) due to the process of summation

in which both a spatial and temporal averaging of the noise field occur, i.e.,

rejection of ambient noise and processing aginst flow noise.

The beamformer designed for the HSTAS is shown functionally on Figure 15 and

was fabricated by modifying a beamformer built for the Ships Towed Underwater

Detector (STUD) Program several years ago.

15
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Referring to Figure 15, the array Interface function provides the CGA (controlled

g gain amplification) and delta-m xulation of the 20 hydrophone signals received from

the iraceiver cabinet. Here the data is converted from analog to digital for digital

processing. The RAM beamformer .erforms the function of delaying the array

channel signals such that they add in phase to generate a maximum response axis

for a particular steering direction. The RAM beamformer provides preformed beams

at angles determined by the arc sine of multiples of 1/10 (1/10, 2/10, . . . 10/10)

in two quadrants, plus one broadside beam for a total of 2 x 10 + 1 = 21 beams at a

-3 db crossover.

The HSTAS beamformer utilizes the outputs of the 20 hydrophone channels in

the FAM (spaced at 2.5 feet) to form 21 beams with either uniform shading or Taylor

shading for -35 db side lobes. Figure 16 summarizes the MRA's (Main Response Axes)

f. and angular coverage of the HSTAS beam pattern (which is symmetrical about the

broadside beam).

The following hardware modifications (to the STUD configuration) were required

in order to adapt the beamformer to the present application in a cost effective manner:

: Design frequency increase by a factor of 3/2 due to the more closely spaced

hydrophone channels.

. Clock frequency increase of 1.25 due to the changes in the design frequency

and the number of beams.

16
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* Reduction in the number of preformed beams from 25 to 21 (hardware

economy).

* Reduction in the number of steered beams from 2 to 1 (hardware economy).

S* * Deletion of the broadband processor (not required in present application).

* Modernization of the control logic utilizing PROMS (firmware) in order to

facilitate any further changes in the future.

* Rewiring of the 'fback-plane" and the use of a new beamformer mechanical

chassis (ease of assembly and checkout).

The foregoing modifications did not decrease the beamformers capability but rather

tailored it to the needs of the HSTAS.

An important feature of the beamformer is what is known as the array simulator.

This supplies the beamformer with signals that simulate the presence of a target on

any given bearing and also the ability to move the target (in azimuth) in steps of

approximately 1. 5°. The simulated target consists of one or more tones super-

imposed upon a noise background with a sea state slope (6 db/octave).

The complete beamformer (and adaptive noise canceller) is shown in Figure 17

NK as it was on the R/V Harris during the July 1977 sea trial.

BE1
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3. Adaptive Noise Canceller

The objective of incorporating an adaptive canceller into the beamformer is to

obtain unbiased flow noise measurements on the Fat Ar-ty Module in tne presence of a

very noisy tow ship at high tow speeds. The canceller is described and analyzed in

References (6-16). The basic principle is to obtain a measured reference that is

highly correlated with the interference component in a signal channel. The measured

k reference is used as the input to an adaptive filter which iterates to converge to

minimize the power in the cancelled output. Figure (18) shows a block diagram of

this function. The adaptive filter responds to the correlated components in the

reference and the signal channel, and attempts to maximize that correlation ar.l its

output. If the interference is the only correlated component, then it is subtracted

out in the minimum mean square error sense. If there is signal cross-talk in the

reference channel, then the adaptive filter will respond to the signal correlations

as well. Some bias can therefore be Introduced in the event that a "clean" (signal

free) reference is not available. This effect is studied in Reference (14).

For the application herein, the signal of interest is the flow noise for different

diameter towed arrays. The i. terference is the tow ship which at high speeds will

be a dominant phenomenon. The reference for cancellation is a beam steered at the

tow ship. Ideally, the reference beam should be formed using hydrophones other

than those on which the flow noise measurements are being made. Then there are

no common elements, .here are no correlated components due to the flow noise in

the reference, and an unbiased estimate of the flow noise results at the cancelled

hydrophone output. It is precisely this approach which is to be used on the high

speed trials (FY 1978).

18
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For the initial sea test, at low towing speeds, the flow noise differences for the

two array diameters could be measured directly because of the quiet tow ship. To

artificially create a strong tow ship interference, the HX-90 source, Figures (29, 30)

was towed as well, so that it and the cow ship both enter on the endfire beam of

towed array, Figure 31. When the strong source is on, hydrophone outputs consist

primarily of plane wave Interference from the towed source. To demonstrate the

cancellation at sea, the endfire beam was used as a reference and the interference

- components were removed from any other of the twenty pre-formed beams.

