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PREFACE

The work described in this report constitutes part of
the efforts authorized under Contracts DNA 001-75-C-0147 and
DNA 001-76-C-0157, concerning numerical analyses of earth pene-
trators. The objective of this part of the investigation was to
examine the effects of various numerical and physical parameters
on penetration dynamics. Related tasks included (1) analyses
of the impact and penetration of projectiles into rock media,
in conjunction with field events and (2) development of a de-
coupled finite-difference/finite-element method for the analysis
of the structural response within projectiles penetrating into
the earth.

4. H. Wagner was the principal investigator for this project.
General program guidance and assistance in technical anal sis
was provided by K. N. Kreyenhagen. C. C. Fulton assisted in
development of the material models and was the principal computer
programmer.

The Project Officer was Major Todd D. Stong, Strategic
Structures Division, Defense Nuclear Agency (DNA). Assistance
in coordination of the effort was provided by P. F. Hadala,

Soil Dynamics Division, U. S. Army Engineer Waterways Experiment
Station (WES).
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I. INTRODUCTION AND SUMMARY

1.1 BACKGROUND AND TASK OBJECTIVES

In support of the DNA Earth Penetrating Weapon (EPW)
technology project, California Research § Technology has been
developing, validating, and using "first-principle'" finite-
difference and finite-element computer codes for predicting
and analyzing critical aspects of earth penetration dynamics
and penetrator structural response. Such code solutions can
provide information, not readily obtainable from experiments
or other analytical means, about the stresses in the target
media, stresses and forces applied to the penetrator surface
(and resulting decelerations), and the stress and shock
environments throughout the penetrator body and its internal

components.

The primary objective of the task reported herein has
been to examine the sensitivity of earth penetration processes
to several physical parameters describing target properties,
penetrator design, and impact conditions. Consideration of
broad ranges of these parameters may be required during the
design and evaluation of an EPW; increased knowledge of their
influence on penetrator performance is therefore needed. For
example, knowledge of the sensitivity of penetration processes
to different properties of earth media is needed to enable
design of earth penetrators which will work reliably against
targets in media whose properties are both uncertain and
variable. To the maximum extent possible, penetrators should
be designed so that their performance is reasonably insensi-

tive to target property variables.

A second objective of this task has been to determine the
effects of computational zone size on the accuracy of earth
penetration analyses. Regions where steep gradients occur,
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such as near the penetrator nose, require reasonably fine
spatial resolution by computational zones. Computer costs,
however, are sharply dependent on zone size. Knowledge of

the zoning required for adequate resolution in different types
of target media is needed to guide future numerical solutions
where several numerical analyses of alternative designs may

be called for.

This report is one of a series which have been or are
being published regarding CRT tasks in the DNA Earth Pene-
trating Weapon project. These other reported tasks include:

Analysis of a soil penetration test at DRES (Ref. 1)
Development and application of a decoupled
technique for internal response analysis (Ref. 2)

o Formulation of improved models for treating rock
fracture and comminution during penetration, and
analysis of rock penetration test (Ref. 3)

o Analysis of alternative prototype designs for the
Shallow Burst Munition (SBM) (Ref. 4)

o Analysis of the loading on a penetrator surface,
and structural response of the penetrator, for a
reverse ballistic test (Ref. 5)

Current continuing effort on the project is concentrating
on development and application of analysis methods for asym-
metric impacts (yawed and/or oblique incidence).

1.2 TECHNICAL APPROACH AND BASELINE CONDITIONS

This task is based on a series of two-dimensional,
axisymmetric solutions of penetrations of rigid body pro-
jectiles. Such solutions yield complete space-time histories
of the forces exerted on the penetrator surface, and the con-
sequent rigid-penetrator decelerations. The solutions were
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obtained with WAVE-L, a finite-difference Lagrangian hydro-
dynamic-elastic-plastic code. Prior development and appli-
cation of WAVE-L to earth penetration problems is described

in Refs. 1, 3, and 6. Briefly, a Lagrangian grid of discrete
computational cells is set up to describe the initial geometry

of the target medium and the shape of the penetrator surface.
Target material properties are specified by sets of constitu-
tive relations. Through time-stepped solution of these relations
and the equations of motion, the stresses and distortions experi-
enced throughout the computational grid are developed.

For the physical parameters study, a set of baseline target
medium properties, impact conditions, and design parameters
was first established. A rigid-body penetration using these
conditions was analyzed to obtain standard, or benchmark, infor-
mation about penetration dynamics for use in subsequent compari-
sons. The baseline conditions are shown in Figure 1. Sandstone
was chosen as the basic target material. The penetrator design
corresponds closely with the DNA projectile used in recent full-
scale field tests’.

The calculated projectile deceleration history for the
baseline case in sandstone is shown in Figure 2. Forces on most
earth penetrators build up as the nose advances into the target
media, approaching a maximum as the nose becomes fully embedded,
or "wetted". To enable a larger number of solutions to be made
within the resources of the present study, the solutions were
started with the nosetip already embedded to 5-in. depth in the
sandstone. After an initial spurious transient, an acceleration
ramp develops, which is qualitatively similar to those seen in
penetrator problems started with no initial embedment, as indi-
cated in Figure 3 (here the axial force instead of the deceler-
ation is plotted since the penetrator weights were different).




PENETRATOR AND IMPACT CONDITIONS g

6.5" Dia ——4-1 r$——

I=——Rigid Body

Projectile
60"
Normal Impact at 1500 fps
Weight = 400 1b
W/A = 12 psi
s
19.5" Nose:
CRH = 9.25
(Radius = 60.125") Target Surface

\ \\\\\‘ TRV E L PR T OO DR DO VIO O R VAR
Y—Pointed Nose Tip

SANDSTONE TARGET PROPERTIES

Yield Surface
Density, P, 2.0 g/cm3 o TR ;;7
Young's modulus, E 72 kb -
fo} . ko
Bulk modulus, Ko 40 kb JJZ
Shear modulus, G 30 kb
o k1
Poisson's ratio, V 0.2 -
Unconfined compressive 0.41 kb
strength, 3

" ' \n

Cohesion ( W, )", kq 0.1 kb Fractured material degrades
Mohr-Coulomb slope, kj 1 S

Mises limit ( JS;), kj 3 kb Associated flow rule
Friction rule: T = 0.15V J2 (op) \EEhESALE iiacaucy)
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Thus, if the initial transient is ignored, the results of calcu-
lations of this type can be used to show the qualitative effects
of changes in independent variables on the resistance to pene-
tration during nose embedment.

