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PREFACE

Most researchers have used finite differences with nonlinear scaling to solve

• the problem of high current injection Into bipolar devices. This report records

• an attempt to solve the same problems wi th another technique and resolve the
problems wi th fewer restrictions than have been used previously.

Air Force Weapons Laboratory (AFWL ), have provided much useful information• I_ Chri s Ashley , Roe J. Maler and A. Brent White of the Electronics Division ,

- necessary for the work reported In this report. Dr. Donald C. Wunsch (AFW L/EL )
provided invaluabl e assistance in the research efforts of this problem. I wish
to thank these individuals for their help.
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SECTION 1

INTRODUCTION

This technical report documents the results of an effort to model the effects
of high current injection Into bipolar semiconductors. The work was started at
the recoimnendation of Dr. Donald C. Wunsch of the Air Force Weapons Laboratory.

When a transistor device experiences an electromagnetic pulse (EMP), high
currents and voltages can be induced between the metal contacts of the devIce.
Depending on the materials and doping , significant changes can occur In the dls-
tributions of the electric field , the electron density, the “hole” density , and
traps (ref. 1). Because of the significant heating of the devices at high
current, a temperature dependency was included in the model . The number of
spatial dimensions was reduced to one to keep the problem tractable.

Two techniques or model s were used in an attempt to solve the above problem.
The first technique employed finite differencing in both variables (time and
space) and the second was based on reducing the model equations to a system of
first order differential equations and then solving this system of equations.
Difficulties were encountered in each of the two techniques. In both cases, the
difficulties were related to the physical problem . This problem is characterized

• by very large boundary values which affect the solutions obtained. Because of
this probl em and others described in this report, no successful predictions were
made describing the effects of high current injection .

1 
_ _  

5
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SECTION II

DERIVATION OF THE MODEL EQUATIONS

Various assumptions are made concerning the special dimensions, the form of
the coefficients, and the number of dependent and independent variabl es. The
first assumption Is that of one special dimension , say x. Using this assumption,
one reduces Maxwell’ s equations as follows (ref. 2):

curl E =  —
~~~~~~~

. (la)

curl H ~Q.+ J (i b)

d i v B z 0  (lc)

div D~~~p (id)

c u r l E z . ~ . ( O , _ l , + l ) * _ ~~ . (ic)

where

D(x , t) =f e(t - t ’)  E(X , t ’)  dt’

dlv B~~~~

= 0

from the dimensional assumption , then one may conclude ~~~~~~~~~~~~~~~~~~~~
assumption Is about the form of the current density 3. One usually assumes that
the current density takes the form (refs. 3, 4, 5, and 6)

J,., • q~~E n + q D~ ~~~~~a q u2 U
2 U’ + q D2 .

~~~~ — (2a)

6
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= q~~E p - q D
~ 

~~~~~~~
= q 

~ 
U3 U’ - q 03 (2b)

with

J = J n + J p

The quantities un , up, n, p, Dn, Op. q are defined in the glossary of terms; U1

• through U’ are a relabeling of these variabl es. Some constants will be relabeled
In view of their connection with the various dependent variables .

Since curl H = 0, equation (ib) reduces to the equation

aD —.
~t

_ _ J n _ J p

q D3 
~~~~~~~~ 

- q(u3 U3 U’ + ~.i2 U
2 U’) - q D2

and the generation rates for U2 and U 3 are given by the equations (refs. 3, 4,
• 5, and 6) -

9U2 U2 1 a
~~

— - g - — +
~~ ~~~~~~~~~ ~3a

au 3 _ U 3 1 a 3bW ~~~~~~~q~~i’ p

where g = g(x , t, u), u = u Cu 1, u2, u 3, u~, u5, u6 ). The terms ~ are related
to the trapping of electrons and holes by the media. The r~ are simply the
average life times of holes and electrons between capture. Substituting equa-
tions (2a) and (2b) into equations (3a ) and (3b) results in the following :

= 

~~~~~~ ~~
3 

~~
6 + ~~ ~~

2 U’) + ~(D2 
~~~~ 

- 02 
~J2) (4a)

g _ ~ L~.+L(u u2 u6 + D ~~~~~) 
(4b)

(4c )

~ ~~~~ 
(..U’(Jn + J p )) ( 4d) 

~_ _ - J -
~~~

- ---~~~~~-—---—--~~ • - --- - • • •
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.

