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ABSTRACT

The Wiener—Hopf technique is now firmly estab—
lished as a powerful tool for research in certain
types of boundary value problem arising in acous-
tics. Typical problems which may be solved exact-
ly or asymptotically with this technique concern
the sound and vibration levels generated by finite
or semi—infinite planar or cylindrical surfaces,
of local or extended reaction , immersed in a com-
pressible fluid and subject to acoustic or mechan-
ical forcing. However , even the simplest of these
problems involves complications which are irrelc—
vant to an understanding of the Wiener—Hopf method
itself and its various extensions. Accordingly ,
this report was wri t ten in an a t tempt  to display
the operation of the techni que in an even simpler
physical and mathematical context , and thereby to
encourage its more widespread use. The report
dea ls with the application of Wiener — Hop f met hods
to one—dimensional wave motions on strings and
beams , and in particular wi th  the reflection and
transmission from discontinuities in the mechan-
ical properties of a string. Also included is a
section i l lus t ra t ing how a generalized Wiener—
Hopf problem can be set up for a three—part  prob-
lem involving a string of finite length. Two—
dimensional wave problems are then exemplified in
a discussion of the acoustic field generated by a
vibrating half—plane , and the effect of uniform
mean flow over the half—plane is included to show
how different types of “edge condition” may be
accommodated. The final section sets out in detail
the properties of certain functions arising very
frequently in application of Wiener-Hopf methods
to acoustic problems.

ADMINISTRATIVE INFORMAT ION

This work was performed under DTNSRDC Contract No. N00l67—76—M—8415,

financed under DTNSRDC Job Order 4—1900—001—32. At the time, the author,
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0

University of Leeds, England , was a visiting professor in the Department of

v Mechanical Engineering, ~atholic University of America, Washington, D.C.
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1. INTRODUCTION

The Wiener—Hopf technique was devised in 1931 (1] to deal with

an integral equation arising in neutron transport theory , though its

origins—and indeed its essentials—come from Russian work in the

1870’s on singular integral equations [2 ,3]. During the war the tech-

nique was extensively applied by Schwiager and his colleagues [4] to

problems in electromagnetic wave propagation, and much of the sub-

sequent development of the method has taken place in applications to

wave diffraction processes. Standard books on the method are those

by Noble [5], Weinstein [6], while several books (e.g., Carrier , Krook

and Pearson [7] ,  Morse and Feshbach [8])have chapters which attempt to

introduce the method . In such introductions, two—dimensional boundary

value problems involving a partial differential equation for some

field variable are invariably used as the simplest demonstration prob-

lems (the Sommerfeld problem of plane wave diffraction by a semi—

Infinite rigid screen being the best known). Such problems, however ,

bring in at once a number of issues which are irrelevant to the exposi-

tion of the W—H method; the introduction of branch cuts in the complex

vavenumber plane is one such issue which—while it is an important

one, and one which must be understood by anyone wishing to deal with

wave diffraction problems—causes great difficulties for most students.

Accordingly, an attempt will be made in these course notes to

illustrate the tJ—H method in a much simpler context than usual. We

shall study one—dimensional time—harmonic waves on strings and bars, and

in particular we will study the reflection and transmission properties

of changes in properties of the medium, abrupt changes of density giving
1
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rise to various kinds of standard and generalized forms of W—H equations.

Not only is t~~ derivation of the W—H functional equation much simpler

than usual for these problems, but its solution is also much easier, and

the final inversion of a Fourier transform integral can be readily per-

formed and the results seen to correspond with familiar undergraduate

ideas.

The W—H technique is a method of solving certain types of boundary

value problem in which, typically, we have information about the

pressure, say, on the half—plane x < 0 and about the velocity on the half—

plane x > 0, and we cannot solve for the radiated acoustic field until

we know the pressure all over the whole boundary , —~~~~ < x <  +~~, or

about the velocity there. In the W—H method , a single equation is

derived , relating the Fourier transforms of the unknown pressure

(for x > 0), of the unknown velocity ( fo r  x < 0) and of the given

forcing field arising from some prescribed force or source or incident

field . The tran sforrr~ of the two unknown distributions are known (partly

because of information supplied by the anticipated physical behavior of

the system under study) to have certain analyticity properties as

functions of the wavenumber regarded as a complex variable, and a

certain crucial step (the W—H method) and the use of some fundamental 
•

1

theorems of the calculus of functions of a complex variable together

enable one equation to be solved for two unknown functions. Then the

field everywhere can be found in terms of an inverse Fourier integral

which in many instances can be estimated by stationary phase or steepest

descent/saddle point techniques (e.g., 9,101 or by generalized function

methods [11,12]. In the problems to be discussed here such elaborate

methods are not needed , and an exact inversion of the Fourier integrals

3 L
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can be obtained with the aid of elementary residue calculus (see, e.g.,

(7]).

It is usual, and no doubt more logical, to start an introduction to

a technique of this kind by first summarizing all that will be required

in the way of results from the theory of functions of a complex variable.

As our problems are extremely simple, both from the conceptual and from

the manipulative point of view, it seems unnecessary to start here with

such a digression , and we shall introduce the var ious ideas and theorems

as they arise in the course of the problems. For a rigorous statement of

the theorems the reader is referred to standard references (e.g.,

Titchmarsh [13]). We should warn the reader , however , that the degree

of rigor which is usually adopted by workers in wave theory is not

altogether a matter of mathematical pedantry. Certain problems, involving

coupled wave—bearing media in particular , are extremely delicate, and

require much more attention to mathematical rigor than do the simple

problems at hand here.

1~
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2. REFLECTION OF WAVES FROM DISCONTINUITIES ON A STRING

Consider a uniform string of line density p lying along the

portion —~~~~ <x < 0 of the x—axis under tension T. Consider this string

to be joined at x = 0 by a massless connection to a string of density p 1

lying along 0 < x < + ~~ , the tension there also being T. Transverse

waves of arbitrary profile propagate at speed C0 
= (T/p )T on the

left—hand string, and at speed C1 = (T/ p 1)
2 on the right—hand .

Alternatively, with time dependence exp(—1i~t), u~ > 0 , understood through-

out , waves in x < 0 have wavenumber k = w/C while those in x > 0
0

have wavenumber k 1 w/C 1 . We wish to determine the reflected and trans-

mitted waves in x < 0, x > 0 respectively when a progressive wave with

displacement exp(ik x) is incident upon the junction from x < 0. [See

Figure 1.]

This is a trivial problem to which the solution can be found by

elementary methods and which can be generalized to cover a variety of

different conditions at the junction. It and its generalizations are

also suitable for introducing the W—H method very simply. We start

by writing the total displacement as

y + exp(ik
0
x) in x < 0

and as (2.1)

y jnx > O

The reason for this is that then y (which might be called the scattered

field) must take the form of an outgoing wave as x -~ +~° and as x - ‘— ~~~~,

and this enables us to state something about the Fourier transform of y.

We have first, however, to make the wavenumbers k and k slightly

5
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complex

k + k + iko or oi
(2.2)

k -
~~ k + ik

1 1r ii

whexe real and imaginary parts of both wavenumbers are both positive

and where the imaginary parts are small (and in the end vanishingly small

compared with the real parts.

The rationale for this is as follows. We start by assuming a time

factor exp(—iwt) with w > 0. (We could just as well take exp (+f~t), but

the choice of exp(—iwt) Is helpful for reasons that should emerge later.)

Then as x -
~~ + ~ the phase factor of an outgoing wave must be exp (+ik1x)

where k 1 
= w/C . Giving k a small positive imaginary part therefore

makes an outgoing wave decay as x -
~~ + ~~, like exp(—k1ix) , corresponding

to the presence of small internal dissipation in the string. Similarly,

as x -
~ -man outgoing wave will have the phase factor exp (—ik x), and

then will also be exponentially damped if we give k a small positive

Imaginary part.

We therefore now know that for x > 0, y(x) is a continuous function

which decays like exp(—k11x) as x 
- -  

~~~. Its HALF—RANGE FOURIER TRANSFORM

then has certain properties as a function of complex wavenumber s (that

being a useful symbol for the wavenumber which does not have any particu-

lar significance , the symbol k for example of ten being assoc iated with

a particular wavenumber). Define

- y(x) exp isx dx. 
(2.3)6



Then Y
÷
(s) exists as an analytic function of s at all points in the

complex s—p1.ane for which the integral converges. The integral over

any finite range of x certainly converges (and y(x) is certainly inte—

grable near x=O) so that the convergence is dictated by the behavior of

y(x) as x + ÷ ~~~. There

y(x) exp isx — exp[—(s
1 
+ k

11
)xJ (2.~ )

where s = S
r 
+ Is~ , and the Integral up to infinity therefore converges

if s~ + k 1 
> 0. It may also converge for  some other values of s , but

what can be guaranteed on the basis of the anticipated behavior of y (x)

as x -, + ~ is that

Y
÷
(s) is analytic in an upper half—p lane

un s > —k 1. (2.5)

Moreover , Y
÷

(s) has non—growing algebraic behavior as Is ! + every—

where within the domain R
+ 

If y(x) is finite at x = 0+ or has an

integrable singularity at x = 0+, so that IY+ ( s ) I = 0 (IsI~~ ) say for

some A ~ 0 as jsj + ~ along any radius in the domain R+
. If, as may

occur in some problems, y(x) has a non—integrable singularity at x 0+

(that is, a singularity at least as strong as x~~~) then y(x) has to

be regarded as a generalized function whose generalized half—range trans-

form is still analytic in an upper half—plane R
+
, but now can have

algebraic growth as si ~~~.

By analytic we mean that Y
+
(s) is single—valued and has a unique

der ivative

7



Lim Y
+
(s+h) -

Y~ (s) — h + o h (2.6)

as the point s+h approaches s along any path in the plane.

In a precisely similar way, the half—range transform of the scattered

displacement y(x) for x < 0

Y (s) = 5° y(x) exp isx dx (2.7)

is an analytic function of s in a lower half of the s—plane,

R_ : Im $ < + k
1 

(2.8)

and for a function y(x) integrable at x = 0— Y_ (s) has non—growing

algebraic behavior at infinity in R_ , so that IY (s)J = 0 (lsI~~) for

some .i ~ 0 as is ! + along any radius in R .  (Algebraic growth of

Y (s) is permitted if y(x) has a non—integrable singularity as x + 0....)

Since k
1 

and k~~ are strictly positive, the FULL—RANGE FOURIER

TRANSFORM

Y(s) — + Y (s) = 
r

y(x) exp isx dx (2.9)

exists as an analytic function of s in a strip D,

D = R
+

c2R : —k1~~< Ims < + k 1 (2.10)

formed by the intersection of the overlapping upper and lower half—planes

R
+ and R_ . [See Figure 2.]

The notation and conventions for the Fourier transforms are such

that®functlons arise from half—range trirnsforma over the positive

x-.-axis,®functions from half—range transforms over the negative x—axis.

8
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Alternatively, Y+(s) can be regarded as the full—range 
transform of the

generalized function y(x) 11(x),

= 
f

y(x) H(x) exp isx dx (2.11)

and correspondingly

Y_ (s) = 
J
;(x) H(-x) exp isx dx , (2.12)

11(x) denoting the Heaviside unit function, 11(x) = 1 for x > 0, 11(x) 0

for x < 0.

The FOURIER INVERSION THEOREMS run as follows:— if C~ is any contour

from —~~to +°lying within the domain R+ 
and such that Y+

(s) exp(—isx)

is integrable over this contour , then

~~ 
5C 

Y~ (s) exp(—isx) ds = y(x) (x > 0)

+ = 0 (x <O)

both of which are contained in

y(x) 11(x) = —i f Y~ (s) exp(-isx) ds (2.13)
2ii JC~

The fact that the integral vanishes for x < 0 follows from Cauchy’s

theorem applied to a closed contour I’ consisting of the contour C~ with

its ends joined by a large circular arc in R
+
. Since the integrand is

analytic everywhere in R
+

f ~~~ 
exp(—isx) ds = 0

and the integral along the circular arc vanishes if x < 0

9
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because exp(—isx) is then exponentially small at infinity in R+ 
and

is at least algebraically small there. (This result should really

be proven carefully using Jordan’s lemma; see [7,13].)

Correspondingly, if C_ is any contour from to +~ lying within

and such that i (s) exp(—isx) is integrable over it, then

y(x) H(—x) — f Y (a) exp(—isx) ds (2.14)
21T C 

—

Now if C is any contour from -
~~~ to +~ lying everywhere within the

strip of D of overlap between R
+ 

and R_ , then we can identify C with C
+

for (2.13), C with C for (2.14) and obtain by addition of (2.13) and (2.14)

the inversion theorem

y(x) -
~~

— f Y(s) exp(—isx) ds (2.15)
211 ~~

We remark here that our convention exp(—iwt ) for the time factor

is consistent with the formulas (2.9) and (2.15), in the sense that we

are really taking F.T.’s in space and time with the definitions

Y(s ,w) — $ $ y(x,t) exp(isx + iwt) dx dt
y(x ,t) — Y(a ,w) exp(—isx —iwt) ds &~

(2~~)2J J

Note that if a time factor exp(+1~ t) were taken, and k ,k1 were defined

as k
0 

— si/C , k2 — w/C2 , then we would have to give k0,k1 small negative

imaginary parts in order to secure a strip of overlap in which to take

F.T.’s in x.

