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EQUIVALENT GAIN FORMS FOR CTD FILTERS

Dr. Stanley A. White

Electronics Research Center
Rockwell International
Anaheim, California

Abstract

:xhere are three equivalent forms for expressing the gains of transversal
analog filters which are mechanized with chq;ge-transfer devices (CTD's)
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Due to charge-transfer inefficiency (CTI),(n, the equivalence of

expression is not obvious.

equivalences, their uses, and their derivations.
also extend to include the recursive case.
recursive transfer functions are often mechanized digitally as second-order‘
Equivalent analog realization using charge-transfer devices can-

sections.

This paper presents a simple tabulation of

This problem and solution:
Arbitrary discrete-time 1

not use the same gain parameters becuase of the effects (again) of charge-

transfer inefficiency.

This paper further includes an expression for

corrected gains to compensate for this charge-transfer inefficiency in the

recursive structure. <+
Introduction

A wealth of design material exists to guide
the designer of discrete-time transversal filters.!
These design aids determine the tap weights, or
gqains, for filters of the form.

-k

K
9(z) = 1 az (1)

k=0
where the gain values are given by the ak's and

where z”! is the unit delay operator. Digital
implementation of such filters is a straight-

forward procedure.2 but analog implementation is
more difficult.> A digita) delay of a single

sample time, z'] is realized precisely. An analog
delay which uses charge-transfer devices (CTD) _
does not exhibit the ideal transfer function of z

but instead the transfer function is

-1

1

,(z) = g

1-nz

where n is the charge-transfer inefficiency.4
one were to attempt to mechanize the transfer
function (1) by CTD's directly using the unmodi-
fied tap weights, he would obtain a new transfer
function:

K
f(z) = © a ]'"_ R
k=0 1-nz

which provides the desired transfer function only
when n=0. Now, notice that a, is the gain which

is set by actual multipliers, but the effect of the
n on the transfer function can be considerable and
need be accounted for.:

If

(2)

We wish to express (2) in a form similar to
(1) because of the ready accessibility of design
aids, however, (2) has a denominator of order K

while (1) has none. We have two options: elimin-
ate the denominator in (2) by using a power-series
expansion and truncating after the Kth term, or

acknowledge that the denominator is there. We
choose the latter procedure which leads to:
K
L 0,2,
g 3
f(z) = 20 g g(z)K (3a)
(z-n) (z-n)
or, equivalently,
g c.zd
j=0 J 2 %oz
: _ §=0 A
e R s

We are going to design a CTD filter by first deter-
mining the b‘s (or the c's) then the actual multi-
plier gains (the a's). These b's and c's are
obviously not the actual multiplier gains; however,
these expressions of (3) and (4) are much closer to
the "standard" form of (1) because their numerators
are exactly in the form of (1).

The design procedure is now executed in 3
steps:

1. The desired transfer function, ?(zl, is
determined. We then modify it to form g in the
step below.

2. By establishing FIR filter design procedures,
such as described in references 1 and 2, the

gains b, or ¢4 are obtained from i
a . K
i(z) = @) () = b2l s gla)  (da).
j=0
T — 7“‘17“—--1" :




or
K A
X 9(2) = f() ) = 1 ez ()
j=0
" 3. The actual multiplier gains a,, are deter-
mined from the bj or cj:

K j j-K+k
I K b,
K-k J

(5a)

(5b)

which is derived in Section II.

Above we have a synthesis procedure. Now
let's examine the solution to the inverse problem,
the analysis procedure; i.e., given the values of
3 determine the filter impulse and frequency

responses. Existing software abounds to develop
the answer from the b's or c's.

}. The filter structure is given in the form of
1}.

