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Chapter I. Introduction and Motivation

The use of digital computers to process images has rapidly increased.
It has been estimated (1] that within the next ten years a potential digital
image processing market of 400 million frames per year could develop. This
market will depend on how powerful digital image processing techniques be-
come and if they can be implemented in a cost-effective manner. Although the
cost of computing power has decreased, disregarding inflation, it is felt
that a specialized computer architecture tailored to image processing might
give at least two orders of magnitude gain in cost effectiveness. As will be
discussed in a later section, the throughput for an image processor, depenfi~
ing on the algorithm and the size of the image, can be several orders of
magnitude greater than that of a general purpose computer doing the same
operation.

Image processing in its most general sense consists of a set of opera-
tions performed on an input image which produces an output. However,there
is no consensus of what constitutes the set of operations or what the
desired output is.

Image processing, in general, can be separated into three areas, image
digitization and coding, image enhancement and restoration, and image seg-
mentation and description. The first area consists of the conversion of an
image from a continuous to discrete form and the compression of this infor-
mation so as to conserve storage or channel capacity. The second area,
enhancement and restoration, deals with improving the quality of an image
that has been degraded due to noise, blurring, lack of constrast, or
geometric distortions. The third area, segmentation and description, is
perhaps the most difficult of the three. It involves the measurement of pro-

perties, or features, of the image or parts thereof and the classification




or description of the image in terms of these properties.

The motivation of this research is based on a number of factors. First
of all, image processing differs from conventional data processing in three
major aspects:

(1) two-dimensional image data arrays require large amounts of
storage;

(2) high on-line processing rates are needed for real-time applica-
tions; and

(3) operations to be performed on the data are usually highly paral-
lel in nature.

Processing of image data by conventional general purpose computers,
those which are based on the so called Von Neumann architecture (2], require
enormous amounts of computing time. The unsuitability of the architecture
for doing these tasks, which results in the high computing costs, is based
on several factors [3]. Programs and data are stored in the same memory unit
and all operations are serially executed. Due to the large amount of image
data, main memory capacity is usually exceeded, resulting in large amounts
of overhead time in order to transfer data between secondary storage and the
main memory. Finally, input/output transfers are slow since the central pro-
cessor must initiate the transfer of each word. Therefore, by developing a
special ized computer architecture that is optimized for image processing,
real~time cost-effective image processing may be possible.

The second motivation is due to the technological advances that have
been made in integrated circuits, along with the "birth"” of microprocessors.
Since microprocessors are becoming less expensive and more powerful, is it

possible to use them as a means of providing a large, cost-effective compu-

tational capability for image processing.




With the above motivations in mind, the following questions will be
discussed.

(1) In what configuration should a multi-microprocessor system be
organized?

(2) How should the memory be al located?

(3) How many microprocessors are needed to surpass the performance
of a conventional computer |ike the PDP-11/70 ?

(4) How would such a system compete in terms of performance against
a cellular logic array built for image processing?

(5) What advantages are there in using a mul tiprocessing system ?

In Chapter II, an approach to image processing hardware based on the
concept of cellular logic arrays will be evaluated. A study by Duff, Cordel-
la, and Leviadi [2] comparing the parallel processing and sequential pro-
cessing of images will be investigated in Chapter III. In Chapter IV, anoth-
er approach to 1image processing hardware, a partitionable multi-
microprogrammable microprocessor system will be examined. In Chapter V, per-
formance issues will be investigated. Finally, areas for further research

will be discussed in Chapter VI.
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Chapter II. Image Processing Cellular Logic Arrays

A cellular logic array processor consists of an array of cells or sub-
processors, where each cell is assigned to a pixel (The word pixel is an ab-
breviation for "picture element'.). Each cell receives inputs from an exter-
nal data source and from neighboring cells. A cell contains boolean logic to
process the inputs and storage for saving intermediate results prior to pro-
ducing a final output. The storage for grey level images is in terms of en-
coded bit planes. For example, an 8 level grey scale image can be stored in
3 bit planes. Two outputs are available from each cell. One connects with
neighboring cells and the other is used to output the processed pattern.

The structure of a cellular logic array is best suited for the perfor-
mance of "local operations'" on image neighborhoods. A local operation on an
image defines a value for each pixel in the transformed image in terms of
its own value and a small set of its neighbors. Since each pixel is as-
signed to a cell, all the values of the new pixels in the transformed image
can be computed in parallel.

The optimization of a cellular logic array structure is based on three
factors:

(1) interconnection pattern,
(2) internal logic, and
(3) internal storage.

An array which has a rich interconnection pattern, powerful internal
logic, and large amounts of storage will be expensive but will have a capa-
bility of fast and sophisticated processing. On the other hand, if the array
is sparsely interconnected with minimal logic and storage, each cell will be

simple and inexpensive with, however, little processing capability.




Several image processes have been designed which are based on a cellu~

lar logic approach. The Illiac III [5,6] is a digital computer which was
designed for automatic scanning and analysis of homogeneous image data, e.g.
bubble-chamber negatives. The system <consisted of 3 parts: image
acquistion/display, image encoding for information transmission, and clas~
sification of the encoded image. A schematic of the computer is shown in
Figure (1). It was recognized in the initial development of the system that
the data rate for local image processing would create a system bottleneck.
Therefore, a special processor was designed to permit the rapid recognition
and description of an input imagé.

This unit, the Pattern Articul ation Unit (PAU) was to perform local
preprocessing on the input image, such as track thinning, gap filling, |ine
element recognition, and so forth. The logical design was optimized for the
ideal ization of the input image to a line drawing. Nodes representing end
points, points of inflection or intersection, among others, were labled in
paral lel under the program control of a unit called the Taxicrinic Processor
(TP) . The output of the PAU is a graph, in a list structure, which describes
the interconnection of the labled nodes.

The Taxicrinic Processor assembles these graphs into a coherent list
structure subject to a recognition grammer. This grammer categorizes the
agraph, thus, recognizing the contents of the original image. In addition to
controlling the operation of the PAU, the TP also oversees the operation of
the arithmetic units and initiates input/output operations. The Arithmetic
Unit is used for any mathematical operations needed, such as for statistical
analysis.

The PAY consists of an iterative array of 1024 identical processing

elements called stalactites which are arranged in a 32 by 32 two dimension
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array. An input image, which is typically 1024 by 1024 pixels, is parti-
tioned into a lattice of 32 by 32 pixel windows. The image is processed
serially by window and in parallel within the window. Within the window, an
image is described by a set of bit planes.

In Figure (2), the structure of a stalactite is shown in simplified
form. Each element can accept an input from itself and from any of the eight
neighboring elements in the plane. The input signals are ORed together, op-
tionally complemented, and stored in one or more of the nine memory planes.
Communications with extra planes in the core buffer is through the M plane,
which serves as the buffer register of this memory. The outputs of any
selected set of planes can be ANDed or ORed to get an output signal which
can be optionaliy complemented. This signal is then passed on to neighboring
stalactites. In addition, there is a signal path which allows an input sig-
nal to pass through the element without iterim storage. This feature allows
path building with the array.

The common set of control lines 1is connected to each stalactite.
Thirty-one instructions are provided. They can be grouped into the following
categories concerned with (1) loading an input image string into the array
or generating an output image string, (2) planar transfers of information,
(3) redefining the value of a pixel in a plane on the basis of its neighbors
either 1in the same plane or in corresponding positions for neighboring
planes, and (4) the input or output of associatively derived coordinate in-
formation.

On a historica! note, the Illiac I1I computer was never completed. A

fire in 1967 destroyed the PAU and the main frame of the computer. At a

later time, the project was abandoned.




