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MANAGEMENT STRATEGIES IN FIXED-STRUCTURE MODELS 

OF COMPLEX ORGANIZATIONS  II 

Alan E, Gelfand and Crayton C. Walker 

1.  Introduction 

In this paper we examine consensus as a management 

control strategy in complex organizations.  We consider 

how different degrees of consensus may interact with two 

other management strategies, namely, management by 

exception and management by priority, to influence the 

tractability of organizations' behavior. 

The background for this paper is found In a previous 

publication [9].  In the earlier work we introduced the 

interpretation of an organizational control system as a 

network of binary switching elements.  Each element has 

a fixed number of Inputs and computes a binary output 

according to a function that represents its response to 

input information.  We interpret management by exception 

as the extent to which the function has identical output 

values, and management by priority as the extent to which 

individual inputs are effective in producing identical 

output.  Our findings are that these two strategies can 



control overall system behavior.  We also focused on 

the problem of providing modeled organizational behavior 

that is on the average within useful, empirically 

reasonable ranges.  Additionally we sought to provide 

results useful to the organizational designer or Inter- 

vener who must work in the face of uncertainty as to both 

the detailed structure of organizations and the 

functioning of its individual parts. 

In the earlier paper we suggest that management by 

exception and management by priority can be modeled by 

the rigorously defined concepts internal homogeneity and 

forcibility respectively.  We also mention that the idea 

of control by consensus or aggregation of information can 

be conveniently interpreted using the notion of a thresh- 

old»  We now develop this idea.  "Consensus"s when there 

can be more or less of it, implies the existence of a 

metric on which the amount of evidence or disposition 

"for" or "against" something can be scaled.  Neither 

internal homogeneity nor forcibility provide such a 

measure.  Internal homogeneity simply indicates the 

behavior of a net element in an aggregate sense, no 

account being taken of the specific conditions giving 

rise to the behavior.  Forcibility reflects the efficacy 

of elements' inputs individually, no account being taken 

of possible joint effects among Inputs. 

Control by consensus, in addition, invokes the 

idea of a level» at or above which some course of 



action is taken or some specific condition maintained. 

That is, control by consensus can be interpreted as a 

sufficiency condition. 

In noting the importance of a metric and the 

sufficiency condition in the concept "consensus", we 

are naturally led to model it with threshold functions. 

Such functions show both the aggregative scaling of 

input values and the sufficiency condition for constant 

output.  Conventional threshold functions [2], however, 

often used to model nerve cells, typically interpret 

"0" as "off" and "1" as "on", and provide both necessary 

and sufficient conditions for setting output values.  In 

addition, conventional threshold functions typically set 

the "on" condition for above threshold input configura- 

tions.  These restrictions seem excessive for our pur- 

poses.  In a managerial environment it might be useful 

to take no action given sufficient evidence, or to take 

an action on finding a substantial lack of something (say, 

productivity), in the input.  It might also be useful to 

be able to take the above threshold action, in certain 

circumstances, at below threshold input values.  The 

notion of a threshold which we formalize in the next 

section, allows these possibilities.  Hence our definition 

extends the more familiar concept of a threshold [2] and 

may appropriately be called an extended threshold.  With 

this understood we will shorten the terminology to just 

threshold. 



In passing we note that where all Inputs "on" 

achieve the same action as all inputs "off" we have a 

map which arguably is not a threshold function«  That 

iSj where the action to be taken or the condition to be 

set is the same for both extremes of amount of informa- 

tion,, it can be objected that we are dealing with a 

different concept»  However, separating out such maps 

does not change the conclusions we will reach; nor do 

the separated maps themselves behave differently in the 

large with respect to internal homogeneity and forcl- 

bility.  For these reasonss and to maintain greater 

generality, we will not complicate the definition of 

extended threshold to effect their removal» 

In the next section we characterize extended thresh- 

old rigorously, and develop some counting relationships 

for it.  Following that section we interpret extended 

threshold together with internal homogeneity and forci- 

bility in managerial terms«,  We conclude with more 

general comments on the interrelationship between systems 

theory and organizational theory» 

2«  Definitions and Notation and some Preliminary Results 

We wish formally to define the notion of a mapping 

on k inputs which has (extended) threshold £(1 < I  <_ k)„ 

Speaking casually, we may say that a mapping on k inputs 

has threshold I  if whenever t  or more inputs take on a 

specified value the mapping takes on a specified value. 



We call the resultant mapping or output value the 

threshold state associated with that Input value.  The 

specified input value may be "0" or "1" and may be 

coupled with a threshold state of "0" or "1".  In this 

definition £ is the minimum number of inputs for which 

the statement is true since if the statement holds at 

£ it would obviously hold at £+1,£+2,...,k. 

The difficulty associated with such an informal 

definition may be revealed by attempting to answer the 

following illustrative question.  Can the system ever 

be "on" if fewer than £ inputs are "on"?  If the answer 

is no we shall refer to £ as an absolute threshold 

although it is not clear whether £ or k~£ should be 

called the threshold since k-£ inputs "off" imply the 

system Is "off".  If the answer is yes we shall refer 

to £ only as a threshold (for the number of "on" inputs). 

