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Section 1

IHTRODUCTION

This report is the final documentation aescribing work com-
pleted under Contract DMA 001-76-C-0284. The objective of this
analysis was to assess the rationale for additional underground tests
(UGT) to produce an air blast environment. To accomolish this objec-
tive, measures relating to the tactical utility of achieving increased
accuracy in predicting nuclear weapon produced environments were
developed and applied to existing environments data {blast and radia-
tion). This work was accomplished in two phases. The first phase
resulted in develooment of the methodology to assess the rationale
for additional tactical nuclear underground environments testing, and
a preliminary application of this methodology to selected w.apon pro-

" duced enviromuent data. The secand phase was oriented toward strength-
ening and broadening the theoretical and empirical basis for the
methodology, testing some of the assumptions upon which the initial
applications were dbased, and additional applications of the methodology
for a more complete assessment of the UGT rationale.

This report summarizes work performed in phase 1, and presents
a detailed description of the analysis completed in phase 2. The work
completed in phase 2 and described herein includes the following:

e Refinement and concise synopsis of the theoretical and
empirical basis for “he ratjonale assessment.

e Testing of the assumption of a lognormal distribution for
the weapon produced environments, which is an isSue in the
application of the methodoloyy.

e An analysis of the nuclear blast data to attempt to
ascertain if systematic errors, or biases, could exist
which would require additional measurements of weaoon
produced environment to resolve.

¢ An analysis of the peak dynamic pressure blast data to

assess possible testing rationale based on this blast
phenomenon.

1-1
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In dassessing the rationale for continued tactical nuclear
underground environments testing, it is important to distinguish in
the analvsis between assuming that the weapon nroduced environment
data are randomly distributed. and assessing the rationale based on
that assumption and recognizing the possibility of the existence of
systematic errors, or biases, in the environment test data that could
have ramifications for the tactical utility of the weapods.

In an operatinnal context, the effgcts of these two kinds of
errors are quite different. [f the probability of kil (Pk) is
simplistically viewed as a specified weapon prcduced environment
being produced at a given range 95 times out of 100, then this notion
1«3 be easily interpreted in terms of random shot-to-shot variation
in the Qeapon produced environment. However, if a systematic error
causes a bias between the predicted and true weapon produced environ-
ments, all _peratinnal shots could be Lystematically different from
predictions. Thus, instead of a specified effect occurring at a
calculated range 95 percent of the time, the effert could never occur
at the predicted range in an operational environment if there was an
unmodeled bias.

Alternatively, the choice of yields estimated to accomplish a
specified objective could be systematically too large or too small
because of such a bias. Thus, this assessmen’ proceeded along two
parallel paths with regard to analysis of the nuclear blast data,
namely:

] An assessment of the rationale for tactical nuclear
underground effects testing based on the assumption
that variations observed in the blast data are
randomly distributed.

° A preliminary analysis of the existing blast data
with the objective of attempting to identify possible
biases (systematic errors).
The blast data variations would be classified as random if the statis-
tical nature of variations observed in the blast test data were




LN

assumed to be the same aé the variations that one would observe during
deployment of the weapons. On the other hand, biases between the
statistical characteristics of the variations observed from the test
data and during weapdn employment would represent a case where the
predictive models are either under-specified or mis-specified.
Obviously, large biases could adversely impact the tactical utility
of the weavons.

To strengthen the random arror analysis, an assessment was
made to ascertain if the assumption of a lognormal distribution for
the weapon produced blast environment is a reascnable one. The random
error methodology is based on this assumption. This approach involved
an analysis of the relationship between the error in estimating the
range to a specified nuclear produced environment, and the -range for
peak overpressure and overpressure impulse. An approximately linear
relationship between the error in range and range would suggest that
the assumption of lognormal distributioh for the error is a reasonable
one, since this is a characteristic of data that are lognormally
distributed. This analysis and the results are described in

Section 4.2.

1-3
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Section 2

SUMMARY OF RESULTS AND CONCLUSIONS

The results of this uncertainty analysis indicate that the
Justification for improving the predictive capabi]ity of the nuclear
produced blast environment is marginal provided the variations in the
existing blast data from nuclear bursts are treated as random. The
quantitative basis for this result is that the target'vulnerability
and weapen emplacement uncertainties essentially dominate the weapon
produced environment uncertainty. (Conclusion 1}

On the other hand, it has been found that there are non-
trivial systematic errors (biases) in some blast data which could be
included in the predictive models of the blast environment if the
causal physics of these biases were better understood. The impact on
this uncertainty of one or more additional nuclear tests has not been
quantitatively evaluated because this result came from a secondary task.

The general methodology, developed in Section 3 for this random
uncertainty analysis, is based on the assumption that the randomness in
the nuclear produced environment which would be experienced during
employment of the tactical nuclear weapons is- statistically the same
as the deviations observed among past weapons tests. The methodology
relates the magnitude of this environmental uncertainty (potentially
reducible through additional underground testing of nuclearly produced
environments) to a measure of the tactical utility of the weapon (i.e.,
yield change). Thus the direct payoff from continued underground
detonations of tactical nuclear weapons in order to more accurately
predict the environment,is related to the tactical utility gained from
this improvement.

To obtain closed-form expressions for the relationships between
the measure (yield) and the environment predictive capability, it was
assumed that the uncertainty in the nuclear produced environment was

]"‘.
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proportional to the measurements which are then implied to be distri-
buted 1ognorma11y. This hypothesis was tested in Section 4.2, and the
characteristics of the uncertainty in the blast data were found to
support the assumption of lognormality. (Conclusion 2)

Using the above mentioned methodology (which assumes that
there are no biases between the weapon produced environments observed
during testing and during employment of the weapons;, the maximum
possible reduction in yield (average is also available in Section 4.1)
is:

e Peak Overpressure: 21 percent

® Peak Dynamic Pressure: 9 percent
¢ Overprassure Impulse: 15 percent

It is concluded that only a tenuous rationale exists for
underground testing of tactical nuclear environments, based on the
assumptions upon which the rationale was assessed (no biases). The
dynamic pressure impulse data are probably too sparse and too unceirtain
to be statistically analyzed. Therefore, in cases where the dynamic
pressure impulse totally dominates the target damage mechanisms, there
is a rationale for additional underground testing of tactical nuclear

environments.

The analysis !n Section 5 for the existence of systematic
errors (hiases) was conducted for scaled ranges to 10, 30 and 1C0 psi
peak.overpressure data from tests between 0 and 11 ft:/kt]/3 scaled
height of burst (SHOB). .Such biases, if found, would represent blast
predictive modeling under-specification or mis-specification, and
would require an attempt to adjust or improve the predictive models
to remove the bias. Since part of the objective of tnis bias analysis
was to assess the degree to which the Johnie Boy (negative SHOB) test
results differ from surface test results, the analysis was limited to

surface and very low SHOD tests. .

2-2
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The conclusion from this limited bias analysis is that, for
scaled range to 100 psi and 30 psi peak overpressure, there are
statistically significant deviations from the H‘/3 scaling law over
the yield range between 15 t and 15 Mt, a factor of one million. More
precisely, the low yield data shows a deviation from cube-root scaling
of high-yield data due most likely to a mass-to-yield effect. This
range bias is relatively small but not insignificant when translated
into a potential yield mis-specification. For instance, if the
medium and high yield data were used to estimate scaled range to 30
psi for small yield weapons (or vice versa), a yield under-estimate
(or over-estimate) of approximately 25 percent would occur.
(Conclusion 3)

This yield under-estimation for suu-kiloton weapons is more
severe when using the expression from DASA 2506 (Reference 2). Even
though the author of the report did not provide an explicit caveat
against sub-kiloton application, we believe one is implied. Never-
theless, the empirical equation of that report is more widely available
than the graphical results in appropriate classified reports and thus
frequently used. For range to 30 psi peak overpressure, the calculated
rénge is 15 percent too large so the yield would be a factor of 1.5
too small. HModifying the analytical expression to use only 1.65 versus
a 2.0 multiplier for surface reflection enhancement, the calculated
range is 7.5 percent too large for'a yleld factor of approximately
1.25 too smalt,

Another conclusion is that, for scaled range to 10 psi peak
Lverpressure, there are statistically significant differences among
?he BRL, NOL and SC/SRI instrumentation types. For the two higher
pressures, instrumentation type and the interaction between yield and
1pstrumentation type were not significant contributors to the total

variance of the data. (Conclusion 4)
1




—ht e A s ot om0 L -

The bias analysis of near-ideal waveform (type V) versus
precursor-associated waveform types for 30 psi peak overpressure from
surface bursts did not produce a statistically significant resuit.
Recognizing the subjective nature of the waveform parameter, this
conclusion is also considered more subjective than objective despnite

its interesting implications.
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Section 3
RANDOM ERROR METHODOLOGY

This section describes the'hethodology developed to assess a
rationale for underground environment testing of tactical nuclear wea-
pons, based on the assumption that variations observed during testing
are statistically the same as variations that would be experienced during
deployment of the weapons.

