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\ Abstract

Nature, origin, and treatment of systematic errors in
measurements and calibrations are discussed. It is shown
how systematic errors can vary, how random errors under
one set of conditions will become systematic errors under
another set of conditions and vice versa. Recommendations
are made concerning the assignment of values to limits of
systematic errorsof measurements and standards,

L._Introduction

Statistical analysis of measurement errors has become
an additional tool metrologists are using in an increasing
number of applications and at an increasing rate in order to
determine numerically the accuracy of measurements and
the confidence attached to quoted accuracies. Methods of
evaluating random errors are well known and in widespread
use. This paper examines the main aspects of systematic
errors and methods to evaluate them; it discusses the
nature of the fluctuating boundaries between systematic and
random errors in measurements and calibrations.

The systematic error of a measurement or calibration
may be defined as the largest possible estimated difference
between the true value of a measured quantity and the mean
value towards which the measurement or calibration pro-
cess tended as a limit at the time of the measurement and
which difference could not be eliminated for technical or
economic reasons; it is an estimate of the maximum limits
of the effects of all error sources known or suspected to
exist which tended to offset uniformly all results of repeated
applications of the same measuring or calibration process
at the time of the measurement. Thus, the "systematic
error” is not an error in the accepted sense of the word
"error"”, but rather an uncertainty; however, the term
"error" will be used here for brevity and because it has
been firmly established by custom.

Ii, Types of Measurement Errors
A. General

The error or uncertainty of a measurement can be
divided into a fixed part and a variable part, where it should
be understood that the fixed part remains approximately
fixed only for the duration of the measurement process. For
shorter durations, the variable part is likely to be smaller,
and over longer time intervals, the phenomena causing the
"fixed" error can be expected to vary also, thus making the
variable part of the error larger at the expense of the
"fixed" part. As the time interval under consideration
becomes very large, any initially fixed error will probably
vanish and all errors are likely to become variable.

The errors or uncertainties of a measurement can also
be categorized by a random part and a systematic part. The
random error is part of, but not necessarily identical with,
the variable error; and the systematic error includes the
fixed error, but may also include a portion of the variable
part of the error,

All determinable errors which occur during one meas-
urement process and which do not appear* to be part of the
random error must be accounted for, otherwise the process
may not be under statistical control. But ". . . until a
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measurement operation . . . has attained a state of statistical
control it cannot be arded in any logical sense as meas-
uring anything at all, "4 — "Capability of control means that
either the measurements are the product of an identifiable
statistical universe or an orderly array of such universes,

or if not, the physical causes preventing such identification
may themselves be identified and, if desired, isolated and
suppressed, "1

No general statement concerning the relative magni-
tude of random and Systematic errors can be made. In
some disciplines, the best measurements that can be made
have systematic errors very much smaller than random
errors. In others, the systematic errors far outweigh the
random errors, even for the best measurements which the
present state of the art permits,

B. Systematic Errors

A systematic error is that value which, when added to,
or subtracted from, the limiting mean value of a measure-
ment process of a quantity, produces a range in which the
"true value” of that quantity is believed to lie. We hope that
the systematic error is always equal to or larger than the
difference between the "true value” of the quantity and that
value toward which the measuring process of the quantity
tends, this tendency not being caused by chance fluctuations
of any part of the measurement system.

The systematic error is a bias, but generally unknown
in magnitude and direction, because the "true value" is an
abstract concept which cannot be realized. More
pragmatically *. . . the systematic error . . . of a meas-
uring process refers to its tendency to measure something
other than what was intended. . . On first thought, the
'true value' of the magnitude of a particular quantity
appears to be a simple straightforward concept. On careful
analysis, however, it becomes evident that the 'true value'
of the magnitude of a quantity is intimately linked to the

_purposes for which knowledge of the magnitude of this quan-

tity is needed, and cannot, in the final analysis, be mean-
ingfully and usefully defined in isolation from these needs. "4

A systematic error is always an estimate of a range,
and estimating it requires a profound understanding of the
measurement process if a realistic figure is to be arrived
at. A quoted figure for the estimate of a systematic error
means that the metrologist believes that he would have
detected — and, therefore, been in a position to reduce — any
error larger than that quoted as the systematic error. It
implies that the actual, unknown error could be anyw here
within that range. And ". . . the wiser and more careful the
experimenter's search for systematic errors, and the more
completely he has eliminated them, the less likely is it to lie
near the limits of the range, "3

DorseyS describes the concept of the systematic error
as being ". . . used to cover all those errors which carnot
be regarded as fortuitous, as partaking of the nature of
chance. They are characteristics of the system involved in
the work; they may arise from errors in theory or in
standards, from imperfections in the apparatus or in the

*The word "appear” is used, ". . . because, as is always
the case in trying to find a law controlling & phenomenon,
we can never be sure that we have discovered the law.
Obviously such appearance is not sufficient in the

sense although it must be in the practical sense, "11
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observer, from false assumptions, etc . ... They are
frequently called 'constant errors,' and very often they are
constant throughout a given set of determinations, but such
constancy need not obtain , . .

