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PREFACE
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EVALUATION AND DEVELOPM ENT OF WATER WAVE THEORIES FOR
ENG iNEERING APPLICATI ON

by
H. C. Dean

I. INTRODUCTION
The following were the primary goals of the research reported: ( I )  for given wave

conditions , to establish a rational basis for selection of one of the numerous available
progressive-water-wave theories and (2) to tabulate the most approp riate wave theory or
theories in a form convenient for pre liminary design use . The main emphasis has been an
attempt to assist the engineer in his selection and app lication of wave theories in marine
design problems. The research has proceeded in several distinct phases which are described
briefl y below.

An earls’ phase of the research was related to evaluating the anal ytical validity of
water -wave theories; that is, the degree to wh ch the various available theories satisfy the
equations constituting the mathematical formulation. The results of this phase, first
published in September . 1968 (Dean , 1968a), established that , of the eight theories included
in the study. the Stream-function fifth.order provided the best fit over a wide range of wave
conditions. For very shallow water waves , the Airy and first-order Cnoidal theories provided
the best fit. However , because the Stream-function theory can be extended to quite high
orders , it was ex pected that it would provide the best fit , even for most shallow water wave
conditions. Based on the results of this phase, the following phases concentrated on further
exp loration and development of the Stream-function theory for engineering app lication.

The sec ond phase represented an examination of near-breaking wave conditions using the
Stream-function theory (Dean . 1968b). This problem is complicated because breaki ng
conditions represent a mathematical as well as a hydrodynamic instability , and therefore the
computational aspects are not strai ghtforward . The results of this stud y indicated that of
the two stabil i t y criteria , the kinematic criterion rather than the dynamic criterion governs
at breaking. It was also found that near breaking the pressure distribution was hydrostatic
rather than characterized by a zero pressure gradient as predicted by some other studies.
The comp lexities of the numerical computations led to an attempt to establish the breaking
index for only three relative water depths (shallow , transitional zone and deep) . It was
found that for shallow and deepwater waves , the breaking heights established from the
Stream-function wave theory were up to 28 percent higher than those established earlier by
other investigations. For transitional depth conditions , however , the breaking heights
determined in the stud y agreed well with those of earlier investigations.

The third phase of the investi gation (Dean and LeMehaute , 1970) was related to the
“experimental validity of water wave theories” as compared to “analytical validity.” The
motivation of this phase was the recent publication of a fairl y comprehensive set of
measurements of water particle velocities for shallow water waves and comparison with a
number of wave theories by LeMehaute , Divoky, and [in (1968); a comparison with the
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Stream-function theory was therefore conducted as a part of the present stud y. On an
overall basis , the Stream-function theory provided a significantl y bette -r fit to the measured
water particle velocities than the other theories. The standard deviation between the
m easured and Stream-function representations was 0.17 foot/second as compar ed to
0.24 foot/second for the theory providing the next best fit. The primary significan~e of th is
phase of the stud y is that the wave conditions are in the sh allow-water region where theories
other than the Stream-function would be expected to provide better comparisons with
measurements. Although this favorable comparison is not taken as demonstration of the
superiority of th e  Stream-function for all wave conditions , the results were very encouraging
and , to some extent , surpri sing.

The final phase of the investigation has been the development of a computer program to
tabulate wave quantities that would be of value to engineers in design , and that would also
be valuable to perstsis concerned with the fu rther development and improvement of
water-wave theories. During the development of the tables, it has been found that more
meaningful information than originally antici pated could be presented.

In the early phases of this study, dimensional variables Ii.e., water depth/(wave period)
and wave height/(wave period)] were used to characterize the wave conditions (Dean ,
1968b). This feature will be evident in the description of some of the results. In the latter
phases of the study, it was decided to characterize the wave condi tions by the following
dimensionless quantities: h/L0 and ilL0 , where h , H and L0 represent the water depth ,
wave height , and small-amplitude deepwater wavelength , respectively. The tables are
developed for 40 cases of (h/L0 . H/L 0 ).

The results of the research are presented in two volumes. The present report (Volume I)
docu ments the research results and describes the wave tables and their app lication.
Volume II presents the wave tables that have been developed for 40 cases encompassing
most conditions e ncountered in engineering design.

It should be noted that all of the available wave theories have not been included in the
comparisons described earlier. Some of the theories omitted were developed during the
period of this research; some have been available, but were not compared , usually because
they are not emp loyed extensively for engineering purposes.

II. STREAM FUNCTION WAVE THEORY
Introduction

At an early stage of the research , the study indicated that the Stream-function theory
generally provided a better fit to the boundary conditions and also to available laboratory
measurements. The study therefore developed into an effort to exp lore and develop the
Stream-function theory for engineering application. Before presenting this work , the basis
for the Stream-function theory will be described in some detail in an attempt to define the
similarities with and differences from other theories. It should be noted that there are two
representations of the Stream-function theory : (1) for a given wave height , H , water

2
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dep th , Ii , and wave period , 1, a (symmetrical) representation can be developed to describe
the kInematics and dynamics of the motion and (2) for a give n measure d water surface
dispLace ment , ~(t) representing a single oscillation (e.g., trough-to-trough), a representation
can be determined which completel y defines the kinematics and dynamics of the wave
motion. The first case is, of course , of more interest to designers; in another app lication , the
second case has been employed for the analysis of hurricane-generated wave and wave-force
data. Only the firs t mode has been explored under the present study.
Formulation

The water-wave phenomenon of interest here can be idealized as a two-dimensional
boundary value problem of ideal flow . The assumption of ideal flow is essential to a
mathematical formulation that can be readil y solved by known techniques. Figure 1 defines
terms employed in the formulation.

Velocity sComponents

/I~~IIff///,/ I/fff,ff ,fff,,,,,,,,,,,

Figure 1. Definition sketch , progressive wave system

Differential Equation
Ideal flow incorporates the assumptions of an incompressible fluid and irrotational

motion. For pressures normally experienced in progressive water-wave motions, the
incompressibility assumption can be shown to be valid. Shock pressures due to a wave
breaking against a seawall may be an important exception; however these are not
encompassed by the results of this research. The assumption of irrotational flow may be
questioned. Probably the best reason for this assumption , at this stage , is that it allows
formulation of a boundary-value problem that can be solved in an approximate manner. The
solutions can then be compared with measurements to determine the apparen t need for the
refinement to include a nonzero rotation.

The differential equation (DE) for two-dimensional ideal flow , the Laplace equation , can
be presented in terms of either the velocity potential , ~ or stream function , ~,,

(1)

(2)

~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~ 

- 

- _ _



where, in two dimensions

V ’ ~~~~~~~~~~~~~~~ (3)

and ~ and ~ ‘ are defined in terms of the velocity componen ts u and w (see Figure 1) as:

U =- ~~~~~~~ = - -
~
-
~~

(4)

w = - -
~j  = + - ~~~~

Boundary Conditions
Two typ es of boundary conditions are required on the upper and lower surfaces (for the

present stud y, it will be assumed that the depth is uniform). The kinematic boundary
condition app lies to both boundaries , and simply requires that the components of flow at
these boundaries be in accordance with the geometry and motion (if any) of the boundaries.
This condition can be stated as follows :

Bottom Boundary Condition (BBC)

w = 0 , z = — h  (5)

kinematic Free Surface Boundary Condition (KFSBC)

+ 4!i = w , z = n (x ,t) (6)

Dynamic Free Surface Boundary Condition (DFSBC)
The remaining free surface boundary condition , the so-called dynamic free surface

boundary condition (DFSBC), requires that the pressure immediately below the free surface
be uniform and equal to the atmospheric pressure , p .

Ti + + .~~L (u 2 + w2 )  — .
~~~~~ = constant Q ’, z = r~(x ,t) (7)

In the above formulation , it is tacitly assumed that surface tension effects are negligible. It is
customary to incorporate the atmospheric pressure term into the constant , Q’, to yield a
new constant , Q

f l +~~~~~~(U 2 + W 2 ) _ ~~~~~~~~ = Q  (8)
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In the formuLation prt -sented. no requirements have been placed on th e p ermanence of
uuue form: that is. the wave could change form as it propagates due to the relative motion
and interference of components propagating with various Ph a se  speeds. The treatment of
this general probLem incLuding the nonhinearities i~ comp lex . and was not the subject of this
research. Rather , in the present investi gation , it is assumed that the wave propagates with
constant speed , C , am id without change of form. I t is thi cn possible to choose a coordinate
s\ stern propagating with the speed of and iii time same direction as the wave , and relati ve to
this coordinate sy stem the motion does not change , and is therefore stead y. The time
de 1wndrnrv iii the formulation vanishes , the horizonta l velocity component with respect to
the moving coordinate sy stem is u-C; and the formu lation may be summarized as:

I)E: v 2
~ = v

2
qi = 0 (9)

BBC : w 0 ,  z = —h (10)

Boundary J-~ wkFSBC: — = , z = n(x ) ( 11)
Conditions )x u - C

DFSHC:~~ + 
~~~~~~ 

( ( u  — C) 2 + w 2 ) —  
~~

__ = Q,  z = nbc ) (12)

Motion is periodic in x with spatial periodicity of the wavelength , L. (13)

To avoid misimpressions about the assumptions and formulation presented here and those
emp loyed in other investi gations of nonlear waves , it is noted that the formulation
incorporating the assumption of propagation without change of form is common to the
development of all the following nonLinear water wave theories:

Stokes 2nd , and higher order wave theories
Cnoidal 1s t and 2nd order theories by e.g., Keulegan and Patterson (1940),

and Laitone (1960)
Solitary wave theory , 151 order by Boussinesq (Munk , 1949)
Solitary wave theory , 2nd order by MeCowan (Munk , 1949)
Stream-function wave theory by Von Schwind and Reid (1972)

To reiterate , anal ytical validity Will be based on the degree to which a theory satisfies the

boundary-value problem formulation , Equations (9) through (13). If a theory could be
found that provided exac t agreement to the formulations , then the analytical validity would
be perfect. There is no guarantee that good analytical validity ensures that a theory will
provide a good representation of the natural phenomenon . because implicit in the
formulation are the assumptions that cap illary and rotation forces and other effects are

negligible. Experimental validi ty will be based on the agreement between wave theories and

measured data.
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The Stream-function Solution
For the formulation expressed in Equations (9) through (13), a Stream -function solution

may be expressed as:

~~tx ,z) = ~~~
- z + ~~ X ( n) sinh (h + z ) )  COB {~~.a xJ (14)

Evaluating this expression on the free surface , i.e., setting z = 17, we find

Ti = 
‘

~~
- ~P 1~ - ~~~

- ~ X ( n )  sinh (h + n ) )  cos [
~~ 

x) (15)

where NN represents the order of the representation , i.e., the number of terms
contributing to the series expression , ~(i~~ represents the (constant) value of the
Stream-function on the free surface , L is the (undetermined) wavelength , and
the X(n) represent , at this stage, undetermined coefficients.

For particular wave conditions, it is regarded that the wave height , period , and water
depth are specified. Equation (14) exactly satisfies the governing differential equation and
the bottom and free surface kinematic boundary conditions for arbitrary values
of L , ~~~ and the X(n) coefficients. The Stream-function expression is also periodic
in x with wavelength , L. The only remaining boundary condition is the dynamic
free-surface boundary condition; the parameters L and the X(n) ’s are to be chosen such
that this boundary condition is best satisfied for a specified wave height. 

-

The procedure for determining the unknown parameters , which can be considered as a
nonlinear numerical perturbation procedure , is presented in Appendix I.

III. EVALUATION OF VALIDITIES OF WAVE THEORIES
Introduction

As discussed earlier, there are two types of validity that were examined. “Analytical
validity” is based on the degree to which a theory satisfies the governing equations (of the
boundary value problem formulation). Good analytical validity , however , does not
necessarily imply good representation of the natural phenomenon. Experimental validity is
based on the agreement between a theory and measurements. To date , some reasonably
good laboratory data are available, and at least two field measurements of water particle
velocities are reportedly underway (as of 1972) in the petroleum industry , and hopefully,
will be available within the next few years.
Discussion of Differences Between Stream-function and Other Wave Theories

Later in this section, it will be shown that the Stream-function theory provides a better
fit than other theories to the boundary conditions and also provides a better fit to
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laboratory measurements of water particle velocities, It is therefore worthwhile to compare
some of the inherent features of the Stream-function and other theories. Although it is
difficult to discuss all other theories in general statements, an attempt will be made to
present the more significant representative diffe rences.