The measure developed in Section 3.1 and applied in later sections
to assess the requirements for underground testing of tactical nuclear
weapons, is the ratio of the yield required to achieve a specified pro-
bability of kill against a particular target assuming an improved pre-
dictive capability, to the yield required to achieve the same probability
of ki1l with the present predictive capability. This measure {s developed
for both air blast and nuclear radiation effects on a point target exist-
ing alone or in a cluster constituting a distributed target. The approach
taken throughout attempts to obtain closed-form expressions for the
measure when that is possible; this necessitated making assumptions about
the distributions of weapon produced environments and target vulnerability.
These assumptions were made on the basis of reasonableness: work has
been completed to ascertain the validity of the assump-ion concerning
the distribution of the weapon produced blast environment, and is re-
ported in Section 4.2. The development can, of course, be generalized
to include any assumptions about these distributions, but numerical
solutions rather than closed-form solutions might be required or con-
venient. '

Section 3.2 describes the relationship between the yield ratio
measure and the tactical utility associated with increased knowledge
of the nuclear produced environment.
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3.1 METHODOLOGY DEVELOPMENT

This scction builds the theoretical framework for assessing
a rationale for underground testing of tactical nuclear weapons based
on the assumption that the weapon produced environment variabilities
observed during testing are random and will be statistically the same
as the variabilities observed during weapon employment. In particular,
expressions are derived for yleld changes to ensure a gfven damage
level that would result from changes in ine predictive capability for

weapon produced envifonments.

To facilitate the development of the expressions for yield ratio,
a damage function is derived which is based on the distributions for
the weapon created environment and the target vulnerability. This
function is written for convenience ir. terms of a median weapon radius,
defined as the range at which the median weapon produced environment
equals the median target vulnerability. The median weapon radius thus
becomes a parameter of the expressions to be developed for the yleld
ratio. The damage function is generalized to include the effects of
the weapon CEP, and the median weapon radfus is expressed as a
function of all sources of uncertainty (i.e., the uncertainty in the
weapon produced environment, the uncertainty in the target vulnera-
bility, and the weapon CEP) the offset distance, and the ki1l proba-
bility. frhe requisite ratio of yields is then expressed as the ratfo
of the above functions with a specified ki1l probability (Pk = 0.9),
where the numerator contains the required uncertainty in the weapon
produced environment and the denominator contains the existing un-
certainty in the weapon produced environment. This {s the measure used
to assecs the effects of hypothesized changes in the unceitainty of
weapon produced environments on the yield estimated to achieve a given
ki11 probability. Each of the following subsections treats some
pertinent aspect of the above development.

3-2
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3.1.1 Derivation of the Damage Function

The damage function relates the probability of damage at a given
range to the distribution of the weapon produced environment, and the
distribution of target vulnerability. For the purposesvof this develop-
ment, lognormal distributions were assumed for both the weapon produced
environment and the target vulnerability. In the case of target
vulnerability, Reference 1 indicates that for blast damage the response
of the target is lognormal. These data are based on both weapons tests
and response tests in controlled environments. The blast response
data have been collated and reviewed by the Defense Intelligence Agency
and are the basis of the so-called "VN" (Vulnerability Number) system
(Ref. 1). The radiation produced effects of interest are prompt effects;
the information used in this analysis comes from the primate studies
reported by the Armed Forces Radiobiology Research Institute (AFRRI)
(Reference 3).

In the case of the weapon produced environments, no existing
source of information is known to the authors concerning analysis to
indicate the exact distribution of ervironments. However, a lognormal
assumption is not unreasonable. This hypothesis is addressed in
Section 4.2. Although the specific closed-form derivations presented
herrin depend upon assumptions about distributions, the general

approach is not, and could be worked out numerically with any choice
of distribution.

- —._.._ To derive an expression for the damage func.ion, let I repre-
sent the random variable for the nuclear created environment and V
represent the random variable for the target vulnerability, expressed

in the same units as I. The random variable I is a function of ground
range R from the point of detonation, and both the measure of centrality
of I (e.g., mean or median) and the variation of 1 (e.g., variance)
could change with R. Target damage occurs when I is greater than V
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(i.e., when the weapon produced environment is greatef than the target
vulnerability). Defining a new random variable Z:

Z=IN ' (3.1-1)
The probability of target damage at some arbitrary range
R is:
P(R) = {‘” f (2]p) d2 (3.1-2)
where: |

P(R) = damage probability

f (ZlR) = the probability density function of Z at the
range R.

The integration of f(ZR)is over the range where I {is greater than V,
yielding the probability of target damage. If 1 and V are lognormally
distributed (with medians lo and Vo, and variances s? and 53). then 2
1; 10ggorma11y distributed with median Zo = Io/vo and variance s, =
Sy +s°. Thus, in terms of normal deviates the probability of damage

i v
at range R is the result of integrating Equation 3.1-2.

n(1/z,)
1< ¢ [205)]
Y 4

n(z,)
<[]
z
. [1n\I°(R Vo) i

—s—-————J (3.1-3)
Z

A convenient parameter, useful in the derivation of the expression
for the yield ratio measures, is the median weapon radius, Ro’ defined as
that range where:

lo (RO) = Vo » (3.1-3)
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i.e., whe e the median weapon produced environment equals the median tar-
get vulnerability.

The next two subsections derive explicit expressions for the
damage function for blast and radiation targets.

3.1.2 Blast Damage Function

For the case of blast environments (peak overpressure, overpressure
impulse, peak dynamic pressure), the median intensity of the weapon pro-
duced environment can be assumed to follow ai approximate power law,

-k
I, (R) = 1o (R)) (R/R) : (3.1-5)

for ranges close to R . Thus, it is assumed that IO(R) can be
adequately represented by piecewise power laws, where the exponent

k cnruld be different for each section. Using Equation 3.1-4, Equation
3.1-5 becomes:

-k o k .
1, (R) =V, (R/R)) Vo (Ry/R)™. (3.1-6)

The damage function for blast targets, becomes, on substituting
Equation 3.1-6 into Equation 3.1-3:

k In (V_(R_/R)/V
R) =F[ n(so< RV o)]

z
. 1n(Ro/R)]
sz/k

1n{R_/R)
- F[—‘z‘o—“] (3.1-7)

sZ/k, the standard deviation of a lognormal distribution

where: ¥

R = the median of a lognormal distribution.

0
Thus the damage function in range for blast targets is a lognormal
distribution with variance L and median Ro.
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3.1.3 Radtation Damage Function'

For the case of the nuclear radiation environment, the dose
at range, including exponential attenuation in air, can be written:

I, (R) = I (R )exp[-a(R-R ) - 2 1n (R/R )] ‘ ' (3.1-8)

where a is a range-dependent inverse absorption length. Equation 3.1-8
is valid for intervals around the median range, Ro. for a given value
of a. By Equation 3.1-4, this equation becomes:

I, (R) = V,exp [a (RO-R) -2n (R/Ro)] (3.1-9)

Using Fquation 3.1-9, the damage function, Equation 3.1-3, becomes:

pR) = I:[ln(\loexp[a(Ro-Ri -21n (R/Ro)]/vo)]

- [ Ro -R - (2/a) In (R/Ro)]
Sz/a

2

- [ Ry - R - (2/a) In (R/Ro) ]

z (3.1-10)

where: I = sz/a; the standard deviation of a lognormal distribution

Ro = the median of a lognormal deviation

A good approximation to Equation 3.1-8 for the dose at ranges somewhat

larger than the median range (e.g., distances on the order of 1 Km

- for many tactical weapons) is obtained by neglecting the R-squared decrease:

I,(R) = I, exp(-aR) (3.1-11)
This regime {s of significant interest for the tactical nuclear case.
The radiation damage function assuming Equation 3.1-11 is derived
analogously to the above, and the result is:

RO-R
P(R) = F |5 (3.1-12)
3-6
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where I is as previously defined for Equation 3.1-10; Equation 3.1-12
cannot be used near the weapon detonation point since P{R=0) is less than
one for all Ro.

