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restructuring algorithms are crucial. Although the structure of the
code is highly scalar , techniques are outlined for producing efficient
code even for the new vector computers.
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TRANSIENT FREE-SURFACE HYDRODYNAMICS

INTRODUCTION

The hydrodynamics code SPLISH is designed for Lagrangian simula-

tions of transient free—surface phenomena. The present version of the

code was developed for inviscid, incompressible flows in two dimensions.

The method uses a triangular finite—difference grid in which triangle

sides are aligned along free—surfaces , interfaces, boundaries and the

perimeters of submerged bodies. The grid internal to these surfaces

is left free to reconnect, adjusting to the time—dependent f low.1’2

Ir. addition, vertices can be added or subtracted as they accumulate or

become sparse in convergent and divergent regions of flow. The added

flexibility gained through such grid restructuring permits the applica-

tion of Lagrangian techniques to large classes of problems which were

formerly considered solveable only with the aid of diffusive Eulerian

rezone methods.3’4 For example, the simulation of shear flows and

f lows about obstacles are possible with only local changes in the grid.

This paper will present the formulation and the motivation of several

such grid restructuring techniques, the algorithms used in implementing

them and examples of their use in SPLISH. Because the lack of global

ordering in a reconnecting grid is a drawback to its implementation,

a discussion of techniques to produce more efficient codes is included .

Examples Will be given of calculations performed on NRL’s TI ASC pipe—

line computer.

Note: M&nuscript submitted November 7 , 1977.
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THE CONTROL-VOLUME APPROACH

For a Lagrangian formulation of inviscid , incompressible flow,

the basic equations are

(1)

and

(2)

together with the conservation of mass, momentum and energy. There are,

of course, many possible ways to design finite—difference schemes for

these equations. However, it is in general not possible to determine

which approach will be successful.5 For the case of triangular grids ,

and in particular reconnecting grids , there does not exist a litera-

ture of proven techniques. Therefore the method chosen for SPLISH

was the control—volume approach, in which the finite—difference

equations are formulated to satisfy the conservation laws macroscopi— 
p

cally , over a computational cell. In this way the conservation of

physical quantities is explicitly satisfied by the scheme at the outset,

6,7,8and corrections for non—conservation are eliminated .

The definition of the control volume will of course depend on

the location at which physical variables are applied on the grid. It

is natural to specify positions and pressures at vertices, since the

Lagrangian surfaces coincide with surfaces on which pressure is defined

as a boundary condition. In our formulation velocities and densities

are triangle centered , yielding a staggered mesh. Pressure gradients

are therefore piecewise linear within each triangle and discontinuous

at triangle sides, as are the triangle velocities and densities.

2
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Therefore all the variables in Eq. (1) are triangle centered and it

is easy to advance the triangle velocities either implicitly or

explicitly.

The vertex—centered control volumes, CV, are used to define the

new pressures through Eq. (2), expressed as an integral invariant:

V d V ~~~O (3)
cv

That is, the pressures at the vertices are iterated until the resultant

triangle velocities reflect a divergence—free condition for each con-

trol volume. An obvious construction for a control volume for this

application is shown in Figure 1. The vertex—centered control volume

is defined by lines extending from the triangle centroids to the

triangle side midpoints. This permits a unique, uniform and complete

tessalation of the entire computational region. The control volume

for each vertex contains exactly one—third of the area of each of the

adjacent triangles. Because pressures are defined as boundary condi-

tions, the control volumes are al tered near boundaries as shown in

Figure 2. In this way the pressures at vertices near the boundaries

enforce a divergence—free condition over the additional area as well.

There is another constraint implicit in Eq. (1). Taking the

curl of both sides, we have

d(7xV ’) 
- j

~~ x (4)
dt p

L

3
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For homogeneous systems this implies that 7 X V is an invariant for

every control volume since V x VP E 0. With a properly defined 7P,

the finite difference formulation also yields ~ X ~7P 0, so that the

vorticity cannot be altered by the pressure gradients alone. However,

this invariant does not ensure the conservation of vorticity over a

complete timestep by itself. The velocities are triangle—centered , and

advancing the vertex positions means altering the size and shape of the

control volumes while leaving the velocities unchanged . In other words

the integrated region is changed but not the integrand. Therefore the

updating of vertex positions dictates an accompanying change in triangle

velocities to keep the vorticity conserved. This is shown explicitly i~’.