Since just rigid body penetrations were considered in
this task, only '"external'" parameters (target media properties,
external penetrator shape, and impact velocity) were examined.
Internal response, and the effects of internal design parameters
(materials and thicknesses and shock isolation techniques) were
not involved. Separate analyses of the response of penetrators,
considered as deformable bodies, can be obtained using the
space-time history of forces on the penetrator surface (as gen-
erated by rigid-body penetration solutions) as boundary condi-
tions for finite-element or finite-difference models of the
penetrator body and its internal components. This decoupled
penetration-response approach is used in Res. 2, 5, and 8.

1.3 SUMMARY OF RESULTS

1.3.1 Physical Parameter Study

Eleven penetration solutions were made to determine effects
of Zndependent variations in basic physical variables upon rigid
body penetration dynamics. The conditions for these solutions
are summarized in Table 1.

a. Target Media Parameters

The target properties which were examined were:

o strength or yield surface parameters,
including unconfined compressive strength,
yield surface slope, and Mises limit
bulk modulus
coefficient of friction along the interface
between the projectile and the target medium

o initial density




TABLE 1.

CASES CONSIDERED IN PHYSICAL PARAMETER STUDY

Case No. Case Description
2080-32C Baseline case (see Fig. 1)
a. Target Media Parameters
2080-60 Decrease Mises limit 50% (to 1.5 kb)
2080-61 Increase Mises limit 100% (to 6 kb)
2080-62 Decrease yield surface slope 507%
2080-65 Increase unconfined compressive strength 100% (to .82 kb)
2080-70 Increase bulk modulus 100% (to 80 kb)
2080-82 Delete all friction
2080-100 Increase target density 100% (to 4 gm/cm3)
b. Impact Parameters
2080-110 Increase impact velocity 100% (to 300C ft/sec)
c. Penetrator Design Parameters
2080-120 Decrease nose sharpness (to CRH=6)
2080-122 Increase penetrator dia ~50% (to 9 in.)




The changes which were considered in these properties
(typically to half or twice the baseline condition) are within
the range of variations which would be expected for EPW soft
rock target media.

The penetrator deceleration histories, stress and force
loading distributions on the penetrator surfaces, and profiles
of peak stresses experienced in the target media were obtained
from the numerical solutions. The effects of the target prop-
erty changes on the overall penetration dynamics are seen in
Figﬁre 4, which shows the percentage change (from the baseline
case) in the time-averaged penetrator deceleration (VQ-V(t))
vs time (t). t

Changes in the yield surface parameters (unconfined com-
pressive strength, yield surface slope, Mises limit) produced
5-45% changes in penetrator deceleration, with those parameters
defining the yield surface in the low kilobar regime having the
more sensitive effects. This relects the fact that most of the
target material near the penetrator nose is under maximum
pressures which are within the low kilobar range. The effects
of bulk modulus are interesting, in that a substantial change
in the load-unload hydrostat caused only a modest change in
penetrator deceleration.

The frictionless case confirmed the importance of friction
in penetration processes. Relatively small coefficients of
friction can result in drag forces which are a significant
fraction of the total decelerating force. The appropriate
friction rule, given the high velocity, stress, and *aomperature
conditions at the penetrator-target interface, and the degraded
state of target properties in that region, is a continuing
major uncertainty in earth penetration mechanics.
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Doubling of the target density produced a 30-40% increase
in penetrator deceleration levels. However, this is an extreme
change in target density for rock media. A more realistic
variation in target density might be #25%, which would presum-
ably lead to *10% changes in the deceleration level.

b. Penetrator Design and Impact Parameters

Penetrator decelerations resulting from variations in
vehicle nose sharpness and diameter, and in impact velocity,
are shown in Figure 5. The percent change in deceleration
from the baseline case vs penetration depth for these cases
is shown in Figure 6. These comparisons are somewhat misleading,
however, since different percentages of nose embedment are
involved at the same depth. Additional comparisons using
scaling relations are given inSection 2.3. More definitive
comparisons would require carrying out each solution to the point
of a clear peak or plateau in deceleration.

From this limited data, the following effects were noted
during the early penetration phase. Impact velocity is clearly
a major factor in penetration: doubling the velocity from
1500 ft/sec to 3000 ft/sec increases the deceleration level by
60-130%. Changing the nose shape from a sharp ogive (CRH=9.25)
to a medium ogive (CRH=6) results in an initially sharp increase
in deceleration (~60%), followed by a decay to a small difference
as the nose becomes more fully embedded. Increasing the pene-
trator diameter from 6.5 to 9 inches while holding the weight
constant reduces the sectional load, or W/A, from 12 psi to
6.3 psi. This causes an increase in deceleration of 20-40%
during early penetration. From scaling relations, the increase
in deceleration for fully engaged penetrators would be inver-
sely proportional to W/A, or 92%. If, however, the deceleration
histories are plotted on a scaled basis, (see Section 2.3),
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the observed increase in deceleration levels out at 110%, in
reasonable agreement with simple scaling.

1.3.2 Zoning Study

The effects of Lagrangian computational zone size (spatial
resolution) on results of numerical solutions were examined for
penetration into sandstone, another softer rock, and a dry
soil. Short code solutions (covering partial nose burial) were
conducted for each of these target media using computational
grids of varying fineness. Spatial resolution is characterized
here by the number of Lagrangian cells in the undisturbed target
material ahead of the penetrator per penetrator radius, i.e. the
penetrator radius divided by the initial radial grid dimension,
or Rp/ARo' The cases treated, and the effects of zoning on
nominal deceleration levels, are summarized in Table 2. The
effects of zoning on overall penetration dynamics, as seen in
the average deceleration histories, are given in Figure 7.

Four undisturbed cells per penetrator radius are apparently

satisfactory for rock targets. Where highly hysteretic media
response is expected, such as in Watching Hill layer 1, at least
six cells per radius are required.

