
R-2134-ARPA

December 1977

ARPA ORDER NO.: 189-1

7Pl 0 Information Processing Techniques

Framework and Functions of the

"MS" Personal Message System
David H. Crocker

A Report prepared for

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

Rand
SANTA MONICA, CA. 9040&

The research described in this report was sponsored by the Defense Advanced
Research Projects Agency under Contract No. DAHC15-73-C-0181.

Reports of The Rand Corporation do not necessarily reflect the opinions or
policies of the sponsors of Rand research.

Published by The Rand Corporation

R-2134-ARPA

December 1977

ARPA ORDER NO.: 189-1

7P10 Information Processing Techniques

Framework and Functions of the
"MS" Personal Message System

David H. Crocker

A Report prepared for

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY

Rand
SANTA MONICA, CA. 90406

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

-iii-

PREFACE

A coordinated set of programs for minicomputers in the Digital

Equipment Corporation PDP-11 series is being developed by The Rand

Corporation as part of its research for the Information Processing

Techniques Office of the Defense Advanced Research Projects Agency

(ARPA). This computer software will enable a user to perform such

tasks as text manipulation, "reminder" functions, rule-directed "user

agent" functions, and manipulation of electronic mail.

This report describes the design of one such program--the "MS"

message system. Early electronic mail systems have existed on the

larger computers. MS incorporates and expands upon many of the func

tions and concepts of such systems within an integrated package, using

the Unix operating system, for users of PDP-11 minicomputers.

The report should be of interest to users and designers of

computer-based communication network message systems. Familiarity

with the Unix operating system, although not critical to an under

standing of the text, would be helpful to most readers. This document

is not intended to serve as a user's guide. As specific interfaces

with human operators are constructed forMS, specific user's guides

are being written.

-v-

SUMMARY

One of the earliest and most popular applications of the ARPANET

computer communications network has been the transfer of text messages

between people using different computers. This "electronic mail"

capability was originally grafted onto existing informal facilities;

however, they quickly proved inadequate. A large network greatly

expands the base of potential communicators; when coupled with the

communication convenience of a message system, there results a consid

erable expansion to the list of features desired by users. Systems

which have responded to these increased user needs have resided on

medium- and large-scaled computers.

The Unix operating system, which runs on DEC PDP-11 minicomputer

hardware, has not benefited from recent advances in network mail tech

nology. This report describes some of the issues surrounding the

design of such technology and specifies a system which transfers it to

Unix. In the form specified, MS is intended to be an interim facil

ity, having maximal utility for three to five years. In addition, the

system is expected to provide a base for future generations of Unix

message systems.

The MS environment consists of several pieces of software to com

pose, transmit, receive, review, and manipulate messages. Messages

reside in file "folders" and may contain any number of fields, or

"components". The user can arbitrarily name, create, and modify these

components. In particular, a draft message is provided for composing

new mail and modification of old messages is allowed. The user is

-vi-

thereby given a relatively homogeneous and unrestricted environment

for manipulating mail, although facilities for data-base management

(filing and cataloging) and for personal tailoring of system behavior

are relatively primitive.

The specifications in this report differ from the style of most

system specifications; normally, either the way the system is to

appear at its interface to human users, or else the range of primitive

operations and "data objects" available is defined. Although they

have more of the flavor of an interface description, the specifica

tions here do not describe the precise way in which users formulate

requests. That is, the functions, to be made available to human

users, are described; however, the command language for invoking those

functions is not. The reason for this idiosyncratic specification

style is that several very different command interfaces are being con

structed, and it is hoped that specification at this level will sim

plify the task of implementing them.

A number of features, normally reserved for user interfaces, are

provided by the basic MS system; it is intended that these features

will facilitate the design of interfaces to adequately respond to

psychological aspects of using interactive computer systems and, in

particular, that the appearance of the system will conform to typical

users' cognitive models of a message-processing environment. This

report includes discussion of these issues.

-vii-

ACKNOWLEDGMENTS

This system description has benefited from the support of a large

number of people. Many of the ideas in this document have been freely

incorporated from those instantiated in existing systems, mentioned in

the Introduction, and from a continuing set of discussions about mes

sage systems, which has taken place among more than seventy research

ers distributed around the country and using ARPA Network message sys

tems. In particular, Robert Anderson, Carl Sunshine, Stockton Gaines,

James Gillogly (all of Rand), Steven Zucker (formerly with Rand),

Stephen Kent (a summer Consultant from MIT), David Farber (University

of Delaware), John Vittal (Bolt Beranek & Newman), and Kenneth Pogran

(MIT) have reviewed and enhanced the original system specifications.

William Crosby is the system's primary implementor, with Steven Tepper

implementing the network, address, and initial command-specification

software; both have been diligent at finding inconsistencies in and

omissions from the original specifications. Sally Wallace, Grace Car

ter, and Lynn Anderson of Rand, and Cathy Koerner, formerly with Rand,

were tolerant subjects for informal experiments conducted to select

function characteristics for the system.

-ix-

CONTENTS

PREFACE. iii

SUMMARY..... v

ACKNOWLEDGMENTS. • . . . vii

FIGURES. • xi

Section
I. INTRODUCTION. 1

Background. 1
Framework for Using Message Systems..................... 3
An Operational Model. 4
Scope of Specification and Implementation............... 7
Overview of MS Design................................... 10

II. SYSTEM FRAMEWORK.......... 13
Message Folders. 13
Message ·Components. • . 15
Message Creation. • . 16
Text Transfer and Structured Text 16
Specification of Addresses 20
Transmission and Receipt of Messages•....... 21
Sequence Specification•........................... 22
Profile and More Structured Text 22

III. FUNCTION DEFINITIONS 27

IV. STATUS OF THE IMPLEMENTATION 41

V. CONCLUSIONS. • . 42

Appendix
A. SUMMARY OF FUNCTIONS...................... 45
B. SAMPLE COMMAND INTERFACE.................................. 49
C. NON-EXISTENT OR DISCARDED TEXT 57
D. A COMMAND INTERFACE SCENARIO•................... 59

REFERENCES. . • . 63

-xi-

FIGURES

1. Sample MSG session. 2

2. Sample Shell session ; 8

3. Sample MS session... 9

4. File and directory organization in Unix 14

5. Relationship between data in MS 18

6. Groups of messages (M) and components (C) 23

7. Defaults for the~ function 30

8. Defaults for the Map function 35

INTRODUCTION 1

I. INTRODUCTION

BACKGROUND

Time-shared computers typically have a system which allows their
users to pass informal messages among themselves. As long as a com
puter is not connected to other computers, its community of users
remains relatively small and geographically local, and its message
system tends to remain relatively simple and used only for terse,
infrequent communications.

The advent of the ARPA computer communications network (ARPANET)
(Roberts & Wessler, 1970; Crocker, Heafner, Metcalfe & Postel, 1972)
has dramatically changed such usage patterns. Message systems, cou
pled with a large network, result in a substantial pool of potential
users who can obtain rapid delivery of messages (relative to the U.S.
Postal Service) and an asynchronous interaction style which allows
composition, transmission, receipt, and perusal at the convenience of
each participant. The telephone allows more rapid delivery of infor
mation and an interaction style which often leads to greater effective
bandwidth, but it requires participants to schedule contacts. It is
therefore not surprising that a computer-based message system can fill
an important niche in human communication and has become extremely
popular with its community of users, replacing a substantial portion
of normal mail and telephone activity.

Initially, the network communication capability was simply
grafted onto existing intra-machine message facilities; however,
growth in use of the facilities has led to considerable expansion of
the list of features desired by users (Uhlig, 1977). For an introduc
tion to the context and economics of electronic mail, see Vezza
(1975), Vezza and Broos (1976), and Panko (1976).

The first integrated ARPANET-based software to gain wide accep
tance for this type of "automated office" application was the BANANARD
system (Yonke, 1975) and its successor, MSG (Vittal, 1975), written at
U.S.C. 's Information Sciences Institute (lSI) for the. Tenex operating
system (Bobrow, Burchfiel, Murphy & Tomlinson, 1971; Myer, Barnaby &
Plummer, 1971) which runs on Digital Equipment Corporation (DEC)
PDP-10 hardware. MSG provides basic capabilities for creating, send
ing, viewing, storing, answering, and forwarding messages; its data
base management and message-revision functions are rather primitive.
See Fig. 1 for an annotated scenario of a typical session with MSG.

Over the past several years, other message-system development
efforts have begun; all attempt to provide a quantum improvement to
the level of capabilities offered in MSG. Among development efforts,
Stanford Research Institute's Augmentation Research Center (Engelhart,
1972), lSI (Tugender & Oestreicher, 1975), Bolt Beranek and Newman
(Myer & Mooers, 1976), and MIT's Dynamic Modeling Systems project
(Broos, Black & Vezza, 1975) have been most noteworthy in the ARPA
community.

2 INTRODUCTION

User first types the character after"<-"; MSG prints rest of word; may be repeated for qualifiers, such as "all
messages". User's text is in boldface; comments are in the right column.

®MSG

MSG --version of 1 April1976

<- Headers All messages

1 22 OCT To: Deutsch

6 27 OCT Hathaway

<- Snd msg [Confirm] Yes

To (? for help):
cc (?for help):
Subject: Test

Message

Greep@ isd
Dcrocker@isd

[Complete typing message body.

Topic detection literature

Analogies

tz to finish, tN to abort]
This is a test message, being used to help generate
a scenario of MSG use, on Tenex, Dave.
tz

Greep at lSD -- ok
Dcrocker at lSD -- ok

<-Type 6

(msg. #6, 1500 chars)
Date: 27 OCT 1976 1218-PDT
To: Header-People at MIT-MC
From: Hathaway at AMES-67
Subject: Analogies

<<text of message from Hathaway>>

<- Answer message: 6

6 27 OCT Hathaway

[Complete typing message body.

tz to finish, tN to abort

Analogies

<<text of my response to Hathaway>>
tz

Hathaway at AMES-67 -- ok
<-Delete 6
<-Headers Deleted messages

*6 27 OCT
*9 6 NOV

Hathaway
To: Pogran

Analogies
Re: stuff

<-Exit and update old file [Confirm] Yes
Good-bye

Fig. 1-Sample MSG session

This is a menu of my messages

Create & send message

Primary recipients,
Secondary recipients
Topic of message

Text of message:

Indicates I am finished

The message has been
sent.

Print message #6 on my
terminal

I want to respond to
message number 6

Addresses automatically
filled out; I just write
my response text

Throw message away

INTRODUCTION 3

The Unix time-sharing system (Ritchie & Thompson, 1974), which
runs on DEC PDP-11 minicomputer hardware, has not benefited from these
later developments and has had only an informally-developed system
with capabilities at about the level of BANANARD. Rand has undertaken
the design and development of a more complete and integrated message
system, transferring proven message-system technology onto a minicom
puter. This system, called MS (pronounced "mizz"), was to provide
capabilities at least equivalent to those of the MSG system and it has
been designed to evolve to the level of state-of-the-art systems. The
initial version of MS was to have a projected life-span of three to
five years.

MS became operational at Rand at the end of 1976 and received
limited diStribution to other ARPA-project Unix machines by summer
1977. The system appears to provide a better framework for growth
than was expected. It has been continually modified, as experience
has uncovered deficiencies in the original design; no major problems
have been encountered in effecting these changes.

Due to the evolutionary nature of MS, this document cannot be a
definitive specification of all of the system's features. Therefore,
a portion of the text is devoted to extensive explanation of the per
spective with which design decisions are being made. Some of the per
spective is the result of constructing MS after the lSI, BBN, MIT and
SRI systems and reflects various of their characteristics. Since a
message system is a complex environment, it is not possible to list
those reflections accurately or completely. Attention also has been
given to the importance of psychological and environmental factors in
the use of interactive computer systems. While such social issues can
be characterized globally, and the resulting basic design decisions
can be discussed, it is not possible to explain all ways in which MS
has been affected by these considerations.

FRAMEWORK FOR USING MESSAGE SYSTEMS

As suggested by the sample MSG session in Fig. 1, messages on the
ARPANET can be characterized as "memos". They are relatively struc
tured and, since they must be represented in a single coding system
(the ASCII character set), can have only one typeface, size, and color
-- though it should be noted that the system or terminal used by the
receiver of a message can (at least potentially) choose the face, size
and color. At present, it is not possible to send drawings, fac
simile, speech, or structured text. Such restrictions make ARPANET
mail appropriate for most intra-organization and some inter
organization communications. The ARPANET message environment is
currently biased towards use as an informal communication mechanism
but is being adapted for more formal activity. In normal offices,
this combination represents a substantial portion of paper-based com
munication and can be expected to result in a considerable amount of
computer-based mail-processing. Experience with ARPANET message
activity by managers bears out this expectation. Even with somewhat
restricted machinery, such as terminals which print at only thirty

4 INTRODUCTION

characters a second, it is not uncommon for a user to process twenty
to fifty messages a day.

It appears that most users of computer message systems are
extremely intolerant of idiosyncratic system behavior. They wish to
use the system to communicate with other humans and do not want the
computer--the communication medium--to intrude on that process. Curi
ously, this fact tends to apply even to those with a high degree of
sophistication about computing.