~~~~~

-. - < v 2 a~ > U2 U5 + < V 3 ~~ 
> (N - U5) U3 (4e)

U 1 = cU’ (4f)

The equation U1 
= ~U’ is an approximation that is valid at low frequencies and

isotropic media. The size of a large bipolar transistor is about one millimeter
in Its largest dimension . For such a transistor to “see” or sense wave phenomena,
the frequency of the wave must be larger than 1011 hertz since

f cir ~ (3 x 10’ m/sec)/ l0 3 m)

3 x 10’s hertz .

This is in the lower range of the region of visibl e light (near the upper infra-
red region). Thi s approximation allows one to reduce the number of variables
from six to five . The reduced set of equations is as follows :

~ 
= —q(~ 2 U2 + ~.t 3 U )  U 1 + q(03 .~! - D~ 

~IJ2) 
• 

(5a )

= g(x , t, U) - + F (u2 U2 u’ + D
~ 

(5b)

= g(x , t, U) - - ~~
. (u~ U

3 U’ - D 3 ~~~ (5c )

= ~ - q(U~
)2 (u 2 U2 + u 3 U 3 ) - qU ’ (02 

au2 
- 0 3 ~~~~

= - < v 2 c~ > U U - < V 3 ~~ 
> U U 3 + < V 3 a3 > N U 3 (5e)

The terms < v~ ~ ‘ are the average cross sections for the electrons (j = 2) and
holes (j = 3), i.e., capture possibilities. The D1 are diffusion parameters which
depend on the electric field U ’, temperature U”, and the two concentrations.
Equation (5e ) control s the number of traps and number of electrons availabl e to
the system as a whole , i.e., it gives the system charge conservation .
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SECTION III

FINITE DIFFERENCE TECHNIQUE

Finite differences was the first of two techniques by which the solution
of equations (5) was effected. This technique makes use of the definition of
the partial derivative of a function , i. e.

— Lim f(x, t + h) - f(x, t)
‘ h+O h

..~. f(x , t + h~ - f(x , t)

and

= 
Lim f(x + h, t) - f(x , t)

~~~~ h+O

and 

a2~ = 
Lim ~~~(x + h, t) - 

~~~~ (x , t)
• 

~~~~~h.O

A similar expression holds for 
~4. by partitioning the x-t space, one can step

through the time portion of the axes or the spatial axis. The second derivative
of f with respect to (say x) is replaced by

• a2f fj+l ,k — 2 
~j,k 

+ 

~J-l ,k
ax 2 (~

x ) 2

where
= f ( x~ tk )

x j x + i ~ x

. tk * t 4 k t l l t

k ,j 1, • . .

This leads to the followi ng set of explicity equations (note that superscripts
refer to the name of the variable and subscripts tell where in the mesh the
function is evaluated).

9 
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U ’ - u ’ 9~~~_ ( z  U2 + U3 \~~j,k+l j,k Ax \1’j,k j,k u
~,k j,k/

+ ~ 
/ , 13  U 3 ~ D2 ‘u2 u2 ‘~j ,k ~‘~j,k - j—l ,k) - j,k I~ j,k - j-l ,k) (6a)

— U
~~k 

= At ~~~ — !~~~.L!S. At + ~ 
IJ

J~~ U~~k (u~,k 
- 

~
‘j—l ,k)

+ 
2 At u’ 1U 2 + u2 ‘u1

~ j,k ~~ j,k 
— j—l ,k) j,k ~ j,k 

— j—l ,k

+ D,~,k ;; (u~+ lk - 2U,j,k + u
~ .l ,k)