2. The coefficients bj or cj are obtained from

the a by
K k
K-k k-j
o 3 B ailep) <.> (-n) (6a)
bj k= K-k J
=cx-j
and
K k .
S0 - _yK-k _ yk=K+j
¢ k=ﬁ 4 ay_ (1-n) (K— ) (=n)
- bK-j (6b)

3. FIR filter analysis programs can be used to
evaluate the performance of:

s j
g(z) = Jzo sz (7a)

or
K

z'Kg(z) = I cjzJ
j=0

(7b)

4. Performance of the acutal filter can be evalu-
ated from

f(z) = g(2)(z-n)"% 27%g(2) 1oz ) (7¢)

The analysis procedure is executed in 4 steps:

11. Derivations

Since each individual linearized CTD cell can
be represented by the transfer function

. = =¥, I
n](l) ;——*:1‘ z s (8)
-nZ
the Nth order tapped delay line can be described
by

f(z) = a ta, =0 o (10 ; P )L P
071 z-n "2\z-q K z-n
(9a)

K Jom \ K
K
I 2, (1-n)*(z-n)* ¥ e
= z
: (z-n)¥ oo Sl

The numerator of (9c) can be rewritten as

ak(1-n)k(z-n)K-k

"

K
9(z) = 1
k=0
K (10}
kEO aN_k(?-n)K-k(Z-n)k

by redefining k as K-k. Next we'll expand (z-n)k,
so that now

K k [k
o(z) = t_a,  (-m*¥ ; <r> X" (-n)"

« I
k=0 r=0
= ; zj g a B i
=0 k=j * K
where j=k-r, and
a * aK_k(l-n)K'k (12a)

and K K
2y k~j k-j (12b)
Bk = kg () 0 (j) b

Equations (9¢), (11), (12a) and (12b) combine to
yield (3a) with bJ defined as in (6a). When (3a)

is divided b, zK. (3b) and (6b) emerge. Equations
(10) and (7a) can be combined to give

K K
oz) = §=0 ‘K-J“'")K'j(l-ﬂj g by’
(13)
then




k
1im 3 g(z) _ K-k
Ao aa-(-—)- = ay_ (1-n) k!
3z (]3)
Lo ey
i=k j‘k ! jn
yielding J-k
® k'(i!k)' e K-k
a = ¢ kI{j-k)!
N-k ok (1-n)
K /] _
= Z(J%&k
L W (1)
(1-n)

which can be expressed in the form of (5a).

From (3a) and (3b) one can see that b.= cK-j
which when substituted in (5a) give (5b).

II1. The Recursive Case

Here we shall introduce one additional level
of complexity. For reasons of economics we often
find CTD transversal filters of large order; CTD's
come that way. Since stability problems mitigate

against large-order recursive filters, the order is

restricted to a small number, like two. In order
to capitalize on the Targe number of CTO’s which
one can economically make, we find structures like

Fa') » gy

1#Az" " + Bz

this can be used as a second-order filter multi-
plexed across N data streams, but cursed with
crosstalk. This can also be used as a single
channel filter with a periodic frequency response.
In either case, the following arcument holds.

Suppose that the transfer function of an
jdeal discrete-time processor is

G(z) = E{%} (15)

its poles and zeros are given by the respective
solutions to

q(z) = C and p(z) =0.

The singularities in each case are given by
expressions of the form

ek T (16)

If the processor is to be time-shared between N
channels, we could rewrite (6) as

N
B8 RELE S (17)

Using the CTD mechanization

N
Z]-n
[ ]_n] =7, (18)

and we see that the filter singularities have been
modified to

¥ ik
By [(1~n)zk +n (19)

so that (17) is

We would 1ike to prewarp z, to zé
preserved in (19), i.e., so that

N /N N
2y *y " (l-n)z; +n (20)

Solving the above for zi yields the prewarped
singularity location

LN N
e el @)

Now let's relate this to filter gain values. The
conventional description of singularities is
usually given in polar coordinates so that

X" rkka (22)

Conjugate-complex pairs of singularities, z, and
z; s appear in the characteristic equation:k

2

0 = (z-zk)(z-z:) =25+ Akz + Bk (23)
where
Ak = Zrkcosok = <2 Re[zk] (24)
and
R 2
B * . Izki (25)

and where Ak and Bk are filter qain values.

The results of the prewarping will be incorporated
into the gain values:

A = 2Re [z;] 2 '2\/;j cos (26)

V

i3 N sin :E

N tan PR . K
W &

r — -
k " cos 7= -n

and
2 /x ) N
k (\.q)z (27)
S —— ad




which indeed places the singularities of the CTD-
mechanized filter in their proper locations. For
large N we may simplify (26) and (27) by the
approximations:

. ' o
Ak = _2\,4;“ cos ——k—_'m‘- (28)

T-nr,

and

VN -
b o K bk (29)
e T e T A

The gain for real singularity is given directly
by (21).
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