This phenomenon also occurs with users of certain other tools,
such as text editors. These systems augment rather basic human com
munication activities and require a kind of "intimate interaction,"
which can be characterized as sustained request/response sequences
with most transactions involving conceptually simple actions by the
computer and requiring between one-half and two seconds to complete.
(Carbonnell, Elkind & Nickerson, 1968). Much of this activity is
characterized as requiring "routine cognitive skill" (Card, Moran &
Newell, 1976).

Since the system is to be used for communication which is exem
plified in older and heavily-exercised technology, it is assumed that
users have an extensive conceptual model of the communication domain.
It is further assumed that a system which performs in ways which devi
ate from that model will be viewed as "idiosyncratic" and impeding the
efforts of the user. Problems occurring during this sort of interac
tion can be expected to be as irritating as having a pen which leaks
or a typewriter with keys that jam. Therefore, a major design goal
for MS is to provide an integrated set of necessary and sufficient
functions which conform to the target user's cognitive model of a reg
ular office-memo system. At this stage, no attempt is being made to
emulate a full-scale inter-organization mail system.

AN OPERATIONAL MODEL

The scope of the MS project has not permitted empirical verifica
tion of the majority of its assumptions about the presence and charac
teristics of users' conceptual models for message activity. The pro
ject has had to rely upon the intuitive appeal of its assumptions and
the degree to which other systems seem to succeed or fail in terms of
their conformance and deviation from that model. Work by Heafner
(1976), Heafner and Miller (1976), and others suggests that the model
does exist and can be characterized. Work by Brown and Klerer (1975),
Kennedy (1975), Walther, (1973) and Carlisle (1974) suggests that the
degree to which a system conforms to users' expectations and abilities
will have a significant effect upon their use of that system.

Because the system processes structured "memos", the basic unit
of manipulation is taken to be the "component". A hierarchy is formed
by having memos (or "messages") consist of collections of particular
components, and "folders" as collections of particular messages. Mes
sages have some common components, such as "To", "From", and "cc", but

INTRODUCTION 5

individual messages may have additional components with unique names.
In addition, c~mmon names vary between contexts, such as the differ
ence between business and military terminology. MS attempts to give
users complete control over the naming and accessing of components.

A message assumes an identity as soon as any of its text is
created. Over the life of a message, various actions may be performed
on it. Some of these actions occur more commonly at certain phases
than at others; however, this generally does not mean that these
actions are prohibited during other phases. For example, a message is
often revised before it is sent and rarely revised afterwards; but
some revisions may occur, as when recipients make notations in its
margins or when one recipient is part of a message "coordination" pro
cess and charged with passing a revised version of the message onto
others.

Within an office environment, messages typically arrive at a
person's "inbox", are viewed and perhaps acted upon, and are then
filed into an appropriate folder which contains related messages.
Later, the person may wish to take other actions relating to the
material in the folder. All of this activity occurs on the person's
desk. Several folders may be open at one time.

Two of the more common actions people take are responding to a
message and forwarding a copy of it to others. In both cases,
material in the original message determines portions of the new mes
sage. For responses, the title ("Subject") and the names of the ori
ginator and recipients are used; and for forwarded messages, only the
name(s) of new recipient(s) must be added. Another common action is
the creation of a new message for a third party.

When a comparison is made between the way these actions are nor
mally performed in an office and the way they are performed using some
existing computer-based message systems, several issues of operational
styles surface:

1. Messages which are being created ("draft" messages) must be
treated in fundamentally the same way as messages which have
already been sent (and received);

2. A message may have "draft" status for an extended period of
time, rather than being sent immediately after creation; and

3. Several draft messages may exist at one time.

The first point implies a more general issue: humans often do
not make distinctions in the same ways as computers. For efficiency,
a computer might handle a draft message differently than it handles
"old" messages or that it might copy some kinds of text differently
than other kinds. Humans, however, are generally not conscious of the
conceptual distinctions which lead to these differences in handling.

6 INTRODUCTION

Imposing such distinctions upon users is another case in which the
system will probably be classed as idiosyncratic and counterproduc
tive.

The final way in which MS attempts to conform to users' expecta
tions is in the vocabulary used to describe and invoke its processing.
Concern for this level of detail has been questioned, on the theory
that humans are quite good at learning new terms and, in fact, they
are not consistent in their own use of vocabulary. That is, there
probably does not exist a set of terms which is consistent among users
and, even if there is, using that set rather than another will prob
ably not greatly affect a user's performance with, or attitude
towards, a message system.

In the belief that computer-oriented users and designers cannot
be used as references for testing the presence and nature of such
vocabulary in the potential user population, several informal experi
ments were conducted. Subjects were secretaries who had little or no
experience using computers. In each case, relatively neutral language
was used to explain a typical office situation which required use of a
single word for referencing a particular object or action. The sub
ject was then asked what word or symbol was most appropriate in that
situation. In most ca·ses, subjects immediately had a term they
thought best and the terms were relatively consistent among subjects.

For example, a message being created is called a "draft"; the
structured part of a memo is called the "headers"; and placing a mes
sage into a folder is called "filing". While such terms may seem
trivially obvious, many message systems use terms which do not even
approximate those offered by subjects. In fact, some systems use
terms which have significantly different implications. For example,
to "put" a message somewhere means that the original message changes
location; however in some systems, the word is often used to cause an
action which only places a ~ of the message somewhere. It should
be noted that, as Heafner (1976) has demonstrated, acquiring this sort
of empirical data, in a methodologically valid manner, is relatively
easy and inexpensive.

It is difficult to substantiate the claim that use of the most
predictable vocabulary actually affects users' performance and atti
tudes. Except for that cited earlier, little research has been done
to test the idea. It is noteworthy, however, that subjects in the
informal experiment often reacted quite strongly when queried for cer
tain vocabulary; their choices were so well-ingrained that they could
not believe there was any question about their selection. Telling
them of the terms used by some computer systems often evoked laughter~
It seems to the author that such a reaction establishes a mental set
which is quite likely to deter users from a system and cause them con
fusion when dealing with it. This is particularly critical during
their initial use, since they will often already have enough diffi
culty becoming familiar with computer-related conventions and concepts
that cannot be avoided.

INTRODUCTION 7

SCOPE OF SPECIFICATION AND IMPLEMENTATION

This document, and the style of the resulting system implementa
tion it specifies, is a bit unusual and deserves some explanation.
Most system specifications address either the human interface or the
internal design -- how the system appears to human users or what data
structures and function primitives are to exist. The specification
for MS is at neither level, although it has more of the flavor of an
interface description. In particular, the document.may be viewed as
specifying the human interface, minus the command language. That is,
the functions, to be made available to human users, are described; but
the precise way in which users formulate requests to MS is not.

The reason for this idiosyncratic specification style is that
several very different command interfaces are being constructed and it
is hoped that specifying the system at this level will assist inter
face builders in realizing and accommodating some of the user issues
described above. (The concern for proper vocabulary, therefore, is
more representative of a lobbying effort than of a guarantee for what
is to be provided in the command interfac~s.) Experience to date sug
gests that the construction of interfaces is, in fact, simplified.

Three general-purpose interfaces have already been constructed.
The first, described in Appendix B, is intended to be similar to the
basic syntax of the Unix Shell (Thompson & Ritchie, 1975), which is
the program that users employ to gain access to most of Unix's capa
bilities. (See Fig. 2 for a sample Shell session.) This choice was
made because MS is intended for use on other Unices in other environ
ments, and having a familiar command specification style was deemed
more important than providing an especially "friendly" interface.
Fig. 3 shows a sample session, using the Shell-syntax interface; and
Appendix D contains an extended example of using this interface. The
second interface constructed emulates the Unix "mail" command and is
primarily intended for use by programs to send mail to users. The
third interface emulates MSG, since MSG is a de facto standard on the
ARPANET, with behaviors that are already familiar to many people.

In general, it is expected that users will be provided with a
single command interface to the full message system, rather than be
forced to deal with two or more different systems--for example, one
program for creating and sending messages and another for reading and
filing them. This should not preclude additional interfaces to sub
sets of the system, as would be appropriate if the user only wanted to
send a message quickly. However, such programs should be strict sub
sets of the full system.

The level of the MS project effort has also had a major effect
upon the system's design. To construct a fully-detailed and mono
lithic message processing environment requires a much larger effort
than has been possible with MS. In addition, the fact that the system
is intended for use in various organizational contexts and by users of
differing expertise makes it almost impossible to build a system which
responds to all users' needs. Consequently, important segments of a

8 INTRODUCTION

The Shell types a"%", to indicate that it is ready for the user to enter a command. Commands are specified entirely

before the system attempts to perform them; boldface text is typed by the user and comments are in right column:

% dir

total 224
-rw-r--r-- 1 dcrock lOB Nov 5
-rw-r-r-- 1 dcrock lOB Nov 5
-rw-r-r-- 1 dcrock 3B Nov5
-rw-r-r- 1 dcrock 5B Nov5

% rrn *.bak

% cp gnorne.proto > gnorne.pr

%who

bjg ttyO Nov 5 13:33
mother tty1 Nov 5 12:55
herb ttyh Nov 5 12:20
dcrockerttys Nov 5 13:25
andersonttyw Nov 5 14:10

% rns

MS: 1-NOV-76
< < an ms session; then ... > >

>quit

%

14:15 Nov 5 14:10 gnome.proto
13:49 Nov5 13:49 gnome.proto.bak
13:12 Nov5 13:12 msg.proto
13:12 Nov 5 13:05 msg.proto.bak

Fig. 2-8ample Shell Session

What files have I when
created; how large; etc.?

Remove files with names
ending with ". bak ".

Make a copy of a file,

using a shorter name.

Who is using the system now?

Start the messafe system

Note the ''>"instead of
''% ", indi~ating use of a
different program.

We are back to the Shell

INTRODUCTION 9

Shows facilities similar to MSG, except for Draft message, which MSG does not allow user to revise conveniently; boldface text is typed by the user:

% ms

MS: 1-NOV-76

>scan all

1 <= (321) 25 Oct 76 farber Name change for system

17 (209) 5 Nov 76 DCROCKER Test

>show 17

(Message 1 7, 209 bytes-
Date: 5 Nov 1976 1249-PST
From:.DCROCKER at USC-lSI
Subject: Test
To: Greep at lSD
cc: DCrocker at lSD

User commands follow each " >" at beginning of lines

The "-"means that I have not
yet seen this message

This is a test message, being used to help generate a scenario of MSG use, on Tenex. Dave.
>reply 17

To: Greep at lSD
cc: Dcrocker at lSD
Subject: Re: [Test]
Additional cc:

Input body. End with <return> <control-D>. It's very strange repfying to a test message. Dave
Do you want to send the message now?

>show draft

To: Greep at lSD
cc: Dcrocker at lSD
Subject: Re: [.Test]
Additional cc: ·

No

It's very strange replying to a test message. Dave

The system automatically
creates To, cc, & Subject.
Then it prompts the user
for additional copies and
for text of response.

Done entering message

Review contents of the
draft message

> send
I'm satisfied it's ready to be sent

Message is being processed
Processing completed and draft discarded
> quit

Leave MS; return to Shell %

Fig. 3-Bample MS session

10 INTRODUCTION

full message environment have received little or no attention and
decisions have been made with the expectation that other Unix capabil
ities will be used to augment MS. For example, MS has fairly pr1m1-
tive data-base management (i.e., filing and cataloging) facilities and
message folders have been implemented in a way which allows them to be
modified by programs, such as text editors, which access them
directly, rather than through the message system.

OVERVIEW OF MS DESIGN

The original mail system on Unix was judged sufficiently pr1m1-
tive that compatibility with it was not attempted. For example, the
structuring of folders that contain messages differs. Current Unix
software which utilizes parts of the Unix mail facility therefore
needs to be modified to use the new and improved product. Systems
which merely create and then send messages need not be modified, since
the mail-command emulator interface allows creation of mail in exactly
the same way as is done by the old Unix mail system.

The MS message environment consists of several pieces of software
to compose, transmit, receive, review, and manipulate messages and to
tailor the message environment. In addition, there are file folders*
which contain messages. Messages, in turn, contain any number of
components. In accordance with the user issues discussed earlier, an
effort has been made to make the system as homogeneous as possible.
For example, messages which are being created by the user and messages
which have been received are equally accessible. Most system func
tions have a number of options available. To allow users to indicate
which option settings they typically wish to employ, a profile is
planned for each user.

Users will normally deal directly only with the Shell-invocable
software (see Fig. 2) and with the folders which contain messages.
The process of Composing messages entails placement of text into the
various components of a draft message. For example, names and
addresses go into the "To" and "cc" components and the text of the
message goes into the body. This may be done repeatedly, allowing the
user to employ a text editor to modify ~ndividual components.
Transmission is an automatic process which packages the draft message
to conform with ARPANET mail format standards (Pogran, Vittal, Crocker
& Henderson, 1977) and delivers it into the mailboxes of all the indi
cated addressees. When receiving messages, the user may selectively
Show them at the computer terminal. Further manipulation of mail can
involve Forwarding copies to additional recipients, Replying to its
authors, Filing for later reference, Listing copies on a printer

*Official names of MS functions begin with a captal letter and
are underscored whenever used in this document; other official termi
nology is underscored when introduced. Names of message components
are in quotation marks.

