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ABSTRACT

This study was carried out to determine the effects of

plasticity and cutouts on the buckling of stiffened and

nonstiffened cylindrical shells. Axial and end moment loading

configurations were considered . The problem was investigated

using the nonlinear and linear branches of the STAGS (Structural

Analysis of General Shells) computer code. 00

It becomes clear through this study that cutouts positioned

within cylindrical shells create results that are not easily

predictable using past shell experiences. The moment field in

a nonlinear analysis has a much greater effect on a more flexible

structure than a less flexible one. This characteristic is

not present in a linear analysis due to the removal of the 0

higher order rotation terms that effect strain.

An elastic/plastic analysis appears to precipitate collapse

in much the same manner as do cutouts. The collapse results

obtained using a completely nonlinear plastic analysis can be

closely approximated using Gerard ’s plasticity equation.

To prevent warping of the end plane under bending two rings

separated by a distance determined by the parallel axis theorem

are needed to counteract the lack of rotational rigidity in - 

-

the shell.
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NONLINEAR COLLAPSE ANALYSIS

OF

CYLINDRICAL SHELLS

I. Introduction

Background

Within the Aerospace industry, the cylindrical shell 
0

is an important structural element. In the earlier days

of powered flight shell structures were typified by thin

skins strengthened through internal stiffening. Technolog-

ical advances, however, have dictated that aircraft and

missle skins become thicker, thereby, making plasticity

effects an important consideration in the problem of shell

instability. This thesis will study the effects of plas-

ticity as well as the effects of cutouts on stiffened 
0

cylindrical shells. A ring—stiffened sylindrical shell

under a bending load will also be investigated.

Shell Buckling Under Compression

A preliminary background sketch of the history of

cylindrical shell buckling under axial compression is

useful.

In the early part of the twentieth century Lorenz (Ref 1)

became the first to write an equation for the buckling stress

in an axially compressed cylindrical shell. Lorenz assumed

that the buckling and prebuckling deformations were axi-

symmetric and that the edges of the shell were simply

1 
0
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supported. Timoshenko (Ref 2) improved upon the inaccuracies

