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EVALUATION AND DEVELOPMENT OF WATER WAVE THEORIES FOR
ENGINEERING APPLICATION

by
R. G. Dean

I. INTRODUCTION

The following were the primary goals of the research reported: (1)for given wave
conditions, to establish a rational basis for selection of one of the numerous available
progressive-water-wave theories and (2) to tabulate the most appropriate wave theory or
theories in a form convenient for preliminary design use. The main emphasis has been an
attempt to assist the engineer in his selection and application of wave theories in marine
design problems. The research has proceeded in several distinct phases which are described
briefly below.

An early phase of the research was related to evaluating the analytical validity of
water-wave theories; that is, the degree to which the various available theories satisfy the
equations constituting the mathematical formulation. The results of this phase, first
published in September, 1968 (Dean, 1968a), established that, of the eight theories included
in the study, the Stream-function fifth-order provided the best fit over a wide range of wave
conditions. For very shallow water waves, the Airy and first-order Cnoidal theories provided
the best fit. However, because the Stream-function theory can be extended to quite high
orders, it was expected that it would provide the best fit, even for most shallow water wave
conditions. Based on the results of this phase, the following phases concentrated on further
exploration and development of the Stream-function theory for engineering application.

The second phase represented an examination of near-breaking wave conditions using the
Stream-function theory (Dean, 1968b). This problem is complicated because breaking
conditions represent a mathematical as well as a hydrodynamic instability, and therefore the
computational aspects are not straightforward. The results of this study indicated that of
the two stability criteria, the kinematic criterion rather than the dynamic criterion governs
at breaking. It was also found that near breaking the pressure distribution was hydrostatic
rather than characterized by a zero pressure gradient as predicted by some other studies.
The complexities of the numerical computations led to an attempt to establish the breaking
index for only three relative water depths (shallow, transitional zone and deep). It was
found that for shallow and deepwater waves, the breaking heights established from the
Stream-function wave theory were up to 28 percent higher than those established earlier by
other investigations. For transitional depth conditions, however, the breaking heights
determined in the study agreed well with those of earlier investigations.

The third phase of the investigation (Dean and LeMehaute, 1970) was related to the
“experimental validity of water wave theories” as compared to “analytical validity.” The
motivation of this phase was the recent publication of a fairly comprehensive set of
measurements of water particle velocities for shallow water waves and comparison witi: a
number of wave theories by LeMehaute, Divoky, and Lin (1968); a comparison with the
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Stream-function theory was therefore conducted as a part of the present study. On an
overall basis, the Stream-function theory provided a significantly better fit to the measured
water particle velocities than the other theories. The standard deviation between the
measured and Stream-function representations was 0.17 foot/second as compared to
0.24 foot/second for the theory providing the next best fit. The primary significance of this
phase of the study is that the wave conditions are in the shallow-water region where theories
other than the Stream-function would be expected to provide better comparisons with
measurements. Although this favorable comparison is not taken as demonstration of the
superiority of the Stream-function for all wave conditions, the results were very encouraging
and, to some extent, surprising.

The final phase of the investigation has been the development of a computer program to
tabulate wave quantities that would be of value to engineers in design, and that would also
be valuable to persans concerned with the further development and improvement of
water-wave theories. During the development of the tables, it has been found that more
meaningful information than originally anticipated could be presented.

In the early phases of this study, dimensional variables [i.e., water depth/(wave period)
and wave height/(wave period)] were used to characterize the wave conditions (Dean,
1968b). This feature will be evident in the description of some of the results. In the latter
phases of the study, it was decided to characterize the wave conditions by the following
dimensionless quantities: h/L, and H/L_, where h,H and L, represent the water depth,
wave height, and small-amplitude deepwater wavelength, respectively. The tables are
developed for 40 cases of (h/L,, H/L,).

The results of the research are presented in two volumes. The present report (Volume I)
documents the research results and describes the wave tables and their application.
Volume II presents the wave tables that have been developed for 40 cases encompassing
most conditions encountered in engineering design.

It should be noted that all of the available wave theories have not been included in the
comparisons described earlier. Some of the theories omitted were developed during the
period of this research; some have been available, but were not compared, usually because
they are not employed extensively for engineering purposes.

Il. STREAM FUNCTION WAVE THEORY

Introduction

At an early stage of the research, the study indicated that the Stream-function theory
generally provided a better fit to the boundary conditions and also to available laboratory
measurements. The study therefore developed into an effort to explore and develop the
Stream-function theory for engineering application. Before presenting this work, the basis
for the Stream-function theory will be described in some detail in an attempt to define the
similarities with and differences from other theories. It should be noted that there are two
representations of the Stream-function theory: (1) for a given wave height, H, water |




depth, h, and wave period, T, a (symmetrical) representation can be developed to describe
the kinematics and dynamics of the motion and (2) for a given measured water surface
displacement, 7(t) representing a single oscillation (e.g., trough-to-trough), a representation
can be determined which completely defines the kinematics and dynamics of the wave
motion. The first case is, of course, of more interest to designers; in another application, the
second case has been employed for the analysis of hurricane-generated wave and wave-force
data. Only the first mode has been explored under the present study.
Formuiation

The water-wave phenomenon of interest here can be idealized as a two-dimensional
boundary value problem of ideal flow. The assumption of ideal flow is essential to a
mathematical formulation that can be readily solved by known techniques. Figure 1 defines

terms employed in the formulation.
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Figure 1. Definition sketch, progressive wave system

Differential Equation

Ideal flow incorporates the assumptions of an incompressible fluid and irrotational
motion. For pressures normally experienced in progressive water-wave motions, the
incompressibility assumption can be shown to be valid. Shock pressures due to a wave
breaking against a seawall may be an important exception; however these are not
encompassed by the results of this research. The assumption of irrotational flow may be
questioned. Probably the best reason for this assumption, at this stage, is that it allows
formulation of a boundary-value problem that can be solved in an approximate manner. The
solutions can then be compared with measurements to determine the apparent need for the
refinement to include a nonzero rotation.

The differential equation (DE) for two-dimensional ideal flow, the Laplace equation, can
be presented in terms of either the velocity potential, ¢ or stream function, ¢,

V%¢ = 0 )
vy = 0 (2)
3




where, in two dimensions
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and ¢ and Y are defined in terms of the velocity components u and w (see Figure 1) as:
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Boundary Conditions
Two types of boundary conditions are required on the upper and lower surfaces (for the
present study, it will be assumed that the depth is uniform). The kinematic boundary
condition applies to both boundaries, and simply requires that the components of flow at
these boundaries be in accordance with the geometry and motion (if any) of the boundaries.
This condition can be stated as follows:
Bottom Boundary Condition (BBC)

w=20, zZ = =h (5)
Kinematic Free Surface Boundary Condition (KFSBC)

204 ulll « w, z = nix,t) (6)

Dynamic Free Surface Boundary Condition (DFSBC)
The remaining free surface boundary condition, the so-called dynamic free surface

boundary condition (DFSBC), requires that the pressure immediately below the free surface
be uniform and equal to the atmospheric pressure, P,

pa 1 2 1
Nt s R 0 [P
(u w?) -

= = Y =
55 | Ig constant = Q', z ni{x,t)

o

In the above formulation, it is tacitly assumed that surface tension effects are negligible. It is
customary to incorporate the atmospheric pressure term into the constant, Q’, to yield a
new constant, Q

n+§1§-(u2+w’)-;§-§%=o ®)




In the formulation presented, no requirements have been placed on the permanence of
wave form; that is, the wave could change form as it propagates due to the relative motion
and interference of components propagating with various phase speeds. The treatment of
this general problem including the nonlinearities is complex, and was not the subject of this
research. Rather, in the present investigation, it is assumed that the wave propagates with
constant speed, C, and without change of form. It is then possible to choose a coordinate
system propagating with the speed of and in the same direction as the wave, and relative to
this coordinate system the motion does not change, and is therefore steady. The time
dependency in the formulation vanishes, the horizontal velocity component with respect to

the moving coordinate system is u-C; and the formulation may be summarized as:

DE: V2¢ = VZQ} = 0 (())
BBC w=20, 2=<-h (10)
Boundary } an W
SBC: — = =
Conditions s X u - C’ ~ n (x) (11)

3 2l it 2 iy L B o ot
DFSBC: n + 5= (tu - C)? + w?) == z = n(x) (12)

Motion is periodic in x with spatial periodicity of the wavelength, L. (13)

To avoid misimpressions about the assumptions and formulation presented here and those
employed in other investigations of nonlear waves, it is noted that the formulation
incorporating the assumption of propagation without change of form is common to the
development of all the following nonlinear water wave theories:

Stokes 2nd, and higher order wave theories
Cnoidal 15t and 2nd order theories by e.g., Keulegan and Patterson (1940),
and Laitone (1960)

Solitary wave theory, 15t order by Boussinesq (Munk, 1949)

Solitary wave theory, 2nd order by McCowan (Munk, 1949)

Stream-function wave theory by Von Schwind and Reid (1972)
To reiterate, analytical validity will be based on the degree to which a theory satisfies the
boundary-value problem formulation, Equations (9) through (13). If a theory could be
found that provided exact agreement to the formulations, then the analytical validity would
be perfect. There is no guarantee that good analytical validity ensures that a theory will
provide a good representation of the natural phenomenon, because implicit in the
formulation are the assumptions that capillary and rotation forces and other effects are
negligible. Experimental validity will be based on the agreement between wave theories and
measured data.
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The Stream-function Solution
For the formulation expressed in Equations (9) through (13), a Stream-function solution
may be expressed as:

NN 3
pix,2) = % z + 21 X(n) sinh [-2-11\1—'1 (h + z)] cos [gg_n xJ (14)
n=

Evaluating this expression on the free surface, i.e., setting z =n, we find
¢ 2mn 2Tn
X(n) sinh |5— (h + n)| cos |=— x (15)

where NN represents the order of the representation, i.e., the number of terms
contributing to the series expression, Y, represents the (constant) value of the
Stream-function on the free surface, L is the (undetermined) wavelength, and
the X(n) represent, at this stage, undetermined coefficients.

For particular wave conditions, it is regarded that the wave height, period, and water
depth are specified. Equation (14) exactly satisfies the governing differential equation and
the bottom and free surface kinematic boundary conditions for arbitrary values
of L, \l/n and the X(n) coefficients. The Stream-function expression is also periodic
in x with wavelength, L. The only remaining boundary condition is the dynamic
free-surface boundary condition; the parameters L and the X(n)’s are to be chosen such
that this boundary condition is best satisfied for a specified wave height. :

The procedure for determining the unknown parameters, which can be considered as a
nonlinear numerical perturbation procedure, is presented in Appendix I.

III. EVALUATION OF VALIDITIES OF WAVE THEORIES

Introduction

As discussed earlier, there are two types of validity that were examined. ‘‘Analytical
validity” is based on the degree to which a theory satisfies the governing equations (of the
boundary value problem formulation). Good analytical validity, however, does not
necessarily imply good representation of the natural phenomenon. Experimental validity is
based on the agreement between a theory and measurements. To date, some reasonably
good laboratory data are available, and at least two field measurements of water particle
velocities are reportedly underway (as of 1972) in the petroleum industry, and hopefully,
will be available within the next few years.

Discussion of Differences Between Stream-function and Other Wave Theories
Later in this section, it will be shown that the Stream-function theory provides a better
fit than other theories to the boundary conditions and also provides a better fit to




laboratory measurements of water particle velocities. It is therefore worthwhile to compare
some of the inherent features of the Stream-function and other theories. Although it is
difficult to discuss all other theories in general statements, an attempt will be made to
present the more significant representative differences.

Consider, as an example, the Stokes higher order wave theories. The general form of the
solution exactly satisfies the differential equation, the bottom boundary condition, and, is
properly periodic in the x-direction. The solution does not provide exact fits to either the
kinematic or dynamic free surface boundary conditions. Suppose that the (n-1)t? order
solution is known and that the nth order theory is to be developed. The nth coefficients are
determined such that they minimize the errors in the two free surface boundary conditions
at the (n-1)th order. A significant problem is that the configuration of the nth order water
surface is not known, a priori; it is therefore necessary to best satisfy the boundary
conditions on an approximate expansion of the nth order water surface. The apparent effect
of minimizing the errors present on the approximate nth order water surface is that the
resulting theory of a given order, if convergent, may not provide the best fit possible for the
number of terms (order) included.