Consider , as an examp le, the Stokes higher order wave theories. The general form of the
solution exactly satisfies the differential equation , the bottom boundary condition , and , is
properl y periodic in the x-direction. The solution does not provide exact fits to either the
kinematic or dynamic free surface boundary conditions. Suppose that the (n~1)th order
solution is known and that the nih order theory is to be developed. The nih coefficients arc
determined such that they minimize the errors in the two free surface boundary conditions
at the (n .I) t h  order. A significant problem is that the configuration of the n th order water
surface is not known , a priori; it is therefore necessary to best satisfy the boundary
conditions on an approximate expansion of the nth order water surface. The apparent effect
of minimizing the errors present on the approximate nih order water surface is that the
resulting theory of a given order, if convergent, may not provide the best fit possible for the
number of terms (order) included.
As a comparison with the preceding discussion of the Stokes’ theory , consider the

corresponding features of a Stream-function theory solution. The general form of the
solution exactl y satisfies all of the boundary value problem requirements except the
I) FSBC.

At this stage , one inherent advantage of the Stream-function theory is evident—all of the
“free” parameters can be chosen to provide a best fit to the DFSBC. A second and
importan t inherent advan tage is that for a given ~th order wave theory , all of the
coefficients art- chosen such that they best satisfy the boundary condition on the nih order
water surface. The distinction is that because a numerical iteration approach is used, the ~th
order wave form is known (through iterat ion) at that order of solution. Other advantages of
the Stream-function theory are that a solution can readily be obtained to any reasonable
order , and that a measure of the fit to the one remaining boundary condition is more or less
automatically obtained in the course of the solution. Also, the form of the terms in the
solution is inherently better for representing nonlinear waves, due to the i~ term appearing in
the argument of the hyperbolic sine term (cf. Equation (15)J.

The disadvantage of the Stream-function theory is that , unless tabulated parameters are
available , it does require the use of a digitaL computer with a reasonably large memory. The
complexity of other nonlinear theories, however , generally also requires the use of a
high-speed computer.

It is noted that a similar but different Stream-function theory has been developed and
reported by Von Schwind and Reid (1972) subsequent to the analytical validity study
reported here , and employs a definition of the DFSBC error which differs from that in the
present study. The paper by Von Schwind and Reid presents boundary condition errors for
three wave cases. A comparison between their errors and those resulting from the
Stream-function theory will be presented.
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Analytical Validity
The anal ytical validit y of a particuLar wave theory has been previously defined as the

degree to which the theory satisfies the defining equations . i.e., Equations (9) throug h (13).
Again, for emphasis , it is noted that a theory providing an exact fit to the boundary
conditions would have a perfect analytical validity . However , due to assumptions of ideal
flow, etc., in the formulation of the prob lem . a perfect anal y tical validity does not ensure
that the theory would provide a good representation of laboratory or field phenomenon.

The reason for viewing the problem in two steps , i.e., ana lytical and experimental
validity, is that the results of the anal ytica l validity test would at least tend to indicate the
relative app licability of the available wave theories for particular wave conditions. Also , the
results would provide guidance about whether the most fruitful approach would be directed
toward a more representative formulation of water-wave theories or toward the
improvement of the solutions of existing formulations.

Definition of Boundary Condition Erro rs
Most wave theories exactl y satisf y the governing differential equation and bottom

boundary condition , although some of the solutions onl y approximatel y satisf y the
differential equation. Table A lists a number of the theories available for design use and also
indicates the conditions of the formulation which arc satisfied exactl y by each of t h e
theo~irs. Inspection of Table A shows that the two nonlinear (free surface) boundary
conditions provide the best basis for assessing the analytical validity , because no theory
exactl y satisfies both of these conditions.

Errors based on the dynamic and kinematic free surface boundary conditions , are defined
as functions of phase angle (0)  as follows:

c~ ( 0 )  — 

c (16)

E T) + ‘~~
.—. [ ( u  — C ) 2  + w 2 ] — — (17)

where Q represents the mean value of the quantity Q (Bernoulli constant) defined in
Equation (12). Over- all errors arc defined as the root mean squares of the distributed errors,

~ c 1~~ (18)

E2 AJ~j . 
~ 

£2~~~ (19)

where j represents sampling at various (evenly spaced) phase angl
es.8



TABLE A -

Water Wave Theories Included in Evaluation Presented by Dean (1968a)
Theory 

— 

Exactly_Satisfies
_______

DE BBC KFSBC DFSBC
Linear Wave Theory—Airy X X ——  ——

(Ippen,_1966) 
_____ _______ _______

Third Order Stokes X X —— ——
(Skjelbreia and Hendrickson, 1961,
as summarized by Le Mehaute and Webb, 1964) 

____ _______ _______

Fifth Order Stokes X X —— ——
(Skjelbreia and Hendrickson, 1961) 

_____ _______ _______

First Order Cnoidal —— X —— ——

(Laitone,_1960) 
____ _______ _______

Second Order Cnoidal —— X —— ——

(Laitone, 1960) 
____ _______ _______

First Order Solitary X X -- ——

(Bousinesq , as summarized by Munk, 1949) 
_ _ _  _ _ _ _ _  _ _ _ _ _

Second Order Solitary X X X ——
(McCowan , as summarized by Munk, 1949) 

___  _ _ _ _ _  _ _ _ _ _

Stream-Function Numerical Wave Theory—Fif th Order X X X ——

(Dean, 1968*) 
—
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Results of Analytica l Validity Comparison
Most of the results of the stud y of analytica l validity carried out under this proj ect have

been published elsewhere (Dean , 1 Q68a), and therefore will be reviewed onl y briefly here.
The stud y included 40 wave cases as shown in Figure 2. For each of these cases, the

overall errors , E 1 and E2 were calculated for the wave theories shown in Table A. The
overall dynamic free surface boundary condition errors were made dimensionless by dividing
by the wave height , H , i.e.,

E2 ’ = E2/ H (20)

The overall kinematic free surface boundary condition error is dimensionless as defined in
Equation (18).

Plots of the dimensionless kinemati c and dynamic free surface boundary condition errors
are presented in Figures 3, 4, 5, and 6 for HIH B = 0.25 and 1.0 (11B = breaking wave
height). The KFSBC error is identically zero for the Stream-function and McCowan theories.

As stated previously, it is difficult to select a single index that would clearly be
representative of the overall validity of all wave theories. However , an index was chosen that
provided a severe test for the Stream-function theory, and yet this theory provided the best
general analytical validity.

The following evaluation plan was adopted , the results of which would be somewhat
biased against the Stream-function theory . Most of the wave theories do not satisfy exactly
either the DFSBC or KFSBC ; however , the Stream-function theory does satisfy exactly the
KFSBC. It therefore seems reasonable that if the Stream-function theory can be shown to
compare favorably against other theories on the basis of only the DFSBC, then it should
provide an even better analytical validty than the comparison shows.

In the analytical validity investigation , the eight wave theories in Table A were examined.
Because the fifth order was the highest of the Stokes theories available , it was arbitrarily
decided to include the Stream-function theory only to the fifth order.

The evaluation was then based on comparisons presented in Figu res 3, 4, 5, and 6 and
also on the corresponding figures for U/HB = 0.50 and 0.75, which are not presented here.
The results of this study are shown in Figures 7 and 8.

Figure 7 presents the results for all theories excluding the Stream-function theory. It is
seen that the Stokes V theory provides the best fit for deep water , the Airy theory provides
the beat fit in a part of the transitional and shallow-water ranges. and the first -order Cnoidal
wave theory generally provides the best fit in the shallow-water range .

Figure 8 presents the same type of information. Onl y the fifth-order Stream -function
theory is included and provides the best fit over a wide range including all of the transitional
and dcepwater wave regions and also a significan t part of the shallow-water range included
in the comparison. The Airy wave theory provides the best fit for a small part of the
shallow-water , near -breaking waves and the first-order Cnoidal wave theory provides the best
fit for the remainder of the shallow-water region.
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In evaluating the resiiIt~. obtained in the shallow-water region , it is noted that one

eighth-order Stream-fun etion theory was r akul ated for breaking wave (-olidit ions and

h/T2 = 0.1 foot/second2 as shown in Figure 6. This fi gure shows that the use of higher order

Stream-function theories would extend the range of best validity of this theory to shallower

conditions (Figure 8).
Comparison with Stream-function Theory I) eveloped by Von Sch wind and Reid

As noted earlier , Von Schwind and Reid ( 1972) have developed a Stream-function

theory with basic similarities to the theory emp loyed in this stud . The princi pa l diff er er ire

between the two theories is that Von Schwind and Reid trans form their problem to and

carry out their solution in the comp lex plane. It is noted that their solution in terms of

wavelength and coefficients is also obtained by iteration. The DFSBC error

definition e 2 ( O).  used by Von Schwind and Reid was originall y defined by Chappe lear

(1961), and is somewhat different from that employed here (Equation 17) and is

£2  ( 0 )
e2 (0)  = ~ + h 

( 17a)

it is noted by comparison of Equations (17) and (17a) , that the actual distribution of

DFSBC errors would appear as numerically smaller based on Equation (17a) due to the

water depth and Bernoulli constant appearing in the denominator.
Von Schwind and Reid presented distributed DFSBC errors for three sets of wave

conditions. Errors were calculated for the same wave conditions using the present theory .

Figures 9, 10, and 11, are reproduced from Von Schwind and Reid, and the maximum

errors obtained by the present theory [indicated University of Florida (UF)] are shown for

each wave case. The maximum UF errors obtained are so small that it would not be

w o r t h w h i l e  to show them graphically . Note that all errors (e2 ) shown in

Figures 9, 10, and 11 are based on Equation (1 7a). The reason that the errors obtained by

the present theory are smaller than those obtained by Von Schwind and Reid is not known.

With a numerical solution , it is possible to obtain a low error (down to some limit) by

increasing the order of the theory or by increasing the number of iterations used to oMan.

the solution. For the three cases shown in Figures 9 through 11, the UF waves were

seventh-order and each solution was obtained by 15 iterations; the correspondi ng values for

the Von Schwind-Reid waves are not known.
Conclusions Resulting f rom the Analy tical Validity Study
The analytical validity evaluation is based on the degree to which the various theories

satisf y the governing equations in the boundary value prob lem formulation. It is stressed

again that there is no guarantee that a theory providing a good analytical validity will

necessarily represent well the features of the natural wave p henomenon. The reason is that

there are assumptions (negligible viscosity and capillary effects) introduced into the 4
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governing equations which may adversely affect the degree to which the formulation
represents real wave motion. The purpose of the analytical validity study, rather , was to
attempt to resolve the question of whether the theories developed for the same formulation

and for various regions of relative depth do indeed provide the best fit in these regions. Also
this study , combined with some additional studies reported later in this report , does aid in
determining whether the most critical need in wave theory research is in the improvement of
the formulation or in the development of improved solutions to the existing formulation.

The results of the analytical validity study have shown that:

1. The general status of wave theories for h/t2 >0.2 foot/second2, for instance , is much
more satisfactory than for the smaller values of h/T2 . In particular , for the larger relative
depths, there is reasonable consistency between the fits to the dynamic free surface
boundary condition and the maximum drag force as calculated by the various theories
including a seventh-order Stream-function theory. In shallow water, it is not clear that the
boundary condition fit is an appropriate measure of wave theory validity, unless the
associated errors are very small. In particular , the Airy wave theory provides a relatively
good fit to the boundary conditions in shallow water; however this theory does not
represent many of the observed features of shallow-water waves including the strong
skewness of the -wave profile about the mean water level.
2. The Stokes higher order wave theories converge to accurate representations of wave

motion in deep water; however, in transitional and shallow water , the boundary condition
fits are relatively poor. Furthermore , no fifth-order Stokes theory solution could be found
for shallow-water waves or the smaller values of the transitional zone. The limiting value
of hI T2 for which a solution exists, depends on H/T2 and was in the range of
0.1 <h/T2 <0.5 foot/second2 for the conditions examined.