~ 
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The point of using half—range transforms is that conditions are

different according as x ~ 0, so that a two sided—transform cannot

immediately be applied. For x > 0 we have the equation of motion

+ k2 y — 0 . (2.16)
dx ’

Multiply by exp (isx) and integrate from 0 to ~~~. Then the last term

produces

k~ Y~ (s)

provided SCR
+
, while the first term can be integrated by parts to give

1° ei5X dx = e~~
x : —is [ye

i5X
] _s2Y

+
(s)

From the anticipated behavior, y exp( -ik,ix) as x 
++~ we see that

e~
5
~
C and ye

i5X 
both vanish as x -- +°° provided SCR+

. If we write

y(~~ ) = ~~ y(x) , y ’(0+) = 
Z
~~0+

y~(x) (2.17)

then we have

(~
2 — k~ ) Y~(s) — —y ’(O+) + isy(O+) (2.18)

as a statement , for SCR+, 
of the equation of motion in x > 0.

Applying the same procedure, this time for scR , to the equation

Li + k2 y — 0 (2.19)
dx2 °

which holds in x < 0, produces
r

(~~2 
— k2) Y (s) — + y ’( O—)  — isy (O—) (2.20)

11
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The system (2.18), (2.20) is completed when the boundary condition

at x — 0 is specified. In the present simplest case, in which there can

be no difference of transverse force from x — 0— to x — 0+, the boundary

condition is that

T -
~
-( + e ik01~ — 

2dm T (2 21
x~~~O— dx i’ x~~~O+ dx

so that

y’(O—) + ik — y’(O+) (2.22)

while the total displacement of the string must also be continuous, so

that

9dm ik x R.im
x ~~

— 
(y + e ~ — 

x ~~ y (2.23)

or

y(O—) + 1 = y(O+) (2.24)

Eliminate say y(0—) and y ’(O—) from (2.20)  by using (2.22)  and (2 .24) ,

giving

(~
2 — k~,) Y (s) y ’(O+) — isy(O+) + i(s — k) (2.25)

and if we now add this is to (2.18), the unknowns y ’(O+) and y(0+)

disappear and we have

(~~2 
— k~) Y~ (g) + (~ 2 — k2) Y (s) i(s — k) .

It is convenient to divide through by (~~2 — k2), which we may do because

the equation Itself is only meaningful in the strip D and the zeros

lie outside that strip. Then we get a standard form of Wiener—Ropf

functional equation 
. 

-

12
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K(s) Y~(s) + Y (s) — (2.26)

where the kernel is

— k2
K(s) — 2 (2.27)

s - k0

The W—H equation relates a linear combination of the unknown half—

range transforms Y
+

(s) to a function related to the incident wave field

exp ik x. The equation holds in the strip of overlap D, and the coeff i—

cients, K( s) and (s + k ) ’, are analytic and non—zero in the interior

of the strip in the simplest cases, though cases in which K(s) has

zeros or poles in the interior of D can also be handled straighforwardly.

In the next section we show how the general situation of the W—H

equation can be obtained by inspection and how the Fourier transform

integrals can be inverted to yield explicit solutions for the trans-

mitted and reflected waves. Following that we look at differences

which arise when the boundary conditionsat x = 0 are changed , and when

the strings are replaced by elastic beams.

3. SOLUTION OF THE W—H EQUATION

Assuming that we have obtained an equation (2.26) with the coeff i—

cient of one or other of Y
+
(s) reduced to unity, the first crucial point

lies in the W—H FACTORIZATION of K(s). In this we express

K(s) = K~ (s) K (s) (3.1)

as the product of two functions of which K
+
(s) is analytic and non-zero

in R
+ 
and of at most algebraic growth at infinity in R

+, 
while K ( s) is

analytic and non—zero in R and of at most algebraic growth at infinity

‘ 

—
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there. (Here we assume that K(s) has no zeros in the strip D, a point

we shall examine again later.) It is remarkable that such a factoriza—

tion exists for any K(s) which is analytic and non—zero in D but which

may have any kind of singular behavior outside D; the proof was given

by Wiener and Hopf [1]. Here the truth of the theorem is obvious;

s+k s — k ,
K~ (s) = (~ + ‘ K(s) = ( — kj 

(3.2)

is one factorization with the required properties, and is such that

K
±
(s) -‘ 1 at infinity in R

±
. After we have completed the solution

we shall return to the uniqueness or otherwise of this factorization.

Because K (s) is free from zeros in R_ , and in particular in D,

we can divide (2.26) through by it, to get

Y (s)
K~ (s) Y~ (s) + K (s) — (s + k

0
) K_ (s) (3.3)

The analyticity properties of the terms on the left here are known,

while the function on the right is neither a® function nor aOfunction.

Our next object is to write it as the SUM of the two functions analytic

in R
+ 

and R respectively , and of algebraic behavior at in those

half—planes. Again, the existence of this ADDITIVE SPLIT is assured

by the W—H theorem [1], and here we can again see how to perform the split

by inspection (and in this case the method of inspection is widely

useful and should be carefully noted).

The function i/ (s + k
0
) K_ (s) is analytic in R_ except for the

pole at a — —k0
. Near the pole, the function behaves like

i/(s + k) K (—k), so that we can isolate the pole behavior by adding

and subtracting this term, to give

14
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(a + k )  K (s) - 
(a + k)~~~(s) K (-k ))~ (s + k0) K _ (-k0

) 
(3.4)

The first term no longer has a pole at s = —k , for near there

K s )  K (—k 0
) 

— (s + k0
)x (function analytic at —k)

and it is therefore aOfunction G (s) say, while the correction term

i/(s + k) K (—k ) is evidently a®function, C
+
(s) say. Note that

this additive split is not restricted to any particular form of

but turns on the presence of a pole term (s + k )—1 only.

We now rewrite the equation (3.3) as

Y (s)
K~ (s) Y~ (s) — G~ (s) — G (s) — K (s) (~~~•~~~~

and consider the function E(s) defined by

E(s) — K~ (s) Y~ (s) — G~(s) . (3.6)

This is a function defined and analytic throughout R+ 
and of algebraic

behavior (algebraic growth or decay) at ~ in R+
. E(s) is not defined

by (3.6) except in R
+
. However, within D, E(s) can equally well be

def ined by

Y (s)
E(s) — C (s) — 

K (~) 
(3.7)

and this definition then CONTINUES ANALYTICALLY the function E(s),

defined originally only in R
+ 
by (3.6), through the strip D of overlap

into the lower half—plane R , and there E(s) is also analytic and of

algebraic growth or decay at infinity.

.4 I
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Thus we have a function E(s), defined by (3.6) in R
+ 
and (3.7) in

R , these two definitions being identical throughout D, which is analytic

and of at most algebraic growth at infinity in the entire complex plane.

According to the extended version of Liouville’s theorem, the most

general such function is a polynomial P(s), and hence the most general

solution to the W—H equation (2.26) is

G
+
(s) + P(s)

= K (s)
+ (3.8)

Y (s) = K (s) [G (s) — P(s) )

for any polynomial P(s).

In most applications the polynomial is fixed in degree, and some-

times also completely, from considerations of “edge conditions” at x 0.

The edge conditions determine the behavior of Y
±
(s) at infinity in R

±
.

This is seen most clearly if we go to infinity along the imaginary axis.

Let s iu with u purely real and positive. Then

Y~ (iu) - 
f’ y(x) exp(-ux) dx (3.9)

which is the one—sided Laplace transform of y(x). When u -
~~ + ~ only

small values of x make any contribution to the integral, and in fact

WATSON ’s LEN~1A [ see , e.g.,9] states that under appropriate conditions,

the asymptotic behavior of Y
+
(iu) as u -‘- + is obtained by inserting

in (3.9) the asymptotic expansion of y(x) as x - 0+ and integrating

term by term . The process can also be used in an inverse fashion to

find the behavior of y(x) as x -‘ 0+ by examining the behavior of Y+(iu)

as u+ +=[14]. Note, however, that the behavior of y(x) as x ~ 0+

is NOT simply related to the behavior of the full— range transform Y(s)

16
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for large values of s. If one knows Y(s), one has then to decompose

Y(s) into Y
+
(s) + Y (s) and then look at 

~~~~~ 
for large values of a, a

procedure explained in detail in [14].

In a similar way, the asymptoticsof y(x) as y + 0— are determined

by those of Y (—iv) as v -~ + ~~, using Watson’s lemma.

Now in our problem we assume that the deflection y in the reflected

or transmitted wave is finite as x -
~~ 0±. Then the leading order term

in the expansion of Y
+
(iu) is

(Const) f exp(—ux) dx (Const)u~~ (3.10)

and similarly for Y (—iv), so that Y
±

(x) are each O(s ’) at infinity in

R+, respectively. K
÷

(s) each tend to 1 at infinity, while G
÷

(s) are

each O(s 1 ). It then follows from (3.6) that E(s), which is the

polynomial P(s) , is O(s ’) at infinity in R
+, 

and from (3.7) that it

is O(s ’) at infinity in R , and hence, because R+ 
have a coi~~on strip,

P(s) is a polynomial which vanishes everywhere at infinity like s 1 .

Therefore P(s) must be identically zero, and the solution subject to

the condition of finiteness at the junction x = 0 is

Y~ (s) — G~ (s)/K~ (s)
(3.11) 

4

Y_ (a) — G_ (s) K (s)

and in explicit form this gives

17

—

~

- -

~

-

~

- ~~~~~~~ -~~~ -- - - -



21k
+ (a + k,)(k + k )

(3.12)
2ik /s — k

i 
— 

0 ( 1
- s + k

0 
(s+k)(k + k)\s-k

Before proceeding to the inversion of the Fourier transform we

return to the question of the uniqueness of the Let one specific

factorization be K
+
(s) K (s). Then in any other factorization, the

factors can be written

(At
(s) K~ (s) ] [A (s) K (s)]

where, since K÷(s) are analytic and free of zeros in R~, Ak(s) must

also be analytic and free of zeros in R±, respectively. Further,

Ak
(s) A ( s) = 1

for sED, and because A (s) has no zeros in R_

A
k

(s) A (s) 
. 

-

again for s~D. Define

F(s) — A
+
(s) SER+ 

I

;

1F(s) — 
A (8)

Then F(s) is analytic throughout the whole s—plane (an ENTIRE function).

Suppose further that the factors are required to have some specified

algebraic behavior at infinity in that respective half—plane. Theit At (s)

each tend to constant values at infinity in R4., and the entire function

F(s) has constant values everywhere at infinity. By Liouville’s theorem

18



the only such function is F(s) Constant F , so that if K+
(s) , K_ (s)

are one pair of fac tors , any other pair must be of the form

F K
+

(s) , ~~ K (s)

In other words, a factoxization with prescribed algebraic behavior at

infinity is unique up to multiplication of K
+

(s) by a constant F
0 

and

division of K (s) by the same constant F .  Note the importance of the

restriction to algebraic behavior at infinity. In many applications,

part of K(s) can be represented as an infinite product from which the

F split K
+
(s) K (s) can be effected by inspection. Usually, however , the

infinite series of factors which gives K
+
(s) or K (s) has exponential

behavior at infinity in R
+ 
or R , and then it is necessary to divide

say K
+
(s) by an entire function with the appropriate exponential

behavior at infinity in R
+
, so that the resulting factor behaves

algebraically, at the same time multiplying K (s) by the same factor

to eliminate exponential behavior at infinity in R .  Several examples

of this are given in the book by Noble [5].
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4. INVERSION OF ThE FOURIER INTEGRALS

From (3.12), the full—range transform of the scattered field y(x)

is given by

Y(s) — + Y (s)

and

y(x) — -i-- ~~~~~ exp(—isx) ds

where C runs from —~~to +~~in the strip D. Since Y~ (s) behave

algebraically at infinity in R~, the convergence of the integral is

dictated by the exp(—isx) factor.

For x > 0, close the contour C with a large semi—circle in the

lower half—plane. The contribution from this semi—circle vanishes

as the radius becomes infinite because exp(—isx) is exponentially small

for x > 0 and Im s < 0. (Again, a more careful proof of this should

really be given.) Further, inside the closed contour consisting of C

and the large semi—circle, i (s) is analytic and by Cauchy ’s theorem

makes zero contribution to the integral. Y
÷
(s) does have singularities

in R , but these consist in fact of just a simple pole at s = -k ,.