in Lorenz work and derived the classical buckling equation

in 1910. In 1911 Lorenz also became the first to publish

work relating the case of axial buckling without the res-

triction of symmetric deformation modes. He assumed in

his analysis that the displacements in an axial direction

were negligible. The boundary conditions used in his study

were

* * 
v~= w~ = 

~~~ 
0 (1)

where v and w are the displacements V and w at buckling

(See Figure 1).

Next, Seide and Weingarten (Ref 3) predicted the

bifurcation buckling load by using a linear membrane pre-

buckling state for a finite length, simply supported

cylinder. These researchers found the maximum axial stress

to be

~~= 0.6 (2)

Three years later Timoshenko determined that the 
0

nonaxisynunetric buckling stress was identical to the class-

ical axisymmetric buckling stress given by Equation 2.

There were, however, two basic problems associated

with the buckling patterns hereto predicted by linear

theories. The first being that axially symmetric buckling

can only occur when plasticity occurs, violating the assump-

tion of perfect elasticity in the linear theory. The second

problem was that linear theory predicted that the entire

shell surface would be covered with small buckles where in

fact only one or two rows of buckles occur with the remainder

2
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of the shell being smooth.

Shell Buckling with Cutouts and Stiffeners

In the design of cylindrical shells for aerospace

applications, it has been a common practice to impose

boundary discontinuities upon the shell skin. Internal

or external shell stiffening has also become common to

strengthen areas susceptible to local buckling due to a

cutout.

Palazotto (Ref 4) has investigated the validity of

using linear bifurcation theory for the buckling analysis

of stringer and ring-stringer stiffened shells with rect-

angular cutouts. The STAGS computer code was incorporated

using the linear and nonlinear collapse analyses with

smeared and discrete stiffener theory. -

Palazotto was able to conclude that for a narrow region

of cutout sizes, linear bifurcation theory was able to

adequately predict the buckling load of a stiffened

cylindrical shell. This was based on the result that

linear and nonlinear analyses differed by only a few per

cent.

This thesis will, in part, attempt to substantiate

the above conclusion and determine its applicability to

a larger variety of cutout sizes. -

Shell Buckling Under Bending

Brazier (Ref 5) was able to predict the critical

bending moment for the collapse of an infinitely long4
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cylinder by minimizing the total strain energy with respect

to a change in curvature. The resulting critical or

collapse bending moment, M, was found to be

2(2)½ Eirrt
M 

9(l_v 2)½

which occured when the cross—sectional flattening t~w reached

(4)

If the axial stress due to bending is computed using

the undistorted cross—section with v taken to be 0.3, then

a =0.33 ~~ (5)

Aksel’rad (Ref 6) reported an improvement of this

buckling study by simultaneously including the effects of

geometric nonlinearities. Aksel’rad contended that the

I collapse stress varied from O.6Et/r for short cylinders

to a value of 0.3Et/r for shells with a length to radius

ratio, (L/r), greater than

2.5 (r/t)½ (6)

Much research has been devoted to analytical and

experimental investigations of buckling of axially compressed

cylindrical shells. Considerable less effort has been

devoted to the more complicated problem of cylindrical

shell buckling under pure bending loads. The paucity of

knowledge in this area has made it common for engineers

and designers to relate the critical maximum bending stress

Cab) to the critical axial stress (ac) for the axial

5
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compression buckling problem. This procedure translates

in equation form as

ab _ C% 0

where is presumed to be known and C has been previously

determined from testing or empirical relationships.

Recently, emphasis has been centered on the study of

relatively thick shells, such as R/t < 50, where R is the

radius of the shell and t is the thickness. For these

thicker shells very little experimental data was available,

so it had become common for some researchers to estimate C

by extrapolation (or direct use) of the C value for thin

shells which had been studied more extensively .

Prior to the 1960’s it was a common practice for

designers to assume that the critical maximum bending stress

~°bmax~ 
was 1.3 times the critical axial compressive stress

(a ) for a cylinder regardless of the radius to thicknessCmax
ratio. This practice was supported by the lack of exper-

imenta]. and theoretical results to the contrary. Recent r
0 experimental and theoretical results have, however, shed

serious doubt about the validity of such an approximation.

Preliminary Statement -

Three main areas are researched in this thesis. The

first being an analysis of the effects of cutouts on the

behavior of stiffened cylindrical shells.

The critical parameters that a designer must consider

or at least appreciate when he is involved with the def-

6
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formation, stress field, or instability problem of shell

structures is addressed (Ref 7).

Within the past fifteen years the problem of stiffened

cylindrical shells has become genuinely important to the

aerospace industry. As a further consideration, a designer

would like to know the characteristics of symmetric cutouts

on the shell structure. The major question is how does

one go about analyzing these structures? linear theory?

Hooke’s Law? nonlinear theory? This thesis uses STAGS

(Structural Analysis of General Shells) to consider a

variety of typical shells in .an attempt to shed some new

light on the above questions (Ref 8).

Of particular interest in this study was the deter-

mination of when cutouts are large enough to require

nonlinear elastic equations for a sufficiently accurate

solution. For purposes of such an analysis four cylinders

with discontinuities imposed upon the shell were analyzed

both linearly and nonlinearly.

The second main area of endeavor is the analysis of a

cylindrical shell with inelastic material properties. A

relative paucity of research has been done in this area,

making it a prime target for investigation. More specif-

ically, this thesis will address the plastic collapse of

a thick cylindrical shell, r/t=50, that is quite common in

civil engineering fields (Ref 9).

7
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Lastly, the case of a cylindrical shell under pure

bending is addressed. This problem is of concern to

nuclear eng ineers in the design of reactor and related

facilities. Boundary conditions and end stiffening

configurations are discussed in relation to the modeling

of a pure bending load (Re f 10) . -

- 
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II. Theory and Modeling

STAGS Computer Code

STAGS (Structural Analysis of General Shells) is a

comprehensive computer code (Ref 11). It is capable of the

static analysis of shells of general shape, and includes the

effects of nonlinearities caused by both material behavior P
and geometric deformation. The STAGS computer code is funda-

mentally based upon an energy formulation. A two—dimensional

finite difference approximation replaces derivatives in the

energy expressions for the shell. To obtain a solution ,

energy is forced to be stable , resulting in a nonlinear set

of equations which are then solved by a modified Newton-

Raphson technique.

Two main branches exist within the STAGS code. The first

branch is limited to strictly elastic material behavior and

contains three sub—branches: (1) linear analysis, (2) nonlinear

collapse analysis, and (3) buckling analysis based upon the

classical bifurcation buckling approach. Collapse loads are 
0

determined when the nonlinear load—displacement curve approaches

a limit point.

The second main branch contained within STAGS allows for

plastic material behavior . However , unlike the elastic

branch discussed previously, the plasticity section allows

neither temperature gradients nor the variation of material.

properties in any of the space coordinates.

9
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STAGS is applicable to any shell for which a mathematically

suitable finite difference grid can be defined. Generally ,

the investigator uses one of the ten shell geometry routines

built into the program. If another shape were desired , then

the user may provide a subprogram describing the geometry.

Cutouts, discrete stiffeners, smeared stiffeners, a multitude

of boundary conditions, and virtually any type of loading is

permissible (Ref 11). In addition, for the elastic branch the

shell wall thickness and material properties through the wall

may vary .

Solution Method

A brief overview of the STAGS solution method is given

below. A more detailed treatment can be found in (Re f 7 ) .

The numerical solution is predicated on rendering the potential

0 
energy stationary. This is done with a two—dimensional finite

difference scheme in which the shell surface is covered with

0 grid (mesh) lines that run parallel to the coordinate lines.

The degrees of freedom of the system are the normal displacements ,

w, at the grid points and the tangential displacements, u and v ,

centered between grid points (Fig 1).

To obtain the total potential energy, the total strain

energy , U and the work done by the external forces W ,  are

needed. STAGS computes the strain energy by numerically

integrating the strain energy density. To make such a

integration possible the surface of the shell is into sub—

regions that are defined by mesh line intersections. The
p.

strain energy density at an arbitrary mesh station I can be

written
10 
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= ~ D1Z 1 (8)

where Z~ is the vector of strains and curvature changes at

station i, and
.T

= {e
~ e0e~ 0k k 0k~ 0 } (9)

indicates the transpose of Z~~. In general , Z~ is a nonlinear

function of the displacement and their derivatives at mesh

station i D1 is a 6x6 positive definite matrix of constants

defined by the relation

i —~~~~~~ iD
kL 

— U ,kL (10)

where the comma denotes differention with respect to one of

the strains or changes in curvature. Since Z1 is a quadratic

function of the displacement unknowns, ~U
1 is a fourth order

polynomial. Summing the strain energy contributions from

all the subareas, a
~

t the total strain energy becomes

U Z ~~U
1 a1 (11)

If F is the vector of external forces corresponding to

the vector of displacement unknowns X, where,

x = {u1v1w1 --- u1v1w1 --- u~v~w~} (12)

then the potential energy of the work done by external forces

can be written as
w = XTF (13)

Static equilibrium requires that the first variation of the

potential energy be zero, leading to the equation

L X F  (14)

11
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L is , in general , a nonlinear “ stiffness ” operator defined

by LX = grad U (15)

which relates displacement components to external forces.

When the operator L is nonlinear , iterative methods

must be employed for the solution of Eq. ( 14) .  For a general

collapse analysis, Eq. ( 14) must be solved for a sequence

of applied loads. A practical nonlinear analysis dictates

a sequence of load step~, chosen so that the initial approxi-

mation of the solution is nearly linear and subsequent steps

change the solution only moderately from one step to the next.

This procedure is necessary for reliable detection of collapse

due to the non-uniqueness of solutions to nonlinear equation

systems. The requirement that LX = F be solved many times

using iterative procedures is what makes a nonlinear collapse

analysis so expensive.

A brief description of Newton ’s method and the Newton-

Raphson method for the case of a single variable function

demonstrates the method used for the solution of Eq. (14)

in STAGS. For a function g(x) = 0, Newton ’s method determines

a better and better approximation , X~~.1, defined by

g (X.)
= — g ’ ( X . )  (16)

where X~ is the previous approximate solution to g(X) = 0.

The iterative procedure converges quadratically (provided

the initial estimate is sufficiently accurate) to any desired 0

12
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accuracy. (See Fig 2). In Figure 3 the “modified ” Newton

iteration scheme is illustrated . This method is defined by

X~ - g(X)~~
Xn+l = g’ (x0) (17)

Thus, this method corresponds geometrically to extending

lines from the curve g ( X )  to the axis which are parallel to

the tangent at X0. The convergence of this method is slower

than that of the standard Newton method but does not require

repeated computations of g ’ (X) . This is particularly significant

when g ’ (X) is extremely difficult to get. The most effective

STAGS strategy usually calls for a periodic recomputation

of g ’(X). Both Newton ’s method and the “modified” Newton

method have been generalized to an n-dimensional Euclidean

space.

For treatment of the nonlinear solution of Eq (14) it

is advantageous to introduce the notation

— 
~~~ (18)L ax(i)ax(j)

