
/ANAQ4S 186 STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE FIG 12/1
A SEPARATOR THEOREM FOR PLANAR GRAPHS .(U) . 1
OCT 77 R .J LIPTON. R C TAR.JAN N0001’e 76 C—0688

UNCLASSIFIED STAN—CS 77 621 NL

I~~~J
AD~Q45 7~~

_  

_a_ 
_

t.



— 
~~~~~~~~~ 

-

g
A SEPARATOR THEOREM FOR PLANAR GRA PHS

I
. .

by
I

Richard J. Lipton and Robert E. iarjan

STA N-CS-77-627
OCTOBER 1977

COMPU T ER S C I ENCE D E PART ME NT
School of Human it ies and Sciences

STANFORD UNIVERS ITY

D D C
(~~E1i~ P~flU J A M 19 1918 I
L~~~

]

8 1)

L.LJ - - çO~~ 
lLIN/0~

I__ I - ~~ % . -; -

~~~ 
~~ ~ DI~miBUT~--n ~~~

~~~~ Approved lox p~ :b1 t t u~~~.

~~~~~~~ 

_ _ _ _  —‘ __ I



Un~1assified 
-

SECURITY CLASSIF ICAT IO N OF THIS PAGE (IP~,en Dci. ~ nter.i)

~~~~~~~~~~~ I I I(~~ k I r L 1- I r ~~I D A r ~~~ 
READ INS TRUCTIONS

i~~LUU1~ I i,%.a e. umLI’I I M I  I U I ’ ~ U 
~~~~~~~~ BEFORE COMPLETING FORM

1.~ .R€9~ORT NUMU5R 2. GOVT ACCESSION NO. 3. REC I P IE $ T S  CATALOG HUMMER

STAN-CS-77-62~ü i-~

~~~‘~WLE (and Subt7lT~)  5. TYPE OF REPORT & PERIOD COVEREO

A SEPARA~~ R THEOR~~ FOR P~~NAR GRA PHS1 ) Technical, October i~~7
6. PERFORMING ORG. REPORT NUMBER

________________________________________________ STAN-CS-T -627
7. AUTHOR(s ) L- C O HT R A C T O R GRA NT NUMBER(.)
—

.—... —.
~
--.—“ .--—-- *—-- 

~
-- 

~~
. / ‘5__ 

.—-

Richard J. ~~ipton ~~~ Robert E./Tarjaj ~ ~~~~~i~-76-c-~688d -
~~~~~~

- - —
~~~~~~~~~~ 

3F-~~C~- 7~~—2~~~2~~9 . PERF ORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT . TASK
Stanford University AREA & WORK UN IT NUMBERS

Computer Science Department - 

~
-

• Stanford, Ca. 91i.305

II. CONTBQ.LI,ING OFfIcE. NAME AND AD DRESS _. 12 . REP T DATE
Ot l ice 01 l4avai Researcti 

~~
‘ 

~~
—— - —

~~~Department of the Navy JJ.. I C - ___..~~

13. N U M B ERO F  PAGES
Arlington, Va. 22217 31

14. MONITORIN G AGENCY NAME 6 AOD RESS(1I diiferm,t from Controlling Office) IS. SECURITY CLASS. (of thi. report)

ONR Representat ive: Philip Surra UnclassifiedDuran d Aeronautics Bldg., Rin. 1o5 
_________________________

Stanford University 15.. 
~~~~ k~~~~~~

ICA TION/ DOWNGPA DIHG

Stanford,_ Ca._9)4.305 ____________________________
1 5. DISTRIBUT ION STATEMENT (of this Report)

/ ~ Releasable without limitations on dissemination .

*
17. D ISTRIBUTION STATEMENT (of .b~’i~~ct e~ te,ed in Block 20. Ii diliereni from Report)

18. SUPPLEMENTARY NOTES

C

19. KEY WORDS (Continue on rover,. elde ii neceesary end identity by block number)

algorithm, divide-and-conquer, nested dissection, planar graph, separator

~0. A B S T R A CT (~ 
otinu. on ‘.V.r,. aide Ii necessary and Identify by blocic numb.,)

Let 0 be arty n-vertex planar graph . .4?8~~ rove that. the vertic’e, of 0 can t~part i t ioned into three sets A , i— , C such that, nu edge Joins a vertex in A w i t h  a
vertex in B , neither A nor B contains more than 2n/~ v e rt i ~~~~, and C
nogit~ ius no more than 2t/ ~ fi~ ‘.crtices. ~ii -etti?~b9t an algorithm whi ch  finds surh a
parti tion A , B, C in 0(n) time. .‘ - J

~~~~~~~~~~~ 
N . 

ç ,.

DD ~~~ 1473 EDITION OF I NOV 65 IS OBSOLETE Unclass ified j~ ‘/ ~~

- 

~~~~ ~~

‘

SECURITY CLASSIFICATION OF THIS PAGE (B7~en Oct. Rnt..,L ~if~,—______ .. - .- .. ,. -- .—. ~4.
—- .., 

~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~-.-— -.-~---



D D C
f~~~L~Enn P2fl
f ~~ JAN 19 1978 f I

A Separator Theorem for Planar Graphs 

~~~~~~~D

*1 **/Richard J. Lipton—’ Robert Endre Tarjan —’
Computer Science Department Computer Science Dep~rtment
Yale University Stanford University
New Haven, Connecticut 06520 Stanford, California 91~3O5

Augu.st, 1977

Abstract.