Every mapping must have a threshold (at the largest it 

would be k) but only a subset of mappings have an 

absolute threshold.  Because our extended conception of 

a threshold allows either "off" or "on" inputs to turn 

an element again either "off" or "on" how do we assign 

a threshold value, £ to a mapping? We need to consider 

for a mapping m, a threshold for the number of "off" or 

"0" inputs which we denote by £Q(m) and similarly a 

threshold for the number of on or "1" inputs which we 

denote by £,(m).  We then define £(m) = min(£0(m), £1(m)) 



In light of our extended definition the minimum of these 

two numbers is clearly the more significant value.  In 

considering absolute thresholds we quickly discover that 

if £ Is nan absolute threshold so Is £, and that o 1 

I    + £, = k+1.  We will prove shortly that for any 

mapping ms I   (m) + I., (m) >_ k+1.  Table 1 attempts to 

clarify the definitions and notations»  For mapping m, 

we have I  (m, ) - k,  £, (m.,) a  3 and £(m, ) - 3. For map- 

ping m2 we have £ (raj - 2, £.,(m2) 
s 4 and £(m2) - 2. 

For mapping m~ we have £ (m_) =* 2S £, (m-,) - 3 with both 

£ and £, absolute thresholds and £(m~) - 2«  Lastly for 

mapping mü we have a situation where the notion of a 

threshold has little significance (as noted in the 

introduction) i.e., £ (IIK) - £,(mi.) = £(m1.) - 4.  The 

notion of a threshold for the two trivial or constant 

mappings is not meaningful.  For convenience we define 

£ - £ for both and do not consider them further in this 

discussion. 

A brief examination of Table 1 reveals that the 

lexicographic ordering for a mapping is not at all 

convenient for establishing thresholds.  A better 

arrangement would be to order the input rows monoton!• 

cally by the number of "0"'s (hence by the number of 

"l"!s.) To obtain £ and £, from this "monotonic" 

ordering is quite simple.  Suppose for example the 

Input rows are arranged by Increasing number of "0"'s. 



If we scan up the mapping value column In this table for 

the first change of value ("0" to "1" or "1" to "0") and 

It occurs for a row having J Input "0"'s then £ =  j+1. 

If we scan down the mapping value column for the changes 

and it occurs for a row having j' input "0"'s (hence 

k-j' Input "l"ss) then l±  = k-j'+l. 

We may immediately notice that since we are con- 

sidering only nontrivial maps we must have j'fj+l, i.e., 

k~£,+l < £ or £ +£ > k+1.  As Lemma 1 we state and 1  — o    o 1 — 

formally prove a slightly broader result. 

Lemma 1:  For any nontrivial mapping m, £ (m)+£.(m) >_ k+1 

with equality i.f.f. £  (and hence £,) is an absolute 

threshold. 

Pf.:  If for m, £ (m) = j (then all the input rows having o 

j or more "0"'s will be forced to a common mapping value. 

The remaining rows have at most j-1 "0"'s hence at least 

k-j+1 "1"'s.  Among rows having j-1 "0"'s there must be 

at least one row with mapping value different from the 

common mapping value for all input rows with j or more 

"0"'s.  Hence £, (ra) > k-j+1 and thus £ (m) + I.(m) > k+1. 

Finally, £1(m) = k-j+1 (i.e., £Q(m) + £x(m) = k+1) i.f.f. 

all rows with j-1 or fewer "0"'s have a common mapping 

value.  This mapping clearly has £ (m) = j and £,(m) o x 

= k-j+1 as absolute thresholds.  0 

We note that if £(m) = 1 then £ is immediately an 

absolute threshold.  Mappings having threshold £=1 and 



*1» x3 X2 xl ml m2 m3 
mll 

1 1 1 1 1 1 1 0 

0 1 1 1 1 0 1 1 

1 0 1 1 1 1 1 0 

0 0 1 1 0 0 0 1 

1 1 0 1 1 1 1 1 

0 1 0 1 0 0 0 0 

1 0 0 1 0 0 0 I 

0 0 0 1 1 0 0 0 

1 1 1 0 1 1 1 1 

0 1 1 0 0 0 0 0 

1 0 1 0 0 0 0 1 

0 0 1 0 1 0 0 0 

1 1 0 0 1 0 0 0 

0 1 0 0 0 0 0 0 

1 0 0 0 0 0 0 1 

0 0 0 0 1 0 0 0 

Table 1:  Illustrative Mappings on Pour Inputs 

corresponding threshold state 1 have been defined as 

noncontractible by Rosen' [6].  We thus will speak more 

generally of mappings with 1=1  as being extended 

noncontractible. 

We now attempt to enumerate the number of mappings 

having a particular threshold I.     If I  is an absolute 



threshold the counting is simple. Given I    and hence 

£, • k+l~£ there will be two mappings having this particular 

I    and •£-,--the mapping having threshold state "0" on the 

"0" Inputs, threshold state "1" on the "1" inputs and 

vice versa.  Since I    runs from 1 to k the total number o 

of mappings having an absolute threshold is 2k.  The 

number having absolute threshold I  is H  if I ?l^   and 2 

if I  =•£.. .  Note that I  =•£, implies k is odd and I = ~^. o  1 o  1  e 2 

Only for this I  may the number of maps having absolute 

threshold be 2. 

More generally let 3(k,£) be the number of mappings 

on k with threshold t   (including those with absolute 

threshold I).     In computing 3(k,£) it will be convenient 

if we first calculate a(k,j,J') which is the number of 

mappings on k inputs with £ = j and £, = j!.  Note that 
o J. 

by Lemma 19  j+j
1 must be at least k+1.  We have the 

following theorem. 

Theorem 1: 

(i) o(k,J,j') «2 if j+j»=k+l 

(ii) a(k,J,J') = 2(j^)+2-6  if j+j»=k+2 

J-2  k 
( k )    ( * j      zf  (J) 

(iii) a(k,J,j') = i»(2 J!'"1 -1)(2 J"1 »l)21=k~J'+2 

if j+j '>k+2. 

