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FOREWORD

This report presents an algorithm for extracting ephemeris errors from satellite radar altimetry data.
The algorithm is currently used at the Naval Surface Weapons Center, Dahlgren Laboratory for reducing
GEOS-3 altimetry data to geoid heights and vertical deflections. The report was reviewed by R. J.
Anderle, Head, Astronautics Division, and by C. J. Cohen, Research Associate, Warfare Analysis Department.

Appreciation is extended to Alan C. Chappell for coding and implementing this algorithm, and to
Ronald J. Koenecke and Ted Sahlin for check-out and assistance on an earlier version of the algorithm.
Discussions with P.J. Fell which helped to illuminate some of the theoretical aspects of this problem are
appreciated.
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I. INTRODUCTION

The accuracy of geoid heights and vertical deflections derived from satellite altimetry depends pri-
marily on the accuracy of the satellite’s ephemeris and on the measurement noise. The measurement noise
is for most part a iiort-wavelength (< 1 km) random process; it is usually taken out by filtering or smooth-
ing the along-track geoid heights.! The ephemeris errors? on the other hand, consist mainly of long-
wavelength (> 1000 km) biases and bias rates. These can be solved for and eliminated if a sufficient number
of track intersections is available in a given region. The data for this solution are the geoid-height discrep-
ancies (differences of the two filtered geoid heights) at the intersections.

This report presents an approximate least-squares algorithm for such a solution. It is an iterative
algorithm in the sense that first it solves for biases alone. Subtracting the effect of this solution from the
original (Oth-order) discrepancies leaves a set of 1st-order discrepancies. These are then used to solve for bias
rates, leaving 2nd-order discrepancies, which are used to solve for 2nd-order effects, etc. This process can be
terminated at the user’s discretion.

It is easy to show that this iterative procedure does not give the optimum least-squares solution. For
example, if the algorithm is terminated with the second-order solution, the result will not be as good as a
least-squares solution with the full parameter set consisting of biases, bias rates and 2nd-order terms. If
biases alone are desired, then this algorithm of course will give the correct least-squares solution. It is dif-
ficult to quantify by how much the iterative, segmented solution is degraded. Test cases show that for most
applications this will be negligible. It has the great advantages, however, that it is relatively simple and re-
quires much less computer time and storage. This comes from the fact that the matrices to be inverted in
this algorithm have dimensions which depend only on the number of tracks, and not on the number of
tracks times the number of bias parameters to be solved for, as would be the case with the full least-squares
solution.

The general algorithm, which is derived in chapter 2, takes account of missing data points (where no
intersections exist) by giving them zero weight. All other data are weighted equally. The problem is
inherently singular with infinitely many solutions. The singularities are lifted by assigning a-priori variances
for the bias parameters on each track. The track biases are assumed to be uncorrelated. In chapter 3 the
solution is presented for biases only when there are no missing data points. This solution turns out to be
very simple; no matrix inversions are needed.

In chapter 4, several test cases are presented which will be useful for check-out purposes. Finally,
Appendix A gives a step-by-step procedure for coding the algorithm on a computer.
II. DERIVATION OF THE ALGORITHM
A. THE OBSERVATION EQUATIONS

Figure 1 shows a network of n + m intersecting tracks which consist of n “rows,” 1 <i<n,and m
“columns,” 1 <j<m. The index i will always denote a row, and j a column.

We thus have a total of n*m intersections. At each of these intersection points (i, j) we either have a
data point A;;, or the data point is missing in which case an asterisk is placed at that intersection. (In
practice a missing data point means that there is no intersection.)
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Figure 1. Intersection Data 4;;

The model for the biases on each track (row or column) is assumed to be a power series in 7 — the
time along the track, with 7 = 0 at the middle of the track:

b(r)=b+br+br? +.. bU)rk o

We shall first solve for the constant biases alone. Subtracting their contribution from the original data AS})
will give a new set of residuals AS,” This new set of data will then be used to solve for the bias rates b,

yielding 2nd-order residuals A(l?), etc., until any desired order k.
The observation equations for a least-squares solution of any order k are given by
A = xiji = 3;Vy
1<i<n, @
1<j<m,

where the unknowns x;, v;, and the constants Uy;, V;; are defined in Table 1.
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The times 7 in this table are:

-r,‘f) =jth time on i® row,

r,‘f) = ith time on j column.

Table 1. The Unknowns x;, y; and Uj;, V; of Equation (2)

Solution Order | x; ¥ Uji Vi
0 (bias) b; b; 1 1
1 (bias rate) b; i’i T’{f) Tl(lq)

2 R R

K b | b | )k | ok

B. THE NORMAL EQUATIONS

The normal equations for the least-squares solution of Equation (2) with arbitrary weighting W are
‘ ATwa (:>=ATWA, 3)

where A is the (n*m)X 1 data vector formed from the residuals Ag‘ ). A4 is the (n*m)X(n + m) matrix of
partial derivatives

Y

B

a8, &
Wy

1<k<nm, 1<i<n, 1<j<m.