where the derivative L’ of the operator L is an r&xnmatrix

so defined . The elementary properties of ordinarly derivations

also hold for the derivations L’ of operator L. As long as

the nonlinear terms of L are not dropped , L’ is a function

of a particular displacement vector X and is denoted L’
~ 

to

indicate this dependence. With the use of Eq (18) above the

Newton-Raphson method can be easily generalized to solve

Eq (14). The iteration is defined by

13
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Figure 2. Newton’s Method
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Figure 3. Modified Newton ’s Method

0~

14

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _ _ _ _ _ _ _ _ _  
_ _ _ _  _ _ _ _ _ _  _ _

L’ X (Xk+l - Xk ) = F - 
~~k 

(19)

Provided X0 is close to a solution and Lx’ is not singular ,

the iteration will converge to X. Eq (19) can be written

Xk÷l = Xk + L ’x (F - Lx ) (20)

where L’x 
—l indicates the inverse of L’x . Reiterating ,
k k

the most effective strategy for the use of Eq (20) in solving

Eq (14) is a periodic recomputation and inversion of L’s ,

since the computer time is required to do the inversion of

is great compared to the time required to compute the

other terms in Eq (20). For periodic computation of L’Xk
the modified Newton method takes the form

Xk+l = Xk + L~Xm~
l (F - LXk ) (21)

where the subscript m denotes the last iteration for which

L’ x~~~ was computed .

In contrast to other iterative schemes, the modified

Newton method provides accurate solutions independent of the

load step (numerical error does not accumulate) while simul—

taneously avoiding the frequent recomputation and factorization

of the derivative matrix L’. The modified Newton method

employed in STAGS provides rigorous results with the most

economical computational effort. Effective use of this method

requires reasonably good choices as to the size of the load

steps and as to when the derivative L’ should be recomputed

and ref actored. The STAGS program contains as much built-in

decision making as is feasible, however, it is still necessary

for the user to choose the best overall “strategy” .

1-I

- 
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Thstability Concepts

It is worthwhile at this point to present a discussion

of the concepts associated with the plastic behavior in

instability problems, the possible effects of initial material

imperfections, and some of the basic concepts ~f shell instability

and buckling.

Collapse occurs as a combination of two basic types of

nonlinearity. Geometric nonlinearities, usually in the form

of rotations,effect the equilibrium formulations for the

atructure. Material nonlinearities are realized in the non-

linear nature of the stress-strain relationship of the structure.

Clearly, for linear elastic behavior collapse is attri-

buted solely to geometric nonliriearities. More generally ,

plastic deformation of shell structures made from a strain-

hardening material involve both material and geometric non-

linearities. In this general case the two nonlinear

phenomenon interact to cause instability.

However, in the analysis of a strain hardened structure

it is mandatory that geometric nonlinear effects be included.

Omitting these effects will cause a load—displacement relation-

ship where the load continually increases with increasing

displacement at a rate controlled by the stress-strain curve

of that material.

