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1. Introduction

The collocation method is now widely accepted and has been used to
solve many geodetic problems, e.g. the computation of geoidal undulations and
deflections of the vertical (Tscherning, 1973; Tscherning and Rapp, 1974;
Lachapelle 1975a and 1975b) as well as for the extension of the gravity field
from satellite altimetry (Rapp, 1974 and 1976 ). In its narrower and original
form this technique has been used for the prediction of point or mean anomalies
from the known gravity field (Rapp, 1964 ). In fact, the method has been used,
at least experimentally, to assist in the solution of all aspects of the geodetic
problem.

The covariance function is basic to collocation methods. This fact
is emphasized by Moritz in his important work on the theory of collocation when
he comments that, '"Not only conceptually, but also computationally the covariances
represent the crucial point in the present method. .. " (Moritz, 1972, p. 21).
These functions are meant to represent the statistical characteristics of the
fields they represent, and in their derivation conditions of homogeneity and
isotropy are assumed to exist in the fields. It is the correctness of this
assumption which is being investigated here; if the assumptions are found to
be inaccurate it will be necessary to assess the impact that the lack of accuracy
has on the method, and to suggest ways of modifying the method to account for
an 'improved' model.

Although the covariance functions of the anomalous potential field is the
theoretical basis for covariance functions of other (potential-related) fields
(Jordan, 1972; Moritz, 1972, p. 94-99) it is usual for the Ag field to form the
basis for most collocation solutions (e.g. Lachapelle, 1975a, p. 23-24), For
this reason this investigation will at first concentrate on the detection of anis-
otropy in anomalous gravity fields. This is then extended to the behavior of
cross-~covariance functions and the effects of using an isotropic model for
collocation in an anisotropic region are investigated.

The assumption of an homogeneous gravity field throughout the globe
has been queried for as long as covariance techniques have been discussed. For
example, Rapp investigated three different regions of the United States and found
significantly different covariance functions for each from the analysis of these
fields (Rapp, 1964, p.42-65). Williamson and Gaposhkin analyzed subsets of
data of ocean and continental gravity assuming isotropy, and found the differences
between the covariances to be significant. They concluded that "...gravity is
not stationary' (Gaposhkin, 1973, p.208)., Similarly, in a statistical analysis of
anomalous gravity of Czechoslovakia, Vyskolil (1970) investigated the covariance
functions for Ag means of 10' x 15' blocks and concluded 'the theoretical
assumption of homogeneity and isotropy. ..is basically only forced and in reality
it will probably not always be satisfied.' (See also Kaula, 1966b, p. 58.)




It is common practice to allow for the non-homogeneity of the gravity
field by restricting the analysis to that data pertinent to the area of solution.
That is, a local covariance function based on a restricted gravity field is derived
and used in subsequent computations for that area. The problem remaining is
how to test such a local field for isotropy and, if characteristics of non-isotropy
are exhibited, how to include these in the computations.

As already mentioned, Vyskodil (qv) has expressed concern that non-
isotropy can exist. A comparison of the profile analysis by Rapp (1964, p.44-56)
shows large differences between N-S and E-W profiles of the same area, casting
doubt on the assumption that the covariance functions are independent of azimuth.
Kubddkovd (1974) has studied the gravity field in the Carpathian Mountains of
Czechoslovakia, and concludes that the departure from a situation of isotropy is
not insignificant, suggesting that use of a covariance function based on an isotropic
model "is impermissible without prior analysis of the consequences. "

The purpose of this report is threefold. Firstly, it is to see how
anisotropic characteristics in a data field are best detected and portrayed.
Secondly, to find out if an anisotropic model can be introduced into the theory of
prediction and collocation. Lastly, we wish to investigate if an 'improved’
statistical model produces any significant effect on the results of prediction and
collocation solutions.

It may be that such improvement is marginal. It has already been
pointed out that ... the choice of the covariance function is less critical (i.e.
than internal consistency in the computations - author's note) because the results
of least squares collocation are not very sensitive with respect to the covariance
function chosen, in the same way that the results of ordinary least squares
adjustment do not depend strongly on the weights' (Moritz, 1972, p. 90). Tukey
(1970, p. 165-166) estimates that in ordinary least squares situations, if the
ratio of each true weight to the weight you use does not vary by more than a
factor of 2, then the efficiency of the fit is always at least 88.8%. However, he
then differentiates between the normal least squares solution and the time-series
situation, pointing out that due to the overlap in data, some bias will result if the
variances and covariances are incorrectly estimated.

'"When in doubt, smooth" (Moritz, 1972, p. 125) is a valuable and
useful maxim, but there may be cases where such a procedure is contrary to a
preliminary appreciation of the situation. It may be that to 'smooth’ without
fully establishing the 'doubt' is detrimental to the resultant solution.
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2.0 The Theoretical Background

2.1 The Covariance Function

The application of covariance analysis to gravimetric geodesy is well
known (Heiskanen and Moritz, 1967, 252-259, 266~274). The fundamentals will
be briefly reviewed here in order to emphasize how the assumption of random-
ness of the gravity field influences the mathematical representation of its
covariance function.

'""The covariance characterizes the statistical correlation of the two
signals, Ag and Ag,, which is their tendency to have the same size and sign.
If the covariance is zero then the anomalies Ag and Ag, are uncorrelated

i.e. the size and sign of Ag has no influence on the size and sign of Ag,''(Ibid, 253).

This correlation is estimated by taking the mean of all product pairs
throughout the globe, thus:

T

L 27 n 2
(2.1) C(P,Q = o= fx=o fe,o fa,o Ag (&,X) Ag(8y,Aq)sinf d8dr da

where

P, Q represent the current points in the product pair, ¥m apart
8, A are the spherical coordinates of these points, and
a is the azimuth from P to Q.

If isotropy is assumed the covariance is independent of azimuth, and
(2. 1) becomes:

1 2n n
(2.2) C(p,ang;J'Aaoj'e_oAg,A&sme deda

If homogeneity is assumed the covariance is independent of location on
the globe, and since:

(2.3) Z%I::of:-o smededx=%”dc
(v 4

(2.2) becomes a function of separation only. Thus:

(2.4) cp,@ = + [[ d& agq do
(+4
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If local regions are considered, the reference model can be assumed
planar and the separation expressed as the straight line distance rx, Where:

(2.9) cm = M {48 8g:} = cn

M { x} being the mean value of x.

Forr=0

(2. 6) co=C(0)=M{Ag’}

the variance of the gravity anomalies. Note also that:
2.7) : m{ag} =0

which, if not the case, must be enforced by "cent2ring' the data before commencing
the analysis (see Rapp, 1964, p.7-8).

In a local area the means of product pairs are usually computed from
point data or from means of small areas (e.g. 021 x 0%1) arranged on a grid pattern.
If the field is isotropic, the values of the means for any one separation are
independent of azimuth. Conversely, if the means are computed without reference
to azimuth (see equation 2.2) the property of isotropy is enforced onto the field.

An analytical function can be fitted to the values of C (r) (e.g. Moritz,
1976, p.25-29). This function is a convenient way to generate the elements of the
matrices used in subsequent computations. However, this fitting will have probably
introduced further "'smoothing' into the covariance function; thus the price paid for
convenience may be a loss of precision in the representation of the statistical
relationships between two points in the subject data field.

A review of the process will underline the stages at which the actual
covariance may have undergone change. The covariance function has been found
by:

() taking the means of product pairs throughout the region being
analyzed,

(i) taking the means regardless of the directional relationships of
successive point pairs, and




(iii) fitting an analytical function to the resultant discrete field.