19



VI. .HARDWARE EVALUATION

The HSTAS Program involved essentially three phases of evaluation:

1. In-plant/laboratory testing

2. Acoustic calibration

3. Sea Test

The first two are treated in this section, while the third is treated separately

in section VH.

A. In Plant/Laboratory Testing

In order to verify that the system was operational, all the primary components

shown on Figure 1 (including the tow cable) were assembled at Hughes in June of 1977

t for system test and check-out. A representative list of the kinds of items that were

checked follows:

1. Hydrophone polarity

2. Telemetry transmitter frequency vs. location

3. Telemetry carrier RF levels

4. Array power supply operation

|r 5. Electrical continuity in the array

2 i6. Hose module pressure test

7. Array telemetry can pressure test

8. Array module tension test

9. Nose-cone to tow cable tension test

20
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10. Receiver to beamfornier interface

11. Beamformer to MINIPRO Interface

12. Beamformer beampattern verification

(a) Shaded

(b) Un-shaded

13. IBeamformer CGA Operability

14. MINIPRO functioning (operability)

15. RF Tape Recorder Operability

16. RF Tape Recorder/Beamformer Interface

Represcntative data from the in-plant testing are shown in Figures 19 aLd 20.

Figure 19 is a typical trace of electronic noise level vs. frequency at the output of

a particular receiver channel. This latter curve is essentially the same as the

original test data obtained when the equipment was first put to sea.

Figure 20 is a chart summarizing the following important data:

1. Receiver card location, (receiver location)

2. Data Channel Number

3. Carrier Frequency (KHz)

4. Carrier Amplitude level (dbm)

5. Sensor location (F=-FAM, ACC=Accelerometer, A. C. =Acoustic Control).

B. Acoustic Calibration

The entire array and telemetry receiver were taken to NRL at Leesburg, Florida

and subjected to an acoustic calibration. This permits the determination of an overall

transfer function from the "water" to the receiver output. The details of this

calibration will be reported in the forthcoming MAR Inc. report documenting their

participation in the HSTAS Program. Preliminary data are available in reference 5.

g --- - A
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"VII. SEA TEST

The High Speed Towed Array System (HSTAS) was sea tes-ted aboard the

"R/V Harr!s (Trial 7H8) in Exuma Sound during the perioe L6 to

22 July 1977.

All the goals set forth in Section II of this report were met within the opera-

ttonal constraints of the R/V Harris (i. e. , Top speed in the vicinity of 20 knots).

The planning of the sea test is fully documented in reference 4.

For the sake of clarity, the discussion of the actual data will be divided into

two parts:

A. Array Self Noise Data

B. MINIPRO - Adaptive Noise Canceller Data

A. Array Self Noise Data

Two types of array self noise data were acquired during the sea trial; channel

level and beam output. As mentioned in Section U, Goals; the intent was to achieve

a measure of relative self-noise performance between the FAM and Control Modules

only.

Figures 22 through 26 show the relative performance (channel level) of the

Control Modules (3") and the FAM (6") for speeds from 6 to -8 kts. It is clear from

§ an inspection of these latter figures that the FAM was quieter at all speeds and

frequencies. In particular, at the higher speeds (12 kts), the FAM is as much as

{ 2
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15 dB quieter at 100 Hz. Although the latter comparison is very satisfying in that it

supports the theory set forth by Chase, there are still many unanswered questions

that can only be resolved by further modeling, data analysis and experimentation.

In particular, the influence of the telemetry cans and hydrophones as scattering

centers in the cokitrol modules is difficult to ansess at this time. Thus, further

work is needed before any definitive conclusions concerning the validity of the theory

(ref 1) about the affect of array diameter on self noise can be made.

Regarding self noise levels measured at the beamformer output, Figures 27 and 28

are two typical cases for 15 Kts. and 18 Kts. respectively. The solid line in each

figure represents the single channel self noise in FAM averaged over all of the chan-

nels. The distance below this line to any particular beam at any frequency represents

the beamformer gain. As might be expected the beamformer gain is higher for beams

with MRAs in the second quadrant (0900 to 1800) than in the first (0000 to 090') where

radiated noise is entering the beam on the main lobe. Beamforming was done only

with t•e 20 uniformly spaced channels in the FAM and therefore the control module

channels were not involved at this point.