—
FQ—T “
L 7
s7
h—J
. . & T
FROM | ol _1neus . o Bt o SNEAREST
m““’“ R o . |NEeoRs
L L]
si
2
S0
(| —— 1)
\_/

Figure (2) Simplified structure of a Stalactite




T

CLIP, an acronym for Cellular Logic Image Processor, is the riie of a
family of cellular logic arrays that have been proposed and const-ucted at
the University College London. These processors have been built in an at-
tempt to provide a general purpose hardware facility for image processing
studies.

The CLIP family consists of four different processors, each with dif-
ferent capabilities. The CLIP 1 [7] served to test the feasibility of con-
structing an integrated circuit array in which propagation of signals into
and from all parts of the array might take place. Three functions could be
impl emented: extraction of connected objects, extraction of object boun-
daries, and extraction of the contents of closed loops.

The CLIP 2 [8] was the first programmable array to be constructed. It
consisted of a 16 by 12 hexagonal array of 192 symmetric boolean operators.
Each cell had two inputs: A0 being the value of the 1input pattern at the
cell and An which 1is the output from a NAND gate. The inputs to the NAND
gate are the A11 outputs from the six neighboring cells in the array. These
binary inputs are transformed by the cell into two independent binary out-
puts, A1 and A11. The A1 is the processed pattern and the A11 connects with
the six neighboring cells. Figure (3a) is a logic diagram of the cell. Since
communications between the cell and its neighbors is through a NAND gate,
the source of the signal 1is never identifiable. Thus, the cell is non-
directional in character.

In Figure (3b), the layout of the complete system is shown. An input
pattern Ao is stored in a 192 bit shift register Min as a sequence of 0 and
1 logic states, representing the white and black parts of the original im-

age. This pattern can be circulated and displayed on an oscilloscope. The

output pattern A1 appears on the 192 output leads from the array and is
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stored in the "out shift register. The contents of this register can also be
displayed on the oscilloscope. In addition to "in and "out’ a third 192 bit
memory is provided for storage of a pattern while another pattern is being
processed. ' i

The CLIP 2 system is controlled by means of a 12 bit instruction word.
There are two types of instructions, LOAD and PROCESS. The LOAD instructions
are used to cycle the input and output memories, load and display their con-
tents, and for transferring the contents of "in or H1 or both. The PéOCESS
instructions set the values of the control lines, the position of the rout~
ing switches S1, the position of the gate switches Sz, and set up a logical
0 or 1 on the interconnection leads which extend outside the array.

Up to 32 instructions can be stored, so that sequences of instructions
can be executed. The instructions are entered either by 12 switches or by
punched tape.

Since the CLIP 2 cell represents a compromise over a completely general
cell, the versatility of this processor was severly limited due to the na-
ture of the cell interconnections. In the general cell, there would be nine
inputs, two outputs and a total of 1024 control lines. In the CLIP 3 (9,101,
a compromise was achieved which allowed implementation of all the functions
of the general cell by means of short sequences of functions, but which did
not require the complexity of the general cell. This cell, as shown in Fig-
ure (4a), 1is similar to the CLIP 2. It is preceded by a threshold unit fed
by the 8 neighbor inputs; each input is individually gated into the thres-
hold unit. The threshold unit has 3 control inputs which set the threshold
level, and 8 control inputs which select a subset of the neighbor inputs to
be summed and thresholded. The processor requires 8 control |ines as before.

Therefore, 19 control |ines are required to determine the function to be

e e TSI R .le.:...:.,. ...,._4.,<_,
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performed.

The array structure is comprised of 192 cells, as in the CLIP 2. How-
ever, the array interconnection pattern can be either square, with eight
connections to each cell, or hexagonal, with six connections to each cell,
or hexagonal, with six connections to each cell. The choice of interconnec-
tion is under control of the programmer.

The two patterns presented to the processor are held in the A and B re-
gisters. Processed patterns, represented by D, are output into one of 16
memories. The interconnection output N appears as inputs N1 to N8 in the
neighboring cells' threshold gates. The thresholded sum of the inputs is T.
The OR gate forms the logical sum B+T, which together with A, provide the
input to the processor. Patterns are input into the system and the results
are output from the system via the A register. Instructions to the processor
are stored in a 256 word RAM. The instructions are 24 bits long and are of 5
types: PROCESS, LOAD, and BRANCH instructions and two special BRANCH in-
structions for entering or leaving subroutines.

An obvious limitation in the CLIP 3 is the (ow resolution obtained with
the small 16 by 12 cell array. Also, the number of grey levels that can be
handled is limited by the number of D-arrays available at any given time.
Because of these limitations, a hybrid CLIP 3 array was built to gain ex-
perience with larger image areas. A scanning unit was designed which inter-
faces the CLIP 3 with a television camera. Provision is made to threshold
the video signal and digitize a 96 by 96 array. The unit scans the 192 cell
CLIP 3 array across the 96 by 96 data field and provides storage to handle
signals that propagate between sectors. The scanning process is complicated
by the fact that a forward scan must be followed by a reverse scan to allow

for propagations in all directions and a check scan to determine that all
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propagations have taken place. The complete system is interfaced to a
PDP-11/10 computer which provides data and instruction storage and also pro-~
vides program editing and assembling facilities.

Using the results obtained from the CLIP 3 and the hybrid version, a
NMOS LSI processor called the CLIP 4 [11,12] has been built. It is a 96 by
96 cell array with several changes made in the basic cell design. The struc-
ture of the basic cell is shown in Figure (4b). The D storage has been in-
creased to 32 bits; the interconnection threshold gate has been replaced by
an OR gate; and a few extra gates and an additional buffer to provide an au-
tomatic carry for arithmetic operations has been included. The use of NMOS
LSI will cause a speed reduction in the CLIP & by a factor of at least five

compared to the CLIP 3 which used MSI TTL.
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Chapter III. Evaluation of the Cordella, Duff, and Levialdi Study

A study that was performed by Cordella, Duff, and Levialdi (4] compar-
ing the sequential and parallel proressing of images is discussed in this
chapter. The sequential processing was done on an HP2116 minicomputer. The
parallel processing was done on a hypothetical processor, based on the per-
formance of the CLIP 3.

The tasks investigated were of the type used during the preprocessing
phase of a pictorial pattern recognition procedure. These tasks include
smoothing, thresholding, contour extraction, thinning, and perimeter evalua-
tion. An assumption made in the study was that the images had a maximum of
32 grey levels.

A number of serious problems were found in the evaluation of their
study. The first area concerns the use of clock cycles as a basis of compar-
ison. Unless the time for a clock cycle is equal in both p processors, the
results are not a valid indication of how long a task takes. For example,
consider the case where Processor A has a clock cycle of 1 microsecond and
Processor B has a clock cycle time of 10 microseconds. If both processors
use the same number of clock cycles for a task, then it is obvious that Pro-
cessor B will take 10 times as long as Processor A to complete the same
task. However, their study would not show any difference.

The second problem area involves how realistic the study is in terms of
present or near future technology. In their study, they used the performance
of the CLIP 3 as a basis of comparison. However, it is not feasible at this
time to build large cellular arrays with this speed performance. For exam-
ple, using MSI TTL technology from which the CLIP 3 was built, a 96 by 96

array would require 16 racks, each 6 feet tall by 19 inches, plus the space
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required for power supplies. As discussed in the previous chapter, in order
to build a 96 by 96 array it required switching to an LSI NMOS technology.
This resulted in a factor of five loss in speed for LOAD/PROCESS instruc-
tions and a factor of ten loss in speed for propagation. This speed loss is
due to the fact that gate propagation delay in NMOS is much greater than in
TTL. Although it is possible to place approxiately 1000 gates on a LSI chip
as compared to 100 for MSI, it is still only possible to place 8 cells on
one chip. Thus, a 7 foot tall rack is required to hold the entire array.