+ 
~~~~

. 
~~~ - Dj_l ,k) (u~,k 

- U
~~lk ) 

(6b)

3 1 3

U 3 U 3 — At ~:!~1-,Js. Uj,k Uj,k 3 - 3
j,k+l - j,k ~~~ 

- 
13 

- Ax u~,k 1’j-l ,k

- ~~ k 
(u~~k 

- u
~~l ,k) 

U
~,k 

- ~~~~~~~~~ (u~~k 
- uLl k)

+ D
~,k 

-i-(u~+l ,k - 2 U
~,k 

+ U
~~l ,k)

+ _-~_~~ (Uj ,k - uj ..l,k) (D~,k - D,~ l,k) (6c )

- U
~,k 

= 
K 

~~ 2 (U3+1 k - 2 U
~~k + u

~~l k )  + U
~~k (u~,k - u

~~k l)At

(6d )

U
~,k+l 

- U
~,k 

= — < V 3 ~~ 
> U

~,k Uj,k 
- < v 2 a2 > U,~,k 

U
~~k

+ < v 3 a 3 > N U
~,k (6e )

10 •~1
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which is the explicit formulation of equations (5) and where

— 1 4. i i i  l I Z  , , 3  I, ’4 i i6• 9j,k 
— g~xj ‘k’ ‘~j,k’ 

uj k’”j,k’ vj,ki j,k’ uj,k

= g(x j i tk* uj,k)

i.e., Ujk = 

~jk• 
By explicit, one means that the right hand side of the equation

depends on known values at previous mesh points. Richtmeyer and Morton (ref. 7)
have shown that under certain circumstances the explicit formulation of finite
differences will be unstable. It is possibl e to rewrite equations (6) so that
the system is either implicit or a combination of implicit and explicit as shown
for the diffusion equation in reference 8 by introducing a parameter 0. For
example , equation (6d) becomes

l — K~ 2 U” + U”j,k+1 — 
j,k 

— - 

~~ ~ j+1 ,k+Y j,k+l j — l ,k+ 1J

• + (1 - o) (
~

) (u~+1 , k - 2U
~,k 

+ u
~..1 ,k)

• + (J~ At ”U~ U2 7j , k \, j,k+1 — j,k

where 0~[O , l]~~R. For 0 = 0 the above explicit formulation is obtained while for
0 = 1 , a fully implicit method is obtained . The Crank-Nichol son method is
obtained when 0 = 1/2. Ford and others have shown that the truncation error for
the diffusion equation using constant coefficients and the Crank-Nicholson method
is 0 {(Ax)2 + (At)2} while the purely implicit technique and explicit techniques
give 0 {(Ax)2 + (At)} (refs. 7 and 8). In reference 7, the authors show that for
constant coefficients the finite difference scheme is stabl e for Oc (1/2, 1).
Lees (ref. 9) has shown that the Crank-Nichol son scheme is stabl e for certain
types of quasi-linear parabolic equations. Lees states that how one differences
the lower order terms in the equation

