AD-A04	8 724	WOODS INITI DEC 7	HOLE O AL CRUI 7 D A WHOI-7	CEANOGR SE REPO JOHNSON 7-70	APHIC I RT, ATL , A N S	ANTIS 1	ION M/	ASS LEG 1.(U) N0001	4-74-C-	F/G 8/1 0262 NL	.0	
	OF AD A048 724						 An and a straight of the straigh				RESURPCIN Augustanes Restransis		international and a second sec
jangense Market Jangense	distances			Romannais Geologia Statistica Statisticas Statisticas	etter (* 1997) 19 Alexandron (* 1997) 19 Alexandron (* 1997)	An and a second			Jackson		Appendix Sector 2014	- Exponent Barbonent Barbonent Annent Composition Recomposition Recomposition Recomposition	 BORDanning BORDANNING
		$\{\bar{I}\}$	ĪĪ	115	Rate				Ľ		1		
					T		TEÉNE		A Distance of the second secon				
						UMAN	References Barrier Barrier Barrier Barrier Barrier		END DATE FILMED 2-78 DDC				
	1.												

UNCLASSIFIED 12/77 SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) **READ INSTRUCTIONS** REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM REPORT NUMBER 2. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER WHOI-77-70 PE OF REPORT & PERIOD COVERED TITLE (and Subtitle) Technical rept, INITIAL CRUISE REPORT, ATLANTIS IT-94, LEG 1 PERFORMING ORG. REPORT NUMBER ONTRACT OF GRANT NUMBER(4) AUTHOR(.) NØØØ14-74-C-Ø262 David A. Johnson Ma Alexander N. Shor VSF-OCE76-81491 PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS Woods Hole Oceanographic Institution * N00014-74-C-0262 Woods Hole, MA 02543 11 CONTROLLING OFFICE NAME AND ADDRESS 2. REPORT DATE December 1977 NORDA NUMBER OF PAGES National Space Technology Laboratory Bay St. Louis, MS 39529 57 15. SECURITY CLASS. (of this report) A MONITORING AGENCY NAME & ABORESS(II different from Controlling Office) Unclassified 15. DECLASSIFICATION / DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) 1. Norwegian Sea Overflow 2. Contour Current 381 000 3. Turbidity Current 20 ADSTRACT (Continue on reverse side if necessary and identity by block number) During Leg 1 of cruise ATLANTIS II-94, a multidisciplinary investigation of present-day sediment-current interactions was carried out on the insular rise south of Iceland. The principal objective was to study the relationships between relatively steady thermohaline flow, episodic turbidity current flow, and the types of sediments associated with these current systems. The northern Iceland Basin is an optimal site for studying these effects because of the well-developed deep thermohaline current system resulting from overflow (Cont. on back) DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED 12/77 S/N 0102-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (When Dete Ent

and a completed that a community of the re-

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

from the Norwegian Sea, and the substantial input of terrigenous (largely volcanogenic) debris from the Iceland margin which has occurred since the post-glacial rise in sea level.

In this report, we outline the regional setting, objectives, and scientific operations of the cruise, and present examples of typical seismic profiles and 3.5 kHz records from areas of particular importance. All station locations are tabulated, and satellite fixes are listed.

Detailed data analysis will form the basis of Ph.D. dissertations (for A. Shor and M. J. Richardson). Scientific results of the cruise will be presented in these dissertations and in associated publications.

TIS	White Section
300	Ball Section 🗋
MANNOUNCE	0 0
INSTIFICATIO	W
BISIKISHT	DAVAILABILITY GUDES
DistRiseti	AVAIL and/or SPECIAL

WHOI-77-70

INITIAL CRUISE REPORT ATLANTIS 11-94, LEG 1

by

David A. Johnson and Alexander N. Shor

WOODS HOLE OCEANOGRAPHIC INSTITUTION Woods Hole, Massachusetts 02543

December 1977

TECHNICAL REPORT

Prepared for the Office of Naval Research under Contract N00014-74-C-0262; NR 083-004 and for the National Science Foundation under Grant OCE76-81491.

Reproduction in whole or in part is permitted for any purpose of the United States Government. In citing this manuscript in a bibliography, the reference should be followed by the phrase: UNPUBLISHED MANUSCRIPT.

Approved for public release; distribution unlimited.

Approved for Distribution

John I. Ewing, Chairman V Department of Geology & Geophysics

TABLE OF CONTENTS

ABSTRACT	3
INTRODUCTION	4
REGIONAL SETTING OF ICELAND BASIN	5
DUTLINE OF OBJECTIVES	7
SUMMARY OF SHIPBOARD OPERATIONS	9
LIST OF SCIENTIFIC PERSONNEL	15
SOURCES OF DATA	16
ACKNOWLEDGMENTS	17
REFERENCES	18
FIGURES	22
TABLES: LISTS OF STATIONS	38
APPENDIX: LISTING OF SATELLITE FIXES	47

and the second of the second s

Page

ABSTRACT

During Leg 1 of cruise ATLANTIS II-94, a multidisciplinary investigation of present-day sediment-current interactions was carried out on the insular rise south of Iceland. The principal objective was to study the relationships between relatively steady thermohaline flow, episodic turbidity current flow, and the types of sediments associated with these current systems. The northern Iceland Basin is an optimal site for studying these effects because of the welldeveloped deep thermohaline current system resulting from overflow from the Norwegian Sea, and the substantial input of terrigenous (largely volcanogenic) debris from the Iceland margin which has occurred since the post-glacial rise in sea level.

In this report we outline the regional setting, objectives, and scientific operations of the cruise, and present examples of typical seismic profiles and 3.5 kHz records from areas of particular importance. All station locations are tabulated, and satellite fixes are listed.

Detailed data analysis will form the basis of Ph.D. dissertations (for A. Shor and M. J. Richardson). Scientific results of the cruise will be presented in these dissertations and in associated publications.

-3-

INTRODUCTION

Our understanding of geologic processes along continental margins has advanced significantly during the past decade. Oceanographers have come to realize that downslope-flowing turbidity currents (e.g. Heezen and Ewing, 1952; and many others) are processes of major geological significance in transporting sediment along the sea floor. The deposits of turbidity currents are represented as units of coarse-grained and graded detrital sediments in flat-lying abyssal plains; as wedge-shaped fan deposits seaward of the continental rise; and as coarse channel deposits incised into the continental slope and rise (e.g. Ericson et al., 1952; Normark, 1970; Horn et al., 1971). Turbidity currents are infrequent and episodic phenomena resulting from either excess sediment input at the shelf edge or failure of slope sediments (Ericson et al., 1952; Kuenen, 1952). It is expected that widespread turbidity current activity occurs during low stands of sea level when the high energy coastal environment coincides with the shelf-slope contact, thereby allowing cross-shelf sediment transport under subaerial conditions and significant dissipation of wave energy where submarine canyons intersect the shelf and upper slope (e.g. Curray, 1965; Milliman et al., 1975). This may in part explain the apparently low frequency of turbidity currents at present as well as the thick Pleistocene turbidite sequences observed on many abyssal plains.

A second major process of geologic significance is sediment entrainment and redistribution by deep thermohaline currents, or "contour currents" (Heezen et al., 1966; Hollister and Heezen, 1972). Effects of these relatively steady currents are commonly observed in bottom photographs in the form of ripples, scour moats, and current lineations; on side-scan sonar records in the form of abyssal furrows, barchan dunes, and scour around boulders; or as sediment drifts, mud waves, and fields of hyperbolic echoes recorded on surface ship echo sounders (Hollister and Heezen, 1972; Hollister et al., 1974; Flood and Hollister, 1974; Jacobi et al., 1975; Damuth, 1975; Damuth and Hayes, 1977).

Sedimentary criteria have been proposed for distinguishing "contourites" from turbidites, primarily on the basis of studies along the eastern margin of North America (Field and Pilkey, 1971; Hollister and Heezen, 1972; Fritz and Pilkey, 1975). Studies of the interaction of these two processes have been difficult, however, due in part to the marked reduction in turbidity current activity since the rise in sea level associated with the last glacial retreat. In this report we have summarized the types of data obtained during a recent experiment to investigate sediment-current interactions in a region where both thermohaline currents and turbidity currents appear to be active agents of sedimentation and redeposition. The principal objective is to establish criteria that can be used to identify the effects of both processes in modern and ancient sediments.

