
/ 
AO—A048 165 ALFRED P SLOAN SCHOOL OF MANAGEMENT CAMBRIDGE MASS C ETC FIG 9/2

AN EXERCISE IN SOFTWARE ARCHITECTURAL DESIGN: FROM REGUIREMENTS——ElC(IJ)
NOV 77 R C ANOREU, S E MADNICI( N00039—77—C—Q255

UNCLA SSIFIED CISR—P010 01 05 NL

Iii

L~~ a A



r
U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

AD/A-048 765

TECHNICAL REPORT #3, AN EXERCISE IN SOFTWARE ARCHITECTURAL
DESIGN : FROM REQUIREMENTS TO DESIGN PROBLEM STRUCTURE

R, C, ANDREU, ET AL

NAVAL ELECTRONICS SYSTEMS COMMAND
WASHINGTON 1 D, C.

NOVEMBER 1977



• Contract No. N00039-77—C-0255

Internal Report No. P~~4~
.Q~~05

Deliverable No. A004 AD/A 048 765

TECHNICAL REPORT #3

AN EXERCISE IN SOFTWARE ARCHITECTU RAL DESIGN :

FROM REQUIREMENTS TO DESIGN PROBLEM STRUCTURE .

K. C. Andreu
S. E. Madnick

November , ii977

REPRODUCED BY
NATiONAL TECHNICAL
IP.IFORMATION SERVICE

U. S. DEPARTMENT Of COMMERCI
SPRINGFIELD. VA. 22161

Principal Investigator :

Prof. S. E. Madnick

Prepared for :

Naval Electronics Systems ColmItand
Wa shignton , D.C. 20360

STAT~~~ ITA
I~~~~~~~~d f o r P~~ c T.l.a11~I tlsthbution Usflm ft .d 

—



F —•.—-—— —.----- —““-fl. -•——- — v• —
~~

-—
~

~~~~~~~~~~~~ • - -~~~~~~-

N O T I C E

T H I S  D O C U M E N T  H A S  B E E N  R E P R O D U C E D

F R O M  T H E  BEST COPY F U R N I S H E D  US BY

T H E  SP O N S O R I N G  A G E N C Y .  A L T H O U G H  IT

IS R E C O G N I Z E D  T H A T  C E R T A I N  P O R T I ON S

A R E  I L L E G I B L E , IT IS B E I N G  R E L E A S E D

IN T H E  I N T E R E S T  OF M A K I N G  A V A I L A B L E

A S  M U C H  I N F O R M A T I O N  AS P O S S IB L E .



_ _ _ _ _ _ _ _ _ _ _ _ _

UNCLASS IF lED
SECURITY CLASSI FICATION OF THIS PAGE (øI.mI 0.~. fnI.r.d)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
______________________________________________ 

BEFORE COMPLETING_FORM
I._aS~ ORT NuuB 1R

~ ~~~~~~~~~~~~~~~~~ 

v~ 12. GOVT AC CESSION NO 3. RECIPIENT.5 CATALOG NUMBER

~~~~~~~~~~ ~~~~~~~~ _________ 1. TYPE OF REPORT I PERIOD COVERED
.~ .An exercise i.n software architectural des

-

_From requirements to design problem structure . \ ORG. R O ~~~ NUMBER-— .
~ .- —- — — —

__________________________________________________ P010—01-05 V

L CON T~~ACT OR GRANT NUM~~~R(.j

NØø~’39—77— C—~~~55

~~ 
:;:~.

~.J~~dnick 

~~AND A~ O~ (SI -

~ 
• 

:~
-‘
~

PERFORMING ORGANIZATION HAM t O. PROGRAM ELEMENT. PROJECT , TASK
AREA & WORK UNIT NUMBERSCenter for Information Systems Research

M.I.T.  Sloan School of Management - E53 - 330
Cambridge , MA , 02139

II. CONTROLLING OFFICE HAM

T~~~ jIUMBER OF PAGES
121

2~~F~- r 4 >.LO ~~~~~~~~~~ UNCLASSIFIED
ONITORING AGENCY NAME & AOORESS(lf dif!! 1.n

I Ivan, CornroUlng Of t l c .)  IS. SECURITY CLASS. (of thu. rspefl)

IS.. DECLA SSIFICATIO N/OOWNGRA DIHG
SCHEDULE

_ _  ——-
11” DISTRIBUTION STATEMENT (oI ffih. R.poft)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of A. .b.t,.ct ~t.,.d In Block 20. II dlilsr.nt fran, R.p o,f)

1$. SUPPLEMENTARY NOTES

IS. KEY WORDS (C~ iSSnu. on ,.v•,•• .Sd. If n.c ...w, .., d ldøntlIy by block nun,b.r)

Software architectural design; design problem structuring

~~~~ B StRACT (C.nlinu. on ,•r~~•• aS~~ IS n.c.••~~~ ond I d.nUfr by block numb.:)
Two of the main activities required for the application of the methodology

• explored in this project, namely, the assessment of design interdependencies
among requirements and the interpretation of subsets of requirements as design

• subproblems, are investigated in the context of a concrete design problem.
Guidelines for carrying out these activities are introduced and their usage
illustrated. A design framework for the problem analyzed is identified and
discussed; its study points out that the methodology investigated here produces
interesting and unforeseen results.

~~i# I JAN 73 1473 EDITION OF I NOV 11 IS 05101.1i’~i~ 
FORM

S/N 0102 .014 . 660 1
Dat. lnIs.’s4 ~~~~~~ çCURiTY cLASSIFICATIoN OP THIS PAGE (1~i.n

•

~

•

~ •



rn,——- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

—-—--  

~~~~~~~~~~~~~ : ~~~~~~ _
“-

~~~~~~~~~~~~~~~~~

-

~~

-.-- —- -

~~~~~~

-

~~

----— 

~~~~~~~~~~~~~~~~~~~~~~~~~

PREFACE

• The Center for Information Systems Research (CISR) is a research center

of the M.I .T .  Sloan School of Management; it consists of a group of Management

Information Systems specialists, including faculty members, full-time research

staff, and student research assistants. The Center’s general research thrust

is to devise better means for designing, generating and maintaining application

software, information systems and decision support systems.

Within the context of the research effort sponsored by the Naval Electro-

nics Systems Command under contract N00039—77-C—0255, CZSR proposed to conduct

basic research on a systematic approach to the early phases of complex software

systems design, one of the main goals being the development of a well defined

methodology aimed at explicitly filling the gap between system requirements and

progran specifications. At the heart of such a methodology is the structuring

of the initial set of requirements so as to make apparent the design trade-of fs
existing among its elements. The main focus of the proposed methodology is the

• decomposition of that set into subsets of strongly interdependent requirements

which would define a meaningful framework for system design. The research pro-
• ject is organized so as to investigate the following four areas:

1) Graph—like representation of requirements sets and suitable decomposition
techniques,

• 2) Design and development of a set of software tools to support the set
decomposition activity,

3) Identification of a methodology for the assessment of interdependencies
among requirements, as well as guidelines for the interpretation of the
obtained decompositions and for the coordination of design subproblems,
and

4) Experimental application of the methodology and supporting tools to a
specific case, with emphasis on recommendations for their practical use
and comparison with more traditional approaches.

This document focuses on the activities carried out at CISR to investigate

the third and fourth areas out] m e d  above. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I



EXECUTIVE SUMMARY

This report focuaes on two of the activities required for the application

of the systematic design methodology explored in this project, namely, the

assessment of interdependencies among design requirements and the interpre-

tation of subsets of requirements a~ design subproblems.

Since these activities require the personal involvement of the designer,

they can’t be approached in a strictly formal basis. Therefore, we investigated

them in the context of an actual design problem, starting with a concrete set of

requirements. This allows the discussion to be more lively and permits the

illustration of certain concepts with specific examples.

The requirements employed came from a set of about 100 requirements origi-

V nally prepared by a Government Agency for the purpose of Data Base Management

System (DBMS) selection. With this set as a starting point, the present report

explores the following issues:

(l)Desirable properties of design requirements: Since the original purpose

of the employed requirements was not DBMS design but DBMS selection, a few

requirements were found to be irrelevant for design; these were discarded.

• Analyzing the remaining ones pointed out a few which, given the goals of the

methodology , were judged inappropriate. In this process we identified a set

of characteristics that the employed requirements should exhibit. These

characteristics are outlined in the report; any of the original requirements

found to violate them were changed accordingly.

(2) The nature of the interdependency assessment activity: A conceptual

model is described which may be employed to assess design interdependencies

between pairs of requirements . Our experience in using this model with the

set of requirements mentioned above suggested a series of guidelines that we

found useful to conduct the assessment activity; these are highlighted and

documented with examples.

(3) The interpretation of subsets of requirements as design subproblems :

Using the assessed interdependencies, the requirements set was descomposed

into subsets by means of the decompcsiti~n techniques described in Technical

Report #1. An analysis was performel aiu~ed at identifying the design problem

defined by each subset. This ~na1ysis pcoduced some interesting results. In

some cases, collections •f requireme r~ts traditionally seen as a logical unit

were separated in different subsets ; the ir close interactions with other design

requirements made it desirable to consid~r them as parts of separate subpro —



• - — .-•—-• .••_- . • • - ~~~~ —‘-—-..•—- -——— •.- ,•.. ,-, .——-•— •— •• - •.v•..•.,—,—_.-— -•.•,—_.,—•..——_ -— • __ •_—;. .~•• —. • —•—-~~~ ..— - — — ——— ——‘ ,. n -~~~~~~~~ - —•—~~~~ —- — ‘— _ ,_

blems . In other cases , our experience with DBMS design problems suggested

that some subsets were in fact incomplete; this pointed out that the initial

set was incomplete to begin with.

In general, the exercise reported herein has provided us with valuable

insights into the potential of the explored methodology. On the one hand, it

has become apparent that the designer ’s expertise and intuition still play an

important role; the methodology helps him to organize his thoughts and to be
more systematic. On the other hand, unforeseen results were obtained which

helped to understand the design problem better. In particular, the fact that

the initial set of requirements was found to be incomplete in certain areas

implies that a second pass, begining by the completion of that set as suggested

by the above mentioned results, sh~’uld be performed. This is planned as the
next research activity.

\~4J

- l



f 
• ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ •~~ • • • • • •• •~~.~~~~~~~~~ 

-
~~~~~, 

.— .,‘

FOREWORD

The exercise described in this report was largely experimental. Since,

• moreover, it was the first attempt to apply the methodology proposed in

[Andreu & Madnick 77) to a problem of non-trivial size, care should be taken

not to generalize the results reported herein in an indiscriminate fashion.

In particular, certain characteristics of the employed requirements set

found useful for the exercise, as well as specific guidelines for the inter-

dependency assessment activity which were well suited for the problem at hand,

may be less relevant in a different setting. Furthermore, the implications

of specific decisions regarding both the formulation of the requirements set

and the interdependency assessments made warrant further study. This report

has been prepared to document some of our current thoughts on these issues

and to spark further discussion within our group. As we gain further expe—

rience with the application of this methodology to this and additional design

problems, we hope to be able to make more definite claims regarding these

issues in subsequent reports.



r r— - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— -

~~~~~

- -

~~~ 

—

TABLE OF CONTENTS

1.- Introduction and Overview . 1

2.— Description of the Initial Requirements’ Set 5

2.1.- Requirements too biased towards selection 6

2.2.— Desirable requirements’ properties 8

2.3.— Final requirements’ set 18

3.- The interdependency assessment process 19

3.1.— Interdependencies 20

3.2.- The role of the assessment activity i.r. the design process 23

3.3.- The interdependency assessment activity in practice: Some
guidelines and approaches 25

3.3.1.— General characteristics of the assessment activity 26

3.3.2.- Examples of assessments: Some guidelines 29

4.- The resulting graph. Prliminary analysis 38

5.- A first graph decomposition. Concept of main subproblems 41

6.- Analysis of main subproblems. The second decomposition step 50

7.- A Design Framework 52

7.1.- General framework structure. Main components 55

7.1.1.— Characteristics of data items 55

7.1.2.- Data manipulation language (DML) 55

7.1.3.- Logical data model and physical representation 56

7.1.4.- Relationships among MS’s 57

7.2.— Structure of the MS’s 60

7.2.1.- MS 2 (data items’ characteristics) 60

7.2.2.- MS 4 (DML) 62

7.2.3.- MS 3 (DML modification statements) 63

7.2.4.- MS 1 (logical data model and physical representation) 65

7.2.5.— Relationships among MS’s components 69

-a 



7.3.— Comments on some characteristics of the employed requirements set. ...72

8.- Comments on the usefulness of the decomposition package and
suggestions for improvements 74

9.- Areas for further research 76

REFERENCES fl

APPENDIX A: Original set of requirements A-l

APPENDIX B: Modified set of requirements B-i

APPENDIX C: Interdependencies among requirements C-i

APPENDIX D: Summary of the analysis D-l

APPENDIX E E-l

________________ 
I



1~

AN EXERCISE IN SOFTWARE ARCHITECTURAL DESIGN:

FROM REQUIREMENTS TO DESIGN PROBLEM STRUCTURE.

L - 1. Introduction and Overview

In this paper we report our experience in applying the

methodology proposed in [Andreu & Madnick 77] for the architectural

design stage of the software system development cycle, to the design

of a generalized Data Base Management System (DBMS).

• To make the experience realistic, we decided to use an

actual set of DBMS requirements prepared some time ago by a Govern-

ment Agency. Although these requirements were originally put together

for the purpose of DBMS selection, as opposed to DBMS design, they

constitute a representative case and are useful in exploring the

issues involved in the application of the methodology. The characte—

risties of the initia l requirements set are discussed in the next

section ; a few modifications that we made in order to make it more

design—oriented are described there as well.

As described in [Andreu & Madnick 77], the methodology we

advocate is, in a sense, an attempt to fill the gap between the

statement of system requirements and software module specifications,

-- —~~ 
-

~~~~~~~~~
--‘- --



— 2 —

with thu . g~)a1s oh (I) making the latter explicitl y consistent with

the former and (ii) structuring the design process by way of identifyIng

a collection of design subproblems as independent of one another

as possible. At the heart of that methodology is the concept of

requirements ’ interdependencies. Loosely speaking, two requirements

are said to be interdependent if it makes sense to consider them

at the same time in the design process. A collection of strongly

• dependent requirements can be thought of as defining a design subpro—

blem which can be attacked almost in isolation as long as it is re-

latively independent of the rest of the requirements. The concept

of interdependency is discussed in section 3. Interdependencies in

the initial set of requirements were assessed in order to give a

graph—like structure to it, thus allowing its decomposition in a

formal way. Guidelines for the assessment process are also discussed

in section 3, drawing on our actual experiences.

Section 4 is devoted to the description of the graph

structure obtained , based upon the interdependencies assessed between

requirements. Its main characteristics are discussed and a preliminary

analysis performed .

The decomposition techniques outlined in [Andreu 77a] were

used to decompose that graph. The results are described in section

5, where it is noted that the first graph decomposition results In

only a few fairly large subgraphs . Although these subgraphs do

point out the main design subproblems, it seems appropriate to further

ecompose each of them in order to better organize and understand

their structure.



r~’ ~~~~~~~~~~~~~~~~~~~~~~ --~~~~~~~=~~~~~~~~~~~~~~~~~~~~~
_____  —___ 

- - - _ _ _ _ _

— 3 —

Although doing this further decomposition is likely to

produce an overall partition whose evaluation measure is inferior

to that of the first decomposition , the main subproblems are so

weakly related to one another that it makes sense to consider each

of them in isolation. In practice this would mean to organize

the design process in a few well defined and almost independent

subprobleins , the interfaces among them being easy to control due

to their simplicity. Each of these “main” subproblems (P15) then

can be analyzed and structured independently of the remaining

ones. Note that structuring each MS in isolation, although done

by using the same decomposition techniques used before, will not,

in general, generate the same organization that a decomposition

of the more complete Initial set would. The reason

is that the decomposition techniques employed use interdependencies’

information in a way relative to the elements in the set being

decomposed , as opposed to one absolute scheme that would “place”

each element in some “space” independently of the locations of

other elements in that same space.

Section 6 reports the results of the second decomposition

step , and in section 7 the obtained design framework is displayed

and analyzed . A couple of very simple operations are proposed

which permit a meaningful interpretation of the subproblems and their

interactions. The implications for design are discussed and traced

back to the initial set of requirements.

_  • - I



— - - - -
~

- -  - • -~~~

— 4 —

The set of tools made available through the “decomposition

package” descx ibed in [Andreu 77bJ are used throughout the analysis

outlined above. Section 8 is devoted to comments on the usefulness

of such a package as it currently stands. Recommendations are made

regarding some new facilities which we think could make it more

convenient to use.

Section 9, f inally , summarizes our experience and points

out some topics for further research whose investigation would , in

our opinion, improve the usefulness of the proposed methodology.

-- --• • •m-•--’-• •- .
.-

~

••- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ • - -~~..---- - •~• • -- •~ --- •-. • . • • ~-•~-•-~~~~~ I



— 5 —

2. Description of the Initial Requirements’ Set

The requirements employed in the study reported herein was

a set of DBMS requirements originally put together for the purpose

of DBMS selection by a U.S. government agency. The 97 requirements

in that set as originally defined are listed in Appendix A.

Since the usage of these requirements was to be DBMS selec-

tion (as opposed to DBMS design), a few of them referred to issues

that are not too relevant for design; these were removed from the

set. Moreover , other requirements presented some characteristics

that should be avoided when specifying design requirements ; this

led to having to rephrase some of them and to merge or to delete

others . The rationale behind these transformations of the require-

ments set , which were done prior to any interdependency assessment

or analysis is briefly discussed in the next two subsections. Sub-

section 2.2 In particular can be looked upon as a series of guidelines

which are important to keep in mind when establishing design require-

ments of the type we wish to use. 



-~~~ — -—-~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - — ~~ —~ ----—~~~~~~~ • - -----‘- -

— 6 —

2.1. Requirements too biased towards selection

A first scanning o~ the requirements in Appendix A pointed

out that some of them didn ’t specify any evident design constraint or

goal; rather , they were concerned with clearly selection—related

issues, which is not surprising, given their original motivation.

We decided to remove such requirements from further consideration

at the outset. Although, had we not removed them, we would probably

have done so later on (see section 4), we fel t tha t their removal was

safe at that point in time since no relationship with other require—

ments seemed to exist.

The requirement most clearly in these circumstances was

• requirement #67 of the original set (Appendix A):

“Two hour on call maintenance must be available.”

This is obviously an issue completely external to the design process.

We thus removed that requirement.

Requirements #83, 84 and 85 were also removed at this

point :

“Dynamic control of working storage requirements within
program region.”

“Dynamic relocation of programs to avoid ‘checkerboard ing ’
of usable memory.”

“Additional memory wil t enhance performance.”

Although such requirements are not as obv iously selection—oriented as

#67, the decision to remove them was made on the ground that they

_ _ _ _ _ _ _ _ _ _ _ _ _ _  



—~~
__•--___---“-——_,_—.--.- ‘ - - ---- —-- - —. -~~-- • • -

- - - • 

- -

were probably included in the original set just to make sure that

the chosen DBMS had been implemented through advanced techniques ,

perhaps in an attempt to check, in an indirect manner, that the

selected system was a piece of high quality software. Of course,

this rationale , being basically a conjecture , can be easily challenged .

As pointed out in the next subsection , however, there are other more

convincing arguments which support the removal of those requirements;

the decision to remove them is a result of this two—fold motivation.-

H 

- 

_ _ __ _ _ __ _ _ _ _  

J

_ __ __ _  

j



- -~~~~~ _ - -~~ —_ -----• ---~~~~~~ - - , - • - - _ • - . •

— 8 —

2.2.  Desirable requirements’ properties

While the preceding discussion focused on requirements

that were clearly unrelated to design issues , the emphasis in this

subsection is in somewhat more subtle characteristics which should

- 
• be avoided in the requirements used as input to the methodology

• employed . Such characteristics are discussed below and examples

given from the initial set of requirements.

F 

(a) Implemen tation independence :

As argued in [Andreu & Madnick 77], the requirements shouldn’t

indicate any possible implementation scheme that may eventually be

employed in the design of the system. The motivation is to avoid

any technical bias in the requirements’ statements that can

predetermine the eventual design. In fact, this has been typical

of many software system designs in the past.

The requ irement in the original set which most clearly

presented these characteristics was requ irements #35:

“Literals being compared to f ield variables are validated
against acceptable field values prior to data search.”

Although the strategy suggested by this requirement is

sound and indeed employed in many implementations, it is a clear

example of a statement which specifies how to do something as opposed

to just saying what is to be done. This was precisely one of the

points we specially stressed when we proposed the methodology in this



research . In this case , the eventual system must be capable of

doing data search given a literal value and this is all the require-

ments should specify. It is the purpose of later design stages

to decide upon a strategy to do it. The concreteness of this

example allows us to discuss in some detail why this type of

requirement should be avoided. There are at least three reasons :

(i) The explicit consideration of a specific implementation

scheme at this stage can preclude the designer from considering

other solutions ; in principle , there is no reason to believe that

there is a universal “best” scheme to meet a given requirement .

(ii) Although the proposed scheme may be the most appropriate

in the majority of situations, choosing it at the outset is wrong

because the decision of adopting it should be done in the context

of the overall design problem; it just may happen that the present

design falls in the category where the proposed scheme is a bad

choice. In fact, one of the main aims of the methodology advocated

here is to get away from such pitfalls while avoiding , if possible ,

having to consider the entire design problem at once; this is one

motivation for attempting to identify design subproblems the way

we do.

(iii) Finally , stat ing implementat ion schemes along with

the requirements almost inevitably implies merging two or more

requirements. In the example above , saying that “. . .are validated

against acceptable field value. . .” presupposes that “acceptable field

values” are defined , which should be specified in a separate require—

ment if they. are to be supported by the system under design. In

_ _ _ _ _ _ _  - -~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~



~~T~~~~— - --------
~~~~~~~~

- -  

~~~~

-

~~~~~~~~~

_ __ 
_ _ _ _  ~~~~~~~~~

— 1 0 -

our case , this is specified by requirement #6:

• - “Field definition permits validation of input datum as
to acceptable values. ”

For these reasons , we decided to delete requirement #35

from the original set.