It is written out explicitly in Table 2. The weighting matrix W will be used here only to accommodate
missing data points, although it can be implemented in general as an arbitrary weighting matrix for all of
the data. All existing data 4;; will be given unit weight. Accordingly, let W be the (n*m)X(n+m) diagonal
matrix with

Wkk =] fork= (l, j) where A"‘, exists,

=0 for k = (i, j) where Ay is missing.
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Table 2. The 4 Matrix

ATA ("‘>=,4TA.
Y

[
i . e e A SR L e R m
!
E = Uy, =¥
' 2 | Uy =Ky O
i=1 ? 31 O Rt !
( ) \\\\ ,
Ly UMl = Vlm 3
1 10U, =V i
2 {0y -V O '3
i=2 3 10U, Q = V23\ ;
. . O \\\\ '
m 0 Um2 T- V?m ‘
1 00 Up - V3
2 100 Uy =¥ O
i=3 3 0 0 Usyy Q - V33\
. e il ~ |
2 o 8 L
: R s O ~
m 00 U,; ~Vin r .
1 Uiy ~ 'l
2 Uy, Tn2 Q
i=n 3 O U3’l = "n3
: RpL
. \\
Ll Umn Q -, Vnm
It is easy to show that this leads to
WA=A, ATw=4T 5)
providing that we redefine Uj; and V;; such that
U,'.' = V,.,. =0 (6)

at all intersections (i, j) with missing data points, and leave them as given in Table 1 for points (i, /) where
4;j does exist. Equation (3) now becomes

(7




C. THE SOLUTION

The matrix 474 in Equation (7) is singular. For the bias solution (k = 0 in Equation (2)), the reason
for that singularity is obvious: we may add to all of the biases x; and y; in Equation (2) an arbitrary
constant without changing the data vector 4;;. For the higher-order solutions similar singularities can be
established. The problem, therefore, has infinitely many solutions. In order to obtain a unique solution
we lift these singularities by imposing a-priori constraints 0; p and 0; ¢ for the row and column biascs,
respectively. The solution of Equation (7) then is

(x>=B'1ATA (8)
Y
with

B=AT4 + 3, 9)

where X is the diagonal matrix of the reciprocal a-priori variances with elements

1
=ie— b (10
Z“ - ki )

With the A matrix as given in Table 2, it is easy to obtain the B matrix as

i
A()l)(u) II wa;»)

B= ____-"_._-—- (ll)

T
Q(an) : M(m)(m)

where A and M are diagonal matrices

m
1
o 2
Ay = Z Ui+ — Joa. (12a)
j=1 oi,R
n l
- 2
My =( D Va+ — |on L
i=1 0/.‘:C
and

The range of indices in Equations (12) are as shown by the dimensions of the four matrices in Equation (11).

The inverse of the B matrix is




b e

w=(A-oatohy (13a)

Z=M-0TA Q) !, (13b)
=-A"102z, (13¢)
Y=-m1Q"w. (13d)

Note that Y = XT', but we prefer to leave them in this form for symmetry reasons. The dimension of the
largest matrix to be inverted (W or Z) is either (nXn) or (mXm), the number of rows or columns. These
inverses will in general have to be done on the computer. In the case there are no missing data points, they
can be done analytically for the Oth-order (biases) solution (see the next chapter).

We may write the solution, Equation (8), in a little more expanded form. The (nX 1) Row Solutions
are

x = Ws® + xs(C), (14a)
and the (mX 1) Column Solutions are
y= YS(R)"‘ZS(C), (l4b)
where
SR
=ATA. (15)
S(C)

The vectors S( ) and S( ) are appro priately weighted sums of the data residuals on each row and CO]UII]I‘I,
viz:

m

=y s, 1<i<n; (16a)
=1
n
CEYS .
i=1

Equations (14) with (12), (13) and (16) constitute the complete solution in matrix form. In Appendix
A the algorithm is given in component form, which is suitable for direct coding on a computer.