Let G be any n-vertex planar graph. We prove that the vertices

of G can be partitioned into three sets A, B , C such that no edge

joins a vertex in A with a vertex in B , neither A nor B contains

more than 2n/3 vertices, and C contains no more than ~~~~~ vertices.

We exhibit an a.lgoritbni which finds such a partition A , B, C in 0(n)

time.
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1. Introduction.

A useful method for solving many kinds of ccsnbinatorial problems is

“divide-and-conquer” [11 . In this method the problem of interest is

divided into two or more smaller problems. The subl roblelns are solved

by applying the method recursively, and the subproblem solutions are

combined to give the solution to the original problem. Three things are

necessary for the success and efficiency of divide-and-conquer :

(i) the subproblems must be of the same type as the original and

independent of each other (in a suitable sense); (ii) the cost of

solving the original problem given the solutions to the subproblems must

be small ; and (iii) the subproblems must be significantly smaller than

the original. One way to guarantee that the subprob lems are small is to

make them all roughly the same size [1] .

We wish to study general conditit.ns wider which the divide-and-conquer

• approach is useful . Consider problems ‘which are defined on graphs. Let

*1
S be a class of graphs-’ closed under the subgraph relation (i.e., if

€ S and G2 is a subgraph of G1 , then G2 € S ). Au f(n) -separator

theorem for S is a theorem of the following form :

There exist constants a < 1 , ~ > 0 such that if G is any

n-vertex graph in S , the vertices of G can be partitioned

into three sets A , B , C such that no edge joins a vertex in A

with a vertex in B , neither A nor B contains more than c~

vertices, and C contains no more than ~f(n)  vertices.

If such a theorem holds for the class of graphs S , and if the appropriat e

vert ex partitions A , B , C can be found fast, then a number of problems

defined on graphs in S can be solved efficiently using divide-and-conquer.

For a given graph G in S , the sets A and B define the subproblems.

The cost of combining the subproblem solutions is a function of the size

of C (and thus of f(n) ).
• U The appendix contains the graph-theoretic definitions used in this paper.
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Previously known separator theorems include the following:

• (A) Any n-vertex binary tree can be separated into two subtrees, each with

no more than 2n/3 vertices, by removing a single edge. For an

application of thi s theorem, see [13).

(B) Any n-vertex tree can be divided into two parts, each with no more

than 2n/3 vertices, by removing a single vertex.

( C )  A grid graph is any subgraph of the infinite two-dimensional square grid

tilustrated in Figure 1. A ~J -separator theorem holds for the class

of grid graphs. For an application, see [5].

(D) A one-tape Turing machine graph [16] is a graph representing the

computation of a one-tape Turing machine. A -separator theorem

holds for such graphs. For an application, see [15].

[F~.gure 1]

One might conjecture that the class of all suitably sparse graphs has

an f (n )  -separator theorem for some f (n)  = 0(n) . However, the following

result of Erdös, Graham, and Szemer4di [1~1 shows that this is not the case.

Theorem C. For every c > 0 there is a positive constant c = e(E) such

that almost aU~~ graphs G with n = (2+€)k vertices and ck edges

have the property that after the omission of any k vertices, a connected

component of at least k vertices remains.

* By “almost all” we mean that the fraction of graphs possessing the
property tends with increasing n to one.

~~~~~~~~~-~~• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -~~~~~~~~~~~~~~~~~ J
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Although sparsity by itself is not enough to give a useful separator

theorem, planarity is. In Sect!.on 2 of this paper we prove that a

-separator theorem holds for all planar graphs. In Section 3 we provide 
*

a linear-time algorithm for finding a vertex partition satisfying the

theorem. This algorithm and the divide-and-conquer approach combine to

give efficient algorithms for a wide range of problems on planar graphs. - •

Section 1~ mentions some of these applications, which we shall discuss more

fully in a subsequent paper.