If homogeneity is present, the smoothing introduced by (i) will be
minimal. If isotropy exists, step (ii) will also introduce a minimum of smoothing.
If both conditions are present, then the function obtained in (iii) will accurately
reflect the existing situation. How the covariance function is used will be
demonstrated in the following section.

2.2 Least Squares Prediction

This discussion will concentrate on the application of stochastic methods
in the prediction of gravity anomalies. This will assist in the appreciation of the
stochastic techniques generally, and in particular will underline how the assumption
of isotropy in the data field carries through into the formulation and solution of the
problem. The more involved multivariate case will be treated separately (see
section 2. 4).

The covariance relationship is used in the determination of the

coefficients a,, of a univariate Kolmogorov-Wiener prediction model (Grafarend
and Offermans, 1975, 3; Grafarend, 1976, p.152). Thus:

(2. 8) Ag'p=Ean Agg i=1,n

1
Ag» being the predicted value of Ag at P.

The error of prediction is found, thus:

(2.9) & = (g 'zan ag,)*
i

These squared errors are now averaged through the region for all points P. Thus:

(2.10) M{cf} =M {Ag.’} . 2za., u { ae» Agi} +3:z anar, M{ag, ag, }
1 L |

i=1,n
j=1,n




Assuming that:
(2.11a) M{Agr’} = M{Ag,’}
(2.11b) w{ags 8g,} = M{ag,8g,} for ry=m,

and using the covariance function derived in section (2.1), (2.10) becomes:

(2.12) m:’" Co- 22 apy Coy + S:S.: apy 8p, c“
1 ;

where

(2.13) mi =M {sp’}

Note the approximations in (2.11). The values for Ags are (obviously)
unknown, and so some assumption regarding their statistical relationship with
respect to known values ( Ag,) must be made for (2.10) to be solveable. The
accuracy of the estimates made in (2.11) will depend on:

(i) how well the characteristics of homogeneity and isotropy describe

the actual Ag field, and

(ii) the amount of data used to find the Co, Cpy and C,, values.

This second point is fairly obvious and not of direct concern at the
moment. It is sufficient to say that if the data is sparse, then a poor estimate
for the covariance function is likely. This is despite any indications of good
accuracy obtained from an estimate of internal precision (see section 2. 3).

The first point is of more importance in this present discussion. If
the field is well modelled by a stationary statistical model, then the approxima-

tions for M{Ag.’} and M{Ag, Ag,} will be realistic. Otherwise, these

approximations are '"smoothing'' the real situation and characteristics of homo-
geneity and isotropy are imposed onto the predicted field.




The coefficients ay, in equation (8) are now solved in the usual way by
least squares, viz.

dmg) _ 0
ban 2
Thus it is found that:
(2.14) apy = z C:;l Cr, j= 1,4,

t
The predicted value is found by substitution of (2.14) into (2.8). Thus

it can be seen how the adopted statistical model is imposed (by way of C, s and
Cry) onto the predicted values for Ag, .

2.3 Accuracy of Least Squares Prediction

The investigation is carried into the estimation of accuracy to help
emphasize the role which the statistical model plays in this phase of the develop-
ment.

Equation (2.9) can be used as the starting point; thus:

(2.15) & = Agr - Z ar; O

where a,; are found from (2.14). In equation (2.15) we are comparing the pre-
dicted value of &g, with Ag, assumed known.

The procedure described in section (2. 2) to find the mean square errors
is again followed and it is found that:

(2.16) m,‘- Co- C:g Cg?l Co .

(In (2. 16) matrix notation is used to simplify the expression)., It must be
noticed that estimates (2. 11a) and (2. 11b) are again used. The errors being
determined are therefore not those at the unknown points P but at known points i.
That is, equation (2.16) is a measure of the "fit" of a stationary statistical model
onto the known data. (See also Grafarend, 1976, p. 154.)

This is an important distinction to make. While m,’ is probably a
useful guide to the accuracy of the predicted values, it is strictly a measure of

-7-
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the "fitness of the model'. As such, it will be useful when comparing predictions
based on anisotropic models with those using isotropic models (see section 4.1).

From the above comments one can see the danger in placing too much
confidence on estimates of m,’ which are derived from small populations of
data points. Because of the small mimber of constraints available in such cases,
the solution will not be greatly overdetermined and will, in fact, approach a
unique solution.

In fact, to obtain an alternative estimate of accuracy, one can carry
out a simple error analysis on the original observation equation (2.8). In this
approach the errors in the data can be found from a knowledge of the methods
used to obtain the known Ag's (Brovar et al, 1964, p. 278-279; Kearsley, 1976,
p. 120-122). The errors in the covariances could be estimated by statistical
analysis of C,, in the course of the evaluation of the covariance function (Ibid,
p. 98-100).

2.4 Collocation Theory

In collocation, one predicts signals from observed data which are not
necessarily of the same type as the signal predicted. For this, auto-correlations
and cross-correlations are needed. It is also possible to incorporate in the tech-
nique the determination of parameters of a geometrical model which is chosen
a priori in order to reduce systematic effects which may be present in the data.

The generalized observation equation of collocation is stated as:

(2.17) x=AX +8' +n
where

x is the measurement (e.g. gravity)

AX defines a mathematical model (e.g. normal ellipsoid)
s' is the signal (e.g. gravity anomaly), and

n is the noise (e.g. measuring error in gravity)

Following the development by Moritz (1972, p. 7-16), the model
parameters X are found by least squares to be:

(2.18) X=AC*A)*AC x

© s e o 4




and the predicted signals by:

(2.19) 8 =Cs C'(x-AX

where

C = Cx, the auto-covariance matrix of observations
Csx = the cross-covariance matrix between signal and observed data .

It is noted that the expression which determines the model parameters
is dependent on T and thus may be influenced by the choice of stochastic model.
In the local context the model effects are generally removed by adopting
parameters deduced from a "higher' (or global) solution. The problem then
reduces to a "multivariate" prediction (Grafarend and Offermans, 1975, p. 4),
where the task is to predict one potential-related parameter (e.g. Nor §,7)
from a second (e.g. Ag). It is this situation which is of concern in this present
investigation.

As can be seen from (2. 19) the prediction is a function of both the
auto-covariances of the observed quantities, and the cross-covariances of the
observed quantity with the predicted quantity. Both of these quaatities are derived
from the anomalous potential, and their covariance functions are thus indirectly
related (Moritz, 1972, p. 94-99; Grafarend and Offermans, 1975, p. 28). A
number of models have been suggested as suitable for representing the auto-
and cross-covariance functions, both on a global scale (Tscherning and Rapp,
1974) and for the local case (Jordan, 1972). However, isotropy of the potential
field and hence of the Ag field (Ibid, p. 3664) is usually assumed. (See also
Grafarend and Offermans, 1975, p. 20-22; Grafarend, 1976, p. 164-1865).

Thus it will be seen that the values resulting from (2.19) will have the
characteristics of isotropy imposed on them by means of the auto- and cross-
covariance functions. It is possible to include an azimuth term in the functions
to account for anisotropy (Jordan, 1972, p. 3663). The situation is much more
difficult to model (see section 4.3) due to complications which occur in the
cross-covariances of two different signals. Nevertheless, it is obvious that the
adoption of an isotropic statistical model to generate covariances in a non-isotropic
region, while simplifying the solution, will cause smoothing which may be
detrimental to the solution.