a ~~~ ~-_Y. + A ,(x , t )  .
~~~

. + A 2 (x , t) u(x , t )
:

_ at ax 2 a

is a matter of truncation error and not stability. There are requirements on a
and u that are needed so that a pure implicit finite difference operator will be

11 
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stable (namely a > 0 and uc C3). 
- 

In order to determine whether or not the
equations (6) are stable , the coefficients of the equations of second order will
have to be analyzed to determine if they satisfy the criteria given by Lees.
The first order equations will be inspected at a later time.

The parameters u.~ and D1 are the mobilities and diffusion rates of the elec-
trons and holes in the medium. Various forms of equations are used according to
some of the hypotheses made by the author of the paper. Maier (ref. 1) reports
on using a multitrap model as wel l as one trap model . Van Lint (ref. 6);
Raburn and Causey (ref. 3); Leadon (ref. 4); and Newdeck (ref. 5) all use a
variation of the model due to Shockley and Read (ref. 10). These equations take
the form

a exp (-8./U1)
ii. = —‘i- ‘I (8a)

(U”)

• D~ = v~/U1 (or D~ = constant) (8b)

depending on the author. In many cases the constraints or parameters are curve
fitted between experimental data assuming a particular form of variation . The
function g is the recombination-generation term which gives the relationship
between electron—hole pairs during the generation and recombination processes.

Using the Shockley-Read model (ref. 10), the form of g is (refs. 3, 4, and 5)

N. -U 2 U 3
1 (9)

t 2 (U 2 
+ Ni) + 13 (U 3 

+ N1)

with

N1 = a(Uk)3/2 exp (—q(E — E’)/(2 KbU) )

and a constant.

The equations of interest are (6b), (6c), and (6d) or (4b), (4c), and (4d). The
coefficients of the lower order terms in equation (6b) are i.’2, u’ and g -au2 T a
i.’2 r—D a.

x

1~
-•-

______  ___  —4
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The requirement given by Lees (ref. 9) for the terms A ,, A 2 is that

~~~ 1A 1(x, t)~ < N

- but note that these A1 do not depend on the solutIons~ hence we may not be able
- to use this theory unless we assume that the terms ~~~~—, 

1.~~, g and U2 are all
uniformly bounded or constant. In reference 9, Lees requires that the coe-ff 1-
d ent of the term have uniformly bounded partIal derivative as well as being

- • uniformly bounded away from zero. If these conditions are satisfied then the

— 
equation

• 
~~~ 

a(x , t, u) ~~~~~- ax 2

will be unconditionally stable with respect to the norm 
~~~~
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SECTION IV

ORDINARY DIFFERENTIAL EQUATION APPROACH

Another technique for solving systems of partial differential equations is
discussed by Shampine (ref. 12) for the diffusion equation. Basically, one
finite differences the spacial derivatives and steps through in time or finite
di fferences In the time and solves Poisson ’s equation . The choice depends on

- - how complicated the derivatives are and the form of the resulting matrices.
Assuming that one finIte differences the spatial variables then equations (4)
become

dU ’
~~1= q(u3uju~ + u2U,~ u~) + q(D~(Uj

3 _ LJ~_ 1 ) - DJ(U~ - uj... 1 ) ) 
~ 

(l 0a)

~~~~ 
gj - ~~~~ S~(u 2 U2 U’) + (L)

2 

~ 
(D~) 6

~ (ufl

+ (

~~~
.)

2 
D~ (u~+1 - 2 + u~_ 1) (lob)

3 3 2

- - 
~ 

(
~ 

uj u~) + 

~~ ~x (ofl ~x (
~

) (lOc )

dU ” dli’
(K/a) (u~+1 - 2 u~ + U~~~1)/ (AX ) 2 - u,~ (a.~t) (lOd )

~~l= _ P 2 U~~U~~+ P 3 ( N _ U ~ u~) (lOe )

for j = 1 , 2, . . .  M where M is the number of mesh points used to partition the
x-interval of interest. The existence of a solution has been given in various

- books for systems of ordinary differential equations , name ly Hi lle (ref. 13), *

Caratheordory (ref . 14). The most general conditions for existence are given in
reference 14; but , under his assumptions, uniqueness cannot be assured. Stronger

14
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-: f assumptions are necessary and these are investigated In reference 13. The
equations below provide a very compact method for rewriting equations (10).