1II. SOLUTION FOR BIASES WITH A FULL DATA SET

When there are no missing data points A;; the solution for biases alone can be obtained in closed form,
i.e., the B matrix, Equation (11), can be inverted in closed form. This is a big advantage over the general

solution, so that in applications where only the constant biases are needed, it may be advisable to fill in the
missing data points.
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With a full data set, for the bias solution,

Up=V;=1, (17)
so that Equation (12c) becomes
Q;i=-1, (18)
which may be written as
0=-wl, (19)
where
1
1
1
u= , wv= (20)
1 s 1 mx1

are the (nX1) and (mX 1) constant vectors whose components are all unity. We have the relations
uTu=n, viv=m. 21

We specialize this derivation a little as compared with the general solution, by not allowing arbitrary
a-priori vanances Rather, we require that all rows have the same a-priori variance °R and all columns
another, a . The more general case, with different o’s for each track, can be handled in closed form also,
but requnres much more algebra. Equations (12a) and (12b) now become

A 5 xIII)(’I’ M #IIHY”'I 2
(22)
1 1
EAm s e
OR 9¢
so that Equations (13a) and (13b) can be written as
1 -1
W= R—(]- % uuT> ; (23a)
1 n -1
z=_1-_w7‘> ! 23b)
u ( Au ¥
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These matrices can be inverted by using the general identity for any two vectors a and b

ab”
(tabT) =77 : (24)
1+a’b
The result is
] m
W= — + — T
7\ <1 p uu ), (25a)
1
Z=:<I+;—Ivv7">, (25b)
d = Ay -mn. (25¢)
Equations (13c¢) and (13d) yield
X=—l-uv7" Y=—l-vu7 (26)
d ’ gl T

The solution, Equations (14), can now be readily evaluated to be

Row Biases:
w1 w,ms 1
b: )\s,. +?\d SR+dSC, 1<i<n (27a)
Column Biases.
pO=Lo g Ly 1<j<m (27b)
i u i (] d R> VA <
where Equations (16) give
m n
W= 3 by =3 4, (28)
j=1 i=1
and where we have defined
n m
Se= 30 0. Se= 3040 )
i=1 j




o

Note that the full data set Aj; must satisfy the constraint
S=Sp =-S¢. (30)

With this, the solution, Equation (27), assumes a particularly simple form:

Row Biases:
1 S : :
b’(R)=_7\_ ng)_T . I<i<n; (31a)
aRd
Column Biases:
1 s 5
pO= Lo 5 igjam (1) -
(o o%d

IV. NUMERICAL EXAMPLES

We present here several numerical examples. These may be used as test cases for checking the
algorithm out after it is programmed on a computer. The first four have only six intersections, so that they
are simple enough for hand calculations. The solutions as well as some intermediate results are given. The
last two examples consist of 50 rows and 60 columns.
A. EXAMPLE 1

n=3rows, m=2columns.

A-priori statistics: gz =0 = 3.

We construct data for this example by assuming that the five tracks have the following true biases:

6
By = g =3
brrur = ‘|3 b Rue “<0>‘ (32)

The data matrix A,-I- =b; - bi therefore is

| 6
A=ty i, (33)
74 1
which has a standard deviation
R0 =4,535, (34)

9




Scome intermediate results (see Equations (22) and (30)) are

1 1
7\=2-9', M=3'§', S=-5. (35)
The solution, Equation (31), is:
3.779
P = |-3.800 b©) = 2.900 (36)
958 ' -1922)°

which does not compare well at all with the true biases given in Equation (32). The solution, of course, is
completely insensitive to an overall bias, simply because the data Af.‘.” are so also. We must compare, there-
fore, Equation (36) with the true biases minus their mean (which is b = 2):

4
®) M P o
bTRUE - b‘(“" » brryg - P (-2)' (37
1
Doing that, we find that the solution errors are -5.5, -5.0, 4.2, -3.3 and -3.9%, respectively for the five
biases. This implies that our chosen a-priori ¢ was too small.

The 1st-order residuals, formed by subtracting the solution, Equation (36) from the data, Equation
(33), are:

(1) = A) _ 5. )
AD = AD - b; + b,

121 299
AU=t_ 300 -.122) , (38)
-.142 .036
which has the standard deviation
om= 0.214. (39)

This, when compared with Equation (34), shows the relative efficacy of the solution to reduce the inter-
section discrepancies.

B. EXAMPLE 2
This is the same as Example 1, except that the a-priori variances are increased to

ag =ac = 10.




The solution is
3979
bR =( _3981 |, b©O)= (_ f'ggg) - (40)
-.996 i
which now agrees much better with Equation (37).
The remaining 1st-order residuals are
012 028
AV =|_028 -012], (41)
-.013 .003
with the standard deviation
o= .020. (42)

C. EXAMPLE 3

Here we take the same data A©) as in the two previous examples, but delete the intersection of the
second row with the first column. We keep the a-priori variances as in Example 2:

OR =0'C =10.
Because there is now a “missing data point,” the general solution of section I1IC must be used.

