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%

g Most researchers have used finite differences with nonlinear scaling to solve

g_ 4 the problem of high current injection into bipolar devices. This report records

& an attempt to solve the same problems with another technique and resolve the

g problems with fewer restrictions than have been used previously.

§ Chris Ashley, Roe J. Maier and A. Brent White of the Electronics Division,

i Air Force Weapons Laboratory (AFWL), have provided much useful information

; necessary for the work reported in this report. Or. Donald C. Wunsch (AFWL/EL)

j{ provided invaluable assistance in the research efforts of this problem. I wish

i to thank these individuals for their help.
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§ SECTION I
5
B INTRODUCTION
. This technical report documents the results of an effort to model the effects

of high current injection into bipolar semiconductors. The work was started at
the recommendation of Dr. Donald C. Wunsch of the Air Force Weapons Laboratory.

When a transistor device experiences an electromagnetic pulse (EMP), high
currents and voltages can be induced between the metal contacts of the device.
| : Depending on the materials and doping, significant changes can occur in the dis-
t ; tributions of the electric field, the electron density, the "hole” density, and
: traps (ref. 1). Because of the significant heating of the devices at high
! current, a temperature dependency was included in the model. The number of
spatial dimensions was reduced to one to keep the problem tractable.

Two techniques or models were used in an attempt to solve the above problem.
The first technique employed finite differencing in both variables (time and
space) and the second was based on reducing the model equations to a system of
first order differential equations and then solving this system of equations.
Difficulties were encountered in each of the two techniques. In both cases, the
difficulties were related to the physical problem. This problem is characterized
L by very large boundary values which affect the solutions obtained. Because of
this problem and others described in this report, no successful predictions were
made describing the effects of high current injection.
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SECTION II
DERIVATION OF THE MODEL EQUATIONS

Various assumptions are made concerning the special dimensions, the form of
the coefficients, and the number of dependent and independent variables. The
first assumption is that of one special dimension, say x. Using this assumption,
one reduces Maxwell's equations as follows (ref. 2):

3B

curl E = - 3% (1a)
cle-%wJ (1b)
divB =0 (1¢)
divD =p (1d)
= OE i e
curl E = 3= (0, -1, +1) 5 (1c)

where

t
D(x, t) =f e(t - t') E(X, t') dt'

=8
div B = ==

=0

from the dimensional assumption, then one may conclude that curl H = 0. The next
assumption is about the form of the current density J. One usually assumes that
the current density takes the form (refs. 3, 4, 5, and 6)
an au?
X

Jy " GpEn+qD Z=qu, U2 Ut +q0, , (2a)




R R P S A

AFWL-TR-77-152

3
3y = auEp-aD, B=qu utut-q0, 3 (2b)
with
J= 3+ 9,

The quantities un, wp, n, p, Dn, Dp, q are defined in the glossary of terms; u?
through U® are a relabeling of these variables. Some constants will be relabeled
in view of their connection with the various dependent variables.

Since curl H = 0, equation (1b) reduces to the equation

3D .
- Pt e

3 2

= a0y 3 - alu, U US +y, U2 US) - a0, B

and the generation rates for U% and U? are given by the equations (refs. 3, 4,
5, and 6)

2 2
] =g-“—2+1;§—x<an> (3a)
au? 149
g ) (3b)

where g = g(x, t, u), u = v (u;, Uy, Uy, Uy, Ug, Ug). The terms 7, are related
to the trapping of electrons and holes by the media. The T4 are simply the
average life times of holes and electrons between capture. Substituting equa-

tions (2a) and (2b) into equations (3a) and (3b) results in the following:

1 3 2
A R 2 s au?
5 g°t2+ax(u2UU+Dzax (4b)
AR 3 s au?
3 'r,'ax(u3UU'D’§'x— (4c)
“ 2|1
el ('U‘“n ; Jp>) (4d)

7
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S
.a.g...s.<vz°'2>U2Us+<\/30'3>(N--Us)u3 (49)

t
Ut = eU® (4f)

The equation U' = U® is an approximation that is valid at low frequencies and
isotropic media. The size of a large bipolar transistor is about one millimeter
in its largest dimension. For such a transistor to "see" or sense wave phenomena,
the frequency of the wave must be larger than 10!! hertz since

f=0C/T = (3x 10% m/sec)/107% m)
= 3 x 10!? hertz.

