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Abstract: khe chemical mechanism for formation of electronically excited
state molecules from the thermal reaction of dimethyldioxetanone was probed.
Light production in the presence of certain easily oxidized aromatic hydro-
carbons was found not to conform to the cla;sica] mechanistic schemes for
chemiexcitation. Detailed investigation of the dioxetanone system revealed
1ight formation by the recently discovered chemically initiated electron
exchange process. This result is extrapolated to bioluminescent systems.

In particular, the key high energy molecule involved in firefly luminescence,
which has been identified as a dioxetanone, is postulated to form excited
states as a result of intramolecular electron transfer from the phenoxythiazole

moiety to the dioxetanone. Subsequent rapid decarboxylation results in

direct formation of an excited singlet state of the emitting amide.
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Bioluminescent organisms are widely distributed throughout terrestrial
and aquatic environments. Although the biological purpose of luminescence
varies from species to species, the chemical mechanism for generation of the
electronically excited state, which subsequently emits light, appears to
be general in a wide variety of organisms. In nearly all of the bioluminescent
prosesses that have been investigated, high-enefgy cyclic peroxide molecules
are implicated as providing the energy necessary for excited state generation (1).
In the study of bioluminescent mechanisms the central concerns have been: i)
identification of the molecule which has an energy content sufficient to
permit excited state generation, ii) characterization of the emitting species,
and iii) identification of the molecular process that converts the high-energy
content molecule to an electronically excited state.

Our recent investigations of chemiluminescence have led to the discovery
of a new general mechanism of excited state formation identified as chemically
initiated electron exchange luminescence (2). Studies of exergonic chemical
reactions that model bioluminescent systems now permit us to suggest that
this mechanism is operative in the formation of electronically excited states
in living organisms. The light-forming reaction of the North American Firefly

(Photinus pyralis) will serve as the prototypical case. The conclusions

reached from this system are readily extended to other bioluminescent reactions.
Many excellent studies of bioluminescence from the firefly have led to

the characterization of the enzyme / substrate system involved in the light

generation step (3). In summary, the substrate luciferin has been identified

as l and independently synthesized. Reaction of l with oxygen in the presence

~of the enzyme luciferase generates a high energy content molecule which has

been identified as the dioxetanone (g) by 180 labeling studies (4). In order

to produce bioluminescence, g loses the elements of carbon dioxide and forms
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an electronically excited singlet state of the observed emitting amide g,
with very high efficiency. It is the mechanism of this last step, the
chemiexcitation step, which has not been previously understood and to which

. we will direct our attention.

LG s a4 o
1 ~ 2 . 3

The cyclic peroxidic molecules dioxetane (g) and dioxetanones () E

have been investigated in a number of elegant synthetic and mechanistic studies (5).
jThe observation that the thermal reactions of these high energy compounds lead

to the formation of electronically excited carbonyl compounds is taken

as strong circumstantial evidence for the involvement of a similar

intermediate in the bioluminescence.of the firefly. The major difficulty

with this interpretation, however, has been the fact that simply substituted

8 B

i R

- dioxetanes and dioxetanones give rise predominantly to the essentially
non-luminescent triplet excited state of the carbonyl compound. On the other
hand, the natural bioluminescent systems form the emitting excited singlet
state with efficiencies approximating 100%. Application of the concepts of
chemically initiated electron exchange luminescence resolves this apparent
incongruity. ' A
Experimental

ﬁﬁﬂﬁxﬁi& Chemiluminescence was detected by the photon counting
technique using an EMI 9813 photomultiplier tube. Spectral resolution was
achieved with a Jarrel-Ash / Ebert 0.25 m grating monochromator. Emission

{ntensities were corrected for photocathode response using the manufacturer's
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.purification of solvents and additives to supress the impurity catalyzed

-4-

spectral sensitivity data and the centers of gravity for the emission spectra.
Temperature control was maintained to within + 0.05° by means of an external
temperature bath.- A1l solvents were purified by passing them through a
column of activated alumina followed by distillation. Rubrene, naphthacene,
perylene, and 9,10-diphenylanthracene were purchased from Aldrich Chemical
Company and purified by chromatography on alumina and recrystallization before
use.