As a comparison with the preceding discussion of the Stokes’ theory, consider the
corresponding features of a Stream-function theory solution. The general form of the
solution exactly satisfies all of the boundary value problem requirements except the
DFSBC.

At this stage, one inherent advantage of the Stream-function theory is evident—all of the
“free” parameters can be chosen to provide a best fit to the DFSBC. A second and
important inherent advantage is that for a given nth order wave theory, all of the
coefficients are chosen such that they best satisfy the boundary condition on the nth order
water surface. The distinction is that because a numerical iteration approach is used, the nth
order wave form is known (through iteration) at that order of solution. Other advantages of
the Stream-function theory are that a solution can readily be obtained to any reasonable
order, and that a measure of the fit to the one remaining boundary condition is more or less
automatically obtained in the course of the solution. Also, the form of the terms in the
solution is inherently better for representing nonlinear waves, due to the n term appearing in
the argument of the hyperbolic sine term [cf. Equation (15)].

The disadvantage of the Stream-function theory is that, unless tabulated parameters are
available, it does require the use of a digital computer with a reasonably large memory. The
complexity of other nonlinear theories, however, generally also requires the use of a
high-speed computer.

It is noted that a similar but different Stream-function theory has been developed and
reported by Von Schwind and Reid (1972) subsequent to the analytical validity study
reported here, and employs a definition of the DFSBC error which differs from that in the
present study. The paper by Von Schwind and Reid presents boundary condition errors for
three wave cases. A comparison between their errors and those resulting from the
Stream-function theory will be presented.
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Analytical Validity

The analytical validity of a particular wave theory has been previously defined as the
degree to which the theory satisfies the defining equations, i.e., Equations (9) through (13).
Again, for emphasis, it is noted that a theory providing an exact fit to the boundary
conditions would have a perfect analytical validity. However, due to assumptions of ideal
flow, etc., in the formulation of the problem, a perfect analytical validity does not ensure
that the theory would provide a good representation of laboratory or field phenomenon.

The reason for viewing the problem in two steps, i.e., analytical and experimental
validity, is that the results of the analytical validity test would at least tend to indicate the
relative applicability of the available wave theories for particular wave conditions. Also, the
results would provide guidance about whether the most fruitful approach would be directed
toward a more representative formulation of water-wave theories or toward the
improvement of the solutions of existing formulations.

Definition of Boundary Condition Errors

Most wave theories exactly satisfy the governing differential equation and bottom
boundary condition, although some of the solutions only approximately satisfy the
differential equation. Table A lists a number of the theories available for design use and also
indicates the conditions of the formulation which are satisfied exactly by each of the
theories. Inspection of Table A shows that the two nonlinear (free surface) boundary
conditions provide the best basis for assessing the analytical validity, because no theory
exactly satisfies both of these conditions.

Errors based on the dynamic and kinematic free surface boundary conditions, are defined
as functions of phase angle (0) as follows:

an _ _w

R T el {19
ez(e):n+%g-[(u-c)‘+w2]—%- 17)

where Q represents the mean value of the quantity Q (Bernoulli constant) defined in
Equation (12). Overall errors are defined as the root mean squares of the distributed errors,

J i
E, ;\/f} 3y €1? (18)

€2 (19)
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where j represents sampling at various (evenly spaced) phase angles.




TABLE A
Water Wave Theories Included in Evaluation Presented by Dean (1968a)

Theory Exactly Satisfies
DE | BBC { KFSBC | DFSBC
Linear Wave Theory—Airy X X o SOl
(Ippen, 1966)
Third Order Stokes X X G e 2

(Skjelbreia and Hendrickson, 1961,
as summarized by Le Mehaute and Webb, 1964)

Fifth Order Stokes X X —_ -
(Skjelbreia and Hendrickson, 1961)

First Order Cnoidal SH X or b A
(Laitone, 1960)

Second Order Cnoidal — | X —_ -
(Laitone, 1960)

First Order Solitary X X - e
(Boussinesq, as summarized by Munk, 1949)

Second Order Solitary X X X -
(McCowan, as summarized by Munk, 1949)

Stream-Function Numerical Wave Theory—Fifth Order | X X X ~—
(Dean, 1968a)
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Results of Analytical Validity Comparison

Most of the results of the study of analytical validity carried out under this project have
been published elsewhere (Dean, 1968a), and therefore will be reviewed only briefly here.

The study included 40 wave cases as shown in Figure 2. For each of these cases, the
overall errors, E and E, were calculated for the wave theories shown in Table A. The
overall dynamic free surface boundary condition errors were made dimensionless by dividing
by the wave height, H, i.e.,

E;' = E;/H (20)

The overall kinematic free surface boundary condition error is dimensionless as defined in
Equation (18).

Plots of the dimensionless kinematic and dynamic free surface boundary condition errors
are presented in Figures 3,4,5,and 6 for H/Hp =0.25and 1.0 (Hp = breaking wave
height). The KFSBC error is identically zero for the Stream-function and McCowan theories.

As stated previously, it is difficult to select a single index that would clearly be
representative of the overall validity of all wave theories. However, an index was chosen that
provided a severe test for the Stream-function theory, and yet this theory provided the best
general analytical validity.

The following evaluation plan was adopted, the results of which would be somewhat
biased against the Stream-function theory. Most of the wave theories do not satisfy exactly
either the DFSBC or KFSBC; however, the Stream-function theory does satisfy exactly the
KFSBC. It therefore seems reasonable that if the Stream-function theory can be shown to
compare favorably against other theories on the basis of only the DFSBC, then it should
provide an even better analytical validty than the comparison shows.

In the analytical validity investigation, the eight wave theories in Table A were examined.
Because the fifth order was the highest of the Stokes theories available, it was arbitrarily
decided to include the Stream-function theory only to the fifth order.

The evaluation was then based on comparisons presented in Figures 3,4,5,and 6 and
also on the corresponding figures for H/Hp = 0.50 and 0.75, which are not presented here.
The results of this study are shown in Figures 7 and 8.

Figure 7 presents the results for all theories excluding the Stream-function theory. It is
seen that the Stokes V theory provides the best fit for deep water, the Airy theory provides
the best fit in a part of the transitional and shallow-water ranges, and the first-order Cnoidal
wave theory generally provides the best fit in the shallow-water range.

Figure 8 presents the same type of information. Only the fifth-order Stream-function
theory is included and provides the best fit over a wide range including all of the transitional
and deepwater wave regions and also a significant part of the shallow-water range included
in the comparison. The Airy wave theory provides the best fit for a small part of the
shallow-water, near-breaking waves and the first-order Cnoidal wave theory provides the best
fit for the remainder of the shallow-water region.

10
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In evaluating the results obtained in the shallow-water region, it is noted that one
eighth-order Stream-function theory was calculated for breaking wave conditions and
h/T? = 0.1 foot/second? as shown in Figure 6. This figure shows that the use of higher order
Stream-function theories would extend the range of best validity of this theory to shallower
conditions (Figure 8).

Comparison with Stream-function Theory Developed by Von Schwind and Reid

As noted earlier. Von Schwind and Reid (1972) have developed a Stream-function
theory with basic similarities to the theory employed in this study. The principal difference
between the two theories is that Von Schwind and Reid transform their problem to and
carry out their solution in the complex plane. It is noted that their solution in terms of
wavelength and coefficients is also obtained by iteration. The DFSBC error
definition e,(0), used by Von Schwind and Reid was originally defined by Chappelear
(1961), and is somewhat different from that employed here (Equation 17) and is

€2(0)

e (0) = =, (17a)

It is noted by comparison of Equations(17) and (17a), that the actual distribution of
DFSBC errors would appear as numerically smaller based on Equation (17a) due to the
water depth and Bernoulli constant appearing in the denominator.

Von Schwind and Reid presented distributed DFSBC errors for three sets of wave
conditions. Errors were calculated for the same wave conditions using the present theory.
Figures 9, 10, and 11, are reproduced from Von Schwind and Reid, and the maximum
errors obtained by the present theory [indicated University of Florida (UF)] are shown for
each wave case. The maximum UF errors obtained are so small that it would not be
worthwhile to show them graphically. Note that all errors (e,) shown in
Figures 9, 10, and 11 are based on Equation (17a). The reason that the errors obtained by
the present theory are smaller than those obtained by Von Schwind and Reid is not known.
With a numerical solution, it is possible to obtain a low error (down to some limit) by
increasing the order of the theory or by increasing the number of iterations used to obtain
the solution. For the three cases shown in Figures 9 through 11, the UF waves were
geventh-order and each solution was obtained by 15 iterations; the corresponding values for
the Von Schwind-Reid waves are not known.

Conclusions Resulting from the Analytical Validity Study

The analytical validity evaluation is based on the degree to which the various theories
satisfy the governing equations in the boundary value problem formulation. It is stressed
again that there is no guarantee that a theory providing a good analytical validity will
necessarily represent well the features of the natural wave phenomenon. The reason is that
there are assumptions (negligible viscosity and capillary effects) introduced into the
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governing equations which may adversely affect the degree to which the formulation
represents real wave motion. The purpose of the analytical validity study, rather, was to
attempt to resolve the question of whether the theories developed for the same formulation
and for various regions of relative depth do indeed provide the best fit in these regions. Also
this study, combined with some additional studies reported later in this report, does aid in
determining whether the most critical need in wave theory research is in the improvement of
the formulation or in the development of improved solutions to the existing formulation.

The results of the analytical validity study have shown that:

1. The general status of wave theories for h/t? > 0.2 foot/second?, for instance, is much
more satisfactory than for the smaller values of h/T?. In particular, for the larger relative
depths, there is reasonable consistency between the fits to the dynamic free surface
boundary condition and the maximum drag force as calculated by the various theories
including a seventh-order Stream-function theory. In shallow water, it is not clear that the
boundary condition fit is an appropriate measure of wave thecry validity, unless the
associated errors are very small. In particular, the Airy wave theory provides a relatively
good fit to the boundary conditions in shallow water; however this theory does not
represent many of the observed features of shallow-water waves including the strong
skewness of the wave profile about the mean water level.

2. The Stokes higher order wave theories converge to accurate representations of wave
motion in deep water; however, in transitional and shallow water, the boundary condition
fits are relatively poor. Furthermore, no fifth-order Stokes theory solution could be found
for shallow-water waves or the smaller values of the transitional zone. The limiting value
of h/T? for which a solution exists, depends on H/T? and was in the range of
0.1 <h/T? <0.5 foot/second? for the conditions examined.

3. Finally, it is observed that the second-order Cnoidal theory provided a worse fit to the
boundary conditions than the first-order Cnoidal theory for all wave conditions examined.
There are other versions of Cnoidal theories; the boundary condition fits of these theories
have not been evaluated in this study.

4. The Stream-function theory described in this report provides good analytical validity
over a wide range of wave conditions.

The reader is referred to Dean, (1968a) for reinforcement of statements presented.

Experimental Validity

As previously described, experimental validity is based on the comparison of theoretical
predictions and measured wave phenomena. If it could be generally shown that the theory
providing the best analytical validity also provides the best experimental validity, then it
could be concluded that the formulation is valid and that the errors in the boundary
conditions are also good indicators of experimental validity. If the differences between the
theory and experiments were of the same order as the estimated experimental error, and if
this could be shown to be the situation generally, then the most productive direction in
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water-wave research on this problem would be improved measurements. If however, the
disagreement between theory and experiment is much larger than can be attributed to
experimental error, and especially if this difference were of engineering significance, then
additional efforts on the formulation and solution of water wave theories would be
indicated.

The availability of data is inadequate to carry out a comprehensive evaluation of
experimental validity over all ranges of relative depth and heights of engineering importance,
Le Mehaute, Divorky, and Lin (1968) have carricd out a measurement program in which
distributions over depth of horizontal water particle velocities were measured under the
crest phase position of fairly high waves in the shallow and transitional depth ranges. The
results included measured horizontal water particle velocity distributions for eight cases, and
also a vertical water particle velocity distribution for one case, and one measured wave
profile. Le Mehaute, Divorky, and Lin compared a number of wave theories with their data;
however the Stream-function theory was not included. The experimental validity reported
in this study was based on a comparison of the Stream-function theory with the data
described earlier.

It should be emphasized that the only addition to the paper by Le Mehaute, Divorky, and
Lin (1968) is (1) comparison of the Stream-function theory with the data and
(2) calculations which represent the overall agreement between the data and several of the
theories. In the Stream-function horizontal velocity component profiles presented, a
uniform mass transport velocity has been subtracted out, whereas due to time limitations,
the other theoretical velocity distributions were simply plotted from Le Mehaute, Divorky,
and Lin. It is not clear whether or not the mass transport term should be subtracted out.
Although the experiments were conducted in a closed tank, the data were taken before
waves reflected from the beach had propagated back to the tank test section, and the zero
net flow over depth had probably not been established completely.