REGIONAL SETTING OF ICELAND BASIN

Previous hydrographic studies in the Iceland Basin region have revealed a well-developed deep thermohaline current flowing southward along the eastern flank of the Reykjanes Ridge from its origin in the Norwegian Sea (Fuglister, 1960; Steele et al., 1962; Worthington and Volkmann, 1965; Worthington, 1970). The flow originates through several channels and sills across the Iceland-Faeroe and Scotland-Faeroe ridges, and is driven by downslope flow of high density (cold, fresh) Norwegian Sea water brought to shallow depths by convective winter overturning Worthington, 1970). The flow subsequently mixes with warmer, saline water of the main thermocline as it flows downslope (Worthington and Volkmann, 1965). At least some of the overflow may be episodic (Lee and Ellett, 1965; Ellett and Roberts, 1973; Crease, 1965), although the Faeroe Bank Channel appears to maintain a steady flow (Crease, 1965). Episodic overflow may account for the variable volume transport calculated by Worthington and Volkmann (1965) along the length of the flow (from 2.0 to 7.6 x $10^6 \text{ m}^3/\text{sec}$). Velocities measured within the overflow current along the margin of the Iceland Basin (Steele et al., 1962; Worthington and Volkmann, 1965; Hollister et al., 1976) are typically within the range of 10 to 30 cm sec⁻¹.

The Iceland Basin is perhaps one of the few areas in which turbidity currents may be active. The Iceland insular slope is cut by numerous turbidity current channels (see Figure 1), at least one of which originates near the active off-shore volcano Surtsey and may empty into Maury Channel (Cherkis et al., 1973). In addition, there is some evidence to suggest that turbidity current activity may be reduced on Iceland during glacial maxima due to nearly complete ice cover and entrapment in fjords (Thorarinsson, 1937; Schwarzbach, 1955; Hoppe, 1968). High sedimentation rates (up to 100 cm/1000 yrs) along the flanks of Reykjanes Ridge to the south are suggested during deglaciation and interglacial periods (Ruddiman and Bowles, 1976). Hence, recent turbidite deposits in this region may be relatively undisturbed by thermohaline current activity.

Two major sediment drifts are well developed in the Iceland Basin, and both are presumed to have been developed by steady bottom currents (Johnson and Schneider, 1969; Jones et al., 1970; Davies and Laughton, 1972) transporting sediments down-current from Iceland (Gardar Ridge) or southern Rockall Bank (Hatton Drift). Morphologically these drifts range from smooth, convex piles to irregular deposits with mud waves and scour, and from sharply peaked to nearly flat. The Katla Ridges may also owe their formation to bottom currents acting on glacial outwash and volcanic debris from Iceland. However, the underlying basement structure may at least partly control both their early genesis and their subsequent morphological development.

The transition region between the sediment drift deposits and the turbidity current channel and fan deposits on and around the Katla Ridges displays evidence for both turbidite and thermohaline current sediment deposition, and appears to provide an ideal setting for an investigation of the interaction of turbidity currents with thermohaline bottom currents, or "contour currents".

OUTLINE OF OBJECTIVES

The observations obtained on Leg 1 of cruise AII-94 were centered around the following major objectives:

1) Define the present-day deep thermohaline circulation in and around the Iceland Basin, emphasizing the location and strength of bottom boundary currents. Of particular importance is describing how the boundary current flows around the irregular bathymetry of the Katla Ridges. CTD profiles, direct current measurements, and bottom photographs are the main sources of data for this effort.

2) Interpret sediment properties in terms of source areas and probable modes of deposition, in order to determine appropriate criteria for discriminating between turbidity current and "contour current" deposits. Sediment properties to be investigated include those compositional variations which reflect changes in depositional regime, as well as physical characteristics such as cross-bedding, graded bedding, particle size distribution, matrix content and surface bed forms. Compositional parameters to be investigated include:

- a) carbonate content;
- b) feldspar: quartz ratio: and
- c) variations in smectite and/or palagonite (altered ash) content.

We expect that the latter two may prove useful in estimating rates of terrigenous input of the fine fraction from Iceland. The orientation of the cores using paleomagnetic declinations should allow a discrimination between structures and fabrics produced by down-slope transport and those produced by the transverse thermohaline flow.

We are devoting a portion of our effort to establishing relationships between sediment properties and 3.5 kHz echo character. We expect that intensive study of closely spaced box cores and piston cores from within a relatively small region may allow us to interpret lateral continuity of sediment layers and their correlation to acoustic reflectors. We anticipate that this study of acoustic layering and sediment properties may allow us to extrapolate the physical nature of sediments beyond the maximum penetration depth of our piston corer (13 meters) and in regions which we were unable to sample. 3) Observe the thickness, areal extent and spatial variability of the near-bottom mixed layer and nepheloid layer throughout the Katla Ridge study area. We hope to establish how this bottom boundary layer (BBL) varies with

- a) position relative to the thermohaline current axis;
- b) bathymetric relief;
- c) current velocity; and
- d) sediment microrelief.

We intend to investigate the relationships between the BBL thickness, suspended sediment size distribution and composition, and the properties of the surface sediments.

4) If we are successful in achieving objectives 1-3, we intend to analyze sediments down-core in an attempt to interpret the effects of Late Pleistocene glaciation and deglaciation on Iceland Basin and Katla Ridge depositional processes.

SUMMARY OF SHIPBOARD OPERATIONS

Resume

Leg 1 of cruise ATLANTIS II-94 departed the fuel dock in New Bedford at approximately 2200Z on 14 June 1977. The ship set an easterly course for the first several hundred miles to avoid early summer fog and ice conditions in the vicinity of Newfoundland and the Grand Banks, then turned northeastward (near 42°N, 45°W) and set course toward the region of detailed study in the Iceland Basin. During the transit to the Iceland Basin, which required approximately 112 days, echo-sounding (3.5 kHz) and magnetometer observations were obtained continuously. Approximately 22 hours en route were spent seismic profiling at slightly reduced speeds (~ 8 knots) in order to test the various parts of the system. In addition, approximately 16 hours were devoted to station work at two sites on the continental rise south and east of the Grand Banks for purposes of testing the CTD, nephelometer, camera, and box core. After deploying a packet of letters and other parcels at Grand Banks Mail Buoy #2, the ship proceeded at full speed toward the Iceland Basin. Detailed work in the Iceland Basin region began at approximately 2000/June 25, and terminated at 1200/July 11. Following completion of all work, near 62°45'N, 20°00'W, the ship proceeded to Reykjavik by way of Surtsey volcano and the Reykjanes peninsula. Leg 1 terminated in Reykjavik at 0930Z on 12 July 1977.

Underway Observations

Approximately 5 days were devoted to continuous seismic profiling in the Iceland Basin region (Figure 2) to supplement the previously existing coverage. Four recorders were used continuously, using different sweep rates and filter settings. We found that the use of multiple recording options was important in allowing the identification and resolution of subbottom features of various scales. Figure 3, 4, and 5 illustrate some of the seismic profiles obtained on cruise AII-94. Figures 3 and 4 show profiles normal to and parallel to the major axes of the East and West Katla Ridges. Figure 5 shows several profiles crossing the turbidity current channel which separates the East and West Katla Ridges, near the point where the channel widens and crosses the path of the southwestward-flowing Norwegian Sea overflow.

1. Profiles Transverse to Katla Ridges.

Acoustic basement is very poorly defined on most reflection profiles crossing the Katla Ridges. A near-horizontal coherent reflector can be identified at a total depth of ~ 3.3 sec beneath the West Katla Ridge (Figure 3, Profile P'P), and this reflector may represent original volcanic basement. The basement reflector would presumably deepen slightly toward the east, following the normal subsidence curve for oceanic crust. Since this deepest reflector is neither well defined nor traceable over great distances, isopach maps relative to this reflector cannot be constructed with great confidence. The total sediment thickness beneath the axes of the East and West Katla Ridges is at least ~ 1.5 sec, but could be considerably greater.

The general character of the reflectors suggests two principal depositional phases. Beneath the West Katla Ridge (Profile P'P), and presumably beneath the East Katla Ridge as well, approximately 0.5 to 1.0 sec of relatively transparent sediment conformably overlies acoustic basement (Figure 3). This transparent unit is overlain by the acoustically stratified sequences representing the Katla Ridge sediments, which range in thickness from near-zero in the channels to ~ 0.7 sec near the ridge axes. The evidence suggests that normal pelagic deposition characterized this portion of oceanic crust for much of its early history. Onset of deposition of the more stratified drift deposits presumably corresponds to the time when normal crustal spreading and subsidence brought this portion of crust sufficiently far to the east to be under the influence of turbidity current flow from the Iceland margin and thermohaline flow from the Norwegian Sea. Alternatively the initiation of the ridge deposits may correspond with a marked increase in turbidity current activity and/or thermohaline flow during the late Neogene.

Although the east flank of the East Katla Ridge generally has smooth relief, the otherwise smooth surface is occasionally interrupted by small distributary channels (Profile E'E at 0515) and slumps (Profile P'P at 0515) which document the presence of downslope sediment reworking. Postdepositional faulting of the drift deposits appears to occur on a local scale (Profile P'P at 0400 and 0700), perhaps in response to differential cooling and subsidence of the underlying volcanic crust. The profiles suggest that the East and West Katla Ridges have been distinct features with a well-defined channel separating them since their initial formation. Although relatively recent deepening of the channel is suggested by the apparent outcrops of deep reflectors on the flanks (Profile E'E at 0845), it is evident that some form of channel has served as a turbidite pathway between the East and West Katla Ridges since their initiation. Thus ridge growth and channel development have co-occurred, and perhaps are genetically related.