This is in the lower range of the region of visible light (near the upper infra-
red region). This approximation allows one to reduce the number of variables
from six to five. The reduced set of equations is as follows:

1 2
€ %%_ = ~q(u, u? + u, u) Ut + q(D3 o -0, gg ) (5a)

2 u2
3= q(x, t, U) - —-+ > (u2 vz ut+ 0, 3 ) (5b)

3 3
_gu = g(x, t, U) - - g—x(u, us us - ——a“ ) (5¢)

au* _ K 32” 2 2 1 au?
3 ; ax q(U ) (uz U* + Mg U ) ~ qU Dz ax . D; ax (Sd)
%—— = ey, 0,205 U2 -<vy0,>U% U +<vy,0,>NU° (5e)

The terms < Vj J; > are the average cross sections for the electrons (j = 2) and
holes (j = 3), i.e., capture possibilities. The D1 are diffusion parameters which
depend on the electric field U', temperature U", and the two concentrations.
Equation (5e) controls the number of traps and number of electrons available to
the system as a whole, i.e., it gives the system charge conservation.
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SECTION III
FINITE DIFFERENCE TECHNIQUE -

Finite differences was the first of two techniques by which the solution
of equations (5) was effected. This technique makes use of the definition of
the partial derivative of a function, i. e.

3t (% 8) = g h

o P, Tt h% - f(x, t)

and
of _ Lim f(x + h, t) - f(x, t)
ax 0 h
and
2 Limax (Rt t) - O t)
w2 Mo h

2
A similar expression holds for é;;. by partitioning the x-t space, one can step
through the time portion of the axes or the spatial axis. The second derivative
of f with respect to (say x) is replaced by
a2f _Fank - 25t Fiak
ax? (ax)?

where
fj,k = f(xj, tk)
xj = x + jAx
t = t + kat

k'j = ]’ e e M

This leads to the following set of explicity equations (note that superscripts
refer to the name of the variable and subscripts tell where in the mesh the
function is evaluated).
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: 1 PSRN S 2 3
F - Y5k41 " Y5k T & (43, Y3, * 45 UJ.k)

ik (°§,k - U50,k) = %ok (Yok - Y1) (6a)

UZ

- = - _ldi + QEI 1 2
3, k+l At g. = At 'j U

ik o (5 v )

+
%

+

sz (Dz»k ! 05-1'k) (”f.k = ”3-1,k) (6b)

3 U! = At o U;’k U3»k UJQk 3 2 3 ?
Ui ke = Y5,k 95,k ~ T, AX Mk T Mi-1,k

2
Uk = Yrk) Y- El‘ZR‘J‘E‘(Uﬁ,k - Ui k)

+

L |
.o W
_a

L (W - 2% * Y k)

-+

Zi; (Ug’k < Uj“ak) (03.k E 03-1,k) (6¢)

K at
a Ax

; T

“ u “ 1 1o
U ka1 = Y5k $ (“J+1,k - 205+ U3 ) ¢ U (U3, = U3 kr)et

(6d)

= 3 % 5 2
Wt it SR 2B, U e e > Uk Uik

*<vy 0> NUj (6e)
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which is the explicit formulation of equations (5) and where

= . 1 2 3 4 5 §
95,k = 9(x5, tee U k0 Uik Y5,k Y500 Yi.ke U3 k)