In all, data for 10 different wave conditions are available. These waves are in the shallow
and transitional depth regions, and according to the conventional breaking criteria, the wave
heights range from 0.43 to 0.70 of the breaking height. The wave conditions are shown as
points in Figure 12 where isolines representing various ratios of wave height to breaking
wave height are also presented. It is emphasized that the breaking wave height in Figure 12
is the conventional breaking height: i.e., H/h = 0.78 in shallow water (McCowan reviewed by
Munk, 1949); H/L =0.142 in deep water (Michell, 1893); in the transitional range, the
breaking limit was first established by Reid and Bretschneider (1953) by interpolating on
the basis of measured data and is presented in several more available references, e.g. (Ippen,
1966) and (Bretschneider, 1960). A recent paper by Divoky, Le Mehaute, and Lin (1970)
reports an experimentally determined shallow-water breaking limit of approximately
Hp/h = 0.60 to 0.66 as compared to the conventional value of 0.78. The recent experiments
resulting in the lower value were obtained with a laterally converging wave channel.
Certainly it is apparent that more work is needed to better resolve wave breaking limits.
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Figure 12. Experimental wave characteristics
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Table B presents the comparison results included in the experimental validity evaluation.
The eight comparisons of horizontal water particle velocity are presented in Figures 13
through 20: the vertical velocity comparison is presented in Figure 21; and the wave profile
is presented in Figure 22.

Figures 13 through 20 indicate that the Stream-function theory is in reasonable
agreement with the data. It is noteworthy that the shallow-water wave theories which
should provide good fits to the data are so poor. Another interesting feature of the
comparison is that the linear (Airy) wave theory agrees better with the data than would be
expected.

Of the 12 theories included in the comparison, the better agreements with data were
provided by the following five theories: Airy, Keulegan and Patterson Cnoidal wave theory,
Goda, Long-Wave, and Stream-function. These five theories were then selected for further
examination of their agreement with the data. The standard deviations between each of
these theories and the data were calculated, and are presented in Table C where it is seen
that the Stream-function theory provided the best fit to the data, followed, in order, by the
Goda, Keulegan and Patterson Cnoidal, Airy, and the Long-Wave Theories.

The Goda “theory™ is actually a series representation in which the analytical forms of the
terms comprising the series are the same as the hyperbolic and trigonometric functions in
the Stokes theories. However, the coefficients modifying these terms were determined
empirically by wave tank experiments.

Additional calculations not presented here showed that, assuming the data were valid, the
Stream-function wave theory would on the average overpredict the maximum total drag
force on a vertical cylinder by 21 percent.

Data representing the vertical velocity distribution with depth are available for only one
set of wave conditions. (see Figure 21). The McCowan theory provides the best fit to the
data; the next best fit is associated with the Stream-function theory. Differences between
the McCowan and Stream-function theories, however, are quite small and it is probably not
justified to draw conclusions from only one set of data. Interpreted in terms of vertical drag
forces on a horizontal cylinder, the Stream-function would underpredict the forces by 30
percent.

The one set of wave profile data are compared with the various theories in Figure 22.
Although no detailed comparisons were made, it appears that the Stream-function theory is
in as good or better agreement than any of the other theories shown.

Conclusions Resulting from the Experimental Validity Study

Comparisons of Stream-function theory predictions with measurements of velocity
components and one wave form representing transitional and shallow-water waves indicate
reasonably good agreement. Interpreted on the basis of maximum horizontal drag force
components, the Stream-function theory would over predict by an average of 21 percent.
Recognizing that the experimental accuracy is approximately 5 percent these results are
considered reasonable for engineering applications. The predicted maximum vertical drag

25

P




*a1bue aseyd 3o ssaypaebax

‘£3700T2A umMWIXeW,

44 9TTJoxd 2AeM 09°0 98S°0 9°T | TLZ°0 0T
yuduodwod A31d0T3A

12 910T3Ied I93EM TEDTJaASA €EV°0 966°0 | 8S°€E | T¥Z°O 6
3sa1) 3e juauodwo) A3TOOTSA

0z 919T3aeg I93eM TeJUOZTIOH 0L°0 SSS°0| 8S°E | ¥OE"O 8
3sa21) 3e juauodwo) A3TOO0T3A

61 9TO0T3xed IX33eM TejUOZTIOH ¥9°0 S6S5°0] 90°t | €62°0 L
3s91) 3¢ jusauocdwo) X3TOOT3A

8T 9TOT3Ied I93BM TE3UOZTIOH L9°0 619°0 Z2°CT | £2€°0 9
3sax) 3e juauodwo) X3JTOOT3aA

LT 9ID0T3aegd I93M TPJUOZTIOH $o9°0 L8S°0 | 9T°T | €62°0 S
3sax) 3e juauodwo) X3ToOTaA

91 91O0T3aed I93PM TEJUOZTIOH 96°0 96s°0| 85°¢ | I¥Z°O 1 4
3sax) 3e 3juauocdwo) A3TooTrLaA

ST 910T3aed asjeM TeEJIUOZTIOH 0s°0 965°0| 90°¢€ | 2€ET"0 €
3s91) 3e juauodwo) X3TOOT3A

vl 91O5T31ed I93BM TBJUOZTIOH ¥Ss°0 619°0 gcz 090 <
3s921) 3e juaduodwo) X3ITOOTSA

€T 9T0T3IRg I33BM TBJUOZTIOH 96°0 L8S°0 | 9T°T | sST°0 T

*ON paanseaW a[qeTaeA jybrosH butryeaxg o3 (33) |(o9s) (33) *ON

2anbtg uTt 3Yyb6T9H 2aBM JO OT3EY y A H ase)
paxedwo)

§0T3STI@30RIRYD SARM

poaInsesan SaTqeTIeA PuUeR SOTISTISoRIRY) !SoaeM Tejuswuraadxym

g JTdVYL

o
|

26

=

e S ’
L



1 98D ‘35910 9y} Jopun A3ofas apured 19jem [ejuozuoy ‘g amSiy

(,298-43) n
14 ot 9'¢ cE 8¢ ve 02 9l 2 80 b0
T T T T T M JT _ T Jgﬂ T
| |
L _
._co_o_.u i A
il 2850 = 4 _
148620= H
d0891°| = 1 _
B |
|
\+\alooos
e S _
IVOIOND PeZ—0>
Ve
o _ viva

() _Oluai on01

ANIY

Foam - 74
et WAy P 1 o ‘\ Al

20

0

90

80

el

L A

u/s

27




Z 28e) ‘18910 2y} Jopun KjojeA apned 101em [Rluozuoy {1 amig

A_lo.a |@: n
vt ot 9¢ 2¢ 8¢ ve (o)r/ 9| o L 80 0
| I | i i _q — —— k3 A i
|
i _ 0S3NSSN08
)
IVOIOND i8I _ _
L _ g
61902 4 _ \
b 40920 H
2082224
- vV
9 VQIOND P2
S3NOLS PuZ ® e—— JAVA ONOT
N viva
1 1 1 1 1 1 1 1

20

$0

90

80

ol

A

vl

/s

28




€ 9se") ‘35910 9y} Japun £}o[aA apPNIed Jajem [BJUOZUOH ‘GT amdly

(,008-4) N
L A4 (0} 4 9¢ 2¢ 82 ve 072 9l 2! 80 0
T | T ale T ﬁ LR . | s T
e eSS
i _ ©S3INISSNOR /
_ _ _ e \
+4965°0= \ TVAIOND i1 _
i H2EZ2 0=H °
Jes90'¢c =1 \ _ _
| _ A
i |
/ b
- / i
TIVQIOND Pu2
= $3INOLS PuZ \h\ _ viva ANV
¥ _
\ NVMOIN
\ __ Fe—3AVM 9NOT
] ! 1 A | ] 1 ]

20

0

90

80

o'l

2l

vl

B .

i

AT




¥ 958 18910 9y} Jopun AJ00aA dpnJed 191eM [BJUOZUIOY Q[ 21y

(,088-43) n
vy ov 9¢ 2¢ 82 ve 02 91 21 80 v 0
I I | I Ll —— 1 1
_
_ _ _ IVAIOND d© %
2 N “ ©S3INISSNO8
\ SINOLS PUZ _ _
7 \ IVQIOND 481 _
\ W9SS0= 4
WI¥2Z0=H
I \ 288G g= 1
1VQIOND PuZ
\ o AUV
vaos
B
3AVM ONOT
\ 1 1 | 1 1 1

20

0

90

ol

2|

vl

Ys

30




w ’

G 38e)) ‘15210 Y3 19pun L3100aA IpnIed 19jeM [RJUCZUOY 2| amSL]

(,008-43) n
v (0} 9t 43 8¢ v 02 91 2l 80 v0 0
T T T T T T T 0
= $0 _ $noe 4 1 ¢°
41880
R “ _ — ~1vOIOND g @)
ses1 =) _
e 5 -1 ¥O0
I8 IAVAIOND im -1 90
(]
>
= - s0
°
- _ - o
_ viva
_ A
= - 21
_ e [~—3AvA swon
| 1 1 | 1 | S >l

31




g ase) ‘15210 Y 19pun KoaA Apned 19jem [BjuozUOy g amdig

(,008-43) n

vy oY 9¢ 2t 82 b2 (or4 9l 2’| 80 0
I | i | I d 1 _ 1 _ 1 | T
| | osamssnos
2 | |
1WeI 0N _ \ :
1 €28°0= H
ity _ 3INOLS PIE

\ NVMOION

/) | [

s3xaLs !.NIV
]

IVAIOND PuZ

/
/
/
/

| . | )

TIVQIOND i8]
IvaIOND
dex

YAV

1
1 1 \__o_

|

_w
~“

Fe—— JAVA ONOT

—— AMIV

20

$0

A

L 4

32




L 24

L 38%) ‘15310 3y 1pun A30ojaa apnred 10jeM euozuoly ‘61 2andiy

(,008-4) n
9¢ (33 82 v2 oz 9l 21 80 »0

AL | | I AL ﬁ I _ 1 | |
L \_\ " ouuz.ow:o.
\ 2
w \llﬂzc._.n puz IVaIOND 81 _
/ _ _
- / _
o v
/
| \ IVGQIOND P2 _ y
NVMOI 3N _ S
_
L / LE
\ IVAIOND d 8 X ﬁ«o\* Cai
1 | 1 1 \ — R | 1

20

¥o

90

80

01

2l

vl

Vs

T R .

eI

33

B




g 98D ‘18310 Y} Jopun KJoeA apnIed 133em EIUOZUOY *0F 2By

(,.008-44) N

v O 9€ FAY 82 v2 oz 91 z 80 »0
T T i | T _ T | ~ T _ T g
_ _ :
- e _ _
-— S$DOLS P¥Z _ OS3INISSNOS
] | |
TIVOIOND i8] _ 1
avoto -n | .
[~ eeses's =L _ _
_ TE
B _ .
NVROJOON
E _ .
1
WS e IVAIOND 48 X _
ﬁ- — "'y ANIY
viva i IAVA SNOT

1 | 1 V._ 1 1 1

¥0

"/s

80

o'l

2|

¥l

_ y 4
e |




14 T T T T T b T
1.2 =
10 | =
AIRY
08 K@&P CNOIDAL !
P Mc COWAN
»
06
T=3.598 sec. 1
Hs 0.241 1t
h=z0.8861¢
04 -
02 -
o | | ! | 1 !
) 04 0.8 1.2 1.6 2.0 2.4 2.8 32
w (ft-sec")

Figure 21. Vertical water particle velocity, Case 9
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TABLE C

Standard Deviation of Differences Between Horizontal

Velocities: Measured vs.

Predicted

Standard Deviation, o (ft/sec)
Theory

Case No. ] Airy Long Wave Goda K & P Cnoidal
1 0.229 0.232 0.328 0.413 0.396
2 0.139 0.234 0.297 0.146 0.211
3 0.096 0.470 0.468 0.206 0.155
4 0.126 0.442 0.453 0.134 0.136
5 0.245 0.225 0.291 0.357 0.487
6 0.216 0.181 0.244 0.095 0.469
7 0.123 0.493 0.513 0.316 0.188
8 0.183 0.418 0.434 0.215 0.272

Average 0.170 0.337 0.379 0.235 0.289

-
1 J
o ;\[3 _Z (UM - uT)2
j=1

measured velocity component

Uy = theoretical velocity component

J =

37
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forces on a horizontal cylinder would be too small by 30 percent: however, this statement is
based on a comparison with only one set of data. Good qualitative agreement was found
between measured and predicted wave profiles. -

Finally, based on the results of both the analytical and experimental validity studies, it is
concluded that the Stream-function theory is best suited for engineering design purposes. It
was decided to tabulate variables that would be of use in engineering design as calculated
from the Stream-function theory. The next section describes the variables included in the
tables.