2. Profiles Along Axes of Katla Ridges.

Identification of acoustic basement is as uncertain for the along-axis profiles as for the transverse profiles. Beneath the West Katla Ridge there is a weak reflector at a total depth of 3.0-3.5 sec (Profile C'C) which apparently corresponds with the reflector observed on the transverse crossing (Profile P'P), but no such reflector can be identified beneath the East Katla Ridge (Profile GG'). On both ridges there is dramatic evidence for current scouring at a depth of around 1500 meters (Profile C'C at 1200 to 1300; Profile GG' at 2000). Although some of the irregular topography may be due to localized slumping, the continuity of deeper reflectors suggests deep scour and erosion of some of the most recently deposited sediment at this depth interval. On the West Katla Ridge, a 50-meter near-vertical scarp is present at a depth of ~ 2150 meters (Profile C'C at 1715). Again the continuity of sub-bottom reflectors across this feature suggests that it is erosional and not tectonic in origin. An explanation for the presence of such a pronounced feature at this particular depth on the ridge will require interpretation of the hydrographic data and available core material from above and below the scarp.

Dramatic evidence for faulting of deeper reflectors is not as evident on the ridge-parallel profiles as on the transverse profiles, suggesting that the fault planes may be oriented sub-parallel to the sediment ridges. This interpretation is consistent with a pattern of normal faulting as a consequence of cooling and subsidence of the underlying volcanic crust.

3. Profiles Across Turbidity Current Channel.

A sequence of reflection profiles across the channel separating the East and West Katla Ridges (Figure 5) reveals the changing morphology and structure of the channel as it emerges from between the ridges and intersects the steady thermohaline flow. Toward the head of the channel the walls are relatively steep, the channel floor is imperceptibly narrow, and smaller distributary channels apparently feed into the main channel from the adjacent sediment drifts (Figure 5, Profile FF'). As the channel approaches the axis of the thermohaline flow, the channel becomes broader, its walls are less precipitous, and meanders and abandoned channels appear (e.g. Profile AA' at 1600-1700). It is evident that significant modification of the sediments within and bordering the channels is occurring in the depth interval below ~ 2000 m.

Low-frequency (3.5 kHz) echo sounding profiles were obtained during the entire 15¹/₂ days of operation in the Iceland Basin, and allowed detailed resolution of the sea floor echo character and shallow sub-bottom stratification. These profiles proved to be crucial in identifying and tracing sub-bottom reflectors, and selecting sites for coring and hydrographic observations. Examples of some of these profiles, near the intersection of the turbidity current channel and the thermohaline flow, are shown in Figure 6. The 3.5 kHz profiles reveal details of sedimentation within and adjacent to the turbidity current channel which cannot be resolved with lower-frequency seismic profiles. Farther up-canyon (Profiles FF', GG') the walls of the channel are precipitously steep with 50-100 meters of relief, and shallow sub-bottom reflectors from beneath the East Katla Ridge outcrop on the channel walls (Profile GG'). Down-canyon from Profile GG' the channel changes character dramatically. Relatively transparent sediments now flank the channel (Profiles DD' add MM'), and the channel floor consists of highly stratified sub-horizontal reflectors. In one profile (Profile DD' form 2200 to 2220) it appears that 3 distinct acoustic units grade imperceptably together; elsewhere (e.g. Profile K'K from 0400 to 0425) it appears that stratified channel deposits unconformably overlie relatively transparent sediments of the former channel wall. Interpretation of the lithologic and stratigraphic relationships of the various acoustic units represented in these profiles will require extensive analyses of the closely-spaced cores from within and around the channel in this region.

Passing ships and marine life were very scarce, with the exception of an abundant standing crop of phytoplankton and zooplankton, and an ever-present but elusive cloud of sea birds which increased the hazard of deck operations.

Station Data

1. <u>CTD Profiles</u>. Twenty-six CTD profiles were obtained in the Iceland Basin region (see Table 1 and Figure 7), using the CTD system developed by R. Millard and L. Armi at Woods Hole. Six additional lowerings were made at test stations near the Grand Banks (Table 1). Of the total of thirty-two stations, the CTD functioned well on only eight of them.

There were three main problems that were encountered with the CTD during the cruise. They were:

- 1) Dead batteries in CTD #3;
- 2) Noisy signal in CTD #1; and
- 3) Digitizing error in CTD #3.

Five of 17 batteries (lifetime should be 1-2 years) had to be replaced in CTD #3. We then decided to use this instrument only as a backup. CTD #1 worked well for some time, but the noise increased dramatically and despite washing the sensor it was not cleared up. We then returned to using CTD #3, but immediately discovered that the conductivity measurements were being incorrectly digitized. We were unable to satisfactorily solve this problem at sea. During the four months immediately following completion of the cruise, we have succeeded in retrieving the conductivity signal with a program that eliminates the digitizing error. In all these casts there were no problems with temperature measurements.

In summary, of the 32 CTD lowerings (including 5 test stations):

- a) 8 of 32 casts were satisfactorily processed at sea;
- b) 5 of 32 casts were discarded due to bad batteries:
- c) 3 of 32 casts have a large amount of noise in the signal; and
- d) 16 of 32 produced a strong signal but have required considerable post-cruise effort for editing.

2. <u>Nephelometer profiles</u>. A total of twenty-seven nephelometer profiles were obtained in the Iceland Basin region (Table 2), using the system developed at Lamont-Doherty by Thorndike (1975). In general the locations of the nephelometer stations correspond with the CTD lowerings (Figures 7 and 8), with the nephelometer attached to the wire 10 meters above the CTD. However, in a few instances additional nephelometer profiles were obtained on hydrographic stations. All aspects of the nephelometer system functioned as required.

3. <u>Hydrocasts</u>. Twenty four hydrographic stations were occupied (Table 3, Figure 8), each of which consisted of between five and fifteen water samples (using 5-liter bottles and 30-liter bottles). Water samples were filtered through 0.6 µ Nuclepore filters for analysis of the concentration and composition of suspended particulates, and comparison between the composition of the particulates and the underlying surface sediments. The measurements of total concentration of suspended particulates will also be used in an attempt to calibrate the nephelometer profiles.

4. <u>Sediment trap moorings</u>. In order to estimate the vertical flux of suspended particulates, three moorings of sediment traps were deployed in the Katla Ridge region: two along the East Katla Ridge transect, and one near the turbidity current channel (Figure 8, Table 6). The traps are a

modification of the type used by Gardner (1977); each is a PVC cylinder 10 inches (25.4 cm) in diameter and 25 inches (62.5 cm) in height. Each of the three moorings consisted of three traps placed at levels of 10 m, 100 m, and 500 m above the sea floor. A timed release was used at the base of each mooring to close the lowermost trap, and to release the anchor weights 2.4 hours later. A second timed release was used at the top of each mooring to close the top trap and to drop a messenger to close the intermediate trap below. The traps were positioned vertically so as to estimate vertical flux of particulates both within and above the near-bottom nepheloid layer.

5. <u>Bottom current measurement</u>. Three current meters, of the type developed by Scripps' Marine Life Research Group, were deployed at a total of six locations on the east flank of the East Katla Ridge in order to measure the speed and direction of the thermohaline current flowing along the ridge. Each instrument was positioned 10 meters above the sea floor, and recorded currents over a period of approximately one week (Table 5). The location of the transect of current meters corresponds with the transect of CTD stations, so as to allow the estimation of the absolute velocity field from the computations of geostrophic current velocity (i.e., vertical velocity gradients) along the same profile. The mean flow observed at each of the six stations was generally westward to southwestward (Figure 7), with velocities ranging from 5.8 to 20.8 cm/sec in the direction of mean flow, averaged over the total duration of the record (Table 5).

6. <u>Coring</u>. Twelve standard piston cores and fourteen box cores were obtained in the Katla Ridge area (Tables 7 and 8; Figure 8). The box core used is that described by Bouma (1969, p. 339-342). Generally the box core functioned well with excellent recovery of near-surface sedimentary structures. However, the locking compass used for core orientation failed in all but one attempt. Tests on deck suggested that the corer is <u>not</u> strictly non-magnetic, and further work will therefore be required to obtain oriented box cores routinely. It is possible that paleomagnetic declination can be used for azimuthal orientation of the cores, but the validity of the method for the Iceland Basin core material remains to be tested. All piston cores were rigged with 40 feet (~ 13 meters) of core barrel, and generally penetrated completely with only a minor amount of flow-in.

7. <u>Bottom photography</u>. Nine camera stations in the Katla Ridge area yielded one or more useable exposures, and a total of 42 useable exposures were obtained in the region (Table 4; Figure 9). Examples of several of the photographs from the East Katla Ridge and from the turbidity current channel are presented in Figures 10 through 14. The camera used (Benthos Model 371 Utility Camera System) was extensively tested in shallow water and consistently performed in a satisfactory manner, but failed repeatedly during the Iceland Basin work, despite extensive efforts by electronics technicians to remedy the problems.