Figure 3. The rotation and stretching of the triangle has necessitated

a rotation and diminishing of the triangle velocity such that the V dL

line integral contributions within the triangle for each of the three

vertex control volumes remains constant.

Thus far we have shown only that a logical extension of the con-

trol volume approach is applicable to a general triangular mesh. It

can lead to finite-difference formulations which macroscopically con—

serve appropr iate physical quantities, regardless of how irregular the

mesh becomes. The real utility of this approach can be seen, however ,

when we allow the mesh the freedom to reconnect.

RECONNECTIONS

Despite the assurance that both the curl and divergence can be

conserved , solutions through such Lagrangian algorithms can still

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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yield grossly erroneous results. Figure 4a illustrates a sample cal-

culation of shear flow. Triangles below the center of the fluid are

moving to the left with velocity - U, and those a~ove are moving to the

right with velocity U. The vertices lying directly on the shear inter-

face are stationary, while those above and below move with the triangle

velocities. The shear layer is in an unstable equilibrium and should

persist until round—off errors accumulate enough to perturb the layer.

However , even in the absence of round—off in the positions , the scheme

will quickly fail since the triangles on either side of the boundary

will become stretched . Very soon pressure gradients will be calculated

which involve vertices far removed from each other as shown in Figure

4b. Although the area of each triangle remains constant (and each

control volume divergence—free) the convergence of the iterations would

slow and truncation errors build rapidly as the triangle sides lengthened .

The very appearance of the grid reflects the non—physical situation in

which pressures far removed from their co—triangular points on the in-

terface directly influence their behavior, whereas those in the immediate

vicinity have little effect.

Clearly, allowing the mesh to reconnect can solve this dilemma.

After reconnection the finite—differences will again only involve

neighboring vertices. The most obvious criterion for reconnection is

based on this premise. Any interior mesh line is associated with a

triangle on either side. The line can therefore be viewed as one of

two possible diagonals of the quadrilateral formed by these two

triangles. One reconnection prescription is to select the shorter of

the two diagonals, provided the resulting triangles are not too unequal

I 5 
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in size. This last caveat can be quantified in a number of ways, of

course. For example, this algorithm would remove the line from vertex

1 to vertex 3 and subtract a line from vertex 2 to vertex 4 only in

Figure Sa. In Figure Sb the new line would lie outside the quadri-

lateral and in Figure Sc the post-reconnection triangles would be

vastly different in size. Thus reconnection should not be performed .

Despite the simplicity and physical motivation of such an algorithm,

it is not obvious that it is the preferred one. The expression for a

8
general triangular mesh Poisson equation is

2A~~~ ~ ~~c~~i+i~ 
+ cPj÷~ ~ x 

~~~~~~~~~~~~~~~ 

+ 
~

~r -ri
x • 2 0 = A  (7 .v) (5 )2 cv •cv

The vertex c is the central vertex as shown in Figure 6a. The ~~
L(~)

is a sum over all triangles adj acent to c and the labelling for the

i + ~th triangle is as shown in the figure. A~4 
is the area of the

i + ~th triangle. A is the area of the control volume about vertex

c and ,~~~ 
. V) is the finite difference form of Eq. (3) .  The coef —

ficient a of the ~p term isC c

6a 
~~~ 

(

and is always negative. The coefficient of the cp1 term has contr ibu—

tions from just two triangles Aj..½ and ~~~~ and is 

.- ~~~~~~ . - 5. S 
..
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This coefficient reduces to

a
i *[cot e + cot (8)

where and 8 are sh~ in in figure 6b. Since 8+ and 8 
- 

are both within

the range of 0
0 

to 180
0 
(in positive area triangles), then this term is

negative only when 8+ + 8~ > 180
0
, since

sin (8~+8)a~~= ~~~ - 
(9)

2 sine sine

Therefore the matrix represented by Eq. (5) is diagonally dominant if

+ 9 � 180° for each i. This provides another uniquely defined re-

connection algorithm, since the sum of both such pairs of angles in

the quadrilateral is just 3600. whenever + 8 > 180
0
, the line is

reconnected to the opposite diagonal. In other words, we have a re-

connection algorithm which automatically ensures the diagonal dominance

of the Poisson Equation for an irregular triangular mesh. This al-

gorithm also automatically ensures that a diagonal outside the quad—

L 
rilateral is never chosen.