As mentioned before, Cordella et al. assumed that the images were |im-
ited to 32 grey levels. However, for most image processing situations, grey
levels of 128 or 256 are more realistic. In fact, it was found that by ex-
tending the equation they derived for thresholding [13] to arbitrary grey
levels, for a 50 by 50, 256 grey level image, assuming equal cycle times, it
is faster to compute the threshold on a sequential computer (Table (1)) than
on a cellular logic processor. This is due to the fact that since CLIP
operations are low level, overhead results when doing higher level opera-
tions. The overhead becomes significant when a small image is computed.

Therefore, considering the problems presented in this chapter, the

tremendous speed gains (Figure (5)), determined in their study, must be tak-

en in the proper perspective.




Number of Clock Cycles (xw3) for Thresholding (MXM) Image Using

Cellular Logic Processor

Grey Levels

M 1 32 6U 128 256

50 [ 12 24 47 o -
100 | 24 I3 92 183
500 ; 113 226 450 899
1000 || 225 500 898 1800

Number of Clock Cycles Required for Sequential Processor (Values
Vary Very little with Respect to Number of Grey Levels)

Grey Levels
M 32-256
50 75 <—o
100 300
500 7500
1000 30000

Table (1) Number of Clock Cycles Required as a Functionof the Grey Scale
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Chapter IV. Partitionable Multi-Microprogrammable Microprocessor System

This chapter discusses another approach to image processing hardware.
Instead of having a boolean processor for each pixel in the image as in the
Illiac or CLIP processors, a sophisticated powerful processor 1is wused for
each subsection of the image. Computations are performed on each subsection
of the image sequentially, however the computation of the algorithm is ef-
fectively done in parallel.

If the size of each subsection of the image is allowed to shrink to a
single pixel, the result is a cellular logic array computer which was dis-
cussed in Chapter 3. A specialized computer of this form has been proposed
for the numerical solution of problems in fluid mechanics [14,15]. The com-
puter described has a fixed interconnection network where each cell can only
communicate with its nearest neighbors '"above" and '"below" and to the
"right" and "left".

The approach taken in this paper seeks a balance between organizational
complexity and performance. Since this system is being developed for a par-
ticular application, some generality can be sacrificed for an improved per-
formance based on the specific requirements of the a application. Figure (6)
shows the overall block diagram of the system. Some of the goals of this
design are as follows:

(1) use multiple microprocessors operating in parallel to achieve
high performance in a cost-effective manner,

(2) provide high speed input/output,

(3) have a flexible memory system which is structured to minimize

memory contention, and

(4) design an interconnection network that allows partitioning of a
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group of microprocessors into smaller groups where each subgroup can

work on a different task.

The system can be broken down into the following parts: Memory, Memory

Management and 1/0 Processor, Interconnection Network, Microprocessors, and

Sequential Controller. Each part will be discussed in the next five sec-

tions.
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Memory

Memory in this system is divided into two types, data memory and in-
struction memory. Data memory is split up into N separate modules, where N
is the number of microprocessors in the system. Data is allocated to each
module in terms of @ row major form. This is illustrated in Figure (7). Each
module contains sufficient memory to store the original subsection of the
image as well as storage for the resulting computation, temporary variables,
and a buffer to allow communicetion between microprocessors. The exact
amount of storage will be a function of the largest image to be processed
and the number of microprocessors in the system. By distributing in row ma-
jor form, the number of different memory modules with which each micropro-
cessor must communicate can be minimized. This, in effect, reduces the
overhead necessary to control the interconnection network between micropro-
cessors and memory. The address mapping function of the memory management
and 1/0 processor is simplified since the data is mapped into sequential lo-q,
cations in each memory module. A high I/0 bandwidth can be obtained since
all I/0 transfers will be done using direct memory access. It is also possi-
ble to use a parallel head disk arrangement for secondary storage which will
yield fast transfer times.

A possible modification of the data memory modules can be made. In this
arrangement, each memory module consists of two submodules where it is pos-
sible to access data from only one submodule at a time. While operations are
being performed on the data in one submodule, new data can be input to the
other submodule or results of a previous process can ve output. Thus,
input/output can be ovarlapped with the computational process. This type of
arrangement would be useful in a full production mode of operation. This

mode would correspcnd to the situaticn where the same operations are being
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performed on many images of the same type and high throughput is needed. An
example of this would be an automated white blood cell count system. In a
research oriented environment, this modification would not be very useful.
This 1is due to the highly experimental and interactive nature of the compu-
tations being performed.

The instruction memory is partitioned into four modules. Each module
consists of memory along with sequencing hardware which is used to broadcast
instructions to a partitioned set of microprocessors. These modules are
loaded by the sequential controlter through a single bus. If the system is
to operate with a single group of N microprocessors, then all four modules
are l|oaded 1in parallel with the same instructions. If two tasks are to be
executed, each with N/2 microprocessors, then two modules are loaded with
the instructions foltowed by the other two modules being loaded with the in-
structions for the other task. If four separate tasks are to be executed,

then each module is loaded with a different task.




Memory Management and 1/0 Processor

The memory management and I/0 processor (MMIO) is responsible for the
allocation of data to each memory module, control of the direct memory ac-
cess process, and all input/output interfaces. There are three modes of data
allocation and transfer possible for the MMIO.

The first mode of operation consists of a sequential access to the
memory modules. This mode is best described in terms of an example. Suppose
data from a slow-scan (15 field/second) television camera scanner [161 is to
he input to the system. It is assumed that the image is 256 by 256 pixels
and that there are 64 microprocessors in the system. The MMIO processor will
operate in the following manner. Upon command from the Sequential Controll-
er, the MMIO processor first determines that 4 rows of 256 pixels each are
to be allocated to each memory module. It then sets up a direct memory
transfer for 1024 bytes. The memory locations where the 1024 bytes of infor-
mation are to be stored is determined by the mode, the internal starting ad-
dress, and the memory module number. The actual hardware implementation of
this will be given following the description of the other modes. In the
scanner, data is sampled and digitized on a line by |ine basis with 256 pix-
els obtained per horizontal sweep. The scanning process is initiated by the
MMIO and coincides with the beginning of a new television field. This begin-
ning of a field is denoted by a vertical synch pulse preceeding a horizontal
synch pulse. Once 1024 pixels have been input to the memory module, the MMIO
processor changes the address to the next memory module, sets up a block
transfer of 1024 bytes, and reinitiates the scanning process upon receit of
the next horizontal synch pulse. All processor changes are made during the
horizontal retrace time of the slow-scan television camera, which amounts to

approximately 50 microseconds. Therefore, it is possible to input a 256 by
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256 image in 1/15 of a second, the time required to scan one television
field.

The second mode of operation allows for tne broadcasting of input data
to partitioned subsets of the memory modules. In terms of the example just
discussed, suppose the system was partitioned into two subsets of proces~
sors, then 8 rows of 256 pixels are allocated to each memory module. Then,
in this mode of operation a block transfer of 2048 bytes would be made to
memory module (i) and memory module (i+1) simul taneously, where i and i+1
represent the module number.

The third mode of operation allows for the parallel transfer of data
between the memory modules and a parallel head disk. This type of transfer
is similar to that used in the Illiac IV computer C[17].