Pf.:  Given j and j' fixes a common mapping value, say 

a, for all rows with j or more "0"'s and a common 



mapping value, say b, for all rows with k-j ' or fewer 

"0'!9s. We must examine the possibilities for the remain- 

ing rows involving more than k-j' "0"'s but fewer than 

j !,0"fs.  (i) Suppose j+J'-k+l.  Then k-J'-J-l and there 

are no rows unaccounted for.  If a~0 then b»l and vice 

versa,, hence a(k,jsj') = 2« 

(ii) Suppose J+J*»k+2.  Then k-j'=j-2 and thus only 

rows with j-l "0!"s must be considered.  There are 

k (4-1) such rows»  If a^b^O at least one of these rows 

must have mapping value 1.  This may be done in 2(. ,)-l 

ways«  If a~b-l at least one of these rows must have 

mapping value 0 which again may be done in 

( k ) 1-1' 2 °       -1 ways.  If aal and b-0 then at least one row must 

have mapping value "0" and at least one row must have 

mapping value "1".  This may be accomplished in 

( k ) v 1 -1' 2 J   -2 ways.  Similarly this is so for a~0 and b=l. 

Combining these possibilities we have 

( k )      ( k ) 
a(k,j,j») = 2(2 ^*"1 -l)+2(2 J"1 -2) which after 

simplification yields (ii). 

(lii) If j+j»>k+2 then k-j»<j-2.  At least one row 

having j-l "0"'s must have mapping value 1-a and at 

least one row having k-j8+l "0,Ms (k-j'+l<j-l) must have 

mapping value 1-b.  Rows involving more than k-j!+l but 

fewer than j-l "0"'s may be selected arbitrarily.  Since 

a and b may each be "0" or "1" this allows 4 initial 



choices.  Combining these possibilities yields (iii).  Q 

For any mapping m on k inputs with I   (m) <_ -£.-,(m) 

there is a symmetrically equivalent mapping (in terms of 

thresholds) m' given by 

m*(xlsx2S...sxk) = m(l-x1,l-x2,...,l-xk). 

It is apparent that m' arises in the monotonic ordering 

of m by simply inverting the mapping value column and 

hence clearly ^(m') = £Q(m) < £,(m) = I   (m').  This 

symmetry implies aCkjjjj*) = a(k,js,j) and thus finally 

enables us to calculate 3(k,£). 

k 
Theorem 2:  ß(ks£) = 2  Z     a(k,£,£!) + a(k,1,1)  where 

a(k,£,£') - 0 if £+£8<k-i-l. 

Pf.:  The proof is contained in the above discussion. 

3.  Interrelationships Between Thresholds,  Forcibility 

and Internal Homogeneity 

The notions of internal homogeneity and forcibility 

have been discussed in previous articles.  Walker and 

Ashby [8] examine internal homogeneity and Its effect on 

system behavior while Kauffman in a series of articles, 

most notably [4], C5] has developed the concept of 

forcibility.  Forcibility appears to be a very strong 

conceptualization with respect to determining system 

behavior. 

10 



To recall our earlier definitions (Part 1), Internal 

homogeneity, denoted henceforth by I is the larger of 

the number of "0" entries and the number of "1" entries 

in the table of values of a mapping, i.e., 

I - max(#0»ss #l's).  Hence 2k"*1 < I < 2k, 

A mapping is forcible on a given Input when a given 

state of the input "forces" the output of the mapping to 

a single value regardless of* the values of the other 

inputs.  This given state is called the forcing state. 

If an input is forcing on both states then the mapping 

is either constant (trivial) or has half "l'Ms and half 

"0,Ms.  In the former case all inputs are forcing on both 

states while in the latter case the mapping must be 

forcing only on the one input.  Since forcibility with 

only one input is trivial we restrict attention to the 

case where the number of inputs k >_ 2«  The forced value 

of an element is that value to which it is forcible. 

If an element is forcible on more than one input 

line, its forced value is identical for all the inputs 

on which it is forcible.  We denote the number of 

forcing inputs by P. 

Enumeration of Boolean transformations by Internal 

homogeneity and forcibility is discussed in Part I.  We 

now turn to the extension of these enumerations to 

include thresholds* 

Given any mapping m(x) on k inputs consider the 

mappings mf = m(l-x) (introduced In the previous section), 

11 



m » l-m(x) and m' - l-m(l-x),,  It is easy to verify that 

four mappings m, m?, m, and m' are equivalent with regard 

to internal homogeneity forcibillty and thresholds.  It 

is possible that this equivalence class may consist of 

just two elements,, I.e., !Baia' or m «= mt   (obviously m can't 

equal in).  It is apparent that If I is odd four distinct 

— k-1 mappings must arise and that if m « m' then 1=2   .  It 

Is a complicated enumeration to establish the exact 

number of classes, C(k), generated by such equivalence 

classes.  However simple upper and lower bounds are 

readily available from the following theorem. 

Theorem 2:  4   I    N. (i)<C(k)<i   I N. (2m) 
k-1     ' k-? i-2K x m*=2K * 

,   2k"1-l 
+4  I    N.(2m+1) 

m8sPk-2   
k 

where N, (i) Is the number of mappings on k inputs with 

1=1. 
k 

Pf.:  It is easy to see that Nk(i) - 2(±   ) for 

2k 

2k-l < ± < 2
k and that N. (2k"1) - (   ).  If I is odd, 

2k-l 

say 2m+l, the number of equivalence classes generated is 

thus x-N. (2m+l).  If I Is even, say 2m, the number of 

12 



classes generated is at least ^-N (2m) and at most 

•w-N. (2m).  Combining these results we have the 

theorem.  0 

Similar equivalence classes developed for the 

special ease of Boolean transformations with feedback 

have been considered In Walker and Aadryan [7] and 

Gelfand and Walker [33»  They show that if k*=3s 88 

equivalence classes arise.  Theorem 2 provides bounds 

of 6H  and 96 for this case. 