3. Finally, it is observed that the second-order Cnoidal theory provided a worse fit to the
boundary conditions than the first-order Cnoida] theory for all wave conditions examined.
There are other versions of Cnoidal theories; the boundary condition fits of these theories
have not been evaluated in this study.

4. The Stream-function theory described in this report provides good analytical validity
over a wide range of wave conditions.

The reader is referred to Dean , (1968a) for reinforcement of statements presented.
Experimental Validity
As previously described, experimental validity is based on the comparison of theoretical

predictions and measured wave phenomena. If it could be generally shown that the theory
providing the best analytical validity also provides the best experimental validity, then it
could be concluded that the formulation is valid and that the errors in the boundary
conditions are also good indicators of experimental validity. If the differences between the
theory and experiments were of the same order as the estimated experimental error , and if
this could be shown to be the situation generally, then the most productive direction in

22

--—5- - S .- —S - S--~~~~~~~~~~~~ ----

_ _- _ _ _ _ _



water-wave research on this problem would be improve d measurements. If however , the
disagreement between theor~ and experiment is much larger than can be att ributed to
experimental error , and especially if this diffe rence were of engineering significance , then
additional efforts on the formulation and solution of water wave theories would be
indicated.

The availabilit~ of data is inadequate to carry out a comprehensive evaluation of
experimental validit y o~~-r all ranges of relative depth and heights of engineering importance ,
Le Mehaute , Divorky, and Lin (1968) have carri t-d out a measurement program in which
distributions over depth of horizontal water particle velocities were measured under the
crest phase position of fairl y high waves in the shallow and transitional depth ranges. The
results included measured horizontal water particle velocity distributions for eight cases, and
also a vertical water particle velocity distribution for one case , and one measured wave
profile. Le Mehaute , l)ivorkv , and Liii compared a number of wave theories with their data ;
however the Stream-function theory was not included. The experimental validity reported
in this stud y was based on a comparison of the Stream-function theory with the data
describe d earlier.

It should be emp hasized that the oniv addition to the paper by Le Mehaute , Divork y, and
Lin (1968) is ( I )  comparison of the Stream-function theory with the data and
(2)  calculations which rep resent the overall agreement between the data and several of the
theories. In the Stream-function horizontal velocity component profiles presented , a
uniform mass transport velocity has been subtracted out , whereas due to time limitations,
the other theoretical velocity distributions were simp ly plotted from Le Mehaute , Divorky,
and Lin. It is not clear whether or not the mass transport term should be subtracted out.
Although the experiments were conducted in a closed tank , the data were taken before
waves reflected from the beach had propagated back to the tank test section , and the zero
n e t  flow over depth had probabl y not been established completely.

In all , data for 10 different wave conditions are available . These waves are in the shallow
and transitional depth regions, and according to the conventional breaking criteria, the wave
heights range from 0.43 to 0.70 of the breaking height. The wave conditions are shown as
points in Figure 12 where isolines representing various ratios of wave height to breaking
wave height are also presented. It is emp hasized that the breaking wave height in Figure 12
is the conventional breaking height: i.e., H/h = 0.78 in shallow water (McCowan reviewed by
Munk , 1949); H/L = 0.142 in deep water (Michell, 1893); in the transitional range, the
breaking limit was first established by Reid and Hretschneider (1953) by interpolating on
the basis of measured data and is presented in several more available references , e.g. (Ippen ,
1966) and (Bretschneider , 1960). A recent paper by Divoky, Le Mehaute . and Lin (1970)
report s an experimentally determined shallow-water breaking limit of approximatel y
I1~ Th 0.60 to 0.66 as compared to the conventional value of 0.78. The recent experiments
resulting in the lower value were obtained with a laterall y converging wave channel.
Certainl y it is apparent that more work is needed to better resolve wave breaking limits.
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Table B presents the comparison results included in the experimental validity evaluation.
The eight comparisons of horizontal water particle velocity are presented in Figures 13
through 20; the vertical velocity comparison is presented in Figure 21; and the wave profile
is presented in Figure 22.

Figures 13 through 20 indicate that the Stream-function theory is in reasonable
agreement with the data. It is noteworthy that the shallow-water wave theories which
should provide good fits to the data are so poor. Another interesting feature of the
comparison is that the linear (Airy) wave theory agrees better with the data than would be
expected.

Of the 12 theories included in the compari son , the better agreements with data were
provi ded by t h e  following five theories : Airy, Keulegan and Patterson Cnoidal wave theory,
Goda , Long-Wave, and Stream-function. These five theories were then selected for further
examination of their agreement with the data. The standard deviations between each of
these theories and the data were calculated , and are presented in Table C where it is seen
that the Stream-function theory provided the best fit to the data , followed, in order , by the
Goda , Keulegan and Patterson Cnoidal , Airy, and the Long-Wave Theories.

The Goda ‘~theory ” is actuall y a series representation in which the analytical forms of the
terms comprising the series are the same as the hyperbolic and trigonometric functions in
the Stokes theories. However , the coefficients modif ying these terms were determined
empirically by wave tank experiments.

Addi tional calculations not presen ted here showed that , assuming the data were valid, the
Stream-function wave theory would on the average overpredict the maximum total drag
force on a vertical cylinder by 21 percent.

Data representing the vertical velocity distribution with depth are available for only one
set of wave conditions. (see Figure 21). The McCowan theory provides the best fit to the
data; the next best fit is associated with the Stream-function theory. Differences between
the McCowan and Stream-function theories , however , are quite small and it is probably not
justified to draw conclusions from only one set of data. Interpreted in terms of vertical drag
forces on a horizontal cylinder, the Stream-function would underpredict the forces by 30
percent.

The one set of wave profile data are compared with the various theories in Figure 22.
Although no detailed comparisons were made, it appears that the Stream-function theory is
in as good or better agreement than any of the other theories shown.

Conclusions Resulting f r om the Experimental Validity Study
Comparisons of Stream-function theory predictions with measurements of velocity

components and one wave form representing transitional and shallow-water waves indicate
reasonably good agreement. Interpreted on the basis of maximum horizontal drag force
components, the Stream-function theory would over predict by an average of 21 percent.

Recognizing that the experimental accuracy is approximately 5 percent these results are
considered reasonable for engineering applications. The predicted maximum vertical drag
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TABLE C

Standard Deviation of Differences Between Horizontal
Velocities : Measured vs. Predicted

Standard Deviation , a (f t/ sec )

Theory

Case No. Airy Long Wave Goda K & P Cnoidal

1 0.229 0.232 0.328 0.413 0.396

2 0.139 0.234 0.297 0.146 0.211

3 0.096 0.470 0.468 0.206 0.155

4 0.126 0.442 0.453 0.134 0.136

5 0.245 0.225 0.291 0.357 0.487

6 0.216 0.181 0.244 0.095 0.469

7 0.123 0.493 0.513 0.316 0.188

8 0.183 0.418 0.434 0.215 0.272

Average 0.170 0.337 0.379 0.235 0.289

ci 
~~~ j~~1 

(U
M 

- U
T

)

U
M 

= measured velocity component

U
T 

= theoretical velocity component

J = number of levels considered for each case (14 to 15)
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forces on a horizontal cy linder ‘.s ould b -  too ~-Ln.IlI I~ 3() p - r r i - I I t ;  I I v i w v ’ . . r . t l t i~ statement is
based on a comparison with onl y one set of data. Good qu~t I i t a t i v  agreement was found
between measured and predicted wave profiles -

Finally , based on the results of both the analytical and experimental validity studies, it is
concluded that the Stream-function theory is best suited for engineering design purposes. It
was decided to tabulate variables that would be of use in engineering design as calculated
from the Stream-function theory . The next section describes the variables included in the
tables.

IV. DESCRIPTION OF TABLES
Introduction

An attempt has been made to include in the tables those variables of greatest present
engineering interest and app lication. In addition , other variables were included which would
be relevant to checki ng the relative analytical validity of other theories or variables which
were of scientifi c interest and could conceivabl y be require d for engineering in the future.
V ariables have been included which describe the detailed kinematics of the waves and also
which represent , e.g., the integrated effect of the flow on a structural member.

It is not possible to assemble in concise tabular form all variables that could be of
engineering use. It is feasible to tabulate the dimensionless drag force for all vertical piling
extending from the bottom up to a certain level. It would not be feasible , however , to
concisely tabulate the total drag force on members with all possible inclinations relative to a
vertical .

Forty sets of dimensionless wave conditions were selected for tabulation. Each case is
characterized by values of h/L0 and H/L 5, . The parameter h/L0 , ranged from 0.002 to 2.0
and covered the relative dep th range from shallow to deep water. The
parameter H/L0 included wave steepnes8es ratios: 0.25, 0.5, 0.75, and 1.0 of the breaking
wave steepness for each of the 10 h/L0 values tabulated. Figure 23 shows the
dimensionless wave conditions selected for tabulation and also indicates the referencing
notation for the cases.

All tabulated variables are presented in dimensionless form. The description of these
variables is presented in the following paragrap hs and in Tables D , E , and F, where generally
the following are included: the equation for the variable , the dimensionless form of the
variable , an equation number for reference purposes , and the table number in the wave
tables. To reduce confusion , it should be noted that the tables presented in this report are
denoted by letters; the wave tables are identified by Roman numerals.

Variables Presented in Tabular Form
Three classes of variables are tabulated: (1) Internal field variables, depending on 0 and S,

(2) Variables depending on 0 only, and (3) Overall variables which have a single value for
the entire wave, for example the wavelength.
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Int ern a l F ield I ~ir iable s Depending on 0 and -~~

Th e it i te rr ial  field var iahh- s are tabu l ated at equal ls- spaced dimensionless distances above
th e bott om. i.e.. at S/h values of 0 , 0.1 , 0.2 . . .  up to and including the free surface , and
at 0 values of 0

0
, 10

0
, 20

0
, 300 500

, 75°, 100°, 130°, 180°. Figure 24 shows a sample
presentation of the dimensionle ss horizontal velocity component field.

A description of the entries in Figure 24 will serve to fan ii liar ize the reader with most of
the features of the tables. The first row lists the phase ang les (theta) in degrees. The second
row list s the dimensionless wave profile (n/H) at the corresponding phase angles. The
percent values listed beneath the ~/H values are the differences between the
stream-function and Airs Theories , defined as:

Stream-f ii nction—Airv
Perc ent = - X 100 Percen t

Stream-function

The main body (re maining portion) of the table lists the dimensionless horizonta l water
particle velocitie s. The row labeled “Surface” represents the dimensionless velocities
evaluated at the free surface : the percentage differences for velocities are calculated as
defined above for the profile. The remaining par t of the table represents the dimensionless
velocities and percentage diffe rences evaluated on a grid of (0 , S/h). The lack of entries for
the higher .S/h and higher theta values (right side of pa’e) results from the wave profile in
the tro ugh region being lower than in the crest region (left side of page). Two additional
comments pertaining to the percentage values will c-omp lete the descri ption of the samp le
table. A percentage differenc e value of exact ls 100 Percent implies that the

Stream .funetion profil e occured at a (0 , S/h) value , h owever , the Airy profile was lower
than the part icular S/h at th e phase angle , 0 , i.e., this grid point was not “covered”
by the Airs profile . For examp le . thi s is the case at 0 = 0°, S/h = 1.5 and 1.6 and 0 = 180°,
S/h 0.8 arid 0.9. Finall y, the asterisks indicate that the percentage differences were not
calculated because the Stream-function value was less than 5 percent of the maximum
Stream-function value. This avoided the tabulation of very large percentages which would
have been the result of division by a small number.

A brief descri ption of each of the tabulated internal field variables is presented below.
h orizontal Water Particle Velocity Component , u(O , S )
The horizontal water particle velocits component , u(0 , S), is defined by Equation (21) .

(The equations for the tabulated functions are presented in Tables 0, E , and F.) The values
u’(O. S) tabulated . are presented (Table I) in the following dimensionless form :

— 
u ( e ,  s)

U - ( H/T)

45

_ _ _ _ _ _ _- - 
-

~~~~~~~~~~~~~~~~~~~ 

- -  _ _ __ _



— — —
• : ~ !:
~ ~a ~~~~ ~~~~ -~~~~ ~~~~ ~~~~ .

~~~ -~~~~ .j ~ z
! U ‘7 ‘! ‘! ‘7 ’*  ‘7  ‘~~ ‘~~ 

‘
~~ 

‘~~ 
‘
~~

.~~~ : !: !: !~~~~~~!:!:~~~~~!:~~~~~~~
£ 4 . . t  .U . $  U .~~~ .~~~ . J  . . t  .~~~ .~~~ .~~~

•
~~ 

1 .  l~~~ I • 1  • 4 ‘Z  ‘ t  ‘
~~ 

‘
~~

0
— —  41

• 4 II • • • • — — —
• 7: U ~r ~: u ~: U u u U E

• ; r  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .9
— .u .