The data matrix is

I 6
W=l s ] 43)

where the asterisk indicates the missing data point; it can be filled in with an arbitrary value. Equations (4)
and (12) become

1 1 1 1
u=[' Y '], v=lo 1}, ¢=-|o 1], (442)
) 1 |
¥ ] 15|
0 201 0
A=l 0 101 of, M=['0 301]. (44b)
0 (4] 2.01 g

Equations (13) yield

1.180262 -.332226 -.829738
wl=[-332226 677774 - 332226/, (45a)
-.829738 - .332226 1.180262

11
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1
- 995025 1.024876 ] (45b) 14

- _[1.014975 £ .995025]

The inverses are

20.387249 19.742660 19.889737
W=[19.742660 20.830026 19.742660 |, (45c¢)
| 19.889737  19.742660 20.387249

(45d)

—20.436714 19.841465
L19.84»]465 20.239281 |

The rest of Equations (13) can now be evaluated as !

20.038895  19.940670 |
X =|19.645015 20.038892 (46a) |
20.038895  19.940670 |
Yy=XxT, (46b)

Equation (16) gives

7 \
SR - <_ 2>, §(C (_ i) : 47 ?
=3 :

so that the solution, Equations (14), are

3.970
9
bR =x=(-3949 | pO=y= <_ ;'gg‘;). (48)
- 1.006 <
The 1st-order residuals are calculated as in Equation (38):
-.002 043
A=« _o38 . (49)
-026 019 ]
Their standard deviation is
o = 033, (50) !

which is but slightly larger than the value in Equation (42) that is obtained with the full data set.

It is interesting to see the effect on the solution of “filling in” the missing data point in Equation (43).
One possible procedure is to replace the missing point by one half the sum of the two averages on the
defective row and column. (For a larger data grid one would not average over the entire row and column,
but only over points near the missing data point). Doing this we get, instead of Equation (43),

12




1 6
A®=|_175-2 |. 1)
-4 1

Since now again we have a full data set, we may use the much simpler solution of chapter 3. Keeping the
same a-priori variances 0g = 0¢ = 10, the solution is

3.458
bR =(-1890 |, bO= (_ :'gzg) ; (52)
-1.517 i
with resulting 1st-order residuals
- .863 897
AV =]1736 -1.754], (53)
- .888 872
whose standard deviation is
o = 1.356. (54)

This is much worse than the corresponding results, Equations (49) and (50), where the missing data point
was not filled in but was given zero weight in the solution. This is undoubtedly dueto the very small data
size. For larger data grids, with relatively fewer missing data points, the degradation of the solution due to
filling in the missing points is not expected to be so severe.

D. EXAMPLE 4

In this example biases as well as bias rates are considered. To each of the biases of Example 1 we add
bias rates as shown in Figure 2. Remember that the time origin 7 = 0 with respect to which the bias rate and
higher-order effects propagate along each track must be placed at the middle of the grid. The data matrix
computed from Figure 2 is

1 5
A9=l65 -3 |, (55)
=35 15
which has the standard deviation
0, = 4.164. (56)

D1. Bias Solution
As in Example 2, we take for the a-priori bias standard deviations

OR =UC= 10.

13
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| bR =6+ 27
T=-l 1 e
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= | b =2
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ﬂ
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Figure 2. Biases and Bias Rates for Example 4

The solution, Equations (31), is

3.531
bR =(-4180 |, bO= (_ fg’gg) (57)

-.449 3

which leaves the Ist-order residuals
.094 -~ .059
AV =| 305 - 348 (58)
-426 421
with a standard deviation
o,y =342, (59) J

D2. Bias Rate Solution

The Ist-order residuals, Equation (58), are now used to solve for the bias rates. We assume a-priori
values on bias rates of

(1) = 4(1) =
o’ =0¢ 5.




The U and V matrices (see Table 1) are readily constructed from Figure 2.
-1 -1
U= ["5 "g "5], V={-5 -5],

whence Equation (12c¢) yields

Some of the intermediate results, Equations (12) and (13) are:
A='54[3X3‘ M=229,2)(2‘
[ 321659 -.109170 218341

w-l = |-.109170 485415 .109170 |:
| 218341 109170 321659

41 = [1:248333 1.041667)
[1.041667 1.248333] "
10.148762  4.148438 -8.296910
W o=| 4148438 3926063 -4.148438:
-8.296910 -4.148438 10.148762
7 = [ 2637703 -2201023]
-2201022  2.637703]°
4.480301 - 4.480301
X = | 2240150 -2.240150|:
-4.480301  4.480301
Y = X7,

Equations (16) yield the vectors

- 0765

S(R)z -.3265 S(C)-—-( 6725)

v - 6540 )°
4235

(60)

(61)

(63b)

(63c¢)

(63d)

(63e)

(63)

(64)




whereby the solutions, Equations (14), are obtained as follows:

Row bias rates:
. 299
BR) = x = (- 385 |; (65a)
344
Column bias rates:
i €)=y = '242
b y (_ 234)° (65b)

These solutions compare very badly with the “true” bias rates as given in Figure 2:

2
bR = T I
brRUE = (3’ o b Qe = (-2) . (66)

The reason is that the amount of data is very small. With only two intersections per row and three per
column, one would not expect the data to have much strength for bias rate determination. The bias solu-

tion, Equation (57) took out too much of the residuals in this case.

