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FOREWORD

This report presents an algorithm for extracting ephemeris errors from satellite radar altimetry data.
The algorithm is currently used at the Naval Surface Weapons Center , Dahlgren Laboratory for reducing
GEOS-3 altimetry data to geoid heights and vertical deflections. The report was reviewed by R. J.

Anderle , Head , Astrona utics Division , and by C. J. Cohen , Research Associate, Warfare Analysis Department.

Appreciation is extended to Alan C. ChappeD for coding and implementing this algorithm , and to
Ronald J. Koenecke and Ted Sahlin for check-out and assistance on an earlier version of the algorithm .
Discussions with PJ . Fell which helped to illuminate some of the theoretical aspects of this problem are
appreciated.

Released by:

Ralph A. Niemann, Head
Warfare Analysis Department
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I. INTRODUCTION

The accuracy of geoid heights and vertical deflections derived from satellite altimetry depends pri-
marily on the accuracy of the satellite’s ephemeris and on the measurement noise. The measurement noise
is for most part a ~iort-waveIength (< I km) random process; it is usually taken out by filtering or smooth-
ing the along-track geoid heights.1 The ephemeris errors2 on the other hand, consist mainly of long-
wavelength (> 1000 km) biases and bias rates. These can be solved for and eliminated if a sufficient number
of track intersections is available in a given region. The data for this solution are the geoid-height discrep-
ancies (differences of the two filtered geoid heights) at the intersections.

This report presents an approximate least-squares algorithm for such a solution. It is an iterative
algorithm in the sense that first it solves for biases alone. Subtracting the effect of this solution from the
original (0th-order) discrepancies leaves a set of 1st-order discrepancies. These are then used to solve for bias
rates, leaving 2nd-order discrepancies, which are used to solve for 2nd-order effects, etc. This process can be
terminated at the user’s discretion.

It is easy to show that this iterative procedure does not give the optimum least-squares solution. For
example, if the algorithm is terminated with the second-order solution, the result will not be as good as a
least-squares solution with the full parameter set consisting of biases, bias rates and 2nd-order terms. If
biases alone are desired, then this algorithm of course will give the correct least-squares solution, It is dif-
ficult to quantify by how much the iterative, segmented solution is degraded. Test cases show that for most
app lications this will be negligible. ft has the great advantages, however, that it is relatively simple and re-
quires much less computer time and storage. This comes from the fact that the matrices to be inverted iii
this algorithm have dimensions which depend only on the number of tracks , and not on the number of
tracks times the number of bias parameters to be solved for, as would be the case with the full least-squares
solution.

The general algorithm, which is derived in chapter 2, takes account of missing data points (where no
intersections exist) by giving them zero weight. All other data are weighted equally. The problem is
inherently singular with infini tely many solutions. The singularities are lifted by assigning a-priori variances
for the bias parameters on each track. The track biases are assumed to be uncorrelated. In chapter 3 the
solution is presented for biases only when there are no missing data points. This solution turns out to be
very simp le; no matrix inversions are needed.

In chapter 4, several test cases are presented which will be useful for check-out purposes. Finally,
Appendix A gives a step-by-step procedure for coding the algorithm on a computer.

II. DERIVATION OF THE ALGORITHM

A. THE OBSERVATION EQUATIONS

Figure 1 shows a network of n + m intersecting tracks which consist of n “rows,” I ~ i ~ n , and ru
“columns ,” I ~/ < m. The index I will always denote a row , and / a column.

We thus have a total of n m  intersections. At each ef these intersection points (i, I) we either have a
data point 

~~
,, or the data point is missing in which case an asterisk is placed at that intersection. (In

practice a missing data point means that there is no intersection,)
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Figure 1. Intersection Data

The model for the biases on each track (row or column) is assumed to be a power series in r — the
time along the track , with r = Oat the middle of the track:

b( r) ~~b + b r + b r 2 + ... b (l~r 4t ( I )

We shall first solve for the constant biases alone, Subtracting their contribution from the original data
will give a new set of residuals ~~ This new set of data will then be used to solve for the bias rates
yielding 2nd-order residuals i~~~~, etc. , until any desired order k.