~~~ 
.U .~~~ . J  .u ~~ ~: :: ~:

U ‘&  ‘ a z  ‘a ‘~~ ‘a ‘a ‘a a ‘a ‘a
-S8 — — —  41

• II 4 ., • • p. — 4 • • I~ 40
a • ~: :: z:~~~: ; : ;: :: a: :: :: a: :: -

~~~: ~ a ~u— ‘ : : : : : • i t  •
a I

h ~: ~: ~:

~~~~ :~ . .. :~ :~ :~ :~ :~ :~ :~ :~ :~• a: a : :a : ~~ a: ~: a: :: U ~: a: ~: U

I I , , , , , .  . I I I I

I —  — ______________________________________________ -S

• ~: ~a h !: h !: ~: h !: h
! •~~ ~z :; :t • £. •J •,t 1. 4. U~~ ~~ ~~ ~ : ~ : ~~• I I E

8 — —  _ _ _  _____________________________ 41

• ~:
4 ‘~~ “ ~~~ ~~~ ‘f

g V

It It It It ‘ It It ¶ ‘
~ ~ ~ It It

~ i i  ~ I ! !  I !  I I J i  I I

— — —

- ‘~~~~~~~~~ ~~~~



p Vertical Water Particle Velocity Component, w(0, S )
The vertical water particle velocity component , w(0 , S), is defined by Equation (22).

The dimensionless values tabulated (Table II), w’(0 , S), are defined by:

w ’ ( O  s) = 
w ( O ,  S)

(H/T )

Horizontal Water Part icle A cceleration , Du/Dt
The horizontal water particle acceleration , Du/Dt ’ is defined in terms of the velocity

components as presented in Equation (23). Note that the tabulated values represent the
total (or material , substantial , etc.) acceleration consisting of the sum of the local and
advectj ve contributions. The dimensionless values tabulated (Table III), Du ’/Dt ’, are
defined by :

Du ’ _ 1 Du
- 

(H/T 2 ) Dt

Vertical Water Pa rticle Acceleration , D w/Dt
The vertical water particle acceleration , defined in Equation (24), is tabulated

(Table IV) in the following dimensionless form:

Dw ’ _ 1 Dw
- 

(H/T 2 ) Dt

Drag Force Component , F D (O , S )
The drag force component up to a certain elevation , S, is defined by Equation (25)

and tabulated (Table V) in dimensionless form as:

F
D 

- 

C
D

PD (R/ T) hJ 
D

Iner tia Force Component, F1(0, S)
The inertia force component up to a certain elevation , s , is defined by Equation (26)

and tabulated (Table VI) in dimensionless form as:

F ’ — — FI CM P1TD (H/T )h J  I

4’
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Drag Moment Component. 
~

1D (0 ’ S)
The drag moment component about the bottom due to wave pressures acting on a

vertical member extending up to an elevation. 5, is pre sented as Equation (27) and
presented (Table V I I )  in dimensionless form as:

M~ {CD PD H,T) 2 h2 )  
MD

Inert ia Moment Component . .-%! , (0 . S )
The inertia moment component about the bottom due to wave pressures acting on a

vertical member extending up to an elevation 5, is defined in Equation. (28) and presented
(Table V I ll)  in dimensionless form as:

M~ = 
{cM P~~D 2

~~H/T 2 )h
2] M1

t) vnamic Pre ssure Component , 
~D~

0’ S)
The dynam ic pressure component , defined liv Equation , (29 ) is tabulated (Table IX)  in

dimensionless form as:

= [
~

) 
~D

This completes the descri ption of t h e  field variables (depending on 0 and S) that are
included in the tables.

Variable s I) epending on 0 Only
Water Surface Displacement , i~( 0)
The water surface displacement is defined in Equation (30), and tabulated

(Tables I through IX) in dimensionless form as:

= [
~

) n

Total Dreg Force Component , F 0(0)
The total drag force component is defined by Equation (25) with the upper limit taken

to be h + i~(0),  and is tabulated (Table V , labeled “SURFACE”) in dimensionless form as:

FD ’ = 
[CDPD~~,T

2
hJ 

FD

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Total Inerti a Force Component , F,(0)
The total inertia force component is defined by Equation (26) with the upp er limit

taken to be h + ~(0), and is tabulated (Table VI , labeled “SURFACE”) in dimensionless
form as:

4
F1’ = CMP 7T D 2 (H/T 2 ) h  F1

Total Drag Moment Component, M0(0)
The total drag moment component is defined b~ Equation (27) with the upp er limit

taken to be h + t i(O) and is tabulated (Table VII , labeled “SURFACE”) in dimensionless
form as:

MD ’ = {cD PD /T) 2 h2J 
MD

Total inertia Moment Component, M1(0)
The total inertia moment component is defined by Equation (28) with an upper limit

of Ii + r~(0)  and is tabulated (Table VIII , labeled “SURFACE”) in dimensionless for as:

4
M 1 ’ 

CMpvD 2 (H/T~~)h 2 M1

Kinematic Free Surface Boundary Condition Erro r , e 1 (0 )
The kinematic free surface boundary condition error is defined by Equation (35). This

variable , as defined , is in dimensionless form and is tabulated in Table X:

Item I , Linear Wave Theory
Item 2, Stream-Function Theory

Dynamic Free Surface Boundary Condition Erro r, e2 ( 0)
The dynamic free surface boundary condition error is defined by Equation (36) and is

tabulated (Table X) in the following dimensionless form:

C 2 ’ = [
~

) E~~

with

Item 3, Linear Wave Theory
Item 4, Stream-Function Theory

This completes the presentation of variables depending on 0 only.

~~~~~~~~~ .1 ~~~~~ 
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Overall Variables (do not depend on 0 or S)
Wavelength , L
For the Stream-function theory , there is no definable expression for the wavelength.

Rather the wavelength is determined as a part of the numerical solution as described in

Appendix I. The dimensionless wavelength is presented (Table XI, Item 1) in the following
dimensionless form:

= IlL-iL
~~~~ 2 )

Average Potential Energy, PE
The average potential energy is defined by Equation (38) and is tabulated (Table XI,

Item 2) in dimensionless form as:

PE’ = —~ --- PE
yH 2

Note that the dimensionless form is defined to be 0.5 for the linear (Airy) wave theory .
Average Kinetic Energy, KE
The average kinetic energy is defined by Equation (39), and is also tabulated (Table XI ,

Item 3) in dimensionless form as:

KE’ = —~--1 KE
yH 2 J

As for the dimensionless potential energy , the dimensionless value for the linear (Airy)
wave theory is 0.5.

Aver age Total Energy, TE
The average total energy is simply the sum of the potential and kinetic energy

contributions (Equation (40)), and is tabulated in dimensionless form (Table XI, Item 4)
such that the difference from unity is an indication of the deviation from the linear wave
theory.

TE’ — 3. TE

Average Total Energy Flux, FTE
The average total energy flux is defined by Equation (41), and is tabulated (Table XI ,

Item 5) in dimensionless form as:

8 F
~TE = YHZ L/T TE

I
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Group Velocily , C6
The group velocity is defined as the rati o of total energy flux to total energy

(Equation (42)1 and is presented (Table XI, Item 6) in dimensionless form as:

1 i ~CG ~~~~ 
C~

The dimensionless group velocity is defined 8uch that for linear wave theory the shallow and
deepwater values are 1.0 and 0.5, respectively.

Average Momentum, M
The total average momentum is defined by Equation (43) and is presented (Table XI ,

Item 7) in dimensionless form as:

- 8 L/ T M
YH Z

The dimensionless momentum is defined such that for linear wave theory the result is unity .
Note that mass transport velocity, U = (M/ph ] is proportional to the average momentum.

Average Momentum Flux in Wave Direction , F,~
The total average momentum flux in the wave direction is defined by Equation (44)

and is tabulated (Table XI, Item 8) in the following dimensionless form:

8
= 

~jj T F
m

The above definition reduces to 1.5 and 0.5 for linear wave theory for shallow and
deepwater waves, respectively.

Average Momentum Flux Transverse to Wave Direction, Fmy
The total average momentum flux in a direction perpendicular to the wave advance

direction is needed to define the radiation stress tensor , (discussed by Bowen 1969), is
defined by Equation (45), and is tabulated (Table XI , Item 9) in the following dimensionless
form:

~~ 8

I~~~
} 

F

For linear wave theory , the above definition reduces to 0.5 and 0.0 for shallow and
deepwater waves, respectively.
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l~in. ’ruaIii Er~ s i, rfu ct ’ tlos inda r v (~,,z diIüi n Err o rs , €
~

i’he k i iu -m , it  ic fr et - surface boundar y condit ion error is defined in dimensionless form
h~ Ei 1iial  inn ( 35) and the root-mean-s quar e (B \1S) and max imum values are tabulated
( ‘l’abh- \ I - l ten i - ~ t O  at id  12) as defined b~ Equa t ion  (46).

!) vnarn , r  F r ee S i i r f a r ’ Boundar y Condit ion Errors. 
~ 2

The d v i , i m i e  fri-c ~u,rf ~iie- b ou n dar y ( on dj t i nn error is defin ed by Equation (36) and is
rej rest ul ted in t h e  follow iti g diruierisioiult- ~s form

=

Tin- H ~~ and m a x i m u m  -~iliies are tabulated (Table XI , Items I i  and 13) as defined by
Eq uation (47).

Kin ema ti c Fr ee Surface Breaking Pa rameter , ~
The kinemati c  free surface breakin g parameter is tabulated (Table Xl , Item 14) as

defined le. I.qu ation (48) (dimension les s form).
I) y na mic Free Surface Breakin g Parameter , 

~~2

The dynami c  free surface breakin g parameter is tabulated (Table Xl . Item 15) as
defined by Equation (49) in dimensionless form.

Variables Pr oton led in Grap h ical F orm -~~ 
( ombined Effect of Shoal ing and Refractio n

In addition to develop ing the tabulated values previousl y described , the stud y included

the deve lopment of t b -  combined effect of shoaling and refraction for nonlinear waves

advan cing towar d shore with a deepwater direction , a 0, over bath ymetry characterized by
stra ight and parallel contours.

For linear wave S h -on , it is possible ti separate the shoaling and refraction effects ,

because neith er wave celerity , C (govt -riling refraction), nor group velocity. C~ (governing
energy f lu x ) .  is dependent on wave hei gh t. For nonlinear waves , both celerit y and group
ve locit y at a certain location depend on wave height as well as wave period and water depth.

The shoaling-r efraction effects for nonlinear waves are therefore not separable , and the

combined effect (lepends on the dcepwater wave steepness . U0 /L 0 , as well as the local
relativ e depth.

Because the shoaling-refract ion re sults are not readil y presented in tabular form , graphs
are j nresented as Fi gures 25, throug h 29 for deepwater wave directions , a

~ 
of 00 , 10°, 200

40°, and 60° . A brief descri ptioi i of the use of these graphs follows. A wave with a
deepwater direction a

~
, will propagate toward shore such that the local FI/L0 will fall

along a curve characterized by the deepwater value 110 /L0 - At any particular relative

depth , li/L a , u i -  local wave steepness l1/L~ and direction a arc read f rom the ordinate
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and interpolated from the appropriate isolines, respectively. The region to the lower right of

the line of dots indicates the region where use of the linear theory agrees with the nonlinear

results presented within 1 percent in ilL0 and 10 in wave direction , a.
V. EXAMPLES ILLU STRATING USE OF W AVE TABLES

Introduction
The preceding chapter has described the formats and the various dimensionless

parameters included in the wave tables. To aid in the app lication of the tables, examples will

be presented illustrating their use. The first example is a problem of a near.breaking wave

interacting with an offshore structure supported by cy lindrical piling. This example will use
those tables which contain the wave profile and the wave forces and moments. Additional
examp les will then be presented which will illustrate the. use of most of the remaining wave
tables. Where possible, examples were selected to parallel problems which may occur in
offshore design.