Many factors, however, influence the stress field near the
penetrator surface, including impact velocity and nose geometry.
For example, blunter shapes, and those with abrupt changes,
impose finer zone requirements. Thus, no universal zoning rule
can be established, and some preliminary examination of zoning
effects should precede any penetration studies involving sub-
stantially unfamiliar target media, shape, or impact conditions.

It is also emphasized that the zoning results shown here
apply only to Lagrangian grids, wherein the radial squeezing
of cells flowing up and around the nose tip substantially

16
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increases the effective spatial resolution in that critical
stress region. Fixed (Eulerian) grids will require much

‘ smaller cells (compared to the initial Lagrangian cell size)
E to give the same effective resolution.
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II. EFFECTS OF VARIATIONS OF TARGET AND PROJECTILE
PARAMETERS ON PENETRATION DYNAMICS

To examine the sensitivity of earth penetration dynamics
to various projectile and target parameters, a series of
numerical solutions was performed wherein certain physical
parameters were independently varied. Results were compared
with the baseline case to determine the effects of the changes.

2.1 BASELINE PROBLEM CONDITIONS

For the baseline case, a full-scale penetrator impacting
a medium-strength rock at a representative EPW velocity was
selected. A relatively simple target material model was used,
so that changes in the model parameters would have discernible
physical significance.

The baseline problem conditions are summarized in
Figure 1 (page 6 in Section 1.2). The penetrator is the
DNA projectile used in recent full-scale field tests’, except
that the tip of the ogive was not beveled. The impact
velocity was 1500 ft/sec, and the target medium was sandstone.
The properties of this sandstone, which were arrived at in
consultation with Waterways Experiment Station (WES), are a
composite of values representing typical sandstones, rather

than a specific site or sample. The basic sandstone model
is described in Appendix A. The loading hydrostat stiffens ‘
slowly but is strongly hysteretic. The model prescribes
highly dilatant behavior, particularly for the unloading i
stress paths experienced in penetration problems.

A Mohr-Coulomb yield surface with a von Mises limit f
was specified. It is modified by a strain softening '"frac-
ture' model, wherein the post-fracture material strength
is gradually degraded as a function of generalized plastic




strain. This new model is similar to the one developed for
analysis of a penetration test into welded tuff. Observa-
tions following penetrations into rock have shown that
there is a region of highly comminuted rock surrounding the
penetrator and the penetrator hole. Beyond the comminuted
region, there are successive annular zones of brecciated
and sheared rock, with the degree of fracture diminishing
with increasing radius. Since the fractured rock will
generally have reduced shear and tensile strengths, it is
important that the material model reflect this mechanism.
Accordingly, a material model was developed which included
relations to assess the degree of failure which has occurred,
and to degrade the rock properties appropriately. Develop-
ment of this model is discussed in Reference 3.

In the new post-fracture model, material reaching the
failure (yield) surface specified for the <ntaet material
begins to fracture. Subsequent increases in the generalized
plastic strain, Eb, cause degradation of the yield surface,
according to the relation

Y = Y (1-108P)

where Y is the intact yield surface and ngd is the degraded
(post-fracture) yield, and

- 1
eP = f(%deli)jdegj :

As soon as the degraded yield strength drops to the

value given by the yield surface, Y that is assigned

min?
for completely crushed material, the degradation is complete
and the material thereafter has the properties of the

crushed material.




The yield surfaces assumed for the intact and completely

crushed sandstone were:
7 -
JZ = Min (k1+k2P, ks)

where the values of the constants are:

Intact Crushed
k1 ("cohesion™, 1.¢.; .1 kb 0
P=0 intercept)
k2 (slope) 1 «5
ks (Mises limit) 3 kb 1.5 kb

These yield surfaces are shown in the accompanying sketch.

Y (yield surface for dgd (intermediate

k -
Gt 3 intact material) JlJsurfaces for par-
tially degraded

material)
(yield surface for
completely crushed
material)

1 1

3 4

Pressure (kb)

The friction rule used to compute the shear stress (t)

at the penetrator/target interface was:

.15 VI. (o)

4
is put into the yield function

T =

(Here the normal stress, Op,
equation for JJé given above.)
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physical parameter study. There are 4 undisturbed Lagrangian
cells per projectile radius. For efficiency in this series
of solutions, the penetrator nose tip was initially buried
5-in. into the target. This allows the solution to bypass
the early stages of the impact analysis, which are generally
uninteresting in axisymmetric impacts of pointed projectiles
because only a relatively small region of target and pro-
jectile are involved and the acceleration forces are corres-
pondingly small. When the partially-buried nosetip solutions
begin, there are spurious acceleration excursions due to
inertial factors, but they damp out quickly and the sub-
sequent acceleration levels are reasonable for comparable

depths of penetration.

2.

consideration in the study. Only one basic parameter was
changed for each case. The change in the value of the
parameter was generally significant, such as half or twice
the baseline case value. The cases are summarized in Table 1
(page 10 in Section 1.3). Additional description is given

in the following:

o

2

Figure 8 shows the initial Lagrangian grid for the

PHYSICAL PARAMETER STUDY CASES

Parameters in several categories were selected for

Yield surface (changes refer both to intact and crushed
yield surfaces)

Case 2080-60 - Mises limit - decrease by 50%: !
& min _ |

kg = 1.5 kb kz=" = .75 kb 1

3

Case 2080-61 - Mises 1limit - increase by 100%: @

kg = 6 kb R RN 1
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Figure 8. Initial Computational Grid for Physical
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Case 2080-62 - Slope - decrease by 50% and adjust kl
such that unconfined compressive strength
: remains unchanged: i
= 2 min _
k; = .1683 kb k, = .5 ks = 25
Case 2080-65 - Unconfined compressive strength -
increase by 100% to .82 kb (also equi-
valent to increasing kl, or '"'cohesion,"
by 100%:
k1 = .2 kb
The yield surfaces resulting from the above variations are
shown in Figure 9.
o Hydrostat
Case 2080-70 Bulk modulus - increase by 100% and
adjust other constants in hydrostat
equations as required for compatibility:
1
Ko = 80 kb K, = 100 kb a= .4
o Friction
Case 2080-82 Coefficient of friction - set to zero
(frictionless interface condition)
o Target density
Case 2080-100 Normal density - increase by 100%:
Py ™ 3
o Impact velocity
Case 2080-110 Initial velocity - increase by 100%:
V, = 3000 ft/sec 5
o Penetrator shape and size {
Case 2080-120 Nose radius of curvature - decrease CRH Q
=35% to give blunter ogive: F
CRH = 6 (nose radius = 39 in.) !
Case 2080-122 Penetrator diameter - increase =50%: g
il
Dia, = 9 in., gives W/A = 6.3 psi and | d

nose radius = 83.25 in.