The observation equatio ns for a least-squares solution of any order k are given by

l~~ i~~n, (2)

I ~~/ ‘~m ,

where the unknowns x , y,, and the constants U,1, V11 are defined in Table I.
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The times r in this table are :

r,~~ f~ time on 1t Ii row ,

) (Iii time on/ th column,

Table 1. The Unknowns x,,y1 and (Jfl~ V~ of Equation (2)

Solution Order y, ~~~~ T ~i_

O (bias) b b, 1 1

1 (bias rate) b1 b1 r

2 i~ b1 Lr~r1
2 ~ (c)] 2

k b~~ b,~ [r(R) J k Ir~~)”

B. THE NORMAL EQUATIONS

The normal equations for the least-squares solution of Equation (2) with arbitrary weighting W are

• AT WA (x) = A T W~ (3)

where ~ is the (n•m)X I data vector formed from the residuals ~~~~~~~~ A is the (n rn)X(n + in) matrix of
partial derivatives

~~ 
= Uii ,

(4)

l ’~k ’~ n m , 1’ ~~i~~n, I~~ j ~~m.

It is written out explicitly in Table 2. The weighting matrix W will be used here only to accommodate
missing data points, although it can be implemented in general as an arbitrary weighting matrix for all of
the data. All existing data will be given unit weight. Accordingly, let W be the (n . m)X(n ’m)  diagona l
matrix with

Wkk = 1 for k = (i,/ )  where 
~~ , 

exists,

= 0 for k = (1, /) where is missing.

L. - 
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Table 2. The A Matr ix

1 1 2 3 n / 1  2 3 m

j 1  U11 — V 11

i = I  

2 U21 0
m Umi 0 Vim

I 0 ( 112 -V21

0 ~~~
2 2O

m O U ,~2 ‘V 2m

1 0 0 U 13 - V3~
2 0 0 U 23 -v 32

1=3  ~ 
) 0 U33 0 -V 33

m 0 0 Urn3 •
~•V 3m

I —
2 U2~ 

~~~~
l 2O

m Urnn 0 — V~7,~7

It is easy to show that this leads to

W A A, AT W=A T (5 )

providing that we redefine and V11 such that

(6 )

at all intersections (I, I) with missing data points , and leave them as given in Table I for points (1, /) where
does exist. Equation (3) now becomes

(7 )

\Y /
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C. TIlE SOLUTION

The matrix A TA in Equation ( 7) is singular. For the bias solution (k = 0 in Equation (2)), the reason
for that singularity is obvious: we may add to all of the biases x1 and in Equation (2) an arbitrary
constant without changing the data vector ~~~ For the higher-order solutions similar singularities can be
estab lished. The problem, therefore , has infinitely many solutions. In order to obtain a unique solution
we lift these singularities by imposing a-priori constraints o~ R and o~ ~

. for the row and column bia~cs.
respective ly. The solution of Equation (7) then is

(x ) fi_ i A T~ (8)

with

B = A TA +~~ , ( 9 )

where ~ is the diagonal matrix of the reciprocal a-priori variances with elements

-
~~~~ 

b~~. (10)
ki

Wit h the A matrix as given in Table 2 , it is easy to obtain the B matrix as

B —  

~~
- — -  —-  ( II )

T 
ill

~~(,nX n) ( ?nX ,n)

where A and M are diagonal matrices

\
L~~. +  ._

~
._

) &
ik (l 2a)

j I

it1~~ =(t v~÷ 
~~~~~~~~~~~~~~ 

( l 2b)
\ i I  ~ cJand

Qj i ~~~‘~ij’ 
(1 2c)

The range of indices in Equations (1 2) are as shown by the dimensions of the four matrices in Equation (II).

The inverse of the B matrix is

W x
= ( 13)

y z

S
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with

W = ( A _ Q ~r
iQTyI, (13a)

Z=(M_ Q TA~~Q)_~, (13b)

X = -.A~ QZ , (l3c)

y f ~f ..l QT W ( 13d)

Note that I = XT. but we prefer to leave them in this form for symmetry reasons. The dimension of the
largest matrix to be inverted (It’ or Z) is either (nX n)  or ( ,nXm) .  the number of rows or columns. These
inverses will in general have to be done on the computer. In the case there are no missing data points, they
can be done analytically for the 0th-order (biases) solution (see the next chapter).

We may write the solution, Equation (8), in a little more expanded form. The (,zX I) Rosy Solutions 
I -

are

x w s ~~~+Xs~~~. (l4a)

and the (mX I) column Solutions are
y = Ys~~ + Zs~~ , (14b)

where

I ~~~~~ ( 1 5)
\ s~~ J

The vectors s(R) and ~(C~ are appropriate ly weighted sums of the data residuals on each row and column,
viz :

in

~~ 1~,,UJ,, l~~ i~~n ; (16a)
/= I

~~~~~~~ l~~ /~~m , (Iôb)

Equations (14) with (12), (13) and (16) constitute the complete solution in matrix form. In Appen dix
A the algorithm is given in component form, which is suitable for direct coding on a computer.

