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dimensional covarlance function, and some methods of representing this
function are also Investigated.

p .

Numerical s~idlea are then carried out to see the effect the use
of the 2-D covariance function has upon the results of prediction and
collocation computations. It is found that under certa in circumstances,
the 2-1) function pro thcee a result superior to that given by the general
function. Recommendations are then given U to when the 2-D covar lance
function should be used In practical solutions, and suggestions made as to
the possible areas of further research.
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1. IntroductIon

The collocation method Is now widely accepted and has been used to
solve many geodetic problems, e. g. the computation of geoldal undulations and
deflections of the vertical (Tschernlng, 1973; Tschernlng and Rapp, 1974;
Lachapelle 1975a and 1975b) as well as for the extension of the gravity field
from satellite altimetry ( Rapp, 1974 and 1976 ). In Its narrower and original
form this technique has been used for the prediction of point or mean anomalies
from the known gravity field (Rapp, 1964 ). In fact, the method has been used,
at least experimenta lly, to assist in the solution of all aspec ts of the geodetic
problem.

The covar iance function is bas ic to collocation methods. This fact
is emphasized by Moritz in his Important work on the theory of collocation when
he comments that, “Not only conceptua lly, 1~zt also compitationafly the covar lances
represent the crucial point in the present method... ” (Mor ltz , 1972, p. 21).
These functions are meant to represent the 3tatistical characteristics of the
fields they represent , and In their derivation cond it ions of homogeneity and
Isotropy are assumed to exist in the fields. It Is the correctness of this
assumption which Is be ing investigated here ; if the assumptions are found to
be inaccurate It will be necessary to assess the impact that the lack of accuracy
has on the method, and to suggest ways of modifying the method to account for
an ‘Improved ’ model.

Although the covarlance functions of the anomalous potential field Is the
theoretical basis for covarlance functions of other (potential-related) fields
(Jordan, 1972; Morilz, 1972, p. 94—99) It is usual for the Ag field to form the
basis for most collocation solutions (e.g. Lac hape lle, 1975a, p. 23—24) . For
this reason this Investigation will at first concentrate on the detection of anis-
otropy In anomalous gravity fields. This is then extended to the behavior of
cross -covarlance functions and the effects of using an Isotropic model for
collocation In an anisotropic region are Investigated.

The assumption of an homogeneous gravity field throughout the globe
has been queried for as long as covarlance techniques have been discussed. For
example, Rapp Investigated three different regions of the United States and found
significantly different covarlance functions for each from the analysis of these
fields (Rapp, 1964, p. 42-66). WillIamson and Gaposbkin analyzed subsets of
data of ocean and continental gravity assuming isotropy, and found the diffe rences
between the covarlances to be significant. They concluded that “... gravity is
not statIonary” (Gaposhkln, 1973, p. 208). Similarly, In a statistical analysis of
anomalous gravity of Czechoslovakia, Vyskoèll (1970) tnvestlgated the covarlance
functions for Ag means of 10’ x 15’ blocks and concluded “the theoretical
assumption of homogeneity and Isotropy. .. Is basically only forced and In real ity
It will probably not always be satisfied.” (See also Kaula, 1966b, p. 58.)
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It is common practice to allow for the non-homogeneity of the gravi ty
field by restr icting the analysis to that data pertinent to the area of solution.
That is, a local covarfance function based on a restricted gravity field is derived
and used in subsequent computations for that area. The problem remaining is
bow to test such a local field for Isotropy and, If characteristics of non-isotro py
are exhibited, how to Include these in the computations .

As already mentioned, Vysko~Il (qv) has expressed concern that non-
Isotropy can exist. A comparison of the profile analys is by Rapp (1964, p. 44—56)
shows large differences between N-S and E-W profiles of the same area, casting
doubt on the assumption that the covariance functions are Independent of az imuth.
Kub~~kov~ (1974) has studied the gravity field in the Carpathian Mountains of
CzechosIo~ak la, and concludes that the depa rtu re from a situat ion of isotropy Is
not ins ignificant, suggesting that use of a covar lance function based on an Isotropic
model “is Impermissible without prior analysts of the consequences. ”

The purpose of this report Is threefold. Firstly, It Is to see how
anisofropic characteristics In a data field are best detected and portrayed.
Secondly, to find out if an anisotropic model can be Introduced into the theory of
prediction and collocation. Lastly, we wish to investigate if an ‘improved’
statistical model produces any sign ificant effect on the results of prediction and
collocation solutions.

It may be that such improvement Is marginal. It has already been
pointed out that “...the choice of the covariance function is less critical (I.e.
than Internal consistency In the computations - author’s note) because the results
of least squares collocation are not very sensitive with respect to the covariance
function chosen, In the same way that the results of ord inary least squares
adjusiment do not depend strongly on the weights” (Mor ltz , 1972, p. 90). Tukey
(1970, p. 185-166) estimates that In ordinary least squares situations, if the
ratio of each true weight to the weight you use does not vary by more than a
factor of 2, then the efficiency of the fit Is always at least 88. 8%. However, he
then differentiates between the normal least squares solution and the time-series
situation , pointing out that due to the overlap In data , some bias will result If the
variances and covarlances are Incorrectly estimated.

“When in doubt, smooth” (Moritz, 1972, p. 125) Is a valuable and
useful maxim, but there may be cases where such a procedure is contrary to a
prellniin~ry a~preclatIon of the situation. It may be that to ‘smooth’ without
fully establishing the ‘doubt’ is detrimental to the resultant solution.
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2.0 The Theoretical Background

2.1 The Covarlance Function

The application of covarlance analysis to gravimetric geodesy is well
known (Heiskanen and Morltz , 1967, 252-259, 266—274). The fundamentals will
be briefly reviewed here in order to emphasize how the assumption of random-
ness of the gravity field influences the mathematical representation of Its
covarlauce function..

“The covariance characterizes the statistical correlation of the two
signals, ~g and Ag~, which Is their tendency to have the same size and sign.
If the covariance Is zero then the anomalies ~g and A~~ are uncorrelated
I .e. the size and sign of ~g has no Influence on the size and sign of ~.g~”(lbId, 253) .

This correlation is estimated by taking the mean of all product pairs
throughout the globe, thus :

(2. 1) C (P ,Q) = 

~ J~0 $e=o J’:=o ~g ( 9,,A.) ~g( Oq, Aq) SInO dO dA da

where

P , Q represent the current points in the product pair, ~~pq apart
8 , A are the spherical coordinates of these points , and
~ is the az imuth froni p to Q.

If isotropy is assumed the covariance Is independent of az imuth, and
(2. 1) becomes:

(2. 2) C(P , Q ) = f f ~~0J ’~ ,0~~gPh ~~~s l n 9 d e d A

If homogeneity is assumed the covariance is independent of location on
the globe, and since:

(2. 3) ._L f 5 sin G d O d A  = _L fJ’ do.
4~ 4)4~ 0 0—0 4rT

0’

(2. 2) becomes a function of separation only. Thus:

(2. 4) C(P , Q )  - f 5$ Ag, ~gq da

-3—
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If local regions are considered , the reference model can be assumed
planar and the separation expressed as the stra ight line distanc e r~~, where:

(2. 5) C ( r ) = M ~~~ gP ~~.g~ } C P ~

M { x } being the mean value of x.

For r 0

(2. 6) Co = C (0) M {~ g2 }

the variance of the gravity anomalies. Note also that:

(2. 7)

which , if nct the case, must be enforced by “cent-~r1ng” the data before commencing
the analysis ~see Rapp , 1964, p .7—8) .

In a local area the means of produc t pairs are usually computed from
point data or from means of small areas ~e. g. 0~ 1 x O’~ 1) arranged on a grid pattern .
If the field Is isotropic , the values of the means for any one sepa rat ion are
Independent of az imuth. Convers ely, If the means are computed w ithou t refe renc e
to azimuth ( see equatIon 2. 2) the property of Isotropy is enforced onto the field.

An analytical function can be fitted to the values of C (r ) (e. g. Moritz ,
1976, p. 25 - 29). ThiS func tion Is a convenient way to generate the elements of the
matrices used in subsequent compilat Ions . However , this fitting will have prob ably
introduced further “smoothing” Into the covar lance function ; thus the price paid for
convenience may be a loss of precision In the representatio n of the statistical
relationships between two points in the subject data field.