INTRODUCTION 11

and/or Discarding (into the system's "wastebasket").

The messages in a folder are like a stack of messages in a normal
office file folder; they are ordered and may be referenced by their
index number (i.e., position in the folder). Any number of messages
may be in a folder. They contain some number of components, most of
which may consist of arbitrary strings of text. In some situations,
batches of messages may be referenced; special labels are allowed for
specifying them. At any given moment, the system has a current folder
and a current message which are under scrutiny. (The standard folder
is the inbox). Having them keeps the user from being forced to
specify a folder and message index for every function. Contrary to
most other message systems, most MS functions can operate on any com
ponent of any message in any folder, without requiring the user to
respecify the current message or folder. Some functions cause the
index of the current message to be changed; these are indicated in the
functions descriptions, in Section III. When the user invokes MS, the
current message is set to be just before the first recent message, so
that the user may conveniently sequence through recently-arrived mail,
or to the first message in the folder if there is no new mail.

When a user issues a Shell command to start the message system,
the standard action will typically be to ~ a folder, where this
folder will usually be the user's primary folder, the inbox. (See
Fig. 3.) This folder is structured like any other file which contains
mail, except that ~ mail is placed there by the Unix mail delivery
system. Current specifications call for mail to be delivered only to
this folder; however, a later version may allow incoming mail to be
diverted automatically to other folders, as might be appropriate to
activities such as teleconferencing.

Modifications to processed messages (i.e., mail which has already
been sent or received by the user) are allowed; however, in some
cases, such modifications may cause the system to take note. Such
exception-taking is intended only as a safety feature, as described
below.

The system maintains a draft message, in its own folder. A mes
sage with "draft" status has not yet been Sent and is subject to more
modification than other messages and therefore is not subject to nor
mal access checking by functions. Current specifications allow only
one draft message at a time; however there appear to be no problems in
eventually permitting an arbitrary number of them. When a message is
sent, a unique message-id, a timestamp, and the name of the sender are
affixed if necessary.

The user can arbitrarily name, create and modify components.
"To", "cc", and "Subject" are common components, but others are possi
ble. For example, MS has a simple reporting mechanism, which allows
users to send comments and complaints to the MS support staff. It
automatically fills out the destination addresses and then prompts the
user for the report. It also creates a component called "MS-Version"
which allows the support staff to know what version of the system the

12 INTRODUCTION

user had. Such a component will not occur elsewhere, and users are
given equally unlimited creative license to formulate their own compo
nent names.

Note that no program need know the names of all possible compo
nents. To facilitate user specification and manipulation, command
interfaces typically maintain a list of the common· component names,
and the basic system is familiar with the required "Sender",
"Message-Id", "Timestamp", and "To" components, as well as "cc", "fcc"
(file carbon copy), and "Subject", for the draft. Contents of these
are verified or created by the system. With the exception of the
first three of these components, all components of all messages may be
modified, as described above.

Finally, any component may be passed to a program for manipula
tion. Formatting and typographical-error detection are two system
known programs. Others may be added, such as comparison of two ver
sions of a message.

SYSTEM FRAMEWORK 13

II. SYSTEM FRAMEWORK

MESSAGE FOLDERS

Unix organizes stored data files in a hierarchical fashion.
Indexes to files and other subordinate indexes are called directories.
The primary directory usually may be thought of as a filing cabinet.
In a typical case, the secondary directories may be thought of as the
drawers in the cabinet, and they may contain data files. Other organ
izational styles are possible and may become quite complex, as demon

strated by example C in Fig. 4 The simplest organization is to have
only one directory and keep all files in it. Whatever the case, the

user begins each session with Unix "looking at" an initial directory.
If this directory contains another directory, called mail, then vari

ous standard MS files or folders are placed there. Otherwise, these
folders are placed directly into the initial directory. Currently,
standard folders are inbox, draft, and msreport and backup folders for
draft and msreport; msreport is used by the Report function and will
not be necessary when MS allows multiple draft messages.

MS folders actually consist of two Unix files. One is a clear,
readable text file, organized in a fashion conforming to the ARPANET
standard syntax (Pogran, et al. 1977). The second is a parallel file

containing structure, status, and history information. Simple strings
of special characters are used to separate messages in the "clear

text" file. If a message's format is violated, recovery is then quite
simple, and the structural information in the parallel file is gen
erally redundant and easily reconstructed. The structural information
allows the system to manipulate messages and components efficiently.

This approach is in accordance with the concern for integrating
MS into the general Unix environment and for allowing the user to have

unrestricted access to messages, through other Unix word-processing
tools which are already familiar, such as text editors and Shell com
mands. Separating structural information from the data also makes it

convenient to have multiple "perspectives" (or indexes) to the data.

The parallel file is normally hidden from the user so that he must

only deal consciously with "real" message files.

Most text-transferring functions preserve the text in its struc

tured, processable form. The List, Scan, and Show functions are not

able exceptions and do not move the information in a form compatible

with further processing as a message, since they completely reorganize

the text into a single string. The ~ and Map functions can also
perform this alteration, under certain circumstances.

As more systems come to manipulate message files automatically,

the environment will have to distinguish between activity by humans

and activity by their software agents. An example of this problem

occurs when another computer program checks the inbox for certain

types of mail, but the human still wants to be notified of new mail.

Simply checking the length of the inbox file, or when it was last

14 SYSTEM FRAMEWORK

File
misc.

Initial directory
Crocker

t , t
File [;] File

inbox draft k

A. Simple directory, with no sub- directories

File
hours

Initial directory
Crocker

Directory
mail

Directory
things

File
inbax

File
draft
~
~
~
~

B. Directory with 1 level of sub-directories

(like cabinet with drawers)

Initial directory
Crocker

Directory
mail

File
thoughts

Directory
ms

File
inbox

File
draft

Directory
design

Directory
reports

C. Complex directory structure, with several levels

Fig. 4-Examples of file and directory

SYSTEM FRAMEWORK 15

read, will therefore not provide an accurate indication of when the
human last looked at the file. MS provides a solution to part of the
problem: a folder may be opened with a passive status, so that no
permanent actions can be performed on the folder. This capability
allows automata to peruse and copy the contents of a folder, without
leaving a trace of their activity in it.

MESSAGE COMPONENTS

As mentioned in the Introduction, a list of common component
names is generally maintained and is used for defaults with certain
functions; but such defaulting is only for convenience. At all times,
MS allows modification to this list by the user, either through the
Profile or at the time of creating specific components.

One of the pieces of information the system keeps about known
component names is whether they are used to specify addresses.
Including such a component in a message causes the message to be sent
to those listed in the component. The user is able to control whether
the contents of that component are included in the copy of the message
sent to:

1. All recipients of the message; or
2. Other recipients named in that list; or
3. Only the author(s) copy.

This curious feature is derived from the concept of the blind carbon
copy; the decision to provide so general a facility is due to a dis
cussion with Stephen Crocker of lSI, during which the variety of dis
tribution conventions followed by different organizations became evi
dent. Rather than impose a single style of distributing information
about who receives a message, MS lets individual users decide. The
Profile allows users to alter which components are candidates for con
taining addresses (to be interpreted by the mail-sending process) and
to alter the inclusion settings described above. In the case of the
third option, a recipient's copy will show only his/her name in the
component.

A more general facility would consider components to have a
"data-type", with various attributes. For example, the above case
would be of data-type "address" with a "distribution" attribute.

The system also allows specification of component equivalences.
That is, a component name may be equivalent to some "generic" name, as
in the case of "Action-to" being equivalent to "To". This facility is
necessary due to the amount of variety found on the ARPANET, in the
(justifiable) absence of complete naming standards. The author favors
this variety, since it is the only significant control the sender can
have on message appearance and the labels often have differential
import, as with military versus business memo terminology.

16 SYSTEM FRAMEWORK

MESSAGE CREATION

Normally, the draft message always exists, and is in a standard

message folder so that creating new message text, modifying it, and

then sending it when ready can be done in a fairly natural and user

controllable manner. The Compose, Ned, Ed, Correct, and Format func

tions, in particular, are provided to facilitate the process, but the

user may easily follow different creation paths with other tools.

As described earlier, three pieces of information (arid possibly

more, later) are not completely controllable by the user: message

creator name, message transmission date, and message identification

tag. The default is for the system to place the first two pieces of

information into the From and Date components, respectively. If the

user explicitly manipulates one, then its backup component (Sender or

Timestamp) is created. Neither the backup nor message-tag components

may be modified by the user.

While typing text into a component, users often need to be able

to indicate places for other text to be inserted from files such as

those containing documents. Although such an action is not handled by

the basic system, it should be a feature in most interfaces. A more

general capability would allow the user also to include text from

other components and from the output of programs.

TEXT TRANSFER AND STRUCTURED TEXT

By definition, the core of a mail system is its ability to

transfer text. When done between people or systems, this is message

transmission. Individuals spend most of their message processing time

transferring text within their own environment ("office" or "desk").

It is important, therefore, that this type of "local" text transfer

ring be easy to perform. MS attempts to provide reasonable access to

the functions that are most frequently useful for transferring text in

messages which are on a "desk". There is little experience with

unusual text transferring capabilities, such as "cut and paste" edit

ing, which might be desired by users of a computer-based mail system;

however, discussions and experience on the ARPANET have led to the

conclusion that the range of desired functions is large and as soon as

users can conceptualize a function, they want it very much.

A computer-based message system, like MS, must be able to

transfer fundamentally different types of text "objects", such as com

ponents, document files, and user input. This makes it very difficult

to characterize a conceptual space for a single, "generic" transfer

function; however MS attempts the characterization with its Map func

tion. The function represents another attempt to direct interface

builders, so that appropriate consideration will be given to the

psychological aspects of system behavior. This section analyzes the

transfer domain and describes its parameters, as used by Map. Actual

behaviors are described in Section III, "Function Definitions."

SYSTEM FRAMEWORK 17

The Map function represents an extreme attempt to provide the

user with as integrated an environment as possible. It assumes that

humans, in fact, are not aware of a distinction between transfers and

therefore do not want to be forced to make one. Experience with early

versions of MS suggests that the Map function may be overly ambitious.

The Add and ~ functions are provided to facilitate a subset of the

transfer functions which are performed frequently. The File function

also performs a transfer function; additionally it Discards the source

version.

A distinction must be made between human behavior which uses the

generic transfer function and the analysis which attempts to

understand it; this is similar to the distinction between "perfor

mance" and "competence" which linguists make. The former appears to

be common enough, normally, to be performed subconsciously, as indi

cated by the lack of "awareness" cited above; however, ga1n1ng an

intellectual understanding of the process appears to be quite diffi

cult.

Due to the difficulties in understanding the generic function, it

may be useful to review the domain of activity. The MS message system

interacts with a number of related entities. The basic computer

entity, which can be manipulated, is a string of text, usually

acquired from the user·• s terminal or from a data file which is not

part of the message system. Within the message system, these strings

of text are placed into various components of messages. A collection

of these components may constitute a message and a collection of mes

sages may constitute a folder. Messages and folders are said to be

"structured" because they are made of discrete sub-units. Fig. 5

shows the relationship between these entities.

Map is able
information about
transfer to make.
entities, all text

to embody the several types of copying by using
the source and destination to decide what kind of

Because of the structural relationship between text

transferring may be viewed relative to components.

Four parameters of transferring are discernible:

1. Merging to a string: if more than one component provides

source text, then whether to preserve their structural

integrity, versus merging their contents into a single

sequential string of text, e.g., a single component;

2. Merging to a message: if more than one message provides

source text, then whether to preserve the exact structural

relationships between the messages, versus mapping them into

a single structure;

3. Naming: if the source is a component, then whether to preface

the component's text with the component's name; and

4. Addition/Creation: whether the source is to be added to an

. ·18 SYSTEM FRAMEWORK

r-------------1
I

r------,
I

User•s ! Component A D terminal I (e.g., II tO II)

I
I
I D •••
I Component B ••• I
I (e.g., 11subject 11

)

I
I

D I
File of text; I Component C I e.g.,

I (e.g., llbodyll) a document •
I • •
I •••
I Message 1 Message 2 L ___________ .J L _____ .J

Folder

Fig. 5-Relationship between data in MS

SYSTEM FRAMEWORK 19

existing structure, versus having it added to a new one.

The second alternative of the first parameter will cause

transformation from internal message-system structure into clear text.

The second alternative of the second parameter causes several messages

to be merged into one. When the destination is merely sequential

(clear) text, the third parameter determines whether the text will be

"labelled" with the name of its originating component (e.g., "From",

"Subject" or "To"). The fourth parameter primarily distinguishes

between adding messages to a file and adding components to an existing

message. Having text "added to an existing structure" can involve

adding a message to an existing folder, adding components to an exist

ing message, or adding text to the end of an existing component. In

the first two cases, some new structure is also created, of course,

but the focus is upon the act of adding.