At this point, it must be emphasized that plausible imple-

mentation schemes such as that suggested by requirement #35 are

- 
- not to be absolutely excluded from the design process ; it is only that

they should be avoided at the requirement specification stage. In

fac t , as it will be pointed out in section 3 below , they should

be taken into account at the interdependencies assessment stage .

We will have the opportunity of discussing how precisely the same

implementation scheme suggested by requirement #35 is useful to assess

interdependencies among certain requirements.

There was another requirement in the original set which

touched on the same implementation independence issue . Requirement

#36 stated :

“Data meeting selection criteria (or their pointers)
can be used for subsequent query processing.”

The inclusions of the words “or their pointers” in the

above statement also suggests an implementation scheme to meet the

requirement. We thus deleted those words from the requirement

statement to be considered from now on.



________________________ - •~~~~ - . . . • - -.• •~~~~~- _  — 

— 1_i —

(b) System structure independence

One of the objectives of the design process being to

determine the eventual structure of the system , it is obvious that

system structure biases should also be avoided in the requirements’

statements. This issue is similar to that discussed in (a) above

in the sense that its essence is to avoid influencing the final

design through preestablished assumptions about how the eventual system

is going to look. It is different, though, in the sense that such

assumptions are more global than those discussed above, as they

refer to the system as a whole rather than hinging on plausible

implementation techniques aimed at meeting certain specific require-

ments. The motivation to avoid such biases parallels that discussed

in point (a) .

In the original set of requirements , requirement #29 illustrates

this :

“File maintenance facilities are available (such as file
reorgnization, compression , copy, dump, etc.).”

This requirement implies stand alone maintenance utilities.

This assumes that whatever schemes are used to reorganize and main-

tain the data base on normal operation (see, for example, requirements

# 86 and 87), they are not appropriate for bulk maintenance purposes .

As it was the case in (a) , this m a y  actually turn out to be true ,

but it shouldn ’t be stated at the outset .

The need for bulk , batch maintenance utilities is in fact

already set forth by another requirement , #16:

-- - -—

~

_ -  -- --— ~~~~~~~-- - -_ _-~~~~--~~~---- -~~~• I-



— 12 —

“Data base maintenance can be performed by batch. ”

Thus , requiremen t #16 expresses a “what” condition and

in this sense it is acceptable; on the other hand, requirement #29

is its “how” counterpart. In other words : requirement #16 establishes

• a need which , in principle , doesn ’t have to be met by means of a

set of independent utilities as suggested by requirement #29. The

possibility of sharing comeon processing with the implementation

schemes devised to meet other requirements should be considered.

Consequently, we deleted requirement #29 from further consideration.

Other requirements found to violate this “system structure

independence” property were requirements #83, 84 and 85, which we

already deleted (see section 2.1). When read carefully, it is

apparent that these requirements assume a system structure under

which the suggested implementation schemes would be beneficial from

an efficiency viewpoint. Again, this may be true in most systems,

but this does not guarantee that it will for the one under design.

This completes the justification for the deletion of requirements

#83 , 94 and 85 which was advanced in section 2.1.

(c) Independence among requirements

This title may be a bit misleading at this point .

Since we are going to assess interdependencies among requirements

later on , how are we going to be able to do so if the requirements

are independent to start with? The answer to this question is that

• here we advocate ind.•pendence among requirements without considering

alternative appropriate implementation te(-hniques. As it will be

discussed in the next section, one w~y of assessing interdependencies

-•• - - • --~~~~~~ -~~~~ - -• .- -  ~~~~~~~~~~~~~~ - -- •-~~~~~~~~ —-  • - .- -• - - • •_  - • 
I
--



r~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~ —~~
- • - ------ ‘— ‘ ~~~- - - ~~~—~~~~~----~~~-- - - -

— 1 3 —

among requirements is to think about which ones can be met , say, by

the same, or similar , implementation techniques . At this stage ,

however, we are concerned about requirements that are semantically •

dependent, or , to put it another way , requirements which are Implied 
~

•

by others.

A specific example will illustrate the point. Consider

requirements 71 and 88 in the original set:

“Removable disks containing data base can be mounted
and processed during an on—line session.”

“Disks are removable.”

It is obvious that the latter of these requirements is

implied by the former. The former states a need for convenience which

can be physically met only if the latter requirement is met (note

that the converse is not true). Thus, the latter is unnecessary,

and it was, therefore, deleted.

- (d) Simplicity

Each requirement should address one well—defined capability

that the eventual system is to possess. In particular, requirements’

statements specifyi:mg several such capabilities at the same time

should be avoided. Grouping similar requirements is the final

objective of the interdependency assessment and decomposition processes,

which aim at identifying groups of requirements similar from a design

standpoint. Very often , however, requirements are grouped together

at the specification stage in an arbitrary fashion. For the purposes

of the methodology investigated here, this should be avoided ; we

will say that “composite” requirements shouldn ’t be present in the

- •



:~~ _ _ _ _ _ _ _ _  _ ~~~~~~~~~~~~ • 
-

~~~~ 
_ _ _ _ _ _ _ _ _ _

— 14 —

initial set.

An example of composite requirement in the initial set

presented in Appendix A is requirement 14:

“Records in the data base can be added , changed or
deleted. ”

It is apparent that this requirement specifies three

different capabilities for the target system. The reason why these

capabilities were stated together is probably that they belong to

what may be called a “class of capabilities.” In general, capabilities

in the same c]ass need not be considered at the same time for design

purposes, so that they should be specified as separate requirements.

In the case of the above requirement, for example, it is obvious that,

if records are of fixed size (which , note, is not known from

looking at that requirement alone) , the design issues that must be

taken into account regarding possible implementation techniques are

very different for say adding records or changing records. In order

to avoid biases in the interdependency assessment process , the three

different capabilities above should be specified in separate require-

ments. Consequently , we “exploded” requirement 14 in three require-

ments, one for each capability (add, change, delete).

A similar case is that of requirement 31:

“Boolean and relational conditionals can be used in
record selection criteria.”

Again , although “boolean” and “relational” conditionals may

be thought of as similar in a logical sense, this doesn’t assure that

they are so from a design standpoint .

It is interesting to note that those two requirements, as



--
-

~~~~~~~~~~~~ 

IT- -

~~~

-—

~

--- —

~~~~

--

~~~~~~~~~~~~

-- -!
— 1 5 —

or iginal ly  stated , are not particularly well suited even for the

DBMS selection purposes that motivated them. The reason is that

given a DBMS with certain capabilities , it may meet those requirements

only partially (e.g., it may allow boolean criteria but not relational

criteria); this poses an evaluation problem in the sense that one

can ’t tell whether the requirement is met or not in an absolute

way. In fact, this suggests a rule of thumb which can be used

to pinpoint “composite” requirements: If one can think of a situation

in which a requirement can be partially met in the above sense, that

requirement is likely to be composite and should be decomposed in

simpler ones for the purposes of our methodology.

Following this rule, requirements 14 and 31 were decomposed

in 3 and 2 new requirements, respectively.

(e) No “stand alonet
~ requirements

Requirements only remotely concerned with the target

system should also be avoided because they are likely to complicate

the design process without resulting in any clear benefit. Requirements

which, for example, specify system capabilities which in fact can

be added on to an operational system without difficulty illustrate

this point. In the set of requirements of Appendix A , consider

the following ones (43 though 46):

“Procedures can be written which interact with data
base and on—line terminals.”

“Procedures interactively creatc-d.”

“Procedures can utilize use



I

— 16 —

It is clear that, as long as the eventual DBMS provides

its users with an adequate data manipulation language (called for

by requirement 30), the four requirements above call in fact for

a “macro facility ” allowing the combination of manipulation

language statements in the so—called “procedures.” Although we

used subjective judgement here , the point can be made that such

a macro facility is fairly independent of “true” DBMS requirements

in the sense that it could be added easily, in principle, to any

DBMS. Consequently, the above requirements were deleted.

(f) Plausability

The final property that we will discuss here can be

called “plausability ” in the sense that we wish to avoid require—

ments calling for the physically impossible. Although in general

what is impossible and what isn’t is a function of the available

technology, there may be requirements specifying capabilities which

can’t be possibly achieved because they violate fundamental physical

laws. Accepting requirements of this type would determine an

unsuccessful design at the outset. Requirement 79 in the original

set is one such requirement: • •

“Response time not a function of file size.”

No designer would accept such a requirement in good faith

(one can always make the response time infinity independently of

file size). We thus reworded it to read as follows:

“Response time as independent as possible of file size.” 

-- •- •  
/



— 17 —

Other rewordings such as “average response time less than ... “ may

be more acceptable to some people but this is not central to our

discussion here.

1 •



— 18 —

2.3 Final Requirements Set

Appendix B lists the resulting set of requirements after

the initial set of Appendix A was modified as discussed above. There

are 89 requirements in all; interdependencies were assessed among

these as described in the next section.



-• -•----- — —•~ •— —• • • •

— 19 —

3. The interdependency Assessment Process

Once a set of requirements such as that of Appendix B

has been established , the proposed methodology calls for assessing

“interdependencies” among them, the idea being to give structure

to the requirements ’ set for the purpose of identifying, in a syst-

ematic fashion, subsets of requirements which will give rise to

design subproblems (see [Andreu & Madnick 77]).

In this section , we discuss several issues related to the

interdependency assessment process. In particular, we pay special

attention to:

• 1) The meaning of the word “interdependency” in our context;

2) How the assessment activity supports the design process;

3) Guidelines for the assessment process; different possible

approaches to that process, along with illustrations drawn

from the assessment process for the set of requirements

of Appendix B.

• 
• ••



1

- 20 -

3.1. Interdependencies

• Th~ goal of the methodology advocated here being the

identification of design subproblems, the interdepencies defined among

requirements should be consistent with that goal. In this section

• we outline a concept of interdependency which attempts to make this

consistency explicit.

First of aLl , it is important to recall that we are

interested in design subproblems, so that the interdependencies

• among requirements should reflect this design emphasis. Accordingly,

the interdependencies among requirements will be defined so as to

make explicit how different requirements interrelate from the stand—

• point of meeting them in the eventual design.

Two basic ideas are useful to build the concept of inter-

dependency as outlined above. Our goal is to identify groups of

requirements that can be considered at the same time for design

purposes. There are two main ways in which one can think about

requirements being interrelated in such a way. We call these ways

“trade—of fs” and “concurrencles.”

Two given requirements in the initial set are said to be

“trade—off interdependent” (TI) when it is possible to think of some

scheme in which the two requirem -nts confl ict with one another.

In practice , conceptual models c~n be imagined in which the two

requirements are in open conflic t

Alternatively , two requirements are said to be “concurrency

interdependent ” (CI) when a conceptua l model can be devised in which

4



— 2 1 —

• the two requirements are compatible; in other words , the conceptual

• model points out ways in which the requirements can be met at the

same time in the sense that meeting one of them will, as a byproduct ,

result in meeting the other as well.

Examples of both types of interdependencies drawn from the

set of requirements described above will be given in section 3.3 below;

they will contribute to clarify those interdependency concepts.

At this point, the question arises of how does one come up

with conceptual models of the type suggested above. We will discuss

this issue at some length in section 3.3, by way of examples taken

from the assessment of interdependencies in the requirements ’ set

of Appendix B and thus drawing mainly from our own experience. In

general, though, it is important to realize that this step is the

most creative one on the part of the designer, in the context of

the methodology described here. The designer’s expertise and

intuition can play a central role in this activity.

Finally, it will become apparent below that many of the

conceptual models that can be used for the purpose of identifying

interdependencies have a clear implementation “flavor,” in the

sense that it is often a possible implementation scheme that suggests

ways in which requirements can interrelate. At first sight, this

may seem to contradict one of our main goals, namely, to avoid

implementation biases. It should be pointed out that this is not

so as long as the assessment process is open minded enough regarding

possible implementation techniques. It is the implicit adoption of

one concrete implementation technqiue at the outset that has tradi-

tionally produced the kind of implementation biases which we wish to

— — • - - • - - 
I .4



— 22 —

avoid . Generating interdependencies by considering several (and maybe

even incompatible) implementation schemes to come up with the conceptual

models mentioned before is in fact a step forward toward the avoidance

of the design biases that are characteristic of many software systems

designed in the past. Finally, it should be relatively clear that

assessing the kind of interdependencies among requirements that are

of interest to us by way of considering different possible implemen-

tation schemes is only natural: Since the established requirements

are finally going to be met by means of the available technology,

the different alternatives that such technology can offer must be

an input , in a generic sense, (without commitments), to the design

process. In our methodology , the interdependency assessment step

constitutes the point in time in which that input enters the process.



,- ______
_ _

• ‘.4

— 23 —

3.2. The Role of the Assessment Activity in the Design Process

Assessing the kind of interdependencies just outlined in an

• explicit manner fills a gap that traditionally has been present in

the design of software systems . As argued in [Andreu & Madnick 77],

implementation considerations are often kept implicit and brought into

• play at the implementation stage. However, the final structuring

of the system under design is typically the result of some preconceived

implementation scheme which implicitly drives the early stages of the

design process so that , In effect , the final system structure is

determined a priori by a concrete implementation approach (the one

most familiar to the designer, one suggested by certain requirements

taken in isolation, etc.). The value of the interdependency assess-

ment activity is precisely that of helping the designer in being

broader in his implementation considerations and, therefore, to avoid

making early implementation commitments that can (and often do)

determine the design.

As it will be pointed out in the next section, one requirement

may suggest one implementation technique and a different requirement

may suggest another. The two need not even be compatible or

appropriate but , as plausible candidates, they should both be taken

into account. If this is not done explicitly as advocated here, one

of them Is likely to be neglected from further consideration and

never reconsidered again; in the mind of the designer, since considering

the entire design problem is a difficult task, one particular scheme

may seem completely inappropriate at a given point in time (maybe,

for instance , due to the fact that he is thinking of a specific ,



1~

— 2 4 —

ad—hoc , subset of requirements at that point in time, for which the

scheme is clearly a bad alternative). That same scheme may be very

convenient for other requirements, but the designer is not likely

to recons ider it (in his mind , he already took it into consideration

and rejected it; in a complex situation it becomes more and more

difficult to realize that something was rejected in different circum-

stances).

In a sense, the explicit assessment activity attempts to

force the designer to being more equanimous: consider all the schemes

that occur t ’  you; keep track of them (in form of interdependeucies);

do not reject any at the outset, leave this to a systematic procedure

(the decomposition step) that will be more “neutral” and will suggest

to you which ones make real sense for the design problem at hand.

In summary , the assessment activity plays the role of a

conceptual discipline whose purpose is to help the designer to cope

with the complexity of the design problem. Ideally, this activity

should become more structured , and normative guidelines for its

execution would help the designer even more. A possibility for

reaching nearer that ideal will be briefly discussed in the final

section .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ±-.~~~~~~- .~~~~•



- 2 5 -

3.3. The Interdependency Assessment Activity in Practice: Some

Guidelines and Approaches

In this section we focus on the interdependency assessment

activity as it appears in practice ; we will discuss a couple of

apparent problems that may seem to make this activity cumbersome,

along with some guidelines that we found useful while carrying it

out for the set of requirements of Appendix B; thus, this section

is also an account of our own experience with this step of the meth—

odology .

________ I



— 2 6 —

3.3.1. General characteristics of the assessment activity

There are two main issues which one can think of at the

outset and which seem to make this activity hard to carry out. They

are:

(i) Since we wish to assess interdependencies between all

pairs of requirements, isn’t this an enormous number

of assessments to make (in a set of n requirements,

n(n—1)/2 assessments are needed)?

(ii) How does one generate “conceptual models” as suggested

above?; how can we be sure that we have considered

enough of them?

The first question is legitimate and a matter of concern.

With a requirements’ set such as that of Appendix B, 3916 assessments

must be made (89*88/2). This would mean roughly one hour at one

assessment per second, or 60 hours at one assessment per minute.

The latter estimate seems more realistic and, consequently, poses a

serious question to the practical viability of the process, more so

when we realize that such estimates increase as a function of n
2
, where

n is the number of requirements. It turns out, however, that it

Is very common to come across pairs of requirements which are obviously

unrelated and that such assessments can be made very quickly. As

an example, the graph which we obtained for the set in Appendix B

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _  

I



•. T ~~~~~~~~~~~~~~~~~~~~~~~~~~

— 2 7 —

had roughly an average of only 5.6 interdependencies per requirement ,

which amounts to more than 93% of the assessments being of that

“easy” type. The time employed in the assessment activity for

that set was roughly 5 hours, or less than 10% of the estimate which

assumed an average of one assessment per minute. Although these

figures correspond to one specific case, they are similar to others

obtained with smaller sets of requirements which we have studied.

(See, for instance, the example in (Andreu & Madnick 77.]) Trying

• to generalize from a limited number of experiences in an empirical

way wouldn’t he sound , but we believe that one can expect similar

circumstances to present themselves in general given the characteris-

tics of complex systems’ requirements: The initial set of requirements

scanning all or at least most of the aspects of the target system,

it is reasonable to expect rather sparse graphs due to the broad

spectrum of issues which such a set must cover; from purely use and

convenience issues to strictly technical ones.

On these grounds, we would expect the assessment activity

to be generally concerned with a large number of “no interdependency”

assessments, which will simplify it and speed it up in practice.

The second question, namely, the difficulty of generating

conceptual models which provide a basis for detecting interdependencies ,

is only apparent. The point can be made that any designer makes use

of such models, implicitly or explicitly, at some point in the design

process; otherwise, one could not end up with a design at all.

Many of these models come up naturally while scanning the list of

requirements , some are suggested by the requirements themselves,

others are the result of the designer ’s previous experience.

Examples of conceptual models useful for the set of requirements in

___ ___ ___ ___ ___ _  
I



-F — —— -——fl  ~~~~~~~~~~~~~~~~~ .‘a w.w..n. ’..-,..- ,— ,•,.- - — • .• . . , .- ,,‘.,, • . —‘._ . •• —..,,•__• , • _  • -,

— 28 —

Appendix B are presented below; they illustrate the circumstances

claimed above. The real contribution of the design methodology

advocated here regarding these conceptual models is not as much the

fact that they must be considered as the idea of doing so ~~p1icitly,

while keeping track of all of them for the subsequent methodological

steps.

_ _ _ _ _ _ _  

j



-29 -

3.3.2. Examples of assessments: Some guidelines

In this section we report a number of guidelines which our

experience pointed out as useful in actually carrying out the assess-

ment activity. For exposition purposes , it is convenient to organize

such guidelines in the following categories: (a) procedural, and

(b) generation of conceptual models.

It must be said, at this point, that the interdependencies

we assessed for the purposes of this exercise were binary ; i.e., any

two requirements were seen as either related or unrelated (some of

the guidelines below will give hints for a more precise assessment

process in which different levels of interdependency would result).

The structure given to the requirements set of Appendix B, thus,

was an undirected graph without link weights.

ii
(a) Procedural guidelines

These are concerned with how to organize the assessment

activity. We found the following useful:

Establish an order for the assessments to be made. This

helps to keep track of the work done and what remains to be done. An

easy organization for this purpose is to begin by the first requirement

and assess its interdependencies with all the following ones, then

take the second , and so forth. This particular organization is useful

in another sense: Since one of the requirements in the successive

pairs is kept fixed , it is easier to keep in mind the issues, or



~1

• - 3 0 -

“conceptual models” specially relevant to that requirement.

• As successive requirements are considered for possible

Interdependencies with the fixed one, the person (or persons, see

below) making the assessments can think of conceptual models which

are relevant to those requirements. It is useful to write these

models down along with the relevant requirements for future use.

Knowing that they won’t be forgotten helps to improve the concentration

of the designer(s) on the issues specially relevant to the “fixed”

requirement in the current sequence of assessments.

The same process described in the preceeding point can

suggest conceptual models relevant to pairs of requirements for which

an assessment has already been made. We found it convenient to treat

these as we treated the ones relevant to future assessments, and

to consider them later (see below), the reason being that going back

to reconsider a previous assessment often disrupts the activity so

that some time is needed to center the process again where it was

left off.

Sometimes the conceptual models suggested by the

scanning of successive requirements as described above, becomes so

numerous that the designer loses concentration. In these cases, we

found it useful to change the preestablished order by skipping a

sequence of “scheduled” assessments and beginning a new one where the

suggested conceptual models are relevant. Later on, the skipped

sequence must be considered .

_______ _  _  

I



- 
- —___

— 31 —

Sometimes it is useful to skip a sequence of assessments

for exactly the opposite reason: it seems that no conceptual models

can be generated at all and the designer begins to feel uncomfortable

with the assessments, the activity becomes somewhat “dull.” We

found that in these cases switching to another set of assessments in

which other issues are involved helps to match the designer’s frame

• of mind at that point in time to the assessments to be made; the

result is a more comfortable feeling regarding the established

Interdependencies . This, incidentally, points out that this kind of

systematic assessment (the designer is conscious that a series

of assessments has been skipped and must be reconsidered later on)

forces the explicit consideration of all possible interdependencies ;

in other more flexible circumstances the designer is likely to forget

about the ones with which he felt uncomfortable at a given point in

time.

Sometimes the person making the assessments may lose the

confidence in himself. The assessments seem to become trivial and

too superficial . When these circumstances arise it is advisable

to stop the assessment activity for a while, forget about it and

return later. Another alternative could be to make ass inents

simultaneously by a (probably small) group of persons. Although

we have not explored it , this is likely to improve the self—

confidence of the persons inv lved.

It was suggested above that it appeared appropriate to

just take notice of new conceptual models, relevant to assessments

already made, and to consider them later. This implies a second

a 

_ _  

I



- 

1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— — ,—  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— 32 —

pass over the set of requirements for interdependency assessment

purposes. We believe that such a second pass is very useful, since

It not only allows the designer to include the new conceptual models

that seem appropriate , but it also gives the opportunity of quickly

• going over the assessments made, thus getting an overall feeling

• for their correctness and increasing his confidence on them. An

interesting observation can be made at this point: it is possible

to think of more than one conceptual model in which context two

given requirements may be seen to be interdependent. The number

of conceptual models relevant in this sense to a pair of requirements

could be taken as a measure of the degree of interdependency between

them. A more precise assessment scheme could be obtained in this

way. Furthermore, the possibility of assigning different “importance”

to different models would increase the domain of values that such an

“interdependency measure” could take . This alternative opens an

area for further research which we believe should be investigated

at some depth In a move towards less crude interdependency assess-

ments.

(b) Guidelines for the generation of conceptual models

Al though different  persons have different conceptual

frameworks regarding the organization of knowledge and thus concep-

tual models in which a pair of given requirements may be seen to

present trade—offs or concurrenc Len will emerge as the result of

different mental processes in different individuals, we present here

a few instances of the procedures that one can employ to “generate”

conceptual models linking requirements in the sense discussed before. 

_ _  

I



— 33 —

They are taken from the assessment activity that we carried out for

the set of requirements in Appendix B. Thus, they illustrate our

own experience , and to some extent reflect a specific mental frame-

work; nevertheless, they will serve the purpose of giving an idea

of what is involved in actually identifying those conceptual models.

From a personal experiential viewpoint , we must say that the models

emerged rather naturally from confronting pairs of requirements,

and more easily than expected . Although an attempt is made below

to categorize the procudures that served to identify these models,

the purpose of the discussion is not as much to lay out a set of

general normative guidelines as to point out that such guidelines

can in fact be developed by each person as experience is gained in

making interdependency assessments.

The first scanning of the requirements’ set so as to obtain

requirements meeting the conditions discussed in section 2 can

already suggest conceptual models useful in the assessment activity.

More concretely , removing any implementation connotation from the

initial set of requirements is an activity very likely to suggest

such models. One should thus look ahead while performing the first

scanning of requirements and keep track of potentially useful

models. For example, the original (Appendix A) requirement #35

“Literals being compared to field variables are validated
against acceptable field values prior to data search ,”

which was removed (see section 2.2.(a)) because It in fact specified

a particular implementation, suggests a conceptual model in which

requirements 116 and l’74 (Appendix B) can be seen to be concurrency



-
~~

— 34 —

• Interdependent . Requirement #6 specified:

“Field definition permits validation of input datum as
to acceptable values,”

while #74 read :

“With a single terminal active, user can receive a response
from a direct access to any Item in less than 5 secs.”

• By using the strategy specified by the original requirement

#35, access time can be reduced significantly for items whose values

are not acceptable. One thus concludes that these two requirements

(#6 and #74) are concurrency interdependent , (CI) , in the sense

that meeting the former can help to meet the latter (note , we say

it can, not will: at this point, no consuitment is yet made to

materialize that concurrency ; this only means that it will show up

later as an alternative solution to some design subproblem; whether

or not it should be adopted in the final design will be a function

of other requirements which may end up in the definition of that

same subproblem).

Other CI requirements were identif led by looking for a

conceptual model in which a possible implementation would allow

common processing in the eventual system in order to meet the two

requirements involved. As an example, requirements 17 and 19,

“Data base update can be performed by on—line user through
query language,” and

“A bulk data base upda te (initialization) can be performed
through system utility,”

call in fact for two “modes” of the same (or very similar) processing.



— 35 —

• 
• It is conceivable that common processing might be employed to meet

• these requirements. Consequently, we assessed them to be CI

requirements.

Another source of CI requirements comes about when two

requirements call for somewhat similar functions which must be

performed in different circumstances in the eventual system. As

an example consider requirements 17 (see above) and 18:

“Data base maintenance can be performed by batch.”

There, one may consider that since in an on—line environment the

usual priority is quick response time, a possible implementation to

meet requirement 17 can only “patch up” the performed update while

consolidating updates can be done at the same time as bulk data

base maintenance, assuming that such maintenance is performed often

enough. In the particular set of requirements that we are analyzing

there is no mention of bulk maintenance frequency, but even if

there were the above reasoning would be valid : the constraints

posed by such a possible requirement specification would come about

in other interdependencies, and the decomposition step would take care

of their coordination in the context of the overall design.

Trade—off interdependent (TI) requirements were identifed

in a variety of ways. The concept of possible deadlocks in processing

concurrent queries , for instance (a concept that any DBMS designer

is familiar with), suggests a trade—off between requirement 2,

“Separate files can be defined to be interrelated ,”

____ ____ ____ __  

I



r 
• 