9%t Y1.6)

i.e., Ujk = ajk' By explicit, one means that the right hand side of the equation
depends on known values at previous mesh points. Richtmeyer and Morton (ref. 7)
have shown that under certain circumstances the explicit formulation of finite
differences will be unstable. It is possible to rewrite equations (6) so that
the system is either implicit or a combination of implicit and explicit as shown
for the diffusion equation in reference 8 by introducing a parameter ©. For
example, equation (6d) becomes

R N I M D

KAt

L 4 = NS 4 < 4 4
Us et - Y3 © o (j+‘l,k+] 2 U5 ke * Uj-],kH)

+

KAT Y 4
= (;;:) (51, 1 = 295,10+ Yo,

+

1
0l 8603 - U2 4) (7)

where 0e[0, TJSR. For © = 0 the above explicit formulation is obtained while for
© =1, a fully implicit method is obtained. The Crank-Nicholson method is
obtained when © = 1/2. Ford and others have shown that the truncation error for
the diffusion equation using constant coefficients and the Crank-Nicholson method
is 0 {(ax)? + (At)2} while the purely implicit technique and explicit techniques
give 0 {(ax)? + (At)} (refs. 7 and 8). In reference 7, the authors show that for
constant coefficients the finite difference scheme is stable for e (1/2, 1).

Lees (ref. 9) has shown that the Crank-Nicholson scheme is stable for certain
types of quasi-linear parabolic equations. Lees states that how one differences
the lower order terms in the equation

3%u

g du . g Ax, t) %% + A (x, t) u(x, t)

at ax

is a matter of truncation error and not stability. There are requirements on o
and u that are needed so that a pure implicit finite difference operator will be

1
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stable (namely o > 0 and ueC®). In order to determine whether or not the
equations (6) are stable, the coefficients of the equations of second order will
have to be analyzed to determine if they satisfy the criteria given by Lees.

The first order equations will be inspected at a later time.

The parameters u; and Di are the mobilities and diffusion rates of the elec-
trons and holes in the medium. Various forms of equations are used according to
some of the hypotheses made by the author of the paper. Maier (ref. 1) reports
on using a multitrap model as well as one trap model. Van Lint (ref. 6);

Raburn and Causey (ref. 3); Leadon (ref. 4); and Newdeck (ref. 5) all use a
variation of the model due to Shockley and Read (ref. 10). These equations take
the form

azexp (-B5/U%)

“j = (8a)
(u*)

= . 1 , =
Dj vJ/U (or DJ constant) (8b)

depending on the author. In many cases the constraints or parameters are curve
fitted between experimental data assuming a particular form of variation. The
function g is the recombination-generation term which gives the relationship
between electron-hole pairs during the generation and recombination processes.

Using the Shockley-Read model (ref. 10), the form of g is (refs. 3, 4, and 5)

N.i F Uz U3 j
(9)

g(x, t, U) =
T2 (U2 + N,i) + T, (U3 + N.i)

with
Nj = a(U*)¥/2 exp (-q(E - 2')/(2 KU*))

and o constant.

The equations of interest are (6b), (6c), and (6d) or (4b), (4c), and (4d). The
2

coeffigients of the lower order terms in equation (6b) are u,, u® and g - %- +

U 2

Ha g—Dz. .
X ]

12
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The requirement given by Lees (ref. 9) for the terms A,, A, is that

SEP IAi(x, t)

but note that these A1 do not depend on the solutions; hence we may not be able
to use this theory unless we assume that the terms %%—. %;, g and U? are all

uniformly bounded o; constant. In reference 9, Lees requires that the coeffi-
cient of the term %;g have uniformly bounded partial derivative as well as being
uniformly bounded away from zero. If these conditions are satisfied then the

< M

equation

u %
5t o(x, t, u) o

will be unconditionally stable with respect to the norm [|<[].