IV. DESCRIPTION OF TABLES
Introduction

An attempt has been made to include in the tables those variables of greatest present
engineering interest and application. In addition, other variables were included which would
be relevant to checking the relative analytical validity of other theories or variables which
were of scientific interest and could conceivably be required for engineering in the future.
Variables have been included which describe the detailed kinematics of the waves and also
which represent, e.g., the integrated effect of the flow on a structural member.

It is not possible to assemble in concise tabular form all variables that could be of
engineering use. It is feasible to tabulate the dimensionless drag force for all vertical piling
extending from the bottom up to a certain level. It would not be feasible, however, to
concisely tabulate the total drag force on members with all possible inclinations relative tc a
vertical.

Forty sets of dimensionless wave conditions were selected for tabulation. Each case is
characterized by values of h/L, and H/L,. The parameter h/L,, ranged from 0.002 to 2.0
and covered the relative depth range from shallow to deep water. The
parameter H/L, included wave steepnesses ratios: 0.25, 0.5, 0.75, and 1.0 of the breaking
wave steepness for each of the 10 h/L, values tabulated. Figure 23 shows the
dimensionless wave conditions selected for tabulation and also indicates the referencing
notation for the cases.

All tabulated variables are presented in dimensionless form. The description of these
variables is presented in the following paragraphs and in Tables D, E, and F, where generally
the following are included: the equation for the variable, the dimensionless form of the
variable, an equation number for reference purposes, and the table number in the wave
tables. To reduce confusion, it should be noted that the tables presented in this report are
denoted by letters; the wave tables are identified by Roman numerals.

Variables Presented in Tabular Form

Three classes of variables are tabulated: (1) Internal field variables, depending on 6 and S,
(2) Variables depending on 6 only, and (3) Overall variables which have a single value for
the entire wave, for example the wavelength.

38




CASE

| 2 3 4 5 6 7 8 9 10

2
-
10’ T
; 3

BREAKING INDEX
CURVE
2

g %
° //’//f -
/ No(:;si;t BREAKING WAVE HEIGHT

2
s @) Lot :};T

[ \ (3) THE CASE DESIGNATION IS
X DETERMINED BY THE INTERSECTION

OF THE VERTICAL LINES AND THE —{

LINES PARALLELING THE BREAKING
INDEX CURVE ;
FOR EXAMPLE: CASE 3-8

T el

2 5 6t 2 5 16! 2 5 ",
RELATIVE DEPTH, h/L,

WAVE STEEPNESS, H/L,

3

Figure 23. Wave characteristics selected for tabulation
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Internal Field Variables Depending on 6 and S

The internal field variables are tabulated at equally spaced dimensionless distances above
the bottom, i.e., at S/h values of 0,0.1,0.2 . .. up to and including the free surface, and
at 0 values of 0°, 10°, 20°, 30°, 50°, 75°, 100°, 130°, 180°. Figure 24 shows a sample
presentation of the dimensionless horizontal velocity component field.

A description of the entries in Figure 24 will serve to familiarize the reader with most of
the features of the tables. The first row lists the phase angles (theta) in degrees. The second
row lists the dimensionless wave profile (n/H) at the corresponding phase angles. The
percent values listed beneath the n/H values are the differences between the

Stream-function and Airy Theories, defined as:

Stream-function—Airy

Percent = X 100 percent

Stream-function

The main body (remaining portion) of the table lists the dimensionless horizontal water
particle velocities. The row labeled *“Surface™ represents the dimensionless velocities
evaluated at the free surface; the percentage differences for velocities are calculated as
defined above for the profile. The remaining part of the table represents the dimensionless
velocities and percentage differences evaluated on a grid of (0, S/h). The lack of entries for
the higher S/h and higher theta values (right side of page) results from the wave profile in
the trough region being lower than in the crest region (left side of page). Two additional
comments pertaining to the percentage values will complete the description of the sample
table. A percentage difference value of exactly 100 percent implies that the
Stream-function profile occured at a (6, S/h) value, however, the Airy profile was lower
than the particular S/h at the phase angle, 0, i.e., this grid point was not “covered”
by the Airy profile. For example, this is the case at 6 = 0°, S/h = 1.5 and 1.6 and 6 = 180°,
S/h=0.8 and 0.9. Finally, the asterisks indicate that the percentage differences were not
calculated because the Stream-function value was less than 5 percent of the maximum
Stream-function value. This avoided the tabulation of very large percentages which would
have been the result of division by a small number.
A brief description of each of the tabulated internal field variables is presented below.

Horizontal Water Particle Velocity Component, u(0, S)

The horizontal water particle velocity component, u(@, S), is defined by Equation (21).
(The equations for the tabulated functions are presented in Tables D, E, and F.) The values
u’(8, S) tabulated, are presented (Table I) in the following dimensionless form:

u'(e, §) = LSl
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Vertical Water Particle Velocity Component, w(8, S)
The vertical water particle velocity component, w(8,S), is defined by Equation (22).
The dimensionless values tabulated (Table IT), w'(d, S), are defined by:

w(o, S)
1H7Ts

w'(e, 8) =
Horizontal Water Particle Acceleration, Du/Dt
The horizontal water particle acceleration, Du/Dt’ is defined in terms of the velocity
components as presented in Equation (23). Note that the tabulated values represent the
total (or material, substantial, etc.) acceleration consisting of the sum of the local and
advective contributions. The dimensionless values tabulated (Table IIl), Du'/Dt’, are
defined by:

Du'’ _ 1 Du
Dt~ ~ (u/T?) Dt

Vertical Water Particle Acceleration, Dw/Dt
The vertical water particle acceleration, defined in Equation (24), is tabulated
(Table 1V) in the following dimensionless form:

Dw' _ 1

Dw
Dt  (u/T?) Dt

Drag Force Component, Fp,(6, S)
The drag force component up to a certain elevation, S, is defined by Equation (25)
and tabulated (Table V) in dimensionless form as:

Pras .
F5 {chD(n/T)7h] o

Inertia Force Component, F (6, S)

The inertia force component up to a certain elevation, S, is defined by Equation (26)
and tabulated (Table VI) in dimensionless form as:

/5 s 3
1 [CMpﬂDz(H/Tz)h I
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Drag Moment Component, My (0, S)

The drag moment component about the bottom due to wave pressures acting on a
vertical member extending up to an elevation, S, is presented as Equation (27) and
presented (Table VII) in dimensionless form as:

' 2
"p [CDDD(H/T)IhZ] ¥

Inertia Moment Component, M(0, S)

The inertia moment component about the bottom due to wave pressures acting on a
vertical member extending up to an elevation S, is defined in Equation, (28) and presented
(Table VIIl) in dimensionless form as:

=
|

4 M
CyPTD? (H/T7)n’ I
Dynamic Pressure Component, pD(B. S)
The dynamic pressure component, defined by Equation, (29) is tabulated (Table IX) in
dimensionless form as:

N
e’ = (4] 7

This completes the description of the field variables (depending on 6 and S) that are
included in the tables.
Variables Depending on 6 Only
Water Surface Displacement, n(6)
The water surface displacement is defined in Equation (30), and tabulated
(Tables I through IX) in dimensionless form as:

Total Drag Force Component, F,(8)
The total drag force component is defined by Equation (25) with the upper limit taken
to be h 4+ n(0), and is tabulated (Table V, labeled “SURFACE”) in dimensionless form as:

Fp' =

2 F
CpeD (H/T)?h| D




Total Inertia Force Component, F 1(6)

The total inertia force component is defined by Equation (26) with the upper limit
taken to be h + n(0), and is tabulated (Table VI, labeled “SURFACE") in dimensionless
form as:

4
. Ry [CMwaZ(H/Tz)h] Fr

Total Drag Moment Component, M,(8)

The total drag moment component is defined by Equation (27) with the upper limit
taken to be h + n(0) and is tabulated (Table VII, labeled “SURFACE”) in dimensionless
form as:

i 2 M,
Mp' = CoD (H/T) h? »

Total Inertia Moment Component, M(6)
The total inertia moment component is defined by Equation (28) with an upper limit
of h + n(8) and is tabulated (Table VIII, labeled “SURFACE”) in dimensionless for as:

M1’ = 24 V7| M1
I CmpmD* (H/T?)h

Kinematic Free Surface Boundary Condition Error, €,(0)
The kinematic free surface boundary condition error is defined by Equation (35). This
variable, as defined, is in dimensionless form and is tabulated in Table X:

Item 1, Linear Wave Theory
Item 2, Stream-Function Theory

Dynamic Free Surface Boundary Condition Error, €,(0)
The dynamic free surface boundary condition error is defined by Equation (36) and is
tabulated (Table X) in the following dimensionless form:

with
Item 3, Linear Wave Theory
Item 4, Stream-Function Theory

This completes the presentation of variables depending on 6 only.
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Overall Variables (do not depend on 8 or §)
Wavelength, L
For the Stream-function theory, there is no definable expression for the wavelength.
Rather the wavelength is determined as a part of the numerical solution as described in
Appendix I. The dimensionless wavelength is presented (Table XI, Item 1) in the following
dimensionless form:

- 3

Average Potential Energy, PE
The average potential energy is defined by Equation (38) and is tabulated (Table XI,
Item 2) in dimensionless form as:
PE' = . 5 PE
yH?
Note that the dimensionless form is defined to be 0.5 for the linear (Airy) wave theory.
Average Kinetic Energy, KE
The average kinetic energy is defined by Equation (39), and is also tabulated (Table XI,
Item 3) in dimensionless form as:
KE' = || kE
YH?
As for the dimensionless potential energy, the dimensionless value for the linear (Airy)
wave theory is 0.5.
Average Total Energy, TE
The average total energy is simply the sum of the potential and kinetic energy
contributions [Equation (40)], and is tabulated in dimensionless form (Table XI, Item 4)
such that the difference from unity ie an indication of the deviation from the linear wave
theory.

8
'
TE' = [;}—lr] TE

Average Total Energy Flux, Fpg
The average total energy flux is defined by Equation (41), and is tabulated (Table XI,
Item 5) in dimensionless form as:

Fro o= |—erem| F
TE - |YHZ L/T| 'TE
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Group Velocity, Ce
The group velocity is defined as the ratio of total energy flux to total energy
[Equation (42)] and is presented (Table XI, Item 6) in dimensionless form as:

Ce = [x’.?lf] e

The dimensionless group velocity is defined such that for linear wave theory the shallow and
deepwater values are 1.0 and 0.5, respectively.

Average Momentum, M

The total average momentum is defined by Equation (43) and is presented (Table XI,

Item 7) in dimensionless form as:

Mr o= [H{I] M

YH

The dimensionless momentum is defined such that for linear wave theory the result is unity.
Note that mass transport velocity, U = [M/ph] is proportional to the average momentum.
Average Momentum Flux in Wave Direction, F, m.y
The total average momentum flux in the wave direction is defined by Equation (44)
and is tabulated (Table XI, Item 8) in the following dimensionless form:

8
F!@ = =
mx YH J mx

The above definition reduces to 1.5 and 0.5 for linear wave theory for shallow and
deepwater waves, respectively.

Average Momentum Flux Transverse to Wave Direction, F,,

The total average momentum flux in a direction perpendicular to the wave advance
direction is needed to define the radiation stress tensor, (discussed by Bowen 1969), is
defined by Equation (45), and is tabulated (Table XI, Item 9) in the following dimensionless

form:
[ 8
F' = —T] F
my lyH my

For linear wave theory, the above definition reduces to 0.5 and 0.0 for shallow and
deepwater waves, respectively.
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Kinematic Free Surface Boundary Condition Errors, €,

The Kinematic free surface boundary condition error is defined in dimensionless form
by Equation (35) and the root-mean-square (RMS) and maximum values are tabulated
(Table XI. Items 10 and 12) as defined by Equation (46).