Figure (8) indicates a proposed hardware design that allows for the ad-
dressing of the memory modules under the three different modes of operation.
All transfers of data under the first two modes occurs over a tri-state bus.
In the third mode, all transfers occur over a multiplexed parallel bus. This
system allows for the partitioning of the microprocessors and memory modul es
into one, two or four groups. The addressing of the memory modules is accom-
plished through the use of decoders, and decoder outputs are used as enable
lines to the memory modules. Each mode of operation is encoded into a set of
bits which are used to enable a particular decoder. Mode 2 has two possible
bit representations, one for a two group partition and the other for a four
group partition. Mode 3 also has two possible bit representations since spe-
cial control is needed for the multiplexed parallel bus. One representation
sets up the transfer from the memory modules to the parallel head disk,

while the other sets up the transfer from the disk to the memory modules.
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Figure (8) Diagram of MMIO Memory Module Selection Logic under Mode Control
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Interconnection Network

The emphasis in the design of this system has been to provide the capa-
bility for wuse of Single Instruction Multiple Data or Multiple Instruction
Mul tiple Data stream modes. This capability is a function of the versatility
of the interconnection network.

The simpliest type of interconnection network is a single bus. In this
structure, all microprocessors and memory modules communicate over the same
pathway. The single bus connecticn is inexpensive to build and readily ex-
pandible, but has the disadvantage that only one microprocessor is allowed
to send information at a time. This single bus then becomes a bottleneck in
system performance.

Oon the other end of the scale, the crossbar switch ranks as the most
versitile interconnection scheme. It allows each microprocessor to connect
to any memory module as long as that module 1is not already connected to
another processor. The cost and complexity of this scheme is prohibitive,
since O(N**x2) switches are required to construct such a system, when there
are N microprocessors and N memory modules in the system.

It is clear that a practical interconnection network must have many of
the capabilities of a crossbar switch without the enormous cost. Several
interconnection networks that fit into this intermediate category have been
discussed by Siegel [18]. These include the Perfect Shuffle, Cube, Illiac,
Plus-minus 2**i (PM2I), and Wrap-around Plus-minus 2**i (WPM2I). Parallel
processing systems that incorporate some of these interconnection networks
have been constructed [19,20,21].

Each microprocessor has a unique integer in the range 0 to N-1 associ-
ated with it which serves as its address. Similarly, the memory modules can

be addressed by the same range of integer values. Each microprocessor is al-
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lowed to directly access only a subset of the N memory modules. The path
between a microprocessor and & memory module is chosen as a function of the
microprocessor's address bits. Each network has a different function set of
the address bits to choose the interconnection paths. For example, the
Plus-minus 2**i network can be represented by the following 2m functions:
t+i(j)= j+2**i mod N
t_;(j)= j-2**i mod N for 0<= i < m
where m = log2 N and j is the address of the microprocessor. This intercon-
nection network allows access to an arbitrary memory module in at most m
steps.

As mentioned before, the interconnection scheme must have the capabili-
ty to partition the microprocessors and memory modules into subsets so mul-~
tiple instruction streams can be implemented. The Plus-minus 2%*i network is
a possible canidate since it allows partitioning of the microprocessors and
memory modul es. For example, as shown in Figure (9), if only functions t+1,
t+2, t_1, and t_2 are used, the microprocessors and memory modules are par-
titioned into two separate groups. If only the functions t+2 and t_2 are
used, four seoarate groups are formed.

Since this entire system is being structured for image processing use,
certain image processing features must also be considered in the choice of
the interconnection network. For example, suppose each memory module con-
tains only one row of the picture matrix. In order for microprocessor (i) to
perform a local operation based on a 3 by 3 pixel window, it must directly
access memory modules i, i-1, and i+1 to take full advantage of the poten-
tial throughput of the system. When a 5 by 5 window is used, direct access
to memory modules i-2 and i+2 would also be needed. The PM2I and WPM2I in-

terconnection networks are the only ones presently suggested which allow




FOR N=8

ift+1land t+2 ft+2
Cyclic group 1: 0, 2, 4, 6 Cyclic group 1: 0, &
Cyclic group 2: 1, 3, 5, 7 Cyclic group 2: 1, 5

Cyclic group 3: 2, 6

Cyclic group 4: 3, 7

Figure (9) Partitions available in the PM21 intercommenction network
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direct accesses of this form. However, it is not possible to partition the
WPM2I network.

Another computation that is sometimes used in image processing is the
Fast Fourier Transform (FFT). Pease [22] and Stone [23] have shown how to
compute this algorithm in parallel using a Perfect Shuffle. This computa-~
tion is accomplished through a sequence of operations performed first on
pairs of numbers whose binary representation of their indices differ by
2m-1' then on those that differ by 2m-2’ and so forth, to those that differ
by 20. The Cube and PM2I interconnection netyorks allow the same pairing of
data, so it is possible to compute this algorithm directly on any system us-
ing one of these interconnection networks.

Since the PM2I network fulfills the data manipulation requirements, it
will be used in the design of the system. Its implementation will differ
from previous designs. For example, Feng's data manipulator [19] was imple-
mented using log2 N stages of PM2I functions. The implementation that will
be used in the system will be a recirculating stage. One pass through this
stage will allow a microprocessor to access a memory module with any of the

. 1, j-21,..., j+2m-1, where j is the

following addresses; j, j+2 , j-20, jte
microprocessor address. Access to an arbitrary memory module can occur after
at most m recircul ations through the stage. Each microprocessor will have a
recircul ation buffer to facilate such transfers.

Figure (10) shows a possible hardware implementation of the recircula-
tion stage connected to a microprocessor. Only one bit of the data, address
and control buses is shown. Tri-state buses are used extensively.

Control over the interconnection network is viewed on two levels, a

logical level and a physical level. When the system is partitioned into only

one group, both levels coincide. If partitioned into two groups the func-
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tions tyo and t_p are not allowed. However, on a logical level we would |ike

to use these functions to provide a consistent view of the interconnecton
network in terms of our algorithms. Thus, the algorithms become partition
independent. The translation between the logical level and the physical lev-
el can be accomplished in two possible ways. One way would be during
language compilation. An interconnection program control statement would be
compiled based on the global partition information. Another possible imple-
mentation of the control would be through a conditional branch in the micro-

code which is set up by the partition information.




Microprocessor

In the context of this report, the term microprocessor refers to a pro-
cessing module which is built out of a set of LSI chips that are used as
building blocks in its construction. Each chip is usually a 2 or &4 bit wide
section or slice of a functional unit which allows cascading to form systems
with word l(engths of up to 64 bits. Coordinated control of these chips is
through user microprogramming. The use of this type of microprocessor in-
stead of more conventional versions, such as Intel's 8080 or Motorola's
M6800, is based on a number of factors.

These factors include:

(1) high processing speed,

(2) capability to optimize the system instruction set for a particu~
lar application, and

(3) capability to upgrade system through addition of new features or
better performance by modification of the microcode.

Some disadvantages of using these bit slice microprocessors are:

(1) higher cost,
(2) very little software support, and
(3) higher power consumption.

The high processing speed is based on the type of technology used in
their construction and the minimization of gate propagation delays due to
the high packing density of logic gates per chip. In Figure (11), the
throughput capability of various microprocessors using a particular instruc-
tion mix is compared with a missle guidance and control computer system (241
based on the AM2901A bit slice microprocessor designed by Advanced Micro
Devices [25]. The throughput, which is measured in thousands of operations

per second (KOPS), 1is at least an order of magnitude greater than its

‘-——J



Throughput Capability of
Various Micmproéessor;
i Using an Instruction Mix
of: 50% Memory Ref.

30% Register Ref.

152 Multiply

5% 1/0
Word Throughput
Microprocessor size , (KOPS)
8080A 8 5
4800 8 5
PACE 16 25
IMP-16 16 34
THS 9900 " 16 73
MICRONOVA 16 79

System Design
Using AM 2900 16 808
Bit Slice Microprocessor

Figure (11) Throughput capability of various microprocessors
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nearest competitor.