Whichever reconnection algorithm is chosen, during a reconnection

the smallest physically definable cell is the quadrilateral , and not

the triangles. It is reasonable then to ensure that quadrilateral

properties are unchanged during a reconnection . In other words , the

~~~~~~~
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quadrilateral becomes a control volume over which certain variables

must be conserved~. The reconnection is further complicated by its

alteration of th~ vertex control volumes of each of its vertices,

as shown in ~
‘igure 7. Nevertheless, it would be desirable that the

conservation laws enforced through vertex control volumes remain in

force during the reconnection. For example, to keep the vorticity

and divergence conserved the portions of the integrals V dV and

7 x V . dA within the old and new triangles must be the same
sur~ ace
before and after the reconnection. Since there are four vertices with

two equations for each and only four triangle velocity components to be

changed , it would seem that both integrals cannot remain unaltered .

In fact the eight equations are not independent. There exists a unique

solution for every interior vertex which satisfies both constraints.

It is given by

/V B \  /
~~R.D ~~~~ 2

~~~~/VR \( VBy \ ( 
2A~. - R~ D - 2AF 

- R• C VRY ~ (10)

R R  ~~~~~R A  2A B 
R B  2AB .I\ 

V
LX

! S

V
F 

2A3 R A 2A
B 

R B ’ vL

where the vector definitions of A , B, C, D and R are given in Figure 8,

V~ and V
L are the triangle velocities before reconnection and ‘1B 

V
F

and A3, A.~ are the triangle velocities and areas after the reconnec—

tion.

This solution includes a valuable bonus. Not only is it unique,

but it is reversible. Re—reconnecting a line yields the original

- 5  ~~~~~~~~~~~~
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triangle velocities as well as the original vertex control volume con-

figurations. This is a desirable feature since it mirrors yet another

Implicit property of the basic equations, time reversibility .

As stated above, Eq. (10) also preserves the quadrilateral velocity.

That is

A
Q
V
Q 

AR
VR + AL

V
L 

a AF
V
F + YB (11)

where

(12)

The mass of the quadrilateral is just the sum of the triangle masses, or

MQ = A
RPR + AL QL AF PF + A

3
p
3 , (13 )