-
~~~~

- --
~~~~~~, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2. Separator Theorems.

To prove our results we need to use three facts about planarity.

Theorem 1 (Jordan Curve Theorem [6]). Let C be any closed curve in

the plane. Removal of C divides the plane into exactly two connected

• regions, the “inside” and the “outside” of C

Theorem 2 [7]. Any n-vertex planar graph with n > 3 contains no more

than 3n-6 edges.

Theorem ~ (Kuratovski’s Theorem [12]). A graph is planar if and only if

it contains neither a complete graph on five vertices (Figure 2(a)) nor

a complete bipartite graph on two sets of three vertices (Figure 2(b) )

as a generalized subgraph.

[Figure 2]

• From Kuratowski’ s Theorem we can easily obtain the following leimna

and its corollary .

- - 

Le=a. 1. Let G be any planar graph . Shrinking any edge of G to a

single vertex preserves planarity.

Proof. Let G* be the shrunken graph, let (x1,x2) be the edge shrunk,

and let x be the vertex corresponding to x1 and x2 in G* . If G*

is not planar then G* contains a Kuratowski graph as a generalized

subgraph. But this subgraph corresponds to a Kuratowski graph which is

a generalized subgraph of G . Figure 3 illustrates the possibilities. D

[Figure3]

5 



Corollary 1. Let G be any planar graph. Shrinking any connected

subgraph of G to a single vertex preserves planarity.

Proof. Immediate from Len~ a 1 by induction on the number of vertices

in the subgraph to be shrunk. 0

In some applications it is useful to have a result more general than

the kind of separator theorem described in the introduction. We shall

therefore consider planar graphs which have non-negative costs on the

vertices. We shall prove that any such graph can be separated into two

jarts, each with cost no more than two-thirds of the total cost, by

removing o(~j~ ) vertices. The desired separator theorem is the special

case of equal-cost vertices.

Lenma 2. Let G be any planar graph with non-negative vertex costs

~mmiing to no more than one. Suppose G has a spanning tree of radius r .

Then the vertices of G can be partitioned into three sets A , B, C ,

such that no edge joins a vertex in A with a vertex in B , neither A

nor B has total cost exceeding 2/3 , and C contains no more than

2r4-l vertices, one the root of the tree.

Iroof. Assume no vertex has cost exceeding i/s ; otherwise the lennna is
true . E~nbed G in the plane. Make each face a triangle by adding a

suitable number of’ additional edges. Any non-tree edge (including each

of the added edges) forms a simple cycle with some of the tree edges. This

cycle is of length at most 2r+l if it contains the root of the tree, at

m~~~t 2r- 1 oth erwise. The cycle divide s the plane (and the graph) into •

two parts, the inside and the outside of the cycle. We claim that at

l~a..t one such cycle separates the graph so that neither the inside 

nor~



the outside contains vertices whose total cost exceeds 2/3 . Thiz

proves the lemma.

Proof of claim. Let (x, z) be the non-tree edge whose cycle minimizes

the maximum cost either inside or outside the cycle. Break ties by

choosing the non-tree edge whose cycle has the smallest number of faces

on the same side as the maximum cost. If ties remain, choose arbitrarily.

Suppose without loss of generality that the graph is embedded so

that the cost inside the (x,z) cycle is at least as great as the cost

outside the cycle. If the vertices inside the cycle have total cost not

exceeding 2/3 , the claim is true. Suppose the vertices inside the cycle

have total cost exceeding 2/3 . We show by case analysis that this

contradicts the choice of (x,z) . Consider the face which has (x,z~

as a boundary edge and lies inside the cycle. This face is a triangle;

let y be its third vertex. The properties of (x,y) and (y,z)

determine which of the following cases applies. Figure ]~ illustrates the

cases.

[Figure 1
~]

(1) Both (x ,y)  and (y, z) lie on the cycle. Then the face (x,y, z)

is the cycle, which is impossible since vertices lie inside the

cycle.

(2) )ne f (x,y) and (y, z) (say (x ,y )  ) lies on the cycle. Then

(y, z) is a non-tree edge defining a cycle which contains within it

the same vertices as the original cycle but one less face. This

contradicts the choice of (x , z )  .

7
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Neither (x,y) nor (y,z) lies on the cycle.

(a) Both (x,y) and (y,z) are tree edges. This is impossible

since the tree itself contains no cycles.

(b) One of (x,y) and. (y,z) (say (x,y) ) is a tree edge. Then

(y, z) is a non-tree edge defining a cycle which contains one

less vertex (namely y ) within it than the original cycle .

The inside of the (y, z) cycle contains no more cost and one

less face than the inside of the (x, z) cycle . Thus if the

cost inside the (y,z) cycle is greater than the cost outside

the cycle, (y, z) would have been chosen in place of (x , ::) .

On the other hand, suppose the cost inside the (y,z~

cycle is no greater than the cost outside. The cost outside

the (y,z) cycle is equal to the cost outside the (x,z~)

cycle plus the cost of y . Since both the cost outside the

(x, z) cycle and the cost of y are less than 1/3 , the cost

outside the (y, z) cycle is less than 2/5 , and (y,z) would

H have been chosen in place of (x , z)

(c) Neither (x,y)  nor (y, z) is a tree edge. Then each of (x ,~y

and (y, z) defines a cycle, and every vertex inside the (x,z)

cycle is either inside the (x,y) cycle, inside the (y, ::)

cycle, or on the boundary of both . Of the (x,y)  and (y,z)

cycles, choose the one (say (x,y) ) which has inside it more

total cost. The (x,y) cycle has no more cost and strictly

fewer faces inside it than the (x, z) cycle . Thus if the cost • -
•

inside the (x,y) cycle is greater than the cost outside, ‘

(x,y) would have been chosen in place of (x , z) .