If, at this point, it seems questionable that this

attention to such complexities is really necessary,

remembering that if a person wishing to use one of these

does not find it available, s/he will curse the system

lack of foresight.

degree of
it is worth

permutations
designer for

Some examples of the transfers which users are likely to want to

perform, may help clarify the situation. Note that all text is

transferred from a source and is appended to the end of destination(!)

(components or folders), if they already exist:

1. The typical action of adding text, from a file or the termi

nal, to one or more components;

2. Merging the contents of existing components into a sequential

string and then copying it into one or more components, as

would be done when forwarding a message, by copying it into

the body of a new message, or printing a message on a line

printer;

3. Copying the contents of existing components into components

of the same name, in another message of the current folder;

this is a kind of "forms" processing;

4. Copying one or more messages to the end of a folder, that is,

filing mail for future reference.

5. Copying one or more messages to the end of a sequential

string (either a component or a document file), the logical

next step, after performing step 2, above;

6. Merging components of several messages into a single message

and then converting to a sequential format, as a formalized

combination of steps 2 and 5.

20 SYSTEM FRAMEWORK

SPECIFICATION OF ADDRESSES

Experience with processing mail on the ARPANET .has pointed up a
number of issues pertaining to the specification of addresses. The
network standard (Pogran et al., 1977) attempts to provide an adequate
base for responding to the most noticeable of these. While some of
them may seem trivial, they involve features and behaviors which com
monly are not present in ARPANET message systems. In particular, it
has been noticed that:

1. People's names are not the same as their addresses; several
people may share the same inbox (address); one person may
have several inboxes; and programs may wish to display a name
without its associated address;

2. Mailing lists can get quite long and there needs to be a
mechanism for using "named" lists;

3. To allow recipients to respond, a message often needs to
carry all of its mailing list with it;

4. It is often useful to put standard lists into online files,
rather than repeatedly to include their contents in messages;

5. It would be very useful to be able to send mail to folders
other than a person's inbox, such as in the case of telecon
ferencing in which messages could automatically be grouped
together, allowing the persons to peruse only conference mes
sages.

In MS, address lists can contain the following kinds of informa
tion:

List: Mailbox at Host, Person [Mailbox at Host],
at Host, Mailbox,) filename, <filename ...

Where:

List
Mailbox

at Host

Person
filename

>
<

is the optional name of the mailing list;
is an online reference name (usually the name of the
recipient's sigrion directory;
gives the name of the host computer on the ARPANET con
taining the Mailbox;
is the person's name;
is the name of a file, within the user's access space;
indicates that a copy of the message is to be placed in
the named file; and
indicates that the contents of the named file are to be
used as an address list.

SYSTEM FRAMEWORK 21

Naming the list allows a program to show only the name and not
burden the user with seeing all of the names on the list. "Mailbox at
Host" is the standard form of an address, and the recipient's name may
be added as indicated. Referencing a computer, without a mailbox,
indicates that following Mailbox references are on that computer,
unless otherwise indicated.

To the extent possible during specification, addresses are
checked for correctness, as soon as they are specified. For local
mail, the verification is complete; however for network mail, only the
name of the destination host computer can be checked. Mail which is
local to the user's computer is sent through the local transmission
mechanism, to avoid network transmission overhead.

It is often convenient to have a pseudonym for a person or group
of people. For example, "rha" is easier to type than "anderson" and
"ms-users" is easier to remember than is a list of twenty (or fifty)
different people. MS provides a mechanism for using these aliases.

In MS, such aliases may be included in incoming and outgoing mail
as if they were local names. When the system needs to use an address,
an alias is simply replaced by a string of text and the resulting
specification is treated exactly as if it was the original text. To
utilize aliases on outgoing mail, MS first checks the aliases defined
by users, in their Profile. If the alias is not there, MS then checks
the Unix-wide alias files. If necessary, the list of known local
users is then checked. This scheme allows maximal power for user
tailoring of names. For incoming mail, the search of the personal
alias information is omitted. Also in outgoing mail having an alias
from a personal list, the text that is shown in the message is of the
text which replaces the alias. This is done so that, on other sys
tems, legal addresses can be formed by programs that automatically
generate addresses, such as is described for the Reply function in MS.

A message may contain several address lists, which can be viewed
as defining different "communities". A person may be a member of more
than one of these communities and may therefore appear on more than
one mailing list. In order to allow independent manipulation of these
lists, the person's name must be retained on each of them; however, MS
will only deliver one copy of a particular message to the person.*

TRANSMISSION AND RECEIPT OF MESSAGES

All mail--both local and network--is sent and received through a
special "post office" (a program in the sender's and receiver's host
computer) which delivers mail to the user's primary mailbox (inbox)

*Such per-component manipulations appear to involve issues which
are also relevant to providing multi-level security in a message sys
tem.

22 SYSTEM FRAMEWORK

and may update any associated file structure information.

A feature is provided which periodically checks for recently
arrived mail in the user's inbox. Recent mail is defined as not hav
ing been accessed by the human (because they have not yet invoked or
utilized the message system, since the mail arrived). The Shell will
automatically check for new mail when the user returns to command
level (i.e. , where the "%" is typed in Fig. 2), after a fixed interval
since the last check. Contrary to some current implementations else
where on the ARPANET, this notification does not blindly recur until
the user accesses the messages; one or two notices is enough. If the
user's Profile allows, the notification also includes a Scan listing
(see "Function Descriptions") of the new message(s). --

SEQUENCE SPECIFICATION

Within a folder, messages can be referenced by their index number
(which indicates their position in the file) and a collection of mes
sages can be referenced at one time, by using commas and dashes as
connectors. They have the obvious meaning, so that the specification
"1,7-9,21-2,100)99" refers to messages one, seven, eight, nine,
twenty-one, twenty-two, one hundred, and ninety-nine. The angle
bracket is like dash, except that it indicates that the sub-list is in
descending order.

Also, name combinations can be used to reference a particular
group of components and/or one or a batch of messages. The system
will recognize a number of keywords as pre-defined sequences. Fig. 6
indicates the terms that are currently available. Current specifica
tions allow additive combinations, so that "recent, 10-15, last" will
include all recent messages, the tenth through fifteenth messages in
the folder, as well as the last message in it. Redundant references
are not removed, so that if message fifteen is also the last message,
it will occur twice. Full Boolean specification capabilities are not
provided but are intended for a future version of the system.

PROFILE AND MORE STRUCTURED TEXT

This specification provides only minimal capabilities for the
tailoring of MS' performance. In general, the user is able to over
ride (Profile-set) defaults for individual executions of functions.
The entire topic of individually tailorable setting~ is an open
research question, so no attempt has been made to define an overly
sophisticated facility.

At the time of this writing, no portion of the Profile has yet
been implemented. As experience developing the existing system has
emphatically shown, it is highly likely that the actual form of the
Profile will differ, in significant ways, from the specification in
this document. In addition, discussions are underway about general
"user model" features to be employed by the variety of personal-

Symbol ~

(name) (M)

all (MC)

current (M)

discarded (MC)

draft (M)
filed (MC)

flagged (MC)

last (C)
msreport (M)

new (M)

next (M)

not
old (M)
other (C)

previous (C)

recent (M)
replied (M)

seen (MC)

standard (C)

SYSTEM FRAMEWORK 23

References

Parenthesized name of a component refer
ences all messages which have a compo
nent with indicated name and contain
the string of text indicated by the fol
lowing argument ignoring any distinction
between upper and lower case; e.g.,
"(from) dcrocker";

(Or the character "*") All messages in the
folder; or all components which are
either part of the system's list or men
tioned explicitly (for example, the
actual component names of an existing
message);

(Or the character".") The message current
ly under scrutiny;

Mail which has been discarded but which the
janitor has not yet taken away;

The single message which is being prepared.
Messages which have been copied (or filed)

into another folder;
User-specified flag for trivial sub

grouping of messages;
The last message in the folder;
The single message which is created by the

Report function.
Mail which has arrived since the start of

the current session;
The first message after the "current" one;

may be qualified by another keyword;
The complement of the next keyword;
Short for "not recent";
Components not explicitly mentioned by

user or included in the system list;
The first message preceding "current" one;

may be qualified by another keyword;
Received since user last used system;
Has been marked as replied to; (also may

be referenced as "answered");
Has been completely processed by a Show or

List;
Component names which are part of MS's

list.

Fig. 6: Groups of messages (M) and components (C)

24 SYSTEM FRAMEWORK

computing software being developed at Rand. It is intended that the
MS Profile facility will be fully integrated into this more general
user-tailoring system.

For the most part, the MS Profile facility uses the approach
taken by the Hermes system, developed at BBN (Myer & Mooers, 1976),
which has a relatively unorganized and large set of "switches" which
can assume particular settings. A major difference is that the inter
face to the Profile is, itself, a series of messages, maintained in a
separate folder. That is, the user alters Profile settings in exactly
the same way as components of messages are altered. For the Profile
"messages", a component name indicates the name of a Profile switch,
and the contents of that component contain its setting. The user
therefore does not need to learn any new concepts or interaction
styles to be able to manipulate the Profile; and as a side benefit,
the Profile settings can be shared with other users and other machines
by the normal process of sending messages via the MS system. It also
appears that a "message" may provide an excellent conceptual framework
for coding structured information, when dealing with typical users.

Evidence from some research on memory behavior suggests that
humans have short-term memory difficulty in processing "structured"
information with which they are unfamiliar (e.g., Yntema & Meuser,
1960; 1962; Yntema, ·1963; Yntema & Schulman, 1967). This type of
information is organized into a hierarchy, or "outline" form. For
example, a meal consists of several dishes. The category of dish
(e.g., vegetable or entree) is one "level" in the structure while the
actual dish for a particular meal (e.g., spinach or chicken)
represents the "value" for that category. This defines a two-level
structure, which can be extended to three levels if different meals
are distinguished (i.e., meal, dish category, actual dish).

At issue is not the general ability of a person to deal with
structured information, which is well documented, but rather to
correctly and facilely process such information in real-time, when
that information is unfamiliar to the person. The task seems to
require rapid and conscious manipulation of the full information
structure. Such performance requirements are generally understood to
involve a mechanism known as "short-term memory," which is usually
unable to hold more than approximately seven items of information at
any one time (Miller, 1956). To circumvent this limit, people "chunk"
information into sub-units, thereby defining the type of "outline"
form described above. When the information is familiar to a person,
knowledge about its structure is already stored into the infinite
capacity "long-term memory," so that s/he tends to have little diffi
culty in accessing arbitrary information in the structure. However
with unfamiliar information, excessive hierarchization appears to
overload humans with the details of the structure itself. An example
of the difficulty is the number of preceding conversational contexts
people can easily remember when they are repeatedly interrupted. Peo
ple often are unable to remember what was being discussed only one
context before the current one.

SYSTEM FRAMEWORK 25

For the purposes of defining Profile switches, a three-level
structure, often described as consisting of objects, attributes, and
their values--embodied in MS as messages, components, and their
contents--provides a reasonable compromise between the competing con
straints. In addition, the concept of a message, with components, is
already familiar to people and will become more familiar as they use
message systems; so they should not need to learn any new concepts to
manipulate a Profile which is organized as a set of messages. Furth
ermore, the message system can provide a familiar and uniform inter
face to the Profile information, although particular software may want
to have specially-tailored interfaction with it. Since folders are

. regular Unix files, such software need not go through the message sys
tem to access Profile information.

The following is a list of the features which are being provided;
the major groupings (in capital letters) are according to the "mes
sages" the user manipulates and the subordinate labels are the compo
nent names for the switches. The most common options for a switch are
"yes", "no", or "ask". For the last alternative, the system each time
asks the user if the option is to be performed each time possible; a
few of these types of switches can only be yes or no.

NEW-MAIL:
Notify:

Whether to be notified of~ mail; [yes/no].
Scan:

Should notification include a Scan display; [yes/no].

CREATION:
Signature:

Name to be used in the "From" component of messages created by
the user; the exact text of this field is used as the signa
ture.

Compose-contents:
Reply-contents:
Forward-contents:

These are intended to allow the user to tailor how the three
functions create messages. In particular, what components to
prompt for, what default fill-in text to place in components,
whether to copy responses to other primary recipients, secon
dary recipients, and/or a personal file, and whether to pro
vide feedback before sending a message. It is not yet clear
how to have the user specify preferences. One thought is to
use the RITA system (Anderson and Gillogly, 1976a; 1976b)
developed at Rand, which is already intended for the construc
tion of computer "agents" to act in the user's behalf.

Body-fill-in:
Whether always to format the body component of the draft, by
filling and possibly justifying lines within paragraphs, as if
the "Format" function had been invoked; [yes/no/ask].

26 SYSTEM FRAMEWORK

COMPONENTS:
Equivalences:

Indicates equivalences between components, such as To and
Action-to; a series of lists are used to indicate the
equivalences. The lists are separated by semicolons or
periods. For example: "To", "Action-to", "For"; "cc", "Secon
dary", "Info".

Address-lists:

ALIASES:

Names of components to be treated as address lists; and which
address component lists are to be shown in messages to all
recipients, members of the same list, or not shown at all.
Each component name is followed by the keyword "everyone",
"members", or "authors," to indicate whether the text of that
list is to appear in copies of the message sent to everyone,
only other members of the address list, or only author(s) and
the individual recipients respectively.