-

~~~~~

-
.

-

~~~~~

-

~~ ~~~~~

• -

~~

— 36 —

and 17 ,

“Capability to support two or more concurrent queries
in different stages of pcoessing.”

The former poses constraints to meet the latter in the sense that a

“look ahead” operation may be needed in order to avoid a “deadly

embrace”. This is because two concurrent queries which, although may not seem

to need the same files initially , may in fact do so due to established

interfile relationships. This becomes more relevant when specific

• security requirements are in effect (see, for instance, requirement

24). The same concept suggests other TI requirements (like 19 and

23, for example).

Other TI requirements were identified when a given one

posed additional burden on others. An example is the pair of

requirements 15,

“Records in the data base can be changed ,”

and 54,

“User can cancel active request without loss of data
integrity.”

Obviously , the latter requirement implies more complicated processing

for the former , since the changed “record” must be reconstructed

if a change query is cancelled ; some scheme (the specifics are

unimportant at this time) to keep track of what has been done so

far in an ongoing query is needed to be able to be backed up effectively

if cancelled . Those two requirements were therefore seen as a pair

of TI requirements.

___________________ 
- - - I-



• ~~~~~~~~~~~~~~~~~~ -
~~~~~ ~~

-- - --

— 3 7 -.

Another rommon model behInd some TI requirements was a

need for what can be called “symmetric” processing to meet a given

requirement even when it was not explicitly called for by it, but

• rather by another one. A case in point is that of requirement 26,

“Transaction history facility,”

and 51,

• “User can cancel active request without loss of data
integrity .”

Obviously , in order to keep an accurate transaction history cancelled

requests should be accordingly deleted. There are several ways of

implementing this, including the possibility of recording a “delete

request” transaction , but the point is that the latter requirement

poses a “delete” capability requirement in the transaction history

which is not implied by requirement 26 alone.

a



• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~

— 38 —

4.- The Resulting Graph. Preliminary Analysis.

The interdependency assessment activity outlined in the preceding

• (* )
section is summarized in Appendix C, which includes a brief description of

the motivation (conceptual model) behind each assessment. It generated a 89-node

graph which was entered to the decomposition package presented in tAndreu 77(b)].

Appendix D shows how the graph was entered and displays the successive analysis

steps performed upon that graph. In the discussion below , references are made

to Appendix D while presenting the results of the analysis.

A preliminary analysis was conducted with a two-fold goal: (i) to make

sure that all the assessed interdependencies were in fact present in the graph

as stored by the decomposition package, and (ii) to detect any possible isolated

nodes which the assessment process might have left without links to any other node.

The purpose of the first check is strictly to validate the data entered

to the package; at this point it was felt that the package should allow the user

to enter, along with each graph link, a brief description of the motivation , or

conceptual model, behind it. This is a feature that the current implementation of

the package doesn’t have and which would be very useful to keep accurate track

of the assessment activity, as well as to help in the interpretation of rela-

tionships between subgraphs in the final partition; this will become apparent in

section 7 below. Thus, this is one of the improvements which can be made to the

package in the future.

After makinc: sure that all the assessed interdependencies were accurately

stored by the package (the command “NOLK” was used for this purpose, see Appendix

D, pages D2 to D4), we employed the command “ISOL” to check for possible isolated

• nodes (see 1~ppendix D , page D4). It must be pointed out that this type of checking
(*) To facilitate further references, the requirement numbers employed in Appendix
C correspond to the parenthesized numbers assigned in Appendix B; see below.

_ _ _ _ _ _ _ _ _ _ _ _ _ _  I



— 3 9 —

• could be done along with the assessment activity , by just keeping track of

all the nodes (requirements) for which at least one interdependency

has been established. This, however, gets tedious after a while

and tends to be forgotten , so that the command “ISOL” was found

to be really useful in graphs of non—trivial size.

The check for isolated nodes pointed out that two nodes

had been left unconnected . They were the nodes corresponding to

requIrements 72 and 87 in the set listed in Appendix B:

“System can operate in ordinary office environment,”

and

“Being used at least by 10 users in M
2 
months.”

It is useful to investigate why these two turned out to be unrelated

requirements.

The first one, in fact, should have been deleted at the

outset on the grounds that it can be thought of as implied by

others. The fact that the DBMS is to be on—line and capable of

supporting CRT terminals makes it suitable for office environment ,

which may require , for instance , a low noise level. Had more

specific requirements ( for example regarding concrete noise levels 
•

and the need for hard copy terminals in the off ice  environment) been

present explicitly, requirement 72 would not have ended up being

isolated . As the initial set of requ irements was set up, however ,

that requirement doesn’t make too tm.ich sense and should be neglected .

The second one (#87) is the result of a more fundamental

_ _ _ _ _ _ _ _ _ _ _ _ _  I



— 40 -

inconsistency in the initial requirements’ set which could not be

easily detected before. Since a specific requirement (#86)

specifically calls already for a time limit in the system development

process, requirement 87 was probably set forth to cover such issues

as user training and hardware delivery. Since no other requirement

in the set hinges on such issues explicitly , the presence of #87

creates an inconsistency or at least some ambiguity that should

be removed . In a real life setting, a designer confronted with this

situation should probably go to the users and require more specific

information about the meaning of that requirement. In our setting,

we decided to remove that requirement from the set we were going

to work with.

Consequently, the final requirements’ set was further reduced

to 87 by the removal of numbers 72 and 87 from the set in Appendix B (see page

D5).The remaining requirements were renumbered and assigned consecutive

numbers from 1 to 87. The final number assignment is indicated in

parentheses in Appendix B. 
-

The interdependencies among these 87 requirements are sununa—

rized in Appendix D (pages D6—D8) , where the output produced by the

command “NOLK” with the reduced set is shown; the average number of

links per node was roughly 5.6.



r ~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 

• 
• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~

-. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— 41 —

S. A First Graph Decomposition. Concept of Main Subproblems

The graph whose structure is sununarized in Appendix D

was decomposed with the aid of the package described in [Andreu

77(b)]. The best obtained partition is depicted in Appendix D (pages DlO—Dll).

As it can be seen, only 4 subgraphs were obtained. One of them was

rather large (48 nodes), another was sort of “medium size” (21

nodes) and the other two of more reasonable size (8 and 10 nodes

respectively).

An analysis of the requirements that ended up in each

subgraph pointed out that they referred to fundamental design

subproblems that we called “main subproblems” (MS ’s). For example ,

subgraph #4 (21 nodes) Is concerned with the data manipulation language ,

and #2 (8 nodes) is centered around the data description language and

data items characteristics. It was felt, however, that the obtained

subproblems were still too broad in scope to be really meaningful.

The idea of decomposing each MS further was considered at this

point. We actually carried out such a further decomposition and

the results are the subject of the following sections. The remainder

of this section discusses the justification for such a further decompo-

sition.

A starting point for the analysis of the obtained 4—way par—

tit ion is to consider the associated measure value and its components.

It is shown in Appendix D (page Dll) that the depicted partition has a



— 4 2 —

strength of 1.069 and a coupling of 0.263, yielding an overall measure

• of 0.806. The relatively small coupling value is the result of an ave-

rage of about 10 links between subgraphs out of over 240 links in the

graph. This suggested that the obtained subgraphs were relatively de-

coupled but lacking internal coherence , which, translated into design

terms, resulted in very broad MS’s. Thus, decomposing each of them

further seemed appropriate. We run into a dilemma, though, if we are

to take this route: since decomposing each MS further deteriorates

(decreases) the overall partition measure, what is the meaning of

the further decomposition and why is it meaningful for our purposes?

The following paragraphs explore these issues.

The idea of taking each subgraph (MS) in isolation and

attempting to decompose them further is in fact equivalent to focusing

on the “strength” of each of them. In other words, it means to for-

get about their interactions and concentrate in their inner structu-

re. From a design standpoint, it implies that the designer (I) con-

siders the broad MS’s to be rather independent of one another, and

(ii) to gain further insight into their intrinsic structure, he or

she decides to analyze each of them in isolation.

Once such a decision is made, what should be the guidelines

employed to decompose each MS? To achieve overall consistency in

the analysis, the designer should, it seems, attack the decomposition 1 ,
of each MS in the same way as the decomposition of the entire graph

was approached to begin with.

__ __ __ __ __ __ _ _  

I



~~~~~~~~~~~~~~~~~ -~~L

-43 -

This brings up the question of whether evaluating MSs’ de-

compositions in this way will produce any further decomposition or

not. It may seem at the outset that since the MS’s were identified

as the components of the best identifiable partition of the overall

graph, each MS would not decompose further ; i.e., that the “no parti-

tion” solution should be the best solution for each isolated MS.

In general, the above conjecture is not true. The basic

reason is that the decision to analyze each MS by itself modifies

the decomposition problem. In particular , neglecting the interactions

among MS’s affects directly the coupling components of the overall

decomposition measure. In fact, it can be shown in general (see

Appendix E) that the coupling between two subgraphs increases when

they are each further decomposed, unless these subgraphs are disjoint

to begin with (in which case the coupling Is zero either way). By

decomposing each subgraph independently, these coupling components

are discarded . This shif ts  the emphasis to the strength components

within each subgraph , thus increasing the possibility of finding

further decompositions with higher evaluation measures.

Let us explain in more detail why considering each MS

in isolation can produce further decompositions with associated

measures higher than those found in the original decomposition.

Assume that the initial graph is in fact composed of a series of

disjoint subgraphs. Each of these subgraphs can be taken in isolation

for decomposition purposes without modifying the analysis at all

(i.e., the best overall decomposition will be the same as the collection 

-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I



— 44 —

of the best decompositions for each subgraph). However, this does not

mean that the best decomposition will have the original disjoint subgraphs

as the only components. If such subgraphs are not very compact , they

• can in turn be decomposed (the opposite would mean that we would never

decompose a graph).

• From this viewpoint , it is obvious that taking subgraphs

(MS’s) in isolation for further decomposition is equivalent to setting

the coupling measures among them to zero. This can be reasonable if

such couplings are relatively low and a more detailed analysis of each

MS is wanted . Once this is done, however, the problem is changed.

The foregoing discussion is illustrated schematically in

Figures 1 and 2. Figure 1 depicts the result of the original 4—way

decomposition of the overall graph as shown in Appendix D (page Dli).

S (MS
1) is used to indicate the strength of subgraph (MS) i while

C(MS
i, 

MS~) indicates the coupling between MS’s I and j.

Without loss of generality, let us consider Figure 2, which

is a simplified picture with only two subgraphs. Figure 2(a) is the

counterpart of Figure 1, that is, the result of the first decomposition.

Figure 2(b) depicts what happens to the overall measure if each MS is

decomposed further. The coupling components between MS’s not only

increase in number, but in such a way that their sum is actually

higher than the sum of the couplings in Figure 2(a) (see Appendix E).

Figure 2(c), finally, depicts how neglecting those coupling terms can

result in the identification of further MSs’ decompositions.

The foll6ving observation should be made at this point. There



~~:: ~~~~~ 
_ .•

~~~~~
-_ -— - -

~~~
-

~~~~
-

~~~~
-• -- -—-- - •

~~~~~~~~~~~~~~
• • - - •

~
•
~~~~

--
~~~~

• •- •

-45 -

C(MS
1,Ms2

)

S(MS
1
) 

S(MS
2
)

MS1
0 C’
S

• C (MS
2,
MS
4
)

C(MS
1,
M8

3
)

S(M3
3
) S(MS

4
)

MS3

4 4

M = S (Ms .)  - C (MS ,, MS .) = 0.806
1 • 1i=l i=J.

j=i+i

Figure 1



— 46 —

(a)

C (MS~ ,MS~)

• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (Ms , MS~)

MS1(S(M4) ~ ~ ~~~~~~~~ ) 
~ 

S(MS2) ~., I~~,
5(
~~2))MS2

\~~~~~(~~T~~~2 ) 
~~/

(b)

MS
1 ~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~ 

MS2

(c)

Figure 2.