"In Searching for systematic errors, the logical pro-
cedure is to make a series of measurements, thento change
something and to make another series, and to compare the
means of the two groups. This will be repeated as often as
may seem necessary. None of the series can be long, for
an extended delay offers opportunity for unanticipated
changes to occur. If the two means being compared do not
differ by more than the sum of their technical probable
errors, their difference is of no physical significance — it
proves nothing. Heance, the presence of & systematic error
that does not exceed the sum of the technical probable
errors of the two groups of observations used in the search
cannot be established without great difficulty, if atall . . .

"In the absence of such a search, the worker can do
no more than hope that all is going well. The fact that he
sees no reason for suspecting the presence of an unknown
systematic error is of no importance at all, no matter who
the observer is. The really troublesome errors are exactly
those that are not suspected. The expected ones can usually
be to some extent eliminated. "3 .

Sometimes economics dictate the use of a coarse
measurement system whose major component of systematic
error can be determined by comparison with & more accu-~
rate measurement system. This component can then some-
times be accounted for by a correction. The remaining
systematic error will thereby be reduced; it may even
become negligibly small, but it will theoretically never
become zero. However, the systematic error of the
coarser system may vary, and it may not be practical to
determine it each time a measurement is to be made. In
this case, no correction may be applicable, and the com-
parison with & more accurate system may only serve to
estimate the range of the systematic error of the coarser
system more accurately than would be possible without
recourse to a more accurate system. This is the case, for
instance, with a working instrument with a rated accuracy
or uncertainty of 1% routinely calibrated by working stand-
ards with 0, 1% uncertainty limits. The 1% uncertainty of
the working instrument is its systematic error contribution
to all measurements made with it, unless corrections are
provided, in which case the systematic error may be less,
The calibration against the standards then serves to assure
that this systematic error does rot exceed 1%.

OI. _The Changing Nature of Errors

 The boundaries between systematic and random errors
are fluctuating. What appears as a systematic error under
one set of circumstances may appear as a random error
under another and vice versa, just as a sculpture changes
its appearance to a viewer walking around it. The counse-
quences of this fact, as they affect the evaluation of uncer-
tainties of standards in a laboratory, are illustrated by a
few examples.

t

A. A Random Error Becoming Systematic Error

When a standards laboratory A, say the National
Bureau of Standards, calibrates a reference standard for
us, laboratory A reports to us the value of the standard, as
it has determined it by its measurements, and the limits of
uncertainty of that measured value. Part of laboratory A's
uncertainty originates from its random error, part from its
systematic error. Random error and part of the systematic
error can be expected to add a small variable component to
laboratory A's measured value in such & way that each time

laboratory A measures the standard, the resulting measured
values will differ slightly from the ones obtained eariier or
later. However, once & value and its limits of uncertainty
are reported to us, they are fixed, no more varisble, least
of all "random variables", and the entire uncertainty,
including random error, must be considered by us as &
systematic error when we need to apply it. The necessity
of the foregoing was discussed in detail by Youden in Refer-
ence 15. (See also Ref. 10.)

In part Il B., under "varying Systematic Errors of Stand-
ards", we shall see hpw trend charts can help us "unfreeze"
the random error and the variable part of the systematic
error of laboratory A in the long run to reduce the total
uncertainty accompanying the value of our standard. But
without such techniques, the total uncertainty of a higher
echelon measurement becomes a systematic error in its
lower echelon application, (See also Reference 15.)

B. Varying Systematic Errors of Standards

The certification uncertainty of our standard is not the
only uncertainty introduced by the standard. In general,
another uncertainty term must be found which combines all
those fluctuations in the value it represents as may be
caused by changes in the standard itself, usually due to drift,
instability, or use (wear), or by external influences which
temporarily affect the value of the standard, such as tem-
perature, barometric pressure, air ionization, solar
activity, etc., and which are not controlled — and may not
even be known to have an effect — at the time the value of
the standard is being determined. Some of these effects may
at least partly be accounted for in the random error of the
measurement process employed when determining the value
of the standard. But, unlike that part of the random error
which is entirely caused by the measuring process and the
effect of which will remain constant once the measuring
process is terminated and the value of the standard reported,
the latter effect will continue to change the value of the
standard, adding to the uncertainty. 3

In general, we would not know whether differences in
subsequent values of our standard as certified by Labora-
tory A are caused by the random error of Laboratory A
only, by changes in Laboratory A's systematic error, by
changes in the value of the standard itself, or by a combina-
tion of these causes. To be able to assign to a standard an
uncertainty which includes all experienced effects of vari-
ation from the unknown and unknowable true value of the
standard, we must analyze the history of that standard.