25
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.Y COMPARATIVE RESULTS
2.3.1 Penetrator Rigid-Body Decelerations

Figure 10 compares the penetrator deceleration histories
from the solutions of all target media parameter cases with
the baseline case. Figure 4 (page 12 in Section 1.3) compares
these same cases on the basis of the percentage change (from
the baseline case) in the time-averaged deceleration, Av/t,

vs time, t.

a. Yield Surface

Lowering the higher pressure portion of the yield surface
by halving the Mises limit results in a reduction of the decel-
eration of about 20%. Raising this portion of the yield sur-
face by doubling the Mises limit results in a 5 to 10% increase
in deceleration. Note, from Figures 9a and 9b, that halving the
intact Mises 1limit only affects stress states where the pressure
is greater than 1.4 kb and the deviatoric stress JE is at least
1.5 kb; doubling the Mises 1imit only affects stress states
where the pressure is greater than 2.9 kb and the deviatoric
stress Jé is greater than 3 kb. Thus, lowering the yield
surface influences a greater volume of material near the pene-
trator, and for longer times than raising the yield surface.
This can be seen in Figure 11, which shows contours of the
pressure in the sandstone around the penetrator. The Mises limit
is an important parameter if the pressures near the penetrator
surface are high enough to activate this limit on the yield
surface. This is more likely to be the case in media with a
low Mises limit and/or where the penetrator nose is blunt and
the velocity is high. (The Mises limit, of course, is a para-
meter only in certain plasticity models, and it was used here
for simplicity. Other models generally have some equivalent
form which limits the yield strength at high pressures.)
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Halving the slope of the yield surface while retaining
the same unconfined compressive strength caused the largest
effects of all the target media stress-strain and strength
parameter changes considered in this study. This change
considerably weakens the material, resulting in a reduction
of deceleration of over 40%. Note in Figure 9c that the yield
surface is significantly reduced over a wide range of pressures.
This range encompasses much of the target material near the
penetrator for the problem considered here, so the major effect
on penetration dynamics is understandable.

Doubling of the unconfined compressive strength, or, as
can be seen in Figure 9d, raising the entire Mohr-Coulomb or
sloping part of the yield surface by just 100 bars, produced
a 25% increase in deceleration at later times in the solution.
At early times, material in the vicinity of the projectile is
at relatively high pressures, and the 100 bar raising of the
sloping yield surface is insignificant. As the shock wave
weakens and the material unloads, the relative difference in
strength due to the change in the yield surfaces becomes
greater, producing the observed effect on the later-time
decelerations.

b. Hydrostat

Doubling of the bulk modulus, K,, in the loading hydro-
stat causes an increase in penetrator deceleration of 10 to
15%. A comparison of hydrostatic load-unload paths between
the material model with the doubled bulk modulus and the
baseline material model is shown in Figure 12. The unload
paths reflect the adjustments made to the unloading para-
meters for compatibility. As is seen in Figure 4, this sub-
stantial change in the equation of state caused only a
relatively small change in the penetrator dynamics. This is
a favorable trend for EPW development because:
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(1) In predictive and design analyses, it will generally
be necessary to rely on estimates of the equations
of state for real EPW target media. The insensi-
tivity of penetration processes to the equation of
state indicates that relatively crude estimates
may be adequate.

(2) Natural variations in compressibility at a given

target site may not be a factor of great concern.

(3) The large efforts required to conduct property
investigations of a target site material (e.g.,
seismic surveys, coring, extensive series of lab
tests) and the associated formulation of models
which faithfully reproduce lab curves of material
behavior may not be necessary.

It would be very useful to also examine the effects of
changes in the shear modulus, which may be more important to
penetration dynamics than variations in the bulk modulus,
since the target material forced around the penetrator tip
experiences large shear deformations. Such cases were not
included within the scope of this study, however.

c. Friction

The solution assuming a frictionless projectile/target
interface condition resulted in an initial reduction of deceler-
ation of about 20%, increasing to a 40% reduction at later
times as the contact area between the penetrator and sandstone
enlarged.

It is of interest to compare the axial force history
for the frictionless case (2080-82) with the force history
obtained by simply subtracting out the frictional contribution
from the total force for the baseline case. This comparison
is shown in Figure 13, The true frictionless case lies
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Figure 13. Comparison of Axial Force History from Frictionless
Case with Estimated Axial Force History Obtained by

Subtracting Frictional Force Component from Total

Force in Baseline Case
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somewhat below the curve obtained by subtracting the frictional
component from the baseline case. However, the simple sub-
traction technique appears to be suitable for obtaining

rough estimates of frictional effects.

Friction is a potentially important parameter in the
penetration process, since a relatively small coefficient of
friction can cause sufficient dragging force to represent a
significant fraction of the total decelerating force. For
the complex physical conditions at the interface during earth
penetrations, the amount of friction is uncertain. The inter-
face stresses, sliding velocities, and temperatures are very
high when compared to conditions obtainable with present
laboratory techniques for measuring frictional parameters.
Post-test surveys and analysis of records from earth pene-
tration tests provide some indication of this problem. For
example, evidence of considerable heating at the projectile
surface is seen after some tests wherein patches of metal
film and comminuted rock have been fused together and depos-
ited along the hole wall.®

d. Target Media Density

Doubling the target density, from 2 to 4 gm/cm3, in-
creased the resistance to penetration, giving an average
increase in penetrator deceleration of 20-40%. This hypo-
thetical case represents a relatively extreme variation in
target massiveness, and is much larger than will be expected
in target media for a specific EPW design. For more realistic
density variations, like *25%, we would expect acceleration
changes of the order of *10%.

Comparative results from the cases considering changes
in impact and penetrator design parameters are presented in
Figure 14 and Figure 5 (page 14 in Section 1.3) in terms of
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penetrator deceleration vs time and penetrator deceleration
vs depth of penetration. Figure 15 and Figure 6 (page 15 in
Section 1.3) show the percentage change in deceleration from
the baseline case vs time and penetration depth. The compar-
isons in terms of penetration depth are considered more mean-
ingful for the case concerning impact velocity, since the
amounts of nose embedmert are then the same.