Noting that the contour is described clockwise rather than counter—

clockwise, we have

y(x >O) = -
~~~~~ (—2iri) (Residue of at s — —k,) exp (ik,x)

2 ik
— (—i) 

k0 
+ k, 

exp(ik,x)

T exp(ik1x)

where the transmission coeff icient is

20
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2k
T k k  (4.1)

For x < 0, complete the contour C with a large semi—circle in

R
+
. There is no contribution from the large semi—circle, and applica-

tion of Cauchy ’s theorem now gives

y(x < 0) = -j~ (+ 2Tri) (Residue of Y (s) at s = + k) exp(— ik x)

(21k )
— + ‘ (2k ) (k + k 1) 

(+ k — k 1) exp(— ik x)

— R exp(— ik x)

with a reflection coefficient

- k \
R 

~ k + k ) -  
(4.2)

o 1

It is a trivial matter to check that these solutions for the reflected

and transmitted waves satisfy the conditions (2.23) and (2.24).

In the kinds of problems encountered in acoustics, the function

usually has a branch point singularity in R as well as simple

poles, and correspondingly Y_ (s) may have one or more branch points

and simple poles in R~. The pole contributions are unaffected (except

in certain critical circumstances) and give rise to natural modes of

the system, analogous to the reflected and transmitt~d waves found here.

When the dissipation factors are small, some poles will lie close to

the real axis and give rise to propagating modes, as here. Others

may lie close to the imaginary axis and give non—propagating modes, of

the kind found in wave—guide problems and in the motion of plates and

beams. In other problems poles may be present in the complex plane

L - 
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and yet may never be captured in the appropriate deformations of the

integration path which will have to be made, and such poles then

represent no distinct and identifiable structure of the field. Pole

contributions also serve, in acoustics problems, to represent the

abrupt changes that would occur according to geometrical optics as one

crosses boundaries between ill uminated, reflected, and shadow wave

zones. These pole contributions have to be supplemented in more

complicated problems by integrals around the branch cuts which join

branch points. There are many techniques for estimating the contributions

from branch cut integrals [9,lO,ll ,12J including cases where various

kinds of singularities come close together, and even coincide. Generally

branch cut integrals represent forced near—field behavior, which decays

algebraically away from a junction or discontinuity of the two—part

system usually studied by the W—H technique, leaving only the natural

propagating modes at large distances.

22



5. DIFFERENT CONDITIONS AT x - 0

Suppose now that the strings are each stretched to tension T,

but are joined by a mass m which is free to slide on a smooth wire

perpendicular to the strings. The condition of continuity of displace-

ment of the string remains in forc e, so that as in (2.24)

y(O—) + 1 = y(O+ ) (5.1)

while the equation of motion of the particle is

T ~~(0+) 
- (y + e~~~°~~~(O~) = ~2 y(0+) (5.2)

since y(0+)e
_
~~

t is the particle displacement. We now find that it is

impossible to eliminate all of y(O±), y’(O±) from the equations (2.l8),

(2.20), (5.1), and (5.2), which are statements of the equatioi~~of

motion and the boundary conditions. The simplest W—H equation one can

get, replacing (2.26), turns out to be

K(s) Y~(s) + Y (s) = 
k 

+ 3F~~ (5.3)

containing two unknown functions, 
~+
(
~
)
~ 

and the unknown constant

y(O+) also. Supposing y(O+) were known, however, we proceed as before.

The additive split of i/(s + k0
) K_ (s) G

+
(s) + G (s) has been given

in (3.4); for the other term in (5.3) we proceed in a similar fashion

and get

_______________ — H (a) + U (a) (5 .4 )
T 

(~~~ 
2 — k~,) K_ (s) + —

where

23
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i _______________H~ (s) — y(O+) 
(s + k) (—2k ) K (—k )

(5.5)

1 r 1 1H (s) — (a + k) [(a — k) K_ (s) — 
(—2k ) K (—k )

The entire function E(s) is again zero and thus we find

K~ (s) Y~ (s) - 
(s + k) K (-k ) 2kT (s + k) K (-k ) (5.6)

From this equation we can now determine the value of y(0+), for

we recall from #3 that the behavior of Y+
(S) as s + 

~ in R+ 
is related

to the behavior of y(x) as x -~ 0+ — i.e., to y(O+) . As s -
~ ~ in R+

we have

Y~ (s) -. f’ y(0+) exp(isx) dx +
— 
iy(0+) 

+ (provided Isis > 0) (5.7)

while K
+
(s) -‘ 1 as s -0 ~ in R+

. Therefore the leading terms of (5.6) . -

state that

iy(O+) 
— 

1 
— ~~~ y~(O+) 1

a sK (—k ) 2k T a K (—k ) 
( 5 . 8 )

— 0 0 0

which requires

y(0+) + 2k
0
TK(-k ) } - 

K (-k
0
) (~~•~~ )

The solution can now be completed in precisely the same manner

as before. This method—of examining the detailed behavior, possibly

to several terms, in the expansion of Y+(a) as s 
-0. ~ in R+ —1s

24 
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frequently used to determine unknown constants arising from boundary

conditions. Another co on method , which is illustrated in the next

sec tion on waves in beams, involves obtaining a solution like (5.6)

for general values of the unknown constants, and then arguing that

unless the constants have certain special values, a plus function will

have a pole somewhere in R
+ 

or a minus function will have a pole some-

where in R_ . In complicated problems involving coupled elastic plate/

acoustic fluid motions the plus or minus function which apparently

has the singularity may not be the obvious or Y function , but some

more complicated related function.

I .

_ _ _ _ _ _ _ _ _  - - 
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6. WAVES ON BEANS

We now replace the strings of #2 by beams of specific mass

and bending stiffness B , B, in x < 0, x > 0, respectively. The free

wavenumbers will be denoted by k , k1 as before, for t ime dependence

exp(—iwt), where

— (pw 2IB ) , k~ (p ,w2/B ,). (6.1)

For the moment we leave conditions at the junction x — 0 unspecified

and take a wave with displacement exp(ik x) incident from x — -~~~~~,

denoting the total displacements again by y + exp(ik x) in x < 0

and by y in x > 0. This ensures exponential decay of y(x) as

x -0 + and as x -‘ — provided Im k , Im k, are given small positive

values, fcr we anticipate that in x > 0

y(x) = A exp (ik 1x) + B exp(—k,x)

and (6.2)

y(x) — C exp(—ik x) + D exp(k x).

The near—field terms here, B exp(—k,x) and D exp(k0
x), decay

as x -. + and as x -0 — 
~ , respectively, because k and k1 have positive

real parts; they arise because the equations of motion are

i n x < 0
dx ’ 0

(6.3)

i n x > O
dx”

Taking half—range Fourier transforms of (6.3) gives

26



(a” — k~) ~+~~
) — y”(O+) — jay” (0+) — s2y’(O+) + is3y(O+) (6.4)

(s” — k~) i (s) — —y ”(O—) + isy” (0—) + s2y’(O—)— is3y(O— ) (6.5)

the first of these holding in R
+I the second in R .  Now the poles

a — +k,, a +ik1 lie in R+ 
(see Figure 3), so that will have

poles at +k,, + ik, unless we choose

y”(O+) — ik
, 

y”(O+) — k~ y ’ (O+) + ik~ y(O+) 0 (6.6)

y”(O+) + k1 y”(O+) + k~ y ’ (O+) + k~ y(O+) = 0 (6.7)

Similarly, Y_ (s) will have poles at a — —k , a — —ik in R_ unless

— ik y”(O—) + 1,2 y ’ (O—) + ik3y (O—) — 0 (6.8)

—y”(O—) + k y”(O—) — k2 y’(O—) + k3 y(O—) — 0 (6.9)

Whatever the boundary conditions at x — 0, conditions (6.6—6.9) must be

satisfied . (Two analogous relations could have been deduced in 02, but

it seemed unecessary to emphasize such a point at an early stage.)

Four further conditions may be imposed at x — 0, at least one of

these being a nonhomogenous condition, so that we shall have a uniquely

soluble set of eight equations for the eight unknown boundary constants.

We shall not take any particular set of boundary conditions, as these

tend only to lead to complicated expressions without any special structure.

By addition of (6.4) and (6.5) we get

(8” — k~) Y~ (S) + (s” — k”) i (s) — Q,(s) + Q (s) (6.10)

~ 

- 
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where

Q, (s) — is3y(O+) — s2y ’(O+) — isy” (O+) + y”(O+)
~ (6.11)

Q
0
(s) —is’y(O--) + s2y’ (0-) + isy”(O—) — y” (0—) J

and conditions (6.6—6.9) are satisfied, so that

Q,(k,) — Q1 (ik ) = 0
1 (6.12)

Q (—k ) — Q (—ik0
) = 0

Equation (6.10) holds in the strip

D: —k < I m s < + k
Ii oi

For simplicity we can take k
1 

k,~~. so that the strip D is symmetric

about the real axis and the points +k , +k1 lie on the upper boundary

of D, the points —k , —k1 on its lower boundary. Because k~~ is

supposed to be very small, the other points of interest, +ik , +ii ,,

and —ik , —ik,, lie well above and well below D, respectively . If

therefore we work in the interior of D we can divide (6.10) through

by (s” — k” ) say , and get a W—H equation

Q,(s) + Q~(s)K(s) Y
4(s)+Y (s) — 

(a” k~) 
(6.13)

in which the kernel is

— kh
K(s) — ‘- (6.14)

The W—H product split, into factors analytic, non—zero and of

algebraic behavior at infinity in R± , 
respectively, is again obvious:
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( s + k ) ( s + i k ) ( s - k ) ( a — i k )
K~ (s) — 

(~~~ 
+ k)(s + ik) 

K_ (s) — (s — k ) ( s  — ik )  (6.15)

Then division by K (s) (K (s)~ O in R and sog~O in D) gives

Y (s) Q,(s) + Q (a)
K (s) Y (a) + — (6 16)
+ + K_ (s) (s + k ) ( s  + ik ) ( s  — k ) ( s  — ik )

and we have to make an additive split of the right hand side. Now

because of (6.12), Q0(s) must contain the factors (s + k0
) (s  + ik ) ,

while Q 1 (s) must contain the factors (s — k)(s — ik,) so that we

can write

Q (s) ( s + k ) ( s + ik ) ( a s + b )
0 0 0 0 0

(6.17)

Q (s) E (a — k ) ( s  — ik ) ( a s + b )

where the coefficients a , a1 , b , b , are known when any particular

set of conditions is specified at x — 0. Now the right side of (6.16)

has the form

a s + b  a s + b
0 0 + 1 1

(s — k1 )(s — ik,) (a + k )(s + ik)

which is already in the desired form G_ (s) + G
+
(s). The reason for

this is that analyticity arguments have already been used to remove

pole singularities where they are not permitted and because pole

singularities are the only kinds of singularity which are present in

these one—dimensional problems this effectively means that the additive

split must already have been carried out.

29
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By the usual arguments we then have the solutions

K~ (s) ‘cu) — G~ (s) — P(s) 1
~ (6.18)

G (s) — _____ = P(s) J
where P(s) is a polynomial. And because G~ (s) Ø(~~~1), K± (s) = 0(1)

and — O(s 1) (because y is finite at x = 0) at infinity in their

respective half—planes of analyticity, the polynomial P(s) must be

identically zero , so that

a s + b1 1

+ (s + k1 )(s + 1k,)
(6.19)

a s + b
Y ( s) 

(a — k ) (s —  ii~ 5

The inverse transforms can then be performed explicitly, the poles

s — k and a = ik in R gives rise to the reflected wave and a
0 0 +

decaying mode in x < 0, the poles s = —k 1 and —1k, gives the trans—

initted wave and a decaying ruode in x > 0. Specifically we find

(a k - b
y(x > 0) = i 

k,(l + i) 
exp(ik,x)

(a,ik, — b,)
+ ~ k, (1 — I.) exp(—k,x)

( a k  + b )  (6.20)

y(x < 0) — I exp(—ik x)
k(l — i) 0

(a ik — b )

— ~ k (l — i) 
exp (+k x)

0

which is of the anticipated form (6.2). For any specified boundary

conditions the values of y and its first three derivatives are known

at x — 0~, so that the coeff icients a0, b ,  a1 , b, in (6.20) can be

~~~~~~~~
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obtained from a direct comparison of (6.17) with (6.11). But of

course, the W—H was never intended to be used for solving such simple

problems as these one—dimensional ones. We are using them as the

simplest vehicle on which many features of common occurrence in the W—H

method can be demonstrated.
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7. GENERALIZED W—R EQUATIONS : ThREE—PART BOUNDARY VALUE PROBLEMS

The standard W—M equation, (2.26), arises in many, though by no

means all, boundary value problems in which different boundary data are

prescribed on, say, x < 0 and x > 0. Many problems of interest in

acoustics fall into this category ; for Instance, the problem of energy

conversion from the elastic to the acoustic mode when a surface wave

in an elastic plate encounters a junction in the plate across which

the plate properties change abruptly can be modeled in terms of two

semi—infinite plates x < 0 and x > 0 for many purposes. The boundaries

concerned do not always have to coincide with just the x—axis. For

examp le, the standard W—H equation arises in the diffraction of waves

by an open—ended parallel plate waveguide, or by an open ended circular

duct, provided these are both semi—infinite. On the other hand, dif-

fraction by three parallel equi—spaced semi—infinite plates is a com-

pletely open problem, though diffraction by an infinite cascade of

semi—infinite staggered plates is a relatively simple standard W—H

problem. If the waveguides referred to above have closed ends (diffrac—

tion by a semi—infinite thick rigid plate, or by a semi—infinite solid

rod) the standard W—H method does not lead to a closed form solution,

but to an infinite set of coupled linear equations, whose solution can

only be approximated by the solution of a finite subset of the equations

in the low frequency limit.