Dynamic Free Surface Boundary Condition Errors, €,
The dynamic free surface boundary condition error is defined by Equation (36) and is

represented in the following dimensionless form:
€2
E = e—
s H

The RMS and maximum values are tabulated (Table XI, Items 11 and 13) as defined by
Equation (47).

Kinematic Free Surface Breaking Parameter, B,

The kinematic free surface breaking parameter is tabulated (Table XI, Item 14) as
defined by Equation (48) (dimensionless form).

Dynamic Free Surface Breaking Parameter, B,

The dynamic free surface breaking parameter is tabulated (Table XI, Item 15) as
defined by Equation (49) in dimensionless form.

Variables Presented in Graphical Form—Combined Effect of Shoaling and Refraction

In addition to developing the tabulated values previously described, the study included
the development of the combined effect of shoaling and refraction for nonlinear waves
advancing toward shore with a deepwater direction, a,, over bathymetry characterized by
straight and parallel contours,

For linear wave theory, it is possible to separate the shoaling and refraction effects,
because neither wave celerity, C (governing refracti()ri‘)., nor group velc);ity, C¢ (governing
energy flux), is dependent on wave height. For nonlinear waves, both celerity and group
velocity at a certain location depend on wave height as well as wave period and water depth.
The shoaling-refraction effects for nonlinear waves are therefore not separable, and the
combined effect depends on the deepwater wave steepness, H /L, as well as the local
relative depth.

Because the shoaling-refraction results are not readily presented in tabular form, graphs
are presented as Figures 25, through 29 for deepwater wave directions, a,, of 0°,10°, 20°
40°, and 60°. A brief description of the use of these graphs follows. A wave with a
deepwater direction a,, will propagate toward shore such that the local H/L, will fall
along a curve characterized by the deepwater value H /L . At any particular relative

depth, h/L,, the local wave steepness H/L, and direction @ are read from the ordinate

0
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and interpolated from the appropriate isolines, respectively. The region to the lower right of
the line of dots indicates the region where use of the linear theory agrees with the nonlinear
results presented within 1 percent in H/L, and 1° in wave direction, q.
V. EXAMPLES ILLUSTRATING USE OF WAVE TABLES

Introduction

The preceding chapter has described the formats and the various dimensionless
parameters included in the wave tables. To aid in the application of the tables, examples will
be presented illustrating their use. The first example is a problem of a near-breaking wave

interacting with an offshore structure supported by cylindrical piling. This example will use
those tables which contain the wave profile and the wave forces and moments. Additional
examples will then be presented which will illustrate the use of most of the remaining wave
tables. Where possible, examples were selected to parallel problems which may occur in
offshore design.

It is worthy of note that the tables have a much wider applicability than can be illustrated
by the limited number of examples presented here. A thorough familiarity with the
information summarized in the tables should aid in an understanding of them and their use
in many problems involving water-wave phenomena. The examples will be presented in U.S.
Customary units; however the tables are in dimensionless form, and any system could be
used readily.

Example 1—Deck Elevation and Wave Forces and Moments on an Offshore Platform
Consider the design problem of determining the deck elevation and horizontal wave
forces and moments upon individual members of the offshore platform illustrated in
Figure 30. Suppose that the design depth (mean low water + maximum tide + storm
surge), h, is 41 feet, and the main structural members of the platform and outriggers are
pilings 6 feet in diameter, wit" viling fenders 3 feet in diameter. The fenders extend from
4.1 feet above the design stillwater level to a depth of 8.2 feet. The outriggers are 20.5 feet
high. Suppose that analysis indicates that the design wave will have a (breaking)
height, H, of 31.78 feet and a period, T, of 20 seconds. The drag and inertia
coefficients, Cp, and Cpy, for this structure are assumed to be 1.05 and 1.5, respectively.
To determine which set of tables to use, calculate h/L, and H/L, where L, = gT?/(2m),

ho . a1 .
TR ] B
- ST Ber = 0.0155

In this and most subsequent examples in this chapter, the tables for Case 4-D will be used
(see Figure 23). A sample table set for Case 4-D is included as Appendix III.

58




unojyeyd Suryoeosdde aaem ‘yojays uonmuaq ‘g amdiyg

q 0| soz n
24 el L sjuauodwor
al_.oo —Ol k3120197 QOiv=4 12497 i
* f ‘O:Ouh
S M
28 & n 2 o |
“ @
= ;B i m
T_O.n ..
o\. 1€=H
el .Owrl
001\
L} 0




Deck Elevation
To ensure that the deck is above the design crest elevation; thereby avoiding unnecessarily
large horizontal and vertical forces and damage to the platform base, the height of the lower

elevation of the deck will be:
n - + ’
h B nma.x h

where i is the design water depth. 5, is the maximum displacement of the wave above
design stillwater level, and h’ is the deck freeboard (say 10 feet for this problem). n,
will occur at zero phase angle (6 =0°) and from any of the first nine tables, eta/height =
0.89 for 6 = 0°. Therefore, 7, . = 0.89 (H) =28.3 feet and h' =h+n+h'=41+28.3+
10 = 79.3 feet. The platform will be constructed so the lower deck elevation will be 79.3
feet above the bottom.

In determining the forces and moments, it is assumed that the piling are sufficiently far
apart to be considered isolated. First, the forces acting upon several structural members will
be determined. The total force, Fp(0, S),will be a summation of the drag force, Fp(0,3),
and inertia force, Fy(6, S), components at any particular phase angle. Each component
will be presented graphically; the components will then be added to establish the total force,
and the maximum force acting upon each member will be obtained from the graph.

Forces on Member “a”

In the case of the outrigger, Member a, the drag force is given by:

CDoD Sa
FD(B,Sa) = —

3 ululds’

0

where D is the piling diameter, S (= 20.5) is the height of the outrigger above bottom,
and p = mass density of sea water, 1.99 sluggs/foota. To determine FD(O, S,)- select the
tabulated dimensionless drag value for the force, Fjy(#,S,), at depth S /h = 0.5 from
Table V and multiply the dimensionless force by:

CDpD (H/T) *h
2

2
CpPP(H/T) "R 1 05(1.99) (6) (31.78/20) 241 _ [648-9 lbs ]
. 2 0.6489 kips
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The inertia force on Member a is given by:

ds'.

2 (S
¥ ra CMpﬂD a Du
i gl Y ' Dt

0
To determine Fi0, S,). select the tabulated value of the dimensionless inertia force,

F1(0.S). for a relative depth S,/h = 0.5 from Table VI and multiply the dimensionless
force by:

2 2
CyP™D" (H/T")h (594 9 1bs
) 0.2749 kips

The total force will be determined by summation of Fy(6,S,) and F[,(0, S,) at each phase
angle, 0. The force calculations are summarized in Table G and the forces are plotted in

Figure 31.
TABLE G
Horizontal Wave Forces on Member "a"
6(°) (0} 10 20 30 50 75 100 130 180
FD' 36.31 29.00 14.60 4.30 - 0.04 -1.14 -1.54 -1.62 =-1.60

FD(kips) 23.56 18.81 9.47 2.79 - 0.03 -0.74 -1.00 -1.05 =-1.04

FI' 0.0 22.59 36.36 36.63 17.25 3.76 0.67 0.12 0.0

FI(kips) 0.0 6.21 10.00 10.07 4.74 1.03 0.18 0.03 0.01J

FT(kips) 23.56 25.02 19.47 12.86 4.71 0.29 -0.82 -1.02 -1.04

Forces on Member *‘b”’

Next, consider the horizontal forces acting on the main support piling. In this case, the $
forces are integrated from O toh + n(0). To determine Fp(0), multiply the tabulated
61 ;
]




«®,, 19qUIOUI UO S3210J IABM [BJUOZUIOY ‘g 231y

T T T T T T T 1 S-
(s22463p) 6*3ITONV 3ISVHd
osl e - op OB - OO . o8 09 ov o2
O T ——. —_——
T N T B S e i e e o 1°
\
/
/]
/
/
/
N 8%
HOL13XS NOILINIZ3Q
= -1 0l
< 32804 vV1iOL
4 Ov =\
[ ‘908 0°02 =1 \ 02
4 8LIE = H LN3INOdNOD 30803 9V¥ %
L 1 | 1 ] | ] i \

62




value for the dimensionless total drag force, Fy) {0) (indicated “Surface” in Table V) by
the same constant as for Member a, i.e.,

CpPD (H/T) *h
2

= 0.6849 kips

Similarly, Fy(0) is found by multiplying the tabulated value, F1(8), indicated “Surface” in
Table VI by:

CMpﬂD2 (H/T?)h

T = 0.2749 kips

The calculated forces are summarized in Table H and are plotted in Figure 32.

TABLE H

Horizontal Wave Forces on Member "b"

6(®) 0 10 20 30 50 75 100 130 180

FD' 242.39 119.80 37.00 7.72 - 0.25 =~2.19 -2.84 =-2.95 =-2.92

FD(kipl) 157.3 77.7 24.0 5.0 =-0.2 =-1.4 -1.8 ~-1.9 -1.9

FI' 0.0 112.13 113.47 84.55 30.12 6.08 1.03 0.27 0.0
Pl(kips) 0.0 30.8 31.2 23.2 8.3 1.7 0.3 0.1 0.0
o
FT(kips) 157.3 108.5 55.2 28.2 8.1 0.3 =1.5 =1.8 =1.9 '

Forces on Member “¢”
Finally, consider structural Member c, the fender. The computation for this member is a ;
combination of the two previous methods since it is sometimes over-topped by the wave.
The forces are integrated from S'-‘n =328 it to Sc2 = 45.1 ft; therefore, the force acting on
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an imaginary piling up to the bottom of the fender is subtracted from a similar term for the
top of the fender. The dimensionless forces are obtained by subtracting the dimensionless
force components pertaining to the bottom of the member from those pertaining to the top.
If the top of the member is submerged, the value at S;_ = 1.1 should be used; for times that
the top is not submerged, the value indicated *“‘Surface” should be employed for S'%. Note
that the selection of the proper value for the member upper elevation follows readily from
the tables: the values at S:.z = 1.1 are used at phase angles where they are tabulated
(0<0<20° and the values labeled “Surface™ are used for the remaining phase angles
(30° <0 <180°%).

Summarizing, for each phase angle, the net dimensionless force components on Member ¢
are obtained by:

F' =Fl o FI
e g 3
F' =F' - F'
In Iy L

where the subscripts, N, U and L irdicate net, upper and lower. The dimensionalizing
constant for drag force for the member is calculated (recalling that D = 3')

2
CpeD (H/T)*h

> = 0.3245 kips

and for the inertia force component

CyPTD* (H/T2)h
4

= 0.0687 kips

The required calculations are summarized in Table I and the results are shown in Figure 33.

The maximum horizontal wave-induced forces are now available for the design wave, and
may be used in further design analysis. They are summarized in Table J.

Moments on Member “a”

The moments due to the wave forces acting on the structure are also essential in design.
For any member, the moment about the mudline is defined as:

S» Sa
s ary(0,8) + [ s ar(0,8)

S2
MT(B) = I S dFT(G,S) = I .
1

S, S,
= M.D(e) + MI(e)
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TABLE I

Horizontal Wave Forces on Member "c"

9¢%) 0 10 20 30 50 75 100 130 150
FD 5 99.73 75.87 33.17 7.72 - 0.25 =2,19 -2.84 =-2.95 -2.92

U
FD £ 63.34 49.68 23.72 6.40 - 0.14 -1.87 =-2.48 =2.,59 =-2.56

T
P, '=

Dy
F_ '-F 36.39 26.19 9.45 1.32 - 0.11 -0.32 =-0.36 =-0.36 =0.36
D D

U L
FD(kips) 11.81 8.50 3.07 0.43 - 0.04 -0.10 =0.12 =-0.12 =-0.12
FI ' 0.0 65.78 96.88 84.55 30.12 6.08 1.03 0.27 0.0

4]
FI 2 0.0 40.55 62.97 60.49 26.23 5:53 0.96 0.22 0.0

L
P =

Iy
F. '-F 0.0 25.23 33.91 24.06 3.89 0.55 0.07 0.05 0.0
I 2

4] L
FI(kips) 0.0 1.73 2.33 1.65 0.27 0.04 0.0 0.0 0.0
FT(kips) 11.81 10.23 5.40 2.08 0.23 -0.06 =0.11 =0.11 =0.12
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where

S»

_ PCpD

M, (0) = j S ufu|as
N s,

and

2 S2
M, (8,5) = SMPTD [ g P8 ag

TABLE J

Summary of Maximum Wave Forces on
Several Platform Components

Phase Angle of
Maximum Force, FT (kips)
Member ] - (°) max
a 7° 25.1
b 1° 160
c 1° 12.3

Note: Phase angles and maximum forces obtained by interpolation
from Figures 31, 32 and 33.