Types of Instability

A loss of stability may occur in a strain hardening

structure through either geometric collapse or bifurcation 0

16
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buckling. Bifurcation buckling results from the load-

displacement curve being intersected by another equilibrium

configuration (See Fig 4 ). The load obtained at the point

of intersection is commonly termed the bifurcation load and

designated 
~b

It must be kept in mind , however , that a bifurcation

analysis is only a rough approximation to the real behavior

of the structure. When nonlinearities are large, bifurcation

techniques lose accuracy and thus are no longer valuable in

predicting buckling loads at small computer expense.

Collapse occurs in an intrinsically different  manner

than bifurcation and is represented as the point at which

the load displacement curve reaches a maximum (zero slope)

as shown in Figure 5 . This point is referred . to as the

“limit point” , and 
~c 

is known as the collapse load.

Bifurcation Buckling

Bifurcation buckling problems are characterized by the

existence of two infinitesimally close eguilibrim configurations .

From Figure 4 it is evident that the primary path emanating

from the origin (initially stable) is intersected by the :

0

secondary equilibrium path at P = 
~b 

This point is also

referred to as the branching point. The equilibrium on the

primary path can be shown to be stable below the bifurcation

point and unstable above it. Thus, at the bifurcation point

stability of the structure is lost. As a result, two possible

phenomenon will occur. The structure will deform into the

17 
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Primary or Prebuckled Path

~~
— Secondary or Postbuckled Path

— — — — — — — — —  Unstable

Stable
i-1

0 Bifurcation Point

Displacement 6

Figure 4. Bifurcation Buckling
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equilibrium configuration represented by the postbuckled

(secondary) path or dynamic movement of the structure will

occur. One of the above will occur depending on the stability

of the postbuckling path. If the postbuckling path rises,

it is stable and the structure will deform into another

equilibrium configuration. Alternatively, a falling (stable)

posthuckling path will cause the structure to be set into

unstable motion. The postbuckling path is represented on

a load-displacement cure in which the load P isplotted against the

lateral displacement 6 at some point in the structure. Each

point then- represents a possible equilibrium configuration

for a given load.

An important consideration in the instability of structures

is that bifurcation buckling cannot take place if the structure

contains an initial imperfection. If such an imperfection

exists the primary path only asympotically approaches the

path corresponding to the perfect structure. Structures

are classified as imperfection sensitive or insensitive depending

upon a rising or falling posthuckling path. Structures

are classified as Imperfection—sensitive when a relatively

small imperfection leads to a drastic reduction in the load

carrying ability of the structure. This case is characterized

by a falling (unstable) postbuckling path. Stability loss

of a structure that is imperfection—sensitive is due to collapse

at the limit point on the load-displacement curve rather

than through bifurcation .
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To reiterate, a real (imperfect) structure may lose

stability either gradually or explosively depending on whether

it is imperfection sensitive or not. The extent of imperfection

sensitivity can be directly correlated to the initial shape

of the postbuckling path of the corresponding bifurcating

perfect structure. Based on this readily observable

phenomenon, it is desirable to categorize bifurcation

buckling problems into three different cases:

(I) Stable—Symmetric (Imperfection-Insensitive)

(II) Unstable-Symmetric (Imperfection-Sensitive)

(III) Asymmetric (Imperfection-Sensitive)

For Case I (Fig 6a) bifurcation buckling problems, the

initial part of the postbuckling path for the perfect structure

is rising, due to the stiffening effects of geometric

nonlinearities. The equilibrium path for the imperfect

0 structure approaches this postbuckling path with the deflections

merely growing more rapidly as the buckling load of the

structure is approached. Thus, for a purely elastic analysis

the structure would not fail whereas for plastic behavior

there is a continual decrease in the slope of the load

displacement curve until a limit point is reached and collapse

occurs. Where plasticity is introduced failure occurs at

a deflection, 6 that is, in general, large in comparision to

the value of 6 where the P—6 curve first departs from linearity.

Regardless of plastic behavior it follows from the above

that Case I structures are not sensitive to initial imperfections.