A review of the process will underline the stages at which the actual
covarl ance may have undergone change. The cova r lance function has been found
by:

(f) taking the means of product pairs throughout the region be ing
analyzed ,

( Ii) tak ing the means re~~rd1ess of the directional relat ionships of
successive point pairs , and

-4—
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(Ill) fitting an analytical function to the resultant discrete field .

If homogeneity is present, the smoothing Introduced by (I) will be
minimal. If isotropy exists, step ( Ii) will also Introduce a minimum of smoothing.
If both conditions are present , then the function obtained In (lii) will accurately
reflec t the existing situation . How the covar lance function is used will be
demonstrated in the following section.

2.2 Least Squares PredIction

This discussion will concentrate on the appl ication of stochas tic methods
In the prediction of gravi ty anomalies. This w ill assist In the app rec iation of the
stochastic techniques generally, and in particular will unde rl ine how the assumption
of Isotropy In the data field carries through into the formulation and solut ion of the
problem. The more involved mult ivar iate case will be treated sepa rately (see
section 2.4) .

The covar iance relationship is used in the determination of the
coeffic ients a91 of a univariate Kolmogorov-Wiener prediction model (Gra lare nd
and Offermans , 1975, 3; Grafaren d, 1976, p.152) . Thus:

(2.8) Ag’, ~~~

‘ 

a.1 Ag1 i = 1, n

~~~~ p being the predicted value of ~g at P.

The error of predictIon is found, thus:

(2.9) = ( Ag, — ‘5’ a,1 ~,g1) a

These squared errors are now averag ed through the region for all points P. Thus:

(2. 10) M {c }a  M {~.g.~}_ 2 ~
’a.t ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I — 1,n
j — 1, n
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Assuming that:

(2.lla) M {4Ag~ } = M {~~~ }

(2.llb) M {Ag . ggj} = M {Agt Ag3 } for r~= i~~

and using the covariance functio n derived in section (2. 1), (2.10) becomes:

(2.12) n~~ C0 — 2~~ a,1 C,1 + a, 1 a ,~ C u

where

(2.13) m~ = M

Note the approximatIons In (2.11) . The values for Ag. are (obviously)
unknown, and so some assumptio n regarding their statistical relationship with
respect to lmown values ( Ag1) must be made for (2. 10) to be solveable. The
accuracy of the estimates made In (2.11) wIll depend on:

(I) how weU the characteristics of homogeneity and isotropy describe
the actual Ag field, and

( Ii) the amount of data used to find the C0 ,  C,1 and C 13 values.

This second point is fairly obvious and not of direct concern at the
moment. It Is sufficient to say that If the data Is sparse, then a poor estimate
for the covarlance function is likely. This Is despite any Ind ications of good
accuracy obtained from an estimate of internal prec ision (see sectIon 2.3).

The first point is of more importance In this present discussion. If
the field Is well modelled by a stationary statistical model, then the approx ima-

tions for M {Ag,3} and M {Ag. 4g 1} will be realistic. Otherwise, these

approximations are “smooth1~~” the real situa tion and characteristics of homo-
gene Ity and Isotropy are Imposed onto the predicted field.

-6-
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The coeffic ients a,1 In equation (8) are now solved In the usual way by
least squares, viz.

______ =

Thus It is found that:

(2. 14) a,3 3’ c~;~ c., i, n

The predicted value Is found by substitution of (2.14) Into (2. 8). Thus
it can be seen how the adopted statistIcal model Is Imposed (by way of C 13 and
C,1) onto the predicted values for Ag, .

2.3 Accuracy of Least Squares PredictIon

The investigation Is carr ied Into the estimation of accuracy to help
emphasize the role which the statistical model plays in this phase of the develop-
ment.

EquatIon (2.9) can be used as the starting point; thus:

(2.15) c, — Ag. — 3’ a,1 Ag1

where a, 1 are found from (2.14) . Tn. equatIon (2.15) we are comparing the pre-
dlcted value of Ag, with Ag, assumed known.

The procedure described In sectIon (2.2) to find the mean square errors
Is again followed and it Is found that:

(2. 16) ~~~~~~~ C0~ C.T1 C~~~C.3

(Tn (2. ~6) matrix notation Is used to simplify the expression) . It must be
noticed that estImates (2. h a )  and (2. hlb) are again used. The errors being
determined are therefore not those at the unknown points P but at known points I.
That is, equatIon (2.16) is a measure of the “fit” of a sta tionary statistical model
onto the known data. (See also (3ra~~rend, 1976, p. 154.)

This Is an Important distinction to make. While m,~ Is probably a
useful guide to the accuracy of the predicted values, It is strictly a measure of

—7—
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the “fitness of the model” . As such, it will be useful when comparing predictions
based on anisotropic models with those using isotro pic models (see sectIon 4. 1).

From the above comments one can see the danger in placing too much
confidence on estimates of m~ which are derived from small populations of
data points. Because of the small mimber of constra ints ava ilable In such cases ,
the solutIon will not be greatly overdetermlned and will, in fact , approac h a
unique solution.

In fact, to obtain an alternative estimate of accuracy, one can carry
out a simple error analysis on the original observation equation (2. 8). In this
approac h the errors En the data can be found from a knowledge of the methods
used to obtain the known Ag’s (Brovar et al , 1964, p. 278—279; Keara ley, 1976,
p. 120-122). The errors In the covar lances could be estimated by statistical
analysis of C 1~ In the course of the evaluation of the covar iance func t ion (Ibid .
p. 98—100).

2.4 C ollocation Theory

In collocatIon, one predicts signals from observed data which are not
necessarily of the same type as the signal predicted . For this, auto -correlations
and cross-correlations are needed. It is also possible to incorporate in the tech-
nique the determination of parameters of a geometrical model which is chosen
a priori In order to reduce systematic effects which may be present in the data.

The generalized observation equation of collocation Is stated as :

(2.17) X AX + s’ + n

where

* Is the measu rement (e.g. gravity)
AX defines a mathematical model (e. g. normal ellipsoid)
5 ’ is the signal (e.g. grav ity anomaly), and
n is the noise ~e. g. measuring error In gravity)

Following the development by Mor ltz (1972 , p. 7-16), the model
para meters X are found by least squares to be:

(2.18) X — (A’ ~~~ A)’ 1  A’ ~~~ x

—8-
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and the predic ted signals by:

(2.19) 5 — Csx ~~~ (* - AX)

where

- C~~, the auto-covarlance matrix of observ ations
Cs — the cross-covariance matrix between signal and observed data .

It Is noted that the express ion which determines the model parameters
is dependent on ~ and thus may be Influenced by the choice of stochastic model .
In the local context the model effects are generally removed by adopti ng
parameters deduced from a ‘%lgher ”(or global) solution : The problem then
reduces to a “multivar late” predictio n (Gra farend and Offe rman~, 1975, p. 4),
where the task Is to pred ict one potential-related parameter (e. g. N or ~ , ?7)
from a second (e. g. Ag). It is this situation which Is of concern In this present
Investigation.

As can be seen from (2. 19) the prediction is a function of both the
auto-covarlances of the observed qua ntities , and the croas-covariances of the
observed quant ity with the predicted quantity. Both of these quantities are derive d
from the anomalous potential , and their covaria nce functions are thus indirectly
related (Morltz , 1972, p. 94—99; Grafarend and Offer mans , 1975, p. 28) . A
number of models have been suggested as suitable for representing the auto-
and cross-covar lance functions , both on a global scale (TSchern.ing and Rapp ,
1974) and for the local case (Jo rdan , 1972) . However, Isotropy of the potential
field and hence of the Ag field ( thid, p. 3664) Is usually assumed. (See also
Grafarend and Offermans , 1975, p. 20—22; Gra far end , 1976, p. 164—165) .

Thus it w ill be seen that the values result ing from (2. 19) wIll have the
characteristics of Isot ropy imposed on them by means of the auto- and cross-
covarlance functions . It Is possib le to Include an az imuth term in the functions
to account for anisotropy (Jo rd an, 1972, p. 3663) . The situat ion is much more