~~~~ 

.

~~~~~~~ ~~~~ •
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On the other hand, suppose the cost inside the (x,~ - )

cycle is no greater than the cost outside. Since the inside

of the (x,z) cycle has cost exceeding 2/3 , the (x,y)

cycle and its inside together have cost exceeding 1/3 , and

the outside of the (x,y) cycle has cost less than 2/3

Thus (x,y) would have been chosen in place of (x,z)

Thus all cases are impossible, and the (x, z) cycle satisfies the claim.

Le~~a 3. Let G be any n-vertex connected planar graph having non-negative

vertex cost s suilEning to no more than one. Suppose that the vertices of

~~~~ partitioned into levels according to their distance from zon e

v~rtc:-: v , and that L ( f )  denotes the number of vertices on level f

If r is the maximum distance of any vertex from v , let r+1 be an

addition al level containing no vertices. Given any two levels I , and

such that- levels 0 through £~ -l have total cost not exceeding 2/3 and

lev~l: £ 2+1 through r+-1 have total cost not exceeding 2/3 , it is

~ossible to find a partition A , B , C of the vertices of G such that

no edge joins a vertex in A with a vertex in B , neither A nor B

has total cost exceeding 2/3 , and C contains no more than

L(~1)+ L(22)+max[O , 2(t2-11-lfl vertices.

r~-~ f .  if 
~ ~2 ~ 

let A be all vertices on levels 0 through £~-l ‘

B all vertices on levels L
~
+1 through r , and C all vertices on

level ‘1 Then the lemma is true. Thus suppose £~ < £ 2 . Delete the

• vertices in levels and £2 from G . This separates the remaining

vertices of G into three part s (nil of which may be empty): vertices

on levels 0 through £i
_l 

, vertices on levels 1.1 *1 through £~ -1

9
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and vcrt i~~L s on levels 12+1 and above . The only part which can i ave

cost exceeding 2/3 is the middle part .

If the middle part does not have cost exceeding 2/3 , let A be the

most costly Ilart of the three, let B be the remaining two j arts, and let

C be the set of vertices on levels L
~ 

and 
~2 • Then the lemma is

t rue.

Sui pose the middle part has cost exceeding 2/3 . Delete all vertices

on levels £2 and. above and. shrink all vertices on levels Li and below

to a single vertex of cost zero. These operations preserve planarity by

Corollary 1. The new graph has a spanning tree of radius L 2~~tl~
l whose

root corre: O~s15 to vertices on levels L
~ 

and below in the original

grath.

Ai~ 1,- Losmia 2 to the new graph. Let A~~, B* , C ~ be the resulting

vertex s~1t;~~n. Let A be the set among A* and B* having greater

cost , let C consist of the vertices on levels and 12 111 the original

graph i-lus the vertices in C~ minus the root of the tree, and let B

contain the remaining vertices in G . By Lemma 2, A has total cost

not exceeding 2/3 . But A U C *  has total cost at least 1/3 , so B

also h:~s total cost not exceeding 2/3 . ~ irthermore C contains no

more than L ( 2 1) + L( 12 ) + 2 ( 12-11-l) vertices. Thus the lemma is true. ~

Theorem -i~~ Let G be any n-vertex planar graph having non-negative

vertex c~ stz suzr~ning to no more than one. Then the vertices of G can

be Tart iUone 1 into three sets A , B , C such that no edge joins a vertex

in A with a vertex in B , neither A nor B has total cost exceeding

2/3 , and C contains no more than 2 -~L~~~ vertices.

10
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Proof. Assume G is connected. Partition the vertices into levels

according to their distance frcsn sc~ne vertex v . Let L ( L)  be the

number of vertices on level 2 . It r is the maximum distance of any

vertex from v , define additional levels -1 and r-1-l containing no

vertices.

Let L~ be the level such that the sum of costs in levels 0 through

Li
_ i is less than 1/2 , but the sum of costs in levels 0 through

is at least 1/2 . (If no such L~ exists, the total cost of all vertices

is less than 1/2 , and B = C = 0 satisfies the theorem. ) Let k be

the number of vertices on levels 0 through L~ . Find a level such

that < L
~ 

and. IL(20) t  + 2( 11
_ L

a ) < 2~/~ . Find a level 1
2 

such

that 21+1 < 22 and I L ( 2 2 ) I + 2 ( 22-21-l) < ~~~~~~ • If two such levels

exist, then by Lemma 3 the vertices of G can be partitioned into three

sets A , B , C such that no edge joins a vertex in A with a vertex in B

neither A nor C has cost exceeding 2/5 , and C contains no more than

2(~f~ + ~J~~) vertices. But 2(~& + ~Jn-k) < 2(’~/~7~~+ ~7~) = 212~J

Thus the theorem holds if suit able levels L o and 22 exist .