3.1.4 Derivation of Damage Probability

The damage function for point targets can be §cnera]ized to
a probability of damage if offset targeting and the effects cf weapon
CEP are included. The case presented here assumes 32 circular bivariate
normal distribution for weapon targeting error (containing both
target anuisition uncertainties and wéapon impact uncertainties
due to guidance, survey, etc.).

Tha damage prcbability for a given CEP, where the CEP defines a

standard deviation for the bivariate normal probability density functicn
(pdf), where the ~impoint is offset a distance d from the target is:

P * ij— [exol-(R-)%/2%] P(R)cA (3.1-13)
where:
R = range; burst to targat

P(R)= damage function
02 = variance of the taryeting pdf; by definition of the
CEP this variance is:

o = CEP/YZTIn(2) = 0.8493 CEP
dA implies the 1ntegration is ovet area (centered at the point
of weapon impact).

Appendix A presents the rather complex integration of this
function. The results indicate that, for offset distance d > w(CEP)

Pk = p(d) (3.1-14)

is an adequate approximation for the damage probability. Thus, for
offset distances greater than approximately three times the CEP, and
for P, vetween .05 and .95, evaluation of the damage function at the

3-7
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offset distance is a valid appreximation to Pk. For nffset distances
d<n CEP, Figure 3-1shows scaled median radius versus T (or versus damage

sigma, ad) for a yiven offset, for Pk =0.9. In functional notation,
then, the scaled median radius can be expressed as:

R,/CEP = g (I, d/CEP, P,) (3.1-15)
For Pk = .9, this function can be written as:
g (T, 4/CEP, .9) = g (o0, d/CEP, .9)exp(z?) (1-6(1)) (3.1-16)

where G(%) is small compared to one. Thus, an approximation to the

curves of Figure 3-1 is:

Ry (&)= Ro(o)exp(zz) (3.1-16a)

or R (£) =R (0)/(1-0.2), (3.1-16b)

where o, is the so-called damage sigma of the VN system (Reference 1)
and is related to I by the expression:
2

03 * 1-e7L

The next subsections utilize the above derived results to
obtain measures in the form of yield ratios that would indicate a
requirement for underground testing of tactical nuclear weapons for
those cases where large yield adjustments could be possible.

3.1.5  Yield Ratio Measure

The measure to be utilized to determine a rationale for under-
ground testing of tactical nuclear weapons is the potential percent
change in yield by which one would predict a given probability of
target damage or a given level of collateral damage, if the weapon
produced environment were better known. An alternative statement of
the measure is that it is a measure of the compensation in yield re-
quired because the weapon produced environment is not as well known

3-8




Scaled RIS Sigma, I

b e A e e o Mt b A ke

.100 .202 .307 418 .536 .634 ’
1 | | l !
> -
5
e Z
- 4 ]
© X
<) e
o !
n
o 3
]
~
LO
: 1
E
s .
8 ¢
5 ' |
b ;
2
©
2 1 -
<
&
“PHVN llQIIVN
] 1 ] ] !
0.1 0.2 0.3 0.4 0.5 .575
Damage Sigma, oy j
Figure 3-1. Scaled Median Radius for Given Offset,
Pk = 0.9, Blast Targets
3-9




as it could be. An analytical formulation of this measure, applicable
to point targets, is the ratio of the yield, ¥, required to achieve a
given probability of damage (S0%) assuming the weapon produced environ-
ment were perfectly known, to the yield, NEPC’ required to achieve the same
kill probability with the present degree of accuracy in the weapon
produced environment. '
To achieve a significant* reduction in the yield predicted

to achieve a 90 percent kill probabiiity, the ratio N/wEPC must be in
the range 0.75 to 0.5, corresponding to a 25 percent to 50 percent

~ reduction in yield. The maximum improvement possible through UGT is, of
course, when the variance in the weapon produced environment is set to
zero. To show how the variance in the weapon produced environment would
affect the yield selection to achieve a given probability of damage,
~eference to Equation 3.1-4 indicates that the median weapon radius is a
function of yield, i.e.,

= f (%) (3.1-17)

For many weapon produced environments (i.e., blast) R is very nearly
proportional to N1/3. Also, Equation 3.1-15 shows that R is a func-
tion of £, the damage function standard deviation, where:

.= sz/k for blast
L. = sZ/a for radiation
2 _ 2 2

Thus, for those weapon produced environments where R is proportional
to w1/3, the ratio of yields becomes:

(Ro 3

R
EPC o, EPC

)

|

3
gl{r, d/CEP, .9)
[gTiEPC’ d/CEP, g)] (3.1-13)

it

*Subjective definition.




for a Pk of 0.9. The value of s? that will cause Equation 3.1-18 to have
a value 0.75 or smaller indicates the require' predictive capability
potentially achievable through environmental testing. Of course, there
may be no positive (or zero) value of s% tha . i1 result in a solu-
tion in this range. This implies one of two jitions for UGT:
) No sighificant gains in predictive cagabilit
can be achieved through UGT if both s¢ and <
are small, or;

(] §imgltaneous reductign in b%th'si and 53 is
indicated, if both 55 and sy are large.
The definition of "large" and "small" is, of course, subject
to interpretation. Thus, the measure would clearly indicate a
rationale for UGT if the required significant yigld change is computed,
but would not necessarily indicate no rationale if the maximum yield

change is not significant; this later case would require further
analysis.

The remaining subsection derives explicit expression for
the ratio of yields for blast environment on point targets.

3.1.6 Yield Ratio for Point Blast Targets

For point targets, Equation 3.1-16 can be used to express
the weapon radius as a function of L:

R, (£) # Ry (0) exp(z)) (3.1-16)

The ratio of Ro for the required predictive capability to Ro for the
existing predictive capability is:
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IR, (0) exp ()] / [R(0) exp(s2 )]

S; -~ S§; '
sexp[_i__;%Ljﬁﬁq , (3.1-19)

so that the vulnerability variance, s 3, cancels out of the expression.
Thus, this measure does not contain the target vulnerability when Pk
is fixed and defined in terms of the median weapon radius.

A general expression for the median weapon radius for blast
targets that encompasses peak overpressure and dynamic pressure and
overpressure impulse is:

N /& (1+b)/3
R, = (A M/ u(1¥D) (3.1-20)

where: b = 0 for peak overpressure or dynamic pressure,

b = 1/k for impulse.
Inverting Equation 3.1-29 go solve for W:
A .
. (o) 'l/k —— .
W= [Ro (\-,—;) ]1+b | (3.1-21)

Thus, the ratio of yields becomes:

R 3 '
g__ - [RO ) (3.1-22)
epc 0, epc
3-12
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From Equation 3.1-19, the expression for the ratio of median

weapon radii is inserted into Equation 3.1-22:

x|

ep

. $ 55 |
-—~c= exp [1+b ( K2 . c) . (3.1-23)

It can be shown that the error factor in intensity, f, is
related to the error factor in range, fp, as:

£ (3.1-28)
Also, the error factor in intensity is defined:

f=el6%5, C (3.1-25)
Equating Equations 3.1-24 and 3.1-25 results in the expression for
s2:

s§= o5 kInfp e 4 (3.1-26)
Substituting Equation 3.1-26 into Equation 3.1-23 results in:

:—-— exp Tﬁ'bT"(T—ﬁ')Z (1n? £, -1n? fr, epc)] ' (3.1-27)

epc

Equation 3.1-27 is not a function of target vulnerability or
uncertainty in vulnerability. This expression clearly shows the
relationship, for all blast phenomena on point targets, between tme
yield adjustment that one could make to accomplish an objective, and the
improved accuracy in the weapon produced environment. The largest pos-
sible adjustment in yield would be the case where there is no error in ;
the estimate of the weapon produced environment (f, = 1). The value ;
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of fR. epc that must exist so that a potentially significant reduc-
tion in yield could potentially result from environmental testing is
defined as the critical value, fR. CR? and is defined by rearranging :