A valuable tool in analyzing and displaying the history
of a standard is a Trend Chart (see Figures 1 and 2). The
dots and x's on the Trend Charts represent values reported
by the National Bureau of Standards (NBS) for the standards
in question at the indicated dates. Their dispersion pattern
suggests a Trend Line which represents the best value known
of each standard. The Trend Line value of the standard is
most likely a more accurate value of the standard than the
latest NBS reported value, and the Trend Chart has on
occasion served to correct érrors in the NBS reported values.
The dispersion of the points shows graphically the effect of
all the variables influencing the known value of the standard
over the long run, such as possible long term variations in
the systematic error of the standardizing Laboratory (NBS
in this case), its random error, and actual changes of the
standard. In fact, the Trend Charts of the gage blocks
indicated a shrinkage of the blocks before the reasons for
such shrinkage were known (wear effects could be excluded in
the case of the blocks represented by Figure 2). :

Furthermore, the calculated envelope around the points
at two or three sigma of the points' dispersion around the
Trend Line represents the total uncertainty of the value of
the standard, excluding the systematic error of the standard-
izing laboratory. The systematic error of the standardizing
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A. Linear Accumulation

Where component magnitudes are plainly added to
arrive at an overall magnitude, as in the stacking of gage
blocks or the series connection of resistors, systematic
errors are also added. An example is the series of resis-
tors, Figure A, with values as in Table 4.

\e propagation :
case. The network is as in Figure B with values as in Table B.

L] ]
Ry
n, ", Ay n, " )
Figure A. Example of Linear Accumulation of Figure B. Series-Parallel Connected Resistors 1

Systematic Errors, Series Connected
resistors or stacked gage blocks

Talle A
Values of Resistors, Figure A.

Total Uncertainty of

_Measured Value
Element Measured Value Symbol in%  in Ohms
R, 10 MQ (ORI | 100 ko
R, 5k epe 5% 250 9
R, 130 @ s & 6.50
R, 108 he O 0.52
R =  10005.14 ke r = 100.257 k@

The total resistance R of this series of resistors is 10 005
140 ohms with an uncertainty of 100 257 Ohms or 1%.

Or, applying the propagation of error equation (1):
The equation for R is

R=R1+R2+Ra+n4
= 10 005 140 2
R='mr Rzn RS' n4)

| Ben, | |+ |3

+ A)

R _9R _OR _ 3R _

L A
hence =

R .nl+en’+en'+en‘

= 100 257 0 = 1% of 10 M@

R,

Ry
R,

Table B.
Values of Resistors, Figure B

Total Uncertainty of
Measured Value

Element Measured Value Symbol in% inOhms

1000 © enl
500 2 el‘2
350 @ eRa
150 2 en‘

The equation for R, Figure B, is

1%
3%
5%
5%

RyRy

R=R‘#R2+ W=lm5ﬂ (B)

R=1(R,, Ry, Ry, Ry

Substituting R, Equation B, for Q in Equation (1), the result
is again as in Equation (A). The partial derivatives of

Equation (A) are here:

BE

a u;Jw -/

Thus Equation A becomes

X

p = 100+152+0.09x 17.502+0.49x7.5Q

=30,250=1.9%

10 9

15 0

17.5 9

.59




b. Measuring a High Resistance

This example illustrates the calculation of the
-ymum error incurred in measuring the value of a
1 gigaohm resistor (X) against a 100 kiloohm standard
resistor (A) whose value was determined earlier with a
total uncertainty of 0.018%. The apparatus used in the
measurement is a differential high mllhnoe brldge shown
i in Figure C. :

This bridge is first balanced with resistor X connected

to terminals 1 and 2 and with the calibrated decade resistor

set to zero (B1=0). Resistor X is then disconnected and the
bridge balanced again by the resistance of arm.

. B by an amount B2, using the decade resistor. The meas-
ured value of X is then

A2
X= ‘-N-B—z - A ©
'houll-p-llbenludthevolhnd!vlderC/D.

)é = {(A}By, N).

Figure C. Differential High Resistance Bridge

The values and uncertainties of the individual elements of
Equation (C) are found as tabulated in Table C.

Table C
Values of Elements, Equation (C)

Total Uncertainty of

Measured Value
Element Measured Value Symbol in% Magnitude
A 100 005 2 N 0.018% 18 Q
B, . 9.9056 2 ep 0.27% 0.027Q
N 1.000 . en '0.011% 0.000 11

Applying équation (B) where Q now must be replaced by X of
Equation (C), the systematic error of the resistance meas-
urement due to the memlntyd the bridge elements then
hml

X X
=‘H- GA‘ + a;c. l @)

|+~ The partial derivatives of X with resgect to A, Bz, and N are
i %2&-;
B
-

then, respectively,

so that (D) becomes

6 ) o[z | |5, o
- (ir";%‘.‘-’ggg‘;-l) 18 ‘+—L19°—°3§ﬁ§xo.oz1

1 x (9. 905)'
2

R L T

1°x 9.905

.x-

= 3 226 834 ohms or approximately 3. 2 x 105 chms,

The value of X, using equation (C), calculates to be 1,009 6
x 109 ohms, so that the limits of uncertainty due to systematic
error of the bridge circuit and the standard are at + 0. 32%.