2.5 Comments

The methods of least squares collocation and prediction are often
described as the "optimal" solutions of their respective problems given the data
available (Heiskanen and Moritz, 1967, p. 269; Moritz, 1972, p. 18; Lachapelle,
1975a, p. 19). From this it has been inferred that the techniques as formulated
provide the 'best possible' method of predicting or solving for unknown param-
eters. Such a claim must be viewed in the light of the assumptions made in
equations (2. 2) and (2.11). If a stochastic model with properties of homogeneity
and isotropy is not a good description of the actual field then a solution based
upon this model will not necessarily give the most accurate solution. In other
words, least squares prediction or collocation will give the optimal solution for
the particular stochastic model adopted; whether or not this is the best of all
solutions is dependent upon the faithfulness of this model to the real situation.

The matter as to vhether or not a more sophisticated covariance
model will have any practical impact on the solution has already been touched
on in section 1. It is hoped that this investigation will provide some further
insights into this question.

3. The Detection and Representation of Anisotropic Characteristics

3.1 Introduction

In this chapter various methods tested as a means of detecting
anisotropy are reviewed. Possible ways of representing the azimuth-dependence
of the statistical relationships are also suggested, it being realized that the
method which is most efficient in detecting anisotropy will also provide the
best foundation for its representation.

To aid in the appreciation of the methods, tests were carried out on
a number of data sets, details of which appear in Table 1. Because of the limited
extent of the data, it was safe to assume plane relationships existed between
data points involved in the analysis.




Taﬁle 1 i

ﬁ Details of Test Data Sets

Data Location Description Data
et No.

1 38°s s 39° Strong ridge (wavelength Free-air anomalies
-83°2 )22 -84° ~30'; amplitude =~ interpolated from
40 mgals) isogal map on 5'
dominating on azi- grid interval

muth of 20°
Range 80mgal
(see Figure 1)

2 Generated Sloping plane As above
Data Max. 50mgal, SE corner
Min, -2, Smgal, NW cnr.
Azimuth of strike =~ 35°

3 Generated Sloping plane As above
Data Max. 28mgal, Eboundary
Min. 2mgal, W boundary
Azimuth of strike 0°

4 38°s s 39° Flat, featureless As above

-82°2 ) 2 -83° Range 40 mgal

Note: adjoins data set 1
(See Figure 2)

Special attention must be paid to the dimensions of the grid in any
procedure which attempts to analyze a continuous field represented by discrete
points at grid intersections. The reader is referred to Blackman and Tukey
(1959, 117-120), Horton et.al. (1964, 590-591) and Nettleton (1976, 159) for a
discussion on this topic. In this particular case the 5' grid intersection was
chosen as giving adequate representation in an already smoothened field. In
most cases the maximum 'lag’' or step (r in equation 2.5) was limited to half

P the number of data points in each row or column. The minimum sample size
was approximately 50. In subsequent analyses the r.m.s. error of the mean
obtained for this maximum step did not differ significantly from that for the initial
step sizes, and so was considered a good estimate for the quantity being deter-
mined here (eg. the covariance, coskewance, etc.)

-11-







38°

Figure 2, Free-air Gravity Anomalies - Data Set IV

|
*
} (Contour Interval: 5 mgal)
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It should be noted that these data sets are fully defined - a situation
which will rarely occur in real life. Such laboratory conditions are needed for
this investigation. The application of collocation and prediction in areas with
little or no data is a separate issue and is beyond the scope of this report. It
may be possible to use cross-correlations between gravity and other geophysical
phenomena, such as heat flow, to extend gravity data. For further information
in this area the reader is referred to Kaula (1967), Woollard and Daugherty
(1970; 1974), Woollard et al. (1975) and Groten (1975).

3.2 Covariance Analysis of Profiles

An obvious method of testing a field for anisotropy is to find the
covariance functions along two mutually orthogonal profiles (or 'transects’,
Whittle, 1954, 434) of the field. In this case it is most convenient that these
profiles be taken along the N-S and E-W axes, much along the lines adopted
by Rapp (1964, 31-57). Equation (2.5) is therefore modified to become:

(3.1) : c(r) = {2 g}
NED LR(3)

where

hj = 1,0

o= (g} or {0}

and Ag; is centered as before (see Equation 2.7).

The functions resulting from a profile analysis of data set 1 are
illustrated in figure 3. The points to notice are:

(i) the steepness of the E -W function cf. the N-S function. In
fact, C¢ (r)= 0 mgal at r= 30km, while at this aepn.ntlon
Cu (1) ™ 260 mgal®; also Cx (r) does not cross C(r) =0 mgal®
within the limits of the analysis.

(11) the location of the general covariance analysis (equation 2. 5).
This does not take up the mean position between Cy and C; as
might be expected, but rather tends toward (and eventually
crosses) the C; function. This phenomenon will receive more
attention in section [(3.6) (iv)].




-

‘ug
JONVIYVAOD TvH3IN3I9

[04v j0 sainui g sjonb3 days yoo3]
(1)D >,

/+

T vivad 1S31 404 SNOILONNS 3ONVIHVAOQD : € 34NOI4

00¢-
00I- ’ .
0 (9)
oy
8_ r— %
3 |
@ |
o :
002 r«u :
00¢
(0]0] 2

———




(iii) Profile analysis taken on data sets 2 and 3 produced functions
similar to those for data set 1 (see figure 4). The N-S profile
for data set 3 which is horizontal produced a horizontal line
reflecting the 1:1 correlation in this direction. The fact that .
the data sets 1 and 2 also display greater correlation in the
N-S than in the E-W direction explains why their Cy functions
decay slower than do the C¢ curves.

(iv) One sees the general analysis of data set 2 produces a curve which
tends to-follow the C¢ curve as for the first data set. An
explanation for this will be given below (section 3).

While dramatically illustrating the presence of anisotropy this
technique does not help to quantify this property. It is difficult to see how one
may, by simple adaption, generate elements of the covariance matrices (unless,
of course, the data points lie on the N-S or E-W axis passing through the pre-
diction point).

3.3 Spectral Analysis

A spectral analysis of the data can provide insight into the wave-forms
contributing to the field. A spectral analysis of the covariance function produces
the "power spectrum' of the field. The power spectra of both the N-S and E-W
profiles may provide more information into the nature of the anisotropy of the
data sets.

For the general background on this technique the reader is referred
to Blackman and Tukey (1957, p. 53 and 121) and Miller (1956, p. 164-170).
Applications of spectral analysis to geodetic or geophysical problems can be
found by referring to Horton et al. (1964), Moritz (1967), and Nettleton (1976,
p. 158-181). A brief cutline of the technique will be given here to assist
unde rstanding of the resultant spectra. The power spectrum S(w) is the
Fourier Transform of the covariance function: '

-
3.2) S(w) = I cme”

where T is the lag time (the equivalent to the step r in equation 2.5). Now
C(7) is a symmetric function. The imaginary term of the expanded form of e~
(1 sin w 7) will integrate to zero on multiplication with C(T) to produce:

wT

(3.3 S(w) -I C(T)cos wt dT
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= 2 LC(T)cosz dr

This can be further modified as C(7) -0 as T—=,

Hence, for all practical purposes:
T
(3.4) S(w) = L C(Tycos wT dT

where T is the period of the covariance function C (T).