I I I .  SOLUTION FOR BIASES WITH A FULL DATA SET

When there are no missing data points 
~~ 

t he solution for biases alone can be obtained in closed form ,
i.e.. the B matrix , Equation ( II), can be inverted in closed form. This is a big advantage over the general
solution, so that in applications where only the constant biases are needed, it may be advisable to fill in the
missing da ta points.

6
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With a full data set , for the bias solution,

U1 =V
11

=l , (17)

so that Equation (I 2c) becomes

(18)

which may be written as

Q= _ uv T . (19)

where

1 1
U : V 1 (20)

1 nxl 
I

are the (nX I) and (mX 1) constant vectors whose components are all unity. We have the relations

uTu=n , vTvrm. (2 1)

We specialize this derivation a little as compared with the general solution, by not allowing arbitrary
a-priori variances. Rather , we require that all rows have the same a-priori variance a~ and all columns
another, a~.. The more general case , with different a’s for each track , can be handled in closed form also ,
but requ ires much more algebra. Equations (1 2a) and (I 2b) now become

~~~~~~~~ M ’i i i,~~,~ ;

(22)

X. r m + ~
_!_ , p n + _ !_ ;

2 2

so that Equations (1 3a) and (I 3b) can be written as

~~ uuT) 
1 

(23a)

Z _!- (~~
_ ~~~ ~~~~ (23b)X~z /

7
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The~c matrices can be inverted by using the general identity for any two vectors a and b

abT
(1± a b T) ~ !÷  ‘ (24)

I ± aTb

The result is

w= -
~ 
(

~~+ -~~ ~~~ (25 a)

z = _ L ( i ÷ !~.vv r). (25b)

d Xp - mn. (25c)

Equations (I 3c) and (I 3d) yield 
. 

-

X~~~.uv T ; ~~~~~~~~ (26)

The solution , Equations(14). can now be readily evaluated to be

Row Biases:

~~~~~~~~~~~~~~~~~~~~~~ 
l~~ i~~n (27a)

Column Biases:

bc~~
=!s~~~+~~~~Sc +iSR l~~ j~~m ( 27b)

where Equations (16) give

U

s~’~ = 
~~ 

5 (C) = — 
~~~

, (28)

/=1 i=1

and where we have defined

U 01

~~ 5(R) s~ ~~ ~~~~~ ( 29)
i = 1 1=1

8

_
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Note that the full data set must satisfy the constraint

S
~~

SR = -SC. (30)

With this, the solution, Equation (27), assumes a part icularly simple form:

Row Biases:

b~~~= _ i_ ( S~Th _ .—s—_”1
\ , l~~~i~~ n; (3 1a)

X

\ 
a~dJ

Column Biases:

l~~ j~~m. ( 3 1W
/ 

P \.~
’ o~ d)

IV. N U MERICAL EX AM PLES

/
We present here several numerical examples. These may be used as test cases for cIieckiii~ the

algorithm out after it is programmed on a computer. The first four have only six intersections , so t hat thc~
are simple enough for hand calculations. The solutions as well as some intermediate results are given. The
last two examples consist of 50 rows and 60 columns,

A. EXAMPLE I

ii = 3 rows, in = 2 columns.

A-priori statistics: 0R = =

We construct data for this examp le by assuming that the five tracks have the following true biases:

b
~~UI, = b

~~U[ = (
~
) - (32)

The data matrix E h . — b1 therefore is

[I 61
= —7 — 2 (33)

-4 1J

which has a standard deviation

= 4.535 . (34)

t)

~~~~~~~~~~~~~~~~~~~~ _ __ _ __ _ __ _ __ _ __ _ _ _  
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I
Some intermediate results (see Equations (22) and (30)) are

X = 2 ~~~, ;.L=3’~• , S= -5. (35)

The solution, Equation (31), is:

/ 3.779 \
b~~ 

= (— 3.800 ), b~~ = ( ~~~~ 
(36)

\ -.958 /

which does not compare well at all with the true biases given in Equation (32). The solution, of course, is
completely insensitive to an overall bias, simply because the data are so aLu. We must compare , there-
fore, Equation (36) with the true biases minus their mean (which is b = 2):

4dUE -
~

=(::~
‘); b

~~UE 

~~ 
(37)

Doing that , we find that the solution errors are —5.5 , — 5.0, —4. 2, —3.3 and —3.9%, respectively for the five
biases. This implies that our chosen a-priori a was too small.