Suppose a suitable level 1~ 
does not exist . Then, for I <

L(i )  > 2 ’~jk 
_ 2(Li

_i) • Since L( O) = 1 , thi s means 1 > 2 ’f~ _ 2 2
i ‘

and i~~
+ l/2 > . Thus L

~ 
= L’1~ 

1/2] > L~~J , and

k = E L(i )  > 2~~~~- 2 ( L 1-i) > ~~~~~~~~~~~~~~~~~~~~~~~~~ >

i= 0

‘
~~~~~ (L!~j+1) ~‘ k . This is a contradiction . A similar contradiction

• . arises if a suitable level 
~2 does not exist . This completes the

proof for connected graphs.

11
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I’~ow suppose G is not connected. Let G1,G2,...,
G,~ 1-e the connected

components of G , with vertex sets ~~~~~~~~~~~ , respectively. If no

connected component has total vertex cost exceeding 1/3 , let ± be the

minimum index such that the total cost of V1UV2U...UV~ exceeds 1/3

Let A = V1 UV2 U . . .  U V~ , let B = V~~1U V~~2 U... UVk , and. Let C =

Since i is miriimtun and the cost of V1 
does not exceed 1/3 , the cost

of A does not exceed 2/5 • Thus the theorem is true.

If some connected component (say G~ ) has total vert ex cost between

1/3 and 2/3 , let A = , B = V1 U . .. U V .1 U V~÷1 U . •.  U V~ , and

C = . Then the theorem is true.

Finally, if some connected component (say G1 ) has total vertex

cost exceeding 2/3 , apply the above argument to • Let A*, B*, C~

be the resulting partition. Let A be the set among A* arid B* with

greater cost , let C = C~ , and let B be the remaining vertices of G .

Then A and B have cost not exceeding 2/3 and the theorem is true.

This proves the theorem for all planar graphs. In all cases the

separator C is either empty or contained in only one connected component

of G. 0

Corollary 2 (.s/ ~~ -Separator Theorem). Let G be any n-vertex planar

graph. The vertices of G can be partitioned into three sets A , B, C

such that no edge joins a vertex in A with a vertex in B , neither

A nor B contains more than 2n/3 vertices, and C contains no more

than 2~J~~/~ vertices.

Proof. Assign to each vertex of G a cost of 1/n . The corollary

follows from Theorem ~ • D

12 
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It is natural to ask whether the constant factor of 2/3 in

Theorem 1 can be reduced to 1/2 if the constant factor of 2~J~~ is

allowed to increase. The answer is yes.

Corollary 3. Let G be any n-vertex planar graph having non-negative

vertex costs swnming to no more than one. Then the vertices of G can

be partitioned into three sets A , B , C such that no edge joins a vertex in

A with a vertex in B , neither A nor B has total, cost exceeding 1/2

2~j~~ T
and C contains no more than vertices.

1-
~~~~~ 7~~

Proof. Let G = (V,E) be an n-vertex planar graph. We shall define

sequences of sets (A,1) , (Bk) , (c1) , (D1) such that

(1) A1 , B1 , C~, , D1 partition V

( ii)  No edge joins A1 with B1 , A1 with D1 , or B
~ 

with D1

(iii) The cost of A1 is no greater than the cost of B1 and the cost

of B. is no greater than the cost of A. U C .  U D .
1 1 1 :i.