Thus it is clearly difficult to give any general guidelines as to

when the standard W—H method would work except to say that it will not

work, without modification, in the case of three—part boundary value

problems where data is given on, say, — < x < 0; 0 < x < 2.;
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£ < x < + ~ in three different forms. There are, however, a number of

problems which have been successfully tackled—though always only in

approximate form—in this category, using modified W—H methods. We quote

as examples the problems of diffrac tion by an inf inite rigid strip of

finite width in the high frequency limit, of the resonances of a circular

tube of finite length open at both ends and of wave motion in an elastic

plate set in an infinite rigid surrounding baffle.

Now in many of these problems the approximate solution is achieved

on the basis of a “weak interaction” simplification. For example, in

diffraction of waves of wavenumber k0 by a rigid strip of width £ in

the high frequency limit , (k g) >> 1, one can suppose that to first

order each edge is unaware of the presence of the other , so that one

can start the approximation with two semi—infinite problems of standard

W—H type. Then if the incident wave amplitude is 0(1), the first inter—

action of one edge with the other will be through a cylindrical wave

emanating from one edge, due to the incident wave, and of amplitude
-_I.

0(k~~) 
2) near the other edge. For the second approximation we there-

fore solve another two semi—infinite problems, but now with more

complicated forcing terms arising from the mutual interaction between

the edges. While one can see how to continue the process in that

simple case, it is advantageous to derive a modified W—H equation whose

approximate solution throws up these successive interaction problems in

a natural way. The advantage is that one can see from the generalized

W—R equation what to try in more complicated problems where the

physical situation is less clear. For example, near resonance the

“weak interaction” sort of approximation is quite inappropriate, as the

33



-~~~~~~~ ‘ .--—~——~~ - . -- . - . -~~~-—-*- ----—

whole phenomenon depends on strong coupling between the ends of the

system.

We shall try here to use our one—dimensional examples to illustrate

the possibility of generalizing the W—N technique to deal with three—

part problems. For such one—dimensional problems, however, there is

not generally any “weak interaction” approximation that one can make,

because waves on strings do not decay in the way that two and three

dimensional acoustic fields do, so that in a sense one is always con-

fronted with the strong coupling situation. Nonetheless, a number

of interesting points arise in the string problems which have direct

comparisons in more serious three—part problems.

Consider a uniform string of line density p in — ~ < x < 0

and in 9. < x < + ~ , these two semi—infinite strings being joined by a

string of line density p, in 0 < x < it. A wave with displacement

exp ikx is incident from x = — 
~ , and we want to f ind the displacements

everywhere, subject to conditions at x = 0 and at x 9. which we will

specify later .

Write the total displacement in x < 0 as y + exp ikx , so that y

represents an outgoing field as x + —
~~~~ . Def ine

i (s) — 5 y(x) exp isx dx (7.1)

so that Y (s) is analytic in R_ (Its s < k
1
) and of algebraic decrease

everywhere at infinity in R_ (because y(x) is finite at x 0). From

the differential equation

il + k 2y.. 0 (—~~ < x < 0)
dx2 0
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we have

(s2 — k2) i (s) = + y’(O—) — isy(O—) (7.2)

and in order to avoid having a pole at a = —k eR we must have

+ y’(O—) + ik y(0—) = 0 (7.3)

Also as a check , as (si -
~~ ~ in R_ ,

‘i (s) — -
~~ 

y( O— )
which we also get from

Y (s) f y(O-) + ...~~ 
e
iSX 

dx (7.4)

using Watson ’s lemma.

The same differential equation holds in 9. < x < ~~~. Def ine

= f y(x) exp isx dx (7.5)

y(x) being the Lutal displacement in 9. < x < ~~~. Then Y
÷

(s) is analytic

in the upper half—plane

R : I m s > - k
+ oi

because of the exponential decrease, exp (~k~~x) of y (x)  as x -‘- + ~~~. 
-

However, does not now have algebraic behavior at infinity in R+
.

To find the behavior we write

~ 

~~~~~~~~~~~ - - 
j
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= f y(X +9.) e1~~~ +2.) ~~
= e15~f 

y(X +2.) e~
8X dx

e
i82. 

f 
[y(it+) + X y’ (9.+) + ...) elaX dX

isP.
= + -

~~~ e~~
9. 
y(it+) + 0 (!2_) (7.6)

as s -
~ ~ in R

+
. Thus Y

+(s) has exponential behavior, exp 
isR., at

infinity in R
+. From the differential equation we have

(s2 — k2 ) Y~(s) = [—y ’(9.+) + is y(2.+)] eiSL (7 7)

from which (7.6) is obvious. Again, there is a pole at a kcR
+ 
unless

—y ’(R.+) + ik y(9.+) = 0 (7.8)

For the middle portion of the string we define

(9.

Y 1 (s) = J y(x) exp isx dx (7.9)
0

Since the integration is over a finite range only and the integrand is

bounded and continuous, Y ,(s) is analytic in the entire complex plane

(the Fourier Transform of a function with compact support — i.e.,

vanishing outside some finite range, is an ENTIRE function). As a +

with Im a > 0,

Y,(s ) - f (y(O+) + xy’(O+) + ...) ei5X dx — 0(s ’) (7.10)

because when Its a > 0 only small values of x contribute to the integral,

so that we can expand y(x) about x — 0+ and also extend the integration
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up to °~~. As s + 
~ with Its s < 0 we need to write x — £ — z, to get

p2.
Y1 (s) = exp(is9.) j y(9. — z) exp(—isz) dz

0

and because of the exponential exp(—isz) we can expand about z = 0 again

to get

Y1(s) — exp is9. [y(2.—) — zy’(9.—) + ...Je isz dz

= exp(is9.) — 1 y(9.—) + 0~—~-) (7.11)
S

Thus the entire function Y 1 (s) is algebraically small, O(s ’) or smaller ,

in Im s > 0, but exponentially large like exp(is9.), in Its s < 0.

The differential equation

2
+ k2y = 0

dx 2 1

(wher e y is the total displacement in 0 < x < 2.) gives

(s2 — k~) Y ,(s) = [y ’(2.—) e
iSit 

— y’(O+)]

— is[y(9.—) e~~
9. 

— y(0+)] (7.12)

and confirms (7.10) and 7.11). Further, Y1 (s) can have no singularities

for any f inite value of a , so that the right side of (7.12) must vanish

for both s — k and a — —k , giving

[y ’(L—) e~~~
t 

— y ’ (O+) ] — ik,[y(9.—) e
lk i it — y(O+)]— 0 , (7.13)

[y
~
(&
~
) e~~~It — y’(0+)J + ik,[y(2.—) e~~~~

t 
— y(0+)] — 0  . (7.14)
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To make the algebra minimal we choose a definite set of conditions

at x — 0 and at x — 9., namely the simple junction conditions that there
is no change to the total displacement or to the slope at x — 0, x — 2.,

the tension in all three strings being the same. Thus we take

y(O—) + 1 = y(0+)

y(2.—) y(9.+)
(7.15)

y’(O— ) + ik = y ’ (O+)

y ’(9.—) = y’(R.+)

If k # k~ the set of & equations (7.3, 7.8, 7.13, 7.14, 7.15) has a

finite solution provided

sin k19. # 0 (7.16)

(excluding resonance of the middle portion) and then

2ik k 1
y (P) — — ° cosec(k12.)

k2—k2
~ 

1 
(7.17)

2k 2 2ik k
y(O+) = — _____ — ~~ 1 

cot k1 2.
k2_k2 k2—k2
0 1 o 1

etc. This of course completes the solution for these simple problems,

for now that all constants are known, is known from (7.7),

Y_ (s) from (7.2) and Y 1 (s) from (7.12).

A method which shows how a generalized W—H equation may be treated

ignores the detailed solution (7.17), and instead eliminates the unknown

constants from (7.7), (7.2), and (7.12) in just the same way that the

corresponding constants were eliminated in #2 to get a standard W—H

equation. Thus we write
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- k~) Y 1 (s) - e~~
2.
[y ’(&-) - is y(L-)]

— [y’(O+) — is y(O+)]

— — (~~2 — k2) 
~~~~

— (~
2 

— k2 ) Y_(s)

+ i(s — k )

on use of (7.15), (7.2), and (7.7), so that

Y~ (s) + Y (s) + K(s) ‘i (s) = 
k~ 

(7.18)

where the kernel is, as in #2,

— k~
K(s) = (7.19)

— k2
0

This is the required generalized W—H equation, a single equation for

three unknown functions Y
÷

(s), i (s) and Y,(s), given the kernel K(s)

and the forcing field (a + k ) 1 .

Equations of this kind have been considered by Noble L 5  p .  196].

Methods exist for solving such equations approximately in “high

frequency” limits in which the finite part of the boundary is many

wavelengths long, in some appropriate sense. Generally these methods

rely on weak interaction between the ends x 0 and x — 2., though as

remarked before, the ends are rather delicately coupled in cases such

as the resonance of a finite open—ended waveguide, and methods have

also been developed to deal with such cases. Here, because only pole

singularities are involved, it is possible to solve (7.18) exactly.
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We carry the analyses through in a general form as far as possible, to

indicate the procedure which has to be followed in more complicated

problems.

First of all we extract a factor exp ist from ‘i
~~~~~’ 

writing

= exp(is9.) Z~(s) (7.20)

so that Z
+

(s) = 0(s ’) at infinity In R
+
. The necessity for doing

this will be apparent in a moment. Then write K(s) — K+
(s) K_ (s) as

usual, and divide through by K_ (s) to get

is2.
e Z (s) ‘i (s)

+ 
—

K (s) K (s) + 1 (s + k )  K (s)

The second term on the left is analytic in R and 0(s..l) at infinity

there, the third is analytic in R
+ 

and O(s~~) at infinity there. The

term on the right can be split in the familiar way as

(s + k )  K_ (s) = G~(s) + C (s) (7.21)

and we also make an additive split of the first term in this way,

isP..e 2 (s)
K (s) = U

t
(s) + U_ (s) (7.22)

using a general theorem to be given in a moment. G
±(s) are each

at infinity in R~, and we assume that is also true of Uk(s).

Then we have

U+
(s) + K+(s) Y

1 
(s) — G~ (s)

Y... (a)
— G (s) = K_ (s) 

— U_ (s)
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— 
and each side is the representation, in R

+ 
or R_ as the case may be,

of a single entire function which behaves like s ’ everywhere at

infini ty, and is therefore identically zero. Hence

K~ (s) Y 1 (s) — G~ (s) + Uk(s) — 0 (7.23a)

Y_ (a)
G (s) — K (a) — U (s) 0 (7.23b)

Now return to the generalized W—H equation, and this time, instead

of dividing by K (s), we divide by exp(is9.) K
+
(s) to get

—isP.Z
+

(s) e Y_ (s) 
—i ~ ~ .

K
+

(s) + K~ (s) + e K (s) Y 1 (s) = (a + k )  K~ (s) (7.24)

The first term is analytic in R
+ 

and 0(s~~) at infinity there while

the third is analytic in R_ and O(s ’) there only because of the factor

exp(—is9.). If we had not divided by exp isP. we would have been left

with a third term which was analytic in R , but exponentially large

at infinity in R (see Eq. 7.11) and the function theoretic argument

would not go through (in particular, the entire function would not be

zero, but would be exponentially large in R , and there is no general

way of constructing functions of this kind).

The function appearing second on the left in (7.24) has mixed

properties, so we again try to split it as

Y (s)

K~ (s) — V
÷
(s) + V (s) (7.25)
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with Vt (s) — O(s ’) at infinity in R~. On the other hand, the function

occurring on the right of (7.24) is a®function—but it is exponentially

large, like exp 
~~~~~~~~~~~~ 

in the upper half—plane, and so it is necessary

to make a split

—isL

(s K~ (s) — H~(s) + H (s) (7.26)

with H÷ (s) — 0(8 1 ) in R,. in order to remove this exponential increase.

Now we can split (7.24) into®andØparts , each of which is 0(s ’)

at infinity in R~ and each of which therefore 
vanishes identically.