The 1st-order residuals, formed by subtracting the solution, Equation (36) from the data , Equation
(33), are :

~~J) = — b, + b1,

.121 .299
~~~ — .300 — .122 , (38)

- .142 .036

which has the standard deviation

O (~) = 0.214. (39)

This, when compared with Equation (34), shows the relative efficacy of the solution to reduce the inter-
sect ion discrepancies.

B. EXAMPLE 2

This is the same as Example I, except that the a-priori variances are increased to

CR .C C
. ID.

-I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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The solution is

/ 3.979\
b~~ =( — 3.981 ), ~~~ = 

~ 

2~~~~~
) 

(40)
\-..996 J

which now agrees much better with Equation (37).

The remaining 1st-order residuals are

1 .012 .028
~(1) = — .028 — .012 , (41)

.013 .003

with the standard deviation

O (~) 
= .020. (42)

C. EXAMPLE 3

Here we take the same data ~(0) as in the two previous examples, but delete the intersection of the
second row with the first column. We keep the a-priori variances as in Example 2:

aR ~~
rC IO ~

Because there is now a “missing data point ,” t he general solution of section IIC must be used.

The data matrix is

II 61
* — 2 1 , (43)

[-4 I]

where the asterisk indicates the missing data point; it can be filled in with an arbitrary value. Equations (4)
and (12) become

u 

~LY ~~~~~

‘ 

: 

[
~ ~~~~

‘ 

~ 
-[‘
~ d~ 

(44a)

0 1.01 0 , M_ ~~
2

~~~
l 

3011 . (44b)
[ 0  0 2.01 L ‘ J

Equations ( 13) yield

1.180262 — .332226 — .8297381
= — .332226 .677774 — .332226 I . (45a)

— .829738 - .332226 I.180262J

I I  

_ 
~J:iIT ~~ ~~~~~~ E~~1 .1T~~1
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.

~

- .

~~
-‘ [~ .oi~~m — .9950251 

‘45b[- .995025 I.024876J 
-

The inverses are

20.387249 19.742660 19.8897371
W 19.742660 20.830026 19.7426601, (45c)

19.889737 19.742660 20.387249J

~~ 
120.436714 19.841465 

45d— 
[19.841465 20.239281

The rest of Equations (13) can now be evaluated as

[20.038895 19.9406701
X 1  19.645015 20.038892 (46a)

[20.038895 19.940670]

Y = XT . (46b)

Equation (16) gives

5(R) = ( 
~
) ~(C) = (3)  (47)

so that the solution, Equations (l4), are

/ 3.970\ / .,

b~~ = x =( - 3.949 ), b~~ = = ç _.968
) 

(48)
\- l.oo6/ - .

The 1st-order residuals are calculated as in Equation (38):

r- .002 .0431=1 - .038~ (49)
[- .026 .019]

Their standard deviation is

a = .033 (50)
~

( I)

which is but slightly larger than the value in Equation (42) that is obtained with the full data set.

It is interesting to see the effect on the solution of “filling in” t he missing data point in Equation (43).
One possible procedure is to replace the missing point by one half the sum of the two averages on the
defective row and column, (For a larger data grid one would not average over the entire row and column,
but only over points near the missing data point). Doing this we get, instead of Equation (43),

12
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[ 1  61
~

(O)
l 1 7 5 — 2  

~
. (51)

L-4 l J

Since now again we have a full data set , we may use the much simpler solution of chapter 3. Keeping the
same a-priori variances 0R = 10, the solution is

/ 3.458\ /

b~~ =( — 1.890 ), b~
0 = (~ ~~~~~~~~~ 

(52)
\-1.5l71 —

with resulting 1st-order residuals

- .863 .897
~(1) = 1.736 — 1.754 , (53)

- .888 .872

whose standard deviation is

= 1.356. (54)

This is much worse than the corresponding results, Equations (49) and (50), where the missing data point
was not filleii in but was given zero weight in the solution. This is undoubtedly due to the very small data
size. For larger data grids, with relatively fewer missing data points, the degradation of the solution due to
filling in the missing points is not expected to be so severe .

D. EXAMPLE 4

In this example biases as well as bias rates are considered. To each of the biases of Example I we add
bias rates as shown in Figure 2. Remember that the time origin r = 0 with respect to which the bias rate and
higher-order effects propagate along each track must be placed at the middle of the grid. The data matrix
computed from Figure 2 is

1 5
~(O) .. —6.5 —3 , (55)

—3.5 1.5

which has the standard deviation

O (o) 4.164. (56)

DI. Bias Solution

As in Example 2, we take for the a-priori bias standard deviations

0R = ID. 