(iv) IDII < 2tD~ ~~~
I/

~~~

Let A0 = B0 = C0 = , D0 = V . Then (i)-(iv ) hold. If A11 ,

B1_ 1 , C~, _ 1 ~ D1_1 have been defined and D11 ~~ 0 , let G* be the

• subgraph of G induced by the vertex set D1,,1 . Let A* , B* , C~ be

a vertex partition satisfying Corollary 2 on G* • Without loss of

generality, suppose A* has no more cost than B~ • Let A1 be the set

among A
i1 UA* , B1,,1 with less cost, let B1 be the set among

Ai_ 1 UA * , B1~~ 
with greater cost , let C1 = C. 

1
1J C* , and let D1 B*

Then (1), ( i i ) ,  ( i i i),  and (iv) hold for A1 , B1 , C1 ,

Let k be the largest index for which A~ , B~ , Ck , Dk are defined.

Then Dk = Ø .  Let A = A . ~~, B = B k , C = C k . By (1), A , B , C

13
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partition V . By (ii), no edge joins a vertex In A with a vertex in B

By (iii), neither A nor B has cost exceeding 1/2 . By (iv), the total

number of vertices in C is bounded by E 2’~j~~~
f ’  (2/3)

1/2 
= 

2’I~~J
i = 0  l-~~~/3

Another natural question is whether graphs which are “ almost” planar

have a -separator theorem. The finite element method of numerical

analysis gives rise to one interesting class of almost-planar graphs.

• We shall extend Theorem ~ to apply to such graphs.

A finite element graph is any graph formed from a planar embedding

of a planar graph by adding all possible diagonals to each face. (The

• finite element graph has a clique corresponding to each face of the

embedded planar graph. ) The embedded planar graph is called the skeleton
)

of the finite element graph and each of its faces is an element of the

finite element graph.

Theorem 5. Let G be an n-vertex finite element graph with non-negative

vertex costs sununing to no more than one. Suppose no element of G has

more that-i K boundary vertices. Then the vertices of G can be

partitioned into three sets A, B, C such that no edge joins a vertex

in A with a vertex in B , neither A nor B has total cost exceeding

2/3 , and C contains no more than ll- Lk/2J ~~~~~~ 
vertices.

Proof. Let G* be the skeleton of G . Form Q** from G* by inserting

one new vertex into each face of G* containing four or more vertices

and connecting the new vertex to each vertex on the boundary of the face.

Then G** Is planar. Apply Theorem ~ to Q** . Let A** , B**, C~~ be

the resulting vertex partition. This partition satisfies the theorem

except that certain edges in G but not in G** may join A** and B~~

~



These edges are diagonals of certain faces of G* ; call these bad faces.

Each bad face must contain one of the new vertices added to G* to form

G** , and this vertex must be in C**

Form G from C~~ by deleting all new vertices and adding to G** ,

for each bad face, either the set of vertices in A** on the boundary of

the bad face, or the set of vertices In B** on the boundary of the bad

face, whichever is smaller . Let A be the remaining old vertices in A**

and let B** be the remaining old vertices in B** . Then no edge in G

joins A and B , neither A nor B contains more than 2n/3 vertices,

and C contains no more than 2 J ~
’ 

L k/2 J AJ ’ vertices, where a is

the number of faces of G* containing four or more vertices, Using

Euler ’ s theorem, it is not hard to show that the number of faces of G*

containing four or more vertices is at most n-2 . Thus ~~ ~ Lk/ 2J ‘/~~

and the theorem is true . 0

Corollary ~~. Let G be any n-vertex finite element graph. Suppose no

• element of G has more than k boundary vertices. The vertices of G

can be partitioned into three sets A , B , C such that no edge joins a

• vertex in A with a vertex in B , neither A nor B contains more

than 2n/3 vertices, and C contains no more than lf tk/ 2J j~ vertices.

The last result of this section shows that Theorem 1~ and its

corollaries are tight to within a constant factor; that is, if

f(n) = o( ’s J~~) , no f(n) -separator theorem holds for planar graphs.

15



Theorem 6. For any k , let G = (v,E) be a k x k square grid graph

(a k x k  square section of the infinite grid gra~~ in Figure 1). Let

A be any subset of V such that ~~i < (A ~ < n/2 , where n =

and a is a positive constant less than 1/2 . Then the number of

vertices in V-A adjacent to some vertex in A is at least

k’tnin[l/2 ,

Proof. Without loss of generality, suppose that the number r of rows

of G which contain vertices in A is no less than the number c of

columns of G which contain vertices in A • Then an < I A I  < rc < r2

and r > ~ J~
’
k .

If r* is the number of rows of G which contain only vertices

lfl A , then 1e~* < I AI < n/2 , and r* ç k/2 If r* = 0 , then

J A )  > r > .J~.’k • If r* ~ 0 , then r = K and IA) > r_r* = k_r*

> k/2 . 0

it is an open problem to determine the smallest constant factor

which can replace 2’J~.’ in Theorem it .
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T
3. An Algorithm for Finding a Good Partition.

The proof of Theorem 14 leads to an algorithm for finaing a vertex

partition satisfying the theorem. To make this algorithm efficient, we

need a good representation of a planar embedding of a graph. For thts

purpose we use a list structure whose element s correspond to the edges

of the graph. Stored with each edge are its endpoints and four pointers,

designating the edges isriediately clockwise and counter-clockwise around

each of the endpoints of the edge. Stored with each vertex is some

incident edge. Figure 5 gives an example of such a data structure.

~Figur e 5]

Partitioning Algorithm.

Step 1: Find a planar embedding of G and construct a representation

for it of the kind described above.

Time : 0(n) , using the algorithm of [10).

Step 2: Find the connected component s of G and determine the cost of

each one. If none has cost exceeding 2/3 , construct the

partition as described in the proof of Theorem it . If some

component has cost exceeding 2/3 , go to Step 3.

Time : 0(n) [9] .

Step 3: Find, a breadth-first spanning tree of the most costly component.

Compute the level of each vertex and the number of vertices

L(1) in each level I

Time : 0(n)

17
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:t~
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~_

i
~ : Find the level I~, such that the total cost of levels

p 
through Il

_i does not exceed 1/2 , but the total cost

of levels 0 through 1~ does exceed 1/2 . Let k be

the number of vertices in levels 0 through Il

Time: 0(n)

Step 5: Find the highest level such that L(!0)+2(11-f~ ) ~

2~JT~ . Find the lowest level 
~2 

> 1~+1 such that

L ( f 2 ) + 2 ( 1 2-11-l)  •( 2~J ~~~~

TIme: 0(n)

Step u: Delete all vertices on level 12 and above . Construct a new

vertex x to represent all vertices on levels 0 through £~

Construct a Boolean table with one entry per vertex. Initialize

to true the entry for each vertex on levels 0 through £ and
____ 0

initialize to false the entry for each vertex on levels £ +1(-)

through 12
_i . The vertices on levels 0 through 1

~

correspond to a subtree of the breadth-first spanning tree

generated in Step 3. Scan the edges incident to this tree

clockwise around the tree. When scanning an edge (v,w) with

v in the tree, check the table entry for w • If it is true,

delete edge (v,w) . If it is false, change it to true,

construct an edge (x,w) , and delete edge (v,w) . The result

of thi s step is a planar representation of the shrunken graph

t(~ which Lemma 2 is to be applied. See Figure 6.

Time: 0(n) .

[Figure 6]

18
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Step 7: Construct a breadth-first spanning tree rooted at x in the

new graph. (This can be done by modifying the breadth-first

spanning tree constructed in Step 3.) Record, for each vertex

v , the parent of v in the tree, and the total cost of all

descendant s of v including v itself. Make all faces of the

new graph into triangles by scanning the boundary of each face

and adding (non-tree) edges as necessary.

Time : 0(n)

Step 8: Choose any non-tree edge (v1,w1) . Locate the corresponding

cycle by following parent pointers from v1 and w1 . Compute

the cost on each side of this cycle by scanning the tree edges

incident on either side of the cycle and swm~ing their associated.

costs. If (v,w) is a tree edge with v on the cycle and w

not on the cycle, the cost associated with (v,w) is the

descendant cost of w if v is the parent of w , and the