Consider the total moment about the mudline on the outrigger (Member a). In this case
S, =0, and S, = S, = 0.5h. To determine the drag moment, M(0), multiply the
dimensionless tabulated value for the drag moment, Mj,(6), listed at depth S,/h = 0.5 in
Table VII, by:

CpPD (H/T) *n? 26,606 for Mp in ft-1bs
2 = (26.606 for Mp in ft-kips

Similarly, multiply Mj(6) listed at depth S,/h = 0.5 in Table VIII by:

CyPmD? (H/T*)h* 11,272 for My in ft-1bs
1 = (11.272 for M; in ft-kips
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to obtain M{(6). These moments are added to obtain My(8), as shown in Table K and
Figure 34.

TABLE K

Wave Moments (About Mudline) on Member "a"

6(°) 0 10 20 30 50 75 100 130 180
Mé 9.31 7.40 3.67 1.05 - 0.01 - 0.29 - 0.39 - 0.40 - 0.40
MD(ft-
kips) 247.7 196.9 97.6 27.9 - 0.3 - 7.7 -10.4 -10.6 =-10.6
M; 0.0 5.85 9.32 9.26 4.25 0.92 0.16 0.03 0.0
MI(ft-
kips) 0.0 65.9 105.1 104.4 47.9 10.4 1.8 0.3 0.0
MT(ft-
kips) 247.7 262.8 202.7 132.3 47.6 + 2.7 - 8.6 =10.3 =10.6

Moments on Member “b”

Next consider the moment on the main structural piling (Member b). The limits of
integration are from 0 to h + n(8). Therefore, take the tabulated values labeled “Surface”
from Table VII, [M,(6)], and Table VIII, [M}(6)], and multiply by:

CDpD(H/T)2h2
2

26.606 for Mp in ft-kips
and
CyPmD? (H/T?)h?
4

11.272 for M, in ft-kips

in order to obtain Mj(6) and My(0). The two moments are added to obtain M (0) as

indicated in Table L and plotted in Figure 35.

Moments on Member *“c”

The fender has the same limits of integration for moment calculation as for the force
calculation and is determined in a similar manner. However, the tablulated moments,
M'D(O, S), and M;(O, S), are taken from Tables VII and VIII. The total moment acting on
the fender is found by: Mp(0) = Mp(0) + M;(0). The calculations are summarized in
Table M and are plotted in Figure 36.
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TABLE L

Wave Moments (About Mudline) on Member "b"

6(°) 0 10 20 30 S0 75 100 130 IBOJ
M!') 268.1 102.6 23.0 36 = 0.2 =-1.0 =-1.3 =1.3 =1.3
HD(ft-
kips) 7133 2730 612 926 =15 =27 =35 -35 =35
Hi 0.0 101.7 78.5 47.5 13.5 2.5 0.4 0.1 0.0
HI(ft-
kips) 0.0 1146 885 535 152 28 5 1 0.0
M,r(fc-
kips) 7133 3876 1497 631 147 1 =30 -34 =35
TABLE M
Wave Moments (About Mudline) on Member "c"
6(°) 0 10 20 30 50 75 100 130 180
Hé 61.94 46.01 18.59 3.63 - 0.18 -1.04 =-1.31 =-1.35 =-1.33
U
"6 27.04 20.94 9.61 2.40 - 0.08 =-0.77 =1.00 =-1.04 -1.02
L
nI')N -
M! -M' 34.90 25.07 8.98 1.23 - 0.10 =0.27 =-0.31 =0.31 =0.31
DU DL
"5
(ft-kips) | 464 334 119 16 -1 -4 -4 -4 -4
M; 0.0 41.87 59.20 47.47 13.45 2.52 0.40 0.14 0.0
U
H; 0.0 17.66 26.76 24.82 10.04 2.05 0.34 0.10 0.0
L
niu =
M! -M! 0.0 24.21 32.44 22.65 3.41 0.47 0.06 0.04 0.0
IU IL
"I
(ft-kips) 0.0 68 91 64 10 1 0 0 0.0
My
(ft~kips) | 464 402 210 80 9 -3 -4 -4 -4
7
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The maximum calculated forces and moments on the three platform members due to the
design wave are summarized in Table N.

TABLE N

Summary of Maximum Wave Forces and Moments

Fp (6,8) My (6,8)
Member 6 (kips) 8 (ft-kips)
a 7° 25.1 50 267
b 1° 160 1° 7140
(o 1° 12.3 o 475

Example 2—Wave Characteristics, Kinematics and Pressure Fields

This example describes the use of the tables for calculating various parameters associated
with a periodic wave. These parameters include the wavelength and the kinematic and
pressure fields.

Wavelength

The wavelength is presented in dimensionless form in Table XI of the sample output and
is determined as follows:

2

L = g%— L'

For example, for the same wave considered in Example 1, L”=0.422 and T = 20 seconds.
The wavelength is therefore:

L =5,12 (20)%(0.422) = 864.3 ft

Wave Profile
The dimensionless wave profile, n'(8), is tabulated in each of Tables I through IX and is
defined as:

n'(e) = €1
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n(é) = n’(6) - H

The wave profile calculation for Case 4-D is summarized in Table O and is plotted in
Figure 37. Note that 7 is an even function of 6.

Water Purticle Kinematics

The water particle kinematics will be calculated for Case 4-D as presented in the sample
output. These kinematics will be calculated for mid-depth (i.e., 20.5 feet above the bottom).
The dimensionless forms of these variables are presented in Tables I through IV of the
sample output. The dimensionless water particle velocities are defined as:

’ :u (e s)
u’(e,s)= H/F

w' (6 ,S)E"T?.L._(GTS)

and the dimensionless water particle total accelerations are defined as:

8- S

and
v BN
(%)« B

Note that these are functions of 0 and S, however, for convenience, the dependence has
not been indicated in the above expressions. The calculations of the water particle velocities
and accelerations over the range 0° <0 < 180°, are also summarized in Table O and plotted
in Figure 37.

It will be noted that in the tables of wave functions, the variables are only presented for
phase angles ranging between 0° and 180°. All of the variables are either symmetrical or
antisymmetrical about a phase angle of 0°. The variables that are symmetrical include: the
water surface profile, the horizontal component of water particle velocity and the vertical
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n(e), (1)

30 H= 31781
T =20.0 sec.

1071 h= 410 ft

L ek 1 L__l, i R it l\l 1 1
u(e),(ft./sec.)
S=2085f1.
L i 1 1 | 1 1 1 ]
e

w(e), (ft./sec.)
a S 205 f1.

J.

OW(®) (f1/.sec)
s Dt
S =205 ft.

[ STSSEAT, 1P M =L 1 e |

Py (0), (1bs./11)

$=20.8 ft.
L 1 L 1 1 " POy X = |
!
1 1 1 Lt bk ILJ 1 1 1 T - i 1
- 180 -130 -100 -75 -50 ~30 O

3 % 75 100 130

6 degrees

Figure 37. Example calculations of wave profile, kinematics
and dynamic pressure
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component of water particle acceleration. The antisymmetrical variables include the vertical
component of velocity and the horizontal component of velocity and the horizontal
component of water particle acceleration.

Dynamic Pressure

The dynamic pressure also was calculated at a distance of 20.5 feet above the bottom.
The dimensionless form of this variable is:

and is presented in Table IX of the sample output. The calculations are summarized in
Table O of this report and presented in graphical form in Figure 37. Note that p, is an even
function of 6.

Example 3—Free Surface Boundary Condition Errors

The free surface boundary condition errors and the reason for examining and tabulating
these errors have been described in Section II. To illustrate the use of tables to calculate the
free surface boundary condition errors, both the distributed errors on the free surface and
the root-mean-square and maximum errors as gross measures of these errors will be
presented. The distributed kinematic and dynamic free surface boundary condition errors
are presented in Table X, Items 1 through 4 of the sample output and the root-mean-square
errors and maximum errors are presented in Table XI, Items 10 through 13.

Distributed Boundary Condition Errors

The calculations of the distributed boundary condition errors are presented in Table P
and Figure 38. The kinematic free surface boundary condition errors as defined and
presented in the wave tables (Table X, Items 1 and 2) are in dimensionless form. However,
the dynamic free surface boundary condition errors (Table X, Items 3 and 4 of wave tables)
are dimensional as illustrated in the sample calculations accompanying Table P. The
calculations of the root-mean-square (RMS) and maximum kinematic dynamic free surface
boundary condition errors are presented below.

Overall Kinematic Free Surface Boundary Condition Errors

The RMS kinematic free surface boundary condition errors are presented as Item 10 in
Table XI, i.e.,

Ye12 = 0.0475 (Linear Wave Theory)
€12 = 0.0 (Stream-function Wave Theory)
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The maximum KFSBC error is obtained from Item 12 of Table XI,

[e, Imax = 0.0856 (Linear Wave Theory)

ley |

" 0.0 (Stream-function Wave Theory)

Overall Dynamic Free Surface Boundary Condition Errors
The RMS DFSBC errors are presented in dimensionless form as Item 11 in Table XI, i.e.,

/-e_;_T}H = 0.0241
(Linear Wave Theory)
6T = 0.765 £t |
C_z_f/ H = 0.0048 !
(Stream-function Wave Theory)
Yeil = 0.153 £t )

The maximum DFSBC errors, obtained from Table XI, Item 13 are:

€
l_;,maL = 0.0385
(Linear Wave Theory)
le2| = 1,224 ft
max
LiglmAX— = 0.0289
(Stream-function Wave Theory)
lez] = 0.918 ft
max

In the interpretation of the boundary condition errors in accordance with the discussion in
Section I1, if the boundary condition errors for any given theory were found to be generally
better than for the Stream-function theory, then it could be concluded that at least the
analytical validity of that wave theory would be better, and (as discussed earlier) there is
evidence that the analytical wave theory is a good indicator of the experimental validity (or
of the wave phenomenon in nature).
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Example 4—Calculation of Energy, Momentum, and Energy and Momentum Fhuxes

The tabulations of average potential, kinetic, and total energy and energy fluxes and
average momentum and momentum fluxes are presented in Table XI. The calculation of
these quantities in dimensional form is straightforward and will simply be presented without
discussion.

Average Potential Energy (Table XI, Item 2)

PE
PE' = = &
TYHZ/8)Y 9. $13
PE = 0.213(8080) = 1721 ft-lb/ft?

Average Kinetic Energy (Table XI, Item 3)

KE
’ - = %
KE = yHZ/BY ~ 0.254
KE = 0.254(8080) = 2052 ft-1b/ft?

Total Energy (Table XI, Item 4)

TE

! = =
TE = 0.467(8080) = 3773 ft-1b/ft?
Energy Flux (Table XI, Item 5)
' FTE
FTE = YA L = 0.447
s ¥
FTE = 0.447(349166) = 156077 ft-1bs/(ft-sec)

Group Velocity (Table XI, Item 6)

C
bl &
CG -(rsrr-)— 0.957

€ = 0.957(43.21) = 41.36 ft/sec
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Average Momentum (Table XI, Item 7)

M
Lg_Z
L

M = 0.505(187) = 94.42 lb-sec/ft?

M' = = 0.505

Average Momentum Flux in Wave Direction (Table XI, Item 8)

F'! = = 0.603
mx ixﬂ’i

F = 0.603(8080) = 4872 1lb/ft

The average momentum flux has been recognized in recent years as an important dynamic
quantity and is related to wave setup within the surf zone and also is an important factor in
the longshore transport of littoral material.

Average Momentum Flux Transverse to Wave Direction (Table XI, Item 9)

F
F' = I—% = 0.156
my IH

F = 0.156(8080) = 1260

"y

From the momentum flux components presented, it is possible to obtain any component
of the radiation stress tensor (Bowen, 1969).
Example 5—Free Surface Breaking Parameters

The free surface breaking parameters as defined by Equations (48) and (49) are based on
two stability considerations. The kinematic free surface breaking parameter is defined in
terms of the speed of a water particle on the surface at the crest relative to the wave form
speed. If this parameter should equal unity, then the wave is regarded as unstable due to
kinematic considerations. The dynamic free surface breaking parameter is defined as the
ratio of the vertical acceleration of a water particle on the surface at the wave crest relative
to the acceleration of gravity. The interpretation is that if this parameter should equal unity,
then the pressure immediately under the crest would be zero and if the parameter should
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exceed unity, then according to the equations of motion, the pressure beneath the wave
crest would be negative which is unrealistic and would indicate an unstable water surface.