The following is a list of currently available bit slice microproces-
sors. Some of the bit slice microprocessors are organized around a family
of support chips.

Intel 3000 series family [26] - Intel Corporation

MMI 6700 series family [27,28] - Monolithic Memories Incorporated
AM2900 series family [25] - Advanced Micro Devices

SN745481, SBPQ400A and SBP0401A (291 - Texas Instrument

M10800 series family [30] - Motorola

A brief description of each bit slice microprocessor and their associ-
ated microprogram control unit, if it exists, will be given.

The Intel 3002 is the central processing element (CPE) of the family.
It is a two bit slice. Each CPE (Figure (12a)) is organized with five in-
dependent busses, three for input, two for output. A sixth bus is used for
control of the CPE. This control allows the performing of over 40 boolean
and binary functions. The CPE has a cycle time of 150 nanoseconds.

The Intel 3001 (Figure (12b)) is the microprogram control unit. The ad-
dress capabilities of the 3001 (MCU) are unique. Microprogram addresses are
organized as a two-dimensional array or matrix. A 9 bit address specifies
the row address with the upper 5 bits and the column address with the lower
4 bits. From a particular row or column address, it 15 possible to jump ei-
ther unconditionally to any (ocation in that row or column or conditionally
to a specified subset of locations, in one operation. The MCU has a cycle
time of 700 nanoseconds. For a 16 bit system with a pipelined architecture,
a microinstruction cycle tim; of 150-200 nanoseconds can be obtained.

The MMI 6701 (Figure (13a)) is a &4 bit Schottky LSI microprocessor

slice. Thirty-six microinstructions are used to control arithmetic, logical,
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and shifting operations. Overflow detection is provided. The microprocessor
slice can work with either positive or negative logic. There are 16 directly
addressable, two port, general purpose accumulators with two address capa-
bilities. The two address capability allows for working on two accumul ators
at once. Three register operations are available. The Q@ register is used as
either a scratchpad or accﬁmulator extension. The MMI 6701 has a cycle time
of 200 nanoseconds.

The MMI 6700 (Figure (13b)) is the microprogram controller (MC) or
sequencer. The MC can be used with RAM, ROM, or PROM and can directly ad-
dress up to 512 words of cntrol memory. A number of instructions are avail-
able for conditional and subroutine jumps. A multi-way branching capability
at each microinstruction is provided. The MC has in addition to a single
level of subroutine, a control counter which allows the repetition of mi-
croinstructions. In a system without pipelining, the microinstruction cycle
time is approximately 250 nanoseconds.

In the AM2900 family, there are currently two microprocessor slices
available, the AM2901 and the AM2901A. The AM2901A is a 20-30% faster ver-
sion of the AM2901. The AM2901 (Figure (14a)) and the MMI 6701 microproces-
sor slices are very similar in organization. Each have the same register and
Q register organization. Both allow two operands to be read from the regis-~
ter file, have an operation performed in the ALU, shifted and written back
into the register file during one microinstruction time. In parallel with
this, the ALU output and @ registers can be right shifted. The main advan-
tage of the AM2901 over the MMI 6701 is speed. It has a cycle time of 105
nanoseconds. The AM2901A has a cycle time of 70 nanoseconds.

The AM2909 and AM2911 are microprogram sequencers (Figure(14b)). They

are 4 bit slices which are cascadable. The AM2909 can select an address from
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four possible sources. These are a set of external direct inputs (D); exter-
nal data from the R input, stored in an internal register; a four word deep
push/pop subroutine stack; or a program counter register. Each of the four
outputs can be OR'ed with an external input for conditional skip or branch
instructions, and a separate line can force the outputs to all zeros.

The AM2911 is identical to the AM2909 except the OR gates are removed
and the D and R inputs are tied together.

The microinstruction cycle time for a system built up in a pipelined
fashison, should be approximately 100 nanoseconds.

A new 4 bit microprocessor slice, the AM2903 (Figure(15)), should be-
come available in November, 1977. The AM2903 will be able to perform the

same functions of the AM2901A and also provide powerful enhancements for use

in arithmetic-oriented processors. It will have an infinitely expandable

memory and three port, three-address architecture. The AM2903 has built-in
mul tiplication, division and normalization logic along with parity genera-
tion and sign extension circuitry. This will allow easy implementation of
mul tiplication, division, normalization of floating point numbers and other
previously time-consuming operations.

The SN74S481 (Figure (16a)) is a 4 bit expandable Schottky microproces-
sor slice. Some of its architectural features include parallel dual
input/output ports, full-~function ALU with carry look-ahead, magnitude, and
overflow decision capabilities, dual memory address generators, and double-
length accumul ator with shifting and sign-bit handling capabilities. Asyn-
chronous access to data routing and counter updating controls is provided.
In a single microinstruction, it is possible to perform an ALU function with
a shift, select destination with address/iteration updating, plus address

and present data to memory. Pre-programmed multiply, divide, and CRG algo-
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rithms are provided. The microinstruction time is 100 nanoseconds.
The SBPD40O0OA and SBP0401A (Figure (16b)) are 4 bit expandable micropro-~

2L). Each have

cessor slices built out of Integrated Injection Logic (I
separate data-in, data-out, address-out and control ports. Sixteen functions
are provided in the ALU along with a carry look-ahead capability. Some other
features are 8 general registers including a program counter with indepen-
dent incrementer, two working registers and shifters with on-chip handl ing
of end conditions. The major difference between the two microprocessor
slices 1is the SBP0400A has an on-chip pipeline operation register while the
SBP04012. is designed for use in an externally pipelined system.

Both processors have a wide performance range. A constant speed-power
product can be obtained over an injector current range covering three oord-
ers of magnitude with a typical ALU/shift operation of 240 nanoseconds at
200 mW nominal power.

The M10800 family is built out of Emitter Coupled Logic (ECL). The
MC10800 (Figure (17)) is a cascadable 4 bit ALU slice. This chip can perform
logic operations, binary and BCD arithmetic, and both logic and arithmetic
shifting. An internal accumulator is available for temporary storage. A spe-
cial mask network allows bit masking of data before arriving at the ALU.
Three independent data ports are provided. Two ports are input/output while
the other is input only. The following arithmetic and status outputs are
provided: overflow, sign, zero, carry out, group propagate, group generate,
parity of carries and parity of results.

The MC10801 (Figure (18)) is used for the microprogram control func-
tion. It is a 4 bit cascadable slice. A status register, instruction regis-
ter, 4 level subroutine stack, address register, retry register and incre-

menter are included on the chip. Sixteen instructions are available for use
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in generating the next control memory address. Some of these instructions
include increment, direct jumps to various inputs and registers, subrouting,
conditional jumps, and a special instruction for mul tipath branching.

The MC10803 (Figure (19)) provides the memory interface function. This
device has six registers for uses as memory address register, memory data
register, program counter, stack pointer, index register, or other func-
tions. Seventeen data transfer instructions are provided. Since an ALU is
included, memory address generation under various addressing modes, cen take
place completely on this chip.

The MC10808 (Figure (20)) is a bit programmable multi-bit shifter.
This device provides a very fast shift network that is essential in f{oating
point operations for prenormalization or alignment of exponents.

The combination of the above devices into a system can provide microin-
struction times of less than 100 nanoseconds depending on the system archi-
tecture and maximum path delay.