When k is large surely more than one equivalence 

class may have the same values for I, P and t.     Even 

when ks2 these three properties do not uniquely deter- 

mine equivalence classes, as the example in Table 2 

indicates. 

x2 xl ral m2 

1 1 1 1 

0 1 1 0 

1 0 0 1 

0 0 0 0 

Table 2:  Two mappings in different equivalence 
classes with 1=2» P-l and 1=2. 

This example and discussion indicates that the 

three properties are clearly interrelated.  Part I 

expanded upon the strong relationship between internal 

homogeneity and forcibility; essentially, larger F must 

13 



be accompanied by larger I«  We shall eventually see 

that I  is weakly related to I and inversely related 

to F. 

Let us first examine Internal homogeneity and 

threshold.  If for a mapping m on k inputs, £(m)=l then 

clearly I=2k-1 (and in fact P=k).  Conversely if I=2k-1 
k + ? 

it is obvious that I +1.   < k+2 and thus 1 < I <  ~- 
O  1 — —   —  2 

k+1 - k/2-f-l.  More precisely of the 2   mappings with 

k 1=2 -1 how many have threshold £? The exact answer 

depends on whether k is odd or even.  If k is odd, 

1 i *•  1 ^jr" + 1  and the number is M^).  If k is even, 

1 < I  < l+l and number is M^) if 1 < £ < | and 

2(k
k
2) at I  = | + 1. 

Let us now generally enumerate x(k,I,£), the number 

of mappings on k Inputs having Internal homogeneity i 

and threshold I.     It will be convenient as in Theorem 1 

to calculate t(k,i.£ ,£,) first.  Also for convenience o 1 

let 

k      k k       k 
c = max( Z   (k), Z   (k)), d = min( Z   (k),   Z   (k)). 

Recall also a and b as defined in Theorem 1. 

We first note the following. 

Lemma 2:   (1) If a=b then x(k,i,£ ,-fc.^-O if i<c+d. 

(11) If a^b then x(k,i,£ ,£-. ) = 0 if i<c or ox 

14 



Pf.:  Obvious from definitions. 

We are now ready to calculate T (k,i,.£,.£..).  Let 

TCk^ij,j ,j 8 ) be the number of mappings on k Inputs with 

I53!, ^0U and ^^j '.  If T Is obtained T may be computed 

from T via a second order differences i.e., 

T - A?  . (T). 
'V^i 

More specifically this notation means 

T(k3is£o,£1) = T(ksls£o,£1) - T(k, 1,^-1,^) 

- T(k,IJ£0,£1»l) + T(ksi,£o-l,£1-l). 

Theorem 3 enables us to compute T(ksis£ ,-£-,). 

2k-(c+d)        2k•(c+d) 

Theorem 3:  Let e, a (       ), c? 
s (       ), 

2 -i i 

2k~(c+d) 2k~(c+d) 

e, = (       ), and e^ = (       ) and define 

i-c i-d 

(k) 5 0 if a>b.  Then T(k,i,£o,£1) • 2(e]L+e2+e +e^) 

k~1    k k-1 
if 2K  <I<2K - 2(e1+e3) if 1**2K x. 

Pf. :  Without loss of generality suppose £>•£]_•  Then 

in the monotonie ordering (by number of "0"8s) at least 

15 



the last c input rows have map value fixed at a and at 

least the first c rows have map value fixed at b in order 

to Insure at most I    and £, respectively. 

Suppose that i is actually number of "l'"s in the 

k table of mapping values.  For the remaining 2 -(c+d) 

rows., e, counts the number of ways we may insure at most 

I    and £, with a^b»!,, e? indicates how many ways we may 

do this with a^b-Oj e~ Indicates how many ways with a-1, 

b=0 and e^ with as0 and b»l. 

Since i may be the number of "0"'s in the table of 

values we must multiply each e. by 2.  In the case that 

k-1 i=s2   we have e-.-e?f  
e?~eh  and hence the expression for 

T is halved to avoid double counting.  Q 

Lastly we may obtain x(kji,£). 

k 
Theorem Hi     x(k3lsl)  «2  Z     x(ksis£s£')+x(k,!,£,£' ) 

£'*£+! 

Pf.:  It is obvious by symmetry considerations that 

x(k3i,£,£«) - x(k,i,£»,£). 

Our next objective is to examine forcibility and 

threshold.  We have already observed that if for a 

mapping m, £(m) = 1 then m is forcing on all inputs. 

If ls   !<£<[—=•]  ([x] denotes the greatest Integer in 

x) is an absolute threshold consider any input, say the 

ith.  For any row with x.^l and fewer than I  inputs 

equal to "1" the mapping value will differ from that of 

a row with at least I  Inputs equal to "1".  A similar 

16 



argument holds when x.-O so no forcing inputs are 

possible«. 

The Jist of the preceeding paragraph may be stated 

as a lemma. 

Lemma 3«  The intersection of the set of forcible mappings 

and the set of mappings with an absolute threshold is 

the set of extended noncontractlble mappings. 

Pf.:  The proof is contained in the above discussion. 