Therefore strict mass conservation can also be enforced despite the

destruction and creation of triangles by constraining the new densities

through Eq. (13). By Eq. (11) and (13) V
Q 

abd M
Q 
are both separately

conserved , and therefore so is the quadrilateral momentum and kinetic

energy. The pressures are defined at vertices whose positions do not

change during reconnection, and the potential energy can be altered only

by the different def initions of Since we are fr~e to choose bo th

new densities, and have only one equation, Eq. (13), to satisfy , we

also control the change in potential energy through Equation (4), which

provides the second density constraint. This specifies that the amount

A ________
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—

~: , .5- - .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -j-p~~
,. 

~~~~~~~~~~~ ~~~~~~~~~~~~~ 

-



_____ -
~ i-~~r~~~~~~

” ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . — -  ~~~~~~~~~~

of vorticity generated within the quadrilateral is the same before

and after the reconnection.

Reconnections then offer a very attractive alternative to global

rezoning. The control volume approach leads to algorithms which conserve

vorticity and divergence in the control volume about each vertex despite

the reconnections. The algorithms also conserve mass, energy and mo-

mentum on the basis of triangular and quadrilateral control volumes and

further exhibit time reversibility. Finally, the prescription for the

occurrence of reconnections can be chosen to preserve ordering by

nearest neighbors or to preserve the diagonal dominance of Poisson’s

equation over the irregular grid.

These routines have been tested on the problem of shear layer in-

stability.
7 

Figure 9 illustrates a simulation in which the initial

shear layer was not perturbed . The grid has not changed although each

vertex in the upper half of the fluid has traversed the entire grid ten

times. Figure 10 shows the grid and a marker particle display for the 
p

case of an initial perturbation which has grown to a Kelvin—Eelinholtz

billow (top row) , and after the mature billow begins to shear. The

calculation agrees well with the predicted growth rates. Only the re-

connection algorithms were used in restructuring the grid, and the grid

at ~ 
a .329 sec. exhibits two irregularities. Two of the vertices have

become too close, forming thin elongated triangles, and a third vertex

has become enclosed within a triangle~ Other grid restructuring is

clearly needed. These additional techniques will be discussed in the

following section.

10
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I
VERTEX ADDITION AND DELETION

The fluid flow near a separatrix is another area in which tradi-

tional numerical Lagrangian treatments fail. Figure 11 illustrates a

sample grid for a submerged hydrofoil near a free surface. The flow

is directed to the right initially with velocity U. Clearly as the flow

develops vertices will tend to accumulate at the forward stagnation

point. At the same time the vertices on the hydrofoil will move with

the flow along the hydrofoil and accumulate (by pairs) in its wake.

After a very short time the gridding will deteriorate to a denser grid

before and after the hydrofoil and a sparse grid along the hydrofo il

itself .

These problems do not derive from an ill—chosen initial grid but

are inherent in Lagrangian treatments. By choosing the mid—line of the

hydrofoil between an initial row of vertices , a situation develops in

which vertices of the same triangle flow toward opposite sides of the

obstacle, leading to a nonsensical calculation of fluid pressure gradients

between vertices separated by an obstacle. Fixing the vertices on the

hydrofoil surface and, allowing reconnections is neither physically de-

sirable nor effective. A tangled grid results from inverted triangles

forming over the hydrofoil. The advantage of the present treatment

using a control volume formulation is that while these problems are

difficult, they are still soluble.

The problem of representing flow near separatrices could be re—

solved if it were possible to add and subtract vertices from the calcu—

lation as needed without altering the physically conserved proper ties

of the flow. Fortunately , such schemes are poss ible , and may be der ived

11
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in the same spirit as the reconnection algorithm by using a control

volume approach. For example , the simplest way to add a vertex to the

fluid is at the centroid of a triangle. Lines are drawn from the new

vertex to each of the existing vertices , leaving three new triangles in

place of the old One. If all triangle variables are chosen to be

identical with the original variables of the old triangle, the behavior

of the three triangles clearly does not alter the fluid motion since it

is identical to that of the initial triangle. If the vertex pressure

is chosen as the average of the three vertex pressures , we have like—

wise left unaffected the pressure gradients throughout the area occupied

by the old triangle. In other words , the three new triangles behave

exactly as the former one, and are indistinguishable from it since the

vertex remains enclosed within its former boundaries . However , we know

that the reconnection algorithm will eventually alter one of the triangle

sides if a vertex in the vicinity of the old triangle was really needed .

Otherwise the new vertex will continue to behave as if it were not

there. But the reconnection is also conservative as shown above, and

once a reconnection occurs we have successfully introduced a vertex while

maintaining strict conservation of flow properties.

The converse is also true. If a vertex becomes enclosed in a

triangle, the behavior of that triangle is not altered if the vertex is

removed and the new larger triangle given the velocity

A~V~ a A1V1 + A2V2 + A3
V
3 

(114)

12
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where triangle 4 encompasses th.~ three triangles 1, 2 and 3. Since the

mass of the resultant triangle can be defined in a similar manner , the

momentum of the larger triangle has not been altered . Therefore for

both addition and subtraction of vertices, the larger triangle acts as

a control volume in exactly the same sense as the quadrilateral for the

reconnections. Wha t has been lost is the information about the behavior

of the pressure gradients and velocity gradients within the triangle.

This information has been averaged out and replaced by a linear varia-

tion across the triangle. All we have suffered is a loss in resolution ,

exactly what we set out to do in removing the vertex .

This claim requires elaboration. The removal of a vertex implies

the alteration of four vertex control volumes, one of which is removed ,

and such a drastic change does not seem consistent with a mere change in

resolution . Figure 12 illustrates the triangles before and after

vertex removal. Before the vertex is deleted the relevant contribution

to the vorticity integrals about each vertex are

— 
( r 14 r~ ) 

— 
______- V S d L a V

i
. 

2 
+ V

k~ 2
1

— — 
_ _ _ _ _  

— 
_ _ _ _ _V d 2 a V ~ 2 

+ V j 2
2

— — (r , —r ) (r —r1 )
‘ V~~~d L V  . I + v  2 ‘

~
- 

a~~~k 2 j  2 3
3 — —  — —  — —— — ( r -r 1) 

— 
(r -r ) 

— 
(r -.r )

V • d2 = V~ . 2 + ~j 
• 

2 
2 + V

k 2 (15)
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After vertex 4 is eliminated its vorticity must be apportioned to

vertices 1 through 3 in some manner ;

— — (r -r )
V .d

~~
= V

L
5 3

2
2 