difficult to model ~see section 4. 3) due to complications which occur In the
cross-covarlances of two different signals. Nevertheless , It is obvious that the
adoption of an Isotropic statistical model to generate covar lances In a non-Isotro pic
region , whIle simplifying the solution, will cause smoothing which may be
detrimental to the solution.
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2.5 Comments

The methods of least squares collocation and prediction are often
desc ribed as the “optimal” solutions of their resp ective problems given the data
available (He iskanen and Moritz , 1967, p. 269 ; Morltz , 1972, p. 18; Lachapelle,
1975a, p. 19) . From thi s it has been inferred that the techniques as formulated
provide the “best possible” method of predicting or solving for unknown param-
eters. ~ich a claim must be v iewed in the light of the assumptions made In
equatIons (2. 2) and (2. 11). If a stochastic model with properties of homogene ity
and Isotropy Is not a good description of the actual field then a solution based
upon this model will not necessarily give the most accurate solution. In othe r
words, least squares prediction or collocation will give the optimal solution for
the particular stochas t ic model adopted; whether or not this Is the best of all
solutions Is dependent upon the faithfu lness of this model to the real situation.

The matter as to whether or not a more sophisticated covar lance
model will have any practical Impact on the solutIon has already been touched
on in sectIon 1. It Is hoped that this Investigation will provide some further
ins ights Into thIs question.

3. The Detect ion and RepresentatIon of Anisotro plc Char acteristics

3.1 Introduction

In this chapter varIous methods tested as a means of detect ing
anisotropy are reviewed. Possible ways of representing the az imuth-dependence
of the statistical relationships are also suggested, it be ing real ized that the
method which Is most effic ient in detecti ng anisotropy will also provide the
best foundation for its representation.

To aid In the appreciation of the methods, tests were carried out on
a iv.ynher of data sets , details of which appear in Table 1. Because of the limited
extent of the data , It was safe to assume plane relationships existed between
data points Involved In the analysis.

—10—
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Table 1

Details of Test Data Sets

Data Locatio n Description Data
~et$o. 

____________ ________________________ ____________________

1 38°’~~ 39° Strong ridge (wavelength Free-air anomalies
-83°~ A� -84° 30’ ; amplItude Inte rpolated from

40 mgals) Lsogal map on 5’
doml~~t1ng on azi- grid interval
muth of 20°
Range SOmgal
(see FIgure 1)

2 Generated Sloping plane As above
Data Max. 5Omgal, SE corner

M m .  -2. Smgal,NW cur.
Azimuth of strik e 35°

3 Generated Sloping plane As above
Data Max. 2Smgal, E boundary

M m .  2mgal, W boundary
Azimuth of str ike 0°

4 38°’~~’ 39° FIat, featu reless As above
Range 40 mgal
Note: adloins data set 1

_ _ _ _- _ _ _ _ _ _ _ _  

(See Flgure 2) 
_ _ _ _ _ _ _ _ _ _ _ _ _ _

Special attention must be paid to the dlmena ons of the grid in any
procedure which attempts to anelyze a coutimous field represented by discrete
points at grid intersections. The reader is refe rred to Blackman and Tukey
(1959, 117—120) , Horton .t. al. (1964, 590—59 1) and Nett leton (1976 , 159) for a
dlscuaalon on this topic. In this particular cue the 5’ grId inte rsection was
chosen as giving adequate representation In an already smoothened field. in
most cues the maximum ‘lag’ or step ~r In equatIon 2.5) was limited to half

• the mamber of data points In each row or column. The minimum sample size
was approximately 50. In subsequent ai*lyses the r. m. i. erro r of the mean
obtained for this maximum step did nct differ significantly from that for the initial

• step sizes, and so was considered a good estimate for th. quantity being deter-
mined here ( g .  the covarlance, co.kswinc., etc.)
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V S I?

Ftr~rs 1. Fre.-alr Gravity Anomalies - Data S.t 1
(Contonr Interval: S m~~1)
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It should be noted that these data sets are fully defined - a situation
which will rarely occur in real life. Such laboratory conditions are needed for
this investigation. The application of collocation and prediction In areas with
little or no data Is a separate issue and is beyond the scope of this report. it
may be possible to use cross-correlatIons between gravity and othe r geophysical
phenomena, such as heat flow, to extend grav ity data. For further Information
in this area the reader is referred to Kaula (1967), Woollard and Daugherty
(1970 ; 1974), WooUard et al. (1975) and Groten (1975).

3.2 Covarlance Anelysla of Profiles

An obvious method of testIng a field for anisotropy Is to find the
covariance functions along two mutually orthogonal profiles (or ‘transects’,
Whittle, 1954, 434) of the field. In this case it Is most convenient that these
profiles be taken along the N-S and E-W a~~s, much along the lines adopted
by Rapp (1964, 31—57) . EquatIo n (2.5) is therefore modified to become:

(3. 1) • C (r) a

N ( t )

where

l,j  — 1,, n
r

0
{ }  for t~

}
and ~g1 La centered as before (see EquatIon 2.7).
The functions resultin g from a profile analysis of data set 1 are

Illustrated In fIgure 3. The points to notice are:

(I) the ateeIx~eee of the E -w function cf. the N-S function . In
fact, Ct (~) 0 yng.la at r~ 30km, while at this separation
C,,(i~~ 280 mgal5; also Os (r) dose not cross C (r) -0 mg.!’
within the limits of the analysis.

(ii) the location of the general covarlance analysis (equatIon 2.5) .
This does not take up the mean position between Os and C1 as
might be e~q ected, but rather tends toward (and eventually
crosses) the Ce fUnc t ion. This phenomenon will recsivs more
attention in sectIon [(3. 6) ( lv)].

—14—
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( ill) Profile analysis taken on data sets 2 and 3 produced functions
~fniI1~r to those for data set 1 (see fIgure 4). The N-S profile
for data set 3 which Is horizontal produced a horizontal line
reflecting the 1:1 correlation in this direction. The fact that
the data sets 1 and 2 also display greate r correlation in the
N-S than In the E-W direction explains why the ir CN func t ions
decay slower than do the Ct curves.

( iv) One sees the general analys Is of data set 2 produces a curve which
tends to follow the Cc curve as for the first data set. An
explanation for this will be given below ( section 3).

While dramatically illustrating the pre sence of anisotropy this
tecbnkiue does not heip to quantify this property. It is difficult to see how one
may, by simple adaption , generate elements of the covariance matrices (unless ,
of course, the data po ints lie on the N-S or E-W axis pass ing through the pre-
diction potnfl .

3.3 Spectral Analysis

A spectral analysis of the data can provide insight into the wave-forms
contributing to the field. A spectral analysis of the covar lance function produces
the ‘ power spectru m” of the field. The power spectra of both the N-S and E-W
profIles may prov ide more info rmation into the nature of the anisotropy of the
date sets.

For the general background on this technique the reader is referred
to Blackmaa and Tuhey (1957 , p. 53 and 121) and Miller (1956 , p. 164—170).
Applications of spectral analysis to geodetic or geophysical problems can be
found by relsrrtng to Horton •t a!. (1964) , Morltz (1967), and Nettleton (1976,
p. 158-181). A br ief outl ine of th. technique will be given here to ass ist
unds retendiag of the reailtent spsctra. The power spectrum S( W )  IS the
Fourier Trw*,rm of the covarlance function:

~3.2) 3(w)

w b r e  ~ Is the lag time (the equ ivalent to the step r In equation 2.5). Now 
¶C ( ‘)  Is a symmetric function. The Imaginary term of the expanded form of

(I sln w T ) will Integrate to zero on multiplication with C (1) to produce:

( 3.3) 5 (w )  —

~~~~ 

C~ r) 005 wI’  di
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FIGURE 4:COVARIANCE FUNCTIONS OF PROFIL ES
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= 2 ,1 C (T) cOs w T  di

This can be further modifled as C (T) -’ O as r — ~~•

Hence, for all practical plrposes:

(3. 4) S ( w )  J’ C (T) cos~~, T  dT

where T is the period of the covar lance function C (1).