. .
R st
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Figure 1. Trend Charts of Two Thomas Type Standard Resistors

laboratory is possibly in part included in a Trend Chart
spanning a long period, but we don't know how much of it is
included, if anything. Thus, to estimate the total uncer-
tainty of the standard's value at any time, we must add the
reported systematic error of the standardizing laboratory
to the width of the envelope on the Trend Chart. And this
total uncertainty of the standard is part of our systematic
error when we use the standard ac a basis for measure-
ments. Note that this systematic error includes randomn
variables which have been frozen for the time being and
must be considered as being part of the systematic error.

For a detailed deseription on how to construct Trend
Charts, see References 8* and 9.

Figure 1 shows the Trend Charts of two standard
resistora constructed in July 1964 and January 1965
respectively (dashed lines). At that time, the best values
for these two resistors were 1.000 012 43 and 1. 000 013 44
(Trend Lines). In the absence of any information to the
contrary, the Trend Lines were believed to be horizontal,
assuming no detectable change in the values of these
resistors for the near future (two to three years). Because
of the scarcity of the points svailable, 2-sigma control
limits were drawn based on the scatter of the points arcund
their average (the Trend Line in this case); this gives &
95 percent confidence that the "true value" (i.e. the limit-
ing mean value of all experienced variables) lies between
those control limits, disregarding for the moment any

systematic error of NBS. As more points become available
3-sigms control limits would reduce the risk of the limiting

mean value being outside the control limits to an insignifi-
cant 0. 3 percent.

As the Trend Line value of these standurds is the best
known value, this is the value assigned to the resistor at
any time, regardless of the latest calibration value of the

standards, our entire measurement system would experi-
ence these ripples, ripples which in the end would cancel
each other around the limiting mean value, the Trend

value
only insignificantly, if at all.
Hence the Trend Line value assigned to the standard will
remain stable over the years.

The control limits represent the limits of uncertainty
of the Trend Line value and hence, represent the limits of
uncertainty due to variable error components of the value
which we assign to
more
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Figure 2. Trend Charts of Two Gage Blocks

by the standard to any measurement made with it. Note that
the 0. 77 microohm control iimits represent only 95 percent
confidence that this range brackets the "true value of the
I we want to increase thé confidence limits to

& equivalent), the control limita

——.

next calibration of that standard and use the uncertainty
reported by the calibrating laboratory (NBS in our case)

as the total uncertainty of the standard's value. The fallacy
of that practice becomes evident from the above discussion,
These laboratories in fact experience a far higher uncer-
tainty than they are aware of,

Going back to Resistor I, Figure 1, we note that the
next reported calibration value (September 1968) was
1.000 011 6 ohms and fell, therefore, slightly outside the
control limits.  We rejected the value as being in error,
realizing that we stood a 5 percent change of rejecting a
perfectly valid value,  But 8 new measurement confirmed
that the September 1968 value was erroneous.

Fknﬁacbwl?rﬁmam-midw'
Mbiﬂumhlpot&umm

the slope of such a Least Squares line is 2lso burdened
with some uncertainty, the band of uncertainty around the
rowmnmmammm“nunmnwuu
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as time progresses as shown in Pigure 2, expressing
numerically our uncertainty about the exact value of the
slope. This widening bandwidth of uncertainty also tells
us when we need to have the standard recalibrated, lest its
uncertainty grows intolerably large for the requirements of
our products,

The dots represent the values known at the time at
which the Trend Charts were constructed and on which the
Trend Charis are based. The x's represent values obtained
later and are shown o illustrate the predictive value of the
Trend Charts. The Trend Charts are, of course, updated
each time a new value is obtained.

As time progresses, however, technology, the
methods used in calibrating the standards, and frequently
the accuracy requirements, change. There come times
then when we can no longer continue the Trend Charts as
before. New values, obtained by different measurement
methods, are no longer readily comparable with old ones.
As an example, refer to Figure 3, the Trend Chart of
Resistor 11 in the 1970's. The uncertainty values attached
to the calibration values of this resistor in the 1960's
(Figure 1) were at best within 1 microohm; the uncertainty
values quoted by NBS for the values charted in Figure 3 are
typically around 0. 09 microohms. The new Trend Line
value assigned to this resistor is now 1. 000 013 934 ohms,
and 3-sigma equivalent control limits are at : 0. 50 micro-
ohms from that Trend Line. (Two-sigma control limits
are also shown as light dotted lines at : 0. 18 microohms for
comparison purposes, showing how the closer agreement
between the plotted points results in a much narrower band
in which the "true value" of the resistor is likely to lie.)
NBS's systematic error is now reduced to about 0. 03
microohms, so that we can now say that the best known
value of this resistor is "1. 000 013 93 ohms with a total
uncertainty of 0. 54 microohms, derived from bounds of
40. 03 microohms on the systematic error and a computed
random error of 0.50 microohms based on a two-tail
0. 0027 probability value for 3 degrees of freedom., "