Equation 3.1-27:
W
. 1+b epe '
fr. RO 11.65 \/—C—T—)- in (.WE_.)}, (3.1-28)

obtained by setting fR=1 and inverting Equation 3.1-27. The significant
change in yield is specified in Equation 3.1-28 by setting “spc/“ equal
to, say, 1.25, indicating a potential 25 percent reduction, and evalua-
ting the gxpression. The result is then compared to fR’ epc” ‘

1

. .
e g G2 b ettt S5 peat
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3.2 MEASURE OF TACTICAL UTILITY

The tactical utility of a nuclear weapon would be related to
the area that could be covered by a specified probability of kill, Pk'
given the collateral constraints. For any weapon there may be a non-
targetable excluded area defined by the difference in the ranges between
the target-kill weapon produced environment and the collateral-damage ¥ o
weapon produced environment. If the target is to be killed with a )
given high probability (Pk = 0.9, for instance) and the collateral
weapon produced environment is to be exceeded only with a given small ,
probability (Pc = 0.1, for instance), then the excluded area will be ! i
a function of the uncertainty in these weapon produced environments -- . b
knowing the weapon produced environment with a greater degree of 4 r
certainty would allow (on the average) a smaller yield to be specified |
to achieve target kill, which would in turn allow deployment closer |
to a collateral asset, thus decreasing the excluded area. Figure 3-2 ‘_,7/>’"
illustrates the decrease in exciuded area that would result from
improved weapon produced environment predictive capability. A

To 11lustrate the relationship between this decrease in excluded

E area and the decrease in yield afforded by an improved predictive fj -
f capability, consider the ratio of excluded areas for the existing and !‘ -
i {mproved predictive capabilities: f§ C
] 2 .2 x -’
; Aepc _ Cepc - Ferc (3.2-1) ;
: A 2 2 . et Fq~ p
: {4 c - K i -
: trc = K1pc s

I A
L where: v
% AEPC’ AIPC = The areas for the existing and improved predictive 5 B
i capabilities, iy !
i CEPC‘ CIpc = The ranges to the collateral damage weapon produced N
; environment for the existing and improved pre- -
| dictive capabilities, :
§ KEPC' KIPC = The ranges to the target kill weapon produced : '{
T environment for the existing and improved predictive i i
: capabilities. L !
1
| %N
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The blast environment at a given range close to the median weapon radius
was given by Equatior 3.1-6 as:

1R) = V,(R/R )X . (3.1-6)

Let I be some specified weapon produced blast environment. Solving
Equation 3.1-6 for the range to this specified environment results in:

. 1/k .
Rp = Ry(V/DYX (3.2-2)

Thus the ranges to specified target and collateral environments are,

respectively:
o 1/k
R Ro(vt/lt) (3.2-3)
. 1/k . _ '
c RO(VC/IC) . | (3.2-3)

Equation 3.1-16a gives a conceptual form for Ro in terms of the weapon
CEP, the specified Pk’ and the weapon and target vulnerability
uncertainties as:

: 2
R, = 9(o, d/CEP, Pk)ez ) (3.1-16a)

Actually this expression is valid only for Pk's near 0.9; a more v
general expression, encompassing both target kill and collateral damage
Pk's, would be:

R, = gl0, d/CEP, P, )f(z) '(3.2-5)

where f(L) would be different for target and collateral Pk's. On
substituting Equation 3.2-5 into Equations 3.2-3 and 3.2-4, they

become:
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R = g(o, d/CEP, Pk)ft(t) (3.2-6)

¢ = g(o, d/CEP, Pc)fc(Z) . (3.2-7)

Equations 3.2-6 and 3.2-7 can now be uéed in Equation 3.2-1 to express
the ratio of excluded areas in terms of the target and collateral Pk‘s
and the existing and improved predictive capabilities. Equation 3.2-1

becomes:

V.\ 2/k
2 2 <
g°(0, d/CEP, Pk)fc(zgpc)<Tc-)

Aepc -
R ]
1PC 2 2 c
¢?(o. d/CEP, Pc)fc(zm)<-1c)
. V\2/k
2 2 t
(3.2-8)

v

2/
2 2 t

gut the range to a particular nominal effect is related to the yield
as:

3 - (3.2-9)

R=ky

Where k is the range to the effect for blast. Substituting
Equation 3.2-9 into Equation 3.2-8, where the yields Wepe and Wipe
have the relationship described in Section 3.1, results in:

v\ 2/k v\ 2/K
2, 23fY% 2., 23t
ke Wepe (1) | = ki Wepe (T;)

Acpe

——— &

g ~ o e gt

Do o4

P
: v o .

we 2, 2n3fYe\TN o 23t
c Mg \T - kg Wipe AT R
c . t ' )
‘; ? oo
W 213 \ : T
«{ GERC (3.2-10) I b/
1pC )
: : i /
, oo/
| il
3-18 ; I
4 i i
| Iy
2 !
-
! ‘

o —————————eTTT ey A ol AP IR - mx o o e e ,<mMMW?”h‘”.~~W,mM“,;; e
— . / = < e e e o ;}ﬁ -
; — / \ 7 [ /' .

N



. Thus, the ratio of the excluded areas for the existing and improved
predictive capabilities is equal to the two-thirds power of the
yield ratio. v
;
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E Section 4 _ ,
é RANDOM ERPOR RESULTS ' v
1 This section describes the results of the assessment of a fé ?\

rationale for tactical UGT environment tests based on the assumption
that the nuclear produced blast environments observed in the historical
: test data are random, and are statistically the same as the environ- !
i ments to be expected on deployment of tactical weapons. Section 4.1 ji K
presents the blast data, and the results for the rationale assessment PN
. based on analysis of peak overpressure data, overpressure impulse data, f -
and peak dynamic pressure data. Section 4.2 presents the results of i L
: the investigation of the statistical distribution appropriate for ﬁ
: these data. | C

4.1 RANDOM ERROR ANALYSIS OF BLAST DATA i /‘ﬁ\

b ' This section presents the raw blast data and shows the results

of applying the measure developed in Section 3 to assess a rationale

for underground nuclear effects tests This methodology was developed

; in Section 3 in closed form under the assumption that errors in the

scaled range to a specified environment are proportional to range.

£ Section 4.2 examines the validity of that assumption in some detail

. (the conclusion is that the assurption of lognormality is a reasonable
and adequate one for most nuclear blast data).

Figures 4.1-1 through 4.1-31 show the peak overpressure, over-
pressure impulse, and peak dynamic pressure data plotted versus scaled
range for all ten ranges of scaled HOB. These plots show the scatter
in the "raw" data, as well as the approximate linear relaticnship when
plotted on a log-log scaled coordinate system, illustrating the approx-
imate power-law relationship between these three blast effects and
scaled range.

T

e -
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The measure previously developed applies to the scatter in the x :1;5‘
range to 2 specified environment, and is based on the range error ff \ )
factor at the specified envirunment. To compute the range error factors H_
at specified environments, it is necessary to group the blast data ints
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range bins. Both coarse and fine range bins were chosen for this
analysis so that any effects that could result from a particular
grouping of these data would be illustrated (none were found; see
Section 4.2). Bin sizes corresponding to 12 bins per decade and 3
bins per decade were chosen to group these data. To eliminate trends
within bins, due to the power law relationship between range and the
nuclearly produced environment within the bin, the data within each
bin were adjusted by the approximate power law relationship.

Tables 4.1-1 through 4.1-3 present the range error factors
computed for each bin for both peak pressures and overpressure impulse
and for the scaled HOB ranges shown on the tables. Tables 4.1-1 and
4.1-2 show the range error factors computed by grouoing these data
into 12 bins per decade for peak overpressure and overpressure impulse,
respectively, and Table 4,1-3 presents error factors for both of the
above nuclear produced environments and peak dynamic pressure computed
by grouping these data into 3 bins per decade. In addition, the tables
show the range error factor averaged across SHOB's for each range bin
(row averages) ana across range bins for each SHOB bin (column averages).

‘These error factors represent the variation in these data upon which

the yield ratio measure developed in Section 3 was aoplied.