It is also possible to scale the time to provide approx-
imately equivalent percentages of nose embedment for these
cases.* Comparative results using this technique are shown
in Figures 16 and 17. (In Figure 16, the different starting
times are due to the fact that the initial 5-in. nose burial
represents different percents of nose embedment for the
various penetrator designs.)

e. Impact Velocity

Doubling of the penetrator velocity, from 1500 to 3000
ft/sec, caused an increase in deceleration varying between
60 and 130% during early penetration. Neither the baseline
case nor the doubled velocity case was carried out far enough
to show a comparison of the peak decelerations.

An indication of the differing effect of impact velocity
in another target medium and in a lower velocity range can be
obtained by comparing two other calculations which were not

* At an impact velocity V, total embedment of a nose of length
L takes roughly t=L/V. Times for the parametric cases in
Figures 16 and 17 are scaled to the baseline case by

d

L/V 0 L

t = t' -— (1 -=2)

scale L'V v L

The primed factors refer to the parametric case, the unprimed
factors refer to the baseline case, and d is the depth of
initial embedment (5 in.).
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part of this physical parameter study. In the zoning study
described in Section 3, a 1500 ft/sec penetration into
Watching Hill layer 1 soil at DRES was analyzed. The same
penetrator impacting the same target medium at 500 ft/sec
has also been analyzed during an earlier task on the EPW
program.' The only difference, other than velocity, between
these calculations was the coefficient of friction, which
was 0.6 in in the 500 ft/sec case and 0.3 in the 1500 ft/sec
case. The frictional contribution to the 500 ft/sec results
can be segregated and adjusted downward with reasonable
accuracy to make the results directly comparable to the

1500 ft/sec case; i.e.,

W Ty

500 ft/sec 1500 ft/sec
Coefficient of friction, u, 0.6 0.3
used in calculations . -
Calculated acceleration level , i
in Watching Hill Layer 1 RO R
Adjusted acceleration level, 80 g
: = g's ---
assuming u = 0.3

These results suggest a somewhat less strong dependence of
acceleration on velocity than the higher velocity case in
sandstone.

Clearly, impact velocity is one of the most important
parameters defining a penetration event. It would be conven-
jent in empriical penetration relations if the effect of
velocity on acceleration was simple and universal, but such
is apparently not the case; the velocity dependence varies
with the target material, with the projectile configuration,
and with the velocity regime. Thus there are probably no
simple relations that can be used for predicting peak rigid
body accelerations over a wide range of conditions.
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f. Penetrator Shape and Size

Changing the nose shape to a blunter ogive by changing
the radius of curvature from CRH=9.25 to CRH=6, produced an
initially large increase (60%) in penetrator deceleration,
followed by a decay to 20-30% difference as more of the nose

became engaged with the target. The penetrator weight and
diameter were not changed for this comparison. The nose
length is 15.6 in. for the CRH=6 case, as compared to 19.5 in.
for the CRH=9.25 baseline case.

Increasing the penetrator diameter to 9 in. produced
about 110% greater penetrator deceleration after the noses
were half-embedded. Since the penetrator weight was held
constant, this reduced the sectional load nearly in half, from
a W/A =12 psi to a W/A = 6.3 psi. The nose CRH was held con-
stant at 9.25. The computed increase in deceleration is in
line with what would be expected from simple scaling consid-
erations, which would predict a 92% increase.

g. Other Parametric Comparisons

In addition to the cases described above, some explor-
atory information on other parameters was gained through

comparisons among the zoning study solutions and trial solutions
conducted to arrive at the baseline conditions.

0 Penetrator Nose Tip Shape. The DNA penetrator
referred to in this report has a small conical
nose tip, giving, in cross-section, a beveled
tip to the ogive nose. The conical tip has a
45° half-angle and is .5 in. long. For some

field events, a nose cap has been secured to

the tip to give a two-piece pointed ogival nose. i
Comparisons of the effect on penetration dynamics i
between the pointed and beveled designs were made

by comparing code solutions from the zoning and
parametric studies using the two designs.
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Average deceleration histories for penetrations

at 1500 ft/sec into two materials, Watching Hill
Layer 1 soil and sandstone, are shown in Figure 18,
(The sandstone model in this comparison was the
one used in the zoning study (described in Section
ITI and Appendix A); it differs from the baseline
case in the physical parameter study in its
treatment of fracture and in the coefficient

of friction, using 0.3 instead of 0.15.) The
computational zoning was 6 cells per projectile
radius for the soil cases and 4 cells per pro-
jectile radius for the sandstone cases. The
beveled nosetip design induces ~25% greater
deceleration for both of these penetration
conditions. This result indicates that the

detail of the nose tip design is an important
factor in the forces applied to the penetrator

and the resultant decelerations.

There is a possibility that target material can
locally separate from the projectile near the
point of the bevel/ogive intersection. In these
calculations, separation at any point could occur
if the normal stress in the target acting on the
penetrator was zero or tensile. Otherwise, the
target material was assumed to remain in contact
with the penetrator. Separation at the bevel/
ogive intersection using this criterion did not
occur in these calculations. Additional studies
would be needed to investigate the possible
effects of geometric separation.
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o Dilatancy. Dilatant behavior is commonly observed

during stress-strain laboratory tests of rock
materials. If this behavior significantly affects
penetration dynamics, material models should
attempt to account for it. In the models, dila-
tancy can be simulated by using an associated

flow rule in the model of plasticity, which
produces increments of plastic volumetric strain.
Use of a Prandtl-Reuss (non-associated) flow rule
assumes that plastic distortion produces no change
in volumetric strain. The effect on penetration
of a material exhibiting dilatancy is shown in
Figure 19, which compares the average deceler-
ation for penetrations into sandstone modeled
both as a dilatant material and a non-dilatant
material. (The sandstone model for these cases
differed from the baseline case in that there

was no fracture/post-fracture treatment and the
coefficient of friction was 0.3, instead of 0.15.)