We now examine the more general situation.  We show 

first that for any mapping having forcing inputs both 

input values must have the same threshold state or 

max(£ ,-d,)«k. 

Theorem 5'  Consider any mapping m on k inputs with 

differing threshold states and with I Am)  - j < k and 

-£-,(m) = j! < k.  Then m has no forcing inputs. 

Pf.:  We show that the first input can not be forcing. 

The proof reveals that the choice of input is arbitrary 

and thus that the theorem follows.  Consider the row 

with x,=l and x^O, ±»2,...,k and the row with x,~l, 

i=l,...9k-l and x»0.  Since both j and jf are less than 

k we must have m(l,0,0,...,0) F
1
 m(l,l,l,...,l,0). 

Similarly m(0,l,l,...,1) t  m(0s0,0,...,0,1) and thus the 

first input can not be forcing.  0 

A partial converse to this result is available if 

we consider mappings having exactly f forcing inputs 

such that each forcing input has the same forcing state. 

For such a mapping the threshold can not exceed k+l-f. 

17 



Theorem 6:  Suppose m is a mapping on k inputs which is 

forcing on exactly f of them and each forcing input has 

the same forcing state.  Then £(m) <_ k+l-f. 

Pf.:  Without loss of generality we may assume that the 

first f inputs are forcings that the forcing state is 

"1" and that the forced value is "1".  If we examine any 

row having k+l-f or more "l"fs at least one of them must 

be associated with one of the first f inputs and thus 

m«l.  Hence £,(m) < k+l-f and therefore t(m)  <_ k+l-f.  0 

We note two obvious corrollaries«, 

Corollary 1:  If f of the f forcing inputs have forcing 

state "1" and f-f having forcing state "0" then 

t(m)  < k+l-max(f•,f-f'). 

Corollary 2:  If m is forcing on exactly k-1 inputs and 

each forcing input has the same forcing state, then 

£(m) = 2. 

Table 3 illustrates the need for all forcing Inputs 

to have the same forcing state.  Both mappings m, and 

m?  have inputs 1 and 2 as forcing.  However m, satisfies 

the conditions of Theorem 6 (and Corollary 2) and has 

£(m.)s=2.  Mapping m2 does not and has £(m2)
ss3 (in 

agreement with Corollary 1). 

18 



x3 x2 xi ml IB„ 

1 1 1 1 1 

0 1 1 1 1 

1 ö 1 1 1 

0 0 1 1 1 

1 I 0 1 0 

0 I 0 1 0 

1 0 0 0 1 

0 0 0 0 1 

Table 3"°     An Illustration of Theorem 6 

We next turn to the calculation of cr(k,f,£), the 

number of mappings on k inputs with exactly f forcing 

inputs and threshold t.     The expression we develop is 

extremely awkward to calculate and will be presented via 

a lemma and two theorems»  The reasons for the complexity 

were touched upon In the discussion surrounding the 

previous theorems i.e., forcing Inputs need not have the 

same forcing state.  As a result we must calculate 

p(k,£ ,L,r,s), the number of maps on k inputs with 

thresholds I  ,£, respectively and r inputs having forcing 

state "1", s inputs having forcing state "0". 

We first note the following lemma. 

Lemma 4:  p(k,£ ,£,,r,s) • 0 unless both r £ lQ  and 
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Pf.:  Using the same argument as In Theorem 6 and 

Corollary 1 we see that £ <k+l-s, £,<k+l-r.  Hence 

s<k+l-£ , r<k+l~£-, .  If £, <s then £..<k+l-£ , i.e.. •—    o  —    1      1       1     o 

£1+£o<k+l which Is impossible.  Similarly for £Q<r.  0 

Lemma 3 resolves the calculation of p when 

£ +£,=k+l, i.e., only £«1 is possible and all inputs 

force.  Thus p(k,l,k,k,0) - p(k,k,l,0,k) = 2.  Further- 

more since 

a(k,£ .£,) =    I  p(k,£ £ r,s) 
° l        s<k+l-£     ° L 

—    o 
r<k+l-£1 

we may calculate p(ks£ ,£,j030) by subtraction if we have 

obtained p(k,£ ,£,,r,s) for any r, s with max(r,s)>l. 

As we shall sees it is most convenient to first 

calculate R1(ks£ ,£,sr,s) which is the number of mappings 

on k inputs having thresholds £ and £-, with at_ least the 

first r inputs having forcing state "1" and at_ least the 

next s inputs having forcing state "0".  Lemma 5 calcu- 

lates R', Theorem 7 shows how R' may be adjusted to yield 

p and finally Theorem 8 obtains a  from p. 

Lemma 5:  Case (i) r>ls s>l. 

k-(r+s) 
(£0-r-l ) 

If £Q+£1=k+2, R
,(k,£o,£1,r,s) = 2(2        -1) 
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If I  +£,>k+2, R'(k,£ ,i,,r,s) 

£ -r-2 

o 1 
2(2        -D(2        -1)2 

Case (li) r>_ls s=0. 

If £0=k, £Q+£1^k+2, R
s (ksk92»r,0) - 2k~r+2-6. 

If £0=ks £Q+£1>k+29 R'(k,k,£19rs0) - 

k-r-2 
k-r E    (?) 

iH2k~°r-l)(2     -1)2 

If £ <k, same expressions as In case (i). 

Case (ill) s>l, r=0. 

If £1»k, £0+£1»k+2, R
! (k929ks0ss) - 2k~s+2-6.  If t^k, 

£ +£,>k+2s R»(k,Z ,ks09s) 

V2 

k~s E    <i> (£ ~1} I-k-^+2 1 

i* (2     -l)(2k~S-l)2 

If I  <ks same expressions as In case (1). 