Subtracting the effect of the bias rate solutions from Equation (58) leaves the 2nd-order residuals

002 025
AP =(_009 -.038], (67)
-.012 015
which have a standard deviation
0.0 = .022. (68)

D3. The Correlation Matrix

It is instructive to look at the correlation matrix for this example. We define it as
=p.=nd
Rii=P; =0},

(69)

where P is the usual covariance matrix
P=B"'. (70)

That is, the diagonal elements of R give the solution variances, while the off-diagonal elements are the cor-
relation coefficients.

16




For the bias solution, Equation (57), the correlation matrix is

Rows Columns
1 2 3 1 2

-

20.358 976 976 984 984

20358 .976[ 984 984

Ry=} 20358, 984 984 1. (71)
e : 20.226 984
] , 20.266 |

The diagonal elements show that the a-priori uncertainty of 62 = 100 has been reduced to approximately 20.
This reduction was a little more effective for the column biases than for row biases, which is to be expected,
since the columns have more intersection data than the rows. The correlation coefficients are all close to
unity indicating that all biases may be in error by the same amount.

The correlation matrix for the bias rate solution, Equations (65), is more interesting:

10.149 657 -.818i 866 -.866
3926 -657, .696 -.696

Ri=| T 1149|866 _ 866" 2
| 2.638 -.834
| 2.638

Now the a-priori variance 62 = 25 has been reduced to approximately 10 for the first and third rows, to

3.9 for the second row and to 2.6 for both columns. The correlation coefficients are not close to unity
anymore. Thus, the element R 3 = -.818 implies that, if the error in the bias rate solution for the first track
is positive, the error for the third track will most probably be negative. Similarly, all the other elements can
be qualitatively understood in terms of the geometry of Figure 2.

E. EXAMPLE 5

The previous examples had only five intersecting tracks. They are intended mainly to serve as check-
out cases for a computer program. This and the next example are more realistic. They consist of a total of
3000 intersections with

n=>50rows, m =60 columns.

The data matrix was constructed by

o _ 1<i<S50
B =bi-bj  1<j<60 3)
where the 110 biases b; and b; were drawn from a Gaussian distribution with zero mean and standard
deviation
0, =5. (74)

17
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Two variations of this data grid were also constructed. The first had random noise 6,; added to the Af.(.)).
This noise was generated from a uniform distribution -.5 <, < .5, so that its standard deviation is

= .289. (75)

The second variation consisted in randomly deleting 26% of the data in Equation (73).

- wiae Syt . 2 2 o 5 -
Instead of providing the a-priori variances og and 0 as input values, they are calculated in this as well
as the next example by a prescription which is given in chapter 5.

The results of the solution for this example are given in Table 3 in terms of the standard deviations
05 (k) for the kth-order residuals AK) | The a-priori standard deviations oy, g, and 0, and the solution error
standard deviation a4, are also given. With the full data set, and no noise, just the Oth-order solution (biases)
reduces the residual standard deviation from 6.87 to .0013. The solution errors Ab have a standard devia-
tion 05p = .00095. Additional, higher-order solutions reduce the residuals further by negligible amounts.
This, of course, is expected, because the data consist of biases only. The third column of Table 3 shows the
results for the noisy data. The solutions are able to reduce the residual variance only to the noise level,
Equation (75). The last column is for the case when 26% of the data have been randomly deleted. Here
the results show only a slight degradation as compared with the full data set.

Table 3. Standard Deviation 0,,) of kth-Order Residuals AK) for Example 5

k Full Data, Full Data 26% Data Deleted,
No Noise With Noise No Noise
0 6.86827 6.87238 6.86084
| 00133 .28229 00182
2 00133 27562 00182
3 00133 27314 00181
Solution Error 0 ) 9.53-107* 03769 00131
S 0 9.713 9.719 9.703
A'Pl’)“".' Standerd § 0 1.22-1074 2.58+10°2 1661074
R 5.88:1076 1.22:1073 8.01+107
F. EXAMPLE 6

This is the same as the previous example with the addition of bias rates. The bias rates were selected
from a Gaussian distribution with zero mean and standard deviation = 0.1. The data grid is assumed to be
uniform with unit time between neighboring intersections, so that a bias rate = 0.1 yields a total change of
S units in the data on a column and 6 units on a row. The affect of the bias rates should therefore be
approximately equal to that of the biases (see Equation 74).
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Table 4 gives the results, This time, as expected, it takes the 1st-order solution (bias rates) to reduce
the original data variance to an acceptable level. The full data set with noise is again reduced to the noise

level, Equation (75), but the deleted data set now shows a much larger degradation than in the previous
example. The solution errors are in general much larger than in the previous example without bias rates,

but they are still at an acceptable level.