___________ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ -~-~~~~--_ ~~~~~ .- ~~~~~

_ -— -— -—-, _-— - .___~



bV S + r  b~~~~— 2 r

___________ b~~~~ 6 + 2 r
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  I

I b~~~=- __________ ___________________ 2 
--

2 i
7. =10
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1

Figure 2. Biases and Bias Rates for Example 4

The solution, Equations (31), is

b~~ ~~~~~~~~ b(C)=(~~’~~~), (57)

which leaves the 1st-order residuals

.094 - .059
~(1) _ .305 — .348 (58)

- .426 .421

with a standard deviation

U (s)  = .342. (59)

D2. Bias Rate Solution

The 1st-order residuals, Equation (58), are now used to solve for the bias rates. We assume a-priori
values on bias rates of

a a ~~~~5.

14
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The U and V matrices (see Table I ) are readily constructed from Figure 2.

~= [~ i i]~ V =E . 5  :~s]. (60)

whence Equation (I 2c) yields

~= -~L~ 
:~1. (61)

Some of the intermediate results, Equations(l2) and(13) are:

~~~~
5413 x 3 ’  M 2.29 12 x 2 ; (62 )

1 .321659 — .109 l70 .2183411
W~ 

= 
~

— .109170 .485415 .109170 I; (63a)
[ .218341 .109170 .321659]

-i rI.248333 1.0416671
= 

~~~~~~ l.248333J 
(6.,b)

[10.148762 4.148438 -8.2969101
W = 4.148438 3.926063 -4.1484381; (63c)

[_ 8.2969lo -4.148438 10.148762]

— [ 2.637703 -2.2010221 . 63d— 
[- 2.201022 2.637703] ’ ~

r 4.480301 -4.4803011
I = 2.240150 - 2.2401501 : (63e)

[- 4.480301 4.48030 1]

V = X T . (631)

Equal ions (16) yield the vectors

I- .0765\
s~~ ( - .3265 }, 5 (C) = ( .6725

) 
(64)

\ .4235/ - .

IS

~~T TTI_.T~~ 11~ ~. J4



whereby the solutions, Equations (14), are obtained as follows:

Row bias rates:

/ .299\
~(R) = x = (- .385 ~; (65a)

.344 /

Column bias rates:

j~(C) = y = (_ :~ ) -  (65b)

These solutions compare very badly with the “true” bias rates as given in Figure 2:

b
~~UE b~~UE 

= (_
~
) . (66)

The reason is that the amount of data is very small. With only two intersections per row and three per
column , one would not expect the data to have much strength for bias rate determination. The bias solu-
tion, Equation (57) took out too much of the residuals in this case.

Subtracting the effect of the bias rate solutions from Equation (58) leaves the 2nd-order residuals

.002 .0251
~(2) = — .009 — .038 

~~‘ 
(67)

- .012 .015]

which have a standard deviation

0 (2) = .022. (68)

D3. The Correlation Matrix

It is inst ructive to look at the correlation matrix for this example. We define it as