_____________________ 
~~~ - - ~~~~~~~~~~~~~~~~~-



~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —
~-1

- 47 -

are two differences between Figures 2(a) and 2(b), regarding the eva—

]uation of the overall partition. In Figure 2(a), this evaluation

would be

E
a 

= S(MS
1

) + S(MS
2

) — C(MS1, MS2)

while in Figure 2(b) it would be

~b 
= S (MS~ ) + S (MS~) — C(MS~~, MS~)

÷ S (MS~ ) + S (MS~ ) - C (MS~ , MS~)

2
— E C (MS 1, MS~).

i,j=1

Although (see Appendix E) it Is true that

2
> 

~~~~~1,j=1

it is also true that -

H 
• 

S (MS~) + s(MS~ ) — C(MS~ , MS~ ) > S(MS
i
), 1=1,2 ,

for otherwise the MS’s taken in isolation wouldn ’t have been further

decomposed. Therefore, the following question arises: Is it possible

that Eb 
> E ?  In other words, is it possible that the evaluation of

the overall partition after the second decomposition step be higher

than that obtained through the first step?

• The answer to this question , in general , is yes; it is possible.

However , given the way in which ~:he first partition is generated , it 

~~~~~~~ I



•—~~ ~~~~~~~~—. _— ——--. — —  — _! _i1~~~

— 48 —

is highly unlikely , It cannot be said that it is impossible because

we did not use an exact optimization procedure to generate the first

partition ; to the extent that the employed methods are good , however,

it is unlikely that the above circumstance will occur. For example,

when a second decomposition step is performed upon the 4—way partition

shown in Appendix D (page Dli), as described in the next section, the

overall measure decreases from 0.806 to 0.636.

To recapitulate, there are two basic ideas concerning the

decision of taking a second decomposition step :

(1) The MS’s obtained in the first decomposition are (i) broad

and (ii) relatively loosely coupled .

(2) To achieve better understanding of these broad MS’s, the

designer can decide to analyze them individually . This is however

equivalent to neglecting the couplings among them. Therefore, the

results of a second decomposition step in terms of MSs’ subparts

will present rather involved interactions between subparts of different

MS’ s.

The basic objective of the second decomposition step is thus

to gain insight into the inner structure of the MS’s; the main motiva-

tion for carrying it out is their broad scope as perceived by the desig-

ner. It must be kept in mind , however, that since the results are

going to complicate the interpretation of interactions among eventual

MSs ’ components, it should only ~e done if the coupling between MS’s

is relatively low.

In the next section, such a second decomposition step is 

_ _



-~-~~ — -~~~
_-

~~~
-- _ 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

_____  - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~~

— 49 —

taken. As subsequent sections will illustrate, this permits a

clearer understanding of each MS through the collections of design

subprob lems in which they are decomposed . However, the interactions

among these subproblems become more cumbersome. The resulting

design framework will thud be in terms of MS’s and MSs’ components.

Its interpretation will point out certain deficiencies in the ori-

ginal requirements set that may be responsible for the MSs being

so broad .

I
_

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•
~~

- • - 
I



— - ---- - --

— 50 —

6. Analysis of Main Subproblems. The Second Decomposition Step.

As proposed in the preceding section , the four subsets of

requirements shown in page Dli were individually treated for further

decomposition. Doing so involves creating a decomposition problem

for each of those subsets by (1) defining the graph associated with

each one as that formed by the nodes in each subset and the set of

original links joining nodes in the subset, and (2) computing the

assocIated distance matrix in the usual way. Step (1) was accom-

plished through the command “DENO” (see page Dli) available in the decomposition

package by deleting the nodes which don ’t belong to a particular

subset. By making the resulting graph the current graph, the package

was then used to decompose it. Since the command “DENO” renumbers

the remaining nodes, the interpretation of the obtained decompositions

was somewhat inco~ucnient because it involved tracing back the new

node (requirement) numbers to the original ones (those in Appendix B).

This suggested a possible improvement for the decomposition package

that will be further discussed in section 8. In the remaining of

this sectIon we center our discussion on the description of the results

obtained from the second decomposition step.

Of the four MS’s listed in page Dli , three were further

decomposed (numbers 1, 2 and 4). MS 3 was not decomposed because no

partition could be found whose measures were superior to those

associated with the entire MS.

The results are shown in Appendix D (pages Dli through Dl4). 

~~~~~~~~~ -• -- - - - - • ~~~~l



- • - .
~~—— ~~~~~~ i ,  

-_ _ _

— 5 1 —

For convenience, the final overall partition (Appendix D, page Dli) is

shown as a function of the original requirement numbers (Appendix B).

That decomposition is used as the final design framework, as discussed

in the following section.

The final decomposition consists of 13 subsets, whose

dimens ions vary between 2 and 16. The dimension mean is 6.69,

and its standard deviation , 4.16.

To deduce a design framework from these 13 subsets, we

analyzed each one of them in terms of their elements (requirements),

and examined what interdependencies (links) existed among elements

of different subsets. Although we pointed out that interdependencies

among MS’s could be evaluated through the results of the first

partition, it is useful to pay some attention to which MS component (after

the second decomposition) most interdependencies among MS’s refer

to , in order to gain insight as to how different design subproblems

interrelate. In the context of our decomposition package, the command

“PRLK” applied to the final decomposition is specially well—suited

to perform the latter examination (pages Dl5—Dl8). To aid in the identification of

the main “focus” of each subproblem , it is useful to examine, in

each subset, what node (requirement) is involved in more interdepen—

dencies. These two simple operations (the second of which is currently

only indirectly supported by the decomposition package through “NOLK”)

allowed us to identify a meaningful design framework which, as

discussed in the following section, also pointed out some characteristics

of the employed set of requirements (mainly regarding its completeness)

that were not detected in earlier analyses.



— 5 2 —

7. A Design Framework

The design framework (in the form of a collection of

design subproblems) presented here was the result of interpreting

each subset of requirements in the final partition (Appendix E)

as a design subproblem while interpreting the interdependencies among

• elements of different subsets as coordination requisites for putting

those subproblems together.

It was relatively easy to perform these tasks. Each subset

turned out to hinge on a rather well—defined design problem which

suggested itself without difficulty. The relationships among

subproblems also made good sense. However, as we try to emphasize

below, when subproblems and relationships are put together in the

framework, several interesting issues, not at all obvious in the

initial requirements set, began to show up. Such unforeseen

results point out the usefulness of the proposed methodology.

Figure 3 depicts the structure of the framework. Boxes

indicate the four Ms’s obtained in the first decomposition step.

Inside each box, the corresponding MS decomposition obtained in the

second decomposition step is shown; circles in each box represent

the design subproblems in which each MS is decomposed. Lines between

circles indicate relationships among subproblems, and are labelled

according to the main coordination issues. Lines between boxes,

finally, represent coordination among MS’s; an attempt was made to

show which MS components are more heavily involved in each coordination

among MS’s (dotted lines inside the boxes).

_ _ _ _ _ _ _ _ _ _ _ _  I



r 
- -_- -— 

~~~~~~~~~~~~~~~

- - -

~~~~~~~~~~~~~~~~

--- -

~~~

— 53 —
MS 2

~~~~~~~~~~~ uata it.m~~ ct,,,r~;. ~)ata it~ ITc~’ uiz.

I ~~~~~ 
• -• - ,

f Si Sc co:,st rn tncd bq dat a cli~
- •~~~~ ~~ ~~~ J••~~J~—~~•~ ~

-. r J  v~ ’1 NL

l 
~~~~wgicai operations con r~at ib !e

with data items charactetistics )

MS 4

DM1. ~~~ DM1.
log ical ( .K %— c con t rol

_~~~_~~~~ stats. \~~,.,/ _~J~ _~ \ _ ../ stats.

~~ Schema~~\ I rAU~1If l~3f l~Od DML.~
supports )~ I ~~~~~~~~~~~~~~~~• I I

Complete DilL

MS 3

Concurrency problems
on ,rodifica~ ion ops.

suppor ts

DML modif. statem . /

MS 1 
/ 

St r .

/ Logica l-P hys.
/ mappin gc.r.c 

~~~ 
Physical

I.. H organization

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~

ç Log icaJ ~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~ Compatibility
Scuritti & constraints)

‘~tr jec. 
D

F ,f~~~~~~ urr ncy Reorganization k assig. COI~%p atib

~fp rob . wit~ rela I ~
‘ /

Securi ty,  ç ted f iles othe r sy.
tra ns . r,~~or cI ~~~~~~~~~~~~~~~ ‘

~~~~.‘

Lockout £
concurr ency E — — — 

b-,-’--~

- - . Appr. ‘p. h..rdware~~

- • 

Hardware 
~~~~~~~~~~~~~~~ 

~~~~~~~~~~~ 
Recovery

clas r , .  ~~~~~ constraint s
çAp r ror r .

~

Figure 3.

_
~~~~~~~~~~~~~~~~~ -- -- -~~



p~_t — —--- — - — - ___  

-•--•• 

r

- 

In what follows , Figure 3 is analyzed and implications for

- 
design are discussed. We begin by a discussion of the framework’s

general structure .

H

~~~~~~~~~~~~~ . • I _ i - ~
_
~ — • --~~~~~~~ I



— 
-~~~~~~ 

-
~~~~~

-
~~~~~~~~ ~~~~ -

— 5 5 —

7.1. General Framework Structure. Main Components.

Three main components can be distinguished in the framework

depicted in Figure 3. From top to bottom, they relate to:

a) The characteristics of data items (box 2);

b) Data manipulation language (boxes 3 and 4);

c) Logical data model and physical representation (box 1).

7.1.1 Characteristics of data items

• The requirements which ended up in the subset corresponding

to MS 2 (Appendix D) all refer to properties characterizing the data

items that the system must support. These are of two main types,

as it will be further discussed below: one emphasized their “logical”

properties (e.g., “null” values can exist); and the other is more

physically oriented (e.g., size of data items). The requirement that

S 
gives identit’i to this MS is that calling for a data description

language (DDL): it must be such that the data items characteristics

can be appropriately described by DDL sentences. This MS was decomposed

in two subproblems in the second decomposition step described above;

they point out the two types of data items properties just mentioned

and will be further discussed below.

7.1.2. Data manipulation language (DXL)

MS’s 3 and 4 (Appendix D) refer to the need for a DXL. It 

_ _  

I



— 56 —

Is interesting to note that the series of requirements calling for

the different characteristics of the DXL did not end up all in the

• same MS. There is a good reason for this, when such characteristics

are considered in the context of the overall design problem, as

follows: certain DXL characteristics refer to how data items can be

referenced (e.g., by means of relationships among them) while others

specify what can be done with the referenced data items (e.g., change

S or delete). It is apparent that although these characteristics must

all be taken into account in the design of the DXL, they interact with

other requirements (MS’s) to very different degrees, so that it

makes perfect sense to consider them separately for design structuring

purposes. This will become clearer below when the relationships

among MS ’s are discussed.

7.1.3. Logical data model and physical representation.

MS 1 (Appendix D) is the largest of the four and refers to

a number of distinct but closely related issues, ranging from the

need for a logical data model , to the representation of the data

base in physical storage, to the selection of proper hardware. All

these issues were assigned to separate subproblems in the second

decomposition step, as it will be discussed below. The reason why

they were not so in terms of MS’s, during the first decomposition ,

can be explained by the fact that the initial set of requirements 
S

was incomplete in a sense that——we believe——can only be detected and

checked by an analysis similar to the one being performed here.

We will discuss this completeness issue later in section 7.3.

Section 7 . 2 .4  is devoted to a detailed discussion of the decomposition

~

--- --

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I



- ~~
—

- LI~ ~LI ~~~ -~~~~~~~~ ‘~~~~~“~~- ———-——— - -•— ~~~~~~~~~~~~~~

— 57 —

of this MS.

7.1.4. Relationships among MS’s.

4 The relationships among MS’s and their meaning for subproblems

coordination purposes were interpreted by recalling the “conceptual

- : models” which , in the interdependencies assessment process (see

section 3), motivated the assessments that translated into graph

links among the subsets of requirements corresponding to the Ms’s.

Such a task required going back to the records of the assessment

process in order to retrieve the meaning of each of the relevant links

and thus was somewhat time—consuming. A proposal for making this

interpretation process more convenient for the desinger, involving

the addition of a new feature to the main analysis tool (the decomposi-

tion package) was already suggested in section 4 and will be treated

in section 8 below.

These relationships are depicted in Figure 3 (page 53) as

lines between boxes. Although Figure 3 makes an attempt to show which

MS components are more heavily reponsible for the relationships among

• MS’s, such a particularized relationship analysis will be delayed

until section 7.2.5, after a detailed description of the components of

each MS is performed below. Here, we just note the general character—

istics of those relationships in order to complete the general picture

of the framework.

Relationships between Ms’s 2 and 3: MS 3 is concerned S

I

with the “modification” capabilities postulated for the eventual DXL

(see 7.1.2). Its relationship with MS 2 (data items characteristics)

emphasizes the fact that certain data items characteristics (e.g., 

-•~~~S , -~~ --- -~~~~~ - I



—S. - S •
~~~~~~~ ••~~~~~

* -z:-~
-
~ ~~ 
-

~~~~~
I

S

— 5 8 —

variable length) can complicate the processing of “modification” DXL

statements (e.g., update).

Relationships between Ms’s 2 and 4: MS 4 being concerned

with the “logical” capabilities of the eventual DXL, including logical

operations among data items (e.g., boolean conditionals), its rela-

tionship with MS 2 focuses on ensuring that logical operations are

compatible with the characteristics of the data items they may involve.

• Relationships between MS’s 3 and 4: MS’s 3 and 4 referring

both to DXL characteristics, the relationship between them is merely

one of DXL completeness.

Relationships between MS’s 1 and 2: This focused on the

logical data model (schema) supporting the data items characteristics

specified in MS 1 (for example , a provision should be made in the

schema for “null” data values) as well as the physical representation

of these characteristics; this relationship also brings to MS 1

the data items’ sizes to produce an overall data base size.

• Relationship between MS’s 1 and 4: This makes explicit

the compatibility between DXL logical statements and schema structure.

It also calls for certain features in the eventual hardware needed

to support some DXL “con t rol” statements as will be discussed in more

detail below.

• Ri~lationships between MS 1 and 3: Most of these emphasize S

the fact that data base “modification” operations (e.g., change,

delete) complicate the physical organization design problem and can 
S

be the source of faulty system behavior when concurrency is brought

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  /



- 

— 59 —

- into play .

* * *

:
1 The more detailed inner structure of each MS made explicit

by the second decomposition step permits a better understanding of

the framework in Figure 3. The following sections are devoted to a more

detailed description of each MS.



— 6 0 —

7.2. Structure of the MS’s.

F 7.2.1. MS 2 (data items’ characteristics)

The second decomposition step for MS 2 produced two sub—

problems, labelled A and B in Figure 3.

Subproblem A focuses on what may be called the “logical”

S 
characteristics of the data items to be included in the data base

and sets forth the need for a data description language (DDL).

From a design standpoint, this subproblem represents a “data analysis”

step, necessary for properly defining the kind of information which

the target DBMS is to be concerned with. Issues such as checking 
S

for compatibility of the different data characteristics and making

sure that they are expressable in the eventual DDL are at the heart

of this design subproblem. The relationships between this component

of MS 2 and certain subproblems in MS 1 pointed out that the employed S

set of requirements was incomplete; we will discuss this issue at some

length in sections 7.2.5 and 7.3 below.

Subproblem B is centered around “physical” characteristics

of the data items to be supported , referring mainly to their size as S

seen by the end user(s); i.e., independently of any physical encoding

that may take place for the purpose of representing data items in

storage media. This subproblem thus focuses on another aspect of the

data a~;4lysis step mentioned above, namely , on a preliminary study

of the space needed to hold each data item , whose logical characteris—

tics were the subject matter of subproblem A.

The interdependencies among requirements defining subprobletns



- ~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

~~~~~~ _~~* ~~~ S~_~_~S S - •~‘ — ~ ,._. -_ —..--•_.- __-.__ __ -—

— 6 1 —

A and B point out that there is a central coordination iMBue between

S I the two. Certain logical data items characteristics may pose cons-

traints on their size which may help to give a more accurate picture

of the size range for the associated item. For example, the exis—

tence of a range of acceptable values for a given data item (its

domain) gives additional information about its size in a more speci-

fic way. Furthermore , the relationships among these subproblems

and others that come about in the decomposition of MS 1, make explicit

certain encoding techniques which may be used to represent data items

in storage, as it will become clear in section 7.2.5 below.

In summary, MS 2 represents the initial data analysis step

needed in the design of a DBMS aimed at supporting applications in a

specific setting. The distinction made between logical and physical

(size) data items characteristics in the sense above is meaningful from

a design structuring viewpoint because it points out the possibility

of attacking the associated subproblems independently as long as the

coordination issues sketched in the preceding paragraphs are not

S neglected : The design of a DDL capable of describing any possible logical S

data characteristic is a problem whose main emphasis is very different

from that aimed at pinpointing the specific size constraints for each

data item. One can treat these two problems one at a time, provided

that sufficient attention is paid to their proper coordination ;

the coordination , as suggested above, goes mainly from subprobletn A

to subprobleui B, i.e., it is the size of a data item that is a conse—

quen~-e of its logical characteristics or properties rather than the

other way around . Coordination in the other direction is also conceivable

but not as strong; for example, the DDL design must take into account

S 

I



S 

~•1~~~

— 6 2 —

the size range of each item in order to allow enough space in its

constructs so as to be able to express Instances of data items without

much problem. This would mean that if, for whatever reasons, sub—

problems A and B can’t be attacked simultaneously (but , note, still

almost independently of one another) in the design process, subproblem

A should probably be considered first.

7.2.2. MS 4 (DXL)

MS 4 was decomposed into two subproblems, labelled K and

L in Figure 3.

As advanced in 7.1.2 above, MS 4 is concerned with data

manipulation language (DXL) issues, particularly with those regarding

data selection (as opposed to data modification). Subproblems K

and L both refer to such issues but have different connotations.

Subproblem K may be called a “traditional DXL design problem” in

the sense that it is centered around typical DXL constructs, such

as types of references to data items and allowed manipulations

(logical operations) of data items or collections of data items

(e.g., relational conditionals). In this sense, subproblem K centers

on providing a DXL capable to supporting the required operations

among data items and their references, and , accordingly, is related

to subproblem A to ensure that the different operations match the

characteristics of the involved items (see 7.2.5).

Subproblem L, on the other hand , is concerned with a class

of DXL statements that may be called “control” statements. These

are capabilities of the DXL which are not as “standard” as the ones

.•-



r 

S 
S S

J~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

considered in subproblem K (e.g., report control , requirement 42).

In the context of the overall design problem, viewing these DXL

requirements as a separate subset helps to understand better their

interactions with other design issues such as the selection of

hardware devices; this is discussed more thoroughly in section 7.2.5.

The relationship between subproblems K and L is merely one

of DXL completeness. In the (logical) design of the DXL, “control”

statements and more traditional manipulation statements can be treated

similarly ; however, when coordinating that design subproblem with

others, the control statements pose specific constraints on certain

subproblems ’ structure which wouldn ’t appear as clearly if the

distinction between the two types of statements were not made. This

5 
makes the coordination between subproblems K and L rather trivial

and points out an interesting characteristic of the final decomposition :

Subsets of requirements are formed (i.e., design subproblems are

defined) not only as a consequence of similarity among their elements

(i.e., of trade—offs or concurrencies among their component require—

S aents) but also as a consequence of similar relationships with

other requirements (defining other design subproblems). This makes

good sense from a design standpoint because it makes subproblem S

coordination clearer.

7.2.3. MS 3 (DXL modification statements).

MS 3, which, as noted in section 7.2.2 completes the DXL

design problem with MS 4, was not decomposed during the second decom-

position step performed upon the subsets listed in Appendix D. Its

-- -- I



—64 —

main emphasis is In DXL modification statements; its relationship

S with MS 4 is , again , DXL completeness. As it happened with subproblems

K and L in MS 4 , the clustering of requirements calling for DXL

modification statements in a separate subset from the rest of DXL

requirements is due to their relationships with other subproblems .

It is apparent that the implementation of data base modification

facilities is heavily dependent upon the kind of physical data

5 
base organization eventually employed. For example, the need for

supporting updates may rule out several physical organizations which

S could be excellent choices if, say , only retrival operations were to

be supported . It is important to make these interactions explicit

in the structure of the overall design problem . The reason for MS 3

is thus not as much the fact that the requirements defining it imply

a clearly separated DXL design subproblem , but rather that they

exhibit specific relationships with other subsets of requirements

which are not present in the remaining DXL specifications.

An interesting feature is to be noted in the subset of

requirements defining MS 3: Requirement 51 (Appendix B) ended up

in that subset while It seems to have all the characteristics of a

DXL “control” statement requirement and thus one would expect to find

it in the subset corresponding to subproblem L, MS 4 (see 7.2.2).

There is a good reason , though , for assigning requirement 51 to MS 3:

it implies a series of potential operational problems which become

important only when applied to data base modification operations.

For example, cancelling a retrieval request poses no serious

problem, but cancelling a, say , update request is not so easy. In 
S

this sense , including requirement 51 in MS 3 helps to make exp licit

____________ I



___ — 

— ~~- 
— -

~~~~~~~~~ —

— 6 5 —

certain implementation issues which wouldn’t be as apparent had it

been assigned to subproblem L as could be expected .