Thus we get

H (s) — V (s) — e~~~
9. K (s) Y 1 (s) = 0 , (7.27a)

Z~ (s)
I(~ (s) + V~ (s) — H~(s) 0 - (7.27b)

The equations (7.23a ,b; 7.27a,b), obtained by the W-41 argument, are not,

in general, solutions to the problem, but they constitute a pair of

integral eQuations which are in a form suitable for approximate solution

in the “high frequency limit” (i.e., for k t  >> 1, k 19. >> 1 in general).

To see this we have to use the general formula (see Section 10) for

expressing a function F(s), analytic in the strip D and with suitable

behavior at infinity in D , as the sum of functions analytic in R÷ and

at infinity there. If

F(s) = F~ (s) + F (s)

where the functions are to have the stated properties, then
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F~ (s) — dt (7.28a)

F_ (s) — dt ~ (7.28b)

where in (7.28a) the path runs from — 
~ to + ~ in the strip D passing

below the point t = s while in (7.28b) the path passes above t — a.

Applying (7.28) here we have, for (7.23b) and (7.27b) in particular, 3
Y (s) 

1 ett9. Z+
(t)

C(s) — K (s) ~~~~~ $K ()(t — 
~ 
dt = 0 (7.29)

Z
+

(s) 
~~. 

e~~
t2. Y (t)

-H
÷

(s) + 
K~ (s) ~~ 21Ti. $ K (t)(t s) dt - 0 , (7.30)

the forcing fields G_ (s) and H
+

(s) being known, in principle. Clearly

(7.29), (7.30) are a pair of coupled integral equations for the unknown

functions Y (s) and Z
+(s) which determine the reflected and transmitted

fields in x < 0, x > 9., respectIvely. Once these are known, the f ield

Y(s) in the middle portion of the string can be found directly from

the generalized W—H equation (7.18), for example.

To see the structure of these equations, suppose that the integral

term in (7.29) were zero. Then we would have

Y_ (s) = K (s) G (s)

and noting the definition (7.21) of G_ (s) and comparing with (3.11)

we see that this Y_ (s) is precisely the f ield in x < 0 if the wave

exp(ik x) were incident upon a semi—infinite, rather than finite,

string to the right. Similarly, the situation Z
+

(s) — K
+

(s) H
+

(s)

is the solution for a semi—infinite problem of reflection at the
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junction x 9., the left hand portion of the string now being regarded

as extending to x — — ~~~. The integral terms represent interactions

between the ends x — 0, x — 9., giving rise to a sequence of reflections

and transmissions. Methods have been devised for dealing approximately

with these interactions both when they are weak and when they are strong,

as in resonance situations (see Noble [5 (Ch.51).

Here it is of course possible to solve the coupled integral equa-

tions completely. First, however, we show how they may be uncoupled

when the kernel K(s) is even in a, as it is here. It is then possible

to work in a strip D which is completely symmetrical about the real axis,

so that Y (—s) is a®function with the same domain R+ 
of analyticity

as Z
+
(s), while Z

÷
(—s) is a®function. It also follows from Sec.-

tion 10 that K+
(—s) — Kjs) for sED.

Consider then (7.29) and (7.30) for scD, and choose the path

~~~~~~~~~~ above s to be a straight line from -
~~~ +ia to +o +ia, a > 0.

Choose ..__-.,,.__- to be the image of this path in the real axis, going

from —ia to +~~—ia. In (7.29) change s to —s; the integration path

can be chosen to run above both a and —s, and so

Y_ (—s) i. ( ei~
& Z~(t)G_(—s) — 

K~ (s) ~~21Ti J K _(t)(t+s) 
dt = 0 (7.31)

In (7.30) change the integration variable from t to —t; (—t) runs

from +ia +~~to +ia —~~as t runs from —ia 
—

~~ to —ia +~~~, so that the

path for (—t) is the same as that in (7.31). This gives

Z~(s) 1 t eittY...(.t) dt
—H~ (s) + K ( )  — 

~~~ J K ( t ) (t+s) — 0 , (7.32)
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Now add (7.31) and (7.32) defining the difference

D
+

(s) — Z
+(s) 

— Y (—a)

to get

~~~~ D~(t) dt
[G (-s) -R~ (s)] 

~~K~(s) ~~2 , i i $ K ( t)(t+s) ‘ 
(7.33)

while if we subtract (7.31) from (7.32) and define

S
+

(s) — Z
+

(s) + Y_ (—s)

we get

S (a) 
1 e

1t
~ S~(t) dt

[-G (-s) -H~ (s) ] + 
K~ (s) - 

~~~~~fK(t )(t + s) 
= 0 (7.34) 

F

so that (7.33) and (7.34) are a pair of similar uncoupled integral

equations.

Let us now look at the forcing functions in these equations.

The additive split of G(s) in (7.21) is simple, giving

G~ (s) — (a + k) K (—k )

(7.35)

G (s) i 1 
— 

1
— a + k K ( s) K_ (—k0)

For the function H(s) in (7.26) we have to use the Cauchy integrals,

which give

1 ~~—itP..
H~ (s) — -~ :f (t + k )  K4(t)(t — 

~ 
dt (7.36)

We cannot complete the contour with a large semicircle in R÷
, because the

factor exp(—itL) is exponentially large there. Instead we complete the

1~~~~  

-

- -

~~~~~~~~~~
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contour with a large semicircle in R , along which the integral vanishes

because of exponential smallness of exp(—it2) there. To interpret the

meaning of K
+
(t) in R we write it as K(t)/K (t), so that

—itP.
H~(s).-~~-~ 5 ~~ 

+ k~~~~~~)(t — 
~ 
dt (7.37)

The pole at t = s lies outside the contour, K ( t) is analytic within

the contour, and

/t —

(t + k
0

) K(t) 
— k) 

(t + k1)

so that the only singularity within the closed contour is at t =

and therefore

ie~~~
2. 
K (—k1) ~ 

ik,9.
H~(s) = -

~~
-
~j 

(_2JT i)
fk k1\ 

= (s + k 1) 
(7.38)

(—k — k J (—k1— s)
~ 0/

— isP. ik 2.ie ie 1 1 —isP. ik2.H (s) — (a + k )  K~ (s) — (a + k1) 
= a + k1

(e — e 1 ) - (7.39)

This instructive example shows the importance of removing

exponential growth at infinity; although the original H(s) is analytic

in R
+ it is not algebraically small at infinity there, and use of the

Cauchy integrals shows how it can be split into + H (s) , with

— O(s ’) at infinity in R~ as in (7.38) and (7.39).

Coming now to the integral terms in the integral equations (7.33),

(7.34), we can this time complete the contour with a large semicircle

in R+, because along that semicircle the factor exp(it&) will be
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I
exponentially small and the integral along the semicircle will contribute

nothing. The functions D+
(t), S

+
(t) are analytic within the closed

contour, and the function l/K (t) — K
+
(t)/K(t) has a pole at t — k1 only.

Therefore (7.33) gives

1)
+~~ 

(k1 — k ) e~~ l2. D~ (k 1)
[G_ (—s) — H

+
(s)] + K

+
(s) + k~) 

= 0 (7.40•)

and (7.34) gives

S~ (s) (k 1 — k ) eiki t S
÷

(k 1)
[—G (—s) —H~ (s)] + 

K
+

(s) (a + k1) 
0 (7.41)

The unknown constants D
+

(k 1), S+(k i) are found by putting s = k, in

(7.40), (7.41) and then we have completely determined the functions

D
+
(S), S+

(s) , from which Z
+

(s)
~ 

Y (—s) can be found, and hence the

whole solution is determined. While there are no difficulties of

principle, the algebra is very tedious an! there is no point in giving

it here.

The only remaining point of interest concerns the inversion of

the Fourier integral for this three-part problem. We have

y (x) — (Y (s) + Y 1 (s) + Y~(s)] exp(—isx) ds (7.42)

with the integral along a path from —~~to +~~in D, and we recall that

Y_ (s) — 0(s ’
~) as si in R

Y (a) — 0(s ’) as Isi in R
I +

— 0(
C 

) as i~ I ~~~ in R (7.43)

isP.
— 0(

C 
) as I s i  -

~ °° in
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that are analytic in R±, respectively, and that Y (s) is analytic

everywhere (an entire function). For x < 0, deform the contour into the

upper half—plane R
+
. The contributions from the large semicircle in to

the Y 1 and Y
~ 
integrals are zero, because exp(—isx) is exponentially small

and i
~ 

and are at least as small as s 1 at infinity in R
+
. Further,

and are analytic within the closed contour 
_____ , and so their

contour integrals vanish. Thus for x < 0

y(s) — -

~~~ $ Y_ (s) exp(—isx) ds (7.44)

which we may ~~~ to evaluate by completing the contour in R+—thougti

note that we know nothing in advance about the behavior of Y (s) at

infinity in R
+
.

If x> L we complete the contour with a large semicircle in R ,

along which , although Y 1 (s) is exponentially large, the product

Y1 (s) exp(—isx) is exponentially small when x > P.. Similar arguments

then give

y(x) — -

~~~~~ 5 Y+(s) exp(—isx) ds (7.45)

Finally, if 0 < x < 9., close the contour for Y (s) in R_ , that

for in R+, and we find that the integrals of Y (s), 
~~~~

vanish, leaving

y(x) — 

~—f 
Y

1 (s) exp(—isx) ds (7.46)

Because of (7.43) it is only possible to close the contour here in R ,

Y1 (s) exp(—isx) being exponentially large in R+ 
when 0 < x < P..

These arguments apply generally in three—part boundary value

problems. Here the integrals (7.44—7.46) can all be evaluated by
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residue calculus , since only simple poles are involved, leading again

to results which can be confirmed using elementary methods.

The purpose of this section has not been to solve a particular

string problem, but to illustrate how the W—H method, applied to three—

part problems, leads in general not to a solution, but to a pair of

coupled integral equations. For an even kernel K(s) we can decouple the

equations, and deal with a pair of similar independent integral equations

for the functions D
+

(s), S
+
(s). In our case the integral terms can

actually be evaluated explicitly in terms of unknown constants D
÷

(k 1 ),

S
+

(k 1), which can then be determined by setting s = k1 in the integral

equations. A precisely similar situation exists in “near—resonance”

problems, such as the scattering of acoustic waves by a long tube, open

at both ends, at frequencies near resonance. There it is argued that,

although the function K_ (t) in the integral equation (7.33) has branch

point singularities, the dominant contribution near resonance comes

from a pole term. Well away from resonance it is anticipated that the

dominant contribution to the integral comes from a branch point

singularity which represents the rather weak acoustic interaction between

the ends of the tube. The functions are expanded about the branch point ,

and the integral term can then again be evaluated (approximately) as the

product of D
+
(_k) say (where —k is the branch point) and an integral

which is expressible in terms of Whittaker functions (which can be

further approximated in most cases). Again the constant D
+
(_k) can be

found by setting a = —k in the integral equation.
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8. TWO—DIMENSIONAL HALF—PLANE PROBLEMS

We go on now to look at a simple problem involving a half—plane

embedded in an acoustic fluid. In the first place the fluid will have

no bulk motion, whereas later we shall allow the fluid to flow over the

half—plane with uniform subsonic velocity, leaving a wake behind the plate

if the edge is a trailing edge. The issue we want to examine is the

following one. Suppose that the plate were infinite in both the positive

and the negative x—directions and a wave were forc~~to propagate along

the plate with some prescribed frequency c~ and wavenumber q, the wave—

number q being real and greater than the acoustic wavenumber k =

Thus the velocity in the positive y—direction is prescribed in the form

v(x,t) = v exp(iqx — i~.j t )  - (8.1)

Then the solution for the potential ~-(x ,y) in the fluid in y > 0 is

(dropping the factor exp — iwt)

- exp(iqx - YqY) (8.2)

where

1q 
= (q2 — k2)2 , (8.3)

for this makes

/.~.2 2

~x
2 ay2 0/

make sq- ’ 0 a s y - ~- + ~~ 
-

and makes -
~~

-
~~~ (x ,O) v0 exp(iqx) -

The field described by (8.2) is that of a subsonic trapped surface wave.

No radiation takes place across any plane y — const. because the pressure ,
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p = piw4, and the velocity 34i/3y are 90 degrees out of phase. The

energy is locked in a thin layer of thickness O(y~~) adjacent to the

surf ace, and none escapes as sound.

Suppose now that the surface is semi—infinite, occupy ing

(— < x < 0, y = 0), all dependence on the z—coordinate parallel to

the surface edge being excluded . Let the surface — ~ < x < 0 still be

forced to move with the prescribed velocity

v(x) = v exp(iqx).