Table 4. Standard Deviation 0, ) of kth-Order Residuals A%) for Example 6

k Full Data, No Noise | Full Data With Noise | 26% Data Deleted, No Noise

0 7.27954 7.28569 7.26447

1 237727 2.40096 2.34391

2 .00379 .27556 22535

3 00379 .27308 15971

- Oap 25521 25738 .32427

Solution Error {OAI; 01119 01154 01188
T gy 10.295 10.304 10.274
A'PB:J:S;‘::“‘"‘* % 218 220 214

| 1.67-1075 1.22-1073 9.94-1074

V. A-PRIORI VARIANCES

The a-priori variances o,% which are needed in Equation (10) have been assumed to be given input
parameters in most of the previous examples. In practice this will be the case, because one should have
some fairly accurate a-priori knowledge about the uncertainties of the orbit biases and bias rates. If, how-
ever, such knowledge is not available, the method given here can be used to estimate the a-priori variances

from the data.
The original, Oth-order, residuals are assumed to be due to biases only, Equation (2):
A =b; - b;. (76)
Assuming these biases to be uncorrelated, and their expectation to be zero
E(b;b)) = 025, (77
E(b,)=0, (78)

we get by taking the expectation of the square of Equation (76):
P oy2y= L 2
%= 3 E{[A,.,. 1%} = 3 %0 (79)
The first order residuals are modeled by
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M =j R _j (0
Aii biTii bjTi/' : (80)
Again, assuming that the bias rates I'),- also obey Equations (77) and (78), we have upon taking the expecta-
tion of the square of this equation:

2 1 5
0. =—— 0y, (81)
b 9q2 a®

where 72 is some mean over rows and columns of the squares of the intersection times.

In the same manner we derive the a-priori variances for the higher-order solutions:

1

2= 2

=—— 0°,,. (82)
k 5 72k ak)

o

It must be stressed that the above relations are recommended for use only when there is no independ-
ent a-priori knowledge available. In particular they do not allow different a-priori values for different rows
and columns, which may be desirable in a practical situation,

The a-priori ¢’s which were used in Examples S and 6 are actually twice as large as the values given by
these expressions. We found by solving these examples with different a-priori o’s that the solutions (biases.
bias rates etc.) are not sensitive to the a-priori values. The residuals, however, (excepting the noisy data),
are quite sensitive. Doubling the a-priori variances gave us a little better residuals. Another reason for tak-
ing slightly larger a-priori variances than the best available estimate is that our segmented method, because
it neglects all correlations between the different-order parameters, will always produce an optimistic
covariance matrix P, Equation (70). Increasing the a-priori variances will correct this error somewhat.

VI. CONCLUSION

A method has been presented for extracting biases, bias rates and higher-order terms from intersecting
satellite altimetry tracks. This method consists of segmenting the least-squares solution such that at each
stage only one set of terms is being solved for. It is clear that an error is committed in this approach
because the correlations between terms of different order are not taken into account.

In order to estimate this error, Example 6, with 110 tracks having both biases and bias rates, was
solved by a minimum-norm least-squares method.? In that solution the model was not segmented: i.e., the
biases and bias rates were solved for simultancously. That method guarantees the absolute minimum
residual variance, while constraining the parameter vector to have the smallest length. For the perfect data
case, column 2 in Table 4, that solution gave a residual 0 = 9.3+10~12 (all of which is probably due to round-
off) as compared to our .00379. For the noisy data, column 3, the result was .27554 compared to our
.27556. Furthermore, our error variances 0, and 0, are acceptably small. (In the particular minimum-
norm solution used they came out to be much larger than ours). This shows that the segmented algorithm
is able to reduce the residuals very close to the optimum level. We have also shown that we can approach
this optimum level arbitrarily close by increasing the a-priori variances. However, in order to obtain realis-
tic covariances, it is recommended to keep the a-priori values consistent with actual a-priori knowledge.
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The advantages of this algorithm far outweigh the theoretical objections due to the segmentation of
the problem. These advantages are (1) flexibility of the algorithm and (2) computer cost savings. Flexi-
bility is obtained because one can increase the number of parameters by going to higher-order solutions
without increasing the complexity of the problem and, more important, without increasing computer
storage requirements. As an example of cost savings, the minimum-norm solution in Example 6 required
125 sec CPU time on the CDC 6700 computer, whereas the segmented algorithm took only 55 sec. This
ratio will continue to favor the segmented algorithm with increasing number of higher-order parameters as
the square of that number.