= f ,(x, t, U) (h a)

• 
- ~~~~~~~~ f 2(x, t, U) (lib)

• 
• 

~~~— +  f 3(x, t, U) (hic)

= f~(x , t, U) (lid)

~~~

. f 5(x, t, U) (ile)

.

with

U~(x, 0) = u~ (x)

which may be rewritten as

-
~~~ U’ = f(x, t, U) (l2a )

u(O) = U ° ( 12b)

Caratheordory states the following theorem (ref. 14):

If the n functions f~ are continuous in a closed and bounded region ~ of an
n + 1 dimensional space through each Interior point (t0, u°) of G, there exists
at least one continuously differentiable curve x1 X1(t) which is defined on

~t - t0 j <a and satisfies equation (12). Since this theory says nothing about
uniqueness nor how the sol utions depend on the initial conditions nor how the
solutions vary when the functions f 1 are perturbed, then one usually requires
that the function f1 have more stringent conditions. These fall into two classes.
The first is concerned wi th bounding the partial derivatives of the f1 with

15
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respect to the U1 and the second is Lipschitz continuity of the function f in
the U variables . Since f is a vector function in R , one defines Its deriva-
tive as the linear transformation , say B that satisfies (ref. 15)

Lim IIf(x + h) — f(x) - Bh II 0
I Ih i I— ’~O I Ih i I

if the l imit exists and such a transformation B can be found. The symbol ization
h -

~~ 0 implies for c > 0, l Ih i l  < 0 where h c Rn. The matrix B which is the
- ‘ Frechet derivative of f Is related to its JacobIan {

~~
.}. A theorem due to Kamke

(1930) and to the authors Coddington and Levinson (1955) is as follows (see
reference 13):

Let f(x,y) be continuous in the Ix - x01 < a , Ily - 
~II ~ b and satisfy

IIF(x , z) - F(x, z)!I < W  (~x - x01, Ily  — y011 ) where W satisfies the following

1. Let H(r) ~h . cC~ [0, t] Ih(0) = 0,-and Lim 
-

t,1-O

2. W(x,y) ,~~O

3. If y, > y2 then for x0 fixed, W(x0, y,) ~ W(x0, y2)

4. ~c > 0, such that W(x, cx) ~ c, xc(0, a)

-- - 
5. For h cH(r) the Lim W(t, h (t)) = 0

then the only solution in H(a) of z’ = w(t, z(t)) is z(t) 0 and y’ F(x, y)
has a unique solution passing through (x0, .y0).

Another theorem is given in Hille (ref. 13) whereby the Lipschitz condition
on F is replaced by a condition on its Frechet derivation , that its Frechet
derivative exist, be continuous , and be bounded in the domain 0. The full theorem.
-~ref. 13) states that in the differential equation y’ = f(x, y), f: R’ x R’~ ~ R~,
where f Is continuous, bounded I n D s  ~(x, y)c R X R ~I Ix - a, 

- - - -  -

- 
~0 II <b } i .e.,  IIf(x , ~)II < M, for all (x, y) cD, the Frechet derivative

exists, is bounded by B’ , for small values of Il~ - y 0 II we have f(x, y) -

(f, y0) • [-
~

j -] (y - y0) + 0(IIy - y0Il ) then 3! solution of y’ f(x, y) passing

through (x0, y0)e D. 
-

16
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One may obtain a solution to system (10) by assuming those parts of the
system due to “diffusion ” to be zero. Under these circumstances, the resul ts
are as follows:

dU’ j/ 2
~~~

— 
_
€V 1 aU +~.‘ 3(J j

dU2 U2
~~~ — g(x, t, U) -

g(x, t, U)

dli — ~ u S  ,,2 r~ 1,3 f p., i~ S
~~ — — — r 2 u u + r 3v ~ l~~~~~~LJ

with U” being constant throughout the medium. The parameters P3 are then
determined from the energies of the electrons and holes where they are assumed
to be a Fermi -Dirac gas. Under this formul ation , Ki ttel gives the probabilities
for trapping as follows (ref. 11): -

= 1/(1 + exp (CE - E~’)/ (2 kbli”)))

where

= constant (U~~)
21I3

with = constant (U~)2u/3 . These equations were modeled under a system of pro-
grams called Extended Sceptre (ref. 16). These routines allow one to solve
systems of stiff ordinary differential equations as well as electronic circuits.
With only a few cards, one can Implement the above system without having to write
the integration routines. The implementation used is given In the appendix.
Control of the time increment is by SCEPTRE and before going to the next time
step the program iterates the solution to obtain a “better” solution . If after
a fixed number of tries the program finds nonconvergence, then the program
reduces the time step size and redoes the probl em with best known data. This
type of control is necessary when stiff differential systems are encountered to
reduce truncation error as well as round off error (by reducing the number of
step calculations). The system also calculates the Jacobian matrix noted above
and notes whether the matrix is of full rank or singular.