LIST OF SCIENTIFIC PERSONNEL

AII-94, Leg 1 June 14-July 12, 1977

Associate Scientist

Research Specialist

Research Associate Research Assistant

Research Assistant

Research Assistant

Research Assistant

WHOI-MIT Joint Program

WHOI-MIT Joint Program

WHOI-MIT Joint Program

WHOI-MIT Joint Program

Brown University

Wesleyan Univeristy

Lab Assistant

MIT

WHOI-MIT Joint Program

Name

1. Johnson, David A. Shor, Alexander N. 2. 3. Witzell, W. E. 4. Driscoll, Alan H. 5. Davies, Rod F. 6. Farmer, Harlow G. 7. Peters, Christopher S. 8. Porter, David 9. Thayer, Robert J. 10. Chandler, Rick 11. Richardson, Mary Jo 12. Bremer, Mary L. 13. Zlotnicki, Victor 14. Duschenes, Jeremy 15. Rohr, Kristin 16. Galson, Dan 17. Muller, David S. 18. Markwalter, Bruce 19. Graham, Jery B. 20. Belanger, Paul

21. M^CNutt, Steve

Position

Shipboard Responsibilities

Chief Scientist Co-Chief Scientist seismics coring, camera seismics coring coring, digital data CTD Research Assistant (IPC) computer coring hydrography/sed. traps watchstander watchstander watchstander; CTD WHOI-MIT Joint Program watchstander watchstander WHOI Summer Student Fellow watchstander; CTD Lamont-Doherty Geol. Obs. nephelometer Scripps Inst. of Oceanogr. current meters paleontology watchstander

-15-

SOURCES OF DATA

During the two years immediately following the completion of cruise AII-94, all geological, geophysical, and oceanographic data resulting from the cruise will be under study by D. Johnson, A. Shor, and M. J. Richardson of Woods Hole; the data will be the principal basis for the doctoral dissertations of Shor and Richardson.

Following July of 1979, original records will be available from the following sources;

Type of Data	Person to Contact
Echo sounding (3.5 kHz)	W. M. Dunkle, Jr. (WHOI)
Seismic reflection profiles	E. T. Bunce (WHOI)
Magnetics	R. Groman (WHOI)
Navigation	R. Groman (WHOI)
Current meter	J. L. Reid (Scripps)
Nephelometer	L. G. Sullivan (Lamont)
Bottom photographs	W. M. Dunkle, Jr. (WHOI)
CTD	R. Millard (WHOI)
Hydrocasts	E. Schroeder (WHOI)
Cores	D. A. Johnson (WHOI)

ACKNOWLEDGMENTS

Financial support for shipboard operations and most of the postcruise data analysis for Leg 1 of cruise AII-94 was provided by N.S.F. Grant OCE76-81491. Sediment trap and hydrocast operations received partial support under O.N.R. Contract NO0014-74-C-0262.

Numerous individuals and institutions provided access to unpublished data which proved helpful in planning and carrying out the shipboard programs. Bathymetric data and contour charts were provided by P. Lonsdale (Scripps) and by J. Egloff of NAVOCEANO. Copies of seismic reflection profiles obtained in the Iceland Basin on previous cruises were provided by Barbara Long of Deep Sea Drilling and J. Egloff of NAVOCEANO. Lithologic and stratigraphic information on existing cores in the area was provided by F. McCoy of Lamont-Doherty and the staff of the Deep Sea Drilling Project. Unpublished hydrographic, CTD, and current meter data were provided by S. A. Malmberg (Iceland), D. Spencer and C. Hollister (Woods Hole), and P. Lonsdale (Scripps).

The assistance of the many individuals who worked with us during cruise preparation is gratefully acknowledged. C. D. Hollister provided continuing support and encouragement in formulating the overall objectives of the program and the methods of approach. E. T. Bunce assisted in planning and setting up the geophysical programs. W. D. Gardner, J. E. Broda, and Lynn Whiteley assisted in checking out equipment, and in the many logistical aspects of pre-cruise preparation. Dr. A. H. Bouma of the U.S. Geological Survey generously provided the box corer and accessory supplies. Arrangements for rental and operation of the CTD system were made by R. Millard. Current meter rental was arranged with the assistance of G. Anderson and S. Ferreira of the Marine Life Research Group (Scripps). Rental of the Lamont nephelometer system was provided through the courtesy of L. G. Sullivan and P. E. Biscaye.

Finally, we thank the officers and crew of R/V ATLANTIS II and each member of the scientific party on Leg 1 for their dedicated and enthusiastic efforts at sea. The success of the many aspects of the scientific program is in large measure a result of their support and cooperation.

REFERENCES

- Bouma, A. H., 1969. <u>Methods for the Study of Sedimentary Structures</u>, Wiley-Interscience, New York.
- Cherkis, N. Z., H. S. Fleming, and R. H. Feden, 1973. Morphology and structure of Maury Channel, Northeast Atlantic Ocean. Bull. Geol. Soc. of America, vol. 84, p. 1601-1606.
- Crease, J., 1965. The flow of Norwegian Sea Water through the Faeroe Bank Channel. Deep-Sea Research, vol. 12, p. 143-150.
- Curray, J. R., 1965. "Late Quaternary history, continental shelves of the United States", in <u>The Quaternary of the United States</u>, H. E. Wright, and D. G. Frey, eds., Princeton Univ. Press, Princeton, N. J., p. 723-735.
- Damuth, J. E., 1975. Echo character of the western Equatorial Atlantic floor and its relationship to the dispersion and distribution of terrigenous sediments. Marine Geology, vol. 18, p. 17-45.
- Damuth, J. E. and D. E. Hayes, 1977. Echo character of the east Brazilian continental margin and its relationship to sedimentary processes. Marine Geology, vol. 24, p. 73-95.
- Davies, T. A., and A. S. Laughton, 1972. Sedimentary processes in the North Atlantic. <u>In</u> Laughton, Berggren, et al., Initial Reports of the Deep Sea Drilling Project, Vol. XII, Washington (U.S. Government Printing Office), p. 905-934.
- Ellett, D. J. and D. G. Roberts, 1973. The overflow of Norwegian Sea deep water across the Wyville-Thompson Ridge. Deep-Sea Research, vol. 20, p. 819-835.
- Ericson, D. B., M. Ewing, B. C. Heezen, 1952. Turbidity currents and sediments in the North Atlantic. Am. Assoc. Petrol. Geol. Bull., v. 36, p. 489-511

- Field, M. E. and O. H. Pilkey, 1971. Deposition of deep sea sands: comparison of two areas of the Carolina continental rise. Jour. Sed. Petr., vol. 41, p. 525-536.
- Flood, R., and C. D. Hollister, 1974. Current-controlled topography on the continental margin of the eastern United States, in C. Burk and C. Drake, eds., <u>The Geology of Continental Margins</u>, Springer-Verlag, New York, p. 197-205.
- Fritz, S. and Pilkey, O. H., 1975. Distinguishing bottom and turbidity current coarse layers on the continental rise. Jour. Sed. Pet., vol. 45, p. 57-62.
- Fuglister, F. C., 1960. Atlantic Ocean Atlas, Woods Hole Oceanographic Inst. Atlas Series, vol. 1, Woods Hole, 209 pp.
- Gardner, W. D., 1977. Fluxes, dynamics, and chemistry of particulates in the ocean. Ph.D. dissertation, Mass. Inst. Technol. - Woods Hole Oc. Inst., 405 pp.
- Heezen, B. C. and M. Ewing, 1952. Turbidity currents and submarine slumps and the Grand Banks earthquake. Am. Jour. Sci., vol. 250, p. 849-873.
- Heezen, B. C., C. D. Hollister and W. F. Ruddiman, 1966. Shaping of the continental rise by deep geostrophic contour currents. Science, vol. 152, p. 502-508.
- Hollister, C. D. and B. C. Heezen, 1972. Geologic effects of ocean bottom currents: Western North Atlantic. In A. Gordon, ed., <u>Studies in Physical Oceanography</u>, Gordon and Breach, London, Vol. II, p. 37-66.

Hollister, C. D., R. Flood, D. Johnson, P. Lonsdale, and J. Southard, 1974. Abyssal furrows and hyperbolic echo traces on the Bahama Outer Ridge. Geology, vol. 2, p. 395-400.