When the covariance function is represented at discrete, regular
intervals (Ax), equation (3.4) becomes (Blackman and Tuckey, 1959, p. 53
and 121):

2=1
(3.5) S,(w)=Ax[Co+22 Ce cosprﬂ/m+c.008rrr],r=o-'m
=1

where

r is the harmonic counter

Co~C, = C(0)~ C(m), and

m is the maximum lag or step value

and Ax is the lag interval, in this case 1 grid unit.

It is sometimes possible to get meaningless negative values for the
coefficients of S( w). Smoothing techniques can then be applied, such as (i)
"hanning" (Ibid, p. 53; Davis, 1973, p. 269):

(3.6) So = #(So+ )
Se'=LSust £S5 + %S, 1<p<m
Snx = i (Se-1 + Sy)

where the S* coefficients are used for analysis; or (ii) replacing the coefficients
C in (3.5) with:

(3.7 (Ce/2) (1 + cos (rm/m))

(see Horton et al., 1964, p. 588).




The power spectra for the N-S and E-W profiles of data sets 1, 2 and
4 are shown in Figure 5. The units of the power density estimates are mgal
squared per cycle per grid unit. The abscissa is annotated in both frequency (f -
cycles per grid unit) and harmonics of the fundamental wavelength (shown by
arrows), See Appendix Al.

The spectra for data set 1 differ dramatically in the low order
harmonics, the spectrum for the N-S profile (S¢) maximizing for the zero order
term while that for the E-W profile (Sy) receives its maximum contribution
from the first harmonic. A similar effect is noticed in the spectra for data
set 2. While this clearly shows the field is anisotropic and this is valuable
information to have for (say) the removal of trend surfaces, it is not useful
in tiie evaluation of the anisotropy of the data. In fact, these spectra must
be treated cautiously because, due to the limitations placed on the covariance
analysis, an incomplete wavelength of information is available for analysis.

3.4 Semi-Variograms

The semi-variogram has been used extensively in the area of
interpretative geology (Matheron, 1963, p. 1250; 1965). Some mention has been
made of their use for geodetic purposes (Monget, 1969; Monget and Albuisson,
1971), but their application in this field has been limited. This function is closely
related to the structure function, used by Vysko¥il in the statistical analysis of
gravity in Czechoslovakia (Vyskoéil, 1970).

The semi-variogram is defined as:

- - Az
(3.8) (0= o= “s (Agier - Agy> d S

where S is the area under consideration. This function assumes statistical
properties of homogeneity and isotropy and its similarity to the covariance
function is noted. It is in fact related to the covariance function by the simple
expression (Ibid., p. 174; Matheron, 1963, p. 1253):

(3.9) Y(r)=C(0) - C(r)

This relationship helps in understanding the behavior of the semi-
variograms for profiles of the data sets (Figure 6). These curves are the
mirror images of the covariances of the profiles, originating at (0,0) on the
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Figure 6: SEMI-VARIOGRAMS OF PROFILES
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graph. According to the definitions, they fall into the "continue-type" class,
i.e. "represent a regionalized variable of high contimity' (Ibid., p. 1250).
While again demonstrating the presence of anisotropy, they do not provide any
k information not already known from the covariance functions. In fact, the
task of finding elements in the covariance matrices is made more complicated.
It would appear that their main value lies in the area of interpretative geology.

3.5 Coskewance Functions

The coskewance analysis of the anomalous gravity field was suggested
by Kaula (1966a; 1966b; 1967) as a method of performing a non-linear auto-
analysis of the anomalous field. It is used here not in this context but as a
means of detecting and measuring the anisotropic nature of the field. Coskewance
is defined as:

(3.10) L(TywyB) = L (Yres ¥re, Br) = -8—:;-; IIIx(r) x(8)x(t)dtdsdr

where the elements are shown in Figure 7.

Figure 7
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It is analogous to covariance except that triple products rather than product pairs
are meaned throughout the field.

The original development assumed isotropy in the data, i.e. means
were taken without regard for @ and 8. However, if & and 8 are kept constant
for any one set of ¥, and ¥,. then information regarding the azimuth dependence
of the field can be found. For example, coskewances can be found for N-S
profiles, where =0, 8= 0; 05 Yrq S Puax; 0 5 ¥r¢ S Pgax and E-W profiles
(@=90; 8=0; 0% Yrs S Vyax; 05 Yre S ¥uax) and these compared. Alternatively,
offset configurations can be taken and compared eg. @ =0, 8=90; 0 < ¥rs < ¥ 4ax;
o = *Pt s “ux L

In this study the parameter §., (or its planar equivalent, T) is called
the first step, while ¥, is the second step, w. An example of the curves which
result from the coskewance analysis of data set 1 are shown in Figure 8. Note
that upon assuming isotropy, L is no longer a function of 8.

It is difficult to interpret the coskewance curves, although the effects
of anisotropy are apparent. (If the field were isotropic L (T, w) would equal
L(w,T) forall T, w - a situation which clearly does not exist - particularly
when one step is small and the other approaches the maximum,) It is interesting
to note that L (3, w) for all ware approximately equal, reflecting the fact that
3 step units is about the half wave-length of the data. Also, as might be expected,
L(T,w) for w—0 are similar in shape to the covariance curve.

However, the combination of three parameters in this fashion does
complicate interpretation and gives no clear indication of the extent of anisotropy.
It is also difficult to use these functions to set up the covariance matrices needed
in subsequeat computations.

3.6 Two Dimensional Covariance Functions

The coskewance functions appeared promising because it combined data
in a variety of configurations. That is, it involved both the separation and azimuth
as parameters in the analysis. However, the addition of the third element in the
products distorted the desired covariance relationship and complicated the
interpretation of the resultant functions.

With a small modification - the omission of pivot point r above - one
can find the product pairs in the various configurations mentioned in section 3. 5.
The resultant function is the two-dimensional (2-D) covariance function. Thus:

m%l?sﬂ

1

(3.11) C(2y8) & —pmenSmme Ag(l,j) Ag(i+r,j+s), r,s=0,m
(N-{ry(N-s) ;

-

=1 y=1

24~




where r,s is the step in the row, column respectively
m is the maximum step set for the analysis (usually N/2), and
N is the number of rows, columns in the array (assumed square).

This expression is algebraically correct, that is the sieps in the rows
and columns can be both positive and negative. It will be seen that:

C(-r,8) = C(r,-8s)
o C (-r-8) = C (r,8)

In the resultant surface quadrants [ and ITI are identical as are quadrants IT and [V.

This function has been found useful in other areas of scientific study to
depict the azimuth~dependent statistical relationships which exist between data
points., For example, Whittle (1954) used it to demonstrate the auto-correlation
of soil fertility as evidenced by the wheat yield of rectangular subdivisions of a
test area. It has also assisted the study of magnetic anomalies in the north-
western regions of Canada (Horton et al., 1964, p. 597-599). It has been used
to test the anisotropic characteristics of the gravity field in the Carpathian
Mountains of Czechoslovakia (Kubadkovd, 1974). This area is similar in size
to the test areas in this present study and data was taken at 1' x 1' intersections.
The function has received mention in other gravimetric studies (e.g. Jordan,
1972, p. 3661) but this writer has found no other use of it in the geodetic literature.

The 2-D covariance analysis of data set 1 produces the surface illustrated
in Figure 9. The following points should be noted:

(i) the surface represents the covariance relationships for product
pairs of all separations and orientations. Note that it includes
the N-S and E-W functions deduced above; these are found
by taking a section through the midpoint of the figure, C(0,0),
north and east respectively.