When the covar iance function is represented at discrete, regular
intervals (Ax) ,  equation (3.4) becomes (Blackman and Tuckey, 1959, p. 53
and 121) :

(3. 5) Sr ( ~I.) = ~x [Co + ;~~c, cospr ~r/m + C1cos rrr], r 0 m

where

r is the harmonic counter
C0-.C ,, = C(0) - C(m) , and
m is the maximum lag or step value
and & is the lag Interval, In this case 1 grid unit.

It Is sometimes possible to get meaningless negative values for the
coeffic ients of S( w). Smoothing techniques can then be appl ied , such as(i)
“banning” (thi d, p. 53; Davis, 1973, p. 269) :

(3.6) So~ * (S~ + 3,)

S.’” 1s.-i~ Is. + 5.,, l < p < m

5,’ * (S,.., + S.)

where the 8’ coeffIc ients are used for analysis; or (11) replacIng the coefficients
C, ln( 3.5) with:

(3. 7) (C,/2 ) (1 + cos (r n/rn ))

( see Horton et *1., 1964, p. 588) .
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The power spectra for the N-S and E-W profiles of data sets 1, 2 and
4 are shown in FIgure 5. The units of the power density estimates are mgal
squa red per cycle per grid unit. The abscissa is annotated in both frequency(f
cycles per grid unit) and ha rmonics of the fundamental wavelengt h (shown by

arrows). See Appendix Al.

The spectra for data set 1 differ dramatically in the low orde r
ha rmon ics, the spectrum for the N-S profile (Sc ) maximizing for the zero orde r
term while that for the E-W profile (Si) receives its maximum contribution
from the first harmonic. A similar effect is not iced in the spectra for data
set 2. While this clear ly shows the field is anisotropic and this Is valuable
information to have for ( say) the removal of trend surfaces , it Is not useful
in ti~e evaluation of the anisotr opy of the data. In fact , these spectra must
be treated cautiously because , due to the limitatio ns placed on the covarlance
analysis , an incomplete wavelength of infor mation is available for analysis.

3.4 Semi-Variograms

The semi-variogram has been used extens ively in the area of
Interpretative geolo~ r (Matheron, 1963, p. 1250; 1965) . Some mentio n has been
made of their use for geodetic pirposes (Monget, 1969 ; Monget and Albuisson,
1971), but their appl ication in this field has been limited. This function is closely
re]ated to the stru cture function , used by Vysko~il in the statistical analysis of
gravity In Czechoslovakia (Vysko~ Il, 1970).

The semi-varlogram Is defined as:

(3.8) V (r)  = 
~~~~ ff (~~~~~+r — ~~~~ d s

where S is the area under consideration. This function assumes stat istical
prope rties of homogeneity and isotropy and Its similari ty to the covar lance
function is ncted. It Is In fact related to the covar iance function by the simple
expression (Ibid. , p. 174; Matheron, 1963, p. 1253) :

• (3.9) ~‘(r) = C (0) — C (r)

This relationship helps In understanding the behavior of the semi-
varlogra ma for profiles of the data sets ( Figure 6). These curves are the
mirror images of the covar lances of the profiles , originating at (0 , 0) on the

_____________ —



Figure 5~ POWER DENSITY ESTIMATES FROM COVA RIA NCE ANALYSIS
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Figure 6: SEMI-VARIOGRAMS OF PROFILES
I 

~~ • DATA SET I

50 0-

400 -

• 
300 -

• 200 - V __ —

100 -

0
0 I 2 3 4 5 6 7 8 9

r —~~~~~~

DATA SET 2

200 -d 

0~~~_ 7
~~~ 

100 - —.

0 — 
. 

~~~~
.

0 I 2 3 4 5 6 7 8 9
I~ 

—
~~~~~

DATA SET 3

— 200 -

), 100 -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ a
DATA 9E14

~~ 100 - ~~~~~~~~~~~~~~~~~~ .—.-I lg

50 -

0
0 I 2 3 4 5 6 7 8 9

-21—

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -_ _ _ _ _ _ _ _ _ _



graph. According to the definitions, they fall Into the “cont1nw~ type” class,
I.e. “represent a regionalized variable of high contiality” (Ibid. , p. 1250).
While again demonstrating the presence of anisotropy, they do ~ot provide any
information not already known from the covar lance function s. In fact , the
task of finding elements in the covar iance matrices is made more complicated .
It would appear that their main value lies In the ares of interpreta tive geology.

3.5 Coekewance Functions

The coskewance analysis of the anomalous gravity field was suggested
by Kau.la (1966a 1966b; 1967) as a method of performing a non-linear auto—
analysis of the anomalous field. It Is used here not In this context but as a
means of detecting and measuring the anisotropic nature of the field. Coakewance
is defined as:

(3. 10) L (1 , W, $) = L ~~~~~~~~ *rt , $r) = ~~~~~~~~~ J1fl X ( r) x (5) x (t) d t d a d r

where the elements are shown in Figure 7.

N

5

*r.
(= T)

t

r

FIgure 7
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It Is analogous to covarlance e*~ept that triple products rather than product pairs
are meaned throughout the field.

The original development assumed Isotropy in the data , i.e. means
were taken without regard for a and $. However , if a and $ are kept constant
for any one set of ~~r’ and ~~ then information regarding the az imuth dependence
of the field can be found. For example , coskewances can be found for N-S
profiles , where a = 0, 3 = 0; 0’ *~~ ~ ~~. ;  0 ~ *rt ~ ~~~ and E-W profile s
( a =  90; $“ O ; 0 ’  ~~~~~~ *~~~; 0’ *~~‘ ~~~~ and these compared. Alternatively,
offset configurations can be taken and compared eg. a = 0, $ = 90; 0 ‘4i~. �
O~~~ *rt~~~ *.II II .

In this study the parameter *rs ~or Its planar equivalent, ‘r) is called
the first step, while ~~ is the second step, ~~~. An example of the curves which
result from the coskewance analysis of data set 1 are shown in FIgure 8. Note
that upon assuming isotropy, L is no longer a function of 3. 

- - -

It Is difficult to interpret the coskewance curves , although the effects
of anisotropy are apparent. (If the field were Isotropic L (1 , w) would equal
L (~~~, 

T ) for all r , w - a situation which clearly does not exist - particularly
when one step is small and the other approaches the maximum. ) It Is Interesting
to note that L (3 , w) for all ware approximately equal, reflecting the fact that
3 step units is about the half wave-length of the data. Also, as might be expected,
Lçr ,~u) fur ~ —o are similar In shape to the covarlance curve.

However, the c~3mblnation of three parameters in this fashion does
complicate Interpretation and gives no clear indication of the extent of anisotropy.
It is also difficult to use these functions to set up the covarlance matrices needed
In subsequent computations.

3.6 Two Dimensional Covarlance Functions

The coakewance functions appeared promising because It combined data
In a variety of configuratIons. That is, It Involved both the separation and azimuth
as parameters In the analysis. However, the addition of the third element in the
products distorted the desired covarlance relationship and complicated the
interpretation of the resultant functions .

With a small modification - the omission of p ivot point r above - one
can find the product p irs In the various configurations mentioned In section 3.5.
The resultant function is the two-dimensional (2-D) covariance function. Thus:

(3.11) C(r,s) 
(N—I r I XN—~sf) 

5~ 4g(i ,j) ~~(i+r ,J +s ), r, s — 0 ,m
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where r , a Is the step In the row , column resp ectively
m Is the maximum step set for the analysis (usually N/2) , and
N is the number of rows, columns In the array (Usumed aqua re~.

This expression is algebra ically correct, that is the steps in the rows
and columns can be both pos itive and negative . It will be seen that:

C (— r , 5) C (r , —5)
C (—r ,-s) C (r , s)

In the resultant surface quadrants I and In are Identic al as are quadrants U and IV.

This function has been found useful in othe r areas of scientific study to
depict the az imuth-dependent statistical relat ionships which exist between data
points. For example, Whittle (1954) used it to demonstrate the auto-correlation
of soil fertility as evidenced by the wheat yield of rectangular subdivisions of a
test area. It has also assisted the study of magnetic anomalies In the north-
wester n regions of Canada (Horton et al. 1964, p. 597-599). It has been used
to test the anisotropic characteristics of the gravity field In the Carpathian
Mountains of Czechoslovakia (Kub~~kov~, 1974) . This area is similar in size
to the test areas in this present study and data was taken at 1’ x 1’ intersections.
The funct ion has received mention in other gravlmetrlc studies ~e. g. Jordan,
1972 , p. 3661) but this write r has found no othe r use of it In the geodetic literature.