It is to be emphasized that from a systems point of view, only a beamformer

output self noise level is of any significance. These latter curves underscore two

important facts:

1. The beamformer was indeed operational at sea.

2. The contamination of the forward beams by ownshtp radiated noise indicates the

need for a noise canceller if full azimuthal coverage is to be achieved at

high speed.

i7
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B. MINIPRO-Adaptive Noise Canceller Data

The results taken at sea using the MINIPRO Adaptive Noise Canceller (with sub-

sequently irVentified programming errors) are shown in Figures 32 (Broadband Source

Spectrum) and 33 (Narrowband Source Spectrum). The source spectra were obtained

by driving the HX-90 with a random noise generator shaped by a one third octave filter

1~ set for the broadband case and an oscillator plus the random noise generator for the

narrowband case.

Figures 32 and 33 each contain three 'races which are the outputs of the

reference beam (pointed at the HX-90), the beam of interest, and the beam of

Interest with the Interference from the reference beam subcracted from It. This

last curve Is labeled "PIC'D" In the figures. In the narrowband case the beam of

Interest was the broadside beam. In the broadband case beam 6 at bearing 0600

4 was used. The difference in level between the reference beam and the other beam

outputs Is due to the sidelobe rejection of the HX-90 by the beanis of interest. The

difference in level between the broadside beam (or beam 6) "PIC'D" and "UN-PIC'D"

represents the cancellation provided by the adaptive filter. Figure 32 shows broad-

band cancellation of 6 to 15 dB depending on frequency while Figure 33 shows 18 dB

of cancellation (at the tonal peak) for the narrowband case.

"Hydrophone data was recorded during the sea test and used for further laboratory

testing afterward. Several hardware and coftware errors were identified in Minipro.

These problems were corrected, and the data in Figures 32 and 33 were re-run with

the canceller operating correctly. The results, shown in Figures 34 and 35 show

the increase in cancellation capability. Comparison of Figures 34 with 32 shows an

increased low frequency cancellation (below 100 Hz), and reduction of the interference

in the mid-band region down to the noise floor. The broadband source was cancelled

by 23 dB in the center of the band.
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Comparison of Figure 35 with 33 demonstrates the extent of the improvement in

narrowband cancellation as a result of the corrections to Minipro. The tonal inter-

ference at 550 Hz Is reduced by approximately 25 dB.
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VIII. CONCLUSIONS AND RECOMMENDATIONS

A. The goals of the HSTAS Program for 1977 were met completely within the

operational constraints of the R/V Harris. Specifically:

1. An HSTAS was successfully designed, fabricated and tested at sea.

2. Self noise data was acquired for two different diameter modules in the

same array. The results support the theory (6" quieter than 3") but

need to be studied more extensively as well as repeated before any

generalizations can be made.

3. An adaptive noise canceller was successfully demonstrated at sea, and

should be an integral component of any high speed, tow-ship noise limited

system.

B. The HSTAS system has been demonstrated to be ready for tests at speeds in

the 35 knot range.

For the next phase of testing, the adaptive noise canceller should be applied at

the hydrophone (channel level) as well as or beam outputs to permit direct observation

of the flow noise at the hydrophone level at high speeds. To demonstrate the tactical

utility of the system, a test Involving a second (source) ship at various combinations

of range, speed and bearing could assess the detection capability at high speeds.
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Figure 13. FAM Hose -Engineering Drawing
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FROM RCVR RRAY NOISE RANDOM ACCESS
CABINT RMIRTERFACE CMEMORY SHADING

CACLE BEAN.I ORMER

"DEMODULATION 1
r, ODD OR EVEN BEAMS
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CONVERT. TRUM ANALYZERS~ERS
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F r ODD/EVEN
BEAM SELECT

Figure 15. Beamformer Functional Block Diagram
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WA

k BEAM MRAs AND ANGULAR COVERAGES

BEAM 6MRA (DEG BEAM CROSSOVER BEAM COVERAGE
NUMBER RE F'WD E.F.) TO CROSSOVER (DEG) (DEGREES)