(il) The anisotropic character of the original data is fully quantified.
The predominant direction of the isogal lines in figure 1
(@=10°) is reflected by the orientation of the contours of the
2~D covariance surface.

(1i) A truly isotropic data set will produce a circular pattern for the
contours of the 2-D covariance surface (see Agterberg, 1970, 125;
Kubafkovd, 1974, 19). The extent of the deviation of the contours
from circles indicates the extent of anisotropy existing in the
field.
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(iv) The bebavior of the general covariance function (section 3.2) can
now be understood. This results, of course, from the average
of all profiles 0 < a< 360. The fact that the contours of the 2-D
covariance surface run approximately N-S will mean that the
average taken for any one separation (r) will tend toward the
curve which is more representative of the predominant trend of
the surface i.e. the C¢ curve.

(v) Becsuse of population differences the r.m.s. of the C (i, j)
values increase with increase in i,j. For example, the
spread for C (0,0) in (the r.m.s. sense) is * 30 mgal® while
the same spread for C (+6, +6) is £60 mgal®. This should be
remembered when extracting C (i,j) values for subsequent
computation.

The 2-D covariance analysis of data set 2 produces a surface with
features similar to the surface just discussed (see Figure 10). However,
analysis of data set 4 (adjacent to data set 1) shows that this field tends much
more to the isotropic situation (see Figure 11). Imsofar as it bears little
resemblance to the 2-D covariance surface for data set 1, it reinforces the
warning concerning the use of the covariance function derived from one local
field to represent the statistical characteristics of another field, no matter
how close that field may be.

3.7 Representation of the 2-D Covariance Surface

It is possible to represent the 2-D covariance surface in three ways:
(i) by surface-fitting
(i) by a family of curves

(1ii) by discrete data .

Section 4.2 shows the results of some experiments which used method
(iif) to represent the 2-D covariance surface of data set 1 (Figure 9). It could
be well represented by a fairly low-order surface (say of order 3, however,
the approach whichuses a family of curves has the distinct advantage that it
directly relates to the functions already used to represent general covariances.
This advantage is enhanced if one chooses a function which is compatible for
covariances of all geoidal relationships (cf. Jordan, 1972).

The basic parameters which have been used to describe the normal
(1-D) covariance function are:
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() Co - the variance,
(i) & - the correlation length, defined such that C (£) =# Co, and

(lif) x - the curvature of the curve at r =0

(see Moritz, 1976, p. 22). The approach developed here uses Co and £ as the
basic function descriptors, and essentially makes the § parameter a function of
azimuth. In this way it is possible to generate a covariance function for any
azimuth and thus derive elements of the covariance matrix needed for computations.

The techniques used in two-dimensional error analysis are adapted for
this purpose. The elliptical shape of the contours of the (2-D) covariance surface
has already been noted; it is possible to compare the curve defined by £ o’

0 < a = 360, to the error ellipse of error analysis. The mathematical techniques
derived for the transformation of the error ellipse will then be useful in our
present task.

The weight coefficient in direction & (Q ¢y ) can be expressed as
(Richardus, 1966, p. 100-105; Hirvonen, 1971, p. 165-169):

\

(3.12) Qaa = Qux cos® a + Qv sin®a + 2Q sin & cos &

Qux» Qvy = weight coefficient along the X, Y axis respectively
Quxy = the cofactor between X Y coefficients

Now, defining &, £¢ as the § value for Cv, C¢, and substituting them

(3.13) §a = &n cos® a + & sin® @ + 2&y sin a cos &

The value £y needs to be defined. Being a cofactor there is no geo-
metrical meaning attached to it as there is for §v , ¢ . However, it can be
determined if the correlation length is known for at least one azimuth other than
0° or 90°. Then by solution of:

(3.14) Eve = [€qq - (En cos® @ + & sin® a)] /2 sin & cos
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this quantity can be determined. The most sensitive estimate would be obtained
for a mid-quadrant azimuth, and to control the discrepancies occurring due to the
departure of the £ curve from a true ellipse, two values of £y were obtained
from a=45° and a = 135°. The mean of these was then substituted into (3.13).
This expression could then be used to generate the covariance function for any
azimuth.

Local Covariance Functions

Many expressions have been suggested to represent the local covariance
function. Experiments were made on a selection of these to determine which was
best suited for surface generation. Those tested are listed below. The parameter
s represents the step or lag throughout.

Model 1: Hirvonen's covariance function (Hirvonen, 1962; Moritz, 1976, p. 17)

(3.15) c(s) = Cg/{l +(s/d)}

For this function £ = d

Model 2: The Gaussian function (Ibid., p. 18, 26)
-ad?
(3.16) C(s)=Co "

For which £ = -i- (20:2)i

Models 3 and 4;

These were Models 1 and 2 compounded with the cos term, cos (rm/A).
This was done in order to obtain the characteristic negative values for the covar-
iance function. Unmodified, Models 1 and 2 approach zero, but never become
negative, The wavelength (A) of 6 units as used in the spectral analysis was
again adopted. However, difficulty was encountered in maintaining the § values
for this wavelength, and the results obtained were generally poor. They are
omitted from the summarized results in Table 2.




Model 5: The logarithmic model (Moritz, 1976, p. 29)

C 2¢
: A 1414K° s=)§

where £ = k! {(21;"5-1)3 -1}5

Assuming k =1 to maintain the accepted values for the curvature
parameter (Ibid.).

A-zaa[liﬁz:*_lf]

Model 6: The third-order Markov model (Jordan, 1972, p. 3664)

-]
(3.18) C(s) = Co (1+5D- -2-%,) e/

£ is found to be approximately 1.095D (Ibid., p. 3665). This function
is of interest because of its compatibility with the auto- and cross-correlation
functions of other derivatives of the anomalous potential.

Using all models, C(s) was found forall s, 1585, with €a computed from (3. 13)
for azimuths 0< @< 360 in 10° advances. A selection of these are tabulated in
Table 2, and compared with the actual discrete values of the 2-D covariance.
Also, out of interest, the values for the general covariance function are listed.

The comparisons indicate that the logarithmic model (model 5) appears
to give the best all around results. All models fit well for & =0 where the curve
attenuates slowly. The poorest fit is found for negative covariances, and it is in
this region that model 5 is clearly superior. It must be noted that discrepancies
in azimuths 50° and 130° will be influenced by the approximation of the § - generator
(equation 3.13) to the actual £ curve. These¢ discrepancies could be minimized
by the adoption of a more sophisticated expression to determine &,.

It appears that this technique is quite successful. It must be pointed
out that generation of covariances in this way comes much closer to the truth
than the values found from the general covariance function based on an isotropic
statistical model. Whether or not this improvement in accuracy is significant
must be the subject of a further investigation (section 4.1).
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Table 2
Generated Covariances
(mgal®)
Model
Azimuth| Step 2-D General 1 2 5 6
0° 1 332 300 334 337 318 318
2 300 208 299 310 272 274
3 263 88 255 270 233 235
4 223 - 13 211 223 200 203
5 180 -110 173 173 173 177
50° 1 275 300 286. 299 285 284
2 175 208 187 192 188 186
3 50 88 118 92 106 101
4 -100 - 13 79 33 37 31
5 =200 -110 55 9 - 20 - 27
90° 1 270 300 261 276 267 268
2 143 208 150 140 143 145
3 8 &8 88 45 37 40
4 - 99 - 13 56 9 - 50 - 47
5 -170 -110 37 1 -124 -120
130° 1 300 300 327 332 312 313
2 245 208 278 292 259 261
3 175 88 222 235 212 217
4 100 - 13 175 175 174 180
5 20 -110 136 118 142 149
«33~
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3.8 Conclusions

The 2~D covariance function promises to be the most efficient way of
detecting and representing anisotropy in a local or regional data set. It clearly
illustrates the extent to which the data departs from an isotropic situation.
Because it represents the covariance relationships which exist between point
pairs of all separations and orientations, it is easily used to generate elements
in the covariance matrices for prediction or collocation computations.