Addressee aliases used during message creation. The name of a
component contains the name to be typed by the user and the
rest of the component contains the text that is to replace it.
These aliases are only a typing convenience for individual
users; the system-wide alias list, however, extends the number
of "public" names.

TRANSFER:
Copy-display:
List-display:
Show-display:

The same use as for Compose-, Reply-, and Forward-contents,
except that this controls the display, rather than acquisition
of text for the indicated function; may also be viewed as
"filtering out" parts of messages.

MISCELLANEOUS:
Alias-expansion:

Whether the system is to print out the expansion of personal
aliases, at the time of their specification; [yes/no/ask].

COMMANDS:
Standard option settings to be used for individual commands.
The name of a component is the name of the command and its
contents are the standard settings. For example:

Scan: recent
List: -paginate -separate) listing-file
Format: -justify

mean that normally, the Scan function shows all
sages; the List function paginates it output,
new message on a new page and places the listing
"listing-file"; and the the Format functional
right-justify text.

recent roes
starting each
in text file
will normally

SYSTEM FRAMEWORK 27

III. FUNCTION DEFINITIONS

For a summary of functions, see Appendix A.

The following is not a description of what is actually typed by

the user, as there are several different human interfaces which are

being constructed. The descriptions which follow are of the functions

which will be available to users and of the vocabulary to be used in

the command interface which approximately conforms to the Shell's

syntax--see Appendix D for a description of that interface. The voca

bulary is also believed to be appropriate for other interfaces.

These notational conventions are used for the following specifi

cations:

(component)
(components)
(draft)
(file)
(msg)
(msgs)
()

=) a single message component;
=) a sequence of message components;
=) the draft message;
=) a file name;
=) a single message;
=) a sequence of messages;
=) other parameters, explained

within text of particular
descriptions;

=) optional information;
=) alternative specifications, one

of which must be used.

Many functions change which message is the current one. In the

following, descriptions indicate the rule for assigning the current

message; no indication is made when the function does not affect the

current message.

Except when a component is being modified through a text editor

(i.e., Ned (Bilofsky, 1977) or Ed (Thompson & Ritchie, 1975)) text is

always added to the end of components. This is done in a line

oriented manner; that is, the last character of a component is always

an end-of-line, even if the appended text does not end with one.

Add (components)

The user is successively prompted for text, which is then Copied

from the user's terminal to the end of each named component, in the

draft. "Components" defaults to "Body".

Annotate (components) (msgs) (editor)

Allows modifying text in messages, while explicitly marking the

modifications to the original text. The integrity of the original

messages is thereby retained. The indicated text "editor" is

28 FUNCTION DEFINITIONS

repeatedly called with the contents of the named components. The
user may then make any changes described. When a component is
returned to the system, it is automatically compared with the ori
ginal form of the component and changes are surrounded with text
marking them as annotations. The original versions of annotated
components are saved in the draft backup folder. During implemen
tation, various ways of marking changes are being tested. "Com
ponents" defaults to "Body" and "msgs" defaults to the current mes
sage. The last message in "msgs" becomes the current message, if
it is not the draft.

Cleanup

Causes discarded messages to be expunged from the current folder,
and discarded components to be expunged from the draft. For
safety, command interfaces should require confirmation of this
function, due to the impossibility of reversing its action. Note
that no single function has been defined to perform a Cleanup and
then automatically Quit, although most other message systems pro
vide such a function. Cleanup is a sufficiently dangerous function
that it should be completely isolated from other functions.

Also, it is planned that the remaining messages in the folder may
be automatically sorted according to transmission date, author name
or the like. More complete specification of this capability is
deferred for the time being.

Compare (component) (msg) (component) (msg)

This is a generalization of the behavior described for the Annotate
function. Text in the first component is compared with the text in
the second component and differences are noted (in the first compo
nent). As with the Annotate function, the method for marking
differences has not yet been determined.

Compose (components) (preserve)

Allows the user to enter text to the "To", "cc", "Subject", and
"Body" components in draft. That is, the user is assisted in com
posing a simple message. If the draft already contains text, then
the user is asked if a) it should be discarded, or b) if Compose
should add onto the end of the text. At the end of the sequence,
the user has the option of sending the message or returning to com
mand level. If the draft is sent, it may be "preserved". "Com
ponents" alters the sequence of components for which text is

prompted and facilitates creation of additional components. The
system complains if the draft is not empty at the time this func
tion is invoked and queries the user about proceeding.

(file)
(msgs)
(msgs)

(component)
(component)
(folder)

FUNCTIONDEFINITIONS 29

(name)l
}

This function provides a subset of the capabilities offered by the
Map function. In particular, it is intended to facilitate perform
ing the most frequently-used text transferring functions, without
requiring the user to deal with the full complexity of the Map
function.

The function's first alternative form allows copying the contents
of a "clear text" file (one that is not a folder) to the end of a
component of the draft message. The second option allows copying
one or more existing messages onto the end of a component of the
draft; "name" will cause the copied text to be prefaced with the
name(s) of the source component(s); and the third option allows
placing a copy of one or more messages, in the current folder, at
the end of some other folder. In this last case, as with the third
option of the Map function, the original messages are Marked as
having been filed.

The ~ function is quite a bit more limited than the Map func
tion. If the destination is a component, then it may only be in
the draft. The source may be either an external file or else an
entire message; selection of separate components is not allowed.
The first alternative is like the Add function, except that the
source of text is a file, rather than the user's terminal; and the
third alternative is like the File function, except that the source
messages are not Discarded. The last message in "msgs" becomes the
current message, if it is not the draft.

Fig. 7 indicates the defaults used for each of the three options of
~·

Correct (components) (msgs) (file)

Passes the named components through the
detection program, which makes lists of
A list is either placed into a component,
sage, which begins with the same name as
ined, but also has the suffix "-typos".
may be placed into the indicated "file".
"body" and "msgs" defaults to draft. The
becomes the current message, if it is not

Describe (keyword)

Unix typographical-error
possible spelling errors.
in the associated mes
the component being exam
Alternatively, the list

"Components" defaults to
last message in "msgs"
the draft.

This function is intended to allow the user to peruse online infor
mation about MS, while the Help and Syntax functions assume more
urgency. A special message folder is searched for a message with a
special component which contains the keyword and all the associated

. 3.0 FUNCTION DEFINITIONS

Option
Source Destination

Comments
Message fi I e Component folder

1 XX body

2 Current XX with (name) ?

3 Current XX

11 xx 11 indicates that the parameter must be specified explicitly

and may not be defaulted.

Fig. 7-Defaults for the Copy function

FUNCTION DEFINITIONS 31

text is shown to the user. Note differences from the Help and
Syntax functions.

Discard (components) (msgs)

Marks the indicated components as discarded from the message(s),
but does not physically remove the text or re-order message number
ing in the folder. This action is like placing a message in the
wastebasket; it is still available, but somewhat less convenient to
access, and is subject to permanent removal later, by the Cleanup
function. Note that, as with other functions, this can be applied
to the draft message. "Components" defaults to "All". "Msgs"
defaults to the current message. A Discarded message is merely a
message with all of its components deleted. If no Cleanup has been
performed after a Discard, then the Retrieve function can be used
to "un-discard" components, retrieving them from the "wastebasket"
and placing them back on the "desk". The last message in "msgs"
becomes the current message, if it is not the draft.

Ed (components) (msgs)

Repeatedly invokes ·the Unix Ed text editor (Thompson & Ritchie,
1975) with the contents of each named component. If the components
are from old (non-draft) messages, the user is warned that the
integrity of the messages may be compromised and the command inter
face usually requires confirmation. "Msg" defaults to "draft" and
"components" defaults to "Body". The la.st message in "msgs"
becomes the current message, if it is not the draft.

File (msgs) (folder)

Copies all components of the indicated "msgs" to the end of the
named message file and then Discards them from the current file.
"Msgs" defaults to the current message. The last message in "msgs"
becomes the current message, if it is not the draft.

Format (components) (msgs) (justify)

Passes the named components through a fill-in/justify formatting
program. The program causes blocks of text, separated by blank
lines, to have lines filled-out with text, as close to the right
margin as possible. "Components" defaults to "Body,. and "msgs"
defaults to "draft". "Justify" is a flag which determines whether
text is to be right-justified or not. The default is not to jus
tify, but this is of course settable in the Profile. This function
is capable of being sufficiently traumatic that the previous ver
sion of the text is saved in the draft backup folder. The last
message in "msgs" becomes the current message, if it is not the
draft.

32 FUNCTION DEFINITIONS

Forward (components) (msgs) (preserve)

Packages up existing message(s) for transmission to additional mail
receivers. As with Compose, the draft is checked for existing
text. Copies the "Subject" component, from the old messages, into
the "Subject" component of the draft, bracketing each line. The
resulting "Subject" component is displayed at the user's terminal.
Allows the user to Add to the Body of the draft, if the user wishes
to make comments about the text being forwarded; and then Copies
the indicated components of the indicated messages into the Body of
the draft, separating each message with some bracketing text:
"--- Forwarded messages:" goes at the beginning, "--- End of for
warded messages" at the end, and a line of dashes in between mes
sages. "Components" defaults to "All" and "msgs" defaults to the
current message. "Preserve" is the same as for the Send function.
The last message in "msgs" becomes the current message, if it is
not the draft.

Goto (msgs)

The first message in "msgs" becomes the current message, if it is
not the draft.

Help (keyword)

This is a primitive facility for providing online assistance. A
special message folder is searched for a special component contain
ing indicated text and the user is given text associated with the
Summary and Syntax components of the Help messages. Note the
difference from the Describe function. Calling this function with
no parameters causes a general assistance message to be printed.
Synonyms are allowed, to catch errors in terminology and typing,
and they are pointed out to the user. The same kind of feature is
provided in the initial user interface, to allow misnomers. One
type of statistics gathering which the system will perform is of
the incorrect command words chosen by users. These will later be
added to the list of synonyms.

List (components) (msgs) (separate) (paginate) (heading) (file)

This is a primitive function for producing page-formatted sequen
tial (e.g., hardcopy) output. The function creates a clear,
sequential and "unprocessable" text copy of the named components.
"Separate" indicates pagination between messages. "Paginate" indi
cates paginations within messages. "Heading" causes each page of
output to be prefaced with the indicated text. When more than one
message is Listed, a Scan listing is pre-pended. This function is
not intended for producing text to be displayed on a CRT terminal,
but rather for printing on a hardcopy device. "Components"

FUNCTION DEFINITIONS 33

defaults to "All". "File" defaults to the text specified in the
Profile. "Msgs" defaults to the current message. The last message
in "msgs" becomes the current message, if it is not the draft.
"Separate" and "paginate" are also defaulted.

Map l(file)
(components)(msgs)
(components)(msgs)

(components)(msgs)
(components)(msgs) (join)
(file/folder) (join)

}
(name) }
(name)}

(discard)

This is the basic text transferring function which can be used to:

1. Add text, from some file or from the user's terminal, into
one or more components of one or more messages; (Option
1);

2. Add to existing components, or create new ones, based upon
the contents of old components; (Option 2);

3. Transfer copies of components or entire messages to the
end of other folders; (Option 3);

4. Transfer copies of components or entire messages to other
types of files (i.e., "clear" text files); (Option 3, with
"join" specified).

See also the Add, ~, and File functions which offer tailored
subsets of this function.

The name for this function is somewhat less predictable than the
names given to other functions. Because of the function's general
ity and complexity, it is expected that users will not frequently
employ it, so a name was chosen which would be likely to decrease
the chances of a user's accidentally invoking it. User interface
builders, of course, may wish to use some other term; the word
"map" is intended as a guide.

For the second and third alternatives of the function, the "dis
card" switch may be used to cause the original (i.e., the "source")
copy of the transfered text to be discarded from the mailbox. For
example, the File function uses the switch to give the appearance
of "filing" the--;e;sage, itself, into another mailbox.

As explained in the section describing the Text Transfer domain,
the Map function uses information about the source and destination
specifications to decide what kind of transfer to make. Four types
of· transfers are described above. A fif.th can be distinguished by
the use of the "join" switch with the second alternative. The pri
mary unit of transfer is the component.

34 FUNCTION DEFINITIONS

The first alternative is a transfer of sequential text, either from

a file or from the user's terminal, added to the end of the desti

nation components. Thus the user can include standard mailing

lists to address components, prepared documents to the Body of the

draft, and so on.

The second alternative also depends upon the "join" switch and

whether the user indicates specific "components" for both the

source and destination. If "join" is not set and only one list of

components is specified, then the transfer is a map of those compo

nents from the source message(s) onto components of the same name

in the destination message(s). If "join" is set or the user does

specify both component lists, then the source components are joined

into a block, as described for the fourth alternative, and added to

each of the destination components. If "name" is set, then the

names of the source components are added as prefatory text to the

transferred string.

The third and fourth alternatives depend upon the "join" setting.

Normally, the second alternative applies and the function creates a

copy of a structured set of components (which thereby constitute a

message) at the end of another folder; this action is equivalent to

the third option for the ~ function.