It is worthy of note that the tables have a much wider applicability than can be illustrated
by the limited number of examp les presented here. A thorough familiarity with the
information summarized in the tables should aid in an understandi ng of them and their use
in many problems involvi ng water-wave phenomena. The examples will be presented in U.S.
Customary units; however the tables are in dimensionless form, and any system could be
used readily.

Example 1—Deck Elevation and Wave Forces and Moments on an Offshore Platform
Consider the design problem of determining the deck elevation and horizontal wave

forces and moments upon individual members of the offshore platform illustrated in
Figure 30. Suppose that the design depth (mean low water + maximum tide + storm
surge), h , is 41 feet , and the main structural members of the platform and outriggers are
pilings 6 feet in diameter, wit’- piling fenders 3 feet in diameter. The fenders extend from
41 feet above the design stillwater level to a depth of 8.2 feet. The outriggers are 20.5 feet
high. Suppose that analysis indicates that the design wave will have a (breaking)
height , El , of 31.78 feet and a period , T, of 20 seconds. The drag and inertia
coefficients, CD and CM, for this structure are assumed to be L05 and 1.5, respectively.

To determine which set of tables to use , calculate h/L0 and H/L 0 , where L0 gT2 /(2~ ),

h 
- 41 -— 

(5.12) ( 2 p ) z  — 0 .02

H 
— 31.78
— 

(5.12) (20) 2 = 0.0155

In this and most subsequent examples in this chapter , the tables for Case 4-D will be used
(see Figure 23). A sample table set for Case 4-D is included as Appendix III.
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Deck Elevation
To ensure that the deck is above the design crest elevation; there by avoiding unnecessari ly

large horizontal and vertical forces and damage to the platform base , the height of the lower

elevation of the deck will be:

h” = h + i t max + h’

where Ii i~ t h e  design water depth . 
~~~~ 

is the maximum displacement of the wave above

design stiiwater level , arid h’ is the deck freeboard (say 10 feet for this problem). umax
will occur at zero phase angle (0 = 0°) and from any of the first nine tables , eta/height

0.89 for 0 =0° Therefore,??,,~~ 0.89(H)=28.3feet and h” h + -T7 +h ’ =4 1 + 28.3 +
10 79.3 feet. The Platform will be constructed so the lower deck elevation will be 79.3
feet above the bottom.

In determining the forces and moments , it is assumed that the piling are sufficiently far
apart to be considered isolated. First , the forces acting upon several structural members will
be determined. The total force . F r (O , S),wiul be a summation of the drag force , F0(0 , S),

and inertia force , F7(0 , S), components at any particular phase angle. Each component

will be presented graphically ; the components will then be added to establish t h e  total force ,

and the maximum force acting upon each member will be obtained from the graph.
Fo rces on Member “a ”
In the case of the outrigger , Me mber a, the drag force is given by :

C pD f Sa
F
D

(U ,S )  = 

~~ J u~ u~ dS’

where D is the piling diameter , S0( 20.5’) is the height of the outrigger above bottom .
and p = mass density of sea water , 1.99 sluggs/foot3 . To determine FD(O , S0 ), select the
tabulated dimensionless drag value for the force , Fb(0 , S0 ), at depth Se/h = 0.5 from
Table V and multiply the dimensionless force by:

CDPD (H/T) h
2

cD
PD(H/ T) h 

— 
1 .05(1.99)  (6 )  (31.78/20) 2 41 

— 
[648.9 lbs ]

2 
— 

2 10.6489 kipsJ
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The inertia force on Member a is given by :

CM pnT D
~ 1

S 
DFi (e ,sa ) = 4 J 0  ~~~~dS’ .

To determine F1(0 , S0 ), select the tabulated value of the dimensionless inertia force,
F ( 0 , S). for a relative depth S0 /h 0.5 from Table VI and multiply the dimensionless
force b~ :

CM P 1TD (H/T )h  
— 2 7 4 . 9  lbs

4 
— 

0 .2749  kips

The total force will he determined by summation of F1(0, S0) and FD(O , S0) at each phase
angle , 0. The force calculations are summarized in Table G and the forces are plotted in
Figure 3!.

TABLE G

Horizontal Wave Forces on Member “a”

O ( ° )  0 10 20 30 50 75 100 130 180

36.31 29.00 14.60 4.30 — 0.04 —L14 — 1 . 5 4  — 1 . 6 2  — 1 . 6 0

FD (kips) 23.56 18.81 9.47 2.79 — 0 . 0 3  — 0 . 7 4  — 1 . 0 0  — 1 . 0 5  — 1 . 0 4

F1
’ 0.0 22.59 36.36 36.63 17.25 3.76 0.67 0.12 0.0

F1(kips) 0.0 6.21 10.00 10.07 4.74 1.03 0.18 0.03 0.0

F
r (kipS) 23.56 25.02 19.47 12.86 4.71 0.29 —0 .82 —1.02 —1.04

Forces on Member “b”
Next , consider the horizontal forces acting on the main support piling. In this case, the

forces are integrated from 0 to h + s~(O)  To determine FD(O) . multi ply the tabulated

- 
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value for the dimensionless total drag for e, F~ (0)  (indicated “Surface” in Table V) by
the same constant as for Member a , i.e.,

CDPD(H/T) 
2h

2 
= 0 . 6 8 4 9  kips

Similarly, F1(0) is found by multi plying the tabulated value , F~<0), indicated “Surface ” in
Table VI by:

CM P rr D 2 (H/T 2 ) h

4 
= 0 .2749 kips

The calculated forces are summarized in Table H and are plotted in Figure 32.

TABLE H

Horizontal Wave Forces on Member “b”

O() f 0 10 20 30 50 75 100 130 180

242.39 119.80 37.00 7.72 — 0.25 —2.19 —2.84 —2.95 —2.92

F~~kipB) 157.3 77.7 24.0 5.0 — 0.2 —1.4 —1.8 —1.9 —1.9

0.0 112.13 113.47 84.55 30.12 6.08 1.03 0.27 0.0

?1
(kipa) 0.0 30.8 31.2 23.2 8.3 1.7 0.3 0.1 0.0

FT(kips) 157.3 108.5 55.2 28.2 8.1 0.3 —1.5 —1.8 —1.9

Forces on Member “c ”
Finally, consider structural Member c, the fender. The computation for this member is a

combination of the two previous methods since it is sometimes over-topped by the wave .
The forces are integrated from S~, = 32.8 ft to S~,3 = 45.1 ft; therefore , the force acting on 
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an imaginary piling up to the bottom of the fender is siihtracted from a similar term for the
top of tlit- fender. The dimensionless forces are ohtained by subtracting the dimensionless
force components pertaining to the bottom of the member from those pertaining to the top.
If the to1) of the member is submerged , the value at S~2 = 1.1 should he used; for times that
the top is not submerged, the value indicated “Surface” should be employed for S~2. Note
that the selection of the proper value for the member upper elevation follows readily from
th e tables; the values at S~ = Li are used at phase angles where they are tabulated
(0 ~ 0 

~ 20°) and the values labt-led “Surface ” are used for the remaining phase angles
(30° � 0 < 180°).

Summarizing , for each phase angle , the net dimensionless force components on Member c
are obtained by:

F’ = F ’ — F ’
DN 

D
u 

D
L

F ’ = F ’  - F ’
‘N ‘U

where the subscripts, N , U and L indicate net , upper and lower. The dimensionalizing
constant for drag force for the member is calculated (recalling that F) = 3’)

CD PD (H/T) h
2 = 0.324 5 kips

and for the inertia force component

C p7t D 2 (H/T 2 )hM = 0.0687 kips

The required calculations are summarized in Table I and the results are shown in Figure 33.
The maximum horizontal wave.induced forces are now available for the design wave , and

may be used in fu rther design analysis. They are summari zed in Table J .
Moments on Member “a ”
The moments due to the wave forces acting on the structure are also essential in design.

For any member , the moment about the mudline is defined as:

MT ( e )  = ~ dF~~( O ,S) = J S dF~, (e ,S) + f S dF1(O ,S)

= MD ( O )  + M1( 8 )
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TABLE I

Horizontal Wave Forces on Member “c”

e ( °)  0 10 20 30 50 75 100 130 150

F ‘ 99.73 75.87 33.17 7 .72  — 0.25 —2.19 —2.84 —2.95  —2.92
DU ___________________________________________________________________

F
D 

‘ 63.34 49.68 23.72 6.40 — 0.14 —1.87 —2.48 —2.59 —2.56
L

F ‘
D
N

F
D 

‘
~~D 

‘ 36.39 26.19 9,45 1.32 — 0.11 — 0 . 3 2  —0.36  —0.36  — 0 . 3 6
U L

F
D
(kips) 11.81 8.50 3.07 0.43 — 0.04 —0.10 — 0.12  —0.12 — 0.12

F
1 

‘ 0.0 65.78 96.88 84.55 30.12 6.08 1.03 0.27 0.0
U

F
1 

‘ 0.0 40.55 62.97 60.49 26.23 553 0.96 0 .22  0.0
L

F
1 

‘ —

N -

F
1 

‘—F
1 

‘ 0.0 25.23 33.91 24.06 3.89 0.55 0.07 0.05 0.0
U L

F1
(kips) 0.0 1.73 2 . 3 3  1.65 0.27 0.04 0.0 0.0 0.0

F
T
(kips) 11.81 10.23 5.40 2.08 0.23 —0.06 —0.11 —0.11 —0.12
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where

f 5 2
= 

p )
~ 

j 
S u l u l d S

and Si

M1
(O ,S) = CMP1T D 2 

~ g.~- dS

TABLE J

Summary of Maximum Wave Forces on
Several Platform Components

Phase Angle of
Maximum Force , F

T 
(kips)

Member 8
m~~

°
~~ 

max

a 70 25.1

b 1° 160

c 1° 12.3

N - -:~ - Phase angles and maximum forces obtained by interpolation
from Figures 31,32 and 33.

Consider the total moment about the mudline on the outrigger (Member a). In this case
S1 = 0, and S2 = S4 = O~5 h. To determine the drag moment, MD(O) , mul tiply the
dimensionless tabulated value for the drag moment , Mb(0), listed at depth S4 1h = 05 in
Table VII , by:

cDpD (H/T) h 26 , 606 for MD in ft-lbs

2 
= 26.606 for MD in ft-kips

&milarly, multiply M ir (0) listed at depth Sa /h 0.5 in Table VIII by:

cMP~
tD (H/T )h 11, 272 for M1 in f t—lbs

4 = 11.272 for M1 in f t—ki ps
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to obtain M,(0). These moments are added to obtain M T(O), as shown in Table K and
Figure 34.

TABLE K

Wave Moments (About Mudline) on Member “a”

O(°) 0 10 20 30 50 75 100 130 180

9.31 7.40 3.67 1.05 — 0.01 — 0.29 — 0.39 — 0.40 — 0.40

M D
(ft_

kips) 247.7 196.9 97.6 27.9 — 0.3 — 7.7 —10.4 —10.6 —10.6

0.0 5.8 5 9.32 9.26 4.25 0.92 0.16 0.03 0.0

(f t—

kips) 0.0 65.9 105.1 104.4 47.9 10.4 1.8 0.3 0.0

M~ Cf t-

kips) 247.7 262.8 202.7 132.3 47.6 + 2.7 — 8.6 —10.3 —10.6

Moments on Member “b”
Next consider the moment on the main structural piling (Member b). The limits of

integration are from 0 to h + 17(0). Therefore, take the tabulated values labeled “Surface ”
from Table VII , [Mb(0)j, and Table VIII , [M~(0)J , and multi ply by:

CD PD (H/T) 2 h 2

2 
= 26.606 for MD in ft—kips

and

CMP7TD2 (H/’r2 )h 2

4 = 11.272 for M1 in f t—kips

in order to obtain MD(O) and M1(0). The two moments are added to obtain Mr(O) as

indicated in Table L and plotted in Figure 35.
Moments on Member “c ”
The fender has the same limits of integration for moment calculation as for the force

calculation and is determined in a similar manner. However , the tablulated moments,
M~~(0 , S), and M ( 0 , S), are taken from Tables VII and VIII. The total moment acting on
the fender is found by: Mr(O) = MD(O ) + M7(0). The calculations are summarized in
Table M and are plotted in Figure 36.
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TABLE L

Wave Moments (About Mudline) on Member “b”

O ( ° )  0 10 20 30 50 75 100 130 180

268.1 102.6 23.0 3 .6  — 0.2 — 1.0 — 1.3 — 1.3 — 1.3
MD (ft

~
kipa) 7133 2730 612 96 — 5 —27 —35 —35 —35

0.0 101.7 78.5 47.5 13.5 2.5 0.4 0.1 0.0

M1
(f

kips) 0.0 1146 885 535 152 28 5 1 0.0

kips) 7133 3876 1497 631 147 1 —30 —34 —35

TABLE M

Wave Moments (About Mudline) on Member ‘c ”

e(•) 0 10 20 30 SO 75 100 130 180

61.94 46 01 18.59 3 . 6 3  — 0.18 —L 0 4  — 1 . 3 1  — 1 . 3 5  — 1 . 3 3

U ___________________________________________________________________________

27.04 20.94 9.61 2.40 — 0.08 —0 77 —1.00 —L 04 —1 .02
I.

14’ —II’ 34.90 25 07 8 9 8  1.23 — 0 1 O  —0.27 —0.31 —0.31 — 0 . 3 1
D

u 
0
L

(ft—kip . ) 464 334 119 16 — 1 —4 —4 —4 —4

14’ 0.0 4h87 59.20 47 .47 13.45 2 .52  0.40 0.14 0.0
‘U __________________________________________________________________

14’ 0.0  17.66 26.76 24 .82  10.04 2.05 0 .34  0.10 0.01L __________________________________________________________________

14 ’ —I14
14’ —14’ 0.0 24.21 32.44 22.65 3 4 1  0.47 0.06 0.04 0.0

1
U 

1L

M I
(ft—kips) 0.0 68 91 64 10 1 0 0 0.0

(ft—k ipu ) 464 402 210 80 9 —3 —4 —4 —4
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The maximum calculated forces and moments on the three platform members due to the
design wave are summarized in Table N.

TABLE N 
-

Summary of Maximum Wave Forces and Moments

FT C O ,S) MT (O ,S)

Member 0 (kips) 0 ( ft—kips )

a 70 25.1 5° 267

b 10 160 1° 714 0

c 1° 12.3 1° 475

F~ .emp1e 2—Wave Characteristics, Kinematics and Pressure Fields
This example describes the use of the tables for calculating various parameters associated

with a periodic wave. These parameters include the wavelength and the kinematic and
pressure f ields.

Wavelength
The wavelength is presented in dimensionless form in Table XI of the sample output and

is determined as follows:

L = ~~~~~
— L ’

For example, for the same wave considered in Example 1, L’~~ 0.422 and T =20 seconds.
The wavelength is therefore :

L — 5.12 (20) 2 (0 .422)  = 864.3 f t

Wave Profile
The dimensionless wave profile , 17’(O ) , is tabulated in each of Tables I through IX and is

defined as:

= 
T 1 ( 8 )

~

--

~ 

T ~~~~~~~~~~~~~~~~~~~~ 
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therofore

~~(O)  — n ’( O )  • H

The wave profile calculation for Cue 4.D I. summarized in Table 0 and is plotted in
Flgiure 37. Note that ~ as an even function of 8.

W.te, Particle Kiisemstics
The water particle kinematics will be calculated for Case 4.D as presented in the sample

output. These kinematics will be calculated for mid-depth (i.e., 20.5 feet above the bottom).
The dimensionless forms of these variables are presented in Tables I through IV of the
ample output. The dimensionless water particle velocities are defined U:

u ’(e - 

H/T

and

and the dimensionless water particle total accelerations are defined U:

Du
(Du) Dt

- H/Tx

and

IDwi - Dt
J.~~J = HIP’

Note that these are functions of 8 and S, however, for convenience, the dependence has
not been indicated in the above expressions. The calculations of the water particle velocities
and accelerations over the range 0° <8<180°, are also summarized in TabLe 0 and plotted
hi FIgure 37.

It will be noted that in the tables of wave function,, the variables are only presented for
phess angles ranging between 0’ and 180’. AlL of the variables are either symmetrical or

*Is~minetrlcal about a phase angle of 00. The variables that are symmetrical include: the
water surface profile, the horizontal component of water particle velocity and the vertical

~~. 
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Figure 37. Example calculations of wave profile , kinematics
and dynamic pressure
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component of water particle acceleration. The antisymmetrical variables include the vertical
component of velocity and the horizonta l component of velocity and the horizontal
component of water particle acceleration.

Dynamic Pressure
The dynamic pressure also was calculated at a distance of 20.5 fee t above the bottom.

The dimensionless form of this variable is:

p
D~~~~~~

and is presented in Table IX of the sample output. The calculations are summarized in
Table 0 of this report and presented in graphical form in Figure 37. Note that 

~D is an even
function of 0.

Example 3— Free Surface Boundary Condition Errors
The free surface boundary condition errors and the reason for examining and tabulating

these errors have been described in Section II. To illustrate the use of tables to calculate the
free surface boundary condition errors, both the distributed errors on the free surface and

the root .mean-square and maximum errors as gross measures of these errors will be
presented. The distributed kinematic and dynamic free surface boundary condition errors
are presented in Table X , Items 1 through 4 of the sample output and the root-mean.square
errors and maximum errors are presented in Table XI , Items 10 through 13.

Distributed Boundary Condition Errors
The calculations of the distributed boundary condition errors are presented in Table P

and Figure 38. The kinematic free surface boundary condition errors as defined and
presented in the wave tables (Table X, Items 1 and 2) are in dimensionless form . However ,

the dynamic free surface boundary condition errors (Table X , Items 3 and 4 of wave tables)
are dimensional as illustrated in the sample calculations accompanying Table P. The
calculations of the root.mean.square (RMS) and maximum kinematic dynamic free surface
boundary condition errors are presented below.

Overall Kinematic Free Surface Boundary Condition Errors
The RMS kinematic free surface boundary condition errors are presented as Item 10 in

Table XI , i.e.,

= 0.0475 (Linear Wave Theory)

= 0 .0 (Stream-function Wave Theory)

78

- 