As should be, there is only small scatter in test results

21



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~

(a) Stable-Symmetric

—
---

~
\\
\ ~~~~~~~~~~~~~~~~~~~~~~

6
(b) Unstable-Symmetric

~~~ 6
(c) Asymmetric (Unstable)

Figure 6 .  Load Displacement Curves for Various
Bifurcation Buckling Cases

22

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
_ _ _ _ _  -

~~

_ _ _ _ _ _ _ _ _



~ -rw --- -
~---- --- w.- -~- r - -~~--- --~.~ ~~—r- ~~~~r—~ -~~~ - - - -

~~ 
0

for these structures. Besides simply supported cylinders

in axial compression, columns, plates, and rings under

uniform pressure are also imperfection insensitive. For

imperfection—sensitive structures that exhibit either elastic

or plastic behavior, the symmetric postbuckling path (Fig 6b)

is falling (unstable). This is due to the softening nature

of the geometric nonlinear effects. Explosive displacement

will occur for such a structure at the limit point in the

P—6 curve when a steadily increasing load is applied. It

is intuitively satisfying that test results are of a widely

scattered nature. Deep laterally loaded arches and shallow

spherical caps under external pressure are highly imper-

fection sensitive. -

Asymmetric imperfection—sensitive structures exihibit

sensitivity with respect to positive imperfections, but not

negative ones (Fig 6c). However, in a pragmatic sense it

cannot be assumed that the Structure has a tendency to favor

one type of imperfection over the other. Hence, such

structures are termed imperfection-sensitive (Ref 12).

Brazier Effect

In many cylindrical shell analyses, it is assumed that

prebuckling rotations are small enough to be neglected. This

is a reasonably accurate assumption as long as the shell is

sufficiently short. For long cylinders, or even medium

length cylinders in which the end cross sections are not

held circular, nonlinear prebuckling effects must not be

23



neglected. The most significant nonlinear prebuckling

effect is the flattening (ovalization ) of the cylinder

cross section. This prebuckling deformation is commonly

referred to as the Brazier effect. Due to the applied

bending moment an axial curvature, K=l/p~ is induced.

The resulting curvature causes the axial stress in an

arbitrary fiber to have a component p directed towards

the neutral axis of bending. Figure 7 shows the two

extreme fibers (maximum tension and compression), and

the corresponding components p. It is the net effect of

these inward force components that cause the shell to

deform into the oval shape indicated by the dotted line in

Figure 7.

Four main consequences stem from the flattened

cross section:

(1) A fairly substantial redistrubution of stress

occurs.

(2) The circumferential radius of curvature increases.

(3) The cross section experiences a continual decrease

in bending stiffness as the bending moment

increases.

(4) Nonlinear collapse occurs at a bending moment

lower than the one predicted from the linear

membrane prebuckled state.

Collapse due to the Brazier effect is actually collapse

into a circumferential flattening mode. Determination of

24
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the collapse moment t4Brazier is obtained by plotting the

variation of M with cross sectional flattening ~w. The

reduction of bending stiffness with increasing moment

results in the continual decrease in the slope of the M versus

~w curve. The slope will continue to decrease until a

maximum value of N is reached at which time the slope will

be zero. In equation form this can be written:

= (M)dM -brazier ~~
— — 0

Very long cylinders that are sufficiently thin will

buckle in the Brazier mode due to the cross-sectional

flattening discussed above. Alternately, short cylinders

buckle into a mavy bifurcation mode characterized by small

axial wrinkles or wavelengths. Shells between these two

extremes demonstrate a coupling between the cross—sectional

flattening and axial wrinkling modes.

White Besseling

The STAGS program implements the White Besseling

plasticity theory. The White Besseling theory assumes that

the shell material consists of several components which have

identical elastic properties and exhibit ideal plasticity

(no strain hardening), but have unequal yield strengths.

ince the strain is identical in all components, the stress-

strain curve will be marked by a decrease in slope as a

stress approaches the yield point for any given component.

When this point is reached the components will cease to take
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any additional load. Thus, the “composite” exhibits strain

hardening with a stress-strain curve that is piecewise

linear. If the composite was comprised of only one

component, ideal plasticity theory would be applicable.

If the loading (stress) is reversed after yield limit

has been reached for one or more of the components, yield

will occur in the opposite direction at a stress in the

composite which is lower than that for original yield.

(See Figure 8). Diagrammatically, tension is applied, OAB,

beyond the yield limit which is followed by a strain reversal,

BCD, into the compression yield zone (Figure 8). The yield

ellipse for the weakest component is also shown in the figure.

Note that yield in compression will occur when the total

strain is c~ - 2Cy~ Thus, yield in compression will occur

- 
at a significantly lower stress if a prior tension overload

has occured. This phenonmenon is known as the Bauschinger

effect.

The Bauschinger effect involves two main factors. One

is the nonuniformity of yielding in a polycrystalline

metal. Because the crystals are oriented at random through-
— 

out the metal, they yield by different amounts so that on

a microscopic scale the stress varies slightly from crystal

to crystal. When the member is unloaded, it contracts until

the average stress is zero, but the crystals that yielded

the least do not quite return to zero and thus remain in

tension, while those that yielded the most go beyond zero 
- 

-

- 
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and are under compression. Thus, there are microscopic

residual stresses throughout the metal, some tension and

others compression. When the material is then compressed

after having been elongated, the crystals that have

compressive residual stresses will yield at a lower—than—

normal stress, and therefore the overall yield stress is

lowered.

The White Besseling theory employed in STAGS simulates

plasticity effects as described below:

(1) The plastic behavior of the material is defined

through specificaticin of

• the total number of components

the relative volume of each component

• the yield strength of each component

(2) The strains are estimated for all points by

extrapolation from the previous solution.

(3) For each of the material components the stress

corresponding to the assumed strains is determined

via a subroutine called from within. The total

stress for the entire “composite” is then found.

(4) With the total stresses and strains known, the

inelastic part of the strain increment is determined

and then added as a pseudo-load.

(5) New strains are now re—extrapolated and used as