Dimethyldioxetaneone (g) was prepared according to the literature

AN NNV

procedure of Adam and coworkers (6). This compound was found to be remarkably

sensitive to minute quantities of impurities. Extreme care must be used in ]

decomposition pathways.
Chemiluminescence of Q in the Preéence of Aromatic Hydrocarbons.
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Solutions of dioxetaneone 8 in CH2012 (typical concentration 10-6 - 10-5 M)

<) ]0-4

and the appropriate aromatic hydrocarbon (typical concentration 10~ M)
were prepared. The solutions were deoxygenated by purging with purified,
filtered Argon for 3 min at 0°. The chemiluminescent intensity was measured
by integrating the light emission at the maximum wavelength for the aromatic
hydrocarbon fluorescence.

Results and Discussion

Conventional Mechanisms for Chemiluminescence. Previous studies of
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chemi luminescent phenomena have led to the evolution of two broad classes of
mechanisms for chemiexcitation. In the first, thermal rearrangement of a
high-energy content molecule, reacting directly or through an intermediate,
generates an electronically excited state of a product molecule. Emission
of a photon of light from the excited molecule results in observable direct
chemiluminescence. Alternatively, the excited product molecule may enter

into a bimolecular energy transfer reaction with a suitable energy acceptor.




This process resﬂlts in formation of the electronically excited acceptor which,

in a subsequent step, emits a photon of light, producing indirvect chemiluminescence.

This sequence is shown schematically in Figure 1.

The second general mechanism for chemiexcitation that has been well
documented is electrogenerated chemiluminescence (7). In this approach a
radical cation, usually generated by electrochemical oxidation at a suitable
anode, and a radical anion, typically the result of reducpion at a cathode,
form a diffusive encounter pair. Charge annihilation in the encounter
jon pair results in the generation of an electronically excited state.
Subsequent emission of light from this excited state, or one derived from
jt, results in detectable luminescence. This general pathway is shown
schematlcally in Figure 2.

Chemically Init 1ated E]ectron Exc hange Luminescence. In the course of
our studies of the thermal reactions of high-energy content molecules, we
established that the chemiluminescence from diphenoyl perokide (é) did not
conform to either of the conventional mechanisms for chemical light formation.
The thermolytic conversion of peroxide g to benzocoumarin (Z), in ca. 70%
yield occurs with no significant generation of an electronically excited state
of Z However, it was found that inclusion of any one of several easily

oxidized aromatic hydrocarbons in the reaction solution led to efficient

+ cn2 (2)

chemiexcitation of the hydrocarbon and bright 1ight emission. Moreover, it
was demonstrated that the aromatic hydrocarbon exerted a powerful catalytic
effect on the decomposition of diphenoyl peroxide. In addition, it was shown
that it is this catalytic path that gives rise to the chemiluminescence.

e
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Significantly, the rate at which the aromatic hydrocarbon catalyzes chemiexcitation,
and the actual yield of electronically excited states, correlates with the
one-electron oxidation potential of the aromatic hydrocarbon, Figure 3.

Thus, we have identified the initiating step of this reaction sequence as an
activated electron transfer from the aromatic hydrocarbon to diphenoyl peroxide.
Subsequent rapid decarboxylation and ring closure generates the radical anion
of benzocoumarin within the same solvent cage as the radical cation of the
aromatic hydrocarbon. Charge annihilation of these species then generates

the luminescing excited state of the aromatic hydrocarbon. This reaction
sequence is detailed in Figure 4. Further convincing evidence that this
reaction proceeds through a charge annihilation involving benzocoumarin

radical anion is derived from the observation of exciplex emission . .

when .triphenylamine is the electron donor. The chemiluminescent exciplex
emission in this case is identical in all respects to the emission generated

by photoexcitation of mixtures of benzocoumarin and triphenylamine. We

have designated this sequence of reactions leading to light emission chemically
initiated electron exchange luminescence (CIEEL) (2).