- Hollister, C. D., W. D. Gardner, P. F. Lonsdale and D. W. Spencer, 1976. New evidence for northward flowing bottom water along the Hatton sediment drift, eastern North Atlantic, (abstract) EOS, vol. 57, p. 261.
- Hoppe, Gunnar, 1968, Grimsey and the maximum extent of the last glaciation of Iceland, Geografiska Annaler, vol. 50(A), p. 16-24.
- Horn, D. R., M. Ewing, B. M. Horn and N. Delach, 1971. Turbidites of the Hatteras and Sohm Abyssal Plains, Western North Atlantic. Marine Geology, vol. 11, p. 287-323.
- Jacobi, R. D., P. D. Rabinowitz and R. W. Embley, 1975. Sediment waves on the Moroccan continental rise. Marine Geology, vol. 19, p. M61-M67.
- Johnson, G. L., and E. D. Schneider, 1969. Depositional ridges in the North Atlantic, Earth and Planetary Science Letters, vol. 6, p. 416-422.
- Jones, E. J. W., M. Ewing, J. Ewing and S. Eittreim, 1970. Influences of Norwegian Sea overflow water on sedimentation in the northern North Atlantic and Labrador Sea. Jour. Geophys. Res., vol. 75, p. 1655-1680.
- Kuenen, P. H., 1952. Estimated size of the Grand Banks turbidity current. Amer. Jour. of Sci., vol. 250, p. 874-887.
- Lee, A., and D. Ellett, 1965. On the contribution of overflow water from the Norwegian Sea to the hydrographic structure of the North Atlantic Ocean. Deep-Sea Research, vol. 12, p. 129-142.
- Mann, C. R., A. R. Coote, and D. M. Garner, 1973. The meridional distribution of silicate in the western Atlantic Ocean. Deep-Sea Research, vol. 20, p. 791-801.
- Milliman, J. D., C. P. Summerhayes, and H. T. Barretto, 1975. Quaternary sedimentation on the Amazon continental margin: A model. Geol. Soc. Amer. Bull., vol. 86, p. 610-614.

Normark, W. R., 1970. Growth patterns of deep-sea fans. Amer. Assoc. Petrol. Geol. Bull., vol. 54, p. 2170-2195.

- Ruddiman, W. F., and F. A. Bowles, 1976. Early interglacial bottomcurrent sedimentation on the eastern Reykjanes Ridge. Marine Geology, vol. 21, p. 191-210.
- Schwarzbach, Von Martin, 1955. Allgemeiner Überblick der Klimageschichte Islands. N. Jahrbuch f. Geologie u. Paläontologie, p. 97-130 (in German).
- Steele, J. H., J. R. Barrett, and L. V. Worthington, 1962. Deep currents south of Iceland. Deep-Sea Research, vol. 9, p. 465-474.
- Thorarinsson, Sigurdur, 1937. The main geological and topographical features of Iceland. Geographiska Annaler, vol. 19, p. 161-175.
- Thorndike, E. M., 1975. A deep sea photographic nephelometer. Ocean Engineering, vol. 3, p. 1-15.
- Worthington, L. V., 1970. The Norwegian Sea as a Mediterranean basin. Deep-Sea Research, vol. 17, p. 77-84.
- Worthington, L. V., and G. H. Volkmann, 1965. The volume transport of the Norwegian Sea overflow water in the Atlantic Ocean. Deep-Sea Research, vol. 12, p. 667-676.

LIST OF FIGURES

Figure 1. Index map of Iceland Basin bathymetry, showing principal turbidity current channels. Heavy arrows designate the path of Norwegian Sea overflow along the Katla Ridges and Gardar Ridge. Contours are in corrected meters. The box indicates the area shown in Figure 2.

- Figure 2. Locations of seismic reflection profile records obtained on cruise AII-94 in the vicinity of the East and West Katla Ridges. Several of these profiles are illustrated in Figures 3 through 6. Times and dates along the ship tracks are indicated to allow keying with the profiles presented.
- Figure 3. Seismic reflection profiles P'P and E'E, oriented transverse to the axis of the East Katla Ridge. Acoustic basement (?) appears at a total depth of ~ 3.3 sec on profile P'P. Deep reflectors appear to outcrop on the walls and floor of the canyons.
- Figure 4. Seismic reflection profiles oriented along the axis of the West Katla Ridge (Profile CC') and East Katla Ridge (Profile GG'). Note the well-defined scarps and irregular topography suggesting erosional scour and/or slumping at a depth of 1500 meters on both ridges.
- Figure 5. Succession of seismic reflection profiles across turbidity current channel separating the East and West Katla Ridges. The channel is narrow and steep-walled in the northwest, and becomes less well defined as it crosses the axis of the transverse thermohaline flow near 2100-2200 m (Profiles KK', AA'). Note the buried abandoned channel to the west of the present-day channel axis on Profile AA'.
- Figure 6. Succession of 3.5 kHz records across turbidity current channel separating East and West Katla Ridges. Profile locations are shown on Figure 2.

LIST OF FIGURES (cont'd)

- Figure 7. Locations of CTD stations and current meters. Arrows on current meter symbols designate the mean flow speed and direction during the period of observation. Station locations are listed in Tables 1 and 5.
- Figure 8. Locations of hephelometer profiles, hydrocasts, and sediment traps. Station locations are listed in Tables 2, 3, and 6.
- Figure 9. Locations of piston cores, box cores, and camera stations. Station locations are listed in Tables 4, 7, and 8.
- Figure 10. Bottom photograph from camera station #3, near the summit of the East Katla Ridge (depth - 1194 meters). Note welldeveloped lineations of microrelief indicative of westwardflowing near-bottom currents.
- Figure 11. Bottom photograph from camera station #9, near zone of strong thermohaline flow on east flank of East Katla Ridge (depth = 1732 meters). The abundant pebbles and cobbles are evidently a lag deposit produced by intense winnowing of finer sediment components at this depth on the ridge.
- Figure 12. Bottom photograph from camera station #7, near base of east flank of East Katla Ridge (depth = 2211 m). Well-preserved lebensspuren suggest minimal near-bottom current activity at this depth on the ridge.
- Figure 13. Bottom photograph from camera station #11, in axis of turbidity current channel near intersection with thermohaline flow.
- Figure 14. Bottom photograph from camera station #12, in axis of turbidity current channel. Coarse graded sands (turbidites?) were cored at this location.

Figure 1.

-24-

.

-

and a complete of the for the monthly

5.700

Figure 2.

and a come birder

-28-

-29-

the serve the second states a manufact the second

Figure 8.

-

" per t

Figure 9.

and an interest and at the second of

East Katla Ridge, depth 1194 m AII-94, Stn. 18, Cam. #3, Frame 39

6

- Parentine it

East Katla Ridge, depth 1732 m AII-94, Stn. 47, Cam. #9, Frame 10

1

East Katla Ridge, depth 2211 m AII-94, Stn. 36, Cam. #7, Frame 29

1

-35-

Turbidity current channel, depth 2145 m AII-94, Stn. 59, Cam. #11, Frame 18

1

any and as a manager that and are

-37-

Turbidity current channel, depth 2082 m AII-94, Stn. 63, Cam. #12, Frame 35

1

TABLES

1. CTD Stations

.

- 2. Nephelometer Stations
- 3. Hydrocasts
- 4. Camera Stations
- 5. Current Meters
- 6. Sediment Trap Moorings
- 7. Piston Cores
- 8. Box Cores

we build it is a standard

A States

Station	CTD No.	Date	Time	Depth (m)	Latitude	Longitude
2	1	16 June	1555-1703	4554	40°35.1'N	64°04.4'W
4	2	16 June	2134-2140	4543	40°37.4'N	62°58.6'W
5	3	16 June	2152-2313	4543	40°38.0'N	62 ⁰ 58.0'W
6	4	16 June	2322-2331	4546	40°38.0'N	62 ⁰ 58.0'W
7	5	19 June	1156-1205	3816	41°39.7'N	47°55.7'W
9	6	19 June	1502-1734	3947	41°40.0'N	47°54.2'W
17	7	27 June	1016-1151	1183	62°34.0'N	18°13.0'W
19	8	27 June	1633-1800	1395	62°31.4'N	18°04.4'W
22	9	27 June	2323-0130	1598	62°28.7'N	17°53.1'W
25	10	30 June	0055-0244	1796	62°23.1'N	17°44.1'W
28	11	30 June	0912-1125	1989	62°18.3'N	17°24.8'W
30	12	30 June	1554-2035	2167	62°11.7'N	17 ⁰ 04.5'W
32	13	1 July	0935-1200	2310	61°43.4'N	15 ⁰ 40.2'W
34	14	1 July	1843-2115	2276	61°51.1'N	16 ⁰ 09.8'W
37	15	2 July	2105-2306	2207	62 ⁰ 04.0'N	16°38.7'W
38	16	2 July	2315-0018	2199	62 ⁰ 05.2'N	16 ⁰ 38.5'W
40	17	3 July	2028-2137	1984	62 ⁰ 18.6'N	17°21.6'W
46	18	4 July	1145-1248	1696	62°25.5'N	17°45.7'W
53	19	5 July	1523-1644	2175	61°43.5'N	18°39.9'W
54	20	5 July	1647-1704	2173	61 ⁰ 43.8'N	18°39.4'W
58	21	6 July	0145-0321	2165	61 ⁰ 53.1'N	18 ⁰ 48.6'W
62	22	6 July	1539-1705	2082	62 ⁰ 08.8'N	19 ⁰ 05.0'W
65	23	6 July	2315-0149	1561	62 ⁰ 11.7'N	19 ⁰ 21.3'W
67	24	7 July	0643-0827	1522	61 [°] 57.0'N	19 ⁰ 26.7'W
68	25	7 July	1040-1235	1841	61 ⁰ 44.7'N	19°04.3'W
70	26	7 July	1707-1932	2237	61 ⁰ 31.5'N	19 ⁰ 19.9'W
72	27	8 July	0057-0305	2096	61 ⁰ 33.8'N	18°47.9'W
74	28	8 July	0653-0937	2300	61°25.0'N	18 ⁰ 31.8'W
75	29	8 July	1130-1333	2433	61 ⁰ 10.8'N	18°14.0'W
76	30	8 July	1530-1735	2501	60°54.3'N	17°51.1'W
81	31	10 July	0030-0230	1851	62 ⁰ 25.8'N	18°41.6'W
84	32	10 July	2020-2130	1991	62 ⁰ 18.4'N	17°25.3'W