The 2-D covariance surface can be represented by means of a family
of curves, generated using Co computed in the analysis, and the correlation
length £ found for four azimuths from the covariance surface. The logarithmic
model of Moritz (model 5) appears to represent the surface most successfully.
It is thought that an improvement in the £ generator would similarly improve
the covariance values in the mid-quadrant directions.

4. The 2-D Covariance Function in Collocation and Prediction

4.1 Introduction

The 2-D covariance function represents the covariance relationships
of point pairs of all separations and orientations. The question now arises as
to the possibility of using this function in collocation and prediction computations.
Most theoretical developments which derive analytical expressions to account
for an anisotropic situation modify these by assuming isotropy before continuing
with the investigation (e.g. Jordan, 1972, p. 3663; Grafarend and Offermans,
1975, p. 14). This occurs even for the cross-covariances of the deflections of
the vertical. These are shown to be azimuth dependent whether or not the
potential field is assumed isotropic (Moritz, 1972, p. 111; Grafarend and
Offermans, 1975, p. 14). However, it should be noted that if the potential field
is assumed isotropic, the expressions for the above cross-covariances are, in
fact, a modification of the more complete expressions which account for
anisotropy (Ibid., p. 15).

However, there appears to be no theoretical objection to the use of
the 2-D covariance function in collocation or prediction solutions. The compu-
tation is thought to be in a planar rather than a linear (or time) domain. The
contribution of the known element to the unknown is now dependent on its
directional, as well as its'temporal’', position on the plane. The a, in
equation (2. 14) accounts for this, for the elements of the array C,; are now
derived having regard to the relative position of the signal point vis-a-vis the
known point. Similarly, the C;; matrix is developed by noting the dispcsition
of each data point to all other data points in turn. These values can be generated
using techniques described in section 3.8. However, in the experiments below,
values have been taken directly from the arrays resulting from the 2-D covariance
analysis.
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4.2 Results of Prediction Tests

The aim of the tests was to compare results of predictions made using
the 2-D covariance function with those resulting from use of the general covariance
function. Data sets 1 and 2 were used in these tests as these were two fields
exhibiting strong azimuth dependent characteristics.

In the test eight 'known" points were used to estimate an unknown point.
(This number if close to the optimum suggested by Rapp (1964, p. 141) for the
prediction of point anomalies,) These eight points were chosen in various
configurations in order to exaggerate the effect of the anisotropy of the field (see
Figure 12). This configuration was "stepped’ through the data array, and the
differences between true and predicted values used to find the actual r.m.s. error of
prediction. This value was also compared with the theoretical r.m.s. error derived
from equation (2.16). See Table 3 for definitions.

4.2.1 Configuration 1

(1) Data Set 1

The results of prediction using the 2-D covariance function are
marginally worse than those using the general function (see Table 3). The
distribution of errors is similar (see Figure 12),although an inspection of a
plot of these differenczs shows that the 2-D function consistently produces
larger discrepancies. It appears that the data points closest to P (the pre-
diction point) have the greatest influence on the predicted value. Their prox-~
imity to P (1.4 step units) meant that there was no significant difference between
the ‘weights' produced from the 2-D and the general covariance functions. For
example, Cr; (1.4) = 260 mgal® of Cry(1,1) = 245 mgal® and C», (1,-1) = 240
mgal®, It could be argued that a lack of homogeneity throughout the field meant
that the 2-D covariance function was unrepresentative of the average situation
throughout the whole data set, and it was adequate to assume a fully random
statistical relationship between point pairs at this small separation.

(i) Data Set 2

In this case the effect of anisotropy is felt. The 2-D function
produces an r.m.s. of £11.6 mgal (and my, =+ 7.1 mgal) while the general
function gives rise to an r.m.s. of £13,4 mgal (and an m; of 11,7 mgal).
This is not unexpected in this extreme case. The fact that the difference is
not larger must in part be due to the proximity of the closest points to P.
(See also the distribution of differences, Figure 12).
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r 4.2.2 Configuration 2

(1) Data Set 1

Configuration 2 was deliberately chosen to maximize the difference
between the general function and the 2-D function. For example, C (3,1) = 240
mgal® and C (4,0) = 220 mgal® while the general function equivalents, C (3.2),
C (4), were 70 mgal® and -12 mgal® respectively. Results of the tests showed
that the anisotropic model fitted the data better (m, = * 7 mgal for the 2-D
model and =12 mgal for the isotropic model). A similar improvement existed
in the actual error of prediction (¥14 mgal cf. £16.5 mgal). This supports
the contention that the choice of an isotropic model does not always produce the
optimal solution. It also underlines the danger of using the parameter m,
without reservation as an estimate of the error of prediction.

(ii) Data Set 2

The 2-D covariance function produces a very low 'actual' error
(£ 0.6 mgal), m, being computed at £4 mgal. However the solution using a
general covariance function breaks down. Individual errors of up to 100 mgal
are produced and the value for m; shows a large error of prediction.
Apparently, it is not possible to perform any meaningful prediction (with an
asymmetric configuration) using the general function, when conditions such as
those in data set 2 exist.

Table 3

Statistical Analysis of Prediction Tests

Configuration 1 Configuration 2
Covariance Data Set 1 Data Set 2 Data Set 1 Data Set2 |
Function 2-D | General | 2-D | General | 2-D | General | 2-D | General

ro.0) s 4.4 4.0 11.6( 13.4 | 14.0| 16.5 | 0.8 7.1(?)
(mgal)

m, (*) = 7.1 6.2 4.6 5.8 7.1] 11.7 | 4.0 | 11.3(?)
(mgal)
T"‘ 1.16 | 1.16 | 1.05] 0.68 | 1.07] 1.09 | 1.04| -5.48

P ¥

(») - [Z (predicted A~¢ - actual Ag)"/ no of predictions !f
(+) = error of prediction - see equation (2.16)
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Attention is now directed toward the third row of Table 3 where the
sums of the coefficients:

=a
apy = C'I Cu

(derived from equation 2. 14) are listed. These coefficients are basic in the
evaluation of both the predicted value of Ag (equation 2.8) and the theoretical
estimate of accuracy (equation 2.16). It is of interest to note therefore, that

in general, the most accurate results were obtained from that covariance function
giving the ) a»; closest to unity.

1

———— S ——— -

It is difficult to know the actual significance of this. Equation 2.8
looks similar to the normal "weighted mean" in this context, but is not identical
to it. It has already been noticed that ) a,; is not necessarily unity (Rapp, 1964,
p. 7). In some cases it is valid to adjust the individual elements of the a» vector
to let the sum equal unity. In this regard it is worth quoting from Holloway (1958,
p. 354-355) '"The sum of the weights of a smoothing or filtering function determines
the ratio of the mean of the smoothed or filtered series to the mean of the original
series. In smoothing it is generally desired to leave the mean of the series
unchanged, so Zan made equal to unity. With some filters it is not necessary

to preserve the mean of the series and in these cases, z ar, #1."
!