- 

~~~~~ ~~~~~~~ 

—-- — - ---

~~~~~~~~~~

-—---—---—-- -—--- -



_ _ _ _ _ _ _ _ _ _ _

_ 

_ _ _ _ _ _ _ _ _  

_______ 

I



p

I ~ I

• ~~~~~ 
- \ .

I
~~~ 

-

~~~~~~~~~

\~~~ 
\ ;  L~:1

C \ C

0 \ -~~~
- \~~!I C V C

1 ° 0
t U  4 0

1 l
i

,

). 
- 

S
\S

\\ j  I
- 1~ 

-
~~~~~~~ 

- g 4 t 2  \ _ .
~ 

-

~~

I
\ /~~~ U-
\ f  w I ~

-

- \ . , . 0  - - E 10  U-
Y CO .~~~ 

I’
— ~ I / .2 ~/ \~•~ 

I
/ O N  S. / C ~“

/ .E \ ‘ / >1

I-- / 0
• I

, . 0~~~~ 41
/ ~~~~~~~~~~ i I D/

4)

-( - ?
~~~~~~~~~ 

.

/
• -r .7

_ _
_ / 

_
‘N 

0 1 I ~~~~~~~~~~ 
o I

2
0 — 0 N -~~w I U)

80

~

_

p

__

~~

_ * ,4
_ ~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~



The maximum KFSBC error is obtained from Item 12 of Table XI ,

C 1 max = 0. 0856 (Linear Wave Theory)

l c max = 0 . 0 (Stream-function Wave Theory)

Overall Dynamic Fre e Surface Boundary Condition Errors
The RMS DFSBC errors are presented in dimensionless form as Item I I  in Table XI , i.e.,

= 0.0241

____ 

(Linear Wave Theory )

= 0.765 ft

= 0.0048
(Stream-function Wave Theory)

= 0.153 ft

The maximum DFSBC errors , obtained from Table XI , Item 13 are :

l c d
H 

max = 0.0385

(Linear Wave Theory )

= 1.224 f t
max

£ 2  Tft~~Y = 0 .0289

(Stream.function Wave Theory )

l C 2 I  = 0.918 f t
max

In the interpretation of the boundary condition errors in accordance with the discussion in

Section II. if the boundary condition errors for any given theory were found to he generally
better than for the Stream-function theory , then it could be concluded that at least the
analytical validity of that wave theory would be better , and (as discussed earlier) there is
evidence that the analytical wave theory is a good indicator of the experimental validity (or
of the wave phenomenon in nsture) .
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RT*mp)e 4-Calculation of Energy, Momentum, d Energy and Momentum Phizes
The tabulations of average potential, kinetic, and total energy and energy fluzes and

average momentum and momentum fluxes are presented in Table Xl. The calculation of
these quantities in dimensional form is straightforward and will simply be presented without
discussion.

Average Potential Energy (Table XI, Item 2)

PE’ — 
PE — 0 213[YHZ/8)

PE = 0.213(8080) = 1721 ft—lb/ft 2

Average Kinetic Energy (Table XI , Item 3)

KE’ — 
~~~~~ — 0 2 5 4— (yHZ/8) —

KE = 0.254(8080) = 2052 ft—lb/ft 2

Total Energy (Table XI , Item 4)

TE’ = ( yH z f8)  = 0 .467

TE = 0 . 4 6 7 ( 8 0 8 0 )  = 3773 ft—lb/ft 2

Energy Flux (Table XI , Item 5)

FTE
= 

fyf l Z  Li = 0.447

= 0.447(349166) = 156077 ft—lbs/(ft—seC)

Group Velocity (Table XI, Item 6)

CG
’ = (L~T) 

— 0.957

CG 0.957(43.21) — 41.36 ft/s.c

~~~~~~~~ :~~



Average Momentum (Table XI. Item 7)

M’ = = 0.505(‘HJ
M = 0.505(187) = 9 4 . 4 2  lb—sec/ft 2

Average Momentum Flux in Wave Directio n (Table XI , Item 8)

F m
F ’ —  X — 0 6 0 3m~ [~ ) - .

Fm = 0.603(8080)  = 487 2 lb/ft
x

The average momentum flux has been recognized in recent years as an important dynamic
quantity and is related to wave setup within the surf zone and also is an important factor in
the longshore transport of littoral material.

Average Momentum Flux Transverse to Wave Direction (Table XI , Item 9)

F~~= 

~xj~.j 
= 0.156

F = 0.156(8080) = 1260

From the momentum flux components presented , it is possible to obtain any component
of the radiation stress tensor (Bowen, 1969).
E~~mple 5— Free Surface Breaking Parameters

The free surface breaking parameters as defined by Equations (48) and (49) are based on
two stability considerations. The kinematic free surface breaking parameter is defined in
terms of the speed of a water particle on the surface at the crest relative to the wave form
speed. If this parameter should equal unity , then the wave is regarded as unstable due to
kinematic considerations. The dynamic free surface breaking parameter is defined as the
ratio of the vertical acceleration of a water particle on the surface at the wave crest relative
to the acceleration of gravity. The interpretation is that if this parameter should equal unity ,
then the pressure immediately under the crest would be zero and if the parameter should

83

~ ~~~~~~~~~~ ~~~~~
— * ~~~~~~~~ 

- — - - -
~~~~• • — —~ 

— T



exceed unity , then accordi ng to the equations of motion , the pre~ ure beneath the wave
crest would be negative which is unrealistic and would indicate an unstable water surface .

It should be noted that the theory employed in the study is composed of a finite series of
terms. To adeq uatel y define an instability formall y, it may be necessary to extend the
representation to include an infinite numb er of terms. The results presented here for the
free surface breaking parameters should be interpreted according ly. For the samp le output
(Case 4.D, Table XI , Ite m 14) shows that the kinematic free surface breaking parameter s for
the linear and Stream-function representations are 0.429 and 0.733 , respectivel y. The
corresponding values (Table XI , Item 15) for the dynamic free surface breaking parameter
are 0.0409 and 0.286 , respectively. The wave height associated with this case is
approximatel y 0.78 of the depth and according to the McCowan crit erion , the wave would
he breaking.