If "join" is indicated, the fourth alternative applies; it is like

the second alternative, except that the destination is an external

file and not a structured message. The components are merged

together, to form a non-structured, "clear-text" string of text

which is then appended to the end of the indicated file. In this

type of transfer, the copied text is no longer accessible as a mes

sage.

Fig. 8 indicates the ways that defaults are used to make specifica

tion more convenient. The first two entries for option 2 cause the

same behavior; the user simply indicates the single component list

differently.

Mark (components) (msgs) (status)

Alters the setting for the indicated status, such as "examined",

"flagged", "answered", or "discarded". The Discard function is a

special case of this function. MS is designed to allow easy addi

tion of new status indicators. The last message in "msgs" becomes

the current message, if it is not the draft.

Ned (components) (msg)

Same as Ed function, but invokes the Ned two-dimensional CRT editor

(Bilofs~ 1977), which normally requires the user to have an Ann
Arbor 40-line terminal. "Msgs" becomes the current message, if it

is not the draft.

FUNCTION DEFINITIONS 35

Source Destination
Option

Cmpnt Msg file Cmpnt Msg file
Join Comments

1 XX body draft

2 XX current (< =) draft no Components
share meaning

2 (= >) current XX draft no in these two

2 all current body draft XX

3 all current XX no

4 all current XX yes

None XX XX Need destination

11 xx 11 indicates that the category of information has been specified explicitly

by the user; 11 = > 11 and 11 < = 11 indicate that the component

specification is the same as the one specified explicitly by the user.

Fig. 8- Defaults for the Map function

36 FUNCTION DEFINITIONS

Next

Shows the next message which is not discarded, relative to the
current message. (Note the difference in meaning between this and
the "next" message-reference keyword, in Figure 6.) Since a folder
holds messages much like a file folder in an office, it is not pos
sible to go to the "next" message after the last one; an error mes
sage is produced if this is attempted. The message shown becomes
the current message.

~ (folder)

Switches primary attention to another folder. The ~ function
itself does not make any modifications to the original folder.
When the system is first started, the user interfaces usually
default to opening the user's inbox. However, they often can take
an argument to cause the system to start with another folder. The
basic system does not keep track of previously-opened folders,
although interfaces may wish to, so that users can easily return to
folders, without having to remember their names. Any new messages
are incorporated into inbox each time it is opened. The default
for this function is the user's inbox.

Previous

Shows the previous message which is not discarded, relative to the
current message. (Note the difference in meaning between this and
the "previous" message-reference keyword, in Figure 6.) Since a
folder holds messages much like a file folder in an office, it is
not possible to go to the "previous" message before the first one;
an error message is produced.if this is attempted. The message
shown becomes the current message.

Process (components) (msgs) (program) (replace) (file)

Consecutively passes the named components to the named program.
"Replace" indicates whether the output, produced from the process
ing, is to replace the original version of the components. If the
components are not to be replaced, then the output is placed into
components of the same messages which have names that are the con
catenation of the original components' names and the "program"
name. For example, Correct will normally place its output into
"body-typo" in the draft. Correct uses Typo; Format uses Nroff.
Alternatively, the output may be placed in a "file". If a compo
nent is replaced, then its original version is saved in the backup
draft folder. The last message in "msgs" becomes the current mes
sage, if it is not the draft.

FUNCTION DEFINITIONS 37

Causes the mail system to stop and returns the user to the calling
program (usually Shell). Maintains enough information about a
user's session to allow continuation of it when MS is run again.
Notices when draft is not empty and notifies users (in case they
forgot to send the message). This notification may become optional
as determined by a Profile setting.

Reply (msgs) (recipients) (folder) (verify) (fcc) (preserve)

Facilitates sending a message in response to received messages. As
with Compose, the draft is checked for existing text. The To com
ponent of the draft message is built from the From components of
the indicated "msgs", the cc component is optionally built from
address lists in the components named in the "recipients" parameter
and from user input. If specified, the "fcc" component (file car
bon copy) is set to be the "folder" specified or else to default to
the user's inbox.

The Subject component of the draft is built from the Subject compo
nents of the indicated messages and, optionally, from user input.
The text taken from the old messages is prefaced by "Re:"; to avoid
a large number of nested brackets to occur, as a result of repeated
replying, the preface is used only if one does not already exist,
as when replying to a reply.

An In-Reply-To component is Added to the
names (but not addresses) of the authors
the dates (day and month) their messages
sage identification tags. This text
English.

draft and contains the
of the original messages,

were sent, and their mes
is written in grammatical

After the standard components are created, their contents are
displayed at the user's terminal, to allow verification. Then the
user is allowed optionally to Add to the Subject and cc components
and then to Add to the Body component of the draft. And finally,
the message is optionally sent, as if a Send function had been
invoked; and the old messages are marked-;;-having been Answered.
Other defaults are specified in the user's Profile. The verify
switch is used to have the system request the user to "verify"
inclusion of each potential recipient. And the "preserve" parame
ter is the same as for the Send function. "Recipients" defaults to
the exclusion of all components; i.e., only the originator(s) will
receive a copy. The last message in "msgs" becomes the current
message, if it is not the draft.

38 FUNCTION DEFINITIONS

Report

Allows users to send comments and complaints to the MS support
staff. In reality, this function merely steps the user through a
special Compose, creating an additional draft, and then automati
cally Sends the message to the appropriate people, including the
report's author. A special draft, called "msreport", is maintained
and is accessible in the same manner as the regular draft message.
The user's regular draft message is not affected. Copies of
reports are saved, in the draft backup folder.

Retrieve (components) (msgs)

The complement of the Discard function, which also works for the
draft message. "Components" defaults to "All", "msgs" defaults to
the current message. Computer users often call this an "undelete"
function. The first message in "msgs" becomes the current message,
if it is not the draft.

Revise (components) (msg) (editor)

This feature is intended to allow modifications to be made to
existing messages, without explicitly indicating the strings of
text which are changed. A separate component is used to record the
fact of the modification. This latter component is like an audit
trail. To a large extent, this function will be used when the
reviser is violating the integrity of the original message but
wishes to attribute original authorship. The function repeatedly
invokes the indicated text "editor" on the named components. When
revision is completed, a "Revision" component is Added to the mes
sage, with the user's name, the name of the revised component, and
the date. If no "Revision" components currently exist for that
message, then an "Originator" component is set to contain what was
originally in the "From" component. The system therefore maintains
an audit trail of modifications and preserves the name of the
author of the message's original version. "Components" defaults to
"Body" and "msg" defaults to the current message. Note that this
function is not intended for use with the draft message, although
such use is not prohibited. The last message in "msgs" becomes the
current message, if it is not the draft.

Scan (msgs) (file)

Scans the messages and displays a "table of contents" listing of
the indicated sequence of messages. The table includes folder
index number, date sent, who from, the Subject component of the
message, and indication of various aspects of each message's
status. If the message contains no Subject or "Re" component, the
initial portion of the message "Body" text (enough to complete the
current line) is displayed. This text appears in the form

FUNCTION DEFINITIONS 39

("this is the beginning ... ")

complete with parentheses, quotation marks and elipses. Given the
current limitations of display format specification, this function
cannot be defined in terms of a ~ or List. "Msgs" defaults to
the group of recent messages. "File" defaults to the user's termi
nal.

Display format:

Symbols:
sss
III
c
LLLL
DDD

From-Name

Subject

SSS IIIC (LLLL) DDD From-Name Subject

Message's status (see below);
Message's index position in folder;
"(=" indicates the "current" message;
Message length in lines;
The day and month of the message's
Date component;
Person's name or ID portion of the
"From" component (sans hostname); and
As described above.

Only a portion of the possible status information is displayed with
this function. For example, information about a message's having
been answered or flagged is not included.

Status Indicators:

Send (preserve)

not seen
+ recent
*[discarded

Packages up the draft message into a standard format and submits it
for transmission. Contrary to most network message systems, MS
attempts to send all mail immediately; users may choose to observe
the process, but their choice does not affect the timing of
transmission. Mail is actually queued for later transmission only
when an initial attempt fails. A copy of the draft is filed into a
backup folder, which is in the same directory as other standard MS
files. Send may also be instructed to "preserve" the copy in
draft. --

Shell

This may be provided by the user interface and is not in the basic
system. It is listed in this specification as a reminder of its
utility for most interactive systems. The user is given access to
a version of the Shell program (see Figure 2).

40 FUNCTION DEFINITIONS

Show (components) (msgs)

Displays messages at the user's terminal. "Components" defaults to
the set stored in the user's Profile (initially, "All"). "Msgs"
defaults to the current message. The last message in "msgs"
becomes the current message, if it is not the draft.

Statistics (name) (type) (value)

This function is not intended for the user; it is intended for
standardized collection of user statistics, such as the names of
functions that are called and the amount of computation which is
required to perform particular functions. "Name" is an identifica
tion name which is unique to the caller of this function. "Type"
is a sub-grouping identifier; and "value" is any text to be taken
as a piece of data for this statistic. The actual usage of this
function will conform to legal and social privacy considerations.

Syntax (keyword)

?

Displays the syntax for the indicated command. This function is a
subset of the Help function, printing only the "Syntax" portion of
the associated online assistance message.

This function is not in the basic system; it is recommended for
inclusion in most user interfaces. The feature causes a display of
the list of inputs valid at that level of a specification. There
fore this function is not intended just for top-level use. It
should be possible to invoke it in any argument.

STATUS OF THE IMPLEMENTATION 41

IV. STATUS OF THE IMPLEMENTATION ---

MS became partially operational at Rand in the fall of 1976. The
"ms", "msg", and "mail" interfaces are all used regularly by Rand
staff members. Distribution of the system to other ARPA project Unix
machines was begun in late summer 1977. By that time, almost all of
the originally-specified functions were built. Only Annotate and
Compare have not yet been implemented. More seriously, no portion of
the Profile exists; its lack is felt by all users, in particular for
the purposes of regularly viewing only portions of messages and set
ting several switches to redefine the system's default actions.

In addition, the system does not allow blind carbon copies of
messages and does not strictly enforce constraints on modifying
Sender, Message-ID, and Timestamp. While specifying message
addresses, users cannot yet include the contents of lists in files
(with"(") or direct a copy to a folder (with")"); address list names
also are not properly handled. Their lack has not been seriously felt
by users, at this stage of system use. The online assistance capabil
ities have been implemented only partially; and the Scan listing meas
ures message length in number of characters and not lines. Users are
notified of new mail only when they initially log into Unix and, when
using MS, upon apening their inbox. In a few cases, more general mes
sage and component selection capabilities (e.g., full Boolean) would
have proved useful.

Current activities involve exporting the system to other sites,
adding the Profile and increasing the efficiency of the system code.
Portions of MS are currently quite slow and this has deterred some
users from the system. The focus of this optimization effort is the
parallel "structure" file which was initially implemented in an
extremely general organization. Experience with MS has suggested a
more constrained organization. It should be noted that the presence
of a dual-file organization makes the transition between structures
quite simple.

42 CONCLUSIONS

V. CONCLUSIONS

Although MS has so far received only limited distribution,
current indications are that it successfuly fulfills its design goals.
In particular, integrating access and modification capabilities with
the draft and existing messages has proved extremely convenient. In
general, the available functions and the style of their behaviors seem
satisfactory to users, although the availability of the Profile would
considerably improve some users' attitudes.

During the initial design review, the choice between using paral
lel files versus a single structured file led to some heated discus
sions. Experience to date thoroughly justifies the double-file
choice, although its use did increase the complexity of the software
needed to access and maintain text. The choice has meant that
idiosyncratic, but necessary, modifications, such as massive re
organization to several messages, could be made to message files,
without undue pain to the user.

The Map function has been a continuing problem. It has proved
difficult to implement according to specifications and users are gen
erally unable to employ it successfully. The ~ function is a
direct result of these problems and it seems to adequately account for
most users' needs, most of the time. It should be noted, however,
that in at least one case a user wanted to copy a part of a message,
into a draft component, and could not understand why the ~ function
was unable to perform the function. This suggests that the focus on
monolithicity is well-founded, and having the concept of the Map func
tion has proved a useful focus for the MS project. In general, how
ever, such per-component manipulation is not currently needed, though
this may change as the Profile enables users to specify complicated
actions once and then repeatedly re-use the specification.

The Shell-syntax interface to MS has variously encouraged and
deterred new users. Some indicate that the similarity of syntax did,
in fact, facilitate their learning to use the system; others indicate
that the inherent complexity of the full MS domain requires more
effort than they wish to expend. These users are quite comfortable
with the msg interface. A confounding factor is the system's slow
ness. Some users are waiting to make the transition toMS until after
it has been made more efficient.

Implementing the basic system at the level of user-functions,
rather than the more common primitive-functions, has also been a mixed
blessing. User interfaces are, in fact, easier to build and the extra
software overhead of placing the higher-level functions into the ker
nel of MS, appears to be minimal. However, the communication disci
pline between the user interface and MS kernel system is not wholly
adequate. In particular, the user interface cannot query the kernel
for status information (e.g., whether a message is discarded) and can
not adequately select subsets of different functions' behaviors.
Also, the kernel's interactions with the user, such as for verifica-

CONCLUSIONS 43

tion prior to performing some actions, cannot be fully controlled by

the user interface. Remedies to these deficiencies are being con

sidered.