R~1 P11~~ a~ ,

p1. (69)

~~~~~~~~~ j~~~,
‘-

where P is the usual covariance matrix

P=8 ’~ . (70)

That is , the diagonal elements of R give the solution variances, while the off-diagonal elements are the cor-
relation coefficients.
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For the bias solution, Equation (57), the correlation matrix is

Rows Columns
I 2 1 2

20.358 .976 .976 .984 .984
20.358 .976 .984 .984

Rb = 20.358 i .984 .984 . (71-)
I 20.226 .984

20.266

The diagonal elements show that the a-priori uncertainty of q2 = 100 has been reduced to approximately 20.
This reduction was a little more effective for the column biases than for row biases, which is to be expected,
since the columns have more intersection data than the rows. The correlation coefficients are all close to
unity indicating that all biases may be in error by the same amount.

The correlation matrix f or the bias rate solution, Equations (65), is more interesting:

10.149 .657 — .818; .866 -.866
— 3.926 -,657~ .696 -.696 1Rb — l0.l49 t -.866 .866 ‘

I 2.638 -.834
2.638

Now the a-priori variance a2 = 25 has been reduced to approximately 10 for the first and third rows , to
3.9 for the second row and to 2.6 for both columns. The correlation coefficients are not close to unity
anymore. Thus, the element R 13 = — .8 18 implies that, if the error in the bias rate solution for the first track
is positive, the error for the third track will most probably be negative. Similarly, all the other elements can
be qualitatively understood in terms of the geometry of Figure 2.

E. EXAMPLE 5

The previous examples had only five intersecting tracks. They are intended mainly to serve as check-
out cases for a computer program. This and the next example are more realistic. They consist of a total of
3000 intersections with

n = 50 rows, m = 60 columns.

The data matrix was constructed by

~ (O) — b b I ~~~~~ 50 7~ii — 
‘ I’ ( .)

where the 110 biases b, and b, were drawn from a Gaussian distribution with iero mean and standard
deviation

ah S. (74)
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Two variations of this data grid were also constructed. The first had random noise added to the
This noise was generated from a uniform distribution — .5 

~ 
< .5 , so that its standard deviation is

= .289 . (75)
V I -

The second variation consisted in randomly deleting 26~ of the data in Equation (73).

Instead of providing the a-priori variances o~ an d o~. as input values, they arc calculated in this as well
as t he next exa m ple by a prescription which is given in chapter 5.

The results of the solution for this example arc given in Table 3 in terms of the standard deviations
a,5(k) for t he kth-order residuals ~~~~~ The a-priori standard deviations 0h’ aj~ an d a~. and the solution error
standard deviation 0.~ b are also given. Wit h the full data set , and no noise, just the 0th -order solution (biases)
reduces the residual stan dard deviation from 6.87 to .0013. The solution errors ~b have a standard devia-
tion o,~, = 00095. Additional , higher-order solutions reduce the residuals further by negligible amounts.
This . of course, is expecte d, because the data consist of biases only. The third column of Table 3 shows the
results for the nt~ s\ data. The solutions are able to reduce the residual variance only to the noise level ,
Equation (75). The last column is for the case when 26Y~ of the data have been randomly deleted. Here
t he results show only a slight degradation as compared with the full data set.

Table 3. Standard Deviation 0,5(4) ol kth-Ordcr Residuals ~~~ for Example 5

k Full Data. Full Data 26% Data Deleted,
No Noise With Noise No Noise

0 6.868 27 6.87238 6.86084
.00 1 33 .28229 .00182

2 .00133 .27562 .00182
3 .00133 .273 14 .00181

Solution Error ~~~ 9.53~ l0~ .03769 .00131

9.713 9.719 9.703A-Prior, Standard 
,
~ u~ 1.22- lO~~ 2.58~ 

10—2 1 .66~ l0—~D~viatmons 5.88. 10—6 l.22~ l0’~ 8.01. 10—6

F. EXAMPLE 6

This is the same as the previous examp’e with the addition of bias rates. The bias rates were selected
from a Gaussian distribution with zero mean and standard deviation = 0.1. The data grid is assumed to he
uniform with unit time between neighboring intersections , so that a bias rate = 0.1 yields a total change of
5 units in the data on a column and 6 units on a row. The affect of the bias rates should therefore be
approximately equal to that of the biases (see Equation 74).
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Table 4 gives the results. This time, as expected, it takes the 1st-order solution (bias rates) to reduce
the original data variance to an acceptable level. The full data set with noise is again reduced to the noise
level, Equation (75), but the deleted data set now shows a much larger degradation than in the previous
example. The solution errors are in general much larger than in the previous example without bias rates,
but they are still at an acceptable level.

Table 4. Standard Deviation 0
~ (k) Of kth-Order Residuals ~(1c) for Examp le 6

k { Full Data, No Noise Full Data With Noise 26% Data Deleted, No Noise

0 7.27954 7.28569 7.26447
1 2.37727 2.40096 2.3439 1
2 .00379 .27556 .22535
3 .00379 .27308 .1597 1

.2552 1 .25738 .32427Solution Error 
lo~~ 

.01119 .01154 .01188

lab 10.295 10.304 10.274
A-Priori Standard .)a, .218 .220 .214

Deviations 
l.67 10~ l.22~10~ 9.94 lO~

V. A-PR IORI VARIANCES

The a-priori variances a~ which are needed in Equation (10) have been assumed to be given input
parameters in most of the previous examples. In practice this will be the case , because one should have