1 90.000 -2.866 TO 2.866 5.732

2 84.261 2.866 TO 8.627 5.761
3 78.463 8.627 TO 14.476 5.849

4 72.542 14.476 TO 20.487 6.011
5 66.422 20.487 TO 26.744 6.257

6 60.000 26.744 TO 33.367 6.623

7 53.130 33.367 TO 40.542 7.175

8 45.573 40.542 TO 48.590 8.048

9 36.870 48.590 TO 58.212 9.622

10 25.842 58,212 TO 71.805 13.593

11 0 71.805 TO 108.195 36.390

Figure 16. Beam Pattern Data
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t+d (t) - c(t)

5(t)

REFERENCE BEAM

S(t) = DESIRED SIGNAL

I(t) = INTERFERENCE

Figure 18. Adaptive Noise Canceller (Minipro)
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RCVR CHANNEL R.F. R.F.
POSITION NO. FREQUENCY LEVEL SENSOR

1 20 1b71.61 -37.2 F.1

2 53 1374,63 -33.0 TENS

3 21 1662.03 -36.8 F-2

4 54 1326 73 -34.0 PRESS

5 22 1552.45 -37.0 F-3

6 51 1920.69 -34.8 F.C. ACC #1

7 23 1642.8/ -37.0 F-4

8 52 1911.11 -34.6 F.C. HYD

9 24 1633.29 -37.4 F-5

10 57 1997.33 -34.8 F.C. HYD

11 25 1623.71 -37.2 F-6 ARRAY CONFIGURATION
12 58 1987.75 -35.5 F.C. HYD

NC - VPM - TEN - PRESS - SIM VIM
13 26 1614.13 -38.2 F,7 - FWD CONT - FAM - AFT CONT

14 61 1959.01 -36.5 F.C. HYD R.F. LEVELS MEASURED '

15 27 1604.55 -38.8 F-8 DIST BUSS WITH ATTEN BETWEEN
D.:COUPLER AND CABLE EQUALIZER16 62 1:139.85 -37.7 F.C. ACC #2

17 30 1575.81 -39.9 F-9 ARRAY VOLTAGE - 150V
ARRAY CURRENT -- 1.75 A

18 49 1393.79 -38.0 CAP # A
19 31 1566.23 -40.2 *F-10

20 43 1451.27 -39.5 *#21 HYD

21 32 1556.65 -40.4 F-11

22 44 1441.69 -40.2 #22 HYO *FOAM MOUNTED HYDROPHONE
23 33 1547.07 -40.0 F.12
24 45 1432.11 -400 *#23 HYD

25 34 1537.49 -39.5 F-13

26 46 1422.53 -39.5 #24 HYD

27 48 1403.37 -38.5 #25 HYD

28 35 1527.91 -38.8 F-14
29 50 1384 21 -38.0 CAP #2

30 36 1518.33 -38.8 F-15

31 1 1901.53 -41.5 A.C. ACC #1

32 37 1508.75 -38.5 F-16

33 2 1891.95 -41.1 A.C HYD

34 38 1499.17 -38.7 P-i 7
35 16 1748.25 -41.7 A.C. HYD

36 39 1489.59 -38,5 F-18

37 17 1719.51 -41.5 A.C. HYD

38 40 1480.01 -38.2 F-19

39 18 1709.93 -42.0 A.C. HYD

40 42 1460.85 -39.0 F-20

41 19 1681.19 -41.4 A.C. ACC #2

4 Figure 20. Receiver Data
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Figure 30. HX-90 Output Spectrum
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achieved:

a) The self noise results (tuhýn i2 revealed that the
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ia a-i ,y,-fe-nds to support the theory set torth by Chase1

,/in reference to the dependence of array self noise cn diameter
(see Section IV).

b) e demonstration (at sea) of the ability to eliminate cwnship
radiated noise interference fran beam outputs by means of an
adaptive filter eaployed as a noise canceller. Specifically, inS~the case of a broadband interfering signal, a maximum car ellation
of 15 dB was achieved (Figure 32), while for the narrowband case
the cancellation was 18 dB (Figure 33). For this latter effort,
the R/V Harris was augmented acoustically by towing the HX-90
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The array self noise and the noise canceller results taken together
thus provide a system approach to the problem of utilizing a towed
array behind a high speed platform which injects large amounts of
acoustic energy into the water. Further testing and evaluation of
the system at higher tow speeds is necessary to demonstrate the
effectiveness of the HSTAS concept.
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