We have demonstrated the generality of chemiexcitation by the CIEEL
mechanism in a number of different systems. Of most relevance to the present
discussion of bioluminescent mechanisms is the dioxetanone system. Initial
investigation of dioxetanone thermolysis led to the observation that unimolecular
decomposition generates triplet excited carbonyl compounds in at least twenty
times higher yield than the singlet excited carbonyl compound (8). In a
Tater report (9), Adam noted that the overall yield of light was greater by
a factor of twenty when rubrene was included in the reaction solution than
when 9,10-diphenylanthracene (DPA) was the additive. This result was interpreted

as being due to a triplet-triplet annihilation reaction. However, triplet-triplet

annihilation as the cause of the increased light yield is inconsistent on




theoretical grounds and has recently been shown experimentally not to be
possible under the chemiluminescent conditions reported (10).
We have investigated the chemiluminescent reaction of dimethyldioxetanone
] (Q)' Our results show that the rate of reaction of diqxetanone g is dependent
upon the presence, concentration, and nature of easily oxidized aromatic
= hydrocarbons. Also, most significantly, for the series of aromatic hydrocarbons,
DPA, perylene, 9,10-diphenylethynylanthracene and rubrene; the total licht yield
is directly correlafed with the oxidation potential of the hydrocarbon. These
observations implicate CIEEL as the major light producing reaction pathwvay for
~dioxetanones. If simple electronic energy transfer from the initially formed
singlet excited state of acetone to the aromatic hydrocarbon was responsible for
light production, then all of the aromatic hydrocarbons, when corrected for
fluorescence efficiency, should have generated the same photon yield.

Qio]uminescence bx Qggmicall ¥niElg&ggmglg;troqﬂgégQggggmkH%iﬁg§E§nce.
In considering the options available to the high energy bioluminescent

intermediate, dioxetanone 3, for chemiexcitation, it is immediately clear
that this molecule is ideally constituted for excited state production by

intramolecular chemically initiated electron exchange. In particular,

eiECtron transfer from the easily oxidized polycyclic heterocycle

portion of the molecule to the high energy dioxetanone moiety followed

by rapid decarboxylation will generate a charge transfer resonance structure
of the excited singlet state of the observed emitter. The intramolecularity
of this process prejudices the reaction toward the formation of excited
states of singlet multiplicity, as is.observed in the living system.

This reaction sequence is outlined in equation 3. __

4 Consistent with this mechanistic pcstulate, it has been observed that

©- .~ . -=»methylation of the phenolic oxygen of firefly luciferin makes the system
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excited singlet state :
non-bioluminescent although the methylated ketone itself is an efficient
fluorescer (11). This is the expected result if intramolecular CIEEL is
responsible for light production. The methy]gted substrate is anticipated
to be much more difficult to oxidize than the phenol anion (12).

In summary, we have demonstrated that our recently discovered CiEEL
mechanism for chemical light formation operates in the dioxetanone system.
The dioxetanone is areasonable model for firefly bioluminescence. Application
of CIEEL to these bioluminescent systems results in an explanation for the
observed high singlet yield and the effect of methylation. Moreover,
chemiexcitation by this path is quite efficient biologica]ly. Nature has
built both an effective electron donor and a high energy electron acceptor,
as well as an efficient fluorescer, into the same molecule. Certainly this
is an effective way to insure high yield 1ight formation. Experiments directed
toward the detailed elucidation of the bioluminescent pathway are underway
in our laboratory.
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Conventional Chemiluminescence of Organic Molecules

High Energy | Thermal | Electronically Energy Transfer | Excited
Molecule Reaction | Excited State Acceptor - | Accepior

.

Y Direct 2 Y Indirect
Light : 38 . Light
or e : o
Photochemical ; : Photociicmical
Reaction et s | Reaction
Examples:
: 0—0
a) 1,2 -Dioxetanes Led
OI
b) Luminol mw m
NH, O~
c) Dewar Benzene — v
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