To compare the results for the different size bins, range
error factors for each bin size were plotted versus range, for each
of the scaled HOB's in the tables. Figures 4.1-32 through 4.1-41
show, for each scaled HOB bin, the superimposed plots of range error
factor versus range for the peak overpressure data for both bin sizes.
Figure 4.1-42 through 4.1-51 are similar plots for overpressure
impulses, and Figures 4.1-52 and 53 show range error factors versus
range for peak dynamic pressure (combining these light and heavy dust
data would be possible since there appears to be no difference in
range error factors). These data are summarized in Figure 4.1-54,
which shows the average peak overpressure and overpressure impulse
range error factors versus range for both types of binning. Figures
4.1-32 through 4.1-54 indicate the following:




] The grouping of these data into bins of various widths
" does not appear to appreciably affect the estimates

of range error factors, since, in practically all cases
the 3-bin per decade and 12-bin per decade curves are

coincident.

] For peak overpressure and dynamic pressure, the
plots of range error factor versus range appear to
be constant. For overpressure impulse, there appears
to be a slight decrease in range error factor with
increasing range.

. The variation in range errdr factor from bin to bin,
and across scaled HOB is not large; there appear to
be few anomalous cases.

A1l of the above observations would suggest that there appear to be
few "special cases" where the yield ratio measure would indicate a
substantially different conclusion from that based on the measure

applied to the average data.

The minimum and maximum range error factor values corresponding
to the following combinations of characteristics in Tables 4.1-1
through 4.1-3 were chosen to compute the yield ratio measure:

) The cell minimum and maxiumum for peak overpressure,

overpressure impulse, and peak dynamic pressure for
3 and 12 bins per decade.

. The minimum and maximum averaged for each column
{corresponding to a particular SHOB) for peak
overpressure, overpressure impulse, and peak dynamic
pressure, for both types of binning.

° The minimum and maximum averaged for each row
{corresponding to a particular range bin) for peak
overpressure, overpressure impulse, and peak dynamic

- pressure, -for both types of binning.
Table 4.1-4 presents both the range error factor and the yield ratio
measure for these characteristic data. The yield ralio measures
larger than 10 percent (i.e., that would suggest a sossible maximum
10 percent or larger reduction in yield through additional under-
ground environments testing) are displayed in Table 4.1-5 along with
a brief discussion of the possible tactical significance of effecting

a yield reduction.
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4.2 DiSTRIBUTION TYPE FOR BLAST DATA

4.2.1 }ntroduction

The measurements of scaled range to a selected pressure value
have a distribution which can be statistically described. The
distribution must be characterized in order to calculate the scaled
range, to the selected pressure value, with high and low probabilities
for target and collateral damage analyses respectively. Since the
total population is required to specify the exact distribution, the
existing sample can only be used to specify a best distribution.

The following analysis was performed to find the dependence

of range uncertainty on rangce. The hypothesis is that a linear or

higher order dependence completely negates the applicability of a
Specifically a lognormal distribution applies

normal distribution.
For higher order dependence, a linear

for a linear dependence.
dependence approximation is usually dominant and thus assumed to
apply, but not to the total exclusion of another continuous non-
normal distribution such as beta and gamma which have non-zero

skewness. The lognormal is more convenient than beta or gamma

because the data are frequently plotted on a logarithmic scale
and the data urcertainty is then a symmetric factor in linear space.

The: measurements used in this analysis are the scaled range
A data

to static (over) pressure peak and scaled impulse values.

quality control was attempted by selecting only the ranges where both
peak and impulse values were simultaneousiy measured. The data base
is that previously culled set which is reported in DASA 1200, Volume V
In addition, the biased dat2 (Reference 5) of the

(Reference 4).
The similar data base for dynamic

Franklin event was not used
pressure is unpublished but has been partially compiled by

Mr. J. Keefer, et al., of the U. S. Army Ballistics Research Labora-
This dynamic set is rnuch smaller than the static set so esti-

tory.
mating the standard deviation would not be as accurate and thus the

hypothesis proof is more comnlex.
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The approach for calculating the standard deviation of scaled
range as a function of scaled range is the following. The measurements
are systematically grouped or binned in scaled range. The data
within a range bin are normalized to the range at the mid-point of
the bin using a power law approximation, Then these range-square-
normalized peak overpressures and range-normalized overpressure
impulses are analyzed for a mean and variance. This overpressure
variance is then propagated to a range variance using the law of
covariance propagation: :

(,2=(ﬁ)202+33. o,

R 3z 2 3z az2 3z
where z is either overpressure peak or impulse.

The second term invoiving the third central moment (skewness
indicator) can be ignored. The few cases having an adequate number
of values (i.e.,215) in a bin to estimate skewness have both
positive and negative contributions. The standard deviation change
attributable to the correction for skewness was less than 15 percent
which can later be inferred as insignificant.

The final s*eps consist of plotting the standard deviations
of range versus the mid-points of the range bins and fitting a linear
equation through the vilues. The uncertainty of the slope coefficient
allows testing for significance of the linear fit. The following
material discusses the details of this procedure and the results.

4;2.2 Procedure

The lack of a large amount of data for a single scaled HOB
other than Priscilla requires SHOB grouping or binning to accumulate
a large number of data within each range bin. Since a simple SHOB
normalization for all types of blast data is unavailable, the SHOB
bins are kept small. The data base was compartmented into 10 SHOB
bins using the bar graph of Figures 4.2-1 through 4,2-4 as quides.
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Figure 4.2-4. Ranges of Overpressure Impulse for 10 to 1000 1"1‘./!(t”3
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The SHOC range, number of simultaneous peaks and impuises, and names
of tests in the 10 bins are as follows:

1/3 No. of

HOB -~ ft/kt /~(1D) Data
0 - 3.1 {03) 177
5.0 - 10.8 (511) 87
85 -~ 83 (5583) 104
113-157 (113157) 62
182 - 205 (182205) 143
212 - 252 (212252) 96
323 - 375 (323375) 81
478 - 500 (478500) 4]
751 - 831 (751831) 65
1003 - 1249 (10031249) 97

Events

Mike, Walnut, Yankee,
Union, Romeo, Zuni,

Koa, Bravo, Nectar

Cactus, Yellowwood, Aspen,
Sycamore, Koon, Sugar

Lacrosse, fig, Smail Boy,
Little Feller I & 11

Dog, Zebra, Simon, Inca,
tasy, Yoke, X-Ray

Annie, Turk, Met, Humboldt,
Zucchini, Tesla, Apple 2

King, Shasta, Hornet, Smoky,
Apple 1, Priscilla, Grable

Galileo, Moth, Kepler, Wilson,
Owens, Morgan, Bee, Post

Climax, Hood, Yuma, Dog
Wasp Prime, Ruth; Hamilton
Soccorro, Able, Encore, Rushmore

Baker, Charlie, Eddy, Mora, Lea

Specific events with numerous data in the 1 to 100 psi interval are

the following:

1.2

83
208
375

'\.\_\

28
36
37
57
40

Cactus
Small Boy
Easy
Priscilla

Dcg
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The data measured near the surface are for both regqular and
Mach stem reflections of the initially spherical air blast wave. The
knee at the transition between the reflection regions on a olot with
HOB and ground range coordinates is very nonlinecar and not directly
combatible with a statistical treatment. ‘'fost targeting anaiyses use
the Mach stem overpressure enhancement so only the data below the knee
are used, in this tactical analysis, for air burst events. " The battom
of the knee used to isolate these data was described by the approximate

empirical equation for units of ft/kt]/3:
p = 2000 x 1198
2000 - N8

where R is 222 for a 209 HOB and R is 500 for a 400 WOB.

The variance has both a true and an error component unless atl
points have the same mean. This same mean is achieved by removing
the anaiytical dependence on range in addition to HOB. The error
variance is very small by using a power law approximation for normali-
zation within the range bin. Peak overpressures were normalized by
inverse range squared and overpressure impulses were normalized by
inverse range. This approximate power of two for peak‘overpressure
could be refined by using the Brode Direct fit (Reference 2) to estimate
the power. But the Brode pressure time equations are not adequately
suitable for impulse calculations where the scaled measurements were
made so range normelization of impulses wouid not benefit by using Brode's
Direct Fit.