7.2.4. KS I (logical data mode l , physical representation)

For reasons which will become clear below , MS 1 resulted

in being a very broad MS. Consequently, it was the one which most

benefitted from the second decomposition step . It was decomposed

into 8 subproblems, labelled C through J in Figure 3 (page 53).

We discuss them (and their relationships) in turn below.

Subproblem C focuses on the need for a logical data model

and the overall data base size. The data model includes security

considerations at the logical level. It corresponds to the design

problem concerned with the identification of an appropriate data model

to support the structure of the information that the target DBMS

is to deal with, including relationships among “files” that the

initial requirements called for explicitly .

The schema design subproblem is one that would generally

be expected to show up very clearly in a DBMS design problem. In

our context , it is surprising that this subproblem didn ’t pop up

as an MS in the first decomposition step. One explanation is

the following: At the interaction between Ms’s level, the relation—

ship between MS’s 1 and 2 (see 7.1.4) focuses on the schema supporting

the logical characteristics of the data items in the data base. S

For example, “null” values and domains are to be supported . However,

the initial set of requirements wasn ’t too explicit about data items’ S

charateristics (for Instance , no requirement specifies that different 

- - .--
~~~~~~~ I



[ ~~~~~~~~~~~ :i~~~~~-~:~~~~~~: z - ~=’

—66 —

“types” of data items must be supported , let alone what these types

are). Had it been so, the obvious interdependencies between data item

characteristics and schema structure would have been established

during the assessment process and the set of requirements defining the

schema design problem could have been distinguished in a way similar

to that which produced MS 3 (i.e., by way of similar relationships

to other requirements). In this sense, it can be said that the m i —
tial set of requirements was incomp lete.

• Subproblem F focuses on the need for a transaction recording

facility and signon security. The presence of these two issues in

the same subproblem suggests that performing security control and

recording transactions are to be considered at the same time for

design purposes. This makes sense since both operations need

to analyze the transaction to be processed and are

interdependent (e .g . ,  a transaction can be rejected on security

grounds and thus shouldn ’t be recorded) . Furthermore , th is

subproblem is related only to subprobletn C, which suggests that

transaction recording and security checking should be performed

at the logical level. This also makes good sense since doing it

at the physical level, given that physical reorganization is possible,

would be rather cumbersome.

Subproblem H emphasizes the problem of physical organization

and has explicit constraints regarding file size and response time. S

An interesting consideration to be made here is that the physical

organization design is heavily centered around data base size. Our

experience tells us that it is very common to take query frequency 

-~~~~~ - - —. 
-
~~~~~~~

-
~~~~ ~~~~~~—~~~~~~~~~~~ -S — S



I
— 6 7 —

into account in such a problem . At this point we realize that no

reference to query frequency appears in the initial requirements
S 

set . This is, we feel, another source of incompleteness in the

original set of requirements.

It is interesting to notice also that the two requirements

regarding costs (development and maintenance) ended up in this

subproblem. Maintenance costs should be considered here in order

to avoid physical structures d i f f i c u l t  to maintain.  The reason for

the presence of the development costs requirement is not as clear.

In some sense, this should be everywhere. It can be argued that to

the extent that subprobleni H is related to both hardware selection

problems (see below) and to logical structure issues, it is a reason-

able place for it to appear.

This subproblem presents well—defined relationships with

subproblems C, D and I. Its interaction with C makes the data

independence requirement explicit and thus points out the issues

S regarding logical—physical mapp ing. (The other interactions are

discussed below) .

Subproblem I is concerned with system compatibility with

other systems. It is related only to H and thus represents compati-

bility constraints that the eventual physical organization must

meet. In isolation , this subproblem must be seen as one focusing

on making sure that the different compatibility constraints don ’t

interfere with one another (i.e., that they can be met simultaneously).

Subproblem D focuses on the requirements calling for

data—base reorganization faci l i t ies  and their motivation . Note 

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ I



S ~~~~~~~~~~~~~~~~~~~ 

S -

— 6 8 —

that requirement 80 ended up in this subprob lem , suggest ing t ha t it

can be achieved through reorganization . Its Interactions are with

subproblems C and H. The former emphasizes the need for maintaining

the same schema while reorganization takes place ; the latter cons-

traints the physical organization design problem in the sense that

the eventual organization must be well suited to support the kind of ¶

reorganization required .

Subproblem E Is concerned with lockout and concurrency

issues. The f act tha t these two issues showed up together is

S 

meaningful : depending on the lockout level the problems posed by

concurrent data base usage vary a great deal. Its interactions are

with subproblems C, H and C. The first is a result of the require—

ment calling for the existence of related “files” in the schema;

two queries which in principle may not seem to refer to the same

data items may in fact do so through interfile relationships, so

that unforeseen concurrency problems may arise. The second emphasizes

the issue of lock assignment to physical structures. The third is

discussed below.

Subproblem G is the central hardware problem. In addition

to setting up constraints for the type of devices that may eventually

be employed , In terms; of capacity, e t c . ,  i t  presents relationships

with subproblcm E emphasizing the need for hardware capable to

supporting concurrency reasonably well. It also relates to

subproblem J as discussed below.

Subproblem J is concerned with recovery constraints.

Its relationship wi th subproblem C passes these along to the hardware

- 
I



- - -~~~~~~ SS.*_.~

-69 - 

~~ r S~~~~~~~~~~~~~~~~~ 5 S ,

selection problem .

7.2.5. Relationships among MS’s components.

Now that the structure of each MS has been analyzed in

some detail and their components are known , it is useful to re-

examine the relationships among Ms’s from the viewpoint of which

of their components are more heavily involved in those relationships.

The discussion in this section is thus an expansion of that in 7.1.4

and puts emphasis on the relationships involving MS 1, the one with the

S most complex structure.

Relationships between MS’s 1 and 3. Subproblem M, the only

component of MS 3 focusing on DXL modification statements relates
I

to the following subproblems in MS 1: C, D, E and H.
S 

The interaction with subproblem C materialized through

the requirement calling for the existence of interfile relationships

and thus is centered around the idea of maintaining these relationships

upon data base modification; in other words, it makes explicit the

fact that whenever the value of a data item involved in an interfile

relationship is modified , care should be taken to ensure that the

relationship is properly maintained.

The interaction with subproblem D, which focuses on

physical data base reorganization , materialized through an inter-

dependency suggesting that the hatch data base maintenance facility

can in fact be used to make definitive any changes that have been

made to the data base while in norma l operation since the last

batch maintenance operation . Thus , it suggests the po~~ibiUty of 

~~~ S~~~ S~~~~~~~ SS~~~ -S 

—S - -~~~~~~~ — --5- - I S



S - - S —- ~~~SS~~~- ~~~~~~~~~~~~~~~

— 7 0 —

processing data base moficiations tn an ad hoc manner during on—line

operation in order to improve their processing t ime , by “patching up ”

the current physical organizations and leaving their materialization

S to the off—line maintenance processing. This broadens the range

of possible implementation alternatives for the processing of modi-

fication queries.

Interaction with subproblem E, concerned with concurrency

requirements, points out that data base integrity may be at odds

when processing modification queries in a concurrent environment

and therefore calls attention to the problems which may result with

careless implementation of such queries.

Interaction with subproblem H, finally, poses constraints

on the alternatives for physical organization, by pointing out that

certain alternatives may not support the required modification

operations well enough. 
S

Relationships between MS’s 1 and 4. The analysis of the

graph links joining the elements of MS’s 1 and 4, and their associated S

interdependency assessments pointed out that subproblems C and G

were the most heavily involved in interactions with MS 4. The

former points out that the eventual schema must support the kind of

logical operations and data references called for by the required

manipulations and retrieval operations. The latter defines an

interaction between required DXL control statements and hardware

characteristics, pointing out the need for peripheral equipment

capable of allowing the generation of control signals that the 
S

target system can then catch and process ~.s required.

__ 
— 5 - 5 5 . ~~~~~~~~~~~~~~~~~~~~~~~~~ S 5 ~~~~~~~~~~5



~~~~~~~-s~- 
— ~~~~~~~~~ ~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _______

—5— - — 5.- ———-‘ ,--—-~~~~~~~-- S S~~S S S S S~ 555 5 5555 5 S S S S 5~~555 S S  - S S S S  ~~~~~~~~~~~~~~~

— 71 —

Relationships between MS’s 1 and 2. These were materialized

mainly to subproblems C and H, thus emphasizing the need for the

schema to support the data items characteristics defined in subproblem

A and the concern for their encoding in sotrage representations;

the data items expected sizes pose constraints upon the amount of

storage needed.

The comparatively simple structure of MS’s 2, 3 and 4 makes

unnecessary any further discussion of their interactions (see 7.1.4).

5 . 5 SS - S 5~~~~~~5-~~~~~~~~~~~~~~ S S S S S S  
I



~55S~S5 •• 5 S 5 5

— 72 —

7.3. Comments on Some Characteristics of the Employed Requirements
S Set

S As mentioned in the preceding section, the final subprob—

S leni structure tiointed cut certain characteristics of the requirements

set that we employed which had not been detected previously.

They related mainly to the requirements ’ completeness, and were,

we believe, responsible for a very complex MS in which distinct

subproblems were not apparent until the second decomposition

step was performed. The way in which such characteristics were

detected points out two main properties of the methodology advocated

in this paper which we think are worth emphasizing.

a) It wasn ’t in any formal way that those characteristics

were made apparent ; rather , it was our previous experience with

similar problems that pointed out that certain requirements were

in fact  missing. This shows that the advocated methodology

doesn ’t attemp t to suppress the designer as such; on the contrary,

his intuition and expertise play a central role . The methodology

is only a way of organizing the designer’s work while trying to

make it less painful in activities which can be approached in a

formal way (e.g., in the decomposition step).

b) As advanced in the methodology proposal (see

[Andreu & Madnick 77 ] ) ,  the iinal subproblem structure pointed

out inconsistencies in the requirements set, so that, at this

point , the methodological steps , beginning at the establishment



P~ ~~~~~~~~~~~~~~~~~~~~ 
— --- -~~~ mu 

5- 5-
~~~~~~~~~~~~~~ -

~~~~ 1~~~

— 73 —

of requirements should be repeated; the application of the method-

ology becomes in this sense iterative. In our case , the lack of

requirements specifically stating the types of data items to be

supported , and the lack of information about query frequency

motivated that certain design subproblems were atypical and

became less apparen t than they otherwise could have been. It is

.~nteresting to notice tha t these missing requirements make the

set ill—suited even for its original purpose, DBMS selection

(for example, the application might need say character string

data items; the way in which the requirements’ set was established

makes it impossible to check for such a capacity in a candidate

DBMS).

In summary , the requirements set of Appendix B is far

from the ideal. We believe that correcting the detected incon-

sistencies would result in a more comprehensible design problem

structure than that schematically depicted in Figure 3. Never-

theless, the exercise reported here did show the usefulness of

the proposed methodolJ ” ~~~ furthermore, it did produce a design

problem structure ‘ ~.as not obvious from the original requirements

set. 

~S~ S S - - -



V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ SS ~~~~~~~~~~~~~~~~~~~ 5 55 ~~ S .

— 7 4 —

8. Comments on the Usefulness of the D~coinposition Package and

Suggestions for Improvements

In general , the decomposition software package described

in [Andreu 77(b)] was found reasonably appropriate to conduct

the analysis discussed above. There were a few facilities that

we would have liked to have, however, because they would have

made the analysis task more convenient. We have already mentioned

them throughout this report at the points where their need was

more strongly fel t  during the analsyis, but we repeat them here

as a proposal for package improvement which could be undertaken.

The need for a more specific description of each

requirement than that provided by a requirement number arose several

times throughout the usage of the package. The possibility of

allowing a short requirement description to be stored, which could

be retrieved by specifying the associated requirement number,

would be very helpful particularly during the subproblem and

interaction interpretation activity.

The fact that the “DENO” command, used to delete

requirements from the “current set,” renumbers the remaining ones

so as to maintain a series of consecutiv e numbers, makes working

with reduced sets (e.g. , during the second decomposition step)

rather cumber some. Being capable of us ing the original require-

ment numbers in these situations would make l ife easier .

S ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5~~~~~~~~~~~~~~~~ —- - S S



— 7 5 —

Interpreting the relationship or interactions among

resulting subproblens requires consulting the motivation for

the interdependencies among the subsets of requirements correspond-

ing to ~ tose subproblems. This interpretation task would be made

more convenient if the package allowed the assignment of a short

description to each assessed interdependency , that could be

subsequently retrieved .

For the purpose of identifying the main focus of each

final subproblem , finally, we found it useful to look for the

requirement in the associated subset which was involved in the

largest number of interdependencies. A command that would

perform this type of checking for the “current requirements set”

could prove useful for those purposes.

These improvements on the decomposition package don ’t

look too difficult  to implemen t in principle (although they would

require considerable disk space on the PRIME) and can improve the

package conveniency significantly, particularly when requirements

sets of non—trivial size must be analyzed.

S S 5



S 

V

— 7 6 —

9. Areas for fur ther  research

At this point , we believe it is fair  to say that the experiment

S discussed above has provided us with valuable insights as to the practical

viability of the methodology investigated , as well as with a set of guide-

lines for the execution of the interdependency assessment activity. How—

S ever , since , as pointed out in section 7.3 above, the results have been less

conclusive than they could have been with a more complete set of require-

ments, we plan to redo the analysis after completing the requirements set

in the areas suggested by the exercise. This constitutes the short term

plan for our research nictivities.

From a more long term planning standpoint, there are two main areas

that seem worth investigating: (1) upgrading the decomposition package in

S order to make it more convenient to use as suggested in section 8 above,

and (2) a search for a more systematic approach to the interdependency

assessment activity. The issues involved in the former are rather straight

forward ai~d should be clear from the discussion in section 8. The latter , 
S

although it may seem a dream at this stage, given its characteristics of

S personal designer ’s involvement, may, we believe, be approached by relying

on a formal requirements statement language (e.g., PSL , see [ISDOS 75]).

It may be possible to take advantage of the logical constructs built into

such languages for the purpose of identifying rules for the definition of

interdependencies. This new possibility, however, cannot be pursued within

the time and scope of this project.

L. .  5 . S 5 5~~~~~~~~~~~~~~~ 
-
~~~~~
.-, S __ I



‘-5- — S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— 77 —

REFERENCES

(Mdreu & Madnick 773 : Andreu, H. and Madnick , S.E.:  “A systematic approach to

the design of complex systems ; Application to DBMS design and

evaluation” , C.I.S.R. Report No. 32 , M.I.T. Sloan School of

Management, March 1977.

~Andreu 77 (a) 1 : Andreu , R.:  “Set decomposition : Cluster analysis and graph

decomposition techniques”, Technical Report #1, project

N00039—77—C—0255, September 1977

fAndreu 77(b)J : Andreu, R.: “Solving decomposition problems: Alternative techniques

and description of supporting tools”, Technical Report #2, project

N00039—7 7—C— 0255 , September 1977.

[ISDOS 75J : “Problem Statement Language (PSL) user’s manual” , ISDOS project, The

University of Michigan, Ann Arbor, March 1975.

-—--55 SS ~~~ 
S

——--55 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I A



5555555 555-5 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ S ~~~~~~~~~~~~~~~~~~~~~~

- Al -

APPENDIX A S

ORIGINAL SET OF REQUIREMENTS

1. Data base schema (data dictionary) including interfile relationships,
is defined and maintained independently of data base usage.

2. Separate files can be defined to be interrelated.

3. Data description language is English—like and self—documenting.

4. Data base schema is validated by system prior to usage .

5. Interfile relationships can be described at run time.

6. Field definition permits validation of input datum as to S

acceptable values .

7. The maximum number of files in the data base is at least 10.

8. Maximum number of interrelated files is at least 5.

9. Maximum size of a logical record Is at least 500 information
characters .

10. Maximum size of an item (field) is at least 100 characters. S

11. Maximum number of items in a record Is at least 50.

12. Repeated fields (multi—valued attributes) can be defined .

13. Variable sized fields can be defined.

S
_ _

5 5 - 5 55 
____S

~ 

~~~~~~~~~~~~ SS 5 SS 5 S S I



- A 2 -

14. Records in the data base can be added , changed or deleted.

15. Data base update can be performed by on—line user through query
language.

16. Data base maintenance can be performed by batch.

17. A bulk data base update (initialization) can be performed through
system utility.

18. Null—value field generation and identification supported.

19. Field update can trigger computation of a correlated field in
same record. S

20. Field update can trigger computation (e.g., tally of a correlated

S 
field in different record/file) .

21. Data Integrity supported at least at file level lockout on
update .

22. Record level lockout .

23. Checkpoint/restore facilities.

• 24. Transaction history facility.

25. Separate security privileges for retrieval and update.

26. Data base level security.

-
~~ 27. File level security.

28. Field level security.

29. File maintenance facilities are available (such as file
reorganization, compression , copy , dump , e tc . ) .

55—-- 55--- —-- --5555-55 5 5555 5- S S5S 
I



~~~ ~~~~~~~~~ SS ~~ 5-5-~~~~ •5-55 S .5S~~ 
55.. - ----. —~~~~~~--S---S —.5— 5 - 5 5 5 5

55  — ---5- - - —- ---— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -5- -S- .-~~

A3

30. Non—procedural user ’s language available for on—line query
and update .

31. Boolean and relational conditionals can be used in record
selection criteria .

32. Arithmetic expressions can be used in record selection criteria.

33. Text string scanning expressions can be used in record selection
criteria.

34. Relational condition can compare variable to variable .

35. Literals being compared to field variables are validated
against acceptable field valies prior to data search.

H 36. Data meeting selection criteria (or their pointers) can be used
for subsequent query processing.

37. Selected data can be sorted by at least one sort key.

39. Capability for report formatting.

H 39. Report formatting optionally automatic .

40. Report break control feature supported .

41. Report summary line feature supported .

42. Multi—valied fields can be selectively listed.

: 1  43. Procedures can be written which interact with data base and
on—line terminals. S

44. Procedures interactively created .

45. Procedures can be parameterized and pre—stored . 

5555 I



U ---.-—— 5 ---.S— 5 -S -~~S ~~~~~~~~~~~~~~~ 5-.5~~~~~~~~~ -S S~~~~~~~~~~~~~~ —--- - -~~~----

- A4 -

46. Procedures can utilize user—writ ten subroutines.

47. Screen (menu ) formatting facilities supported .

49. Local keyboard terminal, supported.

so. CRT terminal supported .

51. Delta Data 5260 supported .

-
• 52. User can interrogate status of system.

53. User can interrogate status of current request.

54. User can cancel active request without loss of data integrity.

55. User can suppress listing, save report and later reinitiate
listing.

56. User can direct output to a system printer .

57. User can route listing to other terminal .

58. CapabilIty to broadcast messages to all terminals.

59. Signon Security.

60. A master terminal facility with privi leged commands and control S

is supported .