~~~~~~~~~~~~~~~~~~~~~

1
( r -r ) -

V .  d Z a V ~ .

2 
—

(r -r )
J’ V .d 2 VL

. 2 1

3

and 
~1~~~~~~~~~3~~~~1I. 

(16)

Eliminating 
~~~~~
, ~~and 

~~ 
between Eq. ( 1 5)  and (16), we have

¶1 ~~~r )  + ‘1k ~~~~~~ 
a 

3~~2~ 
- ~~

V . 
~~~~~~ + . ~~~~ a ~~ • (r 1~

r
3

) - 2~~

+ ~j ~~2
r14) a 

2~~1~ 
- 2~~ (17)

Substituting ALV2 
a A~V~ + A~V . + A.K

V
k 

into Eq. (17’) yields , after

some algebra ,

a A~ ~ .~/A 2

a A.~ h/AL

14
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• where + + a since A~ + A~ + Ak~ 
A
L
. Therefore, conserving

momentum exactly over the large triangle yields exactly the conserva—

— don of vorticity within the affected vertex control volumes. The

vorticity carried by the expunged vertex is apportioned by area to the

neighboring vertices. If the deleted vertex lies close to one of the

remaining vertices, that vertex will carry most of the reassigned

vorticity. Therefore the total vorticity is accounted for in a reason— -

able and natural manner, and momentum is still conserved . Since a

similar argument holds for the divergence equations, conservation of

- flow variables is. demonstra ted , and a loss in resolution Ls the only

effect.

L 

For the case of an added ver tex, the vertex control volume inte—

grals are trivially lef t unchanged , and the added vertex initially

carries no vorticity. Vorticity can accumulate about the added vertex

only through reconnections with triangles having dissimilar ,. That

is , vorticity is generated only by density gradients , as expected .

Therefore vertices can be added and subtracted within triangles

while conserving flow properties exactly. In both cases the usefulness

of this result derive from the reconnection algorithm. Used in tandem

- with addition and deletion within triangles it provides a general al—

gorthm for altering the grid without disturbing the fluid flow. It has

‘ 
- 

already been shown that reconnection used after addition of a vertex at

the triangle centroid liberates the vertex in a conserva tive manner and

- 

‘
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permits it to behave no longer as the centroid of the triangle. The

process can also be reversed . The reconnection algorithm can be used to

isolate any vertex within a larger triangle. Once this is accomplished

the vertex can be averaged out .

The uti l i ty of this technique is not limited to interior mesh

points. Figure 13a illustrates a triangle at the leading edge of a sub—

merged body. The flow is forcing the triangle vertices on the boundary

in opposite directions, and resolution of the leading portion of the

hydrofoil is being lost. A point may be added along the body as in l3b .

The result may be viewed as the addition of a point within a triangle,

but one in which only two of the three smaller triangles survive.

Figure l4a illustrates the reverse situation at the rear of the

hydrofoil . There a new line is drawn to enclose the unwanted vertex in

a triangle. In Figure l4b the vertex has been removed from the body ,

leaving the way clear to add a vertex in the fluid, if needed to pre—

serve resolution , as in Figure 14c .

The use of the control volume approach has therefore made possible

the dynamic addition and subtraction of vertices exactly where desired

and in a fashion which locally and globally conserves the properties of

the fluid flow . The combined use of local resolution alteration and

reconnection algorithms permits Lagrangian calculations of extremely

complicated flows.