It should be noted that the theory employed in the study is composed of a finite series of
terms. To adequately define an instability formally, it may be necessary to extend the
representation to include an infinite number of terms. The results presented here for the
free surface breaking parameters should be interpreted accordingly. For the sample output
(Case 4-D, Table XI, Item 14) shows that the kinematic free surface breaking parameters for
the linear and Stream-function representations are 0.429 and 0.733, respectively. The
corresponding values (Table XI, Item 15) for the dynamic free surface breaking parameter
are 0.0409 and 0.286, respectively. The wave height associated with this case is
approximately 0.78 of the depth and according to the McCowan criterion, the wave would
be breaking.

Example 6—Combined Shoaling-Refraction

The shoaling-refraction results were not tabulated, but are presented for various
deepwater directions in graphical form as Figures 25 through 29 of this report.

Example 6-a

Consider a deepwater wave propagating over bathymetry characterized by straight and
parallel contours; the deepwater wave conditions considered are:

Hy = 11.52 ft

T

15 sec

Qo 40°

Suppose that we wish to find the wave height and direction in a water depth of 30 feet and
also the wave height, water depth and wave direction at breaking. Figure 28 is applicable for
a deepwater wave direction of 40°. The deepwater wavelength L is calculated as:

Lo = oL 72 = 32 17 (15)2 = 1152 ft

therefore

Ho

m = 0. 01
and for h = 30 ft

h 30

r: = Irg! = 0.0260

A Rt T B




&
3

The line for H /L, = 0.01 is simply followed to the left to the intersection with h/L :
0.0260. At this intersection,

H
7Y 0.0119

(0.0119) (1152) = 13.71 £t

-
"

17°

o3
"

The second part of the example requires the breaking depth, height and angle. For this, the
H,/L, = 0.01 curve intersects the breaking curve at:

hB
r = 0.0190
therefore
H
B
To = 0.0147
ap = 17°
therefore
HB = 0.0147(1152) = 16.9 ft
hB = 0.0190(1152) = 21.9 ft
Example 6-b

Suppose that a wave is observed in transitional depths and it is desired to determine the
height at deep water, breaking, or any depth of interest. For this example, the values
of H/L, and h/L, are calculated from the observed wave height and period and water
depth. If the observed direction corresponds to one of the graphs available, then one
proceeds as before in Example 6-a. If the observed point is not in accordance with any of
the graphs available, then an interpolative procedure is required. As an example, consider
the following observed wave characteristics

H = 20 ft
h = 60 ft
T = 12 sec

a = 11°
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and it is desired to calculate the wave height and direction in a water depth of 40 feet. From
the observed information

Lig. = 737.3
H/L, = 0.0271
h/Lo = 0.0814 (h = 60 ft)
h/L, = 0.0542 (h = 40 ft)

Examining the available figures, it is seen that the deepwater wave direction is between
10° and 20°. As a close approximation, the problem is solved for @, = 10° and @, = 20°,
and the desired results obtained by interpolation. For a, = 10°, from Figure 26, a line
passing through H/L, =0.0271, h/L, =0.0814 is sketched with the same approximate
shape as those for H /L, =0.02 and 0.04 to determine H/L, = 0.033 and @ = 6.2° for
h/L, = 0.0542. The corresponding values for a, = 20° are H/L, = 0.031 and @ = 12°. The
procedure is shown graphically in Figure 39 for a, = 10°. Because fc a, = 10° and 20°, the
a values corresponding to h/L, = 0.0814 and H/L, = 0.0271 are 6.8° and 13° respectively,
and the desired a for these conditions is 11°, the values of H/L, and a for h = 40 feet may
be determined by linear interpolation as:

T = 0.033 + {033 = 033 (11° - 6.8°) = 0.032
or
H = (737.3)(0.032) = 23.6 ft
and
o BulB {%%;_§-§=%;§ (11° - 6.8°) = 10.1°

Dissipative mechanisms such as percolation and bottom friction are not included in these
results, and in many cases these mechanisms will be of greater significance than the
nonlinear effects on the celerity and group velocity which represent the difference between
the results presented here and the linear wave theory.

Example 7—Use of Tables for Nontabulated Wave Conditions

Most of the previous examples have been presented for wave conditions which were
available as one of the 40 tabulated cases, i.e., Case 4-D. It is anticipated that the tabulations
will be used primarily for preliminary design, and therefore that the 40 cases may provide
adequate information for this purpose without interpolation. Final design of,, for example, a
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platform supported by battered piling would probably be carried out by establishing a
Stream-function or other wave theory representation for the particular wave conditions
selected for design.

On occasion, it may be desired to interpolate between the cases presented in the tables
for wave conditions that are substantially different from any of the 40 cases. Several
numerical and graphical interpolation methods were explored with a goal of obtaining a
simple method which yielded reasonably accurate results. Because most wave variables of
interest are nonlinear, numerical schemes which used linear interpolation proved to be
inaccurate. The best procedure was found to be a simple graphical procedure which
generally yields results within 5 percent.

Method

The method uses the tabulated parameters of interest for the H/Hp values above and
below the value of interest at the two lower and two higher h/L, tabulated values; in all
for each parameter desired, the interpolated value is based on values of that parameter for
eight tabulated wave conditions. The method is outlined in the following paragraphs and
illustrated by two examples.

Suppose that the wave height, period, and water depth selected for design are Hp), Tp),
and hy,. The design wave steepness and relative depth are calculated as:

Wave Steepness:

Lop
hD
Relative Depth: ey
where
<) 2
Lop = 37 Tp

The relative depth and wave steepness are plotted on Figure 40 to establish which wave
cases should be used for design. For the example shown, H/LOD =0.086 and
h/L"D =0.313. This point falls between H/Hp values denoted as B and C (i.e., 50 and 75
percent of breaking heights, respectively) and between tabulated h/L, values denoted as
Cases 7 and 8. The interpolation would therefore be based on the tabulated parameter of
interest for Cases 6-B, 6-C, 7-B, 7-C, 8-B, 8-C, 9-B, and 9-C.

The interpolation proceeds as follows. An auxiliary plot is made of the variable of
interest, e.g., the total dimensionless drag force at 0 = 0° [denoted Fj,(0°, Surf.)]. This plot
provides a continuous distribution of Fp)(0°, Surf.) versus h/L, for relative breaking
heights B and C. Interpolated Fj, values are then obtained from the auxiliary plot for
the h/L, design value (0.313). The interpolation for the design wave steepness requires
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measuring (Figure 40) the vertical linear distance from the B and C lines to the
design H/L, of interest; denote these values, A and A,, respectively. Weighting
factors, W, are then established as:

W, = A2
L Ay, + Kz
(50)

WB_Al—
U Ay + A2

The interpolated F}, value is finally determined as:
’ ’
(Fp)p = W (Fp)p + Wy (Fply

where the subscripts, D, L and U outside the parentheses denote: ‘“‘Design,” “Lower”
(Case B), and “Upper”’ (Case C).
Example 7-a—Numerical Illustration of Interpolation Procedure

Consider the following wave conditions selected for design

D=44ft

H
TD = 10 sec

hD 160 ft

]

which yield

Ly ==39"-'r2=512 ft

o

=2
o

0.313

|
o
o

u

B

0.0859

o
o
o

and suppose that we require the maximum dimensionless drag force on a piling that extends
from the bottom to above the crest level. This maximum value would occur at 6 = 0° and is
the value labeled “SURFACE” in the tabulations. Plotting of the wave steepness and relative
depth on Figure 40 indicates that the design values are spanned by Cases 7-B, 7-C, 8-B and
8-C. In accordance with the preceding section the values of F},(0°, Surf.) for Cases 6-B, 6-C,
7-B, 7-C, 8-B, 8-C, 9-B, and 9-C are required for interpolation and are summarized in
Table Q.
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TABLE Q

Summary of Fl;(O“, Surf, ) Required for Example 7-a

Case Fp(0°, Surf,)
6-B 22.37
6-C 28.79
7-B 8.60
7-C 11.31
8-B 2.71
8-C 3.58
9-B 1.38
9-C 1.72

The values in Table Q are presented as an auxiliary plot in Figure 41. Interpolation at the
design h/L, of 0.313 yields the following values of ¥, for relative breaking of 50 and 75
percent respectively.

Relative Breaking of 50 percent (Line B): (Fp ), = 490
Relative Breaking of 75 percent (Line C): (Fp),, = 6.10

To interpolate to the design H/L,, the distances A, and A, are measured from
Figure 40. For this example, these are found to be:

Ay = 0.32 in

The weighting values are then (Equation 50)

A

o Tt R
A

e S b
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and the interpolated value of F;) is:

(Fé)D wL(Flg)L + WU(Fé)U

(0.744) (4.90) + (0.256) (6.10)

5.21

i

To evaluate this interpolated value, a Stream-function solution was developed for the
conditions of interest, and FJ, from the actual solution was found to be 5.04 or a difference
of about 3.4 percent.

More comprehensive evaluations of the accuracy of the interpolation method are
presented in the next example.

Example 7-b—Assessment of the Interpolation Method

To present a more extensive evaluation of the accuracy of the interpolation method, two
special cases (one shallow-water and one deepwater) were selected for evaluation. The wave

characteristics for these two cases are presented in Table R.

TABLE R

Wave Characteristics Selected for Accuracy
Evaluation of Interpolation Method

Wave Height, Wave Period, Water Depth,
Case H(ft) T (sec) h(ft) J
S-1
(Shallow Water) 19 20 30
S-2
(Deep Water) 44 10 160

Using the procedure described, interpolated values of a number of quantities of interest
were developed and compared with values obtained by Stream-function solutions at the
wave conditions of interest. Table S presents a summary of the percentage differences
between the solution and interpolated values.

As an overall statement regarding the interpolation, it is noted that Table S indicates that
the procedure presented generally provides results which are within 5 percent; however,
differences up to 10 percent could occur. One final comment concerning the consistency of
the tabulated values is in order. In preparing the auxiliary plots, it was usually found that a
line could be drawn through the four points within 2 to 3 percent, except for the breaking
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TABLE S

Summary of Percentage Differences Between Values
Determined by Stream Function Solutions
and by Interpolation

Percentage pDifferencel

Dimensionless Variable? Case S-1 Case S-2
u’(0°, 0.5); Horiz. Vel.

Comp., Zero Phase Angle,

Mid-Depth +3.9 <1

Fp(0°, Surf), Max. Drag

Force Component, Acting

Over Entire Depth +6.7 +3.4
Fi(lO’, Surf), Inertia

Force Component +1.3 Not Evaluated

F'(75°, Surf), Inertia
Force Component

Mj(0°, Surf), Max. Drag
Moment Component About
Mudline

My (10°, Surf), Inertia
Moment Component

M1 (75°, Surf), Inertia
Moment Component

Pp(0°, 0.5), Dynamic
Pressure Component,
Zero Phase Angle,
Mid-Depth

pp(180°, 0.5), Dynamic
Pressure Component,
Trough Phase Position,
Mid-Depth

L', Wave Length

TE', Total Energy

Not Evaluated

+4.5

+2.2

Not Evaluated

<1l

<1
1.1
-406

-309

+3.6

Not Evaluated




- TABLE S—Continued

Percentage Differenceb

Dimensionless Variable? Case S-1 Case S-2
FéE, Total Energy Flux -4.2 +3.5
M', Momentum -4.1 -2.2
Féx, Momentum Flux in

Wave Direction -3.7 -2.6
Féy, Momentum Flux

Transverse to
Wave Direction -1.7 <1

KFSBP, Kinematic Free
Surface Breaking
Parameter 8.4 +4.4

DFSBP, Dynamic Free
Surface Breaking
i Parameter 1.4 <1

“Refer to Tables D, E, and F for a more complete description of the dimensionless variables.

bPercentnge Difference = Interpolated Value — Str.eam-func.tlon Solution X 100 Percent
Stream-function Solution

&
o
)

&
pd
.
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I

wave height, H/Hg =1.0 in which case the maximum deviations could amount to
+5 percent. The probable explanation for this deviation is that: (1) the calculated wave
heights for the tabulated cases were allowed to deviate from the desired values by 1 percent,
and (2)the different orders 1o represent different cases could cause a difference in
kinematics of 1 to 2 percent. The effects noted above could conceivably amount to
deviations of +5 percent for those variables which are inherently nonlinear, e.g., drag forces
or wave breaking parameters.