new estimates. This procedure continues until

sufficient agreement between estimated and computed

strains is reached.
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III. Stiffened Shells with Rectangular Cutouts

Model Descriptions

To study the effects of cutouts on stiffened shells,

three sizes of boundary discontinuities were researched.

Cutout dimensions were 6” x 6” , 12” x 12” , and 24” x 24” ,

with shell thicknesses being 0.1”. As a further consideration

a shell containing a 24” x 24” cutout with a thickness of

0.2” was studied to provide information on thickness effects .

To best approximate a typical aerospace structure the

following shell parameters were used:

= 1.64

= 57.3

The material properties of the shells are as follows:

E = 1.0 x l0~ psi

= 0.333

G = 3.75 x 106 psi

t = 0.1” , 0.2” j
The shells are internally stiffened in the axial direction

by means of stringers placed a distance of three inches apart.

The basic material properties

B = 1.0 x 10 psi

v = 0.333

remain the same as the shell itself. Each stringer possesses

a cross—sectional area of 0.28 inches squared with moments

of inertia:
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I = 1.493 x io 2 ~~~

= 2.8583 x ~~~ in4

= 3.0302 x l0~~ in
4

The stringers are 0.8 inches in height and have an

eccentricity (distance from inner surface of shell to stiffener

centroid in z’ direction) of .4 inches. Figure 9 depicts

the stiffener configuration.

Boundary conditions imposed upon the shells are shown

in Figure 22. On boundary line l,movement is allowed in the

U direction only. The other three boundaries possess symmetry

which implies that

u = 8 = 0  On line 3

v = 8 = O  On lines2and 4

Results

Table I contains the critical and collapse loads based

upon linear bifurcation and nonlinear STAGS computer runs.

Figures 10, 11, and 12 represent the load displacement curves

for the shells containing the 12 x 12, 24 x 24 (t = .1), and

24 x 24 (t = .2) cutouts respectively.

CutoutS: 24 x 24, 12 x 12, 6 x 6; t = .1

The most startling result observed is the apparent

inconsistency between Pcr and Pcoll as the cutout is enlarged.

For the 24 x 24 cutout (t = .1) a knockdown of 5.92% occurs

between linear and nonlinear analysis. Surprisingly , a larger

knockdown of 14.39% occurs for the 12 x 12 cutout. Such an

occurance is far from being intuitively clear.
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An explanation for the unexpected result that the 24 x 24

cutout produces a closer agreement between linear and nonlinear

theories lies in the w displacement field around the cutout.

For the 24 x 24 cutout it is evident from Figure 13 that

the large w displacements are localized solely in the rEgion

of the cutout. However, as seen in Figure 14 the displacements

field does not dissipate for the 12 x 12 cutout.

This is an important result, for only upon examination

of the moment fields, in connection with the displacement

field is it possible to understand the mechanisms involved

in the unexpected linear/nonlinear relationship.

Examination of Figures 15 and 16 reveal very similar

moment patterns. Moment distribution and magnitude are

virtually identical in both axial and circumferential traverses.

Thus, the concept emerges that similar moment fields applied

to different displacement fields will result in dissimilar

collapse characteristics.

The same moment field acting on two shells, will naturally

precipitate collapse on the shell with greater displacements ,

for this shell has been more severely “weakened” by a greater

warping of its surface.

In essence then, the shell containing the 24 x 24 cutout

is stiffer than expected due to a noticable lack of w

displacements away from the cutout. It follows that linear

and nonlinear theories should predict a closer buckling load

for this structure.
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In the case of the 12 x 12 cutout the w displacement

field does not diminish away from the cutout. This allows

the moment field to interact with the deleterious effects of the

warping. The net result is a larger gap between linear

and nonlinear theories.

To further investigate the cutout size effect on displacement

and moment distribution a 6 x 6 cutout was investigated .

A linear bifurcation study was made but circumstances precluded

a nonlinear analysis.

Figure 17 illustrates a moment concentration very

similar to that found in the analysis of the 24 x 24 cutout.

Figure 18 reveals a displacement profile that is, like the

24 x 24 cutout, quite localized. It appears from this data

that the 6 x 6 cutout reacts in a similar fashion to the

24 x 24 cutout. A rather good agreement between linear and

nonlinear theories is expected based upon this similiarity.

A nonlinear run should reveal a displacement pattern resembling

that obtained for the linear run, and indicate a collapst

load in good agreement with the linear predicted critical load.

Cutout 24 x 24; t = .2

Analysis of this cylinder also produced surprising

results. Figure 12 reveals that the nonlinear collapse

load was 14.3% higher than the critical load obtained from

a bifurcation analysis. What has happened in this case is

that the mechanisms that acted to cause a weaker shell

nonlineari] .y for .1” shell have reversed their effect  and
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have caused a more flexible shell in the linear analysis.

This implies that the displacement field is now larger for

the linear analysis. Figure 18 documents this observation.

In the nonlinear analysis the moment—displacement

interaction is being resisted by the increased thickness.

The increase in thickness is responsible for a much smaller

moment field around the cutout and a correspondingly greater

load carrying capability. The linear case does not experience

the increased thickness effects in the same way due to the

omission of higher order rotation terms. Thus, it is the

large variation in the nonlinear analysis that is respon-

sible for the reversal. -

It is instructive to examine the nonlinear displacement

fields for both thicknesses at a common load level. By

this means an approximation of their comparative stiff-

nesses can be made. Figure 19 demonstrates that the thicker

shell is indeed stiffer and therfore should collapse at a

higher load level. This result has also been documented.

Consequently, displacement fields have become the

primary source of comparison in evaluating shell capabilities

in resisting axial loads.

In previous paragraghs we have displayed a reasoning

behind the variation between linear and nonlinear analyses

for a variety of cutout sizes.

It is observable from Table I that the collapse results

for the 12 x 12 cutout and the t=0.l, 24 x 24 cutout were
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TABLE I.

COMPARISION OF LINEAR AND NONLINEAR —

RESULTS FOR VARIOUS CUTOUT SIZES

cutout Size! Bifurcation Nonlinear
Thickness Pcr Pcoll

6” x 6”
792 , lOO # 

- No Data
t = .1”

12” x 12”

= 1” 765 ,780 # 655,600~

24” x 24”
t = .1” 646,900 608 ,600

24” x 24”
t = .2” 1,496, 000 1,750 ,000

46

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- — ___