C. Varying Systematic Errors of Measurements

The magnitude of a systematic error of a measure-
ment process is established by the capability and willing-
ness of the metrologist to measure those phenomena which
cause systematic errors, to find their quantitative effects
(i.e., what quantity of the phenomenon is required to cause

a measurement error of a given magnitude), and to account
for them or eliminate them. H it is known how much of a
phenomenon causes a given amount of 8 measurement error
and if we are capable — technically and economically - of
measuring the phenomenon and making the required adjust-
ment, the systematic error is determinable and should be
eliminated. If the state of the technology or economics
forbid a determination and subsequent elimination of the
systematic error, it remains unknown and must be estimated.
The following example is intended to illustrate the transitory
nature of the limits between systematic and random errors
of a measurement process.

An unknown standard resistor with a nominal value of
1000 ohms was compared against a known standard resistor
one day between 10:00 8. m. and 10:20 a.m.. A ratio set
was used for comparing the two resistors in air. The five
values obtained were plotted on a chart, Figure 4. The
ambient temperature was 25.4 degrees Celsius, varying by
less than 0. 1 degree during that time. The temperature
coefficients of resistance of the two resistors were known,
and all plotted val ues were corrected for a base tempera-
ture of 25 degrees Celsius.

The effect of temperature on the entire measuring
system was not kcown. The ambient temperature varied
between approximately 25.5 and 24.5 degrees C at a typical
rate of approximately 0,5 degrees C per hour. It could,
therefore, be assumed that the system was not at thermal
equilibrium at any time; and the effect of this inequilibrium
on the result of a single set of measurements would have to
be estimated and a numerical value assigned to this effect
as part of the systematic exrror if the value of the unknown
resistor had to be determined on the basis of the first set
of measurements. The nearly perfect agreement of the
values obtained in the first set indicates that the resolution
of the ratio set was insufficient for the measuring system
to respond significantly to random fluctuations. An analysis
of the random error of this set based on more than an
inspection of the data, where four values are identical and
only one differs from the other four by the smallest unit
possible to resolve, would be of little value.

The correct value of the standard resistor had been
determined by a more accurate measurement process before
and after the measurements described in this example and was
1000. 0120 ohms with a constant systematic error and with a
random error of considerably less than 1 ppm.

RESISTOR 1t
1000016 |- 3
-
§ 1000.018 |- -
»
z i urren conTRoL LIMIT
e T N e e R
P s e . e T — v — — — — — — — G— —— —— ——— —— —— — — —
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€ 1000013}
1000.012 ] l L1
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Figure 3. Trend Chart of Recent Values of Resistor I
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Figure 4. Two Sets of Measurements of a 1000~ohm Standard Resistor

Between 2:00 and 3:00 p. m. of the same day,
another set of measurements was made and is also plotted
on the control chart. The ambient temperature was 24.9
degrees Celsius. Again, the five measured values, cor-
rected for the base temperature, agreed very well;
perfectly, as a matter of fact. But they differed markedly
from those obtained previously. It could be said that each
set of measurements was under (simple) statistical control
individually; but both sets together indicate an out-of-control
condition, the two sets being offset from one another by a
systematic error. Since no means were available to keep
the ambient temperature more stable, and since the effect
of temperature inequilibrium on the components of the meas-
uring system was not known, this systematic error is
unknown, If it had been possible to predict the systematic
error due to temperature difference and inequilibrium or to
maintain the ambient temperature more closely, the meas-
ured values could have been adjusted for the temperature
inequilibrium, or the condition causing the inequilibrium
could have been avoided. (The effect of temperature on the
systematic error of the resistance measurement is given
here ag one example only. Many other sources of system-
atic error exist in practice and may influence the meas-
urement uncertainty. )

The resistance of the unknown standard resistor was
then measured repeatedly under similar circumstances,
The results of these measurements were entered on the
chart shown in Figure 5.. Each plotted point is the mean of
five successive determinations of the resistance of the
unknown corrected, as far as possible, for 25 degrees:
Celsius. The points now are randomly distributed about a
mean of 1000. 0124 ohms. Whereas each group of five
resistance determinations was made with a very small ran-
dom error and an appreciable systematic error, the new

mean has a drastically reduced systematic error, but an
appreciable random error. By taking the measurements
over a prolonged period of time, the systematic error of
each group was allowed to very and to become part, the
major part in fact, of the random error of the measuring
process.