Another more direct approach to minimizing the error variance
is to use very narrow range bins so the range normalization is negligibie.
This also has the effect of emphasizing Jduplicate measurements at the
same point which provide a true variance. Both linear and logarithnic
range bins were used to for-ce different groupings of the data as the
range bin size was varied. The sizes for both types of bins were
varied by a factor of ten between largest and cmallest with minor
differences in the calculated variances and no apparent biases or trends.
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The squar~ raots of some variances for group 5533 are plotted in Figure
4.2-5 and isted in Table 4.2-1. Tnis result consistency is verifica-
tion of the adequacy of the sirmple nower law range normalizations for

peak and arpulse values within each bin.

The possible error variance from mixing data from precursor
and non-precursor measurements is also of interest. For this immadiate
analysis, the interest is only in the possible systematic bias of the
variance with range. Since neither the respective mweans nor thair
difference are precisely defined, the issue was indirectly treated by
assessingAthe reoresentativeness of the true variance from a given
event by the variance from the SHOB qroup including that event. Spec-
5fica11y. event Easy from group 5533 and event Priscilla from aroup
182205 were used for this intra-comoarison. The standard deviations
of peak overoressures are plotted in figures 4.7-£ and 4,.2-7 {0 show
the representativeness. ‘lote that some event vdariances are larger
than the respective group variances and no bias or trends are notice-
able.. Too few values exist for a linear fit o7 the event's variances
to allow reliable quantitative couparisor - ith a iinear fiL of the
groun's variances.

fhe sparsity of data causes concern for the reliability of
variance e.timates. Five points were chosen (approximately one in the
middle and two un both sides) to help maximize the number of variance
estimates. Using the variance as the accepted measure of data dis-
persion, not as the estimator of the standard deviation (which impiies
normality), reduces the concern for mixing variances from five and,
for example, twenty-seven points. Four points are expected to all be
within one standard deviation and twenty-seven points are expected to
all be within two standard deviations for points normally distributed
around an average. This guidance provides analytical justification for
dropping points which difter drastically from the average, that is,
outliers. Empirical justification for dropping outliers was also
necessary in the form of severe departure from the trend line of the
other points for the same event.
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Figure 4.2-6.
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: The representativeness of as few as five points can also be

§ discussed without reference to any assumption about the type of distri-
bution (Reference 6). The result is expressed as t"e continuous prob-
ability, with nurber of points in the sample as parameter, for a frac-
tion of the popuiition being within the sample extremes. The expected
value of the fraction, from many samples each of n points, is {1-1)/
(n+1) but the probability of this value of the fraction slowly increases
from 0.5 for n=3 to an asymptotic value below 0.6. Thus the 0.542
probability of including 67 percent of the ponulation with a sample of
5 points is not too different than the 0.536 probability of including
93 percent of the population with a sample of 27 points. See the
expected value curve in Figure 4.2-3. Also plotted on the graph is
the more interesting dashed curve labelled most probable. The most

. probable value of the fraction, from one sample of n points, is (n-2)
/(n-1), but the probability of this value of the fraction steadily
decreases. Thus one is not automatically assured of having a fraction
larger than that for the expected value. The net result is that 5
points was selected as a minimum which implies aminimum of 4 degrees
of freedom for the variance estimate.

The bin centers were also staggerad to maximize the number of
variances. Two runs of an identical bin size were made with 50 percent ;
offset of each bin with respect to the bins in the other run. This :
effort produced an algorithm which could successfully bin and calculate !
variances from more than 90 percent of the data. The results for group
5583 are tabulated as follows:

“Bins/Decade | No. of S2  Max No./Bin | No. of s2  Max. No/Bin ;
46 8 10 ‘ 11 10 o
23 11 16 |12 12
15 10 20 9 16
12 7 23 |8 23
| 8 6 30 5 27
, 5 8 38 4 a1 :
3 3 52 2 62
| 4-76
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Figure 4.2-8. Probability of a Fraction of the Population Being
Within Sample Extremes
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~with attention on the coefficient of determination (squared regression

Note that even the 4 variances are sufficient to least squares fit a
linear curve and test for a statistically significant slope.

This group of 104 points has some range redundancy as evident
by the large number of bins with 5 through 10 points for 46 bins per
decade (that is, the ratio of maximum to minimum ranges for the bin is
only 1.051). This much data prevents the offset feature from oparating
effectively. For avent Easy (only 37 points) at the maximum SHOB of
this group, the following tabulation results:

Bins/Decade No. of S2 Max. No./Bin No. of S2 Max. No./Bin
46 1 8 1 8 -
23 2 10 2 8
15 3 14 3 8
12 2 10 4 14
8 2 14 4 14
5 3 14 3 16
3 2 20 2 28

Thus the final algorithm is applicable to many individual events
where independent blast instrumentation lines were used. An empirical 3
estimate of the maximum number of variances from these two examples is
one-ninth of the number of points.

The next step required obtaining an approximate analytical
relationship for differentiating in order to convert pressure variance N
to range variance. The log p - log scaled R data was linearly regressed

coefficient) which measures the amount of variation frcm the mean
explained by the fitted curve. (Alternatively, a “forecast efficiency" ;
is calculated from 1 - (l-rz);i which is plotted in Figure 4.2-9; only E f re
50 percent efficiency results from r = 0.866 or rz = 0.75.) Note also { V
that the coefficient of determination is the product of the slopes from

independently regressing y-on-x on x-on-y so it implies the inaccuracy
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Figure 4.2-9. Forecast Efficiency for Regression Coefficient >0.9
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of using the inverse of the p-on-R (i.e., 8rode equacibn) for a R-on-p
¥it which is needed for differentiation and use in the variance
oropagation. Recognizing that one straight line across all the data
is wrong, the linear regression was performed in independent intervals
using very wide bins; a quadratic fit is more appropriate but causes a

messy differentiation.
follow in Table 4.2-2.

Table 4.2-2.

The results for various data and bin widths

Coefficient of Determination for
Broad Range Bins

2 Bins/Decade

3 Bins/Decade 5 Bins/Decade

2 2 2 2 2 2
Rmed M "ap "Ip | Pmed N Tap TIp | Rmed N Tap Tip
Group 5585
562 65 .86 .51 316 14 .28 .01 | 398 17 .15 .0l
1778 40 .74 .63 681 52 .79 .42 631 33 .66 .13

1469 40 .74 .63 1000 41 .35 .30
1585 15 .87 .61

Priscilla
278 6 .62 .42 316 29 .9 .59 316 22 .93 .50
562 46 .96 .64 681 23 .82 .43 501 21 .81 .10
1778 5 .39 .04 1469 5 .39 .04 794 9 .56 .31

1259 5 .39 .04

Group 212252

562 63 .88 .82
1778 28 .92 .93

464 29 .94 .81 316 6 .92 .86
1000 54 .47 .67 501 18 .73 .59
2153 8 .98 .96 794 39 .16 .24

1259 21 .67 .58

1996 6 .97 .89
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These results have a clear message. The peak overpressure
measurements are much better described by a power law than are the
overpressure impulse measurements. The consequence is that the
following quadratic form should be used for overpressure impulse without
range binning for all the data:

I = e3pbtcInk
P .

For peak overpressure, the self-consistency of the data is not adequate
to prefer these fits to the Brode equation as far as calculating the
derivative or slope for t e variance propagation. Thus the two peak
overpressures were calcit 1ted from the Brode equation for bin edges

and the finite different appkoximation calculated for the slope at

the mid-point. The secund derivative was likewise approximated so the
ratio of the skewness term to the variance term could be calculated

and used for propagation of peak overpressure scatter to scaled range
variance.

The scaled overpressure impulse propagating in free air is
inversely proportional to scaled range (Reference 7), and this simple
power law approximation was adequate for range normalization within
both linear and logarithmic bins (see Figure 4.2-10 for consistency of
variance estimates from narrow range bins). Thus the inverse linear
power is assumed so the derivative is as follows; ’

cI:l 2
_a.B._=ﬂ_Ll=_c1‘2=-R_.
axp aIp p C

which leads to the propagation formula;

2
- R 2
O,y =70, ,or Co,, = R0 .

RI C IP RI Ip
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The proportionality constant € becomes a scale factor and can be ignored
later.

The final step is the fitting of the range uncertainty to range.
The highest correlation is expected by fitting in logarithmic space.
But the lognormal hypothesis requires fitting specifically in linear
space. That is, the polynomial

is used and b is tested for significance using its standard deviation
calculated from the remaining average residual.