Then (8.2) cannot be the solution, because it is easy to see that since

3~/3y is prescribed on y = 0, for some range of x at least, 4 must be an
odd function of y and since ~ must be continuous across the extension

( y 0 , 0 < x C x.) of .he surface , ~ must be zero there—whereas (8.2)

is not zero. Clearly, no single mode like (8.2), nor even any discrete

set of modes of this kind, is capable of making ~4/3y have the value

v expiqx on y = 0, x < 0 and of making ~ = 0 on y = 0, x > 0. The

solution for ~ must therefore contain a continuous spectrum of modes

like (8.2) with ~ll values of the wavenumber. In particular, it must

contain modes with wavenumbers ci, say, with ci < k , and for these

modes the exponential decay exp {— (q2 — k2)Ty} must be replaced by

oscillatory behavior exp {i(k2 — ct2)Ty}, the choice of + i(k2 —

rather than — i(k~ — ci2)2y being dictated by the radiation condition, that

the phase factor exp {i(k2 — a2)Ty — iwt)} be that of an outgoing wave

as y -# +~~(when y < 0 we take — i(k2 — c&2)Ty). Energy is radiated

across a plane y — const. by such a mode—and we say that the energy

which was trapped in the subsonic mode (8.2) on an infinite plate has
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been scattered into other subsonic modes and also into supersonic

radiating modes by the discontinuity in the surface y — 0.

To analyze the process of scattering, or wavenumber conversion, by

the plate edge, we def ine a scattered field ~ by

~total 
— — exp(iqx - YqY) + ~ (8.4)

for y 2. 0. Because the derivative total~~
’ has the same value on

= 
~~ 

c~~~~~1 
must be an odd function of y, and so it is enough to

consider only y ~ 0. The scattered field ~ is a solution of

~~~~~~~~~~~~~~~~~~~ (8.5)

with

= 0 on y = 0, x < 0 (8.6)

and with

V
0

4 — ~~-- exp iq x = 0  ony 0, x >0. (8.7)
q

This is a typical two—part mixed boundary value problem which we may

expect to solve by the W—H technique. Two further conditions are

needed , however, to get a unique solution for ~~~. One comes from con-

ditions expected to hold as -* ~~~ , and defines the domains R~ of

analyticity of half—range transforms and the strip D of overlap. The

other comes from conditions at the plate edge, x — y = 0, and determines

the behavior at infinity in the transform s—plane, and hence determines

the entire function arising in the W—H method . We shall leave the

matter of edge conditions until we need to look at it in detail. For

the moment we just assume that all functions with which we deal have

at most integrable singularities at x — y — 0.52
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As to conditions as x -
~~ ± ~~~ , we give k and q small positive

imaginary parts,

k k 1 +ik 2, q q 1 +iq 2 (8.8)

and then (8.7) gives

4’ — 0(exp — q2x)

as x +°~, y — 0. Away from y - 0 we can expect that as x 4-+~~~ 4’ will take

the form of an outgoing cylindrical wave,

4’ r 2 exp (ik r)  f(0) = O(ex p - k2x) (8.9)

It then follows that all® functions linearly related to 4’ and its

y—derivatives will be analytic in

Em s > — min(q2 ,k2) (8.10)

As X 
~~~~ 

4’total contains an exponentially growing part which we have

split off in (8.4), so that 4’ should behave like an outgoing cylindrical

wave,

4’ — 0(exp — k2 J x J ) (8.11)

as x -
~~ 

- 
~~. Then alle functions will be analytic (and with algebraic

behavior at infinity) in

R : Im s~ Z + k 2, (8.12)

and the strip D is

D: — min(q2,k2) < Im s -( + k2. (8.13)
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For y > 0 we can apply Fourier transforms to (8.5), and can

integrate the ~
24’/ax

2 exp isx term by parts twice with no contribution

from x — ± ~ provided a lies in D. This gives

~ - ~~
2) ~(s ,y) - 0 (8.14)

where

y — (~~
2 

— k2)2 , (8.15)

introducing the square root function whose behavior in the complex

s—plane holds the key to many aspects of acoustic diffraction and

scattering processes.
2. 1

The function y = (s — k
0
)2 (s + k )7 has branch points at s

and branch cuts must emanate from these points to form a barrier which

must not be crossed. We can either make a cut from + k to —k , or
0

we can make a cut from + k to ~ (in any direc tion) and a cut from
0 1

—k to ~ (in any direction). If the values of (a + k)2, (s — k ) 7

are specified at any point in the s—plane (not necessarily the same

point for the two functions) and the branch cuts are fixed, then a

unique value of (a + k0)
T, (a — k ) 2 is obtained by startit~ at the given

point and moving to any desired point without crossing any branch ct~t,

and insisting that the function change continuously from its initial

value. Figure 4 gives various possible choices of branch cuts. In

addition to the choice of branch cuts we shall take each of (a ± k )2
1 1

to be the branch which behaves like + s~ (rather than — sT) when a is

large and positive.

Now in our problem we know that ~ must be analytic in D, and since

the general solution of (8.14) is

54



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~•------•--

•(s ,y) — A(s) e~~5~’ + B(s) e
’
~5~ (8.16)

that will only be possible if the branch cuts from ± k1, do not enter

the strip D. Thus the cut from +k must go to infinity above the strip,

that from —k
0 

to infinity below the strip. No further specification of

the Cuts need be made at this stage, because we shall f ind a solution

for s in D, and the values of y are already f ixed for s in D by the

requirement (s ± k)2 + ~2 as s -
~~ + and by the general location

of the cuts.

We can now see that

0 < arg(s + k )  C IT

(8.17)

—it < ar g(s — k )  < 0

for all a in D, and therefore

2 2 2  71— - ~~< arg(s — k )

or equivalently

Re y > 0 for all s in D (8.18)

which is the essential property of y~
. It is possible to choose the

branch cuts so that (8.18) holds throughout the entire complex (cut)

plane, but there is no need for this since at the moment we are concerned

only with values of s in D. Then the only possible form for B(s) in

(8.16) is B(s) — 0, otherwise ‘~ would be infinite as y -
~~ + ‘o. Thus

~(s,y) — A (s) exp(—y
5
y) (8.19)
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and the original radiation condition of outgoing waves is seen to be

equivalent, for k2 > 0 and s in D, to the condition that •(s,y) + 0 as

y + +~~.

The boundary condition (8.6) involves ~‘(s ,0), where the ‘ indicates

a/ay, and therefore we differentiate (8.19) to get the pair of equations

(equivalent to the differential equation plus the radiation condition)

~~s,0) — ~~(s ,0) + ~~(s ,O) — A(s)
(8.20)

•‘(s,O) — ~)•~~s,O) + •‘(s,O) 
— Y A (s)

where, for example,

•s ,0) = f~ 4’(x,O) ~~~~ dx

~~(s,0) — f ~~ (x ,O) e~5X dx, etc.

In (8.20) two of the functions axe known. From (8.6) we have

~‘(s,0) — 0 (for a in R_) (8.21)

while from (8.7) we have

— q) (8.22)

for Im s > — q2, i.e., for scR
+
. Eliminating A(s) between the two

equations in (8.20) and using (8.21) and (8.22) gives

-iv
K(s) ~~(s,0) + •_(~~0) — 

Tq(5+ q) 
(8.23)
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a standard form of W—H equation, with

I

K(s) — — (~~2 
— k2)T (8.24)

Is 
0

The factorization of K into factors analytic and non—zero in R

and of algebraic behavior at infinity there is again obvious:

K~ (s) - (a + k ) 2 
, K (s) = (s- k) T

and after division of (8.23) by K_ (s) we again have the additive split

of the function l/(s + q) K (s) to make. We thus arrive at the

equation

K~ (s) ~~(s,O) + 
1q 

K ( ~~ )(s + q) (8.25)

(s,O) iv 1
= — K (s) 

— 

Yq
(5 + q 1K (s) 

— 

K (—q)

— an entire function E(s).

We anticipate that E(s) will be a polynomial, and consider the implica-

tions that the degree of the polynomial be N, E(s) = a s N + a1 s
N +...+a

N
.

iv ( s + k ) 2

4I’~(s,0) 
y
q
K_ (~q) (s + q) + (a + k

0
)2 {a0

sN+...}

- 0(8 2) + 0(a s~~
2)

as s ~ in R+
. The first term vanishes algebraically at ~ and is

therefore the half—range transform of a function with at most an integrable

singularity at x — 0+. In fact it follows from Watson’s lemma that the



corresponding value of a4’/ay on y — 0, x > 0 is O(x 2 ) as x 0+.

The second term grows as a 9 ~~, and must arise as the generalized Fourier

transform of a function which has a non—integrable singularity at x — 0.

According to Lighthill [ll ,p.43]

lii
0 —x T (1—A) sgns

J 
x exp isx dx = e (—A)! Js~’~~’

0

for real s , and the correct interpretation of this in R+ is

~~~(l -A) A(— A ) !  ~ 
(8.26)

where the branch cut for the function s~~
1 is to go from 0 to ~

in the lower half—plane.

Hence ~‘4(s,o) = 0(5
N+2)

(x,0) = O(x~~~2 ) as x -~ 0+.

Therefore the velocity has a singularity at least as bad as x
2 near

x = 0, and the kinetic energy in a small region around x 0 will

diverge to infinity.

We argue that this singularity is unacceptable, and choose the

solution corresponding to

E(s) E 0

thus giving the least singular behavior—like ;T—in the velocity at

x — 0. Note that it is impossible to impose a Kutta condition, that

the velocity be finite (except by abandoning the radiation condition,

or allowing 4’ to be discontinuous, and that cannot be permitted in

static fluid). To see what kind of a pressum field exists near x — 0

58 

- -- -- _~_____________ -~___s_ 4



we have

~~(s,0) — 
Yq
(S+ q)

iv
(s,O) — 

•
~~ ~~~~~~~~~~ 

q) 1 —

q (s —k0)
2 K_ (— q)

On y = 0, x > 0 we know from (8.7) what 
4’ should be, and this can be

conf irmed from the expression for 
~~~~~~~ 

On y 0, x < 0 we close the inverse

Fourier integral path in the upper half—plane. The pole s = —q lies

outside the contour and makes no contribution , so that we only need to

examine the second contribution to ‘1’ as s 9 
~ in R .  For this contri-

bution

3

~~(s ,O) —

and so

4’(x,O) — (.~x) 2

(times some coefficient) as x - ‘- 0—. Thus the pressure and the pressure

j ump both vantRh like (_x)T near the plate edge. Note that although

the pressure jump does vanish at the plate edge (which would be regarded

in aerofoil theory as the satisfaction of a Kutta condition), the

velocity is nonetheless infinite at the edge.

In su~~~ry, the least singular solution has

4’ — 0(x7)
— 

1 (8.27)
0(x 7)

near the edge, and conditions of this kind are often imposed at the

outset as edge conditions. It seems preferable not to anticipate the

edge behavior in advance, but to follow the V—H method through as far
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as (8.25), and then to see in each particular case what behavior must

hold near the edge and what freedom exists for minimizing singular

behavior (as we shall do in ~9). In some cases, in particular in recent

work by Rawlins [15] on diffraction of an acoustic wave by a half—plane

which is “sound—hard” on one side and “sound—absorbing” on the other,

the edge conditions are not at all obvious, being in fact

4’ O(xT)

— O(x T)

To justify acceptance of a solution with certain edge conditions

one has to go beyond the simple linear inviscid wave equation used here,

or beyond the simple zero thickness model of the boundary. For example,

one can look at linear acoustic propagation with viscous effects

included, or one can look at invisc id propagation around a surface which

is thin compared with any other relevant length scale but which has a

smoothly rounded edge. IL can be proven (though the proof has not yet

been published) that our solution with conditions (8.27) is the unique

one which can be matched to an “inner solution” in which either viscous

forces or the continuous curvature of the boundary lead to finite

velocities everywhere. That is a rather special kind of proof, however,

and we shall refer in ~9 to the unavailability of a comparable proof

when there is uniform subsonic flow past the radiating half—plane.