61. Master terminal can be relocated to any on—line terminal .

62. System set—up e f for t  and each subsequent SYSGEN less than one
man-month.

63. UtilIties to aid Bet—up .

_ _ _ _ _  
______ I



- A5 -

64. Average up—time for the minimum configuration of at least 95%
over a 30—day period .

65. Average system recovery t ime is 2 hours over a 30—day period .

H 66. Maximum recorvery t ime Is 24 hours.

67. Two hour on call maintenance must be available.
Si

68. Maintenance requirements less than lhour/week.

69. Power fail restart capability.

H 70. Dual processor fail soft capability.

71. Removable disks containing data base can be mounted and processed S

during an on—line session .

72. A job accounting recording facility is supported sufficient
to charge users by application and by department .

73. A job accounting reporting facility.

74. Application is transportable to/from the Agency ’s existing
systems.

75. Data is transportable to/from the Agency’s existing systems.

76. System can operate in ord inary off ice environment .

77. System can communicate with other Agency ’s systems . 
S

78. With a single terminal active , user can receive a response from
a direct access to any Item in the data base in less than 5

• secs.

79. Response time not a function of file size.

_ _ _ _ _ _  I 

S



p. 
5- -55.-S.—--- 

,,—“
~~~~~— ~~5-~~~~~~ 55 ~ 5-5~~ -.~ S5-~~~ ~ S -s,,~s,-S ~~~~~~~~~~~~~~~~~~~~~~~~~ _ _•55_5

~~~~~~

- A6 -

80. Capability to support at least 10 active terminals.

81. Capability to support two or more concurrent queries in
dif ferent  stages of processing.

82. Display rate of terminal at least 120 ch/sec on a CRT and
15 ch/sec on a hard copy terminal .

83. Dynamic control of working storage requirements within program
region.

84. Dynamic relocation of programs to avoid “checkerboarding” of
usable memory.

85. Additional memory will enhance performance.

86. Dynamic file reorganization capability .

87. Dynamic reallocation of released and deleted storage areas .

88. Disks are removable .

89. File sizes are limited only by disk storage capacities.

90. Total on—line data base can be distributed over many disk
units.

91. Controls for tuning system performance at SYSGEN or system load
time.

5 5 92. Controls for dynamically tuning system performance during run
t ime .

93. Application tuning can be accomplished by restructuring the data
to bias retrieval vs. update performance characteristics.

94. Can be delivered within ~~ months.

95. Being used by at least 10 users in M2 months .

—— — .5.- -  — —.5-5—— -.- -



S 

- Al-

96. Non—recurring costs for basic configuration not more than
C.

97. Maintenance costs less than MC/month .

S S



_______ _____

- Bl —

APPENDIX B
H (*)

MODIFIED SET OF REQUIREMENTS

(1) 1. Data base schema (data dictionary) Including interfile relation-
ships , is defined and maL t . ned independently of data base
usage.

(2) 2. Separate files can be defined to be interrelated.

(3) 3. Data description language is English—like and self—documenting.

(4) 4. Data base schema is validated by system prior to usage .

(5) 5. Interfile relationships can be described at run time.

• (6) 6. Field definition permits validation of input datum as to
acceptable values.

(7) 7. The maximum number of files in the data base is at least 10.

(8) 8. Maximum number of interrelated files is at least 5.

(9) 9. Maximum size of a logical record is at least 500 information
characters .

(10) 10. Maximum size of an item (field) is at least 100 characters.

(11) 11. Maximum number of items in a record is at least 50.

(12) 12. Repeated fields (multi—valued attributes) can be defined .

(13) 13. Variable sized fields can be defined . 
S

Paranthesized numbers correspond to the i lnal assignment after require— S

ments 72 and 87 were deleted (see section 4 , page 38) .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  I



- B2 -

S (14) 14. Records in the data base can be added.

(15) 15. Record s in the data base can be changed .

(16) 16. Records in the data base can be deleted .

(17) 17. Data base update can be performed by on—line user through
S query language.

(18) 18. Data base maintenance can be performed by batch.

(19) 19. A bulk data base update (initialization) can be performed S

through system utility.

(20) 20. Null—val ue field generation and identification supported . 
S

(21) 21. Field update can trigger computation of a correlated field in
same record.

(22) 22. Field update can trigger computation (e.g., tally of a
correlated field in different record/file).

(23) 23. Data integrity supported at least at file level lockout on S

update.

(24) 24. Record level lockout ,.

(25) 25. Checkpoint/restore facilities.

(26) 26. Transaction history facility.

(27) 27. Separate security privileges for retrieval and update.

(28) 28. Data base level security.

(29) 29. File level security.

(30) 30. Field level security.

~~~~~~~~~~~~~ 5 S55 ~~~~~~~~5~~~~~ 55 5
55 

S 
- -  S

55 ~~~ SSS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



1/ -

~~~~~~~~~~~~ 

- _

AD—A048 766 ALFRED P SL.OAN SCHOOL OF MANAGEMENT CAMBRIDGE MASS C——ETC FIG 9/2
AN EXERC I SE IN SOFTWARE ARCHITECTURAL DESIGN: FROM REGUIREMENTS—ETC{LJ)
NOV 77 R C ANDREU, S E MADNICK N00039—77—C—O255

UNCLASSIFIED CISR— POLO—O1—O5

2~ 2

~o4e Th5U
I _ ! I t U

I- I
I

$



— -~~~

— B3 —

(31) 31. Non—procedural user’s language available for on—line query
and update.

(32) 32. Boolean conditionals can be used in record selection
criteria.

(33) 33. Relational conditionals can be used in record selection criteria.

(34) 34. Arithmetic expressions can be used in record selection criteria.

(35) 35. Text string scanning expressions can be used in record selection
criteria.

(36) 36. Relational condition can compare variable to variable.

(37) 37. Data meeting selection criteria can be used for subsequent
query processing.

(38) 38.. Selected data can be sorted by at least one sort key.

(39) 39. Capability for report formatting.

(40) 40. Report formatting optionally automatic.

(41) 41. Report break control feature supported.

(42) 42. Report susunary line feature supported.

(43) 43. Multi—valued fields can be selectively listed.

(44) 44. Screen (menu) formatting facilities supported.

(45) 45. Local keyboard terminal supported .

(46) 46. Remote keyboard terminal supported.

(47) 47. CRT terminal supported.



r~

—B4 —

• (48) 48. Delta Data 5260 supported.

(49) 49. User can interrogate status of system.

(50) 50. User can interrogate status of current request.

(51) 51. User can cancel active request without loss of data
integrity.

(52) 52. User can suppress listing, save report and later reinitiate
listing.

(53) 53. User can direct output to a system printer.

(54) 54. User can route listing to other terminal.

(55) 55. Capability to broadcast messages to all terminals.

(56) 56. Signon Security.

(57) 57. A master terminal facility with privileged commands and
control is supported.

(58) 58. Master terminal can be relocated to any on—line terminal.

(59) 59. System set—up effort and each subsequent SYSGEN less than one
man—month.

(60) 60. Utilities to aid set—up.

(61) 61. Average up—time for the minimum configuration of at least
952 over a 30—day period.

(62) 62. Average system recovery t ime is 2 hours over a 30—day period.

(63) 63. Maximum recovery time is 24 hours.

• (64) 64. Maintenance requirements less than 1 hour/week.



1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— B5 -

• (65) 65. Power fail restart capability.

(66) 66. Dual processor fail soft capability .

(67) 67. Removable disks containing data base can be mounted and
processed during an on—line session.

(68) 68. A job accounting recording facility is supported sufficient
to charge users by application and by department.

(69) 69. A job accounting reporting facility.

(70) 70. Application is transportable to/from the Agency’s existing
systems.

(71) 71. Data is transportable to/from the Agency’s existing systems.

72. System can operate in ordinary office environment.

(72) 73. System can communicate with other Agency’s systems.

(73) 74. With a single terminal active, user can receive a response
from a direct access to any item in the data base in less
than 5 secs.

(74) 75. Response time as independent as possible o~ file size.

(75) 76. Capability to support at least 10 active terminals.

(76) 77. Capability to support two or more concurrent queries In
different stages of processing.

(77) 78. Display rate of terminal at least 120 ch/sec on a CRT and
15 ch/sec on a hard copy terminal.

(78) 79. Dynamic file reorganization capability.

(79) 80. Dynamic reallocation of released and deleted storage areas.



• 
.
~~~~~~~

. . 
-~~~~~

— B 6 —

(80) 81. File sizes are limitec’ onl y by disk—storage capacities.

(81) 82. Total on—line data base can be distributed over many disk
units.

(82) 83. Controls for tuning system performance at SYSGEN or system
load time.

(83) 84. Controls for dynamically tuning system performance during run
time.

(84) 85. Application tuning c~n be accomplished by restructuring the
data to bias retrievai vs. update performance characteristics.

(85) 86. Can be delivered within M
1 
months.

87. Being used by at least 10 users in M2 
months.

(86) 88. Non—recurring costs for basic configuration not more than
C.

(87) 89. Maintenance costs less than MC/month. 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~



~ 

~~~~~~• • ~~~• .-— ~~~~~~~~~~~~~ ----- ~~~~~~~~~~~~~~~~~~~ 
.

- Cl -
APPENDIX C

INTERDEPENDENCIES AMONG REQUIREMENTS

(NOTE: Below, CT) indicates trade—off; (C) concurrency).

* Requirement 1 is related to:
- 2 (C) : Interfile relationships included in schema.

• - 4 (C): Chance of validating it without interf erring with usage.

- 5 CT): Schema may become inefficient if already bound .

-18 (C): Common processing conceivable.

-19 (C): Common processing possible.

-27 (T): Points out that “independently of usage” means only “while data base is
• being used” , as oposed to type of usage.

-59 (C): Being independent of usage simplifies things.

-60 (C) : Common processing conceivable.

* Requirement 2 is related to:

- 5 (T): Interference with usage.

- 7 CT): increases possible number of interfile relationships.

- 8 CT): Poses constraints.

—12 CT): Interrelationshps made more complicated.

—14 (T): Relationships’ maintenance made more difficult.

—15 CT): See 14.

—16 CT): See 14.

-22 CC): Relationship information can be used for this purpose.

-23 (T): Related files complicate maintaining integrity.

—25 IT) : Made difficult by (2) .

-29 CT): Difficult to enforce by (2); new “conditions” generated .

—33 (C): Basis for supporting it in (2).

-51 CT): Back up made harder.

-73 CC): Explicitly maintained relationships may speed up process.

-76 (T): “Look ahead” may be needed to prevent deadlocks .

-78 CT): Relationships must be maintained.

-82 (C): Relationships can be used for tuning purposes.

* Requirement 3 is related to:

- 6 CT): Acceptable field values must be expressable in DDL.

-12 CT): Supported by DDL.
-13 CT): Puts burden on DDL.



V •-

- C 2 -  
I

-20 CT): Expressable in English—like language.

-21 CT) : Difficult to express in DDL.

—22 (T): See 21.

—27 (19: Puts conditions on security declarations.

-31 (T): DML compatible with structure defined by DDL.

* Requirement 4 is related to:

- 5 (C): Validation of new relationships can be made more quickly.

* Requirement S is related to:
- 8 (19: Poses constraints on (5).

• —14 CC ) :  Common processing possible.

—15 (C): See 14.

—16 CC): See 14.

-17 CC): Defining relationships may be necessary on updating.

-83 (C): Can be used for tuning.

-84 CC) : Restructuring by changing relationships possible.

* Requirement 6 is related to:

-20 CC) : Facilitates checking of whether null value is allowed or not.

-21 CC): Can facilitate catching integrity violations on result.

—22 CC): See 21.

—23 (C): Facilitated by (6).

-73 (C): As suggested by old requirement 35 (see section 3.3.2).

—74 (C): Similar to (73).

* Requirement 7 is related to:

-10 (T): Together imply constraints for total size.

-19 CC): (7) can be more reasonably met.

—23 (C): More files can permit better “granularity” for locks.

-27 (C): More files may allow definition at file level.

-29 CT): Additional burden on security.

-76 CC): Facilitated; increased probability of two user working with different
files.

-81 (C): Facilitated by increasing number of files; possibility of separating
files on disk.



- C3 -

* Requirement 9 is related to:

-10 CT): Constraints on total size.

-.11 CT): See 10.

—12 CT): See 10.

—13 CT): See 10.

* Requirement 10 is related to:

-11 CT): Total size constraints. j
—12 (T): See 11.

—13 CT): See 11. I
I

* Requirement 11 is related to:

—12 CT): See above.

—13 CT): See 12.

* Requirement 12 is related to:

-13 (C): Similar representation conceivable.

* Requirement 13 is related to:

-15 CT): Made difficult; may require reorganization .

—20 (C): Less space necessary for null values a possibility.

-21 (C): Included in same processing (“look ahead”) may speed things up.

-22 CT): Other field may be also variable in length, which makes processing worse.

* Requirement 14 is related to:

• -17 CT): Major reorganization may be needed while on-line.

-18 (C): Addition can be only “marked up” and then made definitive by batch.

-19 CC): Common processing conceivable.

-20 (C): Can be combined: Add ~ define null + change.

-21 CT): Adding a record can imply adding others.

—22 CT): See 21.

-23 CT): Adding record can jeopardize integrity.

-25 CT): Complicated on addition.

-31 CT): Query language should support additions.

-51 CT): Complicated on addition.

-64 CT): If additions are only “marked up”, maintenance can be made more time
consuming.



— C 4 —

-74 CT): Depending on how additions are handled resporse time can be degraded
significantly.

—78 CC): Consistent with possible addition schemes.

—79 (C): Similar to (78).

* Requirement 15 is related to:

-19 CC): Common processing conceivable.

-21 CT): Made more complicated by (21).

H —22 (T): Similar to (21).

-23 CT): Must be supported (explicit on change).

-51 (T): Complicated on change.

* Requirement 16 is related to:

-17 CT): Major reorganization may be needed while on-line.

-18 (C): Deletion can be only “marked up”, then consolidated by batch.

—19 (C): Common processing possible.

-21 CT): Deleting record may imply deleting and/or changing others.

—22 CT): Similar to (21).

-23 (Ti : Deleting records may jeopardize integrity.

-25 (Ti : Complicated by deletion.

-31 CT) : Expressable in query language.

-51 CT): Record may have to be restored.

-64 (T) : Maintenance may have to take care of “half processed” deletion .

-74 CT) : Depending on how deletions are processed response time can be degraded
significantly.

-78 (C): Consistent with possibl e deletion procedures.

—79 (C): Similar to (78) .

* Requirement 17 is related to:

-18 (C): Update can be only indicated and consolidated later.

-19 (C): Common processing conceivable.

-21 (T): Updating made more complex .

—22 CT): See (21).

-23 CT): Maintaining integrity a constraint.

-25 (T): Jeopardized.

-51 (T) : Complicated on update.



- Cs -

—64 CT) : Maintenance made more time consuming by certain possible updating
procedures .

-78 CC): Consistent with possible updating procedures.

—79 CC): See (78).

H * Requirement 18 is relFlted to:

-78 (C) :  Common processing possible.

-79 CC): Common processing possible.

-87 CC): Batch maintenance may be cheaper .

* Requirement 19 is related to:

-21 CT): Bulk update to support it.

—22 CT): Similar to (21).

-23 CC): Easier on bulk update.

-25 (C): Keeping “old copy” may facilitate this.

-60 CC): Common processing conceivable.

-62 CT): Recovery may involve bulk update; time constraints.

—63 CT): Similar to (62).

* Requirement 20 is related to:

-31 CT): DDL able to specify this.

-71 CT): Compatible representations.

* Requirement 21 is related to:

-23 CT): Jeopardizes integrity.

-25 (T): Jeoppardized by (21).

-50 CC): May permit more explicit description of query status.

-51 CT): Requires keeping track of triggered computations.

- 76 CT): Triggered computations potential source of deadlocks.

* Requirement 22 is related to:

-23 CT): Jeopardizes integrity maintenence.

-25 (T): Made more difficult if (22) has to be supported.

-50 CC): May permit more explicit description of query status.

-51 CT): Requires keeping track of triggered computations.

• —76 CT): Potential source of deadlocks.



~- •~~~~ — - •  ~~~~- - - ~~

- C6 -
* kE?q uIr I~men t 23 Ia relat ed to;

—25 (C): Facilitated by (23).

—26 (C): History of transactions may be used to restore integrity.

—27 (C): Facilitates (23).

-51 CC): Restoring previous integrity status made easier.

—65 CC): Facilitated.

-75 CT): More users make lockout processing trickier.

—76 CT): Similar to (75).

H * Requirement 24 is related to:

—75 CT): See 23 above.

-76 CT): See 23 above.

* Requirement 25 is related to:

—51 (C): Compatible.

• —62 CT): Meet constraints.

-63 CT): Meet constraints.

-76 (C): May facilitate processing of deadlocks.

* Requirement 26 is related to:

—51 CT): Cancelled queries require special processing.

-68 (C): Common processing possible.

* Requirement 27 is related to:

—28 CT): Support it.

-29 (T): Support it.

-30 CT): Support it.

-56 CT): Support it.

* Requirement 31 isrelated to:

-32 thru 40, 42,43,49,50,51,52,53,54 CT): Must be expressable.

-73 CT): Bounds on time can put constraints on language characteristics (e.g.,
compile time

* Requirement 33 is related to:

-36 CT): These relational conditionals must be supported. 