Pf.:  The proof of this lemma is quite similar to that 

of Theorem. 1. We only prove cases (1) and (ii) since 

case (111) Is symmetrically equivalent to case (11). 
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(i) r>l, s>l implies in the lexicographic order, 

the first 2k-2k""r rows (i.e., those which have a "1" for 

any of the first r inputs) are determined at, say a. 

Also the last 2 " ~2 • ~s rows must as well be determined 

at this a (i.e„s the forced value is unique and these are 

the remaining rows having a "0" in at least one of the 

next s inputs).  Note that since the first and last rows 

have map value a, both input values must have the same 

threshold state, a.  Consider the undetermined rows.  All 

have xx = x2 = ... - xr = 0, xr+1 = xr+2 = ... = xr+s 

- 1.  If £ = r or £, = s all of these rows must also o        1 

be determined to have map value a and thus the trivial 

map results.  Hence we take r < t   , s < £,.  To have 

threshold £    and £,, for the remaining k~(r+s) inputs 

whenever t -r  or more are "0" or whenever £-.--s or more o 1 

are "1" the map value must again be a.  To insure exactly 

L  , -€, we must look among these k~-(r+s) inputs at rows 

with exactly I  -r-1 of them at "0" and at rows with o 

exactly £1-s-l of them at "1" (i.e., k-(r+s) - (l^s-1) 

- k-r-^+1 of them at "0"). 

If I  +£, = k+2 then k-r-£,+1 - £ -r-1 and for at o 1 1     o 

k-(r+s) 

least one of these (      ) rows the map value must be 

Vr-l 

1-a.  Since a may be chosen in two ways the expression 

for I  +£, - k+2 follows. o 1 
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If I  +£->k+2 then k-r-£,+1<£ -r-1 and the second o 1 1   o 

part of (i) follows as In (ill) of Theorem 1 except that 

again a can be chosen in two ways and b must be 1-a. 

(ii) r>l, 8-0 implies again that the first 2k-2k~r 

rows are determined at say a.  However with s^O the map 

value for the last row is not fixed.  Prom Theorem 5 with 

Kr<l  (Lemma 4). if the threshold states differ I    must — — o o 

equal k and the last row will have map value 1-a.  Hence 

again as in Theorem 1, if l -k  we may have a^b but if 

I  <k we must have asb.  For the former the expressions 

mimic cases (ii) and (iii) of Theorem 1 while for the 

latter the same argument as in case (1) of this theorem 

is appropriate with s-0.  Hence the expressions in (ii) 

follow and we are done.  Q 

Note that the completion of the rows in cases (i) 

and (ii) in order to fix I    and 1-.   may result in more 

than just the first r Inputs being forcing with forcing 

state "1" and more than just the next s inputs being 

forcing with forcing state "0". 

Theorem 7: 

j+J'<k-(r+s) 

jü-^rFTF^PFTTr "' <*.<0.fi-
r+J >S+J'» 
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Pf.:  The summation adjusts R' to the number of ways in 

which exactly the first r inputs have forcing state "1" 

and exactly the next s inputs have forcing state "0". 

The form may be established from a straightforward 

counting argument using symmetry in the selection of the 

additional J+j1 forcing Inputs.  The details are omitted. 

The factorial coefficient allows the adjustment from the 

first r and next s inputs to an arbitrary choice of r and 

s from the total of k inputs.  0 

We finally have 

Theorem 8: 

k 
o(k,f,£)=2 E     I     p(k,-£,£«,r,s) +  Z  p(k,£3£',r,s). 

£«=£+1 r+s=f r+s=f 

Pf.:  In order to have exactly f forcing inputs, r+s must 

equal f.  Since it is apparent that  E  p(k,£ ,£,,r,s) 
r+s=f    ° 

=  E  p(k,£13,£ ,r,s) the conclusion follows.  0 
r+s=f 

Considering the difficulties involved in achieving 

Theorems 4 and 8 a theoretical enumeration of maps by I 

and I and P appears overwhelming.  Instead we offer 

Table 4 which presents such an explicit enumeration for 

k=2, 3 and 4. The theoretical results for I  and I 

(Theorem 4) may be verified by summing the tables over 

P.  Similarly for I  and P (Theorem 8) by summing over 

I.  The tables particularly at k=3 and 4 reveal the 
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weak relation, between, I  and I arid the rather strong 

inverse relation between I  and P* 

In fast for general k the relationship between I 

and I must continue to be weak.  We recall, using the 

monotonic ordering for mappings» that only an upper and 

lower set of Input rows are determined*  The remaining 

middle rows are all free to assume either map value» 

Hence if k is large and t  is not too small I is only 

weakly controlled by the specification of £.  In the 

situation where £ is very small or is an absolute 

threshold this will not be the case but such mappings 

are sparse in the overall collection of possible mappings. 

For general k the strong inverse relationship between £ 

and F also persists by reference to Theorem 6 and 

Corollary 1.  More precisely, decreasing threshold has 

the effect of increasing the proportion of maps In the 

given threshold class that have one or more forcible In- 

puts.  For examples with k=4 maps* that proportion is 

0.03 at £^4S 0.20 at £«=3, 0.93 at £«2» and 1.0 at £=1 

and £-0.  From Table k  it can also be seen that within 

threshold classes the positive relationship between 

internal homogeneity and forcibility noted in part I 

still obtains»  This is a nontrivial finding in that 

contrary outcomes are conceivable, particularly for 

£ss2»  That is, extended threshold could vary the way in 

which internal homogeneity and forcibility are related. 