13
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SECTION IV
ORDINARY DIFFERENTIAL EQUATION APPROACH

Another technique for solving systems of partial differential equations is
discussed by Shampine (ref. 12) for the diffusion equation. Basically, one
finite differences the spacial derivatives and steps through in time or finite
differences in the time and solves Poisson's equation. The choice depends on
how complicated the derivatives are and the form of the resulting matrices.
Assuming that one finite differences the spatial variables then equations (4)
become

ul
gt = a(nuju + wbj Uf) + a5 Ui - 035 - viy) i 10w)

du, ui IR 15 o T 2
gt 9y - st v o+ (i) g, (0F) 6 (43)

+(&) 03 (U§+1 =2us+ Uj-l) (10b)
du? ul 2
g m 9 -2 8 (0t v ) (i) o (03) 5 () e
dus du}
T = (K/a) (uj“,] -2U5+ U}_l)/(Ax)z - u;( T ) (10d)
Sgi
L= - P U U+ P, (N -3 u3) (10e)

for j =1, 2, ... M where M is the number of mesh points used to partition the
x-interval of interest. The existence of a solution has been given in various
.books for systems of ordinary differential equations, namely Hille (ref. 13),
Caratheordory (ref. 14). The most general conditions for existence are given in
reference 14; but, under his assumptions, uniqueness cannot be assured. Stronger
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assumptions are necessary and these are investigated in reference 13. The
equations below provide a very compact method for rewriting equations (10).

B -tk taU) (11a)
duz _ i
g = falxs £, 0) (11b) |
}
¢ ]
S+ Fi(x, t, V) (1c) ;
U . f(x, t, U) (11d)
4 - £,(x, t, V) (11e)
with
Uj(x, 0) = uj (x)
which may be rewritten as
i u' = f£(x, t, U) (12a) ‘
u(o) = u° (12b)

Caratheordory states the following theorem (ref. 14):

If the n functions f; are continuous in a closed and bounded region G of an
n + 1 dimensional space through each interior point (t°, u°) of G, there exists
at least one continuously differentiable curve x, = xi(t) which is defined on
|t - t°] <a and satisfies equation (12). Since this theory says nothing about
uniqueness nor how the solutions depend on the initial conditions nor how the
solutions vary when the functions f1 are perturbed, then one usually requires
that the function f; have more stringent conditions. These fall into two classes.
The first is concerned with bounding the partial derivatives of the f; with

15
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respect to the Ui and the second is Lipschitz continuity of the function fi in
the U variables. Since f is a vector function in RM+], one defines its deriva-
tive as the linear transformation, say B that satisfies (ref. 15)

R [If(x + h) - f(x) - Bhl| _ 0
TR [1n]]

if the Timit exists and such a transformation B can be found. The symbolization

h > 0 implies for € > 0, ||h|| < O where h ¢ R". The matrix B which is the
Frechet derivative of f is related to its Jacobian‘{%§}.. A theorem due to Kamke
(1930) and to the authors Coddington and Levinson (1955) is as follows (see

reference 13):

Let f(x,y) be continuous in the |x - x| < a, ||y - y|| < b and satisfy

||F(x, z) - F(x, Z)|| < W (lx - Xols |y - yoll) where W satisfies the following

1. Let H(V‘) = ;h.ec*' [0, t] Ih(O) = 0, -and lt.ig —(—Lhtt - 0%

W(x, y) 20
If y, >y, then for x, fixed, W(x,, ¥,) 2 W(Xq, ¥,)

Jc> 0, such that W(x, cx) S ¢, x;(o, a)

o AW MN

fqr”hﬂsﬂ(r) the Lim W(t, h (t)) =0

then the only solution in H(a) of z' = W(t, z(t)) is z(t) = 0 and y' = F(x, y)
has a unique solution passing through (xq, y,).