The 2-D covariance analysis of data set 1 produces the surface Illustrated
In FIgure 9. The following points should be noted:

(I) the surfac e represents the covarlance relationships for product
pairs of all separations and orientations . Note that It Includes
the N-S and E-W functio ns deduced above; these are found
by tak ing a section through the midpoint of the f igure, C(0 0),
north awl east respectively.

(11) The anlsotropic character of the original data Is fully quantified.
The predominant direction of the isogal lines In figure 1
(a=. 1o°) is reflected by the orientation of the contour s of the
2—I) covarlance surface.

(lii) A truly Isotropic data set will produce a cIrcula r patte rn for the
contours of the 2-D covar lance surface ~see Agterberg, 1970, 125;
Kubé~kov~, 1974, 19). The extent of the dev iation of the contours
from circle s Indicates the extent of anisotropy existing in the
field.
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( ii’) Th behavior of the general covarfance function (sectlo~ 3. 2) can
now be understood. This resul ts , of course , from the average
of afl profiles O ’cx<3 60. The fact tbat the contours of the 2-I)
covarlance surface run approximately N-S will mean that the
average taken for any one separation (r ) will tend toward the
curve which Is more representative of the predominant trend of
the surface i.e. the C1 curve.

(v) fiscaise of population differe nces the r. m. a. of the C (I , j)
values incre ase with Increase In i,j. For example, the
spread for C(0,0 ) In (the r. m.s. sense) Is ± 30 mgal3while
the same spread for C (+ 6, + 6) 15 * 60 xngaf. This should be
remembered when extracting C (i,j) values for subsequent
comixitatlon.

The 2-I) covar lance analysis of data set 2 produces a surface with
features similar to the surface just discussed ~see FIgure 10). However ,
analysis of data set 4 (adjacent to data set 1) shows that this field tends much
more to the isotropic situation (see FIgure 11). Insofar as It bears little
resemblance to the 2-I) covariance surface for data set 1, It reinforces the
warn ing concerning the use of the covaria nce funct ion derived from one local
field to represent the statistical characteristics of another field , no matter
how close that field may be.

3.7 Representation of the 2-D Covartance Surface

It Is possible to represent the 2-D covariance surface in three ways :

(I) by surface-fitt ing

(U) by a family of curves

( UI) by discrete data .

Section 4.2 shows the results of some exper iments which used method
(ill) to represent the 2-I) covarlance surface of data set 1 ( FIgure 9). It could
be weil represented by a fairly low-order surface (say of order 3, howeve r ,
the approach whichusesa family of curves has the distinct advantage that It
directly relates to the functions already used to represent general covarlances.
This advantage is en~~nced If one chooses a function which Is compatible for
covarlances of all geoldal relationships (Cf. Jordan, 1972).

The basic parameters which have been used to describ e the normal
(1-I)) covarlance function are:
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(1) C0 - the varIance,

( Ii) 4 - the correlation length, defined such that C (4)  = ~ Co, and

(UI) ~ - the curvature of the curve at r = 0

(see Moritz, 1976, p. 22) . The approach developed here uses C0 and 4 as the
basic function descrIptors, and essentially makes the 4 parameter a function of
azimuth. In this way It Is possible to generate a covarlance function for any
azimuth and thus derive elements of the covarlance matrix needed for computations.

The techniques used In two-dimensional error analysis are adapted for
this pirpose. The elliptical shape of the contours of the (2-D) covarlance surface
has already been noted; it is possible to compare the curve defined by 4

o < a ~ 360, to the error ellipse of error analysis. The mathematical techniques
derived for the transformation of the error ellipse will then be useful In our
present task.

The weight coeffic ient in direction a (Q ~~~) can be expressed as
(Rlchardue, 1966, p. 100— 105; Hirvonen, 1971, p. 165—169):

(3. 1.2) Q ~~ Qzx cos3 a + 
~~~~ 

sin3 a + 2Qxy sin a cos a

Q , ,  Q~ = weight coeffic ient along the X, Y axis respectively
= the cofactor between X Y coeffic ients

Now, defining 4N ,  4 c as the 4 value for C , ,  C E , and substttut lttg them
for Qu , Qyy ln (3. 12) :

(3.13) — 4~~ 
coe~ a + 41 sIn 3 a + 24~ sin a cos a

The value 4N( needs to be defined. Being a cofactor there is no geo-
metrical meaning attached to It as there Is for 4N ~ 41 . However, It can be
determined If the correlation length Is known for at least one az imuth othe r than
0° or 90°. Then by solution of:

(3.14) — (6s cos~ a + 4~~ 
sin3 a)~/2 sin a cos a
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this quantity can be determined. The most sensitive estimate would be obtained
for a mid-quadrant azimuth, and to control the d iscrepancies occurring due to the
departure of the 4 curve from a true ellipse, two values of 4~c were obtained
from a a 450 and a 1350. The mean of these was then substituted Into (3. 13) .
This express ion could then be used to generate the covariance function for any
azimuth.

Local Covaria nce Functions

Many expressions have been suggested to represent the local covarlance
function. Experiments were made on a selection of these to determine which was
best suited for surface generation. Those tested are listed below. The parameter

represents the step or lag throughout.

Model 1: Hirvonen’s covariance functIon (Hlrvonen, 1962; Mor itz , 1976, p. 17)

(3.15) C (s) —

For this function 4 = d

Model 2: The Gaussian function (Ibid. , p . 18, 26)

(3. 16) C (5) = C0 e~

For wh l c h 4 =

Models 3 and 4~

These were Models 1 and 2 compounded w ith the cos term, cos (ritA) .
This was done In order to obtain the characteristic negative values for the covar-
Lance function. Unmodified, Models 1 and 2 approach zero, but never become
negative. The wavelength (A) of 6 unIts as used In the spectral analysis was
again adopted. However, difficulty was encountered in maintaining the 4 values
for this wavelength , and the results obtained were generaUy poor. They are
omitted from the summarized results in Table 2.

~:_ ~~



Model 5: The logarithmIc model (Morltz , 1976, p. 29)

(3. 17) C( s) — 
~~ 2eA

A l+(l+ k3 3 )~

where 4 a k~~ {(2e~~ _ 1)~ _ i}*

Assuming k a 1 to maintain the accepted values for the curvature
parameter (Ibid.).

A 2 Q ~t

Model 6: The third—order Ma rkov model (Jordan, 1972, p. 3664)

(3.18) C( s ) —  Co (1+~~ _
~~~~~~~~~) 

e ”~

4 is found to be approximately 1.095D (Ibid. , p. 3665) . This function
is of Interest because of its compatth illty with the auto— and cross-correlation
functions of othe r derivatIves of the ancmalous potential.

Using all models , C(s) was found forall a, l’s~5, with 4a computed from (3. 13)
for azimuths 0 � a < 360 In 10° advances. A selection of these are tabulated in
Table 2, and compa red with the actual discrete values of the 2-I) cova rlance.
Also, out of interest, the values for the general cova riance function are listed .

The comparisons IndIcate that the logarithmic model ( model 5) appears
to give the best all around results . All models fit well for a = 0  where the curve
attenuates slowly. The poorest fit Is found for negative cova rlances , and it Is In
this region that model 5 is clearly superior. It must be noted that discrep ancies
in azImuths 50° and 1300 will be Influenced by the approximation of the 4-generator
(equation 3. 13) to the actual 4 curve. These discrep ancies could be minimized
by the adoption of a more sophisticated expression to determIne 4a•

it appears that this technique Is qu ite successful. It must be pointed
out that generation of covirlan ces in this way comes much closer to the truth
than the values found from th. general covsrtance function based on an isotropIc
stat istical model. Whether or not this Improvement In accuracy Is significant
must be th . subject of a further Investigation (section 4. 1) .
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Table 2

Generated C ovarlances
(mgaf)

________ __________ _______ 
Model 

________ _________

• Az imuth Step 2-D General 1 2 5 6

0° 1 332 300r 334 337 318 318
• 2 300 208 299 310 272 274

3 263 88 255 270 233 235
4 223 — 13 211 223 200 203
5 180 —110 173 173 173 177

~o° 1 275 300 286. 299 285 284
2 175 208 187 192 188 186
3 50 88 118 92 106 101
4 —100 — 13 79 33 37 31
5 —200 —110 55 9 — 20 — 27

90° 1 270 300 261 276 267 268
2 143 208 150 140 143 145
3 8 &8 88 45 37 40
4 — 9 9  — 1 3  56 9 — 5 0  — 4 7
5 —170 —110 37 1 —124 —120

130° 1 300 300 327 332 312 313
2 245 208 278 292 259 261
3 175 88 222 235 212 217
4 100 — 13 175 175 174 180
5 20 —110 136 118 142 149
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3.8 ConclusIons

The 2—I) covar lance function promises to be the most efficient way of
detecting and representing anisotropy in a local or regional data set. It clearly
illustrates the extent to which the data departs from an isotropic situation.
Becaus e it represents the covarlance relationships which exist between poInt
pa irs of all sepa rations and orientations , it Is easily used to generate elements
in the covarlance matrices for predict ion or collocation computations .