We find that it does not.  This suggests the existence 
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of some mechanism common to the three measures.  We 

return to this point in Section 5. 

k«2 

£-2 X 2 3 4 

0 2 - 2 

i 4 - _ 4 

2 _ 4 _ 4 

6 4 10 

£=1 

0 

1 

2 

2 3 4 

- - - 

4 4 

4 4 

1^0 fX 2 3 4 

0 - _ - 

i 

2 2 2 

2 2 

k=3 

£=3 X 4 5 6 7 8 

0 62 60 8 „ 130 
l 6 36 12 - _, 54 
2 - „ 12 _ - 12 
3 - - - - - _ 

68 96 32 *» _ 196 
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£-2 < 4 5 6 7 8 

0 2 4 - - 6 
1 — 12 12 «. «. 24 
2 — „ 12 «. «, 12 
3 _ _ „ 12 • 12 

2 16 24 12 HO) 54 

£-1 X 4 
,5 6 7 8 

0 
i 

-, - „ „ 

2 
3 

_ _ „ 

4 
- 

4 

- _ 4 4 

1=0       f X 4 5 6 i 8 

0 
i 

- _ _ - 

2 
3 

— — 
: 

— 
2 2 

a» OB „ «E» 2 2 

k=4 

£=4 r 9   10   11  12  13 14 15 16 

0 
1 
2 
3 
4 

12242 21288 13814 
8  112  336 

6340 1830 
560  496 

24 

260 10 
192 16 
48 24 

12250 21400 14150 6900 2350 500 50 <•   «*. 

55784 
1720 

96 

57600 

27 



£=3 t \r 8 9 10 11 12 13 14 15 16 

0 620 1464 1754 1496 734 156 6 . . 6230 
1 _ 16 112 336 512 304 48 _ - 1328 
2 _ «, - _. 24 120 48 ~ — 192 
3 _ ., - _ - - 48 — _ 48 
4 _ - „ - _ _ _ 12 - 12 

620 1480 1866 1832 1270 580 150 12 0 7810 

1^2     f X 8 9 10 11 12 13 14 15 16 

0 _ _ 4 4 8 
i _ _ _ - 16 16 - - — 32 
2 — — _ „ _ 24 24 - _ 48 
3 _ — — — ~ - 16 - _ 16 
4 - - - - - - - 16 - 16 

a— . 4 20 40 40 16 120 

£«1 fNi 

0 
1 
2 
3 
4 

10 11  12 13 14 15 16 

_ _ 4 . 

_ _ n    „ 

£=0  £s£ 

0 
1 
2 
3 
4 

10 11  12  13 14 15 16 

-  2 

_  -  -  2 

Table 4.  An enumeration of mappings by number of forcing 
inputs (f)9 internal homogeneity (i), and thresh- 
old (I),  for number of inputs k=l,2,3,4. 
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**•  Organizational Implications and Interpretations 

We now examine how the relationships developed in 

the preceding section might be used in practice to defend 

the complex organization against behavioral abnormality. 

The manager or organizational designer intending to use 

these results, as we have said, would already have 

determined intervention in the form of detailed structural 

and functional specification to be inappropriate.  We 

further assume that the he or she has decided not to 

manage by manipulating input span (k). Rather, we 

emphasize exception, priority, and consensus over input 

span management because we assume that in practice many 

control nets will have to retain high k values. 

The general way in which the inverse relationship 

between extended threshold and forcibility can be applied 

is now clear.  Interpreting extended threshold In the 

manner suggested in our introduction as the level of 

information or consensus at which action (or lack there- 

of) is to be taken, and noting once again that Increased 

densities of forcible mappings work generally to 

regularize system behavior, the manager has the option 

of seeking to decrease the consensus level in the 

appropriate organizational control net.  To do so the 

manager might address those in charge of net elements: 

"Given your sources of control information as they are, 

try to arrange your procedures so that appropriate 
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action will be taken at the lowest possible amount of 

relevant information," or more briefly, "Be decisive, 

but not impetuous»"  Note that the latter formulation 

has a clear attitudinal, or dispositionai component. 

We return to this point below. 

That reducing consensus levels in a complex organi- 

zation should serve to keep its behavior below certain 

pathological extremes may be mildly paradoxical.  Some 

resolution of the paradox is provided by recalling that 

high levels of.(extended) threshold do not imply con- 

sistency of response, nor, in particular, do they imply 

complete lack of response, at sub-threshold input. 

Furthermore, the manager will want it understood that 

consensus levels should bear a truly appropriate relation 

to the task at hand.  They should not be set whimsically. 

What might the joint relationship between the three 

strategies say about organizational theory and management? 

First, It is worth reflecting on the fact that any given 

mapping necessarily has definite levels of internal homo- 

geneity, forcibility, and extended threshold.  If our 

interpretations and point of view are at all generally 

valid, the organizational theory implication can be drawn 

that any organizational unit with a fixed functional 

regime operates at definite levels of management by 

exception, by priority, and by consensus.  Since it is 

reasonable to think that these managerial styles may 
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have psychological Impact on the unites work force, 

the further implication is that organizational micro- 

climate and unit sociology may be influenced by the 

unit's  functional regime. 

If mappings (functional regimes) do affect worker 

psychology, this fact becomes a design consideration. 

It then becomes Important to ask how free the organiza- 

tion designer is to mutually vary the three strategies. 