~~~~~~ •• ~~~~~~ - — - a_V—



-—— —-—--.,.-.-,-

quite close. One thing that must be mentioned is that a
.0 

stiffened shell analyzed under the usual analytical tech-

niques will not allow the stiffener to resist a rotation

directly along its centroidal axis, other than a shear

moment. For example, a stringer running in the axial dir-

ection cannot resist a circumferential moment. This

precludes any assistance that the stiffener may possibly

give to the shell in the circumferential direction. It is

the authors belief that the collapse load for the shell

containing the 12 x 12 cutout, using a nonlinear analysis,

would be closer to the critical load obtained from a linear

analysis if this previously discussed limitation was

eliminated. To improve upon this limitation would require

that the stiffener be considered a two dimensional plate

structure branching out from the skin surface. The version

of STAGS presently used in this thesis did not include this

capability. This observation has been varified in a bending

study discussed subsequently in this thesis.
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.0 IV. Plasticity Analysis_of Axially Loaded Cylinder

Description of Model

The cylindrical model used for this study was structured

to investigate the effects of material nonlinearity on collapse.

Table I presents the stress—strain data in tabular form.

Figure 20 depicts the actual stress strain curve for the

material, 304 Stainless Steel. The basic shell parameters are

= so

A length to radius ratio of 25 puts this shell in the 
.0

general category of long shells. Shells lying in the region

of 10 < < 15 are usually classified as being of intermediate

length. To be classified as short a ratio of less than 10

is considered rule of thumb.

A radius to thickness ratio of 50 is considered quite

thick. This condition was desired to better illustrate the

effects of plastic deformation. In many aerospace applications

thin shells with a n t  of 400 are quite common.

The variable mesh network is presented in Figure 21. A

preponderance of nodes are located in the region of greatest

displacement gradients.

Again , only one quarter of the shell need be analyzed

due to a plane of symmetry normal to the cylinder axis at

midlength and an axial plane of symmetry along the cylinder.
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The boundary conditions imposed upon the shell are

depicted in Figure 22. Boundary lines 2, 3, and 4 have

symmetric boundary conditions. These edge conditions are

interpreted in terms of the w, v, u, and 8 displacements

where w, v, and u are displacements in the direction of the

coordinates z, y, and x, respectively , and 8 is the rotation

around a tangent to the edge. Symmetric boundary conditions,

as before , imply that

u = 8 0 On line 3

v = 8 = 0  On lines 2 and 4

Boundary line 1 allows freedoi~ of movement in the v and u

directions while forcing no movement in the w, v, and 8

directions. A cylinder under this set of boundary conditions

is referred to as being clamped .

The cy linder described above was modeled with an identical

stress strain curve as the cylinder under pure bending

(See Figure 20). Thus, the parameters defining plastic

deformation are identical for both of cylinders lacking

cutouts in this thesis .

Results

For inelastic stability Gera d (Ref 13) derived the

following plasticity, reduction factor for moderate length

cylindrical shells under axial compression:
2

— ~ S 2a v 2 ’
p

For the cylindrical shell model discussed in this study the

following constants apply :

5].
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V
E 

= 0.333

V = 0 4

= 50 x lO4psi

= 2 8 . 3  x lO 6psi

Substituting these constants into Eq (22) results in a

plasticity reduction factor of 0.139. Thus, Gerard ’s results

tells us to expect the plastic collapse load, 
~coll’ 

to be

13 .9% of the linear result. A bifurcation analysis of the

shell results in a critical load of 806.5 kips. The nonlinear

plastic analysis carried out on the same shell indicates a

collapse load of 99.8 kips. (Figure 23) This is a knockdown j
factor of .124, surprisingly close to that predicted by

Gerard.

To shed light on the mechanisms involved in such a

drastic reduction in load carrying capability , the stress

field around the midsection of the shell was studied for both

the linear elastic and plastic analyses.

As seen in Figure 24 the stress field in the circumferential

direction is remarkably different for the two analyses. The

nonlinear, plastic analysis reveals a smooth sinusoidal

transition, for the outer surface, from a positive stress

to a negative oneof equal magnitude. The reverse is true for

the inner surface. Thus, exactly one half of the shell

midsection is experiencing a compressive stress, the other half

a tensile load. This phenomenon indicates an almost pure
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bending load at the shell midsection with the shell membrane

stress being very close to zero.

In the linear analysis the stresses are not large on
V 

the outer and inner surfaces of the shell midsection. This

indicates a substantially lower moment field existing in the

area.

Displacement curves (Figure 25) bear this out. The

plastic displacements at the shell midsection are very much

larger than the corresponding linear displacements. In this

case plasticity is acting very much like a cutout. It is

allowing a larger displacement field to occur, making the

effect of stress resultants more pronounced. Figure 26

reveals that the linear and nonlinear stress resultant fields

are very close. This suggests that the larger displacement

field generated by a plastic analysis is making the shell

much weaker than the same shell with a smaller displacement V

field subjected to the same stress resultants. It is this

highly nonlinear coupling effect between displacement,moment, and

stress resultants that lead to collapse of the shell in a

plasticity analysis.
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V. Cylindrical Shell Under a Pure Bending Load

Description of the Model

The major thrust of this particular study was directed

at the effects of boundary conditions and end-tin; stiffening on a

cylinder loaded in bending. The cylindrical model chosen

for this case was an isotropic cylinder (no cutout) with the

following geometric and material properties:

E = 28.3 x lO 6psi

V = .3

~~ = 2 5  -

The material is 304 Stainless Steel with a yield stress of

37,700 psi. The stress strain curve is shown in Figure 20.

The piecewise linear representation of the stress-strain curve

for 304SS at room temperature is listed in Table II.