cost of all vertices minus the descendant cost of v if w is

the parent of v . Determine which side of the cycle has greater

cost and cal]. it the “inside” . See Figure 7.

Time : 0(n)

(Figure 71

Step 9: Let (v1,w1) 
be the non-tree edge whose cycle is the current

candidate to complete the separator. If the cost inside the

cycle exceeds 2/3 , find a better cycle by the following method.

Locate the triangle (v.,y, w1) which has (v1,w1) as a

boundary edge and lies inside the (v1, w1) cycle . If either

(v1,y) or (y, w1) is a tree edge, let (vj~1,Wj÷1) be the

non-tree edge among (v1,y) and, (y, w1) . Compute the cost

19

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~



in~~ d.e the (v.÷1,w.~~1) cycle from the cost inside t~~t ’ -  (v~,w1
)

cycle and the cost of v~, , y , and w. • See Figure L.

If neither (v.,y) nor (y,w.) is a tree edge, determine

the tree path from y to the (v1,w1) cycle by following parent

pointers from y . Let z be the vertex on the (v1,w1) cycle

reached during this search. Compute the total cost of all

vertices except z on this tree path. Scan the tree edges

inside the (y,w1) cycle, alternately scanning an edge in one

cycle and an edge in the other cycle. Stop scanning when all

edges inside one of the cycles have been scanned. Compute the

cost Inside this cycle by summing the associated cost s of all

scat-med edges. Use this cost, the cost inside the (v1,w1)

cycle, arid the cost on the tree path from y to z to compute

the cost inside the other cycle. Let (v
~+i,

w
~÷i
) be the edge

among (v.,y) and (y,w
~
) whose cycle has more cost inside it.

Repeat Step 9 until finding a cycle whose inside has cost

not exceeding 2/3

Time: 0(n) (see proof below).

Step 10: Use the cycle found in Step 9 and the levels found in Step 14

to construct a satisfactory vertex partition as described in

the proof of Lemma 3. Extend this partition from the connected

component chosen in Step 2 to the entire graph as described In

the proof of Theorem it.

Time: 0(n)

This cc~npletes our presentation of the algorithm. All steps except

3tep 9 obviously run in 0(n) time. We urge readers to fill in the

details of this algorithm; we content ourselves here with proving that

~tc1~ 9 requires 0(n ) time .

20
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proof of Step 9 Time Bound. Each iteration of Step 9 deletes at least

one face from the inside of the current cycle. Thus Step 9 terminates

• after 0(n) iterations. The total running time of one iteration of

Step 9 is 0(1) plus time proportional to the length of the tree path

from y to z plus time proportional to the number of edges scanned

inside the (v1,y) and (y,w.) cycles. Each vertex on the tree path

from y to z (except z ) is inside the current cycle but on the

boundary or outside of all subsequent cycles. For every two edges

scanned during an iteration of Step 9, at least one edge is inside the

current cycle but outside all subsequent cycles. It follows that the

total time spent traversing tree paths and scanning edges, during all

Iterations of Step 9, is 0(n) . Thus the total time spent in Step 9

1: 0(n) .

By making minor modifications to this algorithm, one can construct

an 0(n) -time algorithm to find a vertex partition satisfying Theorem 5,

and 0(n) -time algorithms to find vertex partitions satisfying

Corollary 2 and Corollary ii-.
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~; , Applications.

The separator theorem proved in Section 2 allows us to obtain many

new complexity result s since it opens the way for efficient application

of divide-and-conquer on planar graphs. We mention a few such applications

here; we shall present the details in a subsequent paper.

Generalized nested dissection. Any system of linear equations whose

sparsity structure corresponds to a planar or finite element graph can

be solved in 0(n3~
’2
) time and 0(n log n) space. Thi s result

generalizes the nested dissection method of George [5] .

Pebbling. Any n-vertex planar acyclic directed graph with maximum

in-degree k can be pebbled using o(~/ + k log n) pebbles. See

(8,16] for a description of the pebble game.

The Fast Office Problem. Knuth’ s “post office” problem [11] can be —

solved in 0((log n) 2 ) time and 0(n) space. See [3, 17] for previous

results. ‘

Data Structure E~nbedding Problems. Any planar data structure can be

efficiently embedded into a balanced binary tree . See [2,114] for a

description of the problem and some related results.

Lower Bounds on Boolean Circuits. Any planar circuit for computing

Boolean convolution contain s at least en
2 

gates for some positive

constant c
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Appendix: Graph-Theoretic Definitions

A graph G = (v,E) consists of a set V of vertices and a set E

of edges. Each edge is an unordered pair (v,w) of distinct vertices.

If (v,w) is an edge, v and w are adjacent arid (v,w) is incident

to bot h v and w . A ~~~~ of length k with endpoints v , w is a

sequence of vertices v = v0, v1, v2, . . v~ = w such that (v
~~1, 

v1) is

an edge for 1 < i < k . If all the vertices VO, Vl,...,Vk l  are distinct,

the path is simple. If v = w , the path is a cycle. The distance from

v to w is the length of the shortest path from V to w . (The

distance is in finite if V and w are not joined by a path.) The

level of a vertex v in a graph G with respect to a fixed root r is

the distance from r to v .

If G1 = (V1,E2) and G2 = (V2, E2 ) are graphs, G1 is a subgraph

of G~ if V
1 c V2 and E1 C E

2 
. G1 is a generalized subgraph of G2

± t  V1 c V
2 

and there is a mapping f from E
1 

into the set of paths of

such that, for each edge (v,w) c E1 , f ( (v ,w))  has endpoints v and

v , and no two paths f((v1,w1)) and f((v2,v2)) share a vertex except

possibly an endpoint of both paths. If G = (v1,E1) is a graph and

V1 
C V2 , the graph G1 = (v1, E1) where E

1 = E2 fl [(v, w) v, w € v1) is

the subgraph of G2 induced by the vertex set V1 . If G1 = (V1,E1) 
is

a subgraph of G2 = (v2, E2 ) , then shrinking G1 to a single vertex in G2

means forming a new graph G~ from G2 by deleting from G2 all vertices

in V1 and all their incident edges, adding a new vertex x to G
2 , 

and

adding a new edge (x,w) to G2 for each edge (v,w) c E2 such that

v c V 1 and w~~V1.

23 



A graph is connected if any two vertices in it are joined by a path .

The connected components of a graph are its maximal connected subgraphs.

A clique is a graph such that any two vertices are joined by an edge.

A tree is a connected graph containing no cycles. We shall generally

asztrne that a tree has a disting~iished vertex, called a root. If T is

a L re~ with r o t  r and v is on the (unique ) simple path from r t~) W ~

v is an ancestor of w and w is a descendant of v . If in addition

(v ,w) is an edge of T , then v is the~~~~~ nt of w and w i~~ a c hiL:t

of v . The radius of a tree is the maximum distance of any vertex fr3in

the root . A sparuiling tree T of a graph G is a subgraph of G which

is a tree and wflich con tain s all t~e vertices of G . T is a breadth-first

s a nJ~~~ tree with respect to a root r if , for any vertex v , the

distance from r to v in T is equal to the distance from r to

v in G .

A graph G = ( v, E) is ~~~~ ar if there is a one-to-one m ap

from v into points in the plane and a map f2 from E into simple

curves in the plane such that, for each edge (v,w) € E , f2 ((v ,w ) )

has endpoints f1(v) 
and f2(w) , and no two curves f2((v1,

w1)) ,

f
2((v2,w2)) share a point except possibly a common endpoint. S t h  a

pair of maps f1 , f2 is a planar embedding of G • The connected

planar regions formed when the ranges of f1 and f2 are del~ted rr3ta

t~e plane are called the faces of the embedding. Each face is bounded

by a curve corresponding to a cycle of G , called the boundary of the

race. We shall sometimes not distinguish between a face and its

boundary. A diagonal of a face is an edge (v, w) such that v and w

are nan-adjacent vertices on the boundary of the face.
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Figure 1. Infinite two-dimensional square grid.

(a) (b)

Figure 2. Kuratowski subgraphs.

(a) Ic5 . (b) 1(3,3 .
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x1 x2 x1 x2 x1 x~

(a) or _____  or _____  ____

H 
~~~~~ 