some fairly accurate a-priori knowledge about the uncertainties of the orbit biases and bias rates. If, how-
ever , such knowledge is not available, the method given here can be used to estimate the a-priori variances
from the data.

The original, 0th-order, residuals are assumed to be due to biases only, Equation (2):

(76)

Assuming these biases to be uncorrelated, and their expectation to be zero

E(b 1b1) a ~~11, (77)

E(b 1 ) 0 , (78)

we get by takin2 ‘he expectation of the square of Equation (76):

= -
~ E {(4)] 2 } = T O

2
(~). (79)

The first order residuals are modeled by

‘9

L ~~~~~~ 
—
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I,

(80)

Again, assuming that the bias rates h~ also obey Equations (77) and (78), we have upon taking the expecta-
tion of the square of this equation:

(8 1 )
b 2r 2

where r 2 is some mean over rows and columns of the squares of the intersection times.

In the same manner we derive the a-priori variances for the higher-order solutions:

a~~=—  a2
~~ . (82)

It must be stressed that the above relations are recommended for use only when there is no independ-
ent a-priori knowledge available. In particular they do not allow dit’ferent a-priori values for different rows
and columns, which m a y  be desirable in a practical situation ,

The a-priori a’s which were used in Examp les S and 6 are actually twice as large as the values given by
these expressions. We found by solving these examples with different a-priori a’s that the solutions (biases.
bias rates etc.) are not sensitive to the a-priori values. The residuals , however. (excepting t he noisy data),
are quite sensitive. Doubling the a-priori variances gave us a little better residuals. Another reason b r  tak-
ing slightly larger a-priori variances than the best available estimate is that our segmented method, because
it neglects all correlations between the different-order parameters, will always produce an optimistic
covariance matrix P. Equation (70). Increasing the a-priori variances will correct this error somewhat.

VI. CONCLUSION

A method has been presented for extracting biases, bias rates and higher-order term s from intersecting
sate llite altimetry tracks. This method consists of segmenting the least-squares solution such that at each
stage only one set of terms is being solved for. It is clear that an error is committed in this approach
because the correlations between terms of different order are not taken into account.

In order to estimate this error . Example 6. wit h 110 tracks having both biases and bias rates, was
solved by a minimum-norm least-squares method. 3 In that solution the model was not segmented: i.e., the
biases and bias rates were solved for simultaneously. That method guarantees the absolute minimum
residual variance , while constraining the parameter vector to have the smallest length. For the perfect data
case , column 2 in Table 4. that solution gave a residual a = 9,3. lO_ 12 (all of which is probably due to round-
of f) as compared to our .00379. For the noisy data , colu m n  3. t he result was .27 554 compare d to our
.27556. Furthermore, our error variances a~~ and o~~ art’ accepta bly small. (In the particular minimum-
norm solution used they came out to he much larger thami ours). This shows that the segmented algorit hm
is able to reduce the residuals very close to the optimum level. We have also shiowii that we can approadi
t his optimum level arbitrarily close by increasing the a—priori variances. However , iii order to obtain realis-
tic covarianc es , it is recommen ded to keep the a-priori values consistent with actual a—priori knowledge.
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The advantages of this algorit hm t’ar outweigh the theoretical objections due to the segmentation of
the problem. These advantages a re( l)  flexibility of the algorithm and (2) computer cost savings. Flexi-
bility is obtained because one can increase the number of parameters by going to higher-order solutions
wit hout increasing the complexity of the problem and, more important , without increasing computer
storage requirements. As an example of ’ cost savings, the minimum-norm solution in Examp le 6 required
I 25 sec CPU time on the CDC 6700 computer , whereas the segmented algorit hm took only 55 sec. This
ratio will continue to favor the segmented algorit hm with increasing number of higher-order parameters as
the square of that number.

It is expecte d that at the end of’ the GEOS-3 mission there will be available from 5000 to 1 0000
sate llite altimetry tracks. Clearly, even t he segmented algorit hm would not be able to handle a jo b of this
magnitude. Rather than a global , wor ld-wide solution , we t heret ’ore recommen d to solve smaller patches at
a time. Continuity of t he biases and hight r-order terms between patches would be assured by requiring
sonic over lap of neighboring patches.

An examp le of the use of this algorithm with real geodetic data can be found in Reference 4 .
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APPENDIX A

COMPUTER FORMULATION FOR THE LEAST-SQUARES ALGORITHM

1. INTRODUCTION

This formulation gives step-by-step instructions for coding the general solution (Equations (14), (12),
(13) and (16)) in component form rather than in the matrix form which is given in the text. Refer to
Figure 1 for notation.

2. INPUT DATA

A. n number of rows
m number of columns

~ k = 0: biasesa = a-priori for rows Ik 
~, k = I: bias rates

(C) . . ( k 2 :  2nd-ordera-priori for columns J -

etc.