Reference 1 describes the phenomena of errors chang-
ing their nature in the following terms: "If the cause system
is enlarged, then what was previously predictable bias may,
in terms of the new cause system and process, vary in a
random fashion and therefore be attributable now only partly,
if at all, to bias. Furthermore, enlargement of the cause
system requires re-evaluation not only of the bias involved
in the stated accuracy but also of the stated precision. "

Temperature changes, like many other causes of sys-
tematic errors, frequently occur in patterns, such as rough
sinusoids or, in the case of closely controlled environments,
in sawtooth patterns, not randomly. The random appearance
of the points on the chart of Figure 5 is due to the random
selection of the times at which the measurements were made.
It is interesting to note that an overestimate of the limits of
uncertainty due to random errors would be obtained if the
points would follow exactly a sinusoidal or a sawtooth pattern
and the calculations were made as if they were normally
distributed. In fact, all points of a sinusoid are within a
region bounded by 0 + V20gor within 1.41 standard deviations
from the mean, and all points of a sawtooth curve of isosceles
triangles with height h are within a region bounded by

h
2* 30

or within 1. 73 standard deviations from the mean.
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Figure 5. Twelve Means of Sets of Five Measurements
® Averages of values from Figure 4.
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The precediug examples illustrate, therefore, that:

1. A measuring process ordinarily under statistical
control will get out of control if the systematic
error of the process varies, but control may be
reestablished if enough changes are allowed to
occur and the changes in systematic error are
allowed to join the chance system of variations,

2. If changes in systematic error are allowed to
occur, the standard deviation of the mensuring
process will be larger than in the absenv. of
such changes, and the systematic error will be
reduced.

3. The time element will probably always change
the "cause system" and transform constant
errors to changing errors, and parts of system-
atic errors into random errors,

The last example, however, raises another question.
Is the 0. 4-milliohm difference between the mean and ‘he
certified value attributable to a systematic error or could
it be caused entirely by the fluctuations which a mean from
a limited number of measurements could be expected to
display? Is there, in other words, a bias in the measuring
process which should be eliminated? Seetion VI will show
one way to answer this question.

1V. The Relative Importance of Systematic Errors

The systematic error frequently becomes the insur-
mountable barrier toward more accurate measurements,
especially at lower echelon laboratories. But sometimes
it can be disregarded, no matter what its magnitude.

For instance, the National Bureau of Standards certi-
fies standards to values with uncertainties relative to the
legal units as maintained at NBS. These uncertainties
rcﬁect mainly the errors accrued in comparing a submitted
standard with the national reference group, mostly indirectly,
f.e., through intermediate standards, But they make no
allowance for the systematic errors which may be inherent
in the national reference group; this part of the systematic
error is the difference between the magnitude of the unit of
measurement as represented by the national reference group
and the absolute magnitude of the unit as the unit is defined.
This additional systematic error must be taken into con-
sideration when measurements based on the legal unit (volt,
meter, ohm, kilogram, etc.) are to be expressed in absolute
units or in the fundamental units of physical measurements
(kilogram, meter, second, ampere, kelvin) from which the
unit under consideration is derived. It must also be taken
into consideration when measurements are compared inter-
nationally, i.e. when measurements made in terms of the
U.S. legal unit are compared with measurements made by a
foreign laboratory which had its standards certified by a
different national laboratory. In the case of the unit of
electromotive force, the volt, this additional systematie
error is in 1976 estimated to be less than one part per
million and probably less than one-half part per million.

However, fn most electrical measurements made in
the U,S,, the systematic error of the national refereace
group is disregarded, for it is of no consequence as far as
compatibility of measurements and production within the U, 8.
are concerned, as long as all measurements are based on
the same reference group.

The same reasoning for disregarding some system-
atic errors can be applied to similar cases on a much
smaller scale, The reference standard of Company C may
have an uncertainty due to systematic errors of egge. Since
all measurements made within Company C have that common
systematic error component, the uniformity of production
and the compatibility of subsystem and hardware components
can be assured even if egge I8 neglected. The measurements

o

within the company are then in units "as maintained at
Company C." Such an arrangement could greatly facilitate
the evaluation of relative uncertainties of the measurements
made by the various departments and on the various pro-
duction lines of Company C, especially if the products are
of high precision. The previously neglected systematic
error component egge may have to be taken into account in
evaluating the finished product. But in some instances it
does not have to be reintroduced at all.

V. Accumulating Systematic Errors

The question now arises: Given the estimates for the
maximum limits of all non-negligible systematic errors
which must be taken into consideration, how is their effect
on the measurement estimated? If the systematic error of
a measurement is dependent upon several systematic errors
whose estimated maximum limits are given, how are they
combined to yield the systematic error of the measurement ?