This discussion of edge—conditions completes the formal deteruiina—

tion of the field as

~

‘ 1v0 exp(—isx —lay) 
ds (8.28) 

- 
-

~

21T JcIq 
K_ (—q) (s + q)(s — k)y 
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where c runs from — 
~ to + ~ in D, i.e., above a — —q, above the branch

point s — —k and below the branch point s = +k
0
. This holds for y > 0,

while for y < 0 we use 4’tota1~~
’
~ 

— 4’total~~
’
~~ 

The integral here can

actually be evaluated in closed form, in terms of Fresnel integrals,

though the details are complicated, and are nothing to do with the

W—H method. We refer the reader to [5,10] for descriptions of the

details, and remark simply that the distant radiating acoustic field

can be estimated asymptotically from the formula

F(s) exp(—isx — y y) ds (8.29)
C

- (._-2~-~) exp(ik r - iri/4) sinO F(-k cose)

in which x — r cosO, y — r sinG , 0 1 0 1 it. (This formula may give

apparent infinities in particular angular directions, and near those

angles it is necessary Lo use more refined approximations.) To apply

it here we have to interpret (—k cosO - k)T, which we take as

—ik T(1 + cosG)7 because the arg of —k0 
cosO — k is equal to —it for

all 0 between 0 and ir. We also need

K_ (—q) 
— (—ci - k,,)7 — ...i(q +

again because arg (—q — k
0
) = —it . Then we have

4’ 
- (

~~~
)
T

(q
i~o~

0
)4. e

ik
o
r -iri/4 

(q-k 0
cos0) (8.70)

which gives the level and directivity of the scattered acoustic field.

In the next section we look at the same problem, but with sub—

j sonic mean flow over the surface.
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9. HALF-PLANE PROBLEMS WITH ?~AN FLOW: WAKES AND THE KUTTA CONDITION

Consider again the half—plane y — 0, x < 0 with prescribed velocity

v(x) — v exp(iqx), but suppose now that there is uniform parallel flow

at the same speed U on both sides of the plate, the plate edge being a

trailing edge. The potential 4’tot l 
satisfies the convected wave equation

[ (_
~ 

+ ~~ -
~
)
~ 

— 

~ 
+ 4’totai 

= 0 (9.1)

and the boundary condition on the plate is that of continuity of

disp lacement (not of normal velocity), giving

(~i~ + ~ ~ 
~
4’total

aX/

where r~ v/(—iw) is the surface displacement. Thus

= (—l w + iijq) v
0
e 

qx on y — 0, x < 0. (9.2)

Because of the presence of mean flow there is a new possibility on the

extension of the plate. A wake can exist there, across which there may

be a discontinuity in tangential velocity a4’~0~51
/
~
x as long as the

normal displacement (and hence here also the normal velocity) and the

pressure are continuous across the wake. Take a single Fourier com-

ponent Aei~~ 4’total 
for y — 0+, x > 0; then for y — 0— , x > 0,

below the wake, the corresponding cpmponent is —Ae~~~, because 4’total must

be an odd function of y. The pressure jump across the wake associated

with this particular component of potential is

p(x,0+) — p(x~O—)’(_~)(-li~ + ii -
~~
?) (2AeO~C)
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and this vanishes either if A — 0 (which implies continuity of

and hence absence of the wake) or, for any value of A, if A — w/U. Thus

the general condition on 4’total 
across the wake is that

total 
(x,0+) = Ae~~

Cl
~ (9.3)

for some value of A. The tangential velocity is ~~~~~~~~~~~~ above

the wake, (— iwA/U)e~~~~~ below it, and hence the wake is an oscillatory

vortex sheet of strength 2wA/U , modulated by the phase factor

[i ~ (x 
— Ut)] , which shows that any element of the vortex sheet

propagates downstream at the flow speed U.

We wish to solve the two—part mixed boundary value problem posed

by (9.1—9.3), subject here to the restriction to subsonic flow

(M = U/c < 1) and to a radiation condition , but leaving open the issue

of edge conditions. We first write

4’total 
- - 

~(-q) 
D(-q) exp(iqx -~ (-q)y) +4’ (9.4)

where we shall write generally

— — (k + 2}T (9.5)

— 
~s — —q

Da w k
0

D(—q) — 1 — (9.6)

The function replaces the v~ 
in the no—flow case, while D is a kind

of Doppler factor for wavenumber 8. The object of writing 4’total in

the form (9.4) is that the incident field associated with the velocity
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~~~iqx on an infinite plate has been split off; that field is exponen—

tially large as x -‘ —~~~~, and the 4’ that remains is assumed to be just an

outward propagating wave.

We now have the following problem for 4’:

+ ~~ 
- 
~~ (
~ 

+ 
~~2)] 4’ 

= 0 (9.7)

-~
.4
~~ o ( y 0 , x <0) (9.8)

~~~ v D(-q)

4’ = A exp(—~-) ÷ exp(iqx) (y 0, x > 0) (9.9)

and we have to examine conditions as x -‘ ± ~~~~. Write k = k + ik
o 1 2

w/U = (k1 + ik2) / M , q = q
1 
+ iq2. As x -~ — 

~~, 4’ must behave like an out--

going acoustic wave, whose decay will be like that of a plane wave

propagating against the flow, so that

iwx
4 ’—  exp 1-iwt — -——-j

~

(- k2~ x\~~
.exp 

~ 1 — MI 
(9.10)

As x -‘ + ~~, 4’ may behave either like an acoustic wave propagating with

the flow

• - exp {- i~ t + ~ }
— exp {— ~~~ -i;i--

~} (9.11)

or may behave as it does in the wake,
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k2x ~
4’ — exp — -i-—

J 

(9.12)

or in the way associated with the forcing field exp iqx,

4’ — exp {— q
2 

x} (9.13)

— It follows from these that

f
_ _ _ _ _R

+
is I m s > _ m i n

~~
-j--+ M , q 2

k2R i s tm s < + 
-

and that the strip is

D: — min~~1 ~~ M 
q2) 

< tin 8 < + 1 — M (9.14)

provided N < 1.

Take Fourier transforms of (9.7) for y > 0 to get

~(s ,y) = A(s) exp (-~~ y) + B(s) exp (+~~y) (9.15)

is defined in (9.5). We take a cut from s — + k0
/(l — M) to infinity

above the strip D and one from s — —k 1(1 + M) to infinity below D, and
0 1

def ine [a — (k + Ms)] 2 to be the branch which behaves like + (1 — P1) 2 57
0 1

when a is large, real, and positive, [a + (k +?4s)J~ to be the branch
1 1

behaving like + (1 + M)T s~ for large real positive a. With these branch

cuts and choices of branch, Re 
~ 

> 0 for all a in D, just as for y

in ~8. Then since (9.15) only holds in D we have to have B(s) — 0,

and now we can differentiate (9.15) with respect to y, put y — 0+

and eliminate the function A(s). Thus
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+ •‘(s,O+)

— — 
~~[‘D~(s ,O+) + 4(s,O+) ]

From (9.8) we have ~‘(s ,0+) — 0 while from (9.9) we have

IA iv D(-q)
— 
(a + k IM) 

+ 
~(—q)(s + q)

and hence we get a W—H equation

iv D(—q)

r- ~~ (s,0+) + c ( s ,O+) + (a + k0/M) + ~(—q)(s + q) 
= 0 (9.16)

We define the factors c (s) c (s) by

— [a + (k + Nsfl2

1 
(9.17)

c (s) Es — (k +

and by the usual route arrive at

k iv D(—q)

~~(s) ~~~ ‘°~~~ 
+ (s + k / M )  ~~~~~~~~~~ -i

~~~ 
+ 

~(—q) (s + q) 
~~ — 

(—q)

- - c (s) ~~(s,0+) - (a + k / M )  ~~~~~~~~~ 
- 

~~~~~~~~~

iv D(—q)
— 

~(—q)(s + q) 
{ (s) — ~_ (—q)} (9.18)

— an entire function E(s), which must be a polynomial because of the

algebraic behavior of all functions involved here. In fact we must have

E(s) 0, for if E(s) were even a constant, the® part of (9.18) would

give
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~~~s,0+) — Q(
~~~ T

) at infinity

3
which corresponds to the strong singularity V4’ 0(x 2). With that

choice of E(s) the solution is still not unique, because the wake

strength A is undetermined . We can argue that conditions are such

that there should be no jump in tangential velocity across the extension
1

of the plat€ , in which case A = 0, V4’ — Q(jT) and 4’ 
— 0(x 2) near the

plate edge and we have a situation essentially the same as was examined

in ~8. Because the radiation is emitted into uniformly moving fluid

the “stationary phase” formula (8.29) is not immediately applicable, but

we shall show in a moment how it can be generalized to the moving f luid

case.

We can alternatively argue that a wake will adjust itself to

eliminate the high velocities which would otherwise exist at the trail-

ing edge , and that a Kutta condition of finiteness of the velocities

at the edge should be imposed whenever possible. The physical basis

for such a condition in unsteady trailing edge flow is a matter of

controversy at the moment, but that does not concern us here as our

interest is merely in seeing if and how such a condition can be applied

in this model problem.

Expand the® part of (9.18) as s + in R
+
. We have

/ k iv D(—q) 
~ 
(—q) \ ! ~

— (~iA~~(— -#~ 
+ 

~~—q) 
— ) (1 + P1)2 s~ ~

+ 0(s 7) (9.19)

the term given explicitly corresponding to V4’ — O(x T) the second to

— 0(x7). Thus we can impose a Kutta condition, that the velocities
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be finite at the edge (note that the velocities in the part of •total

split off in (9.4) are finite, but non—zero, near the edge) by choosing

a wake strength

v D(—q)
A — (9.20)

~~~~~~~~~ in
It is easy to see that the® part of (9.18) contains terms like (a +

(a + k /M) 1 which (as in ~8) make no contribution to 4’ for x < 0,

y 0+ and that with the choice (9.20) the first term in the expansion
S

of (s ,0+) as a ~ in R_ is O(s 
~~
). This corresponds to

3

4 ’= 0(x
2)

near the edge , though the pressure is 0(x2) because p ~~ + U

The expression for the potentIal in y > 0 is found to be

• = 

~~ L F(s) exp(—iax — 

~~
y) ds

with

F(s) = 

~_ (s) ~~~~ ~~~~~) 
+ q) (s + ~~~) 

(9.21) 

j

In the exponential fac tor we write

—isx — [~~
2 

— (k
0 

+ Ms) 2]2 
~

1 Mk 2 k2

— — isx — (1 — P12)2 
~ 

— 

~~~.j2) (l_M 2)2}

so that if we define
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— 0(sT) at inf intty

which corresponds to the strong singularity V4’ — 0(~~
2). With that

choice of E(s) the solution is still not unique, because the wake

strength A is undetermined . We can argue that conditions are such

that there should be no jump in tangential velocity across the extension
1

of the plate , in which case A — 0, V4’ — 0(x 7) and 4’ — 0(x2) near the

plate edge and we have a situation essentially the same as was examined

in 08. Because the radiation Is emitted into uniformly moving fluid

the “stationary phase” formula (8.29) is not immediately applicable, but

we shall show in a moment how it can be generalized to the moving fluid

case.

We can alternatively argue that a wake will adjust itself to

eliminate the high velocities which would otherwise exist at the trail-

ing edge, and that a Kutta condition of finiteness of the velocities

at the edge sho~ild be imposed whenever possible. The physical basis

for such a condition in unsteady trailing edge flow is a matter of

controversy at the moment, but that does not concern us here as our

interest is merely in seeing if and how such a condition can be applied

in this model problem.

Expand the® part of (9.18) as s + in R
+
. We have

/ k iv D(—q) ~ (—q) \
— ~iA~~(— j-) + E;(—q) ) (1 + P1)2 s

+ Ø(~~T) (9.19)

the term given explicitly corresponding to V4’ — 0(x 7) the second to

— 0(x7). Thus we can impose a Kutta condition, that the velocities
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k
Ko l—M2

x = R cos®, (1 - M2)2 y = R sin®

then

exp[-i ~~~~ R ~~ f / 
Mk

2rr jF \a+-~---j~71!X

exp (_io R cos®— (~~ 2 
— K2)2 R sin®}dcY

which is now capable of asymptotic estimation by the 
formula (8.29) for

static fluid.

To make the algebra less complicated , suppose the Mach 
number P1

is small so that M2 can be neglected compared with unity. Then the field

associated with the second contribution in (9.21) turns out 
to be

1 2 iv (l—Mq /k )

(
~

) 
/ 

° ° sinO/2 exp {ik0
r — ik Mx — —

~~~} 
(9.23)

(q 
— o

’\2 [q - k (cosO - M)]
\ l+M/

there being no difference between r and R or between 0 and 
® 

if

P12 << 1. The field (9.23) is a trivial modification of (8.30).

The distant field associated with the first term in 
(9.21), with

the Kutta condition value (9.20) for A comes out as

4 iv (l-Mq/k ) P1
- 

(*i:) 

/ 
k 

(1— P1 cosO) 
sinO/2 exp{ik0

r — ik,, Mx — _
~~L}
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and the ratio of the wake generated field (9.24) to the field (9.23)

which would exist in the absence of the wake is (since q > k) roughly

(9.25)

This shows that if the plate wave travels at speed w/q between the flow

speed and the sound speed , the wake contribution to the far—field is

negligible. If, on the other hand, the plate wave travels more slowly

than the flow speed, Mq/k
0 exceeds uni ty and th~ sound field when the

Kutta condition is imposed exceeds that in the absence of any wake.

This is not to be regarded as a general conclusion, for in other

problems the wake sound very nearly cancels the primary edge field. That

in fac t happens here , for when q becomes close to kIM it can be seen

that the fields (9.23) and (9.24) have small but equal and opposite

values. Whether the extra wake field dominates, or mainly cancels

the primary edge sound field thus depends very much on details of the

basic excitation.
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10. CONSTRIJCTION OF W—I1 SPLIT FUNCTIONS

In this section we first outline a general method for effecting

either the additive or the multiplicative decomposition of a function

analytic in a strip, and then we set down some properties of the functions

which arise frequently in acoustics problems. Finally, we record the

corresponding properties for strictly incompressible flow problems.