This completes the section illustrating the use of the wave tables. It should be recognized,
however, that only the more simple examples have been presented and that the tables can be
effectively applied to the solution of situations which are considerably broader and more
complex than those examined in this section.

VI. SUMMARY

This report presents the results of an investigation which has demonstrated that the
Stream-function wave theory provides a generally better representation of periodic wave
phenomena than other wave theories examined. As a result of this indication, tables have
been prepared, based on the Stream-function wave theory, that include parameters which
should be an aid in preliminary offshore design. The tables also include parameters which
are presently of greatest interest to researchers.

Because of its simplicity, the linear wave theory is widely used for many calculations over
all ranges of relative depth. This study has identified that, for a number of variables, there
are substantial differences between the linear and Stream-function wave theories. Although
this point has not been amplified in this report, inspection of the tables will substantiate this
conclusion. The identification of these differences should be of assistance in planning
experimental programs to provide definitive research results.

If the set of tables is extensively applied, as is hoped, undoubtedly the users wil! note
shortcomings, omissions or develop recommendations directed toward the improved
usefulness, applicability, or efficiency of the tables. The author would welcome information
of this type so that future work may benefit by as wide a range of user’s needs as possible.
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APPENDIX I

NUMERICAL SOLUTION OF STREAM FUNCTION PARAMETERS

Introduction

This appendix outlines the method of determining numerical values for the parameters in
the general form of the Stream-function solution. The numerical solution requires the use of
a reasonably high-speed, large memory computer.
Review of Problem Formulation

The problem of a two-dimensional, periodic wave propagating in water of uniform depth
has been discussed in Section II of the main body of this report. If the water is
incompressible and the motion irrotational, then the following boundary value problem can
be established for an ‘“‘arrested” wave system.

Differential Equation (DE):
v2y = 0 -1
r
Bottom Boundary Condition (BBC):

w=20, z = <h (1-2)

Kinematic Free Surface Boundary Condition (KFSBC):

Boundary 3 W A :
Conditions T,r'{ =3-¢’ ?=nk) (I1-3)

Dynamic Free Surface Boundary Condition (DFSBC):

2
g

Q

n+L[(u-C)2+wz]-

7 =Q, z = n(x) I14)

N

kMotion is periodic in x with spatial periodicity of the wavelength, L.  (I-5)

Equations (I-1 through 1-5) represent the common formulation for all of the classical
nonlinear water wave problems in which it is assumed that the wave propagates without
change of form and a reference coordinate system has been chosen that travels with the
wave form. For a specified wave height, water depth and wave period, the goal then is to
determine as exactly as possible a solution to the formulation.




Stream-function Solution
The general form of the Stream-function solution is:

NN

Vix,z) = % z + ) X(n) sinh [27"1 (h + z)] cos 2"" ](16)
n=1

The water displacement, 7, is determined by setting z =7 in Equation (1-6)

T T i 2
n =& wn 24t nzlx(n) sinh [ % (h + n)] cos [3:—"-‘- x] (1-7)

where VY, is the (constant) value of the Stream-function on the free surface. The velocity
components are defined by:

u-C=-%jz)- 1s8)
w=+§—£ (19)

In continuing the quest to determine a solution that satisfies Equations (I-1) to (I-5) as
faithfully as possible, it is noted that for arbitrary values of: Vg Ly and the X(n)’s, the
Stream-function solution exactly satisfies all of the requirements of the formulation except
the DFSBC, Equation (I4). All of the effort can therefore be directed to determining these
“free” variables such that they represent the specified wave height and also “‘best™ satisfy
Equation (I-4). The approach employed is numerical iteration, in which a trial solution is
regarded as available and at each step of the iteration; the “free” variables are modified to
improve the solution.

As a preliminary step, an error is defined in the one remaining unsatisfied boundary
condition,

J

1 Ay 2
E = (Q, - Q) (1-10)
J j.z.l 3

where the Q s represent equally spaced (in ) values of the quantity in Equation (I4),
and Q repraenu the average of the Q, s. If, for example, J =41, and the free variables
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could be adjusted so that E was very small, then the associated solution would provide a
good fit to the complete formulation at these 41 points, and computations have shown that
the fit or other phase angles would be comparably good. The problem therefore has evolved
into one of minimizing the total error E. The procedure used is a least-squares procedure,

which requires formally that

oE

- Al 0 (I-11)
oE it
() = ° o

(The parameter ¥y is not determined by the least-squares procedure, but is selected such
that the mean water level is not changed by the other variables selected. This will be
discussed later.) Examination of Equations (I-11) and (I-12) further will indicate that the
usual least-squares procedure is not applicable, because the error is not defined as a
quadratic function of the unknowns. This problem then falls in the category of a nonlinear
least-squares problem.

The problem was linearized as follows. Suppose that at the kt# iteration, a trial solution
is available. The objective is to select changes in the unknowns such that the errors will be
reduced. If this were a linear least-squares problem, only one iteration would be required.
Expressing the quantity Q in terms of small changes in the unknowns (to be determined at
the k** iteration).

NN 50K 3k

k+1 _ k ; ; _

Q; =0y + nzl TRy 0X(p) + §rl AL 1-13)
where

30 _ 3Q _an 3Q _3u 3Q dw
aX (n) an 3X(n) T 3u X () | 3w X (m) 1-14)

3Q _ 3Q 3n , 3Q du , 3Q 3w , 3Q aC

3L " an3L T i tow oL t 3¢ 3L (1-15)

where the  3Q/9n, 3Q/du are obtained from Equation (I-4) and the 31/9X(n), du/aX(n),
etc., are obtained from Equations, (1-7), (I-8), etc.
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Rewriting the least-squares procedure in terms of the unknowns: AL and AX(n)

k.

T = 0 (1-16)

JE =0, n=1 NN 1-17
35X (n) 4 S ¢-17)

Equations (I-16) and (I-17) represent a set of NN + 1 linear simultaneous equations in
terms of the NN + 1 unknowns. After each iteration, the water surface is recalculated, by
iteration, from Equation (I-7) and ¥y, is redetermined such that

J n dx =0 (1-18)

which can be expressed in integral form as:

IL/2

X(n) sinh [Z]Tffl (h + n)) cos [-2-11‘—‘2 x] dx (I-19)

<
]
L)

0

where, in the computations, a Simpson’s rule approximation to Equation (1-19) is used.

One complete iteration comprises a simultaneous solution for AL and the AK(n)’s and a
redetermination of Y. Successive iterations involve exactly the same procedure, and the
iterations can be terminated when successive reductions in the error E are small. Numerical
instabilities can occur, especially near breaking wave conditions, and one effective procedure
in these cases is to apply only a fraction of the AL and AX(n)'s specified by the
least-squares solution.

One final comment should be directed toward the problem of establishing the desired
wave height. Although it is possible to develop more sophisticated procedures which
converge on the wave height, the procedure followed here was simply to conduct successive
runs until the wave height was within an acceptable limit (1 percent) of the desired height.
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APPENDIX II

DEVELOPMENT OF COMBINED SHOALING—-REFRACTION COEFFICIENTS

Introduction

This appendix describes briefly the method employed to calculate the combined
shoaling—refraction coefficients.
Background

The shoaling—refraction coefficients developed are valid for a bathymetry characterized
by straight and parallel bottom contours and for a wave system which suffers no energy
losses. The two principles employed are Snell’s Law and the concept that there is no energy
flux across a wave ray, see Figure II-1.

Snell’s Law governs refraction and relates the wave propagation speed, C, to the wave
direction, a,

2282 - const, = 22432 (1)

in which the subscripts pertain to any arbitrary depths.
The requirement that no energy is propagated across wave rays may be written as:

[FTE cos aJl = {FTE cos a]z = Const, I1-2)

in which Fpp represents the energy flux per unit width in the direction of wave
propagation and the cos a term represents the width between adjacent wave rays.
The Fpp term could be expressed as the product of the wave energy density, TE, and the
group velocity, C., although this will not be helpful in the effort here. For linear wave
theory, it is possible to separate the refraction and shoaling effects because neither the
celerity, C, (governing refraction) nor the group velocity, C (governing shoaling) depend
on wave height. For our case, inspection of Equations (II-1) and (II-2) will show that the
two phenomena are coupled through the dependency of C and Cg on the wave height.

Method
The method employed here utilizes the dimensionless energy flux, Fpp (Table XI,
Item 5) and the dimensionless wavelength, L’ (Table XI, Item 1), where

o Frg
TE A7 L

8 T

L

’
L-Wﬂ
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Figure I1-1. Definition sketch for shoaling-refraction considerations
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Equation (II-1) can be rewritten in terms of the dimensionless quantities as:

2" sin a; _ 21 sin a
9T, L7 L = 9T, 74 2 = Const, 11-3)
However since the period is conserved, i.e., T, = 1,
sin a sin o
L7 L= L7 2 = Const, (114)

The energy flux relationship, Equation (I1-2) can be expressed as:

2
o ' 4
T [%? ] [EFJ Fig L' cos a = Const,
or recognizing that the period is conserved

2

[f%] Frg L' cos a = Const, (11-5)

Equations (1I-4) and (II-5) describe the shoaling-refraction process in terms of available
dimensionless parameters, and were solved as described in the following paragraphs.
Solution

It was found convenient to characterize a particular incoming deepwater wave by the
direction, a,, and deepwater steepness, H, /Lo. The problem is to determine wave
steepnesses at other relative depths h/L, such that Equations (II4) and (II-5) are satisfied
recalling that L' and Fp both depend on h/L, and H/L,. For each relative
depth, h/L,, four values of L’ and F TE are available (for H/Hg =0.25, 0.5, 0.75, and
1.0, c.f. Figure 23) whereas a continuous distribution is required for the purpose here. For
each relative depth, h/L,, continuous distributions were obtained by fitting straight lines
between the four available points; for H/Hg =0, it was assumed that the simple linear wave
theory applied, sce Figure I1-2 for an example for h/L, =0.02.

For given H, /L and @, the constants in Equations (I-4) and (II-5) are defined. The
wave steepness H/L, and direction @ at any relative depth are determined by iteration of
the two following equations.

o**1 = gin™ [(L')" 8—‘}"—,&] (11-6)
0
iy
k+1 (Ho/Lo)2 (F! )o L! cos a,
H & TE . X
i‘—o s k (n7)

(FéE)k (L')k cos a
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in which the superscript k + 1 denotes the (k + 1)** iteration and applies to the
improved estimates of @ and H/L,. Once these estimates are known, the parameters with
the k subscripts on the right hand sides of Equations (I1-8) and (I1.9) are calculated and
improved estimates of a and H/L, are determined, etc. The procedure was initiated in
deep water and the wave steepness and direction calculated at the remaining nine values of
relative depth advancing shoreward or until breaking was indicated. At each relative depth,
the iteration converged very rapidly with three or four iterations usually cufficient. For the
first iteration at a relative depth, the initial value for wave steepness was taken as the final
value fo- _he preceding (greater) relative depth.

The shoaling-refraction results are presented in graphical form, for a, =0°, 10°, 20°,
40°, and 60° in Figures 25, 26, 27, 28, and 29, respectively. A description of these tables is
presented in Section IV and two examples illustrating their application are given in
Section V.
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APPENDIX III

SAMPLE SET OF WAVE TABLES FOR CASE 4-D

90-3106699°0~ = (DesemM)/(TiIX
S0~IC6VV0E°0~ = (Deden)/ (01X
V0-ICSES0L°0~ = (SeseM)/(6 IX
0-IT6SEVL %0~ = (VedeN)/(@ IX
20-3246066°0~ = (JeseMd/lL
C0-30L0062°0~ = (JeieM)/(9 IX
C0-392000L°0~ = (JeisM)/(S X
23-3CV0T02°0~ = (Jelen)/iv IX
TO-V0P669°0~ = (JeieM)/(C IX
10-3102ETI®0~ = (DeseM)/(Z IX
10-396920€°0~ = (SsieM)/(T IX

SANIID144300 NOIAINNS WYIYLS SSIWOISNINIO 20 INILSIT

962:00°0- = (leHed)/1Sd 199229°0 = DV r
A
2S9LLL°0 = LdO/M (
000020°0 = 0V1d0 £€5SS10°0 = DWH

SOI4ASI¥3LOVEVHD 3AVA
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ANIIDI 44330 NILLADNNS WYIULS HIN = (NIX

ANVASNDD TWNOIAVLIIAVYY = 2
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