_ _



V -• —-- --- -
~ 

—
~

-• — -- - - - -
~~~

-
~~ -- ~~

- Cl -

* Re~quir emenL 37 iii related toz

• iH C~ ) : Cosmori proccns i sq (fron t end) ~oaulb1c.

-52 (C): Similar to (38).

* Requirement 38 is related to:

-39 CC ) :  Enriches formatting capabilities.

* Requirement 39 is related to:

—40 (C) : Common processing c~ncetvab1e.

—42 CT): Must be one capability of (39).

—44 (T): Similar to (42).

-69 (C ) :  Output procedures may be shared .

* Requirement 41 is related to:

-51 (C): Common processing (front end) possible.

• —52 (C): Similar to (51).

* Requirements 45 thru 47 are related to:

-77 CT): Terminal characteristics.

-86 CT): Terminal costs.

* Requirement 48 is related to:

-86 CT): Constraints on costs.

* Requirement 51 is related to:

-68 CT): Cancelled requests must not be recorded.

* Requirement 52 is related to:

-53 CC): Common processing conceivable.

—54 (C): See 53.

* Requirement 53 is related to:

-54 (C): Almost same processing except for final routing and control characters.

* Requirement 54 is related to:

-55 CC): Messages can be treated as routed output.



-C8 -

* Requirement 56 is related to:

—57 (C): Security control somewhat facilitated.
• -68 (C): Information can be gathered at signon time.

* Requirement 57 is related to:

-58 (T): Master terminal can ’t be “hardwired”.

* Requirement 59 is related to:

-60 (C):  Utilities can be tailored to meet constraints.

* Requirement 61 isrelated to:

-86(T): Costs of reliable hardware.

* Requirement 62 is related to:

-63 CT): Compatible constraints.

-86 CT): See (61) above.

-87 (C): Good maintenance can keep recovery time down .

* Requirement 63 is related to:

—86 CT): Similar to (62).

—87 (C): See (62).

* Requirement 64 is related to:

-78 CC): Maintenance can take advantage of this.

-82 (C): Common processing possible.

—83 CC): See (82).

-84 CC): Maintenance can be done through this.

* Requirement 65 is related to:

—66 (C): Hardware characteristics.

-67 (C): Possibility of “old versior~” disks.

-86 CT): Hardware capabilities’ costs.

* Requirement 66 is related to:

-76 (C): Possibility of parallel processing.

-86 CT): Hardware costs.



____ —

* Requirement 67 is related to:

—70 (C) : Transporting disks a possibility.

-71 CT): Compatibility .

-73 CT) : Disks capable of required performance.

-74 CT): Avoid scattering files in different disks.

-76 CT): Concurrent queries may conflict as to needed disks.

-81 (C): Facilitated.

-82 (C): Added flexibility for tuning.

—83 (C): Similar to (82).

—84 CC): See (82).

-86 CT): Disk units’ costs.

• * Requirement 68 is related to:

-69 CT): Organize recording to facilitate reporting.

* Requirement 70 is related to:

-71 CC): No need for data translation to transport application.

-72 CC): Transport can be direct .

-80 CT): Disk storage space enough for compatibility.

-86 CT): Compatibility costs.

* Requirement 71 is related to:

-72 (C): Transport can be made directly.

* Requirement 73 is related to:

-74 (C): Compatible objectives.

• -t5 CT): Overhead for multi—user can j eopardize response time.

-76 CT): Similar to (75).

* Requiremnt 74 is related to:

-78 CC): Response time can be improved by reorganization upon file growth.

-83 CC) : (74) may be met by manipulating controls.

* Requirement 75 is related to:

-77 CT): Less idle time for CPU due to fast output can imply degraded multi-user
• operation.

~

• ••

~

.—— -

~

-- - • —•- —-~~~-—



- ClO -

• * Requirement 76 is related to:

—77 (Ti : Similar to 75 above.

* Requirement 78 is related to:

-79 CC): May make (79) more efficient and/or flexible.

-84 (C): Supported by (78).

* Requirement 79 is related to:

• -80 CC): Released areas are reused.

* Requirement 81 is related to:
- 82 (C): This is in fact implied by (81): making it explicit helps.

-84 (C): Restructuring data may facilitate releasing storage space to be used
growing files.

-85 CT) : Features called for by (81) may delay develo~mtent.

* Requirement 82 is related to:

—83 (C) : Common processing possible.

-85 CT): tuning facilities may have to be themselves tuned up.

—86 CT): Added costs may be considerable. 



—----— ———-- --- - —‘— — — - - 
~~~—--- -— ~~~~~

- -
~~~~~~~ 

-•

- Dl -
APPENDIX D

(*)
SUMMARY OF ANALYSIS

I
REG:

ENGR
:
*89/1;2~ 4,5, 18 19~ 27~ 59~60/

2;5,7,8,12,14,15,16,22,23,25,29,33,51,74,77,79,83,

36, 12, 13, 20~21~~22~ 27,31/4;5/5;a, 14, 15, 16, 17,84 ,85/
.

6 ;2o , 21, 22, 23.74, 75/7; 10, 19, 23, 27. 29, 77, 82/
.
.
9 10, 11, 12, 13/10; 11, 12, 13/11; 12, 13/12; 13/

13,15,20,21,22/

14~ 17, 18. 19,20 .21,22, 23 ~25 p 31, 51, 64 , 75, 79 ,80/

l5~ 19, 21. 22, 23 25 ~ 51/
..

l6;17,l8,l9.2l.22~ 23.2s,31,5l,64,7s,79,ao,
.

17; 18. 19, 21. 22 , 23,25 p 51, 64, 79 ,80/18 ; 79 ,80 .89/
.

19; 21,22 ,23 , 25 , 60 ,62 , 63/20 ~-31, 71/
.
.

21; 23 , 26 P 5~ 50 .51, 77/22 ; 23, 25, 50 , 51, 77/
.

23 ;25 p 26 p 27,51, 65. 76~ 77/24; 25 p 76 , 77/
:
25; 51, 62 , 63 , 77/26 51, 68/27 ;28 29, 30 ~ 56/
:
31;32,33~ 34~ 35.36~ 37~ 3a,39,4o,42 ,43 ,49,5o,51 .52.53.54,74/

33;36/37;38P52/38;39/39;4o,42,44,69/41;s1,52,45;78,88,48;a8,

46;78,88/47;78,88/51;68,52;53,54,53;54,54;55,56;57,68,
:
57 ;58/59;6o/61 ;e8/62;63,ea,89,63 ;ee,89,64;7,,83,84,as,
I

65;66,67,88/66;77,aa,67;7o,7 1,74,75 ,77,82,83,84,85,88,
I
I

68 ;69/7o;71.73.e1~ ae/71;72,’ ‘3/74 ;75.76,77/75 ;79.e4/
I

76 78/77 78/79 ; 80 , 85/80 81/82 ; 83 .85 , 86/83; 84 ,86, 88/
.

NEW GRAPH ENTERED.

REQ :
(*)

The sequence of operations displayed here corresponds only approximately to the
actual analytical sequence. Where not essential, some operations were ommitted.

~ 

~~~~~~~~~~~~~~~~~~~~~~~



m

Gb~~~~N O~~~~ ) N N D~’4 N~ON ‘~~ 0
~~~14N N N N N N~~~N —~~4~~4 N pq

~ I. ~ ~rs~~~c~4 v~~~o~ 0 N 1 4 1 4O N~~~~ O U ~~’O Ob
N14N ~4 N N  N N N 4 i 4 r 4  i4 N

~ I. ~ ~~ I. ~~ I. ~ ~~ B. ~ B. B. B. B. B. B. B. B.

D~ N,4 ~~t’) I’.. I~) 1 4 N  14G~~~~O. ’O r t )-~~ Ifl N. ~~ N
N 14 N N *.4 14 vi N i4 14 N ~4 t~) ~~ N

- B. B. B. B . B .  S. B . B .  B. B. S. B. B. B. B. B. B. S. B . B .  B. B. B. B.

ø~~~0 TNt ’) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~C ~) 0
N N N 14 ‘4 ‘4 ~~~ .~~ ~~. 14 N N

S. B. B. B. B. S. B. B. S. B. B. B. B. B. B. B. B. B. B. B. B. B. B. S. S. B. S.
- :  •• ~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ N ‘0N v4 1414 ‘.4 1 4 , 1 1 4 1 4 , 1 1 4 1 4  ‘l’. N. ’4 ‘0 N

U)
B . B .  B. B. B . B . B .  S. B. B. B. B. S. B. B. B. B. B. B. S. B . B .  B. B. B. S. S. S. B . S .

W N V ~~N 00 0 0 0 ~~~~~~t~) N
‘.1 ‘.1 ,4 ‘.4 1 4

0
Z S. S. S. S. B. B. B. B. B. S. B. B. B. B. S. B. B. B. B. S. B. B. B. B. B. B. B. B. B. B. B. B.

N N N0N N N N NNU1N N N N . r~~~~0 -  ‘.4 N N N N ~~
U) ‘~ .-~ .-. .~~ ‘~~ -~ .~~ .~~ - - .~~ - -~ — -~ ~~. ~~. ~~. ~~. ~~ . —.. - .-.

~ ~~~U)~~~ N 0N ~~~N 1~W)~~~ 0 O ’ 0  m N o ~~)qNp’)~~~t1~~~,-’m’4N
Z ‘.4 ‘.( 14,4 ‘.4 ‘.414 ,-~I 14 N
p4

~.. .-. .-. ~~
. 

~~
. - ~, .-. — — - ~.. ~~. .~~ - ~~

. .
~~ ~, - ~, - - ~~~ .~ .~~ ~-

00- W a
OZ  ‘ . 4 N N 0 N W 0 ’ 0 1 4 N~~~~~~~~~N~~~O 0 ’ . 4

141414’4V4~ .4 14 ’4 ’4 I 4 N N N N N N ~~~N~~~N P q P’)or
~~ ~J 0_, W~~



~—‘~-- •—.•—,.-

- D3 -

B.
U)
‘0 -

B.
‘.41~
S. .B.

‘4 U)
r) U)
B. S.

‘0 W)
N

B. B.

S N U)

B. • B.

N U)
S. S. B.

(‘4 (‘4
N U) U)

S. B. B. B.

0’ ‘.4 N.
‘0 N 

- 

U) N
B. B . B .  B. B . B .  B.

N I  0’0~t~ ~~
- I ~~~~~ U) U)U) N

B. B . B .  B. B. B . B .  S. B . B .
(‘1 ‘0P~) ~~ .

I ~~~~~ ~~ U ) U ) N U )  N ’0
S. S. S. S. B. B . S . S .  B. B. B. B. B . B .  B. S. B. B.

‘0 N 0 ’0 ‘. 4 w~~~~~~pq U) 0’V~ MI  P~) ’4IV)~~ ‘0 ~~ ‘ O O ’ O U ) NIt)
B. S. B. B. B. B. B. S. S. B. B. B. B . B .  B. B. B. B. B. B. B. S . B .  B. B. B. B.

‘.4 P ’ ) U ) N U ) O . - C’10. U ) U ) U )  NIN.NN NU) 0 0  Ifl Ifl0-’0N014
~~~~~~~ )~~~~~P’) W U ) U )  N ’4r d) U~ U~ Ifl U) ‘O’l N N ~~ ’0 N N I f l

B. S. B. S. S. S. B. B. B. B. B. B. S. B. B. B. S. S. B. B . B .  S. B. B. B. B. B. S. B. B. B. B . S .  B. B. B. B.

~~~~ N . N N W I~)N 1~)1’~~W N U~~M~
~~~ .~~ ~~‘ .~~ 

- .-. ._. - _ —. - -‘. -.. _.. ‘-. -‘ ‘~~ -... .-. .~~ -.. -.. ~~. ~~‘ ~~. ~~. ~~‘ -.. ~~. ~~. ~~. ~~.1 4 N’) t~) ’ 0 N N N 1 4’4 N N N I 4 1 4 I~) I ~) I ’) I14P4)N14 N I ~) 11  I() I f lN . IM’- . I
‘.4 i-I

- - %_ - ~_ ,_ .~~ .~~ - ~~, .~~ ~~. %_ ~~ ~_ 
~~, - .~~ *~~ - 

.
~~ 

._ 
- .~~ 

.
~~ %_ .~~ ~~

. 
~~. ~~.

Nm~~~l n ’ 0 N U ) 0 ’ o 1 4 N~~) I v ~ ’ 0 N . U ) 0 ’ 0 ’ 4 N m I m ’ 0 N U )  0 .0 ’4 N~~)I Ii~~’0 N U )
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I~~’O’0 ‘0 ’O’CO’O ’O ’O



p -

~~~

- -  - -—

~~~

- _ _

B.

B. B. S. B. B. B. S. B. B . B .  B. B.
U) V ) I  ~) N U ) 0 ’  ‘0I~~)N ‘4U) N r ’. N N ’I N U ) U ) U ) U )  ‘0

B . S .  S. B . B .  S. B. B. B. B. B . S . S. S.

~4~~d) N N U ) N ’ 0 N U )  L f l N I f l 0’ U) 0
U)N. ‘0 ’0 N N N ’ . l~~ U ) U ) N N  I 0
S . S .  B. B . B .  S. B. B. B. B. B . S .  B. B. S.

~
d)O ‘ 4 ’ 0 I ’ . ’N . ’ 0 N .  P 4 ) N . N . N  N. PI)

m ’I r ’. Nq ’4 ’I  U)’O ’O ’O I’O Id
B. B. S. B. B. B. B. B. B. B. B. B. B. B. B. S. B. B. B.

w ’ 4 N ’ I ’ 0 I q N ’0 I ’ 0 o N I q I m ’ 0 N  U)
H ‘0 r%~0fs  ‘IN I’4~~~ U)’0 ’0 ’0 ’0U)I’0

S. S. S . B .  B. B . B .  B. B. B. B. B. B. B. B. B. B. B. B. p4

• 0’NOON’0r)N InNIONNU)In N W)U) —J _• P’) ’O NN. N I ‘-i N U) I ’- i  w
-~ — - - ~~. .-. — - — . ~~. 

_ - _ .-. ~~. 
- 

~-. a Id

14 14 B

a
- ~~~ .~~ .~~ ~~. .~~ .~~ ~~. .. _ _ .. _ B. Z

Id W
C,

140 C f l N . U )  



r~
.
~~~~~i-—-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~ 

~~~~~~~~~~~~ i

- D5 -

DENO

/72.87/

THE FOLLOWING NODES HAVE BEEN RENQVEO
72 87

NODES HAVE BEEN RENAMED AS FOLLOWS
OLD NO. NEW NO.

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10

62 62
• 63 63

64 64
65 65
66 66
67 67
68 68
69 69
70 70
71 71
73 72
74 73
75 74
76 75
77 76
78 77
79 78
80 79
81 80
82 81
83 82
84 83
85 84
86 85
80 86
89 87

REQ:



V -,----—---—--— - -_--_— — ———- _________

- D6 -
B.

~4)
• I,

S.

F (‘4
V)

B. B.
N —

S. B. S.
U) ‘0 0
N. N
B. S. S. B.

‘0 0. 0’
N N N I
S. B. B. B. B.

P )  0 0 ’  V)
N. N. N ‘0 1
S. S. B. S. B. B. B.

14 1’ 0 ‘014 ‘0 N
I’.. N. N. I

B. S. B. S. S. B. B. S. B. S.
1 10’ M ‘O ’..N ~1 0
‘0 N N  ‘0 N~~~N ‘0 1

B. B. S. B. B. B. S. S. B. S.

0’. ‘~ 10 N “ O ’C  N 0’
N W~) O N  ‘0 ‘0 ~d)

S. B. B. B. S. S. S. S. S. B.

‘.4 ‘.4 1’ 0 0V)~~~ U)
N 4 V)C’IN In
S. B. B. S. B. B. B. B. S. S. S.

1’) 1 ‘In V) In I’) N I~ N.
(‘4 0 (‘4 ~1~ In N N N N  (‘4
B. S. S. S. B. S. S. B. B. S. B. B. S.

(‘4 t~ N 1 ) V) In M P~~0” I  ~) ‘0N U) NNInNN N N’-. N N
S. B. S. B. B. S. S. B. S. B. B. B. S. B. B. B. B.

0 O ’4  N ‘I ‘ I N I n M P )  Cl G.N 0’ (‘4 ‘0 In
‘0’. t’) ‘.4 0 N ( ’4N 1’I N (‘4 ‘ ‘-4~~~ N ~)
B. B. S. S. S. S. S. S. B. S. B. S. S. S. B. B. B. B. B.

G.V~ N ‘OI’O 0’.~ P~~N N N ’4  N O N  ‘I 0 1
V ) ’4 C l  ~4Nr% ( 4 N N N N C D N ,4 ’ ,-i N t~)
S. B. S. S. S. B. B. S. S. B. b. B. B. B. S. B. B. B. B. B. B.
N I N  InP~) 0’. M~~~Q~~~’4 ’-i 0’.N ,-4 4~~~4 0’ 0’
N ’-4N- ‘- iNN ‘ I ’ . N N N N N 1 4 N ’ 4 ’ 4 r 4  — (‘1

S. B. S. S. S. B. S. B. B. B. S. S. B. B. S. B. B. B. B. B. B. B.

0’N ’-i 1P) N ~) n N 0 ’n 0 ’ 0 ’ 0 ’ 0 ’4 I n 1 V)  N U) (‘4
Cl 14 N (‘4 14 ‘.I ’4 ,4 N n 4 ni N ~~ 1’) ‘.4 I4 ’I 14 (‘4

S. B. B. S. B. B. S . S .  S . B .  S. B. S. S. S. S. S. S. B . B .  B. B. B. S.

0 00  U)Nt 1)  P~) N t 1 0 ’ 4 U ) 0 .U ) U ) N I n 1 I P d )I ‘0 ~) 0
14 (‘4 (‘4 (‘4 1 4 1 4 1 4’414 ’4 14 ’.$ ‘.4 ‘.4 ‘.4 14 ,-I ,I14 N (‘4

B. S. B. B. B. B. S . B .  B . S .  S. B. S. S. S. S. B. S. B . S .  S. B . B .  S . S .  S. S.
•. V) N~~) 1140. N — N 0 ’ o r~~P~) N . ’ 0 ’ OI m P ’ ) ’ O N ’ 0 u ) o N  N ‘0
- ‘-i (‘I ’4 r4 ’-i 14 ‘4’4 ’.4 ’.4 ’4 ’. 4 1 4 1 4’I  F’. ‘4’0 N ‘.4
U)

B. S. B. B. B. B. S. B. B. S. B. B. B. S. S. B. S. B. S. B. B. B. B. B. S. S. S. S. S. B.
Id 1 I n N I n N O O  0 ’0~’)0’ I I N .’0 ’0 M ’OIn1,-4 11 1’. IP ~)0 ‘4 N’I ‘.4 ‘4 ‘-4 14 N.~~-i In 14 N.
0
Z B. B. B . B .  B. B. B. B. B . B .  B. S. B. B. B. B. B. B. B. B. B. B. S. B. B. B. B. B. S. B. S. B.

‘0 ‘.4 — ( ‘IN ON ON  JI) ( ‘ I N N I n ’ . 414 ~4) ( J N  U~ N N N .  ~i) 10 — N Cl (‘4 (‘4 In

U) -‘ ~. ~~. 
#., .~~ ~~. — .. - - - .‘. .. .. - - - -

~~Z ‘.4 ‘.4 ‘.4. ~4 ,-I  ‘.4 ~4 ’4 ’I  ‘.4 (‘4

_J - - ~~
. - .-. .~~ — ‘B.. - - - - - ~~

. - -.4 - ~~.

14
0 0
140
oz  ‘IN J I )1I n ’0 N o 0’o ’IN p , I m ’ 0 N o 0 . o’ 4 N m 1n ’ 0 N . U) o ’ . 0 ’ 4

n4’4n.-ni ’.i~-4 ’1’.i14NNNNNNNNNNP)JI)or
~~- J W ~~o~~~~~I~z

__________  I



V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -_ - --

~

- D7 -

S.
U)
‘0
B.

‘.4

B. B . B .~~~S. S.

’4

B.~~ : S .~~~~ B. B. 

WN
S . B .

N.

B.
~~~~

‘0 N O . 0 ‘. iI n ’4 I J I)  U) 0’ JI~~NNN.’O ’4 0
II InJ I) 1 14) ’- I 1 I n I n  ‘0 In

B. S. S. B. B . B .  B. S. S. B. S. S. S . B .  S. S. S. S. S. B. S. B . S . S .  B. B. S.

— J I)W N 0 0’ N 0  ‘O O’O  NINNN NO 00. Ifl In’0’O ’O O ’-4
t.~ P~~J I r ) In I’) 0 0 0  N ’-i t~) I n I n  I n I n  .0 ’.. NN’I’ONNIn

S. S. B. B. S. B. B. B. B. B. B. B. B. B. S. S. S. S. S. S. S. S. S. B. S. S. B. S. S. B. S. B. S. S. B. B. B.

14Ni4’4~4’.”.414,4
,4
~ 4140’NNN’0’I’N’.”4’41N4N’414’0 0.0’1JI)InIn’OJI) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J I U q m I n N I n b~