In the prediction context it is desirable that the property of ergodicity
hold. It therefore appears that the covariance function which produces the ) a

1
nearest unity is the one which maintains this property best; hence it produces the
best comparisons of predicted values versus known. On the other hand, computations
with Za, made equal to unity showed that some caution must be observed when

1
modifying the coefficients in this fashion. This was particularly the case when
the ) a,; differed greatly from unity (e.g. 0.50). In this case, although the
1
m, value improved, some predictions changed markedly (* 30 mgal) and the
calculated r.m.s. deteriorated. (See starred items, Table 4, Section 4.3.)
However, when the difference between z ap, and unity was small and such

i
modifications made, a slight improvement in prediction was noticed (again see
Table 4). :

e




4.3 Resuits of Collocation Tests

4.3.1 Introductory Remarks

The area chosen for the tests was the region near the SE coast of the
United States used for calibration of Geos-3. It is bounded by 40 2 ¢ > 20 and
297 2 A 2 277, the information on latitude 20° being deleted because the larger
anomaly values here introduced erratic behaviour into the covariance functions.
The gravity data was in the form of 1° x 1° mean free-air anomalies extracted
from the file of world-wide 1° means held at the Department of Geodetic Science.
The separations (N) have been computed in this area using the GEM 6 potential
coefficients to degree 16 and 1°x 1° gravity data (Rapp and Rummel, 1975). Repre-
sentations of these data sets are illustrated in Figures 13 and 13a, respectively.

The aim of the collocation test was to compute the geoidal separation
(N) from the gravity anomalies. The computation can be thought of as a "multi-
variate' prediction as defined by Grafarend (1976, p. 152) because the model
effects are already assumed to be removed. (in other words the parameters
AX in equation 2.19 have been computed independently and the effects of normal
gravity removed from the observed gravity to obtain the free-air anomalies.)

The computations must be considered preliminary, although the author
considers them to be a good approximation to a more rigorous solution. The
reasons for this are as follows:

(1) Sphericity of the earth (i.e. the convergence of the meridians)
was not accounted for and the data was assumed planar.
Computations of the general covariance and profile covariance
functions assuming a spherical model showed no appreciable
change from the same functions derived using a plane model.
Any difference was certainly minor when compared with the
difference found between the general covariance functions and
the 2-D functions.

(ii) The mean anomalies were treated as if they were point anomaljes
in the analysis process, as described by Smith (1974, p. 33). Al
auto and cross-covariances were computed from the known data.
That is, no attempt was made to represent the covariances from
previously determined models.

(iii) It should be remembered that this test is to obtain a comparison
of the 2-D function against the 1-D function. Any shortcomings
due to the approximations mentioned above will affect both equal-
ly. The validity of the comparison will therefore not be harmed

to any significant degree.
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Figure 13a.  Geoid Undulation Using Method B with GEM 6 Coefficients
Truncated at Degree 16 and with a Cap Size of 20°,

(See Rapp and Rummel, 1975, p. 18)
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4.3.2 Auto and Cross-Covariance Analysis

The auto-covariance functions resulting from a 2-D analysis of the
gravity (data set 5) and undulations (data set 6) in the test area are shown in
Figures 14 and 15. (It is interesting to note that the strong anisotropic effect
in the gravity neld is reflected in both of these functions.) The contours
below 200 mu.l show no slgm of converging within the limits of the analysis.
(At step 10, Cy is +140 mm o« Ceg=0at450 km.) This results from the
obvious N-§ trend in the data and is comparable to the effect seen in the
analysis of the N-S profile of data set Il (Figure 4), The angular nature of the
contours must be due to the use of the 1° means without applying any smoothing
to this data.

The 2-D covariance surface for N (Figure 15) indicates the presence
of anisotropy in this data and again reflects the orientation of the trend in the
original data (Figure 13).

The results of the cross-covariance analysis are shown in Figure 16.
This is found by amending equation 3.11 to include the two variates, Thus:

N=pr N-s

z Z N(i,j) Ag(i+r, j+8)

i=1 §=1

1

(4.1) TR N e S——
. (N-I])(N-]s])

when applied to data sets 5 and 6 produces the surface represented by Figure 16.
The strong anisotropic trend is still obvious, although the angularities of Figure 14
have largely disappeared in this combination of gravity data with undulations.

Two other pecularities are noticed.

(f) The function is no longer diametrically symmetric, i.e. quadrant 1
# quadrant 3 and quadrant 2 # quadrant 4. The reason for this is
apparent on looking at equation (4.1). The mean of cross-products
of N with Ag in any one direction does not equal (except accidentally)
the mean of cross-products of Ag with N in that direction. If the
mean of these two quantities is used, the surface resulting will be
symmetric (Figure 17). However, to be strictly correct the first
analysis should be used in collocation computations.

(ii) The function does not necessarily behave in the same way as the
auto-covariance function insofar as C(0,0) is not necessarily the
maximum value achieved by the surface. For example, whereas
C(0,0) =101.4 £9.8, C(1,0) = 106.1 + 9,5; C(0,1) =103.4+£9,2
and C(~2,1) = 104.2 £ 9,0. The author has seen no mention of this
phenomenon in the literature and it is something which should be
recognized as a possible characteristic of the cross-covariance
analysis. However, because the increase from C(0,0) is small
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(particularly when viewed against the standard errors of the
covariances) it seems reasonable to assume a small decay in
f the function to assist modelling of the surface.

Jordan (1972, p. 3665) has developed expressions which relate the
variances and correlation lengths of the covariance functions for the gravity
and undulation data. It would be ideal if such relationships could be used to
generate the 2-D covariance functions of all geoidal parameters from (say) the
function for Ag using the technique described in section 3.7. Unfortunately,
preliminary calculations showed that these theoretical relationships did not
describe the actual situation at all well, It may be that this data is not localized
enough for such modelling and that it is necessary to use functions more global
in nature (e.g. Tscherning and Rapp, 1974).

The modelling of 2~D auto and cross-covariance functions needs
further investigation. However, at this stage it was cousidered more important
to discover whether the use of the 2-D functions had any significant effect in
collocation. For this reason, discrete data resulting directly from the analysis
of the local field was used.

4.3.3 Results of Tests

| a) Univariate Predictions: Ag from Ag

For interest, a simple prediction of Ag using the 2-D auto-covariance
function was performed, and the results compared with a similar computation
using the general covariance analysis (not illustrated). The results are
summarized in Table 4 below. Configuration 2 refers to the point arrangement
described in Figure 12, and Configuration 3 is described in Figure 17.

Table 4

Summary of Results of Predictions - Data Set 5
(units - mgal®)

Covariance |Configuration 2 (population =228 Configuration 3 ( lation =156)
Function 2-D |General | 2-D|General} 2-D General =D | General

r.m.’.

error 15.1 | 15.2 | 1s.1] 15.1 {16.3 15.6 | 21.7*| 15.4
s 20,1 | 22.3 |19.3 21.4 J19.2 22.1 | 13.0 | 21.5 |
Z“ 0.84 o0.67 | *t1.0] *1.0 § 0.50*| o0.79 |[t1.0 | T 1.0

i
+ Y a, torced to 1.0

i
* gee text for comment
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Note that the last two columns for both configurations list the results of computations
after Z a; has been adjusted to unity. Some improvement is noticeable generally

in both the r. m.s. error and m,. The exception is the r.m.s. error for the 2-D
function in configuration 3 (marked *). Here the r.m.s. deteriorates and individual
differences are found to increase by as much as 30 mgal.