4.2.3 Results

Most of the data base of static pressures is presented
graphically in the 20 plots of Section 4.1 for various scaled HOB bins.
Only peaks with associated impulses were used so the results could be
intercompared directly. The sparce amount of data beyond the edges of
the plots were neglected only for plotting convenience. The minimum
and maximum axes values cover the region of t-ctical interest, but the
scientific interest extends another factor of ten or more.

This analysis has emphasized data in Reference 4 which was
further culled so systematic processing could be used. The culled data
were primarily impulses. The following tabulation presents one eof the

author's (JEC) subjective reasons for culling the value. A small Ip
value of 145 at 2064 ft/ktl/3 for Sugar was not culied so its effect

can be followed through the computerized analysis.
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Series Event R(ft/ktY3)  subjective Reason
Hardtack 1 Koa 296 Both Ip too large
Redwing Zuni 454 p too small
Castle Bravo 521 Ip too small
Hardtack I ‘ fig 253, 326 Ip too 1§rge
Sunbeam Small Boy 313 Ip too large
Greenhouse fasy 383, 466 ‘n too large
Tumbler Dog 794 Ip too large
Hardtack 11 Hamilton 1839 Ip too small

The standard deviations of range were normalized to the smallest
one in the respective SHOB group and this ratio is plotted in the next
set of nine graphs, Figures 4.2-11 through 4.2-19. (Too fev'data exist
in this analysis of SHOB group 478500 for the 8 or 12 bins per decade
so no graph is available.) The statistical significance of the slope
ijs implied by the b/orb value also tabulated for each curve. The var-
iances of range we.e also averaged over all SHOB groups pertinent to
each range and the resulting standard deviation presented graphically
jn Figure 4.2-20. Note the very strong linear dependency in this
composite data from 590 points. 7The linearity is also evident in the
sub-intervals above and t»low 1 kft/ktllz. the approximate scaled range
to 10 psi peak overpressure and 0.9 psi-sec/ktll3
Thus the lognormal distribution is implied as more appropriate than the
normal distribution for both the peak and impulse.

overprescure impulse.
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Section 5

ANALYSIS FOR BIAS

The potential yield adjustment that could be accomplished by
improving the random error variation involves the question of how much
one can improve the yield specification if the damage function (e.g.,
a log normal distribution) were more peaked. The potential yield
adjustment from removing systematic biases could result in changing
the yield by the range-cubed relationship between yield and range to
a specified effect, which is a stronger relationship between yield
and range variation than the relationship for the random case. Thus
it is important to scrutinize the weapon produced environment data
for possible biases, in addition to assessing the effects of random
errors.

This section presents the results of analysis of the nuclear
test blast data undertaken to ascertain if there are obvious biases
in thesedata. The approach for this analysis was to identify a set
of factors that could potentially cause systematic errors and to
classify the data according to these factors. An analysis of variance
was then conducted on the data to indicate whether any of the effects
observed were “significant" (in the statistical sense), or could
reasonably have arisen simply by chance. For this analysis, three
factors were chosen to discriminate on, namely, instrument type,
yield, and wavefory type. Three Jevels of each of the first two factors,
and two levels of the third factor were defined:

] Instrument type: SC and SRI gauge recordings; NOL instru-
~mentation recordings: and BRL instrumentation recordings.

. Yield: low yield (<3 Kt); medium yield (3 Kt to
300 Kt); and high yield (>300 Kt).

. Waveform type: near-ideal (type V); precursor-associated
(non type V).

Only tests for scaled HOB <11 ft/kt“3 were used.

5-1
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The analysis was conducted for the scaled ranges to 10, 30, and
100 psi peak overpressure using all the data in Reference 4. A series
of four two-factor cross-classified experimental designs were set up
and analyzed. Cross-classified designs discriminating on yield and
instrumentation type were constructed for scaled range to 10, 30, and
100 psi data, and a cross-classified designAdiscriminating on yield
and waveform typé was constructed for scaled range to 30 psi data.
Designs discriminating on waveform type were not constructed for the
scaled range to 10 and 100 psi data, since at these ranges virtually

all of these data were of the same waveform type for these low SHOB.
In obtaining the ranges to the nuclear produced environments for

each shot,an attempt was made to interpolate between data points of

a given classification so that the resulting estimated range to each
peak overpressure was based on a group of gauge readings rather than
on a single reading. In the case where only one instrument type was
located in the vicinity of, for instance, the 30 psi range, the range
was estimated from the "DASA" curve through these cdata. In the case
where several instrument types obtained recordings in this region, an
estimate of the possihle bias between the instrument type and the
fitted line was obtained. Thus, if an instrument type showed recordings
consistently higher or lower than the fitted curve in the region, this
bias was accounted for in estimating the range to 30 psi as recorded
by that instrument type. Figure 5.1 illustrates this prbcedure. For
the experimental design involving waveform, the waveform type was
taken as tabulated in Reference 4,

Table 5.1 shows the cross-classified design discriminating on
instrument type and yield for range to 30 psi. The data found to
have the appropriate yield/instrument type combinations are shown in
each cell, along with the estimated range to 30 psi for that combination.
Also shown are the cell means and the column and row means for each
factor level. The analysis of variance, showing the partitioning of the
total sum of squares among the factors, was performed on these data; the
results are presented in Table 5.2. Tables 5.4, 5.5, 5.7, 5.8, 5.10,
and 5.11 show the experimental designs and analysis of variance for the

5-2
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for the 10 and 100 psi yield versus instrument type experiments, and
for the range to 30 psi yield versus waveform type experiment.

To ascertain the significance of the variation ascribed to
each factor and the interaction, standard F-tests were performed
utilizing the mean squares from the analysis of variance tables.

These are presented in four Tables, 5.3, 5.6, 5.9, and 5.12. As can
be seen, yield, when compared to the residual variatio:.., appears to
make a significant contribution to the total variation for at least

3 of the oxperimental designs. In fact, for the range to 30 psi data
in the design discriminating on yield and instrumentation type, this
con;ribution can be described as "highly significant” since a result
like the one observed would occur by chance less than one percent of
the time if, in fact, there is no true contribution due to yield. For
the range to 10 psi data, however, the result appears to be only
marginally significant. 1In fact, if it were not for the other results,
all of which indicate yield as a factor causing a significant amount
of variation in the data, the results for the range to 10 psi data
would have been dismissed as a "real" effect, since results of this
type could be observed a sufficiently large number of times by chance
tofdiscount the results as significant.

‘ To ascertain the possible effect on the change in yield suggested
by the yield scaling bias, consider the case for the range to 30 psi
data: )

° The mean of the medium and large yields [computed from
Table 5.1) is 575.72 ft/kt1/3 for 30 psi. This represents
a systematic bias between small and la~ge yields that
corresponds to an error factor of fp = 1.08, which in
turn would correspond to a yield mis-specification of
about 27 percent if the scaled results of large yields
were used to represent small yields. (The same argument
applies if the scaled results of small yields are to be
used to represent large yields.)

° The scaled range to 30 psi from NDASA 2506 is 610 (572
based on using a multiplication factor of only 1.65 for
the yield "doubling" expected at the surface). If this

v b £ e =




is used to represent luw yield environments, a mean

bias corresponding to an error factor of R=1.15 (.07
for 1.65 “"doubling") is indicated. This corresponds to
a mis-specification of yield by apnroximately 50 percent
(24 for 1.65 "doubling”).

‘ The above suggests that there might be a relationship between
yield and the scaled range to 30 psi for these surface tests. In
other words, cube-root scaling may not be appropriate over the entire
yield spectrum. Figure 5.2 shows a plot of yield versus scaled range
to 30 psi; the line through the points was fit to all 15. Visually,
there appears to be a linear relationship between the log of yield
and scaled range, i.e., a bias that exists even after the initial
scaling for surface shots. Another observation is that Sugar (1.2 kt)
and Koon (150 kt) appear to be outliers on this nlot. Sugar was an
early test conducted with early instrumentation (but it was found that
instrumentation did not contribute to the variation)}, and Koon was a
test in which significant instrumentation "failures” were observed
{although DASA 1200 reports that the recordings presented are good
data). No immediate explanations are available as to why Sugar and

Xoon should be outliers.