The 2-I) covar lance surface can be represented by means of a family
of curves , generated using C0 computed in the analysis, and the correlation
length 4 found for four az imuths from the covaria nce surface. The logarithmic
model of Mor lIz ( model 5) appears to represent the surface most successfully.
It Is thought that an improvement In the 4 generator would similarly Imp rove
the covar lance values In the mid-quadrant directions .

4. The 2-I) Covarlance Function in C ollocation and Prediction

4. 1 IntroductIon

The 2-I) covar ianc e function represent s the cova rlance relationships
of point pairs of all separations and orientations . The question now arises as
to the possibility of us ing this function In collocation and prediction computations .
Most theoretical developments which derive analytical expressions to account
for an anisotropic situ ation modify these by assuming Isotropy befo re continuing
with the Investigation (e. g. Jordan, 1972, p. 3663; Grafarend and Offe rmans,
1975, p. 14). ThIs occurs even for the cross—covarlances of the deflectlons of
the vertical. These are shown to be azimuth dependent whether or not the
potential fIeld Is assumed Isotropic (Mor ltz, 1972, p. 111; Grafa rend and
Offer tuans , 1975, p. 14). However, It should be noted that If the potential field
Is assumed Isotropic , the expressions for the above cross-covarlances are , in
fact , a modification of the more complete expressions which account for
snlaotropy (Ibid . , p. 15) .

However, there appears to be no theoretical objection to the use of
the 2-I) covar lance function In collocation or pred iction solutions . The compu-
tation is thought to be in a plana r rather than a linear (or ttm~ domaIn. The
contribution of the known element to the unknown is now dependent on its
directio nal, as well as Its ‘temporal ’, position on the plane. The a,1 In
equation (2.14) accounts for this , for the elements of the array C, ~ are now
de rived having regard to the relati ve pos ition of the signal point vts-a-vts the
known point. Similarly, the C~ matrIx 11 developed by noting the disposition
of each kta point to all othe r data points in turn. These values can be generated
using technique. described In section 3. 8. However, In the expe riments below,
values have been taken directly from the arrays resulting from the 2-D cova rtanc e
analysis.
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4.2 Results of prediction Tests

The aim of the tests was to compare results of predIctions made using
the 2-D covarlance functIon with those resulting from use of the general covartance
function. Data. sets 1 and 2 were used in these tests as these were two fields
exhibiting strong az imuth dependent characteristics.

In the teat eight “known” points were used to estimate an unknown point.
(This number If close to the optimum suggested by Rapp (1964, p. 141) for the
prediction of point anomalies.) These eight points were chosen in various
configurations in order to e~~ggerate the effec t of the anisotropy of the field ~see
Figure 12). ThIs configuration was “stepped ” through the data array, and the
diffe rences between true and predicted values used to find the actual r. m. s. error of
predIction. This value was also compared with the theoretical r .m.s. error derived
from equatIon (2. 16). See Table 3 for definitions.

4.2.1 Configu ration 1

(I ) Data S.t l

The results of prediction using the 2-D covarlance function are
marginally worse then those using the general function ~see Table 3). The
distribution of errors Is similar ~see Figure 12), although an Inspection of a
plot of these differences shows that the 2-I) function cons istently produces
larger discrepanc ies. It appears that the data points closest to P (the pre-
diction point) have the greatest Influenc e on the predicted value. Their prox-
imity to P (1.4 step unite) meant that there was no significant diffe rence between
the’weights’ produced from the 2-I) and the general cova rlance functions . For
exam1le, C,1 (1.4) 260 mgai5 of C.j(1 , 1) 245 mgal3 and Cpt (1, —i) 240
mgi. It could be argued that a lack of homogeneIty throughout the field meant
that the 2-I) covarlance fUnction was unre pre sentative of the average situation
throughout the whole data set, and It was adequate to assume a fully random
stati stical relationship between point pairs at this small separation.

(Ii) Data Set 2

in this case the effect of anisotropy is felt. The 2-I) function
produces an r. m... of *11.6 mgi! (and m,~~*7.1 mgal) while the general
function gives rise to an r. m.s. of *13.4 mgnl (and an m, of ±11. 7 mgi!).
This is not unexpected in this extreme case. The fact that the difference is
not larger must In part be due to the proximity of the closest points to P.
(Sea also th distribution of dlff.rsnoss , FIgure 12) .
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4.2.2 Conf~ urat1on 2

( I ) Data Set l

ConfIguration 2 was deliberately chosen to maximize the diffe rence
between the general function and the 2—I) function. For e~~mple, C (3 , 1) = 240
mgala and C (4, 0) — 220 ,ng~1a while the general function equivalents , C (3.2) ,
C (4) , were 70 nigal3 and -12 mgala respectively. Results of the tests showed
that the anisotropic model fitted the data better ~m, = * 7 mgi! for the 2-I)
model and *12 mgi! for the Isotropic model). A similar improvement existed
in the actual error of predIction (±14 mgi! cf. *16. 5 mgi!). This supports
the contentIon that the choice of an Isotropic model does not always produce the
optimal solution. It also underlines the danger of using the parameter m~
without reservation as an estimate of the error of prediction.

LU) Data Set 2

The 2-D covar lance function produces a very low ‘actual ’ error
(* 0.6 ingal) , m, being computed at *4 mgal. However the solution using a
general covarfance function breaks down. Individual errors of up to 100 mgal
are produced and the value for mp shows a large error of prediction .
Apparently, it Is not possible to perform any meaningful predIction (with an
asymmetric configuration) using the general function, when condition s such as
those in data set 2 exIst.

Table 3

Statistical Analysis of Prediction Tests

__________  

Conf iguratIon 1 ConfiguratIon 2
Covar lance Data Set 1 Data Set 2 Data Set 1 Data Set 2

Function 2-D General 2-D General 2-D General 2-D General

r. m. ~~~ * 4 4  4.0 11.6 13. 4 14.0 16. 5 0.6 7.1 (?)
(mg~l) 

_ _ _ __ __ _ _ _ _ _

7.1 6.2 4.6 5.8 7.1 11. 7 4.0 11.3(?)
(mpl)

1.16 1.16 1.05 0.68 107 1.09 1.04 —5. 48

(.) - (~~(pr dicted ~g-actual AØ5/no. of pr.dIctions~~~

(+) — error of prediction — se. equation (2.1~
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Attention is now directed toward the third row of Table 3 where the
sums of the coeffic ients:

I

ap t a 
~~~~~ ~~~~~

(derived from equation 2. 14) are listed. These coefficients are bas ic In the
evaluation of both the predicted value of ~g (equatIon 2.8) and the theoretical
estimate of accuracy (equatIon 2. 16). It Is of interest to note therefore, that
in general~~the most accurate results were obtained from that covarlance function
giving the ~ a.1 closest to unity.

It Is difficul t to know the actual significance of this. Equat ion 2.8
looks similar to the normal “weighted mean” in this context, but is not Identical
to it. It has already been noticed that ‘5’ a,~ is not necessarily unity (I~ pp, 1964,
p. 7). In some cases it is valid to adju st the individual elements of the a,1 vector
to let the sum equal unity. In this regard it is worth quoting from Holloway (1958 ,
p. 354-355) “The sum of the weights of a smoothing or filtering function determines
the ratio of the mean of the smoothed or filtered series to the mean of the original
series. In sm~~th1ng It Is generally desired to leave the mean of the series
unchanged, so a,1 made equal to unity. With some filters It Is not necessary

to preserve the mean of the series and In these cases, a.~ ~ 1. ”

In the prediction context it is desirable that the property of ergod~~tty
hold . It therefore appears that the covarlance function which produces the a~

nearest unity is the one which maintains this property best; hence it produces the
best comparIso ns of pred icted values versus 1~ own. On the other band , computations
w ith a 1 made equal to unity showed that some cau tion must be observed when

mod~ytng the coefficients In this fashion. This was particularly the case when
the a,1 differed greatly from unity (e.g. 0.50). In this case, although the

m. value Improved, some predictions changed markedly (~ 30 mgi!) and the
calculated r.m.s. deteriorated. (See starred Items, Table 4, SectIon 4 3.)
However, when the difference between a.1 and unity was small and such

modifications made, a slight Improvement in prediction was noticed (again see
Table 4).
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4.3 Results of Collocation Tests

4. 3. 1 Introductory Remarks

The area chosen for the tests was the region near t~e SE coast of the
• United States used for calibration of Geos -3. It is bounde d by 40 � ~ >20 and

297 � A � 277 , the Information on latitude 200 being deleted because the larger
anomaly values here introduced erratic behaviour into the covar lance functions .
The gravi ty data was in the form of 1° x 10 mean free-air anomal ies extracted
from the file of world-wide 10 means held at the Department of Geodetic Sc fence.
The separations (N) have been computed in this area using the GEM 6 potential
coefficients to degree 16 and 1°x 3.° gravity data ( R&pp and Rummel. 1975). Repre-
sentations of these data sets are illustrated In Figures 13 a~d 13a, respectively.

The aim of the collocation test was to compute the geoldal separation
(N) from the gravity anomalies. The computation can be thoug ht of as a “multi-
variate” prediction as defined by Grafarend (1976, p. 152) because the model
effec ts are already assumed to be removed. (In othe r words the parameters
AX in equatIon 2. 19 have been computed Independently and the effec ts of normal
gravity removed from the observed gravi ty to obtain the free-air anomalies.)

The computations must be considered preliminary, althoug h the author
considers them to be a good approximation to a more rigorous solution . The
reasons for this are as follows:

(I) Spherlcity of the earth (i. e. the convergence of the merid ians)
was not accounted for and the data was assumed pl~n.r.
Computations of the general covariance and profile covarlance
functions assuming a spherical model showed no apprec bible
change from the same functions derived using a plane model.
Any difference was certa inly minor when compared with the
difference found between the general covarlance functions and
the 2-D functions.

(11) The mean anomalies were treated as If they were point anomallec
in the analysis process , as described by Smith (1974, p. 33) . AU
auto and cross-covarlances were computed from the known data.
That Is, no attempt was made to represent the covarlances from
previously determ ined models.

(lii) It should be remembered that this test is to obtain a comparison
of the 2-D fUnction against the 1-D functio n. Any shortcom ings
due to the approx imations mentioned above will affect both equal-
ly. The validity of the comparison will therefore not be harmed
to any significant degree.
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FIgure 13: Free-aIr Anomalies - U.S. Calibration Area
(Contour Interval: 25 mg~l)
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Ftg~~e 13a. G.old Undulation Using M.thod B with GEM 6 CoeffIc ients
- T~ mcatsd $t Degree 16 and wlthaCap Size of 200.

• (See Rspp and Ibimmel, 1975, p. 18)
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4.3.2 Auto and Cross-Covarlance Analysis

Tb. mato-covartance functions resulting from a 2-D analysis of the
gravi ty (data set 5) and ung~ilptIons (data set 8) In the test area are shown in
FIgures 14 and 15. (It is Interesting to note that the strong anlsotropic effec t
in the gravity field is reflected In both of these functions. ) The contours
below 200 ,,~~~a show no signs of converging within the limits of the analysis.
(At step 10, Ci, i* +140 mpl2 . C E 0 at 450 km.) This results from the
obvious N-S trend In the data and Is comparable to the effect seen in the
analysis of the N-S profile of data set In (Figure 4). The angular nature of the
contours must be due to the us. of the 10 means without applying any smoothing
to this data.

The 2-D covariance surface for N (Figure 15) Indicates the prese nce
of anisotropy In this data and again reflects the orientatIon of the trend in the
original data ( FIgure 13).

The results of the cross-covarlance analysis are shown in Figure 16.
This Is found by amending equation 3.11 to include the two variates. Thus:

N—r N .

(4. 1) Ci, , A~ (r , s) 
(N—IrIXN—ts I) ~ N( i ,j) 4g( 1+r , J +S)

t 1  3 t

when applied to data sets 5 and 6 produces the surface represented by Figure 16.
The strong anisotropic trend is still obvious , although the angularities of Figure 14
have largely disappeared In this combination of gravity data with undulations.

Two other pecu~arities are noticed.

(I) The func tion is no longer diametrically symmetric , I .e. quadrant 1
~ cpiadrant 3 and quadrant 2 ~~ quadrant 4. The reason for this is
apçarent on looking at equation (4. 1). The mean of cross-products
of N with Ag in any one direction does not equal (except accidentally)
the mean of cross-products of ~g with N In that direction. If the
mean of these two quantities Is used, the surface resulting will be
symmetric (FIgure 17). However, to be strictly correct the first
analysis should be used in collocation computations.

(U) The function does not necessarily behave in the same way as the
auto-covarlance function Insofar as C (0,0) Is not necessarily the
maximum value achieved by the surface. For e~~mple, whereas
C(0 ,0) 10L4 *9.8 , C(1,0) 1O6.1~~ 9.5; C(0 , 1)~~103.4t 9.2
and C(-2, 1) — 104. 2 ± 9.0. The author has seen no mention of this
phenomenon In the literature and It Is something which should be
recognized as a poesible characteristic of the croas-covariance
analysis . However , because the increase from C(0 , 0) Is small
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FIgure 14: 2-D Auto-covsrlance Function - Data Set 5
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(particularly when viewed against the standprd errors of the
covarlances) It seems reasonabl e to assume a small decay in
the function to assist modelling of the surface.

Jordan (1972 , p. 3665) has developed expressions which relate the
variances and correlation lengths of the covar iance functions for the grav ity
and undulation data. It would be Ideal if such relationships could be used to

• generate the 2-D covar fance functions of all geoidal parameters from ( Say) the
function for 4.g using the technique described in section 3.7. Unfortunately,
preliminary calculations showed that these theoretical relatio nships did not

• describe the actual situation at all well. It may be that this data is not localized
enough for such modelling and that it Is necessary to use functions more global
in nature ~e.g. Tscherning and Rapp, 1974).

The modelling of 2-D auto and cross-covariance functions needs
further Investigation. However, at this stage it was considered more important
to discover whethe r the use of the 2-D functions had any significant effec t in
collocation. For this reason, discrete data resulting directly from the analysis
of the local field was used.

4. 3. 3 Results of Tests

al Univariate Predictions: ~g from ~g

For interest, a simple prediction of ~g using the 2-D auto-covarlance
function was performed, and the results compared with a similar computation
using the general covarlance analysis (not illustrated). The results are
summnrized in Table 4 below. ConfIguration 2 refers to the point arrangement
described In Figure 12, and Configuration 3 is descr ibed in Figure 17.

Table 4

Summa ry of Results of Predictions - Data Set 5
(units - mgaf~

Covarlance Configuration 2 ( ~~ilation — 228 ConfIguration 3 ( opulatlon — 156)
Function 2-D G neral 2-D General 2-D General 2-D General
r. in . S.
error 15. 1 15. 2 15. 1 15.1 1 6 3  15.6 21.7* 15.4
in, 20. 1 22.3 19. 3 21.4 19. 2 22.1 13.0 21.5

• 0. 84 0.67 tj .0 ti .o 0.50 * 0,79 P 1 . 0  t l.o

forced to 1. 0

* see text for comment
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Note that the last two columns for both configurations list the results of computations