Another theorem is given in Hille (ref. 13) whereby the Lipschitz condition
on F is replaced by a condition on its Frechet derivation, that its Frechet

derivative exist, be continuous, and be bounded in the domain D. The full theorem

‘ref. 13) states that in the differential equation y' = f(x, y), f: R! x R" = R",
where f is continuous, bounded in D = {(5,» YeR xR |x - x| s 2,

[y = yoll g_b} i.e., ||f(x, ¥)|| <M, for all (x, y) €D, the Frechet derivative

exists, is bounded by B', for small values of‘||y - ¥o|| we have f(x, y) -

(f, ¥,) = [35;1 (y - y,) + O(IIy - yoll) then 3! solution of y' = f(x, y) passing
through (x4, y,)e D.

6
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One may obtain a solution to system (10) by assuming those parts of the
system due to "diffusion" to be zero. Under these circumstances, the results
are as follows:

1
W3 )

du? u?
a‘t—- Q(X. t’ U) = Ta

S
= - P U U2+ P U (N - Uf)

with U* being constant throughout the medium. The parameters Pj are then
determined from the energies of the electrons and holes where they are assumed
to be a Fermi-Dirac gas. Under this formulation, Kittel gives the probabilities
for trapping as follows (ref. 11):

s 1/(5 + exp ((E - Ej')/(Z kbU“)))
where

Ej' = constant (UJ-")Z/3

with Ej = constant (Uj)z/’. These equations were modeled under a system of pro-
grams called Extended Sceptre (ref. 16). These routines allow one to solve
systems of stiff ordinary differential equations as well as electronic circuits.
With only a few cards, one can implement the above system without having to write
the integration routines. The implementation used is given in the appendix.
Control of the time increment is by SCEPTRE and before going to the next time
step the program iterates the solution to obtain a "better" solution. If after
a fixed number of tries the program finds nonconvergence, then the program
reduces the time step size and redoes the problem with best known data. This
type of control is necessary when stiff differential systems are encountered to
reduce truncation error as well as round off error (by reducing the number of
step calculations). The system also calculates the Jacobian matrix noted above
and notes whether the matrix is of full rank or singular.

17
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SECTION V
CONCLUSIONS -

There are two problems in solving systems of partial differential equations
with finite differences: consistency and stability. The system of equations
(4) or (6) exhibited a problem called instability which can radically affect the
convergence to a solution. In using a purely explicit formulation, one has to 4
use such small At's that the resulting answers for times corresponding to 1000
initial At's are almost entirely error because of round off error. This problem
was also apparent in the purely implicit formulation because the answers would
still not converge. The answers at the second and third steps were grossly in
error in both cases (the electric field was given as 10%2® volts per meter).
Thus there was an error in the modeling of the problem and the equations were
not consistent, hence convergence would be impossible.

The second technique exhibited a different problem in that SCEPTRE said the
matrix B was singular. While it calculated answers for the first time step, no
answers were calculated for the second time step. Very small time steps were
used so that this would not happen, but no results were forthcoming.

* It appears that the linearization used in the second technique does not yield
a useful approximation to the original problem. In fact, no approximation is
found at all. A more exact approximation to the original equations would perhaps
change the singularity of the Jacobian matrix and thus yield a useful approxima-
tion_to the solution of system (6).

18
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APPENDIX
LINEAR APPOXIMATION BY ORDINARY DIFFERENTIAL EQUATIONS

1 t CIRCUIT DESCRIPTINM
< 5
3 PYl=z ELFCIPIC FIELDs PYZz ELECTHUN CONCENTRAT[ING PY 3= HULE
3 CONCENTRAT (OMe PYsz TLAPERATURF. Pyiiz MiMue R OF TRaPHe PY6=
g INTERNAL FMRROYs PGS RIGRT HAND SINDF [F, FORCLNG FUMCTION.
% THIS FOQMILATION ASSUMES CONSTANT TFAMPERATUR Am) FERML GAS=TYPE
$ LAw Fur CALCULAT[NG: CAPTURE PRORABILITIES.
$
DEF INK1) PARAXETFOS
4 $ INITIALIZE THE CONSTANTS
PL= 10,E-0 -