whether we want the discharge the state of the

1

1000

いたいというというないないないであるというないである

TABLE 2. NEPHELOMETER STATIONS

we - town but the state and an answer of the state of

Station	Neph. No.	Date	Time	Depth (m)	Latitude	Longitude
2	1	16 June	1636-1724	4554	40°35.1'N	63 ⁰ 04.4'W
5	2	16 June	2152-2313	4543	40°38.0'N	62 ⁰ 58.0'W
8	3	19 June	1234-1450	3913	41°36.8'N	47 ⁰ 57.6'W
10	4	19 June	1747-1947	3972	41°40.6'N	47 ⁰ 53.8'W
17	5	27 June	1016-1151	1183	62°34.0'N	18 ⁰ 13.0'W
19	6	27 June	1620-1839	1395	62°31.4'N	18 ⁰ 04.4'W
22	7	27 June	2326-0130	1598	62°28.2'N	17°54.0'W
25	8	30 June	0057-0244	1796	62 ⁰ 23.8'N	17°42.9'W
28	9	30 June	0912-1130	1989	62°18.3'N	17°24.8'W
30	10	30 June	1544-2030	2169	62°11.7'N	17°04.5'W
32	11	l July	0935-1200	2310	61°42.9'N	15°40.1'W
33	12	l July	1454-1810	2274	61°51.6'N	16 ⁰ 10.6'W
34	13	1 July	1852-2115	2276	61 [°] 51.1'N	16 ⁰ 09.8'W
37	14	2 July	2105-2306	2207	62 ⁰ 04.3'N	16 ⁰ 38.4'W
39	15	3 July	0200-0451	2165	62°10.5'N	17°06.6'W
40	16	3 July	2028-2137	1984	62°18.6'N	17 ⁰ 21.6'W
53	18	5 July	1523-1644	2175	61 ⁰ 43.5'N	18 ⁰ 39.9'W
58	19	6 July	0145-0321	2165	61°53.1'N	18°48.2'W
62	20	6 July	1539-1705	2082	62°08.8'N	19 ⁰ 05.0'W
65	21	6/7 July	2315-0149	1561	62 ⁰ 11.7'N	19 ⁰ 21.3'W
66	22	7 July	0250-0429	1535	62°10.3'N	19°16.3'W
67	23	7 July	0643-0827	1522	61°57.0'N	19 ⁰ 26.7'W
68	24	7 July	1040-1235	1841	61 ⁰ 44.7'N	19 ⁰ 04.3'W
70	25	7 July	1707-1932	2237	61°31.5'N	19 ⁰ 19.9'W
72	26	8 July	0057-0305	2096	61°33.8'N	18°47.9'W
74	27	8 July	0653-0937	2300	61°25.0'N	18°31.8'W
75	28	8 July	1130-1333	2433	61 ⁰ 10.8'N	18 ⁰ 14.0'W
76	29	8 July	1530-1735	2501	60 ⁰ 54.3'N	17°51.1'W
81	30	10 July	0030-0230	1851	62 ⁰ 25.8'N	18 ⁰ 41.6'W
84	31	10 July	2020-2130	1991	62°18.4'N	17°25.3'W

-40-

TABLE 3. HYDROCASTS

Station	<u>Hydro-</u> cast	Date	Time	Depth (m)	Latitude	Longitude
18	1	27 June	1200-1538	118	62 ⁰ 33.6'N	18 ⁰ 13.9'W
20	2	27 June	1813-2016	1387	62 ⁰ 30.7'N	18 ⁰ 05.0'W
23	3	28 June	0154-0340	1544	62°29.0'N	17°57.5'W
26	4	30 June	0252-0443	1798	62 ⁰ 21.9'N	17°48.8'W
29	5	30 June	1213-1418	1993	62 ⁰ 18.0'N	17 ⁰ 23.9'W
31	6	1 July	0654-0931	2310	61 ⁰ 42.9'N	15 ⁰ 40.7'W
33	7	1 July	1504-1810	2276	61°52.0'N	16 ⁰ 10.1'W
36	8	2 July	1720-2041	2214	62 ⁰ 04.3'N	16 ⁰ 43.4'W
39	9	3 July	0200-0451	2165	62°10.5'N	17°06.6'W
40	10	3 July	2033-2230	1984	62 ⁰ 18.6'N	17 ⁰ 21.6'W
47	11	4 July	1330-1610	1700	62°23.9'N	17°50.2'W
55	12	5 July	1724-1950	2171	61°43.8'N	18°39.5'W
59	13	6 July	0321-0555	2119	61°54.0'N	18 ⁰ 49.5'W
63	14	6 July	1800-2020	2082	62°08.0'N	19 ⁰ 03.6'W
65	15	6/7 July	2315-0149	1561	62 ⁰ 11.7'N	19 ⁰ 21.3'W
67	16	7 July	0643-0827	1522	61°57.0'N	19 ⁰ 26.7'W
68	17	7 July	1040-1235	1841	61°44.7'N	19 ⁰ 04.3'W
70	18	7 July	1707-1932	2237	61 ⁰ 31.5'N	19 ⁰ 19.9'W
72	19	8 July	0057-0305	2096	61 ⁰ 33.8'N	18 ⁰ 47.9'W
74	20	8 July	0653-0937	2300	61°25.0'N	18 ⁰ 31.8'W
75	21	8 July	1130-1333	2433	61 ⁰ 10.8'N	18°14.0'W
76	22	8 July	1530-1735	2501	60 ⁰ 54.3'N	17 ⁰ 51.1'W
81	23	10 July	0030-0230	1851	62°25.8'N	18°41.6'W
85	24	10 July	2130-0046	1993	62 ⁰ 17.5'N	17°25.6'W

want out prise that a manufactor of the the start of the

TABLE	4.	CAMERA	STATIONS

Station	<u>Camera</u> <u>No.</u>	Date	Time	Depth (m)	Latitude	Longitude	Remarks
3	1	16 June	1756-2120	4531	40 ⁰ 36.4'N	63 ⁰ 01.5'W	Test station
10	2	19 June	1747-1947	3970	40 ⁰ 40.7 'N	47 ⁰ 53.8'W	1 Exposure
18	3	27 June	1200-1537	1194	62 ⁰ 33.6'N	18 ⁰ 13.8'W	3 Exposures
20	4	27 June	1810-2016	1387	62 ⁰ 31.0'N	18 ⁰ 04.3'W	Camera failed
26	5	30 June	0251-0443	1798	62°22.1'N	17 ⁰ 47.6'W	Camera failed
31	6	1 July	0654-0931	2311	61 ⁰ 42.9'N	15 ⁰ 40.7'W	4 Exposures
36	7	2 July	1720-2041	2211	62 ⁰ 04.3'N	16 ⁰ 43.4'W	7 Exposures
39	8	3 July	0200-0451	2162	62 ⁰ 10.5'N	17 ⁰ 06.6'W	13 Exposures
47	9	4 July	1310-1610	1732	62°23.9'N	17 ⁰ 50.2'W	3 Exposures
55	10	5 July	1724-1950	2173	61 ⁰ 43.8'N	18°39.5'W	5 Exposures
59	11	6 July	0321-0555	2145	61°54.0'N	18 ⁰ 49.5'W	2 Exposures
63	12	6 July	1800-2020	2082	62 ⁰ 08.0'N	19 ⁰ 03.6'W	1 Exposure
66	13	7 July	0250-0429	1535	62 ⁰ 10.3'N	19 ⁰ 16.4'W	4 Exposures

when there share all a summer that the standard of

-42-

<u>Station</u>	Current Meter	Time Deployed	Time Recovered	<u>Depth</u>	<u>Height</u> above Bottom	Location
11	1	2300/June 26	1900/July 3	2000m	1 0 m	62 ⁰ 17.6'N 17 ⁰ 24.6 [°] W
13	2	0400/June 27	1330/July 3	1600m	10m	62 ⁰ 28.3'N 17 ⁰ 52.0'W
15	3	0820/June 27	1000/July 3	1177m	10m	62 ⁰ 34.9'N 18 ⁰ 14.7'W
42	4	0300/July 4	1800/July 10	2171m	10m	62 ⁰ 11.0'N 17 ⁰ 04.0'W
44	5	0825/July 4	1200/July 10	1796m	10m	62 ⁰ 23.2'N 17 ⁰ 42.0'W
49	6	1930/July 4	0800/July 10	1393m	10m	62°30.9'N 18°05.4'W