~~. ~~. ~~. 
- .~. -.. .4’. ~~. ~~. .~~ 4-. 4-. 4-. 4-. 4-. .‘. 4-. — 

~~~ 
- ‘.4-. 4-. ‘. 4- .  . 4-.- 4-. ~~~ 4-..- 4-. ~~~

n t~) ’4  ~~N ii ~i) ‘0 (4 (‘I N ‘.e u-. N (‘I ( ‘41414  ii) JI) In JI) 1 ‘I l’) N — (‘4 JI) — In InN. I ?~) — ‘0
‘.4

- — ~~~ ~~ ‘~~ ‘~~ ~~ ~~ ~~~ ~S ..4 ‘.~ 
_ _ 

~~ B.P _ _ - - - -

C ’ 4 J I ) I I n ’ 0 N U ) 0 . 0~~4 C4 J I ) 1 ’ I n ’ 0 N U ) 0 . O ’ I N P q I m ’ 0 N U ) 0 . 0 , 4  N I’)I I n ’ O N U )

_ _ _ _ _ _ _ _ _ _ _  _ _  - I



- D8 .-

B.

‘4

II
B.

N
U)

z
S. S.

N 0
N N 3
S. S. 0

N 14
N . ‘0 I—
S. S. S.

N I  ‘0 r
‘ 0 0  4 0

u
S. S. S.

‘ 0 0 ’  In )C
‘ O N .  ‘0 p4

I
B. B. S. B. B. S. ~~‘.

‘O JI) In 1 ‘0 JI) 0’N O  N N. U) ‘0 Q
‘0

B. S. S. S. S. B. B. 14
I n O  ‘0 10  In (‘4 In u .

(‘4 ‘00 U) 4
S. B. B. B. B. B. B. B. S. S. S. B. 1—0
‘0 1I~

) l’~’0 W U)  In P ’)N ’l ‘.4 (00
O 1%N (‘4N,IN 00 0 0  ‘0 0

S . B .  S. B. S. S. B. S. B. B. B. B. S. S. 14 14
ON N N N N I n N . 0  11410 U) 0
ON ‘0 ’O NN N ’4 ’-4 U) U) N N  1 0

Z
S . S .  S. B. S. S. B. B. S. S. B. S. B. B. B. 4-. p4

N O  v44JI) r IN’0N (‘INN?’. N.JI) ~ Id O W
P sN J I ) r4 N N 1 ’ vI U) ’O ’O’O 1 0  14 1- 14

w ro
B. S . S .  S. S. S. B. B. S. B. S. B. B. B. S. B. S. S. S.

U ) v 4N 1 4’ 0 I 1 ’N ’O1’O 0 ’N 0 1 1N ’O N U) 0. 0
O N O N .  ~~N 1’- 4’4 N ’0 4 4’0 0 1’0  ~ Z I*z

Z 0 ~~W
B. S . S .  S. B. B. S. S. S. S. B. B. B. B. B. B. S . S .  S. I~4 (J ~~~~0 ’N O ON ’O J I ) N I n N I O N N I n I n ’ 4 I n 0  ~i

J I ) 9 N N  (‘1 1 ‘iN 01,4 I-

~~ -4 - .  4-. ~~~ 4-. 4-. - .4’. 4 - . ’ .  4 - .’ .  4-. 0 p4 Z ~-.
~ ‘-~0

— ‘4 5 14
o 1 - 1 4- - - — - — ~~~ - - - - - z o i- w
14 -1
0 (

~) _I ,-
0’O,4 N P’~ 1 ’ I n ’ 0 N U ) O . O - IN J I ) 1 Ifl’0 N ~~ 14 U U )
‘O N N N N .N N NN N N 0 0 0 0 0 0 0 0  ~ Z~~ W~~14 Z0. ~~ .J

0 0.CJ
1 40



I:
REQ t

PRCL

CLUSTER (NO ) OBJECTS

• 1 ( 1) 1
2 (1) 2
3 ( 1) 3
4 (1 )4
5 (1) 5
6 C 1) 6
7 ( 1 > 7
8 (1> 8
9 ( 2 )  9 1 1

10 C 1) 10
11 C 1) 12

59 ( 1) 60
60 ( 1) 61
61 ( 2 ) 62 63
62 C 1) 64
63 C 1) 65
64 C 1) 66
65 C 1) 67

H 66 C 1) 68
67 C 1) 69

H 68 C 1) 70
69 C 1) 71
70 ( 1 ) 72
71 ( 1) 73 • 

•

72 C 1) 74
73 C 1) 75
74 ( 1) 76
75 C 1) • 77
76 ( 1 ) 78
77 C 1) 79
78 ( 1) 80
79 ( 1) 81
80 C 1) 82
81 C 1) 83
82 ( 1) 84
83 ( 1) 85
84 (1) 86
85 C 1) 87

HCM3
BEST PARTITION MEASURE 0.806
DO YOU WANT TO PRINT THE TREE’

YES
SET PAPER AND PRESS RETURN



- DlO - 
- 

~1L&VLI. : I 2 3 4 ~. è ? H V I(~ i i  ~~ i.~ t 4  i?~ u. $/  tO 19 .‘0 ~‘1 ... ~ :.s .~4

14 -- -

16 .-.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - :

17 -~~~-*

21 - :  1 — -
22 — — — $  I

- — — - - - - - ; -4
25 — — — 8  $

- 8 -s
51 —5 I
15 -5

5 15) — — — I
10 — _ — I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
12 — — - 8  • I
3 - I - I  I - I

13 * — —-1 I I I — — — :
6 -- — s I S

20 a
46 :
47 8 -  
45 S I 
48 *
61 s I 

: : I I $

• 97 * *
63
66 * $
96 5
71 :
72 ———5 I I
70 *
90 *
81 I I
85 * 

$ — — — *

92 :
83 * : — — — 1  I
67 * : 5 * 

$ :
73 1
74 * $
75 I :

76 * *
24 5 

$
28 I 
30 $

7 I
29 S *
27 
26 I I
68 5 $ — — — *  

I I
——-- 5 I * I— — —s 

$ 

n - — -*  I I
• 

- 64 I * I
79 * I *. .  
~~
, -~~~~~~ I I

60 — — -5 I $ 
I •

4 $ 1 5
2 
5 
B 5

53 -- - I - - - :
5~ —— -.* : 1

52 $ I I
55 * - I
33 -- — 1  I I
36 —— —5 I I
43 I I $

49 4 — — — :  • I I I
32 * : I I I
34 * I • I I I
35 * I ~~— — — *  1 I50 * --—*
40 I — — - I  I
42 $ I
39 $ I 1

44 I * I I 
S I $

31 1 
38 *
31 I $
41 S 

S S f l f l S S W SSS • S S  ...t... .SS BSSCSBflSOSOBBSBOS SS S f lSS

COLLA?SLD OPJI.CTSI -

(S *4 ) 1  9 *1
(5 28) 1 62 63 -

_ _ _  
_



I p  

U)
‘0
N. 0 0 0
‘0 - Dli -
‘0
‘0 NNNI’.
U ) (‘4100
‘0
1~‘0 ‘0 ’0 ’0 ’0(‘4 0 ‘0 0

‘0
N I n I n I n I n

‘4

‘0 ( ‘4 1 0 0

‘0 1 1 ‘0

• 0
‘0
0’. 0’
In ‘0 N 1 ‘0 0
0 U)

• In U)

N 1 S.

In In S. S.

‘0 N N)
ON N) B. U)

U ) 0  In (‘4 s. S.

‘0 ‘0 (‘4
(‘4 B. U) 0 N I ’0U)

‘0 0  In ~.4 B. S.

‘0 In ‘.4
N It) 0 B. U)
‘0 0  In 0 B. S. 0 .0 0 0

‘0 1 0
‘01 0’ B. U)

0 0  0 0’ B. S.
In N) 0’

I n N )  I B. ~~ N) 0 0.0 . 0 .
10 1~ 

U) B. S. ~-i r 1 I n N
It) N o

O N  N) S. U)
‘0 I’. — S.

In -4 N.
0.’4 CM S. U) N)
(‘10 1 S. S.

In 0 0
00  — 

B. U) N)
N W  -‘0~ 

U) S. ‘ON.NN
1 0’ In -iN)U)N

N O  ‘40 B. N p1)

N N  Ifl1~ 
N. S. S.

1 0 1
40  I n 0 .  B. N. N) Ifl’O ’O ’O
N N  N N )  ‘0 B. S. .. -i P1) Ifl N

- 1 N N) 0
S. N. N) 14

N N ( 1 (’I N) It) B. B.

1’ ‘0 (‘4
W ’ O N ) C ’ IN S. F’. N) E ,-4 N)In N
‘.4 N~~-4 C’1 N) 0 — B. 14N) It) —
U ) I n C’l’I ’O S. N. N)

Nv i NN)  0. B. B.
(4 1 — 14 N)It) N

N ’0 O O - V) B. N. It) 14U) S. B. U)
(‘4 ~4) It)

I n N ) , - 4 N . ’ 0  B. N (‘1 W N N ) N ) N)
Nn 4~~ 4 N )  N. B. B. ‘. ~~~ N )L O N

(‘I N P~) 0. ~
• 1N0. ’O N) B. N (‘1 ‘0 ~~

U ) I  N ‘.i JI) ‘0 B. B. S.

1- I  N ‘.4 (‘4 It) C0 U ) N C ’4 C’4
U I N ’ 4 ’O I n C ’l  B . B .  S. N N U) 14

• W I  . N -i N) ‘-iN s ‘0 S. S. S. 0
CM 0 ‘ ‘0 0

O I — o r l ’ 0 ’ 4  ‘O ’C O B. N N Il) Z
0 1  N i-i ll 

O NO  U) s. S. B. 1 1 4 4 1 1
‘.4 0 0’ N) CS t1V) N

‘ .4 0 0  B. ‘0 ‘I
0 1 0  O0’- i  U) B. B. S. $ 4

Z il  ‘-i N S. N N CM 3
N ‘0 ‘4 In ON000

• I ~~~~~~ 
S. B. S. B. ..J P1) U) N.
U) 0 ‘0 0 .i

W I  (5~ .4~~ S. ‘Q 14 Il) 0
I - I  Z ..J~~ 1’ S. S. S.

W I ’ - i  N N ) 1  W0.U) B. If) Ii) 0.
.J ~~~i 

0.J ~~~~~ 00  N ‘0 — ‘0~ 14 (‘114
U . 4 1  W~~ I — O W  W Z  B. B. B. B.

~~ u i  ~~~~ W CJ Z ~~ W ‘4 1 1
• 14

- 
— —••- • -~~~~~-~~ .- - -  I



r’ ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

--
~--

— D12 —

NODES HAVE BEEN RENAMED AS FOLLOWS:
OLD NO. NEW NO.

3 1
6 2
9 3
10 4
11 5
12 6
13 7
20 8

REQ
DI MN
(PRECLUSTERIN G COMPLETE) 

—

PRECLUSTERING PERFORMED AND DISTANCE MATRIX COMPUTED WITH P = 1,
CLUSTERS NOT TAKEN AS SINGLE NODES.

RED:

• HCM3

~FST PARTITION MEASURE : 
0.733

DO YOU WANT TO PRINT THE TREE?
NO

PRCL

CLUSTER (NO) OBJECTS

1 C 3 )  1 2 8
2 (5) 3 4 5 6  7

RED:
EVAL

sTRENGTH: 0.9333*
coUPLING: 0.2000~
MEASURE: 0.733.



r- Ti~~~~ ___________ 
_ _ _ _

I Ø Q4
N ’O U)

0’ O’ O
‘u-i U) 0

003 0’.
‘4 It) N

N N O
-i It) N

‘0 -O N 
-

— Ii~ N-

li) ‘-4 ‘0
‘-i It ) N

S.
p1) B. . - i’0 N .
‘0 N
B. U)(~4 B.

‘0 ‘0
S. U)
‘4 B.

‘0 It)

0 B. C’1 ’O N)
‘0 1
S. 0
0’ ~If) N)

B. 03
0 . - 4 q N .

B U) (9
B. U)

F’. B. ‘4.’.
In — ‘4 0 01 4
S. U) If) v 4 N ) N
‘0 B. B.

In 0 In
B. U) (‘4
O B. B. 0 ’ .O .O
0 0’ N) C ’4NB. N. (‘4
N. S. S.
1 U) (N

B. N (‘4 0 ) 0 3 0 3
‘0 B. B. ••

1 N ‘4 0
B. N N LU

U) B. B . -

‘0~ ‘0 0’ 0 N N . N .  U)
B. N — E (‘4 ’0 3
0 B. B. 14 0
N) In N. ~ -JB. N ‘i
0’ B. B. Z ’0 ’0 ’O N 0
N 1 ‘0 14 C’4 ’0 U) là.
B. N ‘-4 14

U) S. B. U) (I)
(‘1 N) In

B. N — W If l In Ifl ’O
N B. S. ( ‘I ’0 U)  0
N (“1 ‘0• ‘C 14
B. N — X
0 B. S. ‘C(‘1 ‘-4 0 U) q ’ 0 - 1 In Z
S. N N Lii C ’ I ’ 0 U )  LU
‘0 B. B. 0
(‘I 0 N) 0
S. N. i-i Z Z .
U) B. B. N ) N ) N ) 0 140
— U) (‘4 (5 C ’4 ’00  W Z
S. ‘0 — Z U) N N )1 I f l’ 0 N 0 0’ O ’ 4 N N )1 I f )’ 0 N U ) 0 .0 ’ - 4

O B. S. p4 3 . 14’.4 ‘-4 ,-i ~~4 14’4  ‘-4 14 (‘1 (‘1
B. N. 0 3 1414

N ‘0 ‘-4 0 ( N ( N ( N N )  ~~~ZS. B. B. -.~ N ’OU) ‘CU) ‘0 — _l
- S. ‘0 0 0

‘0 S. B.
S. If) 0. ‘.i ’-i ,i (N LU

~~~ N ‘o S. 1.4 N ’O U) 0 0
S. B. ‘0 0 j

— ‘0 S. I- Z O
0.. ‘4’.. •. ‘0 .. N) 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _  
-~~~ — —‘-.—-—-- _-

~~~
—-------——-- -—-——— — - — — -- .-,--,.~~~~. —•—.--. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ‘ ‘~~~~“

—

- D].4 -
S

- ‘ REQ
DIPIN
(PRECLUSTERING COMPLETE)

PRECLUSTERING PERFORMED AND DISTANCE MATRIX COMPUTED WITH P = 1,
CLUSTERS NOT TAKEN AS SINGLE NODES.

RED:
— HCM3

BEST PARTITION MEASURE: 0,092
DO YOU WANT TO PRINT THE TREE?

NO -

RED:
PRCL

CLUSTER (NO ) OBJECTS

• 1 (16) 1 2 3 6 4 5 7 8 9 10 12 13 14 15 16 21
2 (5) 11 17 18 19 20

REQ

:

CLUSTER (NO) OBJECTS

1 (12) 1 2 4 5 7 827 28 29 30 59 60
2 (4) 18 78 79 80
3 (3) 24 75 76
4 (5) 26 56 57 58 68
5 C 8) 45 46 47 48 61 65 66 77 MS 1
6 (11) 64 67 73 74 81 82 83 84 85 86 87

— 

7 (3) 70 71 72
8 (2) 62 63
9 (3) 3 620
10 C 5) 9 10 11 12 13 JMS 2

11 (10) 14 15 16 17 19 21 22 23 25 51 MS 3
12 (16) 31 32 33 34 35 36 37 38 39 40 42 43 44 49 50 69
13 C 5) 41 52 53 54 55 MS 4

REQ

-

~ 

-~~~~~ 
- -- -- -



—--- --- 
- U-- -

- D15 -

PRLK
LINKS BETWEEN CLUSTERS 1 & 2 :

1 —  18
2 - 78

LINKS BETWEEN CLUSTERS 1 & 3 :
2 — 76
7 — 76

LINKS BETWEEN CLUSTERS 1 & 4 :
2 7 -  56

LINKS BETWEEN CLUSTERS 1 & 5
NONE.

LINKS BETWEEN CLUSTERS 1 & 6 :
2 -  73

- 2 —  82
5 — 8 3 -

5 -  84
7 —  81

LINKS BETWEEN CLUSTERS 1 & 7 :
NONE.

LINKS BETWEEN CLUSTERS 1 & 8 :
NONE.

LINKS BETWEEN CLUSTERS 1 & 9 :
27— 3

LINKS BETWEEN CLUSTERS 1 1 10 :
2 —  12
7- 10

LINKS BETWEEN CLUSTERS 1 1 ii :
- 

1 - 1 9
2 —  14
2 — 15
2 —  16
2 — 22
2 —  23
2 - 25
2 — 51
5 — 14
5—  15
5 —  16
5 - 17
7- 19
7 -  23
27— 23
60— 19



F’ _ _ _ -.. _~~~. - -~ -~~~. - - --~

- D16 -

LINKS BETWEEN CLUSTERS 1 & 12 :
2 - 33

LINKS BETWEEN CLUSTERS 1 & 13 :
NONE.

LINKS BETWEEN CLUSTERS 2 & 3
NONE,

LINKS BETWEEN CLUSTERS 2 & 4 :
NONE... - - - - - - --

LINKS BETWEEN CLUSTERS 2 & 5 :
NONE,

LINKS BETWEEN CLUSTERS 2 & 6 :
18 - 87
78 — 64
78 — 74
78 — 84

LINKS BETWEEN CLUSTERS 2 & 7 :
80— 70 -

LINKS BETWEEN CLUSTERS 2 & 8 :
NONE .

LINKS BETWEEN CLUSTERS 2 1 9 :
NONE.

LINKS BETWEEN CLUSTERS 2 * 10 :
NONE.

LINKS BETWEEN CLUSTERS 2 & ii :
18 — 14
18 —  16
18 - 17
78— 14
78— 16
78— 17
79— 14
79—  16
79 — 17

LINKS BETWEEN CLUSTERS 2 & 12 :
NONE.

LINKS BETWEEN CLUSTERS 2 & 13 :
NONE.

LINKS BETWEEN CLUSTERS 3 * 4 :
NONE.



— D17 —

LINKS BETWEEN CLUSTERS 3 8 5 :
75- 77
76— 66
76— 77

LINKS BETWEEN CLUSTERS 3 * 6 :
75— 73
76— 67
76— 73

LINKS BETWEEN CLUSTERS 3 & 7 :
NONE.

LINKS BETWEEN CLUSTERS 3 * 8 :
NONE.

LINKS BETWEEN CLUSTERS 3 * ~ :
NONE.

LINKS BETWEEN CLUSTERS 3 & 10 :
NONE.

LINKS BETWEEN CLUSTERS 3 & 11 :
24- 25
75— 23

-76 - 21
76— 22

LINKS BETWEEN CLUSTERS 3 & 12 :
NONE.

LINKS BETWEEN CLUSTERS 3 a 13 :
NONE .

LINKS BETWEEN CLUSTERS 4 & S
NONE.

LINKS BETWEEN CLUSTERS 4 & 6 :
NONE.

LINKS BETWEEN CLUSTERS 4 & 7 :
NONE.

LINKS BETWEEN CLUSTERS 4 * 8 :
NONE.

LINKS BETWEEN CLUSTERS 4 a 9 :
NONE.

LINKS BETWEEN CLUSTERS 4 & 10 :
NONE.



- D18 —

LINKS BETWEEN CLUSTERS 4 * ii :
26— 23
26- 51
68— 51

LINKS BETWEEN CLUSTERS 4 * 12 :
68— 69

LINKS BETWEEN CLUSTERS 4 & 13 :
NONE.

LINKS BETWEEN CLUSTERS 5 & 6 :
45— 86 -

46- 86
47— 86
48— 86
61—  86
65- 67

— - 65— 86
66— 86

LINKS BETWEEN CLUSTERS s 2 7 :
NONE.

LINKS BETWEEN CLUSTERS 5 * 8 :
NONE.

LINKS BETWEEN CLUSTERS 5 * 9 :
NONE. -

_________________________

__________________________________________________ 

I



V - - - - - — 
~
— ---,—

~~~
- - - - -  - ----

~~

-----

~~~~ 

- ---- —.-- -—-- ----.- ---- - -.-- --—--

APPENDIX E —

We show below that unless two subgraphs are disjoint , the coupling

between them increases if they are further decomposed.

Let:

- A, B be the two subgraphs;

- 

~A’ % (> 1) be the number of components in an arbitrary partition

of A and B, i.e.:

A L/ Aj  ; A . ,  A .  = 0~ ~~~~~~~~~~~i~l i,’j
(1)

B — I.) B ; r\ B., B . = 0, i ,j=l ,.  . .,%

- LA ,B be the number of links between A and B; and

- be the number of links between A. and B..A~s B~ 3. D

Since A~ C A, 1’ ”’~~A’ obviously -

IA~I < j AI , 
~
=1’•’

~ ’~A 
(2 )

Similarly,

IB~I < IBI 
~~~~‘““~B 

(3)

Furthermore, by (1) --i.e., because the components in a partition

are mutually disjo!.tt and span the complete graphs A and B--, it is true that



___ —-— ------------------ ~~~~- -- -—- --- ------ ---~~---- ~ -~.—- -

- E2 -

L 
- 

— E L
A,B i—l ~~~~

By def inition of coupling ,

3)

A . , B .i ] .  1 )

~A B  j =l
C(A , B ) —  ‘ =

IA I IBI IA I IB I

and

LA , B
C(A~~ B ) = ‘ ~ ,j I A . I - I B ~ I

so that , by (2) and (3) ,

c(A , B) < Z C(A ., B .) ( unless L = O) , Q .E .D .
i—I. ~
i—i ,

L. - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