The results are in accord with those above (section 4.2). Configuration
3 is symmetrical about the prediction point and the general function produces the
superior accuracy. Larger differences occur in the 2-D case where the data is
not well represented by the 2-D function (particularly in the SE corner) and this
is a big factor in producing the inferior r.m.s. error overall. If the prediction
was limited to the regions which displayed the general trend, it appears that
because the differences are smaller, the 2-D covariance function would produce
the superior results. :

The 2-D and general function appear to be equally accurate in the case
of Configuration 2. The population for this configuration is large (=230) and 15
mgal seems to be the 1imit of accuracy for this computation. It is noticed that
the 2-D function converges more quickly to this limit, suggesting (as does its m»
value) a superior accuracy for this covariance function.

b) Multivariate Prediction: N from Ag

The value of N was computed throughout the field from the gravity
data by use of equation 2.19, with parameters AX set equal to zero. The gravity
points were organized in Configuration 2 for the first test, Configuration 3 for
the second. The cross-covariances used to provide the elements of matrix Csx
were:

(i) the strict 2-D cross-covariance function shown in Figure 16

(1i) the averaged or symmetric 2-D function (Figure 17), and

(iii) the general cross-covariance function (not illustrated)

This produced three solutions for each of the configurations. The
elements of the C matrix were taken from Figure 14 for solutions (i) and (ii),
and from the general auto-covariance analysis of the gravity for solution (iii).

A histogram of the absolute differences |v| resulting for each
solution is shown in Figure 18, and the comparisons of the accuracies achieved

are tabulated in Table 5. Note that v is found by differencing the predicted
N value from the N value obtained from Figure 13a.
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Table 5

Summary of Accuracy of Collocation Computations
(Units : Meters)

Configuration 2 Configuration 3
2-D 2-D General 2-D 2-D General
Symmetric Symmetric

r.m.s, = 4.71 4.74 4,83 4.06 4.00 3.96
error

mp x 8.0 8.0 8.1 7.6 7.8 7.7

z 81 0139 0039 0’45 0049 0048 0053

4

The comparison of predicted versus known values using Configuration 2
shows that the strict 2-D covariance analysis gives the better results, producing
anr.m.S. of £4.71 m as compared with = 4.83 m for the general case. (It should
be remembered that the units of the predicted quantity are meters and a difference
of 0.1 in the r.m.s. is not insignificant.) This situation is reflected also by the
m, values (8.0 m cf £ 8.1 m for the general case).

For Configuration 3 the general covariances produce the superior results
(£3.96 m as against + 4,06 m for the 2-D covariance values). However, the
theoretical accuracies do not agree with this. This suggests that although the
2-D statistical model is a better descriptor of the field overall, larger errors
are produced by this model in uncharacteristic areas of the field (see Figure 18).
Analysis of the distribution of differences from both the general and 2-D solutions
shows a similar pattern exists for both, and that large errors (|v| > 5m) tend to
occur where the gravity profile through the computation point increases markedly
away from the point. Neither the 2-D nor the general covariance analyses are
good reflections of this situation. However, the general function seems to
exaggerate this effect less and produces the smaller difference.

However, in areas where the trend of the field is strong (e.g. around
the middle western area of the field) the 2-D function produces consistently better
results from both configurations. Here anisotropy is present and it would be
expected that the 2-D analysis prove superior.

It is also of interest to note that the symmetrical 2-D covariance
function produces comparisons between those obtained by the strict 2-D and the
general function, as may be expected. The summation of the coefficients (row 3,
Table 5) are related to the values of m, (as they must be), but the significance
of the value (~0.4) is not clear. Generalizing from earlier comments in Section
4.2, this value must relate to the ratios of the mean values of the two data domains
i.e. the known and the predicted. The ratio of the mean value of gravity to the




mean value of N in the test area is, in fact, 0.46. However, the relationship noted
in the prediction computations between the z a; value and the accuracy does not

appear to hold here. Thatis, the greater accuracy does not necessarily come from
that computation whose sum is closer to 0. 46.

There is obviously not enough information here to come to any definite
. conclusions concerning the use of the 2-D function in collocation. Nevertheless,
it does seem to follow the pattern noticed from the prediction results. That is,
where the anisotropy portrayed by the 2-D covariance analysis is present, the
values computed from the 2-D covariances compare more favorably with the known
data than do those computed from the general analysis.

5.0 Conclusions

The two~dimensional covariance function provides the most efficient
means of detecting and representing the anisotropic characteristics of a data set
distributed over a plane. This fimction graphically describes the covariance
which exists between point pairs of all separations and orientations. The extent
of anisotropy is indicated by the departure of the contours of the 2-D covariance
surface from a circular pattern, and the orientation of the axes of maximum and
minimum correlation are clearly shown.

It is possible to model the 2-D covariance surface by generating a simple
covariance function for each azimuth, 0 < @ < 360. The logarithmic function
suggested by Moritz (1976, p. 29) appears to be the best model overall,
particularly when the function attains negative values. The fact that the 2-D
cross-covariance function is not symmetrical complicates the generation of the
surface by this method. It is possible to overcome this problem by using the
symmetrical 2-D function to approximate the cross-covariance surface.

The ideal function would enable the generation of all auto and cross-
covariance functions knowing the pertinent parameters of (say) the anomalous
gravity field. The third-order Markov function suggested by Jordan (1972) has
this capability. Unfortunately, the theoretical relationships did not agree with
the actual relationships in this instance. It is felt that this is an important area
for further research, if the usefulness of the 2-D covariance function is to be
fully exploited.

The 2-D covariance function is capable of producing results superior
to those obtained by the general function when certain conditions are present.
These conditions will produce large differences between elements of the
covariance matrices derived from the general covariance analysis and from the
2-D covariance analysis. They will occur when:

- |




() anisotropic effects are present and, because of the distribution
of the data, predictions must be per formed over large separations
and in an asymmetric configuration, or

(ii) anisotropy is strongly evident and homogeneous throughout the
field. Such an effect can be seen in areas where geoidal slopes
are uniformly and consistently large (e.g. the geoid slope
across Australia). In fact, under these conditions the solution
using the general function appears to break down.

In any case, a 2-D covariance analysis should be performed on data
which shows anisotropic tendencies. This will indicate the extent of the azimuth
dependence of the covariance function and enable remedial action to be taken
(e.g. in the configuration of the data used in subsequent computation) if this
appears warranted.

The 2-D covariance surface may also provide useful information
concerning a suitable ''trend surface'’ to be fitted to the original data. Knowing
that the residuals of the actual data from the trend surface should be isotropic,
it should be possible to discover what nature of surface must be fitted in order
to transform the 2-D covariance surface to a surface of revolution. (This may
be best performed in the spectral domain.) The residuals can then be used in the
stochastic processes with the knowledge that they do in reality possess isotropic
characteristics.
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The angular frequency (w) and the frequency in cycles per second are
related by:

- L
¢ 2

When operating in the spatial domain the time (T) in equations (3.2) to
(3.4) are replaced by the length r. The fundamental wavelength of the signal is
assumed to correspond to mAx where m, 4x are defined in equation (3.5). (In
the case of data set 1, it is seen that the fundamental wavelength equals 6 grid
units, i.e. m = 6,)

The frequency associated with the step value r (r also represents the
harmonic of the fundamental wavelength) can therefore be expressed as:

R
b 2mAx
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