TABLE 5. CURRENT METERS

side from support that in the moments of the state of the

<u>Station</u>	Current Meter	Time Deployed	Time Recovered	Depth	<u>Height</u> above Bottom	<u>Location</u>
11	1	2300/June 26	1900/July 3	2000m	1 <i>0</i> m	62 ⁰ 17.6'N 17 ⁰ 24.6'W
13	2	0400/June 27	1330/July 3	1600m	1 <i>0</i> m	62 ⁰ 28.3'N 17 ⁰ 52.0'W
15	3	0820/June 27	1000/July 3	1177m	1 <i>0</i> m	62 ⁰ 34.9'N 18 ⁰ 14.7'W
42	4	0300/July 4	1800/July 10	2171m	10m	62 ⁰ 11.0'N 17 ⁰ 04.0'W
44	5	0825/July 4	1200/July 10	1796m	10m	62 ⁰ 23.2'N 17 ⁰ 42.0'W
49	6	1930/July 4	0800/July 10	1393m	10m	62°30.9'N 18°05.4'W

a build on an of the at the manuary of the state of the

TABLE 5. CURRENT METERS

TABLE 6. SEDIMENT TRAP MOORINGS

<u>Station</u>	Mooring No.	Time Deployed	Time Recovered	Depth (m)	<u>Location</u>	<u>Height of Traps</u> Above Bottom(m)
12	1	0200/June 27	1500/July 10	1971	62 ⁰ 18.6'N 17 ⁰ 26.2'W	13,103,503
14	2	0630/June 27	1500/July 3	1596	62 ⁰ 28.5'N 17 ⁰ 53.8'W	13,103,493
51	3	1153/July 5	1200/July 9	2146	61 ⁰ 45.4'N 18 ⁰ 39 2'W	13,14,54,104,

のないないであるというないというであると

to the the manufacture of the other states and the

•

TABLE 7. PISTON CORES

<u>Station</u>	Core No.	Depth (m)	Latitude	Longitude	Piston Sample(cm)	Pilot Sample(cm)
16	1-PC	1177	62 ⁰ 34.6'N	18 ⁰ 14.0'W	845	18
27	2-PC	1764	62 ⁰ 24.0'N	17 ⁰ 46.7'W	970	12
35	3-PC	2199	62 ⁰ 05.9'N	16 ⁰ 37.3'W	1010	67
41	4-PC	2114	62 ⁰ 18.4'N	17 ⁰ 08.6'W	1170	136
45	5-PC	1596	62 ⁰ 28.5'N	17 ⁰ 54.1'W	1132	155
50	6-PC	1369	62 ⁰ 31.2'N	18 ⁰ 05.5'W	1138	0
52	7-PC	2173	61°44.2'N	18 ⁰ 40.9'W	814	148
57	8-PC	2088	61 ⁰ 53.2'N	18 ⁰ 48.1'W	481	0
61	9-PC	2082	62 ⁰ 07.6'N	19 ⁰ 02.5'W	721	0
64	10-PC	1555	62°09.9'N	19 ⁰ 19.8'W	1128	9
69	11-PC	2205	61°32.0'N	19 ⁰ 21.9'W	1084	49
71	12-PC	2295	61 ⁰ 28.7'N	19 ⁰ 24.4'W	1147	141

the statement of a familie the statement of the statement of the

•

TABLE	8.	BOX	CORES

Station	Core No.	Depth (m)	Latitude	Longitude	Remarks
1	1-BC	4539	40 ⁰ 35.1'N	63 ⁰ 04.4'W	72 cm sample
21	2-BC	1391	62 ⁰ 30.4'N	18 ⁰ 06.4'W	l kg sample
24	3-BC	1509	62 ⁰ 29.6'N	17°59.3'W	26 cm sample
43	4-BC	1839	62°22.5'N	17°35.8'W	
48	5-BC	1687	62 ⁰ 26.3'N	17 ⁰ 50.3'W	10 cm sample
56	6-BC	2175	61 ⁰ 44.0'N	18 ⁰ 39.0'W	
60	7-BC	2128	61 ⁰ 50.3'N	18 ⁰ 47.9'W	
73	8-BC	2203	61°31.0'N	18 ⁰ 46.5'W	
77	9-BC	2205	61 ⁰ 41.0'N	18 ⁰ 25.1'W	
78	10-BC	2248	61 ⁰ 40.5'N	18 ⁰ 27.2'W	
79	11-BC	2154	61 ⁰ 41.2'N	18 ⁰ 39.0'W	
80	12-BC	2133	61°45.6'N	18 ⁰ 37.0'W	
82	13-BC	1198	62°33.2'N	18 ⁰ 14.3'W	½ kg sample
83	14-BC	1409	62 ⁰ 31.8'N	18°02.0'W	l kg sample
86	15-BC	1998	62 ⁰ 17.6'N	17°25.1'W	

LISTING OF SATELLITE FIXES

ATLANTIS II - 94, Leg 1

14 June - 12 July, 1977

REC#		SPEED	HEADING	;	DATE	,TIME		L	ATITUDE	L	ONGIT	UDE Q	UALITY
1	. 00	. 00	. 0	*14	6771	2360	4	41	31. 405	-70	-39.	95000	902
2	8.10	1. 61	299.6	*14	6772	0420	4	41	37. 847	-70	-55.	12800	902
3	3. 03	2.04	163. 2	*14	6772	3440	4	41	31. 920	-70	-52.	72800	902
4	2.83	7.74	167.4	*15	677	2340	4	41	10.528	-70	-46.	34800	902
5	. 73	10.00	129. 2	+15	677	3180	4	41	5.892	-70	-38.	81100	902
6	. 33	12.07	122.2	*15	677	3380	4	41	3. 749	-70	-34.	29800	902
7	. 67	10. 31	147.1	+15	677	4180	4	40	57.985	-70	-29.	34900	902
8	. 50	12.70	123.4	*15	677	4480	4	40	54.486	-70	-22.	33500	902
9	. 53	11. 10	133. 2	*15	677	5200	4	40	50, 433	-70	-16.	63400	902
10	2.37	8.65	127.5	*15	677	7420	4	40	37. 981	-69	-55.	18400	902
11	1. 77	11. 21	116.4	*15	677	9280	4	40	29, 185	-69	-31.	84300	902
12	2. 27	9.64	91.5	*15	6771	1440	4	40	28, 630	-69	-3.	14200	902
13	3, 83	10.33	86. Ø	*15	6771	5340	4	40	31. 365	-68	-11.	21400	902
14	2.17	10.71	91. 8	*15	6771	7440	4	40	30, 648	-67	-40.	71900	902
15	3.63	10.19	95. 8	*15	6772	1220	4	40	26. 915	-66	-52.	29700	902
16	3. 23	10. 61	87.1	*16	677	360	4	40	28, 668	-66	-7.	27700	902
17	2.90	12.04	84. 3	*16	677	3300	4	40	32, 161	-65	-21.	59500	902
18	4. 03	10.71	94. 4	*16	677	7320	4	40	28. 876	-64	-24.	94800	902
19	10.73	5.95	83. 3	*16	6771	8160	4	40	36, 362	-63	-1.	50500	902
20	1. 93	1. 281	64. 9	*16	6772	0120	4	40	37. 412	-62	-58.	55800	905
21	6. 53	5.41	80.6	*17	677	2440	4	40	43. 173	-62	-12.	59200	902
22	6. 27	12.34	86.4	*17	677	9000	4	40	48.060	-60	-30.	72800	902
23	4.90	10.13	79.4	*17	6771	3540	4	40	57. 225	-59	-26.	25700	982
24	3.47	10.40	77.3	*17	6771	7220	4	41	5. 163	-58	-39.	65400	902
25	5.40	10.77	83. 5	*17	6772.	2460	4	41	11. 759	-57	-22.	92600	902
26	3. 13	10.75	81. 1	*18	677	1540	4	41	16.945	-56	-38.	67588	902
27	3. 97	11. 04	81. 0	*18	677	5520	-4	41	23, 833	-55	-41.	07200	902
28	4.87	11. 02	80.7	*18	6771	0440	-4	41	32, 516	-54	-30.	48900	902
- 29	5. 57	10.94	84.4	*18	6771	6180	-4	41	38. 483	-53	-9.	45080	902
30	3.47	11.83	88. 1	*18	6771	9460	-4	41	39, 839	-52	-14.	61800	902
31	5.40	12.12	91. 2	*19	677 :	1100	-4	41	38, 443	-50	-47.	10700	902
32	3.87	12.72	88, 8	*19	677 9	5020	-4	41	39, 430	-49	-41.	32400	902
33	3, 50	12.49	93. 8	*19	677 :	8320	-4	41	36, 540	-48	-43.	00000	902
34	3. 73	9.51	84. 8	*19	6771;	2160	-4	41	39.779	-47	-55.	70300	902
35	2. 57	. 36	75.6	*19	6771	4500	-4	41	40.007	-47	-54.	51500	902
36	2. 07	. 34	46.4	*19	6771	6540	-4	41	40, 489	-47	-53.	83800	902
37	1. 73	. 13	1.0	*19	6771	8380	-4	41	40.707	-47	-53.	83300	902
38	3. 93	3.84	82.7	*19	6772	2340	-4	41	42.611	-47	-33.	79700	902
39	3. 47	7.69	86. 0	+20	677 ;	2020	-4	41	44. 479	-46	-58.	17000	902
40	2.20	7.98	82.5	*20	677 .	4140	-4	41	46.770	-46	-34.	85500	902
41	3. 17	8.30	77.6	*20	677	7240	-4	41	52. 411	-46		43700	902
42	5.83	8.25	86. 7	*20	6771	3140	-4	41	55, 165	-44	-55.	93000	902
43	2.17	7.59	56. 5	*20	6771	5240	-4	42	4. 238	-44	-37.	48900	902
44	3.90	7.35	43.2	*20	6771:	9180	-4	42	25. 133	-44	-11.	02700	902