_ _ _

(b) or - _________

I

Figure 3. Shrinking an edge to form a Kuratowski graph .
Original graph must contain a Kuratowski graph

as a generalized subgraph.
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or 
-

Figure i. Cases for proof of Lemma 2. Solid edges are tree

edges; dotted edges are non-tree edges.
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A2

Vertex incidences Edges and neighbors

c1 cc1 C
2 

cc2

1 ( el I ‘ 2 e
3 1 e2 e14 e5J

‘1 2 J e 1]  
e2 1 1 1 3 1 e 1 1 e 3 J e 6 1 e 4 ]

3 J e 2 J  e
3 J l J 1 4 j e 2 1 e l 1 e , I e ~j

~ [ e3 J e14 2 ~ e
5 

e1 e2 e6 I
e5 L2 I 4 J  

el l e 2 I e 6 l e l]

e6 3 14 e4 J e2 e1 e~

Figure 5. Representation of’ an embedded planar graph.

(c = clockwise, cc = counter-clockwise.)
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(a)~~~~~~~~~~~~~~~~~~ ,~~~ ’

(b) (1,14) ,)~~ 
(2,6) 

~~~~~~~~~~ 
(3,5) ,~~~

Figure 6. Shrinking a subtree of a planar graph.

(a) Original graph. Subtree denoted by ~~~~~~~~~~

(b) Edges scanned around subtree. Those forming loops

and multiple edges in shrunken graph are crossed out.

(c) Shrunken graph. Vertex 0 replaces subtree .
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4

root

Figure 7. Cycle constructed in Step 8. All vertices have cost .02

Numbers on vertices are descendant costs. The total cost

inside the cycle is .148 , out side the cycle is .314 , and

on the cycle is .18 ~
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