It can be seen from Table 4 that the three strategies 

are correlated, but the correlation Is much less than 

perfect«.  Therefore It is possible to manipulate the 

density of forcible mappings, either directly by acting 

on values of management by priority, or indirectly by 

changing the intensity of either exception or consensus 

management, while at the same time allowing for some 

fine-tuning of, say, organizational climate, by 

modifying the intensity of the remaining strategy or 

strategies. 

An important datum for intervention design in our 

scheme is given by Kauffman [53.  He states that if 60^ 

of the maps in a large, complex, high k net are forcible 

on one or more inputs, then the net behaves essentially 

as does the kss2 net.  To illustrate the combined use of 

strategies, let us assume that k~4, and an intervention 

to decrease consensus has achieved 1=3  in the net.  If 

no information is available as to what the existing 

intensities of net I and P are, a reasonable estimate 

31 



of the density of forcible maps is that provided by the 

marginal distribution of P given £^33 in Table 4.  That 

is, the predicted density of forcible maps is 20%:  lower 

than the Kauffman criterion»  If a second intervention 

can raise the intensity of exception management to I>13, 

while not raising the consensus level, the manager is 

assured of at least 73$ forcible maps in the control 

net.* That is, for 1=2,  1=13 there are 73% of the maps 

forcible on at least one input, and for £=2, 1^,13 the 

densities increase. The organization is now controlled 

to the extent that useful behaviors are a practical 

possibility.  The manager is still free to act directly 

to increase management by priority, or perhaps cautiously 

to decrease its mean value, so as to modify the organi- 

zational climate or to accomplish other aims. 

The illustration above makes use of the fact that 

the three strategies are imperfectly correlated.  The 

joint correlation, however, Is fairly high, and this has 

Its own interesting implication for organizational 

psychology:  Whatever the distinct psychological impact 

*More correctly, he is assured of 73$ forcible maps 

in the population from which the net maps are assumed to 

be a simple random sample.  For large nets the popula- 

tion figure is a reasonable prediction as to what will 

prevail in a given net. 
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of each strategy stay be, the behaviorally reasonable 

complex organisation with arbitrary structure would 

appear to provide its control system workers only a 

limited subset of all possible psychological 

environments. 

What might be the psychological and sociological 

character of each strategy be? Me speculate that 

management by exception might impact largely on an 

obsession—-indifference dimension» management by 

priority might affect status structure and hence 

status-related behaviors, and management by consensus 

might be associated with behavior on a boldness-timidity 

or risk-taking continuum. 

Under these interpretations, the tractable high 

input span complex organization would appear in two 

basic forms«,  1) Its control nets could be specifically 

structured to provide tractable behavior.  Such organi- 

zations8 control units would be able to shot? a wide 

variety of psychological environments»  In this case we 

would expect net structure to be tightly controlled, 

that is, such organizations would show the presumably 

few easily maintained organizational forms that promote 

forcibility, or they would invest relatively heavily in 

the maintenance of a priori organizational forms.  0rs 

2) its control nets would not be specifically formed. 

Here* we would expect to see both more variety in form 

and less investment in structural form maintenance and 
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at the same time less variety in control units' 

psychological environments.  The environments expected 

in these circumstances would be such as to suit control 

unit personnel who are largely intermediate on the 

obsession-indifference scale in work habits, comfortable 

with a modest amount of status structure in the work 

environment * and who can be moderate risk takers. 

The decisively pathological complex organization 

in our scheme has high input span control nets, little 

capacity for organisational form maintenance, and shows 

control net units in which no work related status 

structures are found, or control unit personnel who are 

typically work-obsessive or low risk takers on the job. 

5«  System Theory and Ensemble Methods in Organizational 

Theory 

We now ask if the similarity in effect of our three 

strategies may be explained by some mechanism common to 

all three.  Such an explanation is easily found.  Referring 

to their definitions, it can be seen that each of the 

three strategies is scaled by reference to the extent of 

sameness it provides in functional output.  Useful 

systemic effects then, are achieved by appropriately 

blocking information flow.  Ashby has discussed the 

importance of such control in general, calling functions 

that achieve it "part-functions" [1, p. 66].  It is 

worth emphasizing that providing tractable, stable 

behavior by information blocking does not necessarily 

result in a moribund organization.  For the complex 
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organization controlled, by part-functions» the picture 

which emerges, to paraphrase Kauffman [4]s is that of a 

system rich In part-functionss with extensive blocked 

paths weaving through it,, leaving pockets of informa- 

tionally active elements functionally isolated from one 

another.  The part-functions and blocked paths would 

provide the basic tractability of the organization. 

Different organizational products or outcomes would 

correspond to different patterns of activity, either 

steady state or cyclic» of the isolated, active 

subsystems. 

One of our aims in this series of papers is to 

illustrate the puxschase that can be obtained using 

system theoretic ensemble methods to address the manage- 

ment of complexity.  The simple model proposed here for 

complex organization control systems is almost surely 

inadequate in many respects.  However» a significant 

question in any discipline is what are the properties 

necessary to explain what is observed.  Simple models 

provide an especially attractive testing ground for 

examining this question.  Our examination of these 

simple models illustrates the fact that structure and 

function do Interact»  That iss the effective control 

structure in an organization is a dynamic entity which 

varies over times and which can be modified by 

functional changes in control elements.  We have argued 
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that such functional change may be achieved In 

recognizably different ways, different, that Is, both as 

to how the manager might achieve the changes, and as to 

what psychological and sociological effects might be 

expected from their use.  We have argued that, in suit- 

able circumstances, details of organizational control 

structure might not be a crucial consideration for the 

organizational intervener or designer.  Finally, we have 

tried to show that simple models can provide rich 

real-world Interpretive and explanatory possibilities. 
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