PEPS= 3.320325-11
PQ= l.602E-19
PNT= 1.1E23

PK= 1.380)62E=27
PC= S.R4]139E-33

PEN=0
| PT2=l.6-9
‘ PT3=21.€-9
$ INITIALIZE THE VARIAHLES
PYl= 1,E6
PY2=1.F23
" PY3=l.E22 - ‘
PYS= «1285713E17
PY5=8
S SET UP THE COEFFICIENTS
PEF= XEF (PC®(PY24PY2)22 (147340
i PEFP= xEFP (PC2(PY3®PY3)®2(1,/3.))

PY4z= Q1 (PEPS.PYLsDPY])
PM2= AM2 ((PY488(=2,5))2(]1,4308E4)CEXP(=2.555F86/485(PY1)))
PM3= XM3((PY4d0(=2,5))2(B,SEG)PEXP (=4, ,7AEL/ARS(PY1)))
PNI= XNT((31523E23) % (PYa2e] ,5)® FEXP(-PQ® (PEF+PEFP)/ (2.%PK?PY4)))
PG= XG(PQ® (PNI*PNI=PYZ2®PY3)/ ((PY2+PY3+PN[+PNI)2PT2))
PFE= XFE(le/(1.+EAP((PEN=PEF)/ (PX2PY4))))
PFP= XFP(la/(1.,+EXP((PEN=PEFP)/(PK2PY4L))))
$ DEFINE THE NIFFERENTIAL EQUATIONS
OPyYl= x1(=PQe (PM2ePY2+.PMI®PY3) 2PY|/PEPS)
OPY2= X2(PG=(PY2/PT2))
DPY3= X3 (PG=PY3/PTI)
VPYS= xS (-PFE*PYS®YPY2+PFP2OPY 2 (PNT-PYS))
DPY6= xb(PYh-P ePYleDPY1)
FUNCTIONS
Ql(AsB.Cr= (FIM(AWBLC))
QUTPUTS :
3 PY L sPY2+PYI1PY4 sPYSIPYRIPEF sPEFPIPNI P OT
XSTPSZWLUPY 1 sNPY23UPYI 4 NPYSOPYH
RUNCONTROLS
MAXIMUM PRINT B0INTS= 2000
COMPUTER TIME LIMIT = 20
STARTING STEP GILE= 1.E=40
MIMIMUM STEP STZE= leE=6S
STOP TImME= SQ,E=9
INTEGRATION Q01T INE = XPO
CWRITE SIMULS NaTA
: SUBPROGRAM
FUNCTION FUM (1e8¢C)
COMMON /CNTR) §/TIME
. s AS AQB.C
[F (TIME.EQ.0) x=2293.154
FUMNZX
| ~ETURN
| | END |
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ABBREVIATIONS AND SYMBOLS

: =B magnetic induction
D=10-=0U! displacement field
=Us=F electric fields
E total energy of the system
E' energy state of an electron or hole
H=H magnetic field
n? Jp electron, hole current densities
thermal conductivity
Ky Boltzman's constant
M number of mesh points partitioning an interval [a, b]JCR
N total number of traps
Pj, =Ny o5 > probability that an electron, hole, will be captured by a trap
R the real line
a thermal diffusivity
f frequency ;
n(Uu?), p(u?) electron, hole densities
q electric charge
i S%P [A(x, t)] last upper bound of t for all x in the closure of the set G
' t time
X; curve in space
E 8, = f first order difference in x of the function f = f(x) - f(x - Ax)
€ is an element of permittivity
E wavelength
: Mo permeability of free space
Hys M, electron, hole mobilities
0 total electric charge
T T electron, hole average lifetimes
Il norm (depends on the space) ;
[ ] Euclidean norm
= implies A
3 there exists
3! there exists a unique

N

containment (eg. AS B for x eA=>x €B)
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