EFFICIENC’f

It is obvious that for a code such as SPLISH any global order ing

of the grid would soon be invalidated by reconnections and by the

16

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~



55 5- ~~~~~~~~~~ ‘—.5- ’--—- ‘
~~~~~ -.-~~

------——=---‘-- --- ‘~~~~~~~ “‘. — ‘~~~~ ‘~~~~~ ss  “‘r ~~~~~~~~~~~~~~ “V__  
--- ‘5- -- .--- 5- 5-- I

addition and deletion of vertices. Since standard fast Poisson solvers

rely on such an implicit ordering among vertices, it is appropriate to

conclude this paper with some remarks on its efficiency .

The new generation of vector computers provides a good starting

point for such a discussion. The increased speed of these computers is

attained in large part by their ability to perform quickly a given op-

eration on large numbers of members of an array, which are preferably

stored contiguously in memory. Calculations on a vector computer are

therefore performed operation by operation for all array members instead

of performing the whole sequence of operations in turn for each member

of an array. The ordering of the vertices becomes all importnat, and a

highly disordered code such as SPLISH is almost totally unsuitable for

efficient operation. However, despite such obvious problems, the en-

tire SPLISH code has been optimized for the NRL TI ASC vector computer.

Our first example is the reconnection algorithm itself. The heart

of the reconnection algorithm is based on the quadrilateral about the

line. However, every reconnection that is performed redefines the quad-

rilaterals for each of the four lines which make up the original quad-

rilateral. This situation is highly scalar, in that a single reconnec-

tion may invalidate the possible reconnection of four neighboring lines.

Therefore it is impossible to allow reconnections to proceed in parallel,

and the complete calculation for one must be performed before the next

is initiated .

However, even in this situation some increase in speed may be

- - gained through efficient coding. Clearly a good deal of the time in the

reconnection algorithm is spent in testing each line for a possible

i
t;. I
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reconnection. In general, very few of the lines reconnect for a given

timestep. The flow is following local streamlines. Therefore the test

can be vectorized provided its output is a list of lines which may want

to be reconnected . Each of these (few) lines is then passed through the : -

- scalar reconnect routines , in which they are retested and the reconnec—

tion performed if it is still desirable. An iteration through this

procedure may be desired , but in most cases is not necessary since most

reconnections occur remote from each other. In no realistic case tested

were more than three iterations required to reach the final grid.

The savings in computer time of course depends on the number of

lines reconnected . For roughly one percent of the lines reconnecting

per timestep (an average case), the vectorized test followed by scalar

reconnect is ten times faster. The same is true of all the grid restruc-

turing algorithms. Large saving in time can accrue through vectorizing

the tests which must be performed on every line or triangle. The grid

alterations must remain scalar, but are relatively few in number.

The second example is the solution of Poisson’s Equation. In

SPLISH the pressures are adjusted at each vertex iteratively to enforce

a divergence—free condition for each vertex control volume. As shown by

Eq. (5) , coefficients of each term are expressed in terms of the posi—

dons of co—triangular vertices. Since there is no global ordering ,

such a calculation accesses storage almost randomly . That is , the

code is highly scalar , and its efficiency on a vector machine is cor—

respondingly poor.

Nevertheless, it is also possible to obtain vectorized code in

this situation. The solution is to precompute arrays which duplicate

~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~
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the position data for each neighboring vertex. These “alias” arrays can

• be ordered consecutively in core in exactly the ordering necessary for

efficient vectorized code. Therefore although a good deal of extra

scalar computation is performed , the increase in speed obtainable for

the veccorized code more than compensates for the extra time. The use

of “alias” arrays has yielded decreases in computation time of roughly - ;

a factor of three. Typical timings for the Poisson solver are now 6.8

milliseconds per iteration for 120 vertices or about 60 microseconds

per iteration per vertex .

Although such increases in speed are encouraging , they are not

the final solution. Large calculations will require faster solvers.

The most promising approach is through the use of direct solvers , rather

than iterative ones. Although the matrix representing Eq. (5) does not

• exhibit the ordering of rectangular meshes , it is nonetheless sparse.

Furthermore, if the vertices are preordered by position, the non—zero

members will lie along rather diffuse bands. Recently , there has been