In order to get an estimate of the potential power of a multi-
microprocessor system, it would be useful to compare the processing power of
these bit slice microprocessors to that of a computer like the PDP 11/40 or
PDP 11/70. A study was made at Carnigie Mellon University [31] where a com-
plete equivalent PDP 11/40 was constructed using Intel's 3000 series bit
slice family. The results of that study indicated that the processing speed
of the equivalent system was 63% the speed of the PDP 11/40. A careful in-
vestigation of the performance showed a number of pitfalls due to the choice
of Intel's 3000 series bit slices in the implementation of the system. If
the system had been rebuilt using the AM2900 series bit slice microproces=-
sor, the integrated circuit package count could be reduced from 144 to 95

and the overall performance boosted to the level of a POP 11/40.
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Sequential Controller

The sequential controller is used for program development and coordina-
tion of the multi-microprocessor system. Since its operation is fairly con-
ventional, it will be a convential computer system, l|ike the PDP 11/45.

A job control language will be used to specify commands to the various
subsystems of the multi-microprocessor system. An example of two possible
commands are "DISPLAY IMAGE (.)" and "PARTITION (.)" where "(.)" represents
an arguement |ist.

The DISPLAY IMAGE command with the appropriate arguements would be sent
by the Sequential Controller to the Memory Management and 1/0 processor for
decoding. Once decoded, the MMIO would supervise the display of an image
with respect to the given parameters. The PARTITION command would serve as a
global control over the partitioning of the data memory modules, intercon-
nection network, and instruction memory modules. These two commands are but
two of the many possible commands the system will use.

In addition to the coordination activities ot the Sequentiali Controll-
er, it 1is also wused for program generation, compilation, and instruction
memory loading. Loading of the instruction modules takes place through a
direct memory access channel.

The Sequential Controller is not used for any image processing computa-

tions, since it would become a potential bottleneck in the system operation.




- 52 -

Chapter V. Evaluation Study

A two part investigation has begun to estimate the execution time re-
quired for various image processing tasks. The first part of the study in-
volves implementation of the tasks on a PDP 11/70 computer and comparing
these results with those obtained for a single bit siice microprocessor sys-
tem. The comparison is based on the total time required to complete the task
as a function of the size of the image. Some preliminary results have been
obtained for image processing tasks that operate on local neighborhoods. A
program has been writter that spatially filters or smoothes image data. Ap-
pendix I contains the program listing, along with a timing equation derived
from the program. Using the instruction set of the previousily mentioned
missile guidance computer system, a timing equation was obtained for a pro-
gram which accomplishes the same task. Since the basic instructions are very
similar to those of an HP 2116 computer [32] and a program l|isting of the
same task was available, the problem of developing the timing equation was
simplified. In Appendix I, the instruction list along with the execution
time for each instruction is given. Also included is the program listing
along with the timing equation obtained.

Table (2) shows the processing time required under both systems using
various 1image sizes. A comparison of these results shows that the system
built using the AM2900 series bit slice microprocessor is approximately 29%
slower than the PDF 11/70. It is estimated that a similar performance effi-
ciency can be obtained for operations such as edge enhancement, thinning,
and other computations based on local neighborhoods.

The second part of this investigation is to determine how these same

algorithms can be implemented on the multi-microprocessor system. Since the




Execution Times of Smoothing Program for Square Matrices of Side M

Time (Seconds)

M ‘ PDP 11/70 Microprocessor
64 .086 124
128 ! .352 495
256 | 1.43 1.98
512 5.74 7.91
1024 23.04 31.67

AM 2900 Microprocessor System is 28.6% Slower Than PDP 11/70

Table (2) Comparison of execution times for smoothing program




exact structure of each microprocessor module has not yet been determined,

this work will help in determining a structure which optimizes computation
time.

As discussed in Chapter IV, the ability to compute parallel FFTs and to
use local neighborhood algorithms resulted in the choice of the PM2I inter-
connection network for this system.

Investigations into the structure of the microprocessor modules have
not yielded any specific results, and have, in fact, raised many more new
questions. For example, the amount of local storage and the size of the re-
circulation buffer must be determined. Is floating point hardware needed?
What type of performance gain is possible if automatic hardware address gen-
eration [33] is used? Finally and perhaps the most important question that
must be answered deals with the type of language support the system should
have. How should control of the interconnection network, active-inactive
status [34] of the microprocessor modules, and data transfers be specified
in this language? Also, since the system will be microprogrammed, should the
language support a dynamic microprogramming capability? Much  further
research 1is needed into these areas before an optimized structure can be

developed for this subsystem.
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Chapter VI. Conclusions and Future Work

In this report, we have attempted to show how image processing differs
from conventional computer processing and why a specialized computer archi-
tecture is needed for it. The use of cellular logic arrays for 1image pro-~
cessing was discussed. Although cellular logic arrays can be computationally
very powerful, algorithm construction is very difficult, input/output is
slow, and it is only feasible, at the present time, to build small arrays.
Another problem is system reliability. Since these systems have not been
designed to isolate non-functioning parts of the array, if one or more cells
are inoperative, the logic array can produce completely erroneous results.

Another approach to the ;olution of the 1image processing computation
was introduced in the remainder of this report. The partitionable mul ti-
microprogrammable microprocessor system is an attempt, using current tech-
nology, to provide a reliable, flexible, and easy to use system for image
processing.

The overall architecturerf this system was heavily influenced by the
computational requirements of various image processing tasks. The system
should attain a high degree of reliability since it is partitionable. If a
failure occurs, the same task can be executed on a smaller partition, by
bypassing the mal functioning device or devices. It was shown that bit slice
microprocessors are needed to provide sufficient system flexibility and com-
putational power. In order for this system to be easy to use and efficient,
considerable research is needed in the development of a higher level
language that can be mapped onto the system hardware. In the past, most com-
puter systems were designed first, with development of a higher level

language as an afterthought. This has proved to be disasterious in the cases
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of the Illiac IV and Staran computers. The Burroughs B5700/6700 series com~
puters [34] on the other hand are examples of systems whose architecture is
consistent and facilitates the execution of algorithms written in a high
level language, Extended Algol 60. In this system, a similar unified ap~
proach will be taken where the architecture and software are jointly
developed. Further work must be done in determining the computational re-
quirement of various image processing algorithms and how they can be imple-
mented on this system. Also, the actions and interactions of the various

subsystems must be simulated to determine global weakness or deficiencies in

this system.

ot o e B
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Appendix |

The execution time [36] for an instruction on the PDP 11/70 depends

on the instruction itself, the modes of addressing used, and the type

of memory.

The basic instruction set timing is:

Double Operand

all instructions,
except MOV: Instr. Time = SRC Time + DST Time + EF Time
MOV instruction: Instr. Time = SRC + EF

Single Operand

all instructions: Instr. Time = DST Time + EF Time or
Instr. Time = SRC Time + EF Time

Branch, Jump, Control, Trap and Misc.

all instructions: Instr Time = EF Time

The following charts are used in determining the execution time

for an instruction.
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: C.1.5 SOURCE ADDRESS TIME

Read

Source Memory

Instruction Mode SRC Time Cycles
0 .00 0
1 .30 1
2 .30 1
Doubie 3 .75 2
Operand 4 45 1
5 .90 2
6 .60 2
7 1.05 3

C.1.6 DESTINATION ADDRESS TIME

Read

DST Memory

Instruction Mode DST Time (A) Cycles
0 . .00 0
Single Operand ; gg }
and Double Oper- 3 '75 2
and (except MOV, 4 '45 1
MTPI, MTPD, JMP, 5 '90 2
4RS 6 60 2
7 1.05 3

NOTE (A): Add .15 usec for odd byte instructions, except DST Mode O.