A. Cauchy Integrals

Let F(s) be analytic in some strip D; < liii $ < c
2 

and let R
+

denote the domain Im a > c~ , R the domain Im $ < c~ . Suppose also that

I F ( s ) i 
+ 0 uniformly as fast as sI~~for some A > 0 as si -s- within

any closed region within 1) , i.e., as I s i  ~ ~ with

C1 U1 Im ~ U2 £~
Then

F(s) — F
÷
(s) + F (s) (10.1)

for a in 0, where

F~(~ ) — dt (10.2)

is analytic and bounded in

F (s) — dt (10.3)

is analytic and bounded in R .

The path —
~~~~~

-—— runs from — to + in D below t — ~~, while

~ t~.~runs from — 
~ to + ~ in 0 above t a.

Suppose further now that 1P(s) I -.0 uniformly as fast as ~~~~~
for some 1~A > 0 as I~ J +co in the strip D. Then $ F(t)dt converges

absolutely , and
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F~ (s) — — 

2rris $ F(t) dt — 0(s~~) (10.4)

as Isi -,-
~~ j n R+, while

F (s) + 
271is f F(t) dt = O(s ’) (10.5)

as Isi ~~~in R.

Without going into fine details, (10.1) is proved by applying

Cauchy ’s theorem

F(s) — .1 f dt

to a contour lying within D and enclosing the point s in D (F(s) being

defined only for s in D in the first instance). The contour is then

deformed to consist of a rectangle with —
~
j-—ø. as its lower side

~e—~~’-—-— as its upper, and with the ends of these sides joined at

infinity by short sides parallel to the imaginary axis. In the limit

these shor t sides (of f inite length , less than c2 — C~ ) make no

contribution to the integral, so that

F(s) — ~~ dt — ~~~~ dt
where now both paths of integration run from — 

~ to + ~~. But then,

according to the basic theorem of complex variable analysis, the first

term def ines an analytic function as s var ies without crossing the

integration path, i.e., it defines an analytic function in the upper

half—plane above the Integration path. Similarly, the second term

defines a function analytic everywhere below the integration path

For the behavior at infinity we have
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Ft
(s) - 

2~is j F(t) dt}
— 

1 f tF(t)
dt2wis J t — s

—~~r--

Without any real loss of generality we can take the path of integration

to be the real axis, and > 0 in R
+, 

so that

f tF(t) dt ~~~. 
(
~ 

i t t jF(t)l
.1 t — 

~ — s ) 2 +
—~~~~ 1 2

Let 1s t  
+ in R+ 

along a ray with s
~ 

= Ks2 , and divide the range of

integration at pointat = ±M. M is chosen so that J s J >> P1, but so

that for i t t �~ M, IF (t)I < c It t~~~ for some constant c and some A > 0.

Then on (-M,+M)

I t I  IF(t) !dt - ~~~~~~~j ’~~

M 

i t t  IF (t) I dt

and the integral is f inite and independent of s, while on (M,co) say we

put t — 
~~~2 + s2tan0 to get

tIF(t)ldt 511/2 sec 0

P1 /(t 
— 

~~~~~ 
+ s~ ~2 

~~~~~~~~~~~~~~ 

1
) 

(K + tan0) A

and again the integral is convergent and independent of s. Thus under

these conditions

F,(a) — O(e ’) at infinity in R±.

The above is hardly a proof, but it can be rigorized. In any

application the behavior at infinity should be checked out carefully in

each case.
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The Cauchy integral formulas (10.2, 10.3) enable the product

decomposition K(s) — K
+
(s) K (s) to be effected by taking logarithms.

Suppose K(s) is analytic in the strip, and that IK(s)I + 1 uniformly

as Isi ~ in the strip. Suppose further that K(s)~’O in the strip.

Then F(s) — 2.n K(s) is analytic in the strip for any branch of the

logarithm, and can be decomposed as in (10.1). Define

K~(s) — exp F (s), K (s) — exp F_ (s) . (10.6)

Then

K(s) a K
+
(s) K (s) (10.7)

for a in D, and K~ (s) are analytic and non—zero throughout R~,respectively.

This decomposition is unique up to multiplication of say K
+

(s)

by a non—zero entire function and division of K_ (s) by the same function.

It may be necessary to use this freedom to remove non—algebraic behavior

at infinity of K~(s) in certain cases. Noble [5] gives several examples

of this minor difficulty.

When K(s) is even , the facto rs K~ (s) as defined by (10.6), (10.2),

and (10.3) have the property

K~ (—s) — K_ (a) (10.8)

If the split is achieved by some way other than use of Cauchy integrals

it may be necessary to adj ust the functions before (10.8) holds. For

example, if K(s) — (~~ 2 
— k~)

T then the “obvious” split is

K+(s) — (5 +k)T, K_ (s) — (a — k0)T 
,

but K÷(—s) — .Inl 1’2 (s — k ) T, so that we need to redefine K± (s) as
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K~ (s) — e~~1l”4 (s + k ) 2 , K (s) — e~T~/4 (s — k0
)2

in order that (10.8) will be satisfied .

B. Decompositions Related to the Square Root Function y

As just noted , the multiplicative decomposition of = (~2 — k2 )2

into factors analytic, non—zero and algebraic at infinity is

K+(s) — a(s + k ) 7

K (s) = a ’(s — k ) 2 (10. 9)

fo r any constant a. If it is useful to require that K
+

(—s) = K ( s)

—iri/4
then a should be chosen a.e e

For the convected wave equation (with subsonic convection veloci-

ties) y is replaced by

= [~~ 2 
— (k + Ma)2]2

for which the multiplicative split is

1 k 1
K~ (s) — a(l — P12)T (s +~~~~)T

k i .
K_ (s) — a ’(s — ....2....) 2 (10.10)

for any constant a. Here of course we cannot make K+
(_s) — K_ (s) .

Because the f actors K+(S) K_ (a) for K(s) are analytic and non—zero ,

the split fo r 1/K(s) is given by Q /K+(s)),( 1/K_ (s)) .

The additive decomposition of and functions related to it arises

very frequently. Noble [5] gives several ways of calculating the split

functions and several representations of those functions. Here we will

just verif y that if
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P~ (s) — —
~~~ cos 1 (s/k )

11 (10.11)
IsP_ (s) — j- cos~

1 (—s/k)

then

P~(s) + P (s) — (10.12)

for s in D, and P~ (s) are analytic in R± with a certain behavior at

infinity which will be determined shortly.

Firstly it is necessary to define the function cos 1 (s/k ) for

complex s. If s/k0 is real , cos~~ (s/k) is defined as the branch for

which cos 1 (s/k ) — 11/2 when s/k 0, i.e., coi 1 (s/k ) lies between

0 and it when s/k is real and between ±1. Let ~ — cos t (s/k). Then

i~ —i8
s/k = 

e + e
o 2

and so !

(~2 —

i8
~~~~

n k
_ 

k

±

k
0

where — (s2 — k2)T with the branch cuts as already discussed. The

logarithm here is def ined to have its principal value, i.e., in z is

such that

—it 
~~ . 

Im in z< +11 (10.13)

with a branch cut along the negative real z—axis. Now take s 0; the

corresponding value of y is —ik and hence i8 — Ln{±(—i)} — ~~~~ ~~

that 8 ir/2 if we choose the lower sign. Hence

1 5 1 5 1
k (10.14)

‘ 0 J
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which can be rearranged as follows. We have (a + y )(s — y )  = k2,

hence
k

____
S +

/s + I \
= ~~~ ~~~ k 

5

) 

(10.15)

The definitions (10.14) and (10.15) of the function cos~~ (s/ k )

are not those given in most books on mathematical functions. In those

books the square root function is usually understood to have a branch

cut from —k to +k , and is quite different from the function v which
0 0 8

occurs in wave applications. In particular , if the cut goes from —k

to +k , (~~2 
— k2)2 behaves like s both as s -. + ~ and s -.

~ 
— ~~, whereas

0

behaves like s as s + + ~ but as — s when s ~ 
—

With the definition

s + Y
cos 1 (•j~~) 

= + i kn ( k s) (10.16)

c~onsider the functiorm pp (s) , P (s) defined in (10.11). In the first

place, no new branch cuts ~~. introduced by the logarithm. A branch

cut would be needed on., If ~ + = 0 were possible for some value of s,

m l  no such value of a exists. Thus the only singularities are the branch

points at a = ± k. Consider the function near the point a + k ,

writing s = k + u where u is small. We have
0 1 1 1 1

iu2 (2k + u) 2 u2 (2k + u)2
+ u) = 9~n 1 + ~~~— +

1 1 1 3

iu2 (2k )2 u2 (2k )2
- 

ii 
° 

k 
~ + 0(u2) (10.17)
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as u + 0, so that is in fact single—valued near a — k
0
. The branch

point singularity of the cos m cancels that of y at s — k , and hence

~+
(
~

) is analytic in R
+
. Similarly F (s) is analytic in R , the branch

point singularity of at S — k0 being cancelled by that of

cos m (— s/k0) there.

To verify (10.12) we have, for s in D,

~~~ r s +y  - s + y  1

+ P_ (s) = —
~~~~~ [in ( k0 

s) + in ( k0

iy
—~~~~ in(— l) = 1~

since with (10.13) i~ (—l) = — ut .

To find the behavior at infinity we note that as 1 st + °~ in R÷

k2

~ { i. — -
~~~~~~~

— ~ —s + • . .  (10 . 18)

if the approach to infinity is below the branch cut from s = + k ,

~~~~~~~ {l 
_

~~~~~~~~~~~

—

~~~~~

- --.

~~

.+  . . .}  (10.19)

if a goes to infinity above the cut. Since has no singularity at

a — + k it does not matter which of these is used , and we find
0

P
t

(s) - 

~~ 
(~ - + ..) 

[
~~fl (

~
) - + ...]

— s in (
~

) + O(s ’ in a) (10.20)

These properties of the P÷ functions arise in a great many applications

to wave problems. Corresponding results for the convected wave square
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root can be derived by making a change of variables to transform

into y ,  as was done in ~9.

C. Incos iressible Flow Problems

Incompressible flow results follow from taking the limit k+ 0,

which has the unfortunate effect of reducing the strip of analyticity D

to a line on which the functions are continuous, but not necessarily

analytic. The branch cuts from ± k
0 

also join up to form a complete

barrier along, say , the imaginary axis. To avoid possible difficulties

stemming from this it is usual to work with finite k and then let k + 0.
0 0

This, however , makes for unnecessary complications in much of the work,

and it is useful to be able to tackle the incompressible problem directly .

To this end we imagine ~the branch cuts as starting from 0 + 10 and going

to infinity in Im a > 0 and from 0—iO to infinity in Im s < 0.

Then the limiting form of the function y is real and positive

on the whole real s—axis, i.e., it is there the function l e t . We shall

write (~ 2)7 for this function in the complex plane with the cuts as

indicated ; it is the continuation to complex a of the function ~sJ on the

real axis, and can also be def ined as s( sgn Res) where sgn x = ± 1 for

x~~ 0. Thus

-. (s~)~ = a (sgn Res) as k0 
-
~ 0 (10.21)

The multiplicative split is
1 1 1

1 
(52)T — s~ s~ (10.22)

where s~ means the branch of s~ which behaves like 5
T as a . +~~with a

1 1
cut from 0 — Oi in the lower half—plane, while ST behaves like 8T as

s + + ~ but has the cut from 0+01 in the upper half plane.
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The additive split of (~2)2 can be found by taking the limit of

(10.11) as k0 + 0. Define Ln
+
s to be the branch of in a with a cut from

0—Oi in the lower half—plane, and with £n
+
s real and positive when s is

real and greater than 1. Define in_s similarly except that it has the

cut from 0 + Oi in the upper half—plane. Then we can see that

£n
+
5— L n _8 O  if Res>0

— in_s — 2iir if Res < 0

and both of these are covered by

in+s — in_s — 2iir H(—Res)

where H(x) is the Heaviside function equal to 1 or 0 according as

x > 0 or x < 0. Since sgn x — 2H(x) — 1, we can write this now as

&n
+
s— t n s iir — irr sgn Res

and multiplying by s and using (10.21) gives

a in
+
s — a in_s — i~s—in (s

2)T (10.23)

Now define

p (s) - .
~~
. + 

~~ 
2,n~s

(10.24)
a isP (s) — — 

~~~
- in_s

and then it follows from (10.23) that

(s2 ) 2 — 

~~~~ 
+ P (s) (10.25)

and 
~~~~ 

is analytic in R+(Im s > 0), P_ (s) is analytic in R_(Im a < 0),
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as required. Further, by careful consideration of the branches it can

be shown that these P~(s) still have the property

P~ (—s) — p (s) (10.26)

enjoyed by the function (10.11) for k0 i~ 0.

Use of these functions enables incompressible problems to be

solved much more elegantly than by taking the limit as -
~ ~ of the

more complicated compressible problems , but we should stress that because

there is no strip of overlap all procedures should only be regarded as

formal, and the results should be verified by independent checks.
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