For the present, assume that there is a linear relationship
between the log of yield and scaled range to 30 psi, and assume as a
tentative hypothesis that this phenomenon is due to a variation in
the fraction of total enerqy that goes into the nuclear produced
blast environment that scales with yield. Then the true scaling
relationship between yield and range would be the form:

Ry _fau) V3
RO g0 N0

where
True range to 30 psi for arbitrary yield W

°

X
"

Range to 30 psi for 1 Kt
1Kt

=
[}
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% = Yield multiplicative factor for 1 Kt (proportional
to energy coupling into air blast)

g(W) = Yield multiplicative factor for yield W.

From Figure 5.1, the ratio of Rw to R0 should be “corrected" by
the factor Sw/Ro’ where Sw is the scaled range to 30 pci cqlculated
from the W) 1/3 relationship (i.e., the-"01d" scaled range). Thus:

Rw Sw _ oy 1/3
L Y .
o (i
but
! Sw = R° + k log W (from Figure 5.1) .
Therefore,
? Ro"'k‘OQH 5!;"1/3
i I
| (] Ro
\ '
| (Ro+klogH3 R\ 3
: . . = W
o, J
1/3
Ru,[ N
R (]
Ro {1+k' log H)5 {5-1)
where
k' = k/R° .

Therefore, the yield multiplicative factor related to energy coupling,
g(W), is:

(W) = 1/(1+k’ log W)3

5-19 .
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To evaluate k', use the expression for Sw:
Sw = Ro + k log w

w__ o

Using Figure 5.2 and 20 Kt:

y - 566 - 552
T L.301
= 10.7€

k'= k/R
= ,0195

The semi-empirical expression, Equation (5-1), can be used
to scale low HOB tests and should be adequate between 10 t and 10 Mt.
This correctioun is applicable only for 30 psi from surface bursts.

The potential biases for scaled ranges to 10 and 100 psi are
not as pronounced as the bias for the range to 30 psi; in fact, there
appears to be no readily discernible bias characterized by the Tow
yield test results being significantly different from the medium and
high yield test results for the scaled range to 10 psi data (the
analysis of variance indicated a less significant result concerning
the amount of variation in tha data correlating to the factor yield
for this nuclearly produced environment also). The implication is
that the effects of blast prooagation override any second-order
effects that correlate to the factor yield at the scaled ranqe to
10 psi.

For comparison, Figures 5.3 and 5.4 show plots of yielc
versus scaled range to 10 and 100 psi, respectively.
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Appendix A
THE LOGNORMAL DISTRIBUTION

A random variable x is said to be lognormally distributed
if its logarithm is normally distributed (s2 = varjance of In x)

dp =1 exp (_('ln(x) - ]n(xo))z)
din(x) ‘/gs—z 2

2s

d 1 1 ( lnz(x/xo) )
& " ~ &b - ——
* o \ms2 X 2
= L (x: xo,s) and 0<X3X S+ (A1)

The lognormal distribution is a natura) distribution in that it is
appropriate for any random variable which is the product of random
variables. In fact, under certain not very restrictive conditions,

a Central Limit Theorem can be proved, stating that as N goes to

: infinity, the product of N independent random variables, no matter
how they are individually distributed, is lTognormally distributed
(References 1, 2}. Furthermore, the random variable defined as the
sum of lognormal varijates is in many cases accurately represented

by a lognormal distribution instead of the normal distribution that
might be expected on the basis of the Central Limit Theorem (Reference 3).
Therefore, if a random variable can be written as the sum of products
of random variables, in many cases the appropriate distribution is
the lognormal. For very small variance, the region around the mode of
the lognormal can be approximated by a normal distribution but the
tolerance 1imits cannot be as easily approximated.

Many properties of the lognormal distribution can be explicitly
derived, and will be listed here for use in Section 3.

The cumulative distribution function (CDF) is given in terms
of the normal CDF:

Ve In(x/x,)
[%de =F (—1(}-_;&-) where F(z) = %— 1 + erf (2 2)] (A2)
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i The median of the distribution is thus x from z=0. Most statistics of
? interest can be derived from the moments about the origin:

JR— o
x" =[x"g§(x) dx
2.2

= x, exp () (A3)

so that the mean and variance of x are given by

— - ' S 2
x=_1 = %, €Xp (-§—)

X
ol = K - % =R (exp (s2) - 1) (A4)

and sz, the logarithmic variance, is given by
$2 =10 (1+ (a/X)2). . (AS)

The lognormal has a very simple expression for the moments of x about the
origin; the expression for moments about the mean is more complex.
This is just the reverse of the case for the normal distribution.
The mode of the distribution, where dp/dx is maximum, is
given by

- 2
Xnode = %o €XP (-s°) (A6)

The lognormal distribution is always skewed, with

T Xnode < Xo< X : IR D S

This is illustrated in Figure A-1 for unit median and Togarithmic
variance.

The percentiles or m-tiles of the lognormal distribution,
x_, are defined as usual

¢! ) w |
1—0=[ 35- dx _ (R8)
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so that Xo = %50° A symmetric p confidence interval is conveniently
defined around Xo in terms of a confidence level error factor fp

such that

X = fpx0 and

X100-m = x /f where (A9)

o p

m

100 = (p+1)/2.
Then it can be seen that

fp = exp (A(p)s)

(A10)

Ay F-l(%g)

where F is given by Equation (A2). This allows the»parameters Xy2S

to be determined entirely from the error bounds on the confidence
level {CL), i.e., Xn® *100-m* Typically this is done for a 90 percent
CL: p=0.9, m=95. For this choice the notation in this report omits

the subscript p=0.9 from fp:
2 = xgelxz (90%ci)
957§ ©
Xo =/ Xg5Xg | : (All)

Two important theorems about the lognormal distribution

are used in this report. The firstis: —-oooco ...~~~

Theorem 1: If x is a lognormal variate with parameters
Xg2Ss then z = axb is a lognormal variate with parameters

b
ax,"s bs.

Theorem 1 is proved by direct substitution.
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Theorem 2:° If x, y are lognormal variates with XosSy and
j = PO . . -, P q

" yo,sy, then'z xFy* is a lognormal variate w1th_zo Xg ¥g o

I 2 22 22

P Sz=p$x+q S.y.

[P G

_ Theorem 2 is a standard theorem proved many places, e.g.,

! - Reference 4, p. 278 ff. However, the proof is illustrative of some
of the manipulations required in this study, so will be briefly
outlined here. From Theorem 1, xP and yq are lognormal variates,

s0 Theorem 2 is similar to the theorem that the sum of two

| . . , . .
\ normal variates is a normal variate. For this purpose define

i normal variates u,v with means Ugsvy and variances Oy® Oy» and
a random variable w, with mean Wys Oy Then the probability that
the sum of u and v is less than some particular value w is given by
i the probability of occurrence of a particular u, together with the
! probability that v is less than or equal to w-u for all u less than w.

; , This relationship may be expressed

i

3 a “ap [

! dp 4y =f 42 f do

i f d / T Fov (A12)
i , or

i .

P Wy

- p, ) = f P opwu) du (A:3)

; It is convenient to define the Laplace transform

L&, s) =fe'5“ a0 g (A14)

where C is the Laplace operator and not the POF of Equation (Al).
Then using the common properties of the Laplace transform, the

convolution in Equation (Al13) becomes

LAp,ps) =L(Ees) Lo(p,05) (A15)
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and the re]atidn

s Lip,s) =L, 5) (A16)
gives the result
LE@E,)=LER,s)LE,s) (A17)

It is easy to see that for the normal distributions, Equation (A1l4)

' Y
£(%8_ , S) = 1 fe-Su exp [ R !uz uo) ldu
a

gives

1/ 2
2n0u u
= 2.2
= exp (- u s *a,’s /2). (A18)
As a resu]t the unknown dp/dw has the Laplace transform
(A19)

LG s) = o (- lugrg)s + (0,20 Bisr2),

which is the Laplace transform of a normal distribution with mean

w_=u_+ v _and variance 0w2 = ouz +0 2. For the present case
This substitution

0 0
_u=£n(x8). 0u=psx » with similar relations for v.
proves the theorem. Theorem 2 can obv..usly be expanded to include
random variates that are the products of any number of lognormal

variates.
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