For a general discussion of the treatment of systematic
errors, let a system measuring the Quantity Q be described
a8 Q= f(g.b'c.‘..), where 2, b, c... are components of the
system representing the known ties A, B, C... The
magnitudes of these systematic errors have been estimated
to be not larger than eA, eB, €C.... The propagation of
error equation then gives the relative contribution of each
systematic error term to the resulting systematic error as

ol 1B8eu] +|Beg |+ [ o] - |Re,

provided the errors are mutually independent.

+ ()}

The application of the propagation of error equation
(Ref. 5) is illustrated in the Appendix with a few examples.

Mindful of the facts that systematic errors are usually
quoted as "ie;"or "+e;), -€j2", i.e. with a positive and a
negative limit, and that they can be only positive or negative,
but never both, metrologists have tended to devise methods
to reduce the purely additive effect of the individual terms of
equation 1. The most commonly used method to reduce this
purely additive effect of errors is the rss-method by which
the individual terms are squared and the square-root of the
sum of the squares used as the estimate of the overall
uncertainty. The conscientious metrologist will in the vast
majority of cases avoid such an arbitrary reduction and
adhere strictly to the additive form of the individual terms of
that equation as written.

Youden15 has shown that the combination of error terms
in quadrature yields erroneous results in a chain of labora-
tories because it is deficient in logic. (See also Ref. 10.) In
fact, any method to reduce the combined effects of several
systematic error ierms is arbitrary and can seldom be
justified logically for the following reasons:

1. Individual systematic error terms come from
different populations, distributions, having
different origins and means, and are unrelated.

2. In most practical problems, the number of
separate, individual error terms is small, and
the probability that all error terms have the
same sign is appreciable; four error terms still
have a 12.5 percent chance of ganging up with
the same sign, and the consistent metrologist
will not quote 3-sigma limits of uncertainty on
the random error and take a 12, 5 percent chance
on the systematic error.

3. Although systematic errors are mostly believed
to be overestimates, they may also be under-
estimates — and frequently are.
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But this problem appears to be more a theoretical
than a practical one. In accordance with Juran's principle
of "the vital few and the trivial many", in most practical
cases only a few individual component errors determine the
magnitude of the resulting overall systematic error, while
the others are of little or no consequence.

Thus remains to consider the thearetically possible
but rare case of a large number, say ten or more, of sys-
tematic error terms of approximately the same magnituds
where some mutual cancellation is likely to occur. In this
case, the critical metrologist will accept any logical ration-
ale to reduce the total error to something less than the sum
of all individual terms. However, prudence and consistency
would dictate that the resulting total error be not less than
the sum of the nine largest individual terms when three-
sigma limits are quoted for the random error and not less
than the sum of the six largest individual terms when two-
sigma limits are quoted for the random error.

' VI. Keeping Measurement Errors Under Control
in a Standards Laboratory

A standards laboratory involved in certifying standards
for lower echelon laboratories must make considerable
efforts to keep its errors under control. Ordinarily, itdoes
not suffice that the measurement errors are determined
periodically and that it is assumed the errors thus deter-
mined are typical and recurring at the same magnitude. A
positive proof that the random error of a measurement was
indeed typical and that no unusual systematic errors have
occurred during the measurement would go a long way in
enhancing the laboratory's confidence in its measurements

‘ and contribute significantly to an eventual reduction of

realistically quoted limits of uncertainty.

i Quality control practices, time proven and honored
in production processes, provide us with excellent tools
‘ for the observation of the quality of measurements: Control
i Charts. 'Measurement of some property of a thing is
ordinarily a repeatable operation. This is certainly the
case for the types of measurement ordinarily met in the
calibration of standards and instruments. It is instructive,
therefore, to regard measurement as a production process,
| the 'product' being the numbers, that is, the measurement
processes in the laboratory with mass production processes
in industry. "4 Reference 2 gives detailed instructions on
establishment and maintenance of control charts.

1000.014
1000.013

Figure 6 is a hypothetical example of a control chart
for a 1000-ohm standard resistor. The resistor serves as ]
our standard and is periodically calibrated against a higher {
echelon standard. Its value is established by a Trend Chart. |
Each time we calibrate a 1000-ohm standard resistor for
sumebody else, we also measure one of our own 1000-chm
standards (in this case the one whose control chart appears
in Figure 6) by the same process and using the same instru-
ments, in a pilot measurement.

Each pilot measurement consists of a set of four
measurements taken at different times. The mean of each
set of four is plotted on the X-chart, and the range, the
difference between the largest and the smallest measured »
values, is plotted on the R-chart. Upper and lower control
limits are calculated as outlined in References 2 and 7.

Although occasionally a point may fall outside the
control limits as a matter of pure chance, each time this
happens the existence of some abnormality in the measure-
ment is suspected, and the measurement is repeated. If the
point of the repeat measurement also falls outside the control
limits, the existence of an abnormality is taken as being
confirmed. The causes for this abnormality are then deter-
mined, removed, and the measurement is repeated. If the
points on the X and the R-chart fall within the control limits,
the measurement is corsidered valid. Since our customer's
unknown standard was measured by the same process, its
value thus determined is also considered valid.