C.1.7 EXECUTE, FETCH TIME

Double Operand
Instruction EF Time EF Time EF Time
(SRC (SRC (SRC
Mode 0) Mode 1-7) Mode 0-7)
(Use with (OST Read | (DST Read | (DST Mode I-7) Read
SRC Time Mode 0) Mem | Mode 0) Mem Mem
and DST Time) Cyc Cyc Cyc
ADD, SUB, .30 1 .45 2 1.20 I
BIC, BIS MOVB | (D) (D) © ¢
CMP, BIT B0 ey .45 1 .45 1 i
(D) o ©
XOR .30 1 .30 1 1.20 1
D) (D)

NOTE (C): Add 0.15 usec if SRC is R1 to R7 and DST is R6 or R7.

NOTE (D): Add 0.3 usec if DST is R7.
‘EF Time EF Time Read
Instruction DST DST (SRC (SRC Memory
(Use with SRC Time) Mode Register | Mode = 0) Mode = 1-7) Cycles
0 0-6 .30 45 1
0 7 .60 75 1
1 0- 1.20 1.20 1
2 0-7 1.20 1.20 1
MoV 3 0.7 1.65 1.65 2
4 0-7 1.35 1.3% 1
5 0.7 1.80 1.80 2
P 6 0-7 1.50 1.65 2
7 0-7 195 2.10 3
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|
4
|
|
|

Single Operand
EF TIME EF Time Read
Instruction (DST Memory | (DST Memo!
(Use with DST Time) | Mode = 0) Cycles '|{ Mdde 1 ta 7) Cycles
CLR, COM, INC, DEC, .30 1 1.20 1
ADC, SBC, ROL, )
ASL, SWAB, SXT
NEG .75 1 1.50 1
TST ’ .30 1 45 el
)
ROR, ASR .30 1 1.20 1
&) (H)
ASH, ASHC 75 1 .90 1
) Q)

NOTE (H): Add 0.15 usec if odd byte.
NOTE (1): Add 0.15 usec per shift.
NOTE (J): Add 0.30 usec if DST is R7.

Read
Instruction Memory
(Use with SRC Times) EF Time Cycles
MUL 3.30 1
Div
by zero .90 1
shortest 7.05 1
longest 8.55 1
Read
Memory
Instruction EF Time Cycles p
MFPI 1.50 1 use
MFPD 1.50 1 with
SRC
times
[




Read
DST Memory
Instruction Mode Instruction Time Cycles
MTPI 0 .90 1
MTPD 1 1.65 2
2 1.65 2
3 2.10 3
4 1.80 2
5 2.25 3
6 2.10 3
7 2.55 4
Branch Instructions
Read
instr Time Instr Time Memory
Instruction (Branch) (No Branch) Cycles
BR, BNE, BEQ, .60 .30 1
BPL, BMI, BVC,
BVS, BCC, BOS,
BGE, BLT, BGT,
BLE, BHI, BLOS,
BHIS, BLO
sO8 .60 75 1
Jump Instructions
Read
DST Memory
Instruction Mode instr Time Cycles
1 .90 1
2 .90 1
3 1.20 2
JMP 4 .90 1
5 1.35 2
6 1.05 2
7 1.50 3
1 1.95 1
2 1.95 1
3 2.25 2
JSR 4 1.95 1
5 2.40 2
6 2.10 2
7 2.55 3
Control, Trap & Miscellaneous Instructions
. Read
Memory
Instruction Instr Time Cycles
RTS 1.05 2
MARK .90 2
RTI, RTT 1.50 3
SETN, 2, V.C
CLR, N, 2, V,C .60 1
HALT 1.05 (1]
WAIT 45 0
WAIT Loop
foraBRis
3 usecC,
RESET 10ms 1
10T, EMT, 3.30 3
TRAP, BRT
SPL .60 1
INTERRUPT 231 2

First Device




The following assembly language program was written for the
PDP 11/70 computer to spatially filter or smooth data in an M X N
array. The total execution time is equal to the sum of t INT?

tal, and tCI where:

tINIT = 25.95 microseconds s
ta = 1.65 ~ .9 microseconds 1
tbl = 1.65 mn - 3.3n + 4.35 m - 8.7 microseconds 4
te) = 20.4 (m~2) (n-2) microseconds.

T]= 22.05 mn - 41.1 n - 34.8m + 72 microseconds

e e s e

| S —
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FILTER macreoe viAUG7S 18-nov-77 02:55 page 1

1 .title filter
2 090000 216567 filter::mov 2(r5),xaddr
0900002
000106 :
3 000006 018567 mov 4/ r5),vaddr
003004
0001922
4 Q00014 017567 mav e6(rS),m
000006
0Q00E6
5 200022 217567 moy @10(rS),n
000310
ooes2
€ 0000390 Q17567 mov €10(rS),incr
20010
00205¢
7 000036 06367 asl incr
eo00044d %
8 000042 066767 add incr,xaddr
0040
202044
9 000050 062767 add $2,xaddr
Q00032
2Q2036
10 020056 QL8767 add incr,vadder
000024
Q@2232
11 00064 QEZTS7 add #2,vaddr
220202
000024
12 00072 012703 mov #2,r3 Yk » (Q?Y
200002 } % ! 5
13 00076 012704 mov 82,04 D{&E jb bl
eocee2 40 R ;
14 00102 002167 Jmp ail
000014 i
15 00106 202@920 incr: .word 0 (@
16 00110 QQ0C2Q m: .word 0 {
17 00112 202Q03¢ n: .word 0
18 29114 990Z9Q xaddr: «word (%]
19 00118 200000 vaddr: ewoerd o
20 00120 000200 temp: .word O b
21 00122 Q267&¢3 at: cap m,r3 last row?
177762
22 00126 00!0¢1 bne b1 ' sno "
23 00130 0009297 rts PC jreturn from subroutine o
24 00132 026704 bi: cmp n,r4 jlast col? Ha
177754 i
25 00136 201013 bne cl ino i
26 00140 012704 mov 22,r4 e
000002 I
27 00144 205203 inc r3 )set address
28 00146 062767 add 4 ,xaddr sof pici(id1,2)
000004
177740
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FILTER wacra v1AUG?5 18-nov~77 02:55 page 1-2
ﬁ
29 00154 062767 add %4 ,vaddr jand pic2(i+1,2)
200004
177734
30 00162 0Q00iE67 Jmp at
177734
31 5t
32 } spatial filtering on interior points
33 3 of the picture matrix using 3x3
34 -
35 00166 9168702 c1: mov xaddr ,r2
177722
36 00172 016201 mav -2¢r2),r1 jpict(i-1,4)
177776
37 00176 066201 add 2(r2),r1 3+ piclCiil, )
000022
38 00202 1667922 sub incr,r2
- 17770
39 00206 061221 add ere,ri )+ picili, j—-1)
40 00210 06€201 add -2(r2),r1 3+ pict1Ci-1,5~-1)
177776
41 00214 Q66201 add 2(r2),r1 3+ pici1Citl, 5~-1)
2002002
42 00220 216702 mov xaddr ,r2
177670 ;
43 00224 Q65702 add incr,r2 ;
: 177656 |
44 Q0230 9€61Z01 add er2,ri 3+ pici(i, j+1 i
45 00232 065221 add -2(r2),r1 3+ piciCi-1,5+1) i
177776
46 00236 066201 add 2(r2),r1 3+ pictli+l,o+1)
000902 I8
47 00242 206201 asr ri il
48 00244 006201 asr r1 (4
49 00245 Q@O6221] asr ri i
50 20250 19177 mov ri,@yaddr
177642
S1 00254 Q62767 add %2 ,vaddr
0002002
177634
52 00262 062767 add #2,xaddr
Q00002
177624
S3 00270 9052724 inc rdé
S4 00272 001167 Jmp b1
177634
13- 200000’ .end filter