It is expected that at the end of the GEOS-3 mission there will be available from 5000 to 10000
satellite altimetry tracks. Clearly, even the segmented algorithm would not be able to handle a job of this
magnitude. Rather than a global, world-wide solution, we therefore recommend to solve smaller patches at
a time. Continuity of the biases and higher-order terms between patches would be assured by requiring
some overlap of neighboring patches.

An example of the use of this algorithm with real geodetic data can be found in Reference 4.
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APPENDIX A

COMPUTER FORMULATION FOR THE LEAST-SQUARES ALGORITHM

1. INTRODUCTION

This formulation gives step-by-step instructions for coding the general solution (Equations (14), (12),
(13) and (16)) in component form rather than in the matrix form which is given in the text. Refer to
Figure 1 for notation.

2. INPUT DATA

A. n =number of rows
m = number of columns

o® = a-priori for rows Poloines
k 4pH k =1: bias rates
. =12: -ord:
0§(C) = a-priori for columns k L
etc.
Af.?)= geoid-l:}?ight discrepancy
i Ath ing bi; ;
at (7, /)" intersection <i%n
I1<j<m

= XXX (anything) at points *
where no intersection exists

B. For bias rates and higher-order solutions, you will also need the following data:

T}fiR) = /"h time on i row

Té.c) = i time on j! column

7;(7) = first intersection time on i" row
7;(5-) = last intersection time on i row
Tl‘f) = first intersection time on j‘h column
T/‘g) = last intersection time on j"‘ column




Shift these times, so that the new time 7 = 0 is at the middle of each track: 1

® - 7® _1 ®,®
W = h 3@y RE) .

at all intersections
© P D o ® where Aii exist
= By T

© - R = i i
Tij T = 0 at all points * where no 4;; exist

3. PRELIMINARY CALCULATIONS :

The Mean of Residuals: 3

— 1

= AR (0)
B L
o
The Residual Variance:
1 o
Zo () 2
% Ty Z Z P -3,)
R

Note:

a. The ranges of i and j in these two sums are only over those points ® where 4;; exist. N = total numbers
of such points.

b. The same formulas will be used for the means Ay and variances o,f for the higher-order solutions.

c. Print Ao and 0p-

4. BIAS SOLUTION
A. Construct the (m X n) matrix U and the n X m matrix V:

UI.,- =1  atintersections ®
= 0 atall missing points *

I<i<n

. I1<j
V'.’. =1  atintersections ® i
=0 ats

A-2




Go To MAIN ALGORITHM = x,, ¥
The solutions are:
bER)=xi=bias for it row, 1<i<n

b](C) =y = bias fori“‘ column, 1<j<m

B. Bias Removal
Af.}) = A('(I)) -x; +y; atall intersections ®.

Compute and print A; and o (see step 3).

5. BIAS RATE SOLUTION

A. Construct the matrices U and V:
®R)
U= | 1<i<n
¥, = Erl A Elnn
Ul 174

Go To MAIN ALGORITHM = x;, Vi

The solutions are:

i),- =Xx; = bias rate for ith row; I<i<n
b,- —h bias rate forjth column; 1<j<m

B. Bias Rate Removal

(2) = AUl : i
AP = &P - x;Uj +y;Vy; atall intersections @

Compute and print A, and 0,.

6. HIGHER-ORDER SOLUTIONS, k > 2
A. For k™ order (k = 0, biases, and k = 1, bias rates, were done in steps 4 and 5).

Construct the matrices U and V:

< (+(R)
Uy = 68 | 1 <ign

v 1<j<sm

= (1O

A-3




Go To MAIN ALGORITHM = Xp Vi

x; = k™ order solution for i row; 1<i<n

™ k™-order solution for i"‘ column; 1<j<m

3 B. Remove k™'-order effect

A'(l’_‘*l) = Ag‘) -X; Uj; t y;Vy; atall intersections.

Compute and print A, ,, and 0,

7. THE MAIN ALGORITHM (for k™ iteration)

3

1
2 oy
\ = 24 1<i<n
o e
Y vt
2
M= Ve + <m
] )
i1 e
<i<n
Qi =~ ViU 1<j<m
LN
1
Wi Mik'z iQ.'ij;* |<(k)<,,
j=1

: ey i
@y = iy - Z 5 0;iQir: |<(l)<m

i=1
INVERT the above symmetric matrices W~! and Z~!
= the (n X n) matrix W
and the (m X m) matrix Z

The k®-order solution is:

n m m
i
ne 2 L (wikUik o & QiIZIini)
k=1 j=1 =1
n n
l
bl - (ZﬂVn e O iWiiUyi
=1 im -

A 1<i<n

)A,.,; 1<j<m

o TR s . e APV




i
o‘ .,
L4
8. THE CORRELATION MATRIX (3
1
Calculate and print the following matrices:
R i X 1<i<n, i<k<n
I
S
I ch 1<j<m, j<I<m ,
|
Row Correlations:  R;; = W;
W
Rj=———, i#j
VR;iR;;
Column Correlations: C‘i’ = Z” ‘ 1
Gt =Zjl VG;iCy