Points of the X chart will reveal the existence of short
term trends or cycles, and unusual systematic errors. The
R-chart is predominantly an indicator of the quality of the
measuring process, reflecting, among other things, the care
of the operator and the control of the environment in which
the measurement was performed. Since a control chart is
the result of a compilation of a considerable amount of data
concerning one measuring process, the average experienced
range R can be used to determine the standard deviatizs »f the
measuring process. ''Most experimental scientists have very
good knowledge of the variability of their measurements, but
hesitate to assume known 0 without additional justification.
Control charts can be used to provide the justification, 7

The last point on the control chart for averages and that
for ranges in Figure 6 represent the last calibration of 1000
ohm resistors performed by our lab. The average of the
four measurements taken on the pilot resistor charted in Fig-
ure 6 was X = 1000. 0121 ohms and the range of the four

X = 10000123

1000.012
1000.011

1000.010

e

i

Figure 6. Control Chart of a 1000-ohm Standard Resistor
s (Measurements in Sets of Four)
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measurements was then 3.5 milliohms,  The vecent grand @

mverage of pilot measurements made with this resistor is X

1000, 0123 obms and the average vange is R 2, 2 milliohms
as plotted.  Upper and lower control limits on:the X=chart of
the averages are at o distance of

Ao 0.729x 2.2 1.6 milliohms
from the grand average X, Upper and lower control limits
of the R-chart of ranges are at

D4R 2.282x 2.2 - 5.0 milliohms

and

D4R 0 x 2.2 = 0,0 milliohms

respectively, as plotted. The estimated mean standard
deviation of the calibration process which yielded these
results is

2.2

3665 = 1-07 milliohms, 2)

and the uncertainty of measured value of 1000. 0121 ohms
due to random error at 3-sigma levels is

35 = 3R RSN 2

X cr,“/;; 5, 2.059 /5

The factors A d D and D, are tabulated in references
2 and 7. .

= 1. 6 milliohms

The two last points, like the others before, fell within
the control limits, indicating that no abnormal systematic or
random error had occurred during the measurement and
that the measurement was, therefore, typical for this partic-
ular process.

The distribution of the points in Figures 4 and 5 is not
necessarily typical for normal laboratory comparisons
between standard resistors where it is frequently possible
to control the factors influencing the measurement (e.g.
temperature) more closely and attain narrower uncertainty
bands, i.e. narrower regions bounded by control limits.

The difference between the value of the standard as
determined by the Trend Chart and the grand average X on
the Control Chart must be considered a systematic error of
known magnitude and sign if the difference is statistically
significant. A significant difference must be removed by
adjustment or by applying this difference as a correction to
all measurements made by the process under consideration.

The difference is statistically different at a level a, if
it is larger than

%
M= zp 7:- (3)

where zp is the standard normal variable or the ordinate of
the normal curve for a cumulative area of p under the normal
curve, and where p=1 - .9.

Using Equation (3), we can now answer the question at
the end of Section Il C. Let us assume that the average
range of the five measurements (n=5), was R = 0. 7 milliohms.
Choosing a = 5% or 0.05, p = 0.975. We first calculate s
from Equation (2) as

= = 0, 30 milliohms.

.- z.aze

b

Then, from Equation (3),

L 1%

3?55' 0. 26 milliohms.

Since the difference between our measured average and
the certified value is 0.4 milliohms and, therefore, larger
than u, the difference is significant, and we conclude that a
bias exists which calls for immediate correction.

To allow for changes in the systematic error contri-
buted by the measuring process or the standard, the grand
average must be updated periodically, at which time it may
be necessary to omit some of the oldest points and recalcu-
late the average on the basis of the latest points.

10 and 25 points should be available for calculating X and R
initially, and their valr2s should be updated when additional
groups of points become available.

vi N

The majority of all sources of uncertainty which a
metrologist normally encounters must be treated as system-
atic, even though many of them may have originated as random
errors. The boundaries between systematic and random errors
are fluctuating, and systematic errors may at times recover
their random nature if we increase their "cause system",

i.e. frequently the time period over which we consider them.
The statistical treatments developed for the determination
and analyses of random errors do not normally apply to sys-
tematic errors. We have seen how we can determine the
magnitudes of systematic errors of standards and measure-
ments, how we can control them, and how a control of the
systematic errors, combined with & control of the random
errors of measurements, can lead to a positive and definitive
control of the entire measurement process. Trend Charts for
standards and Control Charts for measurement processes are
invaluable tools for the sophisticated metrologist to enhance
his knowledge of the behavior and uncertainty of his standards
and measurement processes.

The emphasis is on collecting and analyzing information.
Proper handling of data can then help to convert available
information into a different form, but data manipulation cannot
be a substitute for knowledge.
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