BEST AVALARLE COPY

Wil

IR AL
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The execution times of instructions, for the microcomputer system
built using the AM 2900 series bit slice family, are shown below. These

instruction times assume a data and program memory cycle of 375

nanoseconds.
Microcomputer Instruction Set

Register-to-Register Instructions

Add
Subtract
Negate
Transfer 0.55 us
Clear
Increment
Oecrement
e Complement

Qther_Instructions

Logical Shift 0.85 us ¢ 0.15 us Per Bit
Arithmetic Shift

Skip on Flags 0.70 us \
Input 1.3 s %

Output
No Operation 0.55 us 4 N
. N X
Memory Reference Instructions &N W\
s e ) Bwv
Store 0.95 s ¢ 3>
Add * o
Sudtract e g
Mdtiply .55 s Peih U & B i
Divide 4.30 us ke S it
Compare 0.95 us a)i"dn \ 5
Limit 1.3 .8 W4 i
Memory Increment | 1.1 us 9 Ao t
Memory Decrement |
AND j
OR 0.95 us |
Exclusive OR |
Sranch 2 |
Unconditionally 0.55 us i
Branch to .
Subroutine 0.70 us

The following program, written in HP assembler language is for smoothing
an M X N array. The HP instructions correspond very closely to the micro-
computer instruction set. Therefore, a translation was made between the
instruction sets. Two assumptions were made. The first assumption is

that each level of indirect addressing adds .5 microseconds. Also, the

HS ""1S2" instruction corresponds to the combination of the following three

microcomputer instructions: ''Increment,' ''Compare,' and ''Skip."

The program was analyzed and the following timing equation was obtained.

Tz- 30.2 mn - 60.4 (m~n) + 100 microseconds.




E 0001 B
0082 = THIS IS A PROGRAM [N HP ASSEMBLER LANGUAGE FOR SMOOTHING A
:o.a . PICTURE DIGiTIZED IN AN NsN MATRIX,
- -
680 = IT IS ASSUTED THAT THE ZLEMENTS OF THE INPUT DIGITAL PICTURE
e = RRE STORED IN A VECTCR FRGM TOP-LEFT TO BOTTOM-RIGHT.
0087 = COLUMN BY COLUMN (E.G. THE ELEMEWT ACL.1) OCCUPIES THE
6638 = ADDRESS 1.THE ELEMENT A(1.2) THE ADDRESS N+i . THE ELEFENT
808 = AC2,1) THE ADDRESS 2 ETC.) !
e8tie = i
eait NAr PEND.7 !
0012 ENT PEND :
013 EXT .ENTR INSTRUCTIONS NEEDED FOR TRANSFERRING PARAFETERS |
esid C ‘' NOP FROM FORTRAN MRIN PROGRAM TO ASSErBLER }
: e8!S » NOP SUBROUTINE (TUQ MATRICES ARE TRANSFERRED & C AnD D) ;
i 8816 PEND NOP ;
ee1? JSB .ENTR
3 00i0 DEF C
8819 =
6826 o8 D INSTRUCT2IONS FOR PREPARING REGISTERS.
0821 AD8 NPt THEY ARE OUT OF LOOPS. !
9 0022 $TB DI SOME INSTRUCTIO.HS WERE AND ALONG THE i 3
3 0823 Lo8 X! PROGRAM ARE NEEDED BECAUSE SMOOTHING IS NOT ]
0024 $T9 X APPLIED TO THE de(N-1) BORDER ELEMENTS 1§
i 0023 DB C OF THE INPUT MATRIX, |
8826 A6 NP1 THE ELEMENTS TO WICH THE ALGDRITHM IS !
::g: sT8 C1 APPLIED WILL BE CALLED “ELEMENTS OF INTEREST® !
~ :
8628 = I 4
8038 Lb2 ADB NM GO TO THE RDDRESS OF THE ELEMENT PLACED !
ee31 = AT NORTH-EAST OF THE CONSIDERED ONE. o
8832 LDR 1.1 STORE ITS VALUE. !
0033 IND . G0 TO THE ERST ELEMENT, ¥
8834 DA 1.1 ADD THE VALUES OF THE GPST AND NORTH-EAST ELEMENTS
0033 INB
0036 ADA 1.1 -
0e3? ADB
0038 ADA 1.1
0839 ADe MN SCAN [N SUCCESSION THE REMAINING 8-NE! #-80URS OF
9048 ADA 1.1 THE CONSIDEREL ELEMENT AND ADD THEIR VALUES
8041 AD8 M3 TOGHE THER . 4
[ 23 WhA .1
8843 ADa Mi
8844 04 1.1
084S ADB N
08456 apa 1.1
e = : :
0640 =
2849 RARS SHIFT 3 TIMES TOWRRDS RIGHT. THE SINARY VRLUE OF
2038 ARS THE SUM JUST OBTRINED. E.G.DIVIDE BY 8.
88s1 ARS
0832 =
0853 = s
00S4 STA DI.I RELABEL TWE CONSIDERED ELEMENT.
eSS =
0336 =
ees? 12 K INCREMENY K AND IF K=@ SKIP NEXT INSTRUCTION AND
[ ] JHP LD1 RESET K TO K1 OTHERUISE JUMP TO LDI.
0039 LDB K1 THESE INSTRUCTION ARE RECUIRED TC SKIP THE
$T8 K 2%(N-2) ELEMENTS BELONGING TO THE FIRST AND
0861 = LAST ROW OF THE INPUT MATRIX.
8062 = 1
0063 = £
0064 = 3
806S = WHMEN K*® THE °ELEMENTS OF INTEREST® OF ONE COLUMN ;
8066 = OF THE INPUT MATRIX (. E. THE VECTOR’S ELEMENTS
0867 LD8 D1 FROM THE 2.ND TO THE (N-1).TH OR THE CNES FROM THE
0068 ADB D3 (2N+2) .TH TO THE (3N-1).TH ETC.) HAVE ALL BEENM
2069 ST® DI CONSIDERED. TO INITIATE THF SCANMINC OF Tl iiFar 4
0078 Lre 2y Culurw, M5 CURRENT ELEIENT RDLRESS HAS TD SE %
0371 A8 D3 INCREMENTCS BY 3. A TEST IS AL50 PERTORMED TO |
072 $M C1 ASCERTAIN WHETHER SUCH AN INCREMENTATION HAS BEEN
W73 1S2 H MADE (N~2) TIMES (IN THIS CASE THE FATRIX HAS BEEN
P LD2 COMPLETELY SCANNED) CR NOT. ACCTADING TO THE
JrP PEND. I RESULT OF THE TEST. THE PROGRAM JUMPS TO THE { 3
. SUBROUTINE PEND WHICH RZITURNS TO TrG FORTRAN §
™ MAIN PROGRAIT *PRINT AND £k9°. OR GOES TO LD2. %
Ll
L ¥
(N} 152 D! ;
Loe €1
N8 €0 TO THE NEYT ELEMENT OF THE VECTOR AND i
$T® CI APPLY TO {T THE ROUTINE LD2 ;
e L2 r

INSTRUCTIONS DEF INING TME QUANTITIES USED IN TNE
PROGRAM. THEY ARRE QUT OF THE LOOPS.
THE NUPERICAL VALUES GIVEN CN THE LEFT ARE

=
m
on
L T
- -

3. DEDUCEDFROM THE FOLLOWING FCRMULAS. FOR Nel®.
DEC i

DEC © NPLeN+L NMi=N-1 Mle=]

peC -8 D33 Kla=(N=-2) K@

DEC 18 He=(N-2) NeN

DEC ~10

&e7s
0876
[ 144
0080
[
0002
0833
[ A3
09s =

0eE =

0897 wey

08 M1

ey M

0% 03 DEC
0891 Ki

02 «x

0833 M

9065 N

0093 ™

00% 0i

o097 Ci

0095
3099
axeom
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