The dilatant material case provides a significant
increase in penetrator resistance; the reason for
this is that the dilatant material unloads much
more slowly, providing a higher stress distri-
bution all along the contact area with the pene-
trator surface. This is due to the dilation
occurring as the material undergoes severe dis-
tortion as it is forced around the nose, holding
up the pressure in the solid (elastic) component
of material. Where dilation does not occur, the
entire expansion of material contributes to the
unloading. Since this process does affect the
penetration dynamics, the material modeling should
attempt to simulate dilatancy when it is observed
in the constitutive property laboratory tests.
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2.3.2 Stress and Force Loadings on Penetrators

Comparisons of the loading distributions on the pene-
trator nose for all the parametric cases are shown in Figures
20 to 22. All the curves give loading when the depth of
penetration is 10 in. Shading js used to denote envelopes
wherein most of the calculated values fall.

Distributions of the applied normal and tangential
stresses are shown in Figure 20. The distributions have a
similar shape, with varying amplitudes above or below the
baseline case ordered approximately the same as in the decel-
eration comparisons. All but one of the distributions fall
within the shaded area, or within about *40% of the curve
for the baseline case. The case with doubled impact velocity
stands out, having significantly higher amplitudes, but it

retains the same shape.

Distributions of the axial force are shown in Figure 21.
The high velocity case agains shows a much higher amplitude.
The blunter nose shape case also stands out, with the distri-
bution shifted forward toward the nose tip.

Distributions of the radial force are shown in Figure 22
(data for the frictionless case were not recorded). Here, in
addition to the high velocity case, the larger size penetrator
case also stands out, in proportion to the larger surface
areas involved. (This is also a factor in the axial force
distribution in Figure 21, where the larger penetrator curve
is raised above the baseline case.)

A comparison of the peak compressive stress attained in
the target material which was originally along the axis of
symmetry (in the first column of cells) is shown in Figure 23.
The peak stress is about 6 kb for the baseline case, and
ranges between 4 and 7 kb for the various parametric cases.
The high velocity case induced peak stresses of 8-9 kb.
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2.4 Fracture Pattern Around Penetration Hole

Some additional results of the 3000 ft/sec impact case
serve to illustrate an aspect of penetration in sandstone
which has previously been observed in welded tuff. Figure 24
shows the fracture pattern developed in the target after
penetration to a depth of 24 in. Here annular regions of
totally shattered (comminuted), severely fractured, lightly
fractured, and still intact material are seen at increasing
radii. This pattern of fracture a¥€uﬁ% penetration holes is

seen in experiments in rock media. A1l the material next
to the penetrator and out to a maximum radius of 11 inches,

is comminuted. The degraded properties of such material thus
largely dominate the local processes which act on the penetrator

surface (including, of course, friction).

The corresponding particle velocity field is shown in
Figure 25. Diverging flow is seen around the penetrator,
and ejecta near the entry hole is seen "blowing off'" at
about 600 ft/sec.
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III. EFFECTS OF COMPUTATIONAL ZONING
ON CALCULATIONS OF PENETRATION DYNAMICS

In a previous study of vehicle penetration into a soil
target,' a large radial stress gradient was seen in the soil
outward from the surface of the penetrator, particularly
near the nose tip. A reasonably accurate computation of the
stress field mext to the penetrator is, of course, essential
to determining the correct forces to be exerted on the pene-
trator. Where there are sharp gradients, the question of
the adequacy of the spatial resolution (zone size) naturally
arises. Overly coarse zoning will lead to a truncation of
the gradients. As finer and finer zones are employed, the
computed gradient should converge on the correct peak values.
Unfortunately, there is a heavy price in computing time to be
paid for fine-zoned solutions, so a compromise between

accuracy and cost must be made.

Fortunately, there are several factors which tend to
justify coarser zoning than at first might appear necessary.

For example,

a. The region of sharp stress gradients is concen-
trated near the nose tip of pointed penetrators.
The gradients rapidly diminish along the nose,
and are usually small when the halfway station
between the tip and the tangency point is
reached. Since the penetrator circumference
and surface area decrease sharply near the
tip, an error in applied stress in that
region produces a relatively small error in
the applied force. (If, of course, the errors
in the computations of stress are extremely large,
there will be a significant error in the force

applied to the penetrator.)
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b. As will be seen, the stress gradients are
generally much less severe for rock media, as
compared to soil media, so zoning requirements
are lessened for targets in rock (which are the
primary media of interest for this program).

3.1 PENETRATOR AND TARGET CONDITIONS

The effects of zone size on numerical solution results
were examined for three different penetration problem condi-
tions, as outlined in Table 3 and Figure 26.

The basic conditions considered were the same as the
baseline conditions for the physical parameter study in
Section II. The penetrator was the DNA 400-1b, 6.5-in. dia
design, impacting at 1500 ft/sec. Three.types of target
media were considered:

a. the Watching Hill layer 1 soil!
b. sandstone, and
c. a non-hysteretic, dilatant soft rock

The properties of these materials are listed in Table 4.

The Watching Hill layer 1 soil was modeled as a very
porous soil (air fraction = 37%). It has an extremely non-
linear loading hydrostat and is sharply hysteretic (high ratio
of unload/load moduli). It was modeled with a non-associated
flow rule and thus exhibits no dilatancy.

The sandstone model is the same as used in the physical
parameter study, except for the post failure treatment and
the friction coefficient. The sandstone has a "strong"
failure surface, with an unconfined compressive strength of
~ 6000 psi and a Mises limit of ~75,000 psi. This model can
allow tensile stresses as high as 8200 psi. Since these
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6.5" dia— — PENETRATOR
Rigid Body
Projectile
60"
Normal Impact at 1500 ft/sec
Weight = 400 1b
W/A = 12 psi
" Nose:
B35 /CR.H =9.25 :
(Radius = 60.125") Target Surface
1355557 5555517055555 555005 0555555000555 5 5 505000000 RREN
T Beveled or Pointed Nose Tip

5"

TARGET MEDIA (3 types)

a. Watching Hill Layer 1 soil
b. Sandstone
c. Soft Rock

Figure 26. Penetration Problem Conditions for Zoning Study
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unrealistic tensions occur under positive (compressive)
pressure, they would not be prevented by a limit on the
hydrostatic tension. It was therefore decided to use a
simple fracture model, in which weakened properties are
assigned to a cell if the stress exceeds a critical tensile
value.