Example 6—Combined Shoaling.Refract ion
The shoaling.refraction results were not tabulated , but are presented for various

deepwater directions in graphical form as Figures 25 through 29 of this report.
Example 6-a
Consider a deepwater wave propagating over bath ymetr y characterized by strai ght and

parallel contours; the deepwater wave conditions considered are :

H 0 = 11.52 ft

T = 15 sec

= 40°

Suppose that we wish to find the wave height and dir ection in a water depth of 30 feet and
also the wave height , water depth and wave direction at breaking. Figure 28 is app licable for
a deepwater wave direction of 40°. The deepwater waveleng th L0 is calculated as:

— ~~~~T 2 = 6 .2832  ( 1 5)2  1152 ft

therefore
r

and for h = 30 ft

— 1152 — 0.0260
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The line for H0/L0 = 0.01 is simply foHowed to the left to the intersection with h/L0
0.0260. At this inter section ,

= 0.0119

H — (0.0119) (1152) = 13.71 ft

a ~ 17°

The second part of the examp le requires the breaking depth , height and angle. For this, the
H0/L0 = 0.01 curve intersects the breaking curve at:

h
= 0.0190

La5

therefore

= 0.0147

a~~~~~l7

therefor e

HB = 0.0147( 1152) = 16.9 ft

ha = 0.0190(1152) = 21.9 ft

Example 6-b
Suppose that a wave is observed in transitional depths and it is desired to determine the

height at deep water , breaking, or any depth of interest. For this examp le, the valuea
of H/L0 and h/L0 are calculated from the observed wave height and period and water
depth. If the observed direction corresponds to one of the graphs available, then one
pro ceeds as before in Example 6-a . If the observed point is not in accordance with any of
the graphs available, then an interpolative procedure is required. As an example, consider
the following observed wave characteristics

20 ft

h — 6 O ft

12 eec
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and it is desired to calculate the wave height and direction in a water depth of 40 feet. From

the observed information

L 0 = 7 3 7 . 3

H/Lo = 0.0271

h/L o = 0.0814 (h = 60 f t )

h/L o = 0.0542 (Ii = 40 ft)

Examining the available figures, it is seen that the deepwater wave direction is between
100 and 200 . As a close approximation , the problem is solved for a0 = 10° and a0 = 20°,
and the desired results obtained by interpolation. For a0 = 10°, from Figure 26, a line
passing throu gh H/L0 = 0.0271, hIL0 = 0.0814 is sketched with the same approximate
shape as those for H0/L0 = 0.02 and 0.04 to determine H/L 0 = 0.033 and a = 6.2° for
h/L0 = 0.0542. The corresponding values for Q() 

= 20° are H/L0 = 0.031 and a = 120 . The

procedure is shown grap hically in Figure 39 for = 100 . Because ft a0 = 10° and 200 , the

a values corres ponding to h/L0 = 0.0814 and H/L 0 = 0.0271 are 6.8° and 130 respectively,
and the desired a for these conditions is 110 , the values of H/L 0 and a for h = 40 feet may
be determined by linear interpolation as:

= 0.033 + 
(.031 : ~~~~~~~~~~~~ (110 — 6 . 8 ° )  = 0.032

or

H = (737.3) ( 0 . 0 3 2 )  = 23.6 ft

and

a = 6.2° + ~ = ~~~~~~~~~~~~~ 
(11° — 6.8°) = 10.1 0

Dissipative mechanisms such as percolation and bottom friction are not included in these
results , and in many cases these mechanisms will be of greater significance than the
nonlinear effects on the celerity and group velocity which represent the difference between
the results presented here and the linear wave theo ry.

Example 7—Use of Tables for Nontabul ated Wave Conditions
Most of the previous examples have been presented for wave conditions which were

ava ilable as one of the 40 tabulated cases, i.e., Case 4D. It is anticipated that the tabulations

will be used primarily for preliminary design, and therefore that the 40 cases may provide
adequate information for this purpose without interpolation. Final design of, for example, a
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platform supported by battered piling would pr obabl y be carried out by establishing a
Stream-function or other wave theory representation for the parti cular wave conditions
selected for design.

On occasion , it may be desired to interpolate between the cases presented in the tables
for wave conditions that are substantiall y different from any of the 40 cases. Several
numerical and graphical inter polation methods were exp lored with a goal of obtainin g a
simple method which yielded reasonabl y accurate results. Because most wave vari ables of
interest are nonlinear , numeri cal schemes which used linear inter polation proved to he
inaccurate. The best procedure was found to be a simple graphical procedure which
generall y yields results within 5 percent.

Method
The method uses the tabulated parameters of interest for the H/HB values above and

below the value of interest at the two lower and two higher h/L 0 tabulated values ; in all
for each parameter desired , the interpolated value is based on values of that parameter for
eight tabulated wave conditions. The method ~ outlined in the following paragraphs and
illustrated by two examp les.

Suppose that the wave height , period, and water depth selected for design are HD, TD,
and hD. The design wave steepness and relative depth are calculated as:

HDWave Steepness: —
LOD

h
Rela tive Depth : r2

~
where

L 0 D = 
~~~

The relative depth and wave steepness are plotted on Figure 40 to establish which wave
cases should be used for design. For the examp le shown, H/L~~ 0.086 and
WL~~ = 0.313. This point falls between H/H B values denote d as B and C (i.e., 50 and 75
percent of breaking heights , respective ly) and between tabulated h/L0 values denoted as
Cases 7 and 8. The interp olation would there fore be based on the tabulated par ameter of
interest for Cases 6.B, 6.C, 7-B , 7-C, 8-B , 8-C , 9-B , and 9.C.

The interpolation proceeds as follows. An auxilia ry plot is made of the variable of
interest , e.g., the total dimensionless dra g force at 0 0° Idenoted Fb(0° , Surf .)I . This plot
provides a continuous distribution of Fb(0°, Surf.) versus h/L 0 for relative breaking
heights B and C. Interpolated Fb values are then obtained fro m the auxiliary plot for
the h/L0 design value (0.313). The inter polation for the design wave steepness requires
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measuring (Figure 40) the vertical linear distance from the B and C lines to t h e
design H/L0 of interest; denote these values , L~ and 

~~~ 2’  respectively. Weighting
factors , W , are then established as:

w = A2
L A 1 + A 2

(50)

w = 
A 1

U A 1 + A ~
The interpolated F~ value is finally determined as:

(F
~~

) D = WL ~~~~~~ 
+ Wyj (F~

)u

where the subscri pts , D , L and U outside the parentheses denote : “Design ,” “Lower ”

(Case B), and “U pper ” (Case C).

Example 7.a—Numerical Illustration of Interpolation Procedure
Consider the following wave condit ions selected for design

HD 44 ft

TD = l O sec

hD = l6O ft

which yield

L o D~~~~~~- T 2 = 512 f t

h
0.313L OD

— = 0. 0 8 5 9

and suppose that we require the maximum dimensionless drag force on a pili ng that extends
from the bottom to above the crest level. This maximum value would occur at 0 = 00 and is
the value labeled “SURFACE” in the tabulations. Plotting of the wave steepness and relative
depth on Figure 40 indicates that the design values are spanned by Cues 7-B, 7.C, 8.B and
8-C. In accordance with the preceding section the values of F’D(O°, Surf.) for Cases 6-B, 6-C.
7-B, 7-C , 8-B, 8-C , 9-B , and 9-C are required for interpolation and are summarized in
Table Q.
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TABLE Q

Sununary of F~~(0° , Surf . ) Required for Example 7—a

Case F~~(0° , Surf . )

6—B 22 .37

6—C 28 .79

7—B 8 .60

7—C 11.31

8—B 2 .71

8—C 3.53

9—B 1.33

9—C 1.72

The values in Table Q are presented as an auxiliary plot in Figure 41. Interpolation at the
design h/L0 of 0.3 13 yields the following values of Fb for relative breaking of 50 and 75
percent respectively.

Relative Breaking of 50 percent (Line B): (F ~ )L = 4.90

Relative Breaking of 75 percent (Line C): (Fb)u = 6.10

To interpolate to the design H/L0 , the distances A1 and A 3 are measured from
Figure 40. For this examp le, these are found to be:

A 1 0.11 in

A2 — 0.32 in

The weighting values are then (Equation 50)
I.

w — 
A 2 — 0 .744 itL A 1 + A 2  i

W~3 A 1 — 0.256 4
• U-
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and the interpolated value of F~) is:

(F~~) = WL ( F D ) L + WU(F
~
)u

= ( 0 . 7 4 4 )  ( 4 . 9 0 )  + ( 0 . 2 5 6 )  ( 6 . 1 0 )

= 5.21

To evaluate this interp olated value , a Stream-function solution was developed for the
conditions of interest, and F~ from the actual solution was found to be 5.04 or a difference
of about 3.4 percent.

More comprehensive evaluations of the accuracy of the interpolation method are
presented in the next examp le.

Example 7-b—Assessment of the Int erp ola t ion Method
To present a more extensi ve evaluation of the accuracy of the interpolation method , two

special eases (one shallow-water and one deepwatcr) were selected for evaluation. The wave
characteristics for these two cases are presented in Table R.

TABLE R

Wave Characteristics Selected for Accuracy
Evaluation of Interpolation Method

Wave Hei ght , Wave Period , Water Depth ,
Case H ( f t )  T( sec )  h ( f t )

S—i
(Shallow Water) 19 20 30

S— 2
(Deep Water) 44 10 160

Using the procedure descri bed, interpolated values of a number of quantities of interest
were developed and compared with values obtained by Stream -function solutions at the
wave conditions of interest. Table S presents a summar y of the percentage differences
between the solution and interpolated values.

As an overall statement regardin g the inter polation , it is noted that Table S indicates that
the procedure pr esented genera lly provides results which are within 5 percent; however ,
differeiu es U~~ to 10 lwrc~nt could occur. One final comment concerning the consistency of
the tabulated values is in order. In preparing the auxiliary plots, it was usually found that a
line could b’- dn’wn through the four points within 2 to 3 percent , except for the breaking
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TABLE S

Summary of Percentage Differences Between Values
Determined by Stream Function Solutions

and by Interpolation

Percentage Difference b

Dimensionless Variablea Case S-i Case S-2

u ’(O° , 0.5); Horiz. Vel .
Comp., Zero Phase Angle,
Mid—Depth +3.9 <1

F~~(0° , Su r f ) ,  Max. Drag
Force Component , Acting
Over Entire Depth +6.7 +3.4

F1(].0°, Surf), Inertia
Force Component +1.3 Not Evaluated

F ’(75° , Surf), Inertia
F~rce Component Not Evaluated -3.9

M~(0°, Surf), Max . DragMoment Component About
Mudline +4.5 +3.6

M~(l0°, Surf), Inertia
Moment Component +2.2 Not Evaluated

M~~(75° , Surf) ,  Inertia
Moment Component Not Evaluated -3.7

Pr~s (0°, 0.5), DynamicPressure Component,
Zero Phase Angle ,
Mid-Depth <1 -2.4

p~(l8O° , 0.5), Dynamic
Pre ssur e Component,
Trough Phase Position,
Mid—Depth <1 2.8

L’ , Wave Length 1.1 <1

TE’ , Total Energy -4.6 -3.7

_ _ _  
_ _ _  
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TABLE S—Continu9d

Percentage Differen ceb

Dimensionless Variable a Case S-i Case S-2

F~E , Total Energy Flux — 4 . 2  + 3 . 5

N ’, Momentum —4.1  — 2 . 2

Momentum Flux in
Wave Direction — 3 . 7  — 2 . 6

Momentum Flux
Transverse to
Wave Direction -1.7 <1

KF SBP , K inematic F ree
Surface Breaking
Parameter 8.4 +4 ,4

DFSB P , Dynamic Free
Surface Breaking
Parameter 1.4 <1

Cp.~fer to Tables D, E , and F for a more complete description of the dimensionless variables.
Interpolated Value — Stream-function SolutionPercentage Difference . . X 100 PercentStream-function Solution

-
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wave height , H/H8 LU in ~ hieh case the maximum deviations could amount to
±5 percent. The probable exp lanation for this deviation is that: ( 1) the calculated wave
heights for the tabulated cases were allowed to deviate from the desired values by 1 percent,
and (2) the different orders to represent different cases could cause a difference in
kinematics of I to 2 percent. The effects noted above could conceivably amount to
deviations of ±5 percent for those variables which are inherently nonlinear , e.g., drag forces
or wave breaking parameters.