17 
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SECTION V

CONCLUSIONS

There are two problems in solving systems of partial differential equations 
- 

-

with finite differences: consistency and stability . The system of equations - 
-

(4) or (6) exhibited a problem called instability which can radically affect the
convergence to a solution. In using a purely expli cit formulation , one has to
use such small At’s that the resulting answers for times corresponding to 1000
initial At’s are almost entirely error because of round off error. This problem
was also apparent in the purely implicit formulation because the answers would
still not converge. The answers at the second and third steps were grossly in
error in both cases (the electric field was given as 1025 vol ts per meter).
Thus there was an error in the model ing of the problem and the equations were
not consistent, hence convergence would be impossible.

The second technique exhibited a different problem in that SCEPTRE said the
matrix B was singular. While it calculated answers for the first time step, no
answers were calculated for the second time step. Very small time steps were
used so that this would not happen , but no results were forthcoming.

— It appears that the linearization used in the second technique does not yield
a useful approximation to the original problem . In fact, no approximation is
found at all. A more exact approximation to the original equations would perhaps
change the singularity of the Jacobian matrix and thus yield a useful approxima -
tion to the u o n  of system (6)._ 

-
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APPENDIX

LINEAR APPOXIMATION BY ORDINARY DIFFERENTIAL EQUATIONS

C I R C U I T  O~ 5c .~IPrp1~

PYI~ .E L F C I W T C  ~ftL I~. ~~V t~L~~CT .~UW (:OMr ~~NT~i A t t , N . P Y J ~ MUI_~.
5 CO NCE~IT 4 A T ( i ~~’ . 

)~Y4  T c 4 ~~E~l/)tUHI. • p~ y~ -~~~ ~~~~~~~ OF r~~~i-’ - ,. PY6:
S INTF.W ’IA L F~-~ 

.-~~y • .6=  N I’.ii T ~,ANr ’ S 11W I’ . Fl)~~~ L~~, ~ ‘J øsc r ION .
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S

O~~F 1N,~ WA .-I~~TF~~q
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PL2 1Q . E— ~ 
-

‘~t PS 3 .32 O3~~~— 1I
P0= 1.t ,u2~~— 1 q
PNT= t .1 E 23
Plc : 1.3~o ô2E — 2~PC= S.~~’.1’39E—~~*

PT)=I  . E— ~P I 3 = I . E — 9
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P Y I =  I.Eo
PY 2=1.E23
PY 3=1 .~ 22 -
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PV~,:O
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( I . /) . ) )
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ABBREVIATIONS AND SYMBOLS

B = magnetic induction
D = 0 = U 1 displacement field
E = U6 = E electric fields
E total energy of the system

energy state of an electron or hole
H = 11 magnetic field
J,~, J~, electron , hole current densities
K thermal conductivity
Kb Boltzman ’s constant

M number of mesh points partitioning an interval [a, b)~~R
N total number of traps

< v~ ct
j  

> probability that an electron , hole , will be captured by a trap

R the real line
a thermal diffusivity
f frequency
n(U2), p(U3) electron , hole densities
q electric charge

5
~P jA(x , t)I last upper bound of t for all x in the closure of the set G

t time

x~ curve in space

= f first order difference in x of the function f = f(x) - f(x - ~x)

c is an element of permittivity
r wavel ength

permeability of free space

~~~ 
p3 electron , hole mobilities

p total electric charge
13 electron , hole average lifetimes

I H norm (depends on the space)

I - I  Euclidean norm
implies
there exists

3! there exists a unique
contai nment (eg. A~~ B for x cA —o.x cB)
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