The soft rock was represented by a much simpler model,
to help show the impact on zoning requirements imposed by
complications such as are present in the soil and sandstone
models. The soft rock model has the same initial mechanical
properties as sandstone, but employs a linear hydrostat, is
non-hysteretic, and has a lower yield surface. Since exces-
sive tensile stresses cannot develop with this model, no
fracture model was needed. An associated flow rule was
emploved.

Additional description of the material models is con-
tained in Appendix A.

The zoning study cases conducted for each of these
materials are listed in Table 2 (page 17 in Section 1.3.2).
For the soil and sandstone targets, the penetrator nose tip
was beveled with a 45° half-angle cone, as in the DNA pene-
trator design. For the soft rock target, a pointed nose tip
(unbeveled) was used. As in the physical parameter study,
the zoning solutions were initiated with the penetrator nose-
tip already buried 5-in. below the ground surface. This
provides a shorter run-up time to the deceleration level for
a particular impact.

The computational grid designs used for the zoning study
cases employed approximately uniform cells in the vicinity of
the penetrator path. The basic cell width and height in
this region was a selected fraction of the projectile radius.




e

Zonings of 2, 4, 6, or 8 cells across a projectile radius

were considered. It is useful to specify the zoning in terms
of the projectile radius, since finite-difference code calcu-
lations of penetration processes scale with linear dimensions
(except for gravitational or strain-rate effects or complex
targets, none of which were considered here). To accommodate
the pre-burial of the projectile nose, the cells next to the
penetrator nose were reduced in size. However, the material
in these cells was not pre-compressed; all of the target
material was initially at normal density. The cells in the
first two columns below the penetrator were canted upward in
the initial grid. This technique, developed for previous
penetration solutions, provides a more orthogonal grid as cells
next to the penetrator ''drag down' during the penetration
process. This lengthens the time interval between rezones.

3.2 COMPARATIVE RESULTS

For the purposes of this study, the penetrator deceler-
ation is probably the most meaningful result to use in judging
the effects of zone size. Nominal deceleration levels com-
puted for each of the zoning study cases are listed in Table 2
(page 17).

3.2.1 Soil Targets

Figure 27 gives comparative time histories of the time- @
averaged deceleration, Av/t, of the penetrator in Watching Hill f
layer 1 soil, using zonings of 2, 4, 6, and 8 cells per pro-
jectile radius. Two-cell resolution is clearly inadequate, I3
being insufficient to resolve the high stresses which develop {
directly ahead of the blunted nose tip. As a result, the I
penetrator decelerations are substantially lower than in the i
more finely-zoned runs. Based on the curves in Figure 27, +
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6 cells per penetrator radius appear to be the minimum for
achieving reasonable accuracy in soil. (It should be pointed
out that numerical oscillations which correspond to the fre-
quency at which new cells are encountered by the projectile
nose are a persistent problem in analyses of penetrations of
blunt-tipped projectiles into material, like dry soils, which
are relatively compressible and highly hysteretic. Finer
zoning alleviates this problem somewhat, but does not prevent
the oscillations. Further work to develop techniques for
reducing the oscillations in analyses of soil penetrations is
needed; it was not undertaken in the current task because of
the emphasis on rock penetrations.)

Sa2 o2 Sandstone Targets

Figure 28 gives the histories of average acceleration,
Av/t, using zonings of 2, 4, and 6 cells per radius to analyze
penetration into sandstone. Figure 29 compares the axial force
and deceleration vs time for these cases. The force component
resulting from application of the normal stress on the pene-
trator is seen to be similar for the three cases. The fric-
tional force component is about the same for zonings of 4
and 6 cells per projectile radius, but is distinctly higher
for zoning by 2 cells per radius. This inverse effect was
due to the inability of the coarser-zoned case to detect
fracture occurring near the projectile. Fracture causes
degradation of the shear strength of the material, thus

limiting the applied frictional stresses to a lower value.

Comparisons of the peak radial stress vs radius at a

depth of about 6 in. are shown in Figure 30. From these
results, it is concluded that zoning of 4 cells per radius

is adequate. Without the complications of the fracture model,

a zoning of 2-3 cells per projectile radius might be sufficient.
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3.2.3 Soft Rock Targets

Figure 31 gives the histories of time-averaged acceleration,
Av/t, using zonings of 4 and 6 cells per radius to analyze
penetration with a softer rock. Forces and deceleration time
histories are shown in Figure 32. Plots of peak radial stress
vs radius at a depth of about 6 in. are shown in Figure 33.
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Figure 33. Effects of Zone Size on Peak Radial Stress
vs Radius, Depth = 6 in., Penetration into
Soft Rock Target
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The closeness of the results in all these plots indicates

that zoning of 4 cells per radius is certainly adequate and
that an even coarser zoning might be sufficient. (Coarser
zone cases were not run for this problem.)

Note that the penetrator deceleration traces for these
solutions are smoother than in the sandstone problems. This

is due to the simpler model and absence of hysteretic unloading

in the soft rock, and to the use of a pointed nosetip on the
soft rock penetrator.

3.3 ZONING CONCLUSIONS

From the above results and comparisons, the foliowing
conclusions are drawn:

a. The required zone fipneness increases as the non-

linearity in the earth wmaterial response increases.

b. The presence of abrupt changes in projectile shape
(such as the beveled nose tip) may impose finer

zone requirements.

c. Higher impact velocities will generally tend to
require finer zoning, since the material will be
stressed to higher levels and will thus usually
enter into more non-linear regimes.

On the basis of the limited results of this study, we
would recommend that the target zone size in the vicinity of

the penetrator be a minimum of 4 cells per projectile radius.

Where highly non-linear response is expected, at least 6
cells per radius should be used. Since it is impossible to
~investigate all the potential problem conditions, it would
be a good practice to briefly examine zoning effects before
computing new penetration problems which involve substantial
changes in material properties, nose geometries, or impact
velocity.
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IV. COMMENTS

! The results of this study are mostly favorable to the
technology and development of earth penetrating weapons, for
the following reasons:

; a. For a given type target medium (soil, soft rock,
hard rock), lack of detailed property information for poter- |
' tial target materials and natural variations in target prop-
erties should not introduce large uncertainties in penetrator
performance. Generally, the percentage uncertainty in pene-
tration dynamics will be less than the percentage uncertainty
‘ in target media properties. In the parametric study, factor
4 of two changes in basic target properties led to changes in
penetrator decelerations of 5 to 50%.

b. The most critical target properties are the strength
and frictional characteristics of the material next to the
penetrator; for penetrations into rock, this material is
severely fractured. It thus becomes important to ascertain
the post-fracture properties of rock. Efforts to improve
knowledge of constitutive properties and penetration processes
should emphasize this area. Probably the greatest uncertainty
in predicting penetrator dynamics is the frictional force
applied to the penetrator.