This compIete~ the section illustrating the use of the wave tables. It should be recognized ,
however, that only the more simple exa mples have been presented and that the tables can be
effectively applied to the solution of situations which are considerably broader and more
complex than those examined in this section.

VI . SUMMARY
This report presents the results of an investigation which has demonstrated that the

Stream-function wave theory provides a generally better representation of periodic wave
phenomena than other wave theories examined. As a result of this indication, tables have
been prepared, based on the Stream-function wave theory . that include param eters which
should be an aid in preliminary offshore design. The tables also include parameters which
are presently of greatest interest to researchers.

Because of its simplicity, the linear wave theory is widely used for many calculations over
all ranges of relative depth. This study has identified that, for a number of variables , t here
are substantial differences between the linear and Stream-function wave theories. Although
this point has not been amplified in this re port , inspection of the tables will substantiate this
conclusion. The identification of these differences should be of assistan ce in pla nnin g
experimental programs to provide definitive research results.

If the set of tables is extensively applied, as is hoped, undoubtedly the users will note
shortcomings, omissions or develop recommendations directed toward the improved
usefulness, applicability, or efficiency of the tables. The author would welcome information
of this type so that future work may benefit by as wide a range of user ’s needs as possible.
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APPENDIX I

N UMERICAL SOLUTION OF STREAM FUNCTION PARAMETERS
Introduction

This appendix outlines the method of determining numerical values for the parameters in
the general form of the Stream-fun ction solution. The numerical solution requires the use of
a reasonably high-speed, large memory computer.
Review of Problem Formulation

The problem of a two-dimensional, periodic wave propa gating in water of uniform depth
has been discussed in Section II of the main body of this report . If the water is
incompressible and the motion irrotational , then the following boundary value problem can
be established for an “arrested” wave system.

Differential Equation (DE):

= o (I.!)

Bottom Boundary Condition (BBC):

w = 0 , z = —h (1.2)

Kinematic Free Surface Boundary Condition (KFSBC):

Boundary aT) w - 3Conditions

Dynamic Free Surface Boundary Condition (DFSBC):

ri + F [ u  
— C) 2 

+ w z J  — Q 1 z — n ( x)  (14)

Motion is periodic in x with spatial periodicity of the wavelength, L. (1-5)

Equations (1-1 through 1-5) represent the common formulation for all of the classical
nonlinear water wave problem. in which it is assumed that the wave propagates without
change of form and a reference coordinate system has been chosen that travels with the
wave form. For a speeified wave height , water depth and wave period , the goal then is to

~~ determine as exactly as possible a solution to the formulation .
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p Stream-function Solution
The general form of the Stream-function solution is:

~ (x , z) = z + ~ X ( n )  sinh (h + z ) )  cos [~ x) (1.6)
n—i

The water displacement, ,~, is determined by setting z = r~ in Equation (1-6)

n ~~~ 
- . 

~~X ( n )  sinh (h + r i ) )  cos [~ xJ (1-7)

where is the (constant) value of the Stream-function on the free surface. The velocity
components are defined by:

(1-8)

(1.9)

In continuing the quest to determine a solution that satisfies Equations (1.1) to (1-5) as
faithfully as possible, it is noted that for arbitrary values of: ~~~ L , and the X(n)’s, the
Stream-function solution exactly satisfies all of the requirements of the formulation except
the DFSBC, Equation (1-4). All of the effort can therefore be directed to determining these
“free ” variables such that they represent the specified wave height and also “best” satisfy
Equation (14). The approach employed is numerical iteration , in which a trial solution is
regarded as available and at each step of the iteration; the “free ” variables are modified to
improve the solution.

As a preliminary step, an error is defined in the one remaining unsatisfied boundary
condition,

~1
E 

~~~
. Z (Q4 — 

~
) 2 (1-10)

i— i J

where the Q1’s represent equally spaced (in 0) values of the quantity in Equation (1-4),
and Q represents the average of the Q,’s. If , for example , 3 = 41, and the free variables
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could be adjusted SO that E was very small, then the associated solution would provide a
good fit to the complete formulation at these 41 points, and computations have shown that
the fit or other phase angles would be comparabl y good. The problem therefore has evo lved
into one of minimizing the total error E. The Procedure used is a least -squares procedure ,
which requires formal ly that

0 ( I - l I )

0 (1.12)

(The parameter ~~~~~ is not determined by the least-squares procedure , but is selected such
that the mean water level is not changed by the other variables selected. This will be
discussed later .) Examination of Equations ( 1-il) and (1.12) further will indicate that the
usual least.squares procedure is not app licable, because the error is not defined as a
quadratic function of the unknowns. This problem then falls in the category of a nonlinear
least .squares problem.

The problem was linearized as follows. Suppose that at the kth iteration , a trial solution
is available. The objective is to select changes in the unknowns such that the errors will be
reduced. If this were a linear least-squares problem , only one iteration would be required.
Expressing the quantity Q in terms of small changes in the unknowns (to he determined at
the kth iteration).

NN 3Q k
Q k+i 

=. + 

n~~i. ~~~~nT ~X ( n )  + p~
- t~L (113)

where

3Q 
= + ~~ ~~ + 

3Q aW 114ax ini an ax (n) 3u 3 X (n )  3w ax (n) ( ‘

- ~-Q. ~ii. + 3Q 3u 3Q 3w aQ 3C
3n 3L 3u ~~ 

+ + (1-15)

where the oQ/ o~ , aQ/a u are obtained from Equation (14) and the an/ax(n ), au/ 3X(n),
etc., are obtained from Equation s, (1-7), (I-B), etc.
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Rewriting the least-squares procedure in terms of the unknowns: ~ L and j~X(n)

( - )

3E
3~ X ( n) = 0 , n = i . . . . N N  (1-17)

Equations (1.16) and (1-17) represent a set of NN + 1 linear simultaneous equations in

terms of the NN + 1 unknowns. After each iteration , the water surface is recalculated, by

iteration , from Equation (1-7) and ~~ is redetermined such that

f L

j f l d X = 0  (1-18)

0

which can be expressed in integral form as:

L/2
= 

~~ 1 

X(n)  sinh (h + ~)]  cos 

~ 
x) dx (1-19)

where, in the computations, a Simpson’s rule approximation to Equation (1.19) is used.

One complete iteration comprises a simultaneous solution for ~ L and the t~K(n)’s and a

redetermination of Ji~ . Successive iterations involve exactly the same procedure, and the

iterations can be terminated when successive reductions in the error E are small. Numerical

instabilities can occur, especially near breaking wave conditions, and one effective procedure

in these cases is to app ly only a fraction of the 1~L and ~X(n)’s specified by the

least-squares solution.
One final comment should be directed toward the prob lem of establishing the desired

wave height. Although it is possible to develop more sophisticated procedures which

converge on the wave height, the procedure followed here was simply to conduct successive

runs until the wave height was within an acceptable limit (1 percent) of the desired height.

- - 
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APPENDI X II

DEVELOPMENT OF COMBINED SHOALING —REFRACTION COEFFICIENTS
Introduction

This appendix describes briefl y the method employed to calculate the combined
shoaling—refraction coefficients.
Background

The shoaling—refrac tion coefficients developed are valid for a bath ymetry characterized
by straight and parallel bottom contours and for a wave system which suffers no energy
losses. The two princi ples employed are Snell’s Law and the concept that there is no energy
flux across a wave ray, see Figure 11-1.

Snell’s Law govern s refracti on and relates the wave prop agation speed , C , to the wave
direction, a ,

Slfl CS 1 
= Const1 = 

S1.
~
f l a 2. (11.1)

in which the subscripts pertain to any arbitrary depths.
The requirement that no energy is prop agated across wave rays may be written as:

f ~~~ CO S CS) — [F TE COS CI ) 2 = Const 2 (11.2)

in which FTE represents the ener gy flux per unit width in the direction of wave
propagation and the cos a term repre sents the width between adjacent wave rays.
The FTE term could be expresse d as the product of the wave energy density, TE, and the
group velocity, C~ , althoug h this will not be helpful in the effort here. For linear wave
theory, it is possible to separate the refraction and shoaling effects because neither the
celerity, C, (governin g refraction) nor the group velocity, C~ (governing shoaling) depend
on wave height. For our case , inspection of Equations (11.1) and (11-2) will show that the
two phenomena are coupled through the dependency of C and C~ on the wave height.
Method
The method employed here utilizes the dimensionless ener gy flux , F’TE (Table Xl ,

Item 5) and the dimensionless wavelength, L’ (Table XI, Item 1), where

F
F’ — TE

TE H ’ L

L
(gT ‘/2 ir)
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N

~~~~~~~~~~Bottom ~Plan View (Not Equally Spoc.d
in Depth)

Ref roction Over Bothymetry Characterized By
Straight and Parallel Contours

Figure 11.1. Definition sketch for shoaling.refraction considerations
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Equation (11.1) can be rewritten in terms of the dimensionless quantities as:

~~~ 

= 
gT 2 = Con st 1 (11-3)

However since the period is conserved , i.e , T1 = T2

sin a 1 = 
sin a 2 —— Const 3 (114)

The energy flux relationship, Equation (11-2) can be expressed as:

~~~~ 

{

~~~~~ 2 ) 3  
[ H J

2 
F
~E 

L ’ cos c~ = Const2

or recognizing that the period i~ conserved

F ’  L ’  cos Cs = Const~ (11-5)
~Loj TE

Equations (114) and (11-5) describe the shoaling.refraction process in terms of available
dimensionless parameters, and were solved as described in the following paragraphs.
Solution

It was found convenient to characterize a particular incoming deepwater wave by the
direction, ;, and deepwater steepness, H0 /L0 - The proble m is to determine wave
steepnesses at other relative depths li/L0 such that Equations (114) and (11-5) are satisfied
recallin g t hat L’ and F ’7.E both depend on h/L 0 and H/L 0 . For each relative
depth , h/L 0, four value s of L ’ and F~E are available (for H/H R 0.25, 0.5 , 0.75, and
1.0, c.f. Figure 23) whereas a continuous distribution is require d for the purpose here . For
each relative depth, h/L0, continuous distributions were obtained by fitting straight lines
between the four available points; for H/H R = 0, it was assumed that the simple linear wave
theory app lied, see Figure 11-2 for an examp le for h/L0 = 0.02.

For given H 0 /L0 and a0 , the constants in Equations (114) and (11-5) are defined. The
wave steepness H/L 0 and direction a at any rela tive depth are determined by iteration of
the two following equations.

0 k+1 
= sin ’ [(L ~~) k sin a~~

) (ll.sS)

k+1 (H 0/L 0 ) 2  ( F ’  )o L~ COB U 0

(F4E) C L ’)  COB CI
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in which the superscript k + 1 denotes the (k + I)th iteration and app lies to the
improved estimates of a and H/L0 . Once these estimates are known, the parameters with
the k subscripts on the right hand sides of Equations (11.8) and (11-9) are calculated and
improved estimates of a and NiL0 are determined , etc. The procedure was initiated in
deep water and the wave steepness and direction calculated at the remaining nine values of
relative depth advancing shoreward or until breaking was indicated. At each relative depth,
the iteration converged very rap idly with three or four iterations usually cufficient. For the
first iteration at a relative depth, the initial value for wave steepness was taken as the final
value for Jie preceding (greater) relative dep th.

The ~ioabng-refraction results are presented in graphical form , for a0 = 0°, 100
, 20°,

40°, and 60° in Figures 25, 26, 27, 28, and 29, respectively. A description of these tables is
presented in Section IV and two examples illustrating their application are given in
Section V.
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APPENDIX III

SAMPLE SET OF WAVE TABLES FOR CASE 4-D
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