From the standpoint of operational efficiency, it is unfor

tunately not currently possible to construct a simple system, with a

subset of MS' full capabilities, without dragging along all of the

software associated with the full system. The user need not see all

of this, but it makes the programs more cumbersome. Some investiga

tion is underway to discover how the system might be factored into

smaller units; for example, infrequently-used functions, such as

Cleanup, may be made separate processes.

Finally, use of the specification style led to a lack of preci

sion in specifying the system's primitive functions. In some situa

tions, this deficiency would have been disastrous. However, the

project's operational environment made frequent consultation between

members quite convenient. In addition, Bill Crosby, the system's pri

mary implementor, usually chose to provide features in as general a

fashion as possible; after experience was gained with the feature,

tailoring it was usually quite simple. It should also be noted that

much of the desired precision was not possible until we had that

experience.

In spite of these problems, the specification style seems gen

erally to have been useful, in that it has focused at the level of the

user. Many systems, in spite of being examples of excellent software

engineering, do not reflect this focus and are therefore inappropriate
for most users.

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

SUMMARY OF FUNCTIONS 45

Appendix A

SUMMARY OF FUNCTIONS

Add (component)

Sequential text is Copied from the user's terminal to the end of
the named component in the draft.

Annotate (components) (msg)

Allows adding text to a message, while explicitly marking it as an
addition to the original text. The integrity of the original message
is thereby retained.

Cleanup

Causes discarded components and messages to be expunged from the
message file.

Compose

Allows the user to conveniently Add to the "To", "cc", "Subject",
and "Body" components in Draft, by prompting for their text.

~ {(file)
{Cmsg)
{Cmsg)

(component) l
(component)
(folder)

Allows copying the contents of files, or existing messages, into a
component of the draft message, and copying entire messages to other
message files.

Correct (component)

Passes the named component through the Typo spelling corrector pro
gram.

Describe (keyword)

For obtaining information about the message system. A special file
is searched for the keyword and the associated text is shown to the
user.

Discard (msgs)

Marks the indicated messages as deleted from the mailbox.

46 SUMMARY OF FUNCTIONS

Ed (comp'onent)

Invokes Ed editor with the contents of the named component.

File (msgs) (folder)

Moves the indicated messages to the end of the named file.

Format (component)

Passes the named components through the Nroff text formatting pro
gram.

Forward (msgs)

Packages up existing messages for retransmission to other mail
receivers.

Goto (msg)

Changes the current message to the specified message.

Help (keyword)

Primitive help facility. A special text file will be searched for
the indicated text and the user will be given the initial text associ
ated with the keyword.

List (msgs) (order) (options) (file)

This is a primitive formatting function for producing hardcopy ver
sions of messages.

The generic text-transferring function, which is inconvenient to
use for standard transfers. See Add, ~' and File function descrip
tions.

Ned (component)

Same as Ed function, but invokes the Ned two-dimensional CRT edi
tor.

Next

Show the next message, relative to the current message.

~(file)

Switches to another message file. When the system is first
started, it defaults to opening the user's inbox.

SUMMARY OF FUNCTIONS 47

Previous

Show the previous message, relative to the current message.

Process (component) (program)

Consecutively passes the named components through the named pro
gram. Correct uses Typo; Format uses Nroff.

Causes the mail system to stop and returns the user to the calling
program (usually Shell).

Reply (msgs)

Allows responding to received messages.

Retrieve (msgs)

The complement of the Discard function.

Scan (msgs)

Scans the messages and produces a table of contents.

Send (preserve)

Packages up the draft message and submits it for transmission.

Show (msgs)

Displays the messages at the user's terminal.

syntax (function)

Displays the syntax for the indicated function.

?

Displays a list of inputs valid at that level of a specification.

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

SAMPLE COMMAND INTERFACE 49

Appendix B

SAMPLE COMMAND INTERFACE

The sample command interface, specified here, is intended to be
compatible with the syntax of the Unix Shell (see fig. 2); however, a
few deviations are quite intentional.

In general, the user types the appropriate function name, to
invoke a particular function. For convenience, the interface requires
that only enough of the word be typed to distinguish it from other
candidate names. For example "cop" means "copy". As an additional
convenience, commands have a ~ terse form, which is shown immedi
ately below the full form. A large number of synonyms have been
defined for the commands and standard symbols, such as "examined".
Users may type these synonyms, in place of the "official" terms, and
they will be accepted, although they are not allowed to interfere with
distinguishing between official terms. For example, "discarded" and
"draft" are official terms referring to two different classes of mes
sages; and "displayed" is a synonym for "seen". However, the user
need type only "di" to mean "discarded" and must type at least "disp"
to mean "displayed". The system is not so friendly as to advertise
the synonyms it knows about. This limitation is imposed primarily to
limit the length of listings produced with the ! function.

The system has a rudimentary error detection and correction
facility appropriate to a line-oriented system. For example, upon
detecting an error in part of a specification, the interface will
notify the user of the nature of the error and prompt the user for the
replacement information, saving all of the other information 0r1g1-
nally typed up to the point of the error. Except in the cases of
folder and file names, the system will not make any distinction
between upper and lower case characters in command lines.

The reader should remember that this interface is only one of
several which are being implemented. It was the first interface
built, in order to be compatible with the syntax of the existing Unix
Shell, but is definitely not proffered as an example of a "friendly"
human user interface. An MSG-type interface also is provided.

Defaults for function parameters are as recommended in the func
tion descriptions. In addition, some abbreviated syntactic forms are
allowed during specification; however, the interpretation of these
depends upon context, as shown in the examples for the Copy ~ com
mand, below. The "official" syntax, which conforms to Shell-syntax,
does not have this dependency.

The system is invoked by typing "ms" to the Shell. A file name
may be included as a parameter, in which case the indicated file,
rather than the user's inbox, is opened.

50 SAMPLE COMMAND INTERFACE

The basic syntax for commands is:

command source -options) destination

where

command is the command word;
source is a filename or message/component

specification;
options are optional switch settings; each

option ("switch") is prefaced by a
dash ("-");

destination is filename or message/component
specification; ">" is required with
destinations that are not defaulted.

Specific command descriptions indicate limitations on the above.
Also, for prompted input from the terminal, such as for the compose
function, the user may enter only one line of text (unless the last
character is backslash, as shown below), unless a message is displayed
to the user indicating that a Control-D (the ASCII EOT character) ' at
the beginning of a line will terminate input.

Other standards, where applicable:

\ (Backslash, when preceding a carriage
return) Continue onto next line.
Passes the output to a process, rather
than a file; in place of the ")"
destination option.

--# Where appropriate, means to reverse the
the meaning of the indicated (#)
switch; for example, in the Format
function, "-j" means to right-justify
text, so "--j" means that justifi
cation will not occur.

An integer, indicating a message's
position within a mailbox.

#-# A sequence of messages, starting with
the first message and ending with the
last.

-c Following arguments are component
references.

-f Following argument is a file reference.
-m Following arguments are message

references.
x,x The same as two arguments separated by

space.
x x Indicates a list of arguments, such as

If If

"to cc" or "3 4 7".
A quoted parameter, which allows the
text to contain special characters
such as space.

SAMPLE COMMAND INTERFACE 51

For convenience, the "-m", "-f", and "-c" switches often are not
necessary. If the specification is a common one, then the text typed
by the user will be interpreted correctly. For example, the formal
specification for filing the current message into mailbox "filed.m" is
"file -m current) -f filed.m"; however, the user actually need type
only "f) filed.m".

Notational conventions, for the following descriptions:

Commands

{ Add} c
{ A }

c A single component may be referenced at
this point;

cs Reference to a number of components is
legal;

f Reference to a file is allowed;
m Reference to a single message is allowed;
ms Reference to a number of messages is

allowed;
() Other information may be specified; the

nature of this information is explained in
the text of the associated description.

{ Annotate } cs/ms [-e]
{ An }

-e Following argument names text editor

{ Cleanup}
{ Cl }

{ Compare } c/m) c/m
{ Cpr }

{Compose} [-c] [-p]
{ c }

-p

{~}{ f
{ Cp } { ms

{ ms

-n

Same as Preserve option, for Send

) c l) c [-n]
> f

Indicates that component names are to
preface component text, when the second
specification option is used.

52 SAMPLE COMMAND INTERFACE

Examples

Cp) backup .msg
Appends the current message to the end of file "backup.msg".

Cp -m 2) -c Body
Adds message 2, as a block, to the end of the Body of the
Draft. The "-m" is gratuitous, but the "-c'' is not, since the
destination of a message is usually a file.

Cp -f document) body
Appends the contents of file "document" to the end of the Body
of the draft. The ">body" is gratuitous, since text copied
from a file usually goes to the body of the draft. However,
since the source of text is usually a message in the current
mailbox, the "-f" specification is necessary.

Correct} cs/m
Crct -}

Describe} (keyword)
Dsc }

Discard } cs/m
n-}

Ed cs/m

;ile l m) f

{ Format } cs/'ms [-j]
{ Fm }

-j Justify

Forward } cs/ms [-p]
Fw }

-p Preserve draft, as in Send

{ Goto } m
{ -G -}

{ Heln } (text)
{ H =}

{List} cs/ms [-h) [-p] [-s]) f
{ L"-}

-h Use next argument as page header;
-p Paginate within messages;
-s Separate messages; start each one on a

SAMPLE COMMAND INTERFACE 53

new page;

Example

L 3-9 -o memoform -p -h "Noteworthy Stuff" I lpg
Will list messages 3-9 on the printer; listing will be
paginated with the indicated heading, and components will be
ordered according to the list in the profile called Memoform.
Messages will not begin on a new page.

{~} { f) cs/ms } [-d)
[-n] } { cs/ms

{ cs/ms
) cs/ms [-j]
> f [-j] [-n] }

-d Discard source version of text;
-j Turns on the join switch;
-n Indicates that component names are to

preface component text, when the second
specification option is used.

Examples

Map) backup.msg
Appends the current message to the end of file "backup.msg".

Map -c Subject -m 2,5,9) -c Subject Keyword
Appends the text of the Subject components in messages 2, 5,
and 9 to the Subject component and then the Keyword component
of the draft.

Map -m 2 -c Subject,From CC To) -c Body
Adds the source components as a block to the end of the Body.

Map -m 2-5 -c From To CC BCC) -m 9
Adds the contents of each of the indicated address components
onto components of the same name (creating them if they do not
already exist) in message number 9.

Map -m 2-5 -c From To CC BCC) -m 9-10 -c From Subj
As when the text was copied to Body, above, the text is copied
as a single group but to the end of the From and then the Sub
ject components of messages 9 and then 10.

Map -m 2-5 -c From To,CC,BCC -n) -m 9-10 -c From Subj
Same as above, except that the text of each source component
is prefaced by its component name.

{Mark} cs/ms (status)
{ Mk }

{ Ned cs/ms }

54 SAMPLE COMMAND INTERFACE

I Next}
IN-}

I~} f
I o }

{Previous }
{ p }

{ Process } cs/ms (program) [-r]
{ Pre }

-r replace each component with the output of
the processing.

{Quit }
{ eot (control-D) and Q }

{Reply} ms [-a] [-i] [-p] [-v]
{ Rpl }

-a Author copy: Place "inbox"
into fcc component.

-i Copy contents of the components, named
in the following parameters, into the
cc component of the draft.

-p Preserve, as with Send.
-v Verify inclusion of each addressee.

{Report}
{ Rp }

{Retrieve } cs/ms
{ R }

{Revise} cs/ms [-e)
{ Rv }

-e Following argument names editor

{ Scan} ms [) f)
{~}

{Send} [-p] [-q] [-s]
{ Snd }

-p Preserve Draft after sending.
-q Queue mail.
-s Send mail immediately.

{~} cs/ms
{ s }

{Syntax } (command)
{ Sy }

?

SAMPLE COMMAND INTERFACE 55

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

TEXT REFERENCE 57

Appendix C

NON-EXISTENT OR DISCARDED TEXT --- -- ----

During the initial phases of implementation, a question arose
concerning the way in which MS should deal with user references to
discarded or non-existent text. An exhaustive list of behaviors was
created. It is included here because it represents a statement of
philosophy concerning the treatment of user errors. What did the user
probably mean? Some references are completely specific, in which case
the user probably believes that the message is not discarded and
therefore probably needs to be told, or when safe, the action should
be performed. In other cases, an implicit reference is made, such as
"examined", in which case the user probably does not care that a few
"extra" messages have been included; so the user is not burdened with
the information that s/he has made an error.

In the following table,

Yes/No

Note/Quiet

Replace

Flag

indicates whether the function
is performed, or not;

indicates whether a notice is
displayed to user, or not;

indicates whether discarded text
is replaced; and

indicates whether individual
discarded messages are noted.

The Show function distinguishes between specific reference, as in
''show 3" and implied reference, as in "show all".