PP S T

c. Impact and design parameters were not examined in
detail in this study. It is nonetheless evident, for a given 4
type target medium, that the impact conditions and penetrator
design are generally more important factors in penetration
dynamics than the detailed constitutive properties of the |
target medium. Fortunately, from the standpoint of design 1
analyses, the impact and design parameters are generally |
specified, thereby minimizing any uncertainties. The impact
velocity clearly has a primary effect on penetrator dynamics.




Unfortunately, there is probably no simple universal functional
relationship between rigid body deceleration and impact vel-
ocity; rather, the relationship depends on the target medium
and the velocity regime, and probably on penetrator shape

as well.

Additional study is needed in order to provide a basis
for optimizing nose shape for different types of earth pene-
trators. Designers need information with which to select
nose shapes which give the appropriate balance of peak accel-
eration, penetrating capability, and ability to perform in
oblique and yawed impacts.
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APPENDIX A
MATERIAL MODELS FOR ZONING STUDY

A.1 WATCHING HILL LAYER 1 SOIL

The material model used for the soil was the same as
that used in the previous calculation of the DNA penetrator
experiment at DRES, as described in Reference 1. One change
was made with respect to the friction rule used to compute
the applied shear stress on the penetrator surface: the
coefficient in the friction equation was changed to 0.3;

: 5

Y (on)

B

from the 0.6 value used previously. The 0.3 value was also
used for the sandstone and soft rock cases.

T

A.2 SANDSTONE

A hysteretic elastic-ideally plastic model, using an
associated flow rule and a simple fracture criterion, was
formulated to represent typical properties and behavior of
sandstone. The model was not intended to represent the rock
at a specific site. The model was formulated such that the
mechanical properties in loading and unloading depend on the
current elastic volumetric strain (u) and the maximum loading

state (P ) which the material has experienced.

max’ Mmax
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Symbol Definitions

Lo Ly o O oy U <

max

bulk modulus

shear modulus

second invariant of deviatoric stresses
pressure (mean normal stress)

maximum pressure reached by a material element

e
g -1 = natural volumetric strain (elastic)

maiimum volumetric strain (elastic) reached
by a material element

Poisson's ratio in loading

Poisson's ratio in unloading, reloading
density (elastic)

normal density

Loading Hydrostat

Al

= - M
P o= K u- (K -K)u# [1-exp F]

Unloading Hydrostat (u<pmax)

where

s K(',(u-us) U < s
P = Ko(u-ug) *+ A(u-us)® M > ug
A Pmax'K;(“max'“s)

(hpax~us)®
X (MpaxHs) (KA'Ké)

E

1
max'Ko(“max'“s)

likign




and K f(us)

“Mmax

~
]

m = Kp~ (Ky-Kyg)exp P
Hu
v =l )
In this model, f(ug) is constant and

Bllpay) = Minfan, ., u.)

The values of the constants are:

a = .6 o = «25
f(ug) = const = 50 kb u® = 1.5
K, = 40 kb u; = 1.5

= & 3
K, = 800 kb o 2 gm/cm
Kuo = 150 kb

Hydrostatic tension was limited by imposing a minimum

value of pressure: Pmin =-,.02 kb.

Shear Modulus

G = Min [—-(———133 b 4 38 Gmax]
2(1+v)
where
B= (D)
du

For loading, a constant Poisson's ratio, V= .2, was
used and for unloading, a constant Poisson's ratio, Vg = -18,
was used, except that a 1limit on the resulting shear modulus
of Coax * 200 kb was imposed.




Yield Surface and Fracture Model

The yield surface defines the limit of elastic states.
For tentative stress states lying outside the yield surface,
plastic flow is computed in accordance with the associated
flow rule.

The yield surface used for intact sandstone was:
Viimax = Min (ky+k,P, ky)

where k1 = 1 kb, ky = 1,0, ks = 3 kb

The following tensile fracture model was used to prevent
the buildup of large tensile stresses.* For material in a
cell which develops a principal stress exceeding a critical
tensile stress, the material is considered to have fractured
and is thereafter assigned degraded material properties. The
critical tensile stress was set at 20 bars and the fractured
material was assigneda lowered failure surface, defined by:

ky =0 k2 =009 kg = 1.5 kb

The failure surfaces for the intact and fractured material
are shown in Figure A-1. In addition, the fractured mater-
ial was modeled as a constant shear modulus material, with

G = 15 kb, and Pmin was set to zero.

Model Results

Plots of vertical stress vs vertical strain, stress
difference vs pressure, and pressure vs volumetric strain for

* The more complex model for fracture/post-fracture behavior
in the sandstone used in the physical parameter study is
described in Section 2.1.
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uniaxial strain load-unload paths computed with the model
are shown in Figures A-2 to A-4. The points where fracture
occurs upon unloading are shown by x's on Figures A-3 and A-4.

Friction Rule

The following friction rule was used to compute the
shear stress T acting at the penetrator/rock interface:

T = .3 VJ. )

Zmax(cjn

Here op, the stress component normal to the penetrator sur-

face, is the argument of the yield surface function, Jémax'

A.3 SOFT ROCK

Loading and Unloading Hydrostat (Non-Hysteretic)

P e Kk -B)
n

A constant shear modulus model was employed, with G = 30 kb.

Yield Surface (Associated Flow Rule)

[7 ;
J2 = Min (k1+k2P, k3)

The values of the constants are:

g 3 o
Py = 2. gm/cm k, = .5
K = 40 kb kg = 1 kb
k; = .05 kb Prin = -+005 kb

The yield surface for this model is shown in Figure A-5.

Ak tuss s SR




>0 | e T
Intact
=
Fractured
I | |
0 20 40 60 80
Pressure (ksi)
Figure A-1. Failure Surfaces for Intact and Fractured Sandstone
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