an increase in interest in fast solvers £ or such banded matrices and

several techniques look particularly encouraging.9’1° The outlook is

very good . Not only is a large class of problems now amenable to

Lagrangian calculations, but also at a computational cost per zone

competitive with other techniques.

-r 
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• Figure 1

Definition of a control volume about an interior vertex,
V1. The area of triangle j is apportioned equally to the
control volumes about V1, V2 and V3.
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Figure 2

Alteration of a control volume near a boundary. The por—
tion of triangle j  normally assigned to the vertex Vi is
divided between vertices V2 and V3.
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(b)

Figure 3
Conservation of vorticity while advancing vertex positions.
The triangle velocity is altered such that the V.dL line
integral contributions within the rotated and stretched
triangle remain the same for each vertex.
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(b)
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Figure 4

An example of stretched grids in Lagrangian simulations.
The initial grid has triangle velocities to the right in
the upper half of the fluid and to the left in the lower
half of the fluid (a). Periodic boundary conditions are
specified on the sides of the region. The grid very
quickly distorts in the vicinity of the shear layer (b).
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- Figure 5

The “nearest neighbor” reconnection algorithm. Lines are
reconnected to choose the shortest diagonal of a quadri— -
lateral (a) . Lines are not reconnected for “inverted”
quadrilaterals even if the exterior diagonal is shorter I

(b). Nor is the reconnection performed if the resultant
triangles are too dissimilar in size (c) . -
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Figur e 6
The reconnection algorithm to preserve diagonal dominance
of the Poisson Equation. The triangle and vertex labelling
used in the Poisson Equation is shown in (a) . Figure (b)
indicates the angles 8~ and ~~ used in the reconnection
test for the line from vertex c to vertex i.
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Figure 7

s The alteration of control volumes by a reconnection. Por—
tions of the control volumes about vertex 1 and vertex 2
are shown before and after  the reconnection.
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Figure 8,

The labelling for triangles and side vectors used in the
reversible algorithm to determine new triangle velocities.
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Figure 9
A test of the reconnection algorithm in SPLISH. The grid
at various t imes is presented for a simulation of an un—
perturbed shear layer . The grid at t — 0 corresponds to
that in Figure 4g. However , here the grid reconnects as
it stretches, as shown between t .036 sec and t — .040

• sec . In this simulation 8t a .004 sec , — 5 cm/sec and
the length of the system is 2. cm. At t — 2 .00 sec each
vertex in the upper layer has passed each vertex in the

• lover layer ten t imes. Any errors in assignment of
triangle velocities would have perturbed the unstable
equilibrium of the layer .
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FIgure 10
The grid and marker particles at two times in a simulation
of a perturbed shear layer . He re 8t — .001 sec ,— 5 cm/sec and the length of the system is 1 cm. At t —.300 sec the perturbed layer has grown to a mature
Kelvin—Helmholtz billow. Only reconnections were used
in restructuring the grid . At t — .329 sec the billow is
shearing . Two grid anomalies are circled .
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Figure 11
The grid for a hydrofoil near a free surface. jhe flow is
initially directed to the right with velocity U~
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Figure 12
Triangle configurations immediately before and after the
r emoval of a vertex. Vertex 4 is enclosed within triangle
L either as a result of normal reconnections or by forcing

- 
reconnections as it approaches vertex 2.
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(b)
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Figure 13
The addition of a vertex at a boundary . The vertices on
the boundary are moving along opposite sides of a sub-
merged body (a) , and resolution is lost for the leading
edge of the body. In (b) a new vertex is added on the
boundary. The old triangle is deleted and two new
triangles are added .
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(a) (b)

Figure 14

The deletion of a boundary vertex . The flow is converging
at the trailing edge of a submerged body (a) , resulting in
a clustering of vertices and the formation of Long thin
triangles. In (b) a vertex is removed by drawing a new
line to form the enclosing triangle. In (c3’ a new vertex
is added within the elongated triangle to preserve
resolution of the flow at the trailing edge . Subsequent
reconnections will remove the thin triangles.
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