1 [ |
Row-Column Correlations: ~ X;; 2 (Z Q,-,z,,-) / VR:C; ;
=1

o




Defense Documentation Center

Cameron Station
Alexandria, Virginia 22314

Defense Printing Service
Washington Navy Yard
Washington, D.C. 20374

Library of Congress
Washington, D.C. 20540

Attn: Gift and Exchange Division

Director

Defense Mapping Agency

U.S. Naval Observatory

Bldg. 56 '

Washington, D.C. 20360

Attn: O. W. Williams

Charles Martin
P. M. Schwimmer
D. A. Rekenthaler

Naval Oceanographic Office
Washington, D.C. 20390
Attn: T. Davis
J. Hankins

Pentagon

OAD/SNAS

Room 3E139
Washington, D.C. 20301

Pentagon

JESCG

Room 3E139

Washington, D.C. 20301
Attn: Capt. H. Bixby

Office of the Oceanographer

Hoffman 2

200 Stoval Street

Alexandria, Virginia 22332
Attn: Capt. D. Brown

Director
Naval Research Laboratory
Washington, D.C. 20360
Attn: B. S. Yaplee
V. E. Noble

Oceanographer of the Navy
Hoffman 2

200 Stovall Street
Alexandria, Virginia 22332

DISTRIBUTION




Strategic Systems Project Office
Department of Navy
Washington, D.C. 20390
Attn: SP20
SP23
SP24

Defense Mapping Agency
Aerospace Center
St. Louis, Missouri 63118
Attn: R. Ballew
J. Finkland, Code GDG

Defense Mapping Agency
Topographic Center
~ Washington, D.C. 20315
Attn: R. Smith

Defense Mapping Agency

Hydrographic Center

Washington, D.C. 20360
Attn: Maj. J. Jerome

Air Force Geophysical Research Laboratory
L. G. Hanson Field
Bedford, Mass. 01730

Attn: George Hadgigeorge

U. S. Army Topographic Laboratory
Ft. Belvoir, Virginia 22060
Attn: Armando Mancini

NASA
Wallops Flight Center
Wallops Island, Virginia 23337
Attn: J. T. McGoogan
H. R. Stanley
W. F. Townsend

NASA
Goddard Space Flight Center
Greenbelt, Md. 20771
Attn: J. W. Siry
F. O. Vonbun
D. E. Smith
J. G. Marsh

NASA
600 Independence Ave., S.W.
Washington, D.C. 20546
Attn: F. Williams
S. W. McCandless




NOAA-National Ocean Survey
6001 Execu‘ive Blvd.
Rockville, Maryland 20852
Attn: B. H. Chovitz
B. Douglas

NOAA
Pacific Marine Environmental Lab.
Seattle, Washington 98105

Attn: John R. Apel

NOAA-AOML
15 Rickenbacker Causeway
Miami, Florida 33149
Attn: H. Michael Byrne 3

NOAA

NESS/SPOC Group

5100 Auth Road

Camp Springs, Maryland 20031
Attn: John W. Sherman III

NOAA-ERL
Boulder, Colorado 80303
Attn: Leonard Fedor

Battelle Columbus Laboratories
505 King Avenue
Columbus, Ohio 43201

Attn: A. G. Mourad

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, California 91103
Attn: James A. Dunne
Alden Loomis

Weapons Research Laboratory
Box 2151 GPO Adelaide
South Australia 5001
Australia

Attn: Garth A. Morgan

Scripps Institution of Oceanography
LaJolla, California 92093
Attn: Robert Stewart

University of New South Wales

P.O. Box #1

Kensington NSW 2033, Australia
Attn: R. S. Mather

Smithsonian Astrophysical Observatory
60 Garden Street

Cambridge, Mass. 02138

Attn: E. M. Gaposchkin *




City University of New York
Institute of Marine and Atmospheric Sciences
675 W. 252 Street
Bronx, N.Y. 10471
Attn: Prof. Willard J. Pierson

Woods Hole Oceanographic Institution
Woods Hole, Mass. 02543
Attn: Dr. John Whitehead

Byron Tapley

Dept. of Aerospace Engineering
Univ. of Texas at Austin
Austin, Texas 78712

Richard Rapp

Dept. of Geodetic Sciences
Ohio State University
Columbus, Ohio 43201

The Analytic Sciences Corp.
6 Jacob Way
Reading, Mass. 01867

Attn: S.K. Jordan 2)
Local:
CK-10 (20)
CK-12 (25)
CK-50 3)
CK-55 3)
DX-21 2
DX-222 (6)

DX-40