The loading and shell geometry are shown in Figure 27.

The end load N
~ 

applied to generate the required bending

moment takes the form

= —N cos 0 (25)

where N is the amplitude of the load and 0 being the circum-

ferential coordinate. The bending moment generated is

M = Nnr2 (26)

This study required that only one-quarter of the shell

be analyzed due to a plane of symmetry normal to the cylindcr

axis at midlength and an axial plane of symmetry passing

through points of maximum bending load. Symmetry conditions
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are applied at the three boundaries designated in Figure 27.

The fourth boundary is restrained by two stiffening end rings.

The rings are used to provide as much of an undistorted cross—

section as possible. The rings possess enough of a stiffening

effect to approximate a condition in which the end plane

rotates and translates with a minimum of cross—sectional

warping.

It is extremely important in this study that the end—

plane of the shell be free from warping. Any significant

deviation from a warp free end plane results in a load that

is not pure bending.

Both single ring and double ring stiffeners were inves-

tigated until it was evident that two rings were significantly

better suited to prevent undesirable warping. In all, seven

cases were analyzed; Figure 28 depicts a profile of the cross

sectional warping for three of these cases. In the model the

end rings are located at X equal to 0, and 0.02L. The rings

that provided the best warping characteristics possess the

following non—dimensional parameters:

.4. = .02
r (27)

-4 
= 1.6

where I is the cross-sectional moment of inertia about the

centroidal axis normal to the plane of the ring and A is the

cross—sectional area of the ring. The torsional stiffness of

the rings as well as the other stiffnesses, were considered

to be zero. The rigid body displacement of the cylinder

} 
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was prevented by specifying that the lateral displacement

was zero at w(0,l80°) (See Fig 27).

The grid spacing for this model was varied in both the

axial and circumferential directions providing a 50 by 21

point grid network. The variable spacing is included to

allow a higher concentration of grid points in areas where

failure is expected to occur. In the axial direction failure

is expected at the cylinder niidlength so mesh density is

increased near that locale. (See Figure 29)

Additional Comments on Ring Stiffener Configuration and Boundary

Conditions

For stiffened shells under bending or axial loads, rotational

restraint is a major factor in buckling. It was found in this

study that warping could not be prevented by the use of just

one stiffening ring, even if that ring possessed very large moments

of inertia. It was discovered that by placing two rings a

distance 0.02L apart, a couple was generated when the structure

was loaded that counteracted the moments trying to warp the

end plane . This double ring stiffening effect is necessary

in much the same manner that the stiffening plate is needed to

generate rotational rigidity for the axially compressed , stringer

stiffened shells discussed earlier in this thesis.

The boundary conditions also play a major role in the warping

problem. By allowing 8 to be free the shell, by itself, lacks

the required rigidity to prevent warping. Only by the introduction

to two rings into the analysis is the required rigidity obtained .
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V - VI. CONCLUSIONS

The following conclusions can be made.

Cl) The bending moment in a nonlinear analysis has a

great effect on a flexible shell structure, less effecton a

less flexible one. This particular characteristic

is not present in a linear analysis due to the

removal of the higher order rotation terms that

effect strain.

(2) It is necessary to allow stiffeners to resist rotations

directly along their centroidal axes, caused by

moments along this axis, so that rings or stringers

are able to assist the shell membrane in resisting

-
~ rotations.

(3) In order for this rotational rigidity to be effectively

displayed by stiffeners, the stiffener itself must

be considered a two-dimensional plate structure

branching out from the shell skin. The usual techniques

published in the technical literature normally handles

the analysis of stiffeners as if they were beams.
V 

Consequently, their true rotational effect (as required

by conclusion #2) is not analytically displayed.

(4) Displacement fields are the primary source of comparison

in evaluating the shell load carrying capability

because they best reflect the stiffness of the shell

(5) It becomes clear through this study that cutouts

positioned within cylindrical shells create results

that are not easily predictable using past shell
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experiences. This idea should be tied in very

closely with the analytic inaccuracies associated

with the analysis of the stiffening of the shell.

(Refer to Conclusion #2).

(6) As the shell thickness becomes larger the nonlinear

collapse analysis gives results that indicate a

greater rigidity than one could conclude from a

linear bifurcation analysis.

(7) An elastic/plastic analysis appears to precipitate

collapse in much the same manner as do cutouts.

(8) The collapse results obtained using both geometric

and material nonlinearities as incorporated into the

STAGS plasticity subroutine can be closely approximated

H using Gerard ’s plasticity equation.

(9) The White—Besseling technique of plastic analysis for

a shell under compression gives reasonable results.

It is required that a great deal of computer time is

consumed for a complete solution. Therefore, this

author recommends that an approximate analytical

calculation be carried out first so that the analyist

obtains an approximate idea of the computer time

necessary before attempting a lengthy computer solution.

(10) In order to apply an analgous pure bending load at the

extreme ends of a cylindrical shell, one must prevent

warping of the end cross sections.

(11) The boundary conditions associated with proper warping

constrairitas pertaining to the previous conclusion should be:

v,~ directions - no movement
-

- w,u directions - movement
at boundary line 1. -

‘
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(12) With 8 being fixed it is required that the analyst

recognize that the shell, by itself, cannot establish

the required rigidity. Consequently , to associate

this boundary with the zero warping requirement, one

must fix to the end of the shell ring stiffeners.

In order to conform to conclusion #2 it is required

that two rings, separated by a given distance, be

placed into the analysis. This distance of separation

is specified by the parallel axis for moment of inertia.
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