58 TEXT REFERENCE

Function

Add
Comment
Copy
Correct
Discard
Ed/Re
File
Format
Forward
Go to

List
Map

Next/Previous

Process
Reply

Retrieve
Revise
Scan
Send
Show/implied
Show/specific

Component reference

Yes; quiet,replace
No; note

See Map
No; note
No; quiet
Yes; replace
Not applicable
No; note
No; note
Not applicable

No; quiet
Srce: no; quiet
Dest: note & replace
Not applicable

No; note
Not applicable

No; quiet
No; note
Not applicable
Not applicable
No; quiet
Yes; flag

Msg reference

Not applicable
Not applicable

Not applicable
No; quiet
Not applicable ·
No; note
Not applicable
Yes; quiet
Yes;
Discard: quiet
Not exist: note
No; note
No; note

See Goto and
Show/implied
Not applicable
Yes;
discard: quiet
not exist: note
Yes; quiet
Not applicable
Yes; flag
No; note
No; note
Discard: yes, flag;
Not exist: no; note

COMMAND INTERFACE SCENARIO 59

Appendix D

A COMMAND INTERFACE SCENARIO

Text typed by the user is in boldface. Comments on the scenario are italicized on the right-hand side of
the page.

% ms
MS: 11 Jan 77
Incorporating new mail ...
Folder in box has 36 messages in it.
2 messages have not been examined yet.

Start the system.

New mail is automatically added and is
scanned.

+- 35 (176)
+- 36 (358)

31 May To:
31 May To:

Dcrocker Exciting example of MS session
Dcrocker Pity the poor reader Re: exciti

->n
(Message 35, 176 bytes)

. Date: 31 May 1977 at 1725-PDT
From: dcrocker at Rand-Unix
Subject: Exciting example of MS session
To: dcrocker

It is a little strange sending myself a message.

Dave

-> n
(Message 36, 358 bytes)
Date: 31 May 1977 at 1727-PDT
Subject: Pity the poor reader

Re: Exciting example of MS session
From: Dcrocker at Rand-Unix
To: Dcrocker at Rand-Unix
cc: Dcrocker at Rand-Unix

User can step thru looking at new mail

Message-ID: [Rand-Unix] 31-May-77 17:27:15. Dcrocker
In-Reply-To: Your Message of 31 May 1977 at 1725-PDT

Not only is it strange, but it is also likely to be very dull. D/

And can then do other work.

-> sc 10-14

10 (637) 24May To: Jim Re: [report] Adding standard
11 (624) 24 May Jim Re: [report] Adding standard
12 (1046) 24 May To: Jim Re: [report] Adding standard
13 (680) 25 May Jim Re: [report] Adding standard
14 (593) 26MayTo: Jim Unadvertised MS feature

60 COMMAND INTERFACE SCENARIO

-> file 10-14 > /rnd/dcrocker/gnome/reports/jim

-> o /rnd/dcrocker/gnome/reports/jim
Folder /rnd/dcrocker/gnome/reports/jim has 16 messages in it.

-> sc all
1 <= (705) 5 May Jim [report] Seek error

[report] Adding standard fields
Re: report: strange field

- - --.
A series of messages worth saving;
(User likes long names.)

User then shifts attention to
a new folder.

Checks what messages are there.

6
7
8

(383)
(471)
(639)

24 May Jim
25 May Wee
25MayWec Re: [report] Adding standard field

-> s6
(Message 6. 383 bytes)
Date: 24 May 1977 at 0727-PDT
Subject: [report]

Adding standard fields
From: Jim at Rand-Unix
To: wee at Rand-Unix, greep at Rand-Unix, dcrocker at Rand-Unix
cc: Jim at Rand-Unix
Message-ID: <[Rand-Unix)24 May-77 07:27:08.Jim>
MS-Version: 11 Jan 77

Notices a pending item and reviews.

Can one add standard system-filled fields (like Date and Message-ID) at the interface level, or is that a change in msgsys.c?

->showS
(Message 8, 639 bytes)
Date: 25 May 1977 at 1019=PDT
Subject: Re: [report]

Adding standard fields
From: Wee at Rand-Unix
To : Jim at Rand-Unix
cc: Dcrocker at Rand-Unix, Wee at Rand-Unix, Greep at Rand-Unix
Message-ID: <[Rand-Unix] 25-May-77 10:19:57.Wec>
In-Reply-To: Your Message of 24 May 1977 at 1129 PDT

<[Rand-Unix]24-May-77 11:29:30.Jim>

Although the message system will allow the user interface as well as the user to create any arbitrary fields it is not easy

for the user interface to then put data into them. Were you planning on doing this sort of operation? If so then maybe

we should work out a simpler mechanism.

Bill

-> rp8?
-Message-
Number
Number-Number

all
beginning
current

[not] discarded
draft

[not] new
old

[not] recent
[not] replied
[not] seen
[-m msg-seq] [- c comp-seq]
-i include-list
-p[reserve]
-v[verify]

-> [reply 8] - i to,cc

Draft already exists.
OK to discard it and continue? no
OK to continue and add to it? no
Compose aborted.
->sdr
To: Wee at Rand-Unix
cc: Jim at Rand-Unix, Dcrocker at Rand-Unix, Wee at Rand-Unix,

-> discard draft

-> rp 8 -i to,cc
Subject: Interface-generated input to components
To: Wee at Rand-Unix
cc: Jim at Rand-Unix, Dcrocker at Rand-Unix, Wee at Rand-Unix,

Greep at Rand-Unix
Subject: Interface-generated input to components

Re:·. [report]
Adding standard fields

cc:
Input body. End with <return> <control-D>.

COMMAND INTERFACE SCENARIO 61

And then decides to send a note to everyone
but can't remember how to include them.
The system prints a list of inputs which are
valid, here.

And then reprompts user, indicating what
has already been specified.
Then system notes
that Draft is not empty and queries user.

User checks Draft

Decides to erase it

Then start reply over.

Let's plan to have a meeting next week to discuss the best way to provide this feature. OK? Dave.
Do you want to send the message now? yes
Message being processed. User sends note
Processing completed and Draft discarded.

->o
Then returns to inbox

-> sc dis And performs some housekeeping *[17 (317) 20 May Jim *[21 (637) 24 May To: *[22 (624) 24 May Jim *[23 (1046) 24 May To: *[28 (680) 25 May Jim *[31 (593) 26 May To: *[33 (239) 30 May To:
*[34 (332) 30 May To:

Additional standard fields]
Jim Re: [report] Adding standard]

Re: [report] Adding standard]
Jim Re: [report] Adding stand]

Re: [report] Adding standard] Jim Unadvertised MS feature]
wee first/beginning and last l
Dcrocker samples for a document]

62 COMMAND INTERFACE SCENARIO

*[34 (332) 30 May To: Dcrocker samples for a document

-> cl
-> 0

Folder inbox has 28 messages in it.
-> quit
%

Re: te]

Decides to expunge discarded messages. .

then exits MS
and is returned to the unix shell

REFERENCES 63

REFERENCES

Anderson, R.H. and J.J. Gillogly, Rand Intelligent Terminal Agent
(RITA): Design Philosophy, R-1809-ARPA, The Rand Corporation, Santa
Monica, California, February 1976a.

Anderson, R.H. and J.J. Gillogly, "The RAND Intelligent Terminal Agent
(RITA) as a Network Access Aid," Proceedings of the 1976 National
Computer Conference, 1976b.

Bilofsky, W., The CRT Text Editor Ned: Introduction and Reference
Manual, R-2176-ARP~The Rand Corporation, Santa Monica, Califor
nia, in preparation, 1977.

Bobrow, D.G., J.D. Burchfiel, D.L. Murphy, and R.S. Tomlinson, TENEX,
~ Paged Time Sharing System for the PDP-10, BBN Report No. 2180,
Bolt Beranek and Newman, Cambridge, 1971.

Broos, M.S., E.H. Black, and A. Vezza, MSGDMS Manual (draft), Labora
tory for Computer Science, Massachusetts Institute of Technology,
Cambridge, 1975.

Brown, T. and M. Klerer, "The Effect of Language Design on Time Shar
ing Operational Efficiency," International Journal of Man-Machine
Studies, Vol. 7, 1975, pp. 233-247.

Carbonnel, J.R., J.E. Elkind, and R.S. Nickerson, .,The Psychological
Importance of Time in a Time Sharing System," Human Factors, Vol.
10, No. 2, 1968, pp. 135-142.

Carlisle, J.H. "Man-Computer Interactive Problem Solving: Relation
ship Between User Characteristics and Interface Complexity," Ph.D.
Dissertation, NTIS No. AD786466, School of Organization and Manage
ment, Yale University, New Haven, June 1974.

Card, S.K., T.P. Moran
Routine Cognitive
Science Laboratory,
nia, 1977.

and A. Newell, The Manuscript Editing Task: A
Skill, PARC Report No. P76-00082, Xerox Systems
Palo Alto Research Center, Palo Alto, Califor-

Crocker, S.D., J. Heafner, R. Metcalfe, and J. Postel, "Function
oriented Protocols for the ARPA Computer Network, Spring Joint
Computer Conference, Vol. 40, 1972, pp. 271-279.

Engelhart, D.C., Coordinated Information Services Discipline- or
Mission-Oriented Community, Network Information Center No. 12445,
Augmentation Research Center, Stanford Research Institute, Palo Al
to, California, 1972.

Heafner, J.H. "Design of Application-Oriented Languages by Protocol
Analysis," Ph.D. Dissertation, University of Southern California,
Los Angeles, 1976.

64 REFERENCES

Heafner·,· J .H. and L.H. Miller, Design Considerations for a
Computerized Message Service Based on Triservice Operations
Personnel at CINCPAC Headquarters, Camp Smith, Oahu, ISI/WP-3, In
formation Sciences Institute, University of Southern California,
Marina del Rey, California, September 1976.

Miller, George, "The Magical Number Seven, Plus or Minus Two: Some
Limits on Our Capacity for Processing Information," Psychological
Review, Vol. 63, 1956, 81-97.

Myer, T.H., J.R. Barnaby, and W.K. Plummer, TENEX Executive Language
Manual for Users, Bolt Beranek and Newman, Cambridge, 1971.

Myer, T.H. and D.A. Henderson, "Message Transmission Protocol,"
Arpanet Request for Comments, No. 680, Network Information Center
No. 32116; Augmentation Research Center, Stanford Research Insti
tute, Menlo Park, California, 1975.

Myer, T.H. and C.D. Mooers, Hermes Users' Guide, Bolt Beranek and New
man, Cambridge, 1976.

Panko, R., The Outlook for Computer Message Services: ~ Preliminary
Assessment, Telecommunication Sciences Center, Stanford Research
Institute, Palo Alto, California, March 1976.

Pogran, K., J. Vittal, A. Henderson, and D. Crocker, "Proposed Offi
cial Standard for the Format of ARPA Network Message Headers,"
Arpanet Request for Comments, No. 724, Network Information Center
37435; Augmentation Research Center, Stanford Research Institute,
Menlo Park, California, May 1977.

Ritchie, D.M. and K. Thompson, "The UNIX Time-sharing System,"
Communications of the Association for Computing Machinery, Vol. 17,
No. 7, July 197~ pp. 365-375.

Roberts, L. "Computer Network Development to Achieve Resource Shar
ing," Spring Joint Computer Conference, Vol. 36, 1970, pp. 543-549.

Thompson, K. and D.M. Ritchie, Unix Programmer'! Manual, Bell Labora
tories, Murray Hill, New Jersey, 1975.

Tugender, R. and D.R. Oestreicher, Basic Functional Capabilities for ~
Military Message Processing S~e, Information Sciences Insti
tute, Marina del Rey, California, 1975.

Uhlig, R., "Human Factors in Computer Message Systems," Datamation,
Vol. 23, No. 5, May 1977, pp. 120-126.

Vezza, A., "A Model for an Electronic Postal System," In B.M. Owen
(ed.), Telecommunications Policy Research Conference Proceedings.
Aspen Institute Program on Communications and Society, 360 Bryant
St., Palo Alto, California 94301, 1976.

REFERENCES 65

Vezza, A. and M.S. Broos, "An Electronic Message System: Where Does It
Fit?" In Trends and Applications 1976: Computer Networks, Insti
tute of Electrical and Electronic Engineers, New York, 1976.

Vittal, J. MSG Users Guide, Information Sciences Institute, Unversity
of Southern California, Los Angeles, 1975.

Walther, G.H., The Online User-Computer Inteface: The Effects of
Interface Flexibility, Experience, and Terminal-~ on User
Satisfaction and Performance, Ph.D. Dissertation, NTIS No.
AD777314, University of Texas, Austin, 1973.

Yntema, D.B. "Keeping Track of Several Things at Once," Human Factors,
Vol. 5, 1963, 7-17.

Yntema, D.B. and G.E. Meuser, "Remembering the Present State of a
Number of Variables," Journal of Experimental Psychology, Vol. 60,
1960, 18-22.

Yntema, D.B. and G.E. Meuser, "Keeping Track of Variables that Have
Few of Many States," Journal of Experimental Psychology, Vol.63,
No. 4, 1962, 391-395.

Yntema, D.B. and G.M. Schulman, "Response Selection in Keeping Track
of Several Things at Once," Acta Psychologica, Vol. 27, 1967, pp.
316-324.

Yonke, M. BANANARD Users Guide, Information Sciences Institute,
University of Southern California, Los Angeles, 1975.

RAND/R-2134-ARPA·

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