~~~~~ geoid-height discrepancy
at (i,/)th intersect ion • l ’ .., ,- ...n

l~~ j ~~ m
= XXX (anything) at points *

where no intersection exists

B. For bias rates and higher-order solutions, you will also need the following data:

~
(R) = 1

th time onith row

r~P = ~th time on ,th column

= first intersection time on 1th row

last intersection time on ~th row

= firs t intersection time on 1th column

7~~~)  = last intersection time on/ th column
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Shift these times, so that the new time r 0 is at the middle of each track:

~ (R)  = i;
(R)  -! (7~~ ) + T~ i))

at all intersections
1” • where ~~

.. exist
= ! (7~~~) + 1}

(~ ) j
= 0 at all points * where no exist

3. PRELIMINARY CALCULATIONS

The Mean of Residuals:

The Residual Variance:

a~~~_-i__ ~~~~~~~ (~ co) _~~~)2

Note:

a. The ranges of i and / in these two sums are only over those points • where ~~ , exist. N = total numbersof such points.

b. The same formulas will be used for the means 
~~k 

and variances a~ for the higher-order solutions.

c. Print and a~.

4. BIAS SOLUTION

A. Construct the (m X n) matrix (/and the n X m matrix V:

= I at intersections •
= 0 at all missing points * ,

I “.~l — ~ fl

I~~ j ~~ mV = 1 at intersections •
0 a t *

A.2



Go To MAIN ALGORITHM ~

The solutions are :

br)=x i= bias for ith row , l~~ i~~n

bJ~ y, = bias for/th column , 1 ~~j  ~~ m

B. Bias Removal

= —x 1 +y1 at all intersections •.

Compute and print i~~ an d a
~ 

(see step 3).

5. BIAS RATE SOLUTION

A. Construct the matrices U and V:

U =ii ii 
~ 

I~~ i<n
l~~ /~~ m

Go To MAiN ALGORITHM ~ x.,y1

The solutions are :

b~~ x1 bias rate for ith row; l~~ i~~n

b1 y1 bias rate for jth colu m n ;  l~~ / ~~m

B. Bias Rate Removal

~~~ _ x ,U~ +i ’ ,.I’.~ at all intersections •

Compute and print 
~ 2 an d a2.

6. HIGHER-ORDER SOLUTIONS, k ~ 2

A. For kth~order (k = 0, biases, and k = I, bias rates, werc done in steps 4 and 5).

Construct the matrices Uand I’:

UIi ‘ii ‘ I l~~ j~~ n

V4 = (r ~~~)k ,J” I

A-3 
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Go To MAIN ALGORITHM ~

= kth .order solution for 1th row; 1 ~ i ~ n

= kth
~order solution for ~th column; 1 </ ( m

B. Remove k th
~order effect

= ~ i~~Uj~ +y,V,, at all intersections.

Compute and print 
~~k+I an d ak÷J

7. THE MAIN ALGORITHM (for kth iterat ion)

l~~~i~~ n

~~~~~~ ~~~~ [a~~ J~ 
l~~ j ~~m

- I s Z i~~ n
i/ / i l ’~ / ~~ m

(hr ’ )~ = X
~ j k - 

~
2j /~ k/ ’  t

(Z’ t 
~~ 

= - 
~~ 

. Q~1 Q11; I ~s4~
INVERT the above symmetric matrices W ’ 1 and Z’t

~ the (n X n) matrix W

and the (m X m) matrix Z

The kth .ordcr solution is:

= 
~~~ ~~~~~~~~~ 

+~! 
~~~~ Q.1Z11 I/k,) ~ k/ I ‘~~ I ~ n

k=t ,=i l=t

Y,~’-t  t (z,,v,,+_ L 
~~ Qk,W U

~)1~I
; l~~ /~~m

I l  i t  ~ k I

A-4

_ _ _  ~~~~~~~~~~~~~~~~~ ~~~~~~ . T ~~~ ~TT~1i ~~L L ~.L~~I .. . 
.‘

~



8. THE CORRELATION MATRIX

Calculate and print the following matrices:

(R Ik l~~ i~~n, i ( k ~~ n

l~~ j <m , / ~~l~~ m

Row Correlations: R., =

W
I ’

Column Correlations: C11 
=

Cj1 =Zfl / \ / ~~~ 11

~0

Row-Column Correlations: X,, = - -

~~ (~~~ 

Q11Zl,.
)
/ \/ ~~~~/ v

A-5
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