after a ~ has been adjusted to unity. Some improvement Is noticeable generally

In both the r. in. s. error and in , .  The e~~ept1on Is the r. in. s. error for the 2-D
function In confi guratIon 3 (marked *). Here the r. in. a. deteriorates and Individual
differences are found to Increase by as much as 30 rngal.

The results are In accord with those above (section 4.2). ConfiguratIon
3 is symmetrical about the predic tion point and the general function produces the
superior accuracy. Larger differences occur in the 2-D case where the data is
not well represented by the 2-D function (particularly in the SE corner) and this
is a big factor in producing the Inferior r. in. s. error overall . If the prediction
was limited to the regions which displayed the general trend, it appears that
because the difference s are smaller, the 2-D covarlance function would produce
the superior results. -

The 2-D and general function appear to be equally accurate in the case
of ConfIguration 2. The population for this configuration is large &230) and 15
mgal seems to be the limit of accuracy for this computation. It Is noticed that
the 2-D function converges more quickly to this limit, suggesting (*5 does Its in,
value) a superior accuracy for this covariance function.

~~ Multivarlate Prediction: N from ~g

The value of N was computed throughout the field from the gravi ty
data by use of equation 2. 19, with parameters AX set equal to zero. The gravity
points were org~ni’ed In Configuration 2 for the first test, ConfIguration 3 for
the second. The croas-covarlances used to provide the elements of matrix Cix
were:

(I) the Btrict 2-D crosa-covarlance function shown In Figure 16

(ii) the averaged or symmetric 2-D function (Figu re 11), and

(Ill) the general crosa-covariance function (not illustrated)

This produced three solutions for each of the configurat ions. The
elements of the ~ matrix were taken from FIgure 14 for solutions (I) and (Ii),
and from the general auto-covar lance analysis of the gravity for solution (iii).

A histogram of the absolute differences ~~ resulting for each
solution Is shown In Figure 18, and the comparisons of the accurac ies achieved
are tabulated In Table 5. Note that v is found by diffe rencing the predicted
N value from the N value obtained from FIgure 13*.
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Table 5

Summary of Accuracy of Collocation Computations
(Units : Meters)

________  
Configurat ion 2 

______ 
ConfiguratIon 3

2-1) 2-1) General 2-1) 2-D General
__________ _________ 

Symmetric 
_________ ______ 

Symmetric 
_________

r. m. s. ± 4.71 4.74 4.83 4.06 4.00 3.96
er ror 

________ ___________ _________ ______ ___________ ________

in, * 8.0 8.0 8.1 7.6 7.8 7.7

0.39 0.39 0.45 0.49 0.48 0.53

The comparison of predicted versu s known values using Configuration 2
shows that the strict 2-D covar iance analysis gives the better results, producing
an r.m . s. of ± 4.71 in as compared with ± 4. 83 in for the general case. (It should
be remembered that the units of the predicted quantity are meters and a difference
of 0.1 In the r. in. s. is not insignificant.) This situ ation is reflec ted also by the
in, values (*8.0 in of * 8.1 in for the general case).

For ConfiguratIon 3 the general covarlances produce the superior results
(±3.96 in as against * 4.06 in for the 2-1) covarlance values). However , the
theoretical accuracies do not agree w ith this. This suggests that although the
2—D statistical model Is a better descriptor of the field overall, larger errors
are produced by this model in uncharacteristic areas of the field (see FIgure 18).
Analysis of the distribution of differences from both the general and 2-D solut ions
shows a similar pattern exists for both, and that large errors (lvi > 5 in) tend to
occur where the gravity profile through the computation point increases markedly
away from the point. Neither the 2-D nor the general covariance analyses are
good reflections of this situation. However , the general function seems to
exaggerate this effect less and produces the smaller difference.

However, In areas where the trend of the field is strong ~e. g. around
the middle western a~rea of the field) the 2-D function produces consistently better
results from both configurations. Here anisotropy Is present and it would be
expected that the 2-D analysis prove superior.

It Is also of interest to note that the symmetrical 2-D covariance
function produces comparisons between those obtained by the strict 2-1) and the
general function, as may be expected. The summation of the coefficients (row 3,
Table 5) are related to the values of in, (*5 they must be), but the significance
of the value p.0.4) Is not clear. Generalizing from earlier comments in Section
4.2, thIs value must relate to the ratios of the mean values of the two data domains
I.e. the known and the predicted. The ratio of the mean value of gravi ty to the
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mean value of N in the teat area Is, In fact , 0.46. However, the relationship noted
In the prediction computations between the a t value and the accuracy does not

appear to hold here. That Is, the greater accuracy does not necessarily corns from
that computation whose sum is closer to 0. 46.

There Is obviously not enough information here to come to any definite
conclusions concerning the use of the 2-1) function in collocation. Nevertheless,
it does seem to follow the pattern noticed from the prediction results . That Is,
where the anlaotropy portrayed by the 2-1) covarlance analysis is present, the
values computed from the 2-D covarlancea compare more favorably with the known
data than do those coniputed from the general analysis.

5.0 Conclusions

The two-dimensional covariance function provides the most efficient
means of detecting and representing the anisotropic characteristics of a data set
distributed over a plane. This f~mctlon graphically describes the covarlance
which exists between point pairs of all separations and orientations. The extent
of anisotropy Is indicated by the departure of the contours of the 2-1) covarlance
surface from a circular pattern, and the orientation of the axes of maximum and
m1ni~’~m correlation are clearly shown.

It is poss ible to model the 2-D covarlance surface by generating a simple
covarlan ce function fur each azImuth, 0 � ~ < 360. The logarithmic function
suggested by Moritz (1976, p. 29) appears to be the best model overall,
particularly when the function attains negative values. The fact that the 2-1)
cross-covariance function Is not symmetrical complicates the generation of the
surface by this method. It is possible to overcome this problem by using the
symmetrical 2-D function to approximate the cross-covarlance surface.

The Ideal function would enable the generation of all auto and cross-
covarlance functiona knowing the pertinent parameters of ~say~ the anomalous
gravity field. The third-order Markov function suggested by Jordan (1972) has
this capability. Unfortunately, the theoretical relationships did not agree with
the actual relationships In this Instance. It Is ~ lt that this is an important area
for further research, If the usefulness of the 2-D covar lance function is to be
fully exploited.

The 2-D covar lance function Is capable of produc ing results superior
to those obta ined by the general function when certain conditions are present .
These condition s will pro duce large differences between elements of the
covarlance matr ices derived from the gener al covar lance analysis and from the
2-D covarlance analysis. They will occur when:
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(I) anisofropic effec ts are present and, because of the distribution
of the data, predictions must be performed over large separations
and in an asymmetric configuration, or

(U) anisotropy is strongly evident and homogeneous throughout the
field. Such an effuc t can be seen in areas where geoidal slopes
are uniformly and consistently large ~e. g. the geold slope
across Australia). In fact, under these conditions the solution
using the general function appears to break down.

In any case, a 2-1) covarlance analysis should be performed on data
which shows anisotr oplc tendencies. This will Indicate the extent of the az imuth
dependence of the covarlance function and enable remedial action to be taken
(e.g. in the configuration of the data used In subsequent computation) if this
appears warranted.

The 2-1) covarlance surface may also provide useful Information
concerning a suitable “trend surface” to be fitted to the original data. Knowing
that the residuals of the actual data from the trend surface should be isotropic,
it should be possible to discover what nature of surface must be fitted In order
to transform the 2-1) covariance surface to a surface of revolution. (This may
be best perfurmed in the spectral domain. ) The residuals can then be used In the
stochastic processes with the knowledge that they do, In reality possess isotropic
characteristics.
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A~~endlx A1

P The angular frequency (c&~ and the frequency in cycles per second are
related by:

‘I.,
I ~~ 

___

2 i~

When operating In the spatial domain the time (T) In equatIons (3.2) to
(3.4) are replaced by the length r. The 6ind~mental wavelength of the signal is
assumed to correspond to mhz where m, Ax are defined in equation (3. 5). (In
the case of data set 1, It Is seen that the fla ndamental wavelength equals 6 grid
units, i.e. r n — S.)

The frequency associated with the step value r ~r also represent s the
harmonic of the fundamental wavelength) can therefore be expressed as:

r
2mhz
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