BEST AVAILABLE COPY

-48-

FTX

REC#		SPEED	PEED HEADING		DATE,TIME		LATITUDE		DE	LONGITUD		UDE Q	FIX UALITY	
45	4. 23	10.93	36. 9	*20	6772	23320	-4	43	2.	132	-43	-33.	18900	902
46	2.47	10.61	38.8	*21	677	2000	-4	43	22.	519	-43	-10.	66300	902
47	3.20	10.81	36. 5	*21	677	5120	-4	43	50.	324	-42	-42.	24300	902
48	6.40	10.93	40.2	*21	6771	1360	-2	44	43.	696	-41	-39.	17400	902
49	3. 07	10.27	35. 5	*21	6771	4400	-2	45	9.	325	-41	-13.	33200	902
50	1. 67	10.24	35.8	*21	6771	6200	-2	45	23.	164	-40	-59.	12700	902
51	6.30	10.57	38.7	*21	6772	2380	-2	46	15.	101	-39	-59.	32500	902
52	2. 53	10.83	37.0	*22	6//	1100	-2	46	51.	004	-39	-30.	38300	902
53	3. 53	11.16	39.7	*22	677	4420	-2	47	27	349	-38	-38.	04200	902
54	2.20	11. 71	40.2	+22	677	6340	-2	41	21.	400	-30	-57	000000	202
00	3.70	12.04	31.2	+22	6774	7400	-2	40	20	954	-37	-20	57200	902
55	3.20	10.00	40.0	+22	6774	5500	-2	40	46	170	-77	20.	74000	992
50	2.07	10.40	27.2	+22	6774	9520	-2	49	10.	269	-76	-70	71.900	992
50	A 57	0.00	29 5	+22	6770	2200	-2	49	45	473	-75	-49	04600	992
59	9. Jr 2. 50	10 39	40 0	*22	677	1560	-2	50	-5	259	-35	-22	15000	902
64	2.50	10.30	40.0	*23	677	5260	-2	50	34	827	-34	-43	45100	992
62	2.57	11 04	79 8	+23	677	8000	-2	50	56.	602	-34	-14.	78400	902
63	3 47	11. 04	41.6	+23	6771	1280	-2	51	25.	245	-33	-34.	25500	902
64	3 23	10.90	40.3	+23	6771	4420	-2	51	52.	141	-32	-57.	54200	902
65	3. 03	11.72	38.0	+23	6771	7440	-2	52	20.	170	-32	-21.	92000	902
66	5. 17	10.97	41. 8	*23	6772	2540	-2	53	2.	444	-31	-19.	65500	902
67	2.17	10.18	37.0	*24	677	1040	-2	53	20.	051	-30	-57.	49000	902
68	3. 23	10.81	35.4	*24	677	4180	-2	53	48.	570	-30	-23.	38500	902
69	2.80	10.69	35.7	*24	677	7060	-2	54	12.	871	-29	-53.	64000	902
70	4.60	11.40	40.2	*24	6771	1420	-2	54	52.	941	-28	-55.	29800	902
71	3. 23	10.79	36.4	*24	6771	4560	-2	55	21.	007	-28	-19.	05200	902
72	3. 47	10.90	40.2	*24	6771	.8240	-2	55	49.	857	-27	-35.	85500	902
73	4. 93	10.96	39.0	*24	6772	23200	-2	56	31.	865	-26	-34.	63600	902
74	2.70	10.81	39. 9	*25	677	2020	-2	56	54.	280	-26		52500	902
75	3, 30	11.06	38.2	*25	677	5200	-2	57	22.	980	-25	-18.	36800	962
76	2.60	11.00	37.0	*25	677	7560	-2	57	40.	070	-24	-46.	76100	392
77	2.97	11.66	38.3 20.0	*25	6771	.0540	-2	58	12.	978	-24	-6.	24000	902
78	5.05	11. 31	39.0	*20	6771	C440	-2	50	44.	996	-23	-10.	200000	202
19	2.30	11.10	39.3	405	6771	07440	-2	50	25	502	-24	-56	09900	002
00	3.87	10.04	33.1	405	6770	2040	-2	59	54	697	-21	-72	96000	992
01	4. 41	0.00	26.1	400	677	540	-2	60	4	190	-24	-14	80200	932
02	2.05	0.44	40.5	405	677	2000	-0	60	17	972	-20	-52	67600	982
03	4 07	0.07	40.0	*26	677	2020	-2	60	42	482	-20	-7	24800	982
25	4.05	8 47	42 6	*26	6771	1480	-2	61	12	190	-19	-10	90600	902
28	2 60	7 89	37.0	+26	6771	4240	-2	61	28.	603	-18	-45.	15600	902
87	3 13	8 05	39.5	*26	6771	7320	-2	61	48.	097	-18	-11.	37400	902
88	5. 17	7.24	39.3	+26	6772	2420	-2	62	17.	032	-17	-20.	78300	902
89	2. 53	1. 41	293. 1	+27	677	1140	-2	62	18.	431	-17	-27.	84600	902
90	1. 77	4.20	317.7	*27	677	3000	-2	62	23.	916	-17	-38.	61500	902
91	3.13	2.78	304. 2	*27	677	6080	-2	62	28.	821	-17	-54.	20100	982
92	10.20	. 50	299. 9	*27	6771	6200	-2	62	31.	369	-18	-3.	80800	902
93	5. 97	. 27	233. 9	*27	6772	2180	-2	62	30.	430	-18	-6.	60100	902
94	1.83	3.40	111. 0	*28	677	80	-2	62	28.	197	-17	-53.	97500	902

1

.

and and some singer it is a free manufactor

The states

.

REC#	SPEED HEADING			;	DATE,TIME				ATITU	DE	L	UDE Q	FIX UALITY	
95	5.13	. 58	306.2	+28	677	5160	-2	62	29.	955	-17	-59.	18100	902
96	3.13	7.41	280.5	+28	677	8240	-2	62	34.	176	-18	-48.	75100	902
97	5.37	6. 60	202.5	+28	6771	3460	-1	62	1.	443	-19	-17.	93300	902
98	2.10	8. 08	186.3	+28	6771	5520	-1	61	44.	557	-19	-21.	86300	902
99	3.77	2.87	155.6	+28	6771	9380	-1	61	34.	717	-19	-12.	46600	902
100	3. 53	8, 10	37.8	*28	6772	3100	-1	61	57.	374	-18	-35.	37000	902
101	1.67	8.33	48.3	*29	677	500	-1	62	6.	618	-18	-13.	24600	902
102	3. 27	8.16	47.9	*29	677	4060	-1	62	24.	488	-17	-30.	68500	902
103	5. 57	6.89	295. 1	+29	677	9400	-1	62	40.	805	-18	-46.	06800	902
104	3.20	7.64	187.8	*29	6771	2520	-1	62	16.	572	-18	-53.	29000	902
105	3. 47	6.71	181.4	+29	6771	6200	-1	61	53.	305	-18	-54.	50700	902
106	4.13	7.48	25. 6	*29	6772	0280	-1	62	21.	193	-18	-25.	90500	902
107	3. 57	5.05	79.0	*30	677	20	-1	62	24.	641	-17	-47.	74300	982
108	3. 27	. 71	182.5	*30	677	3180	-1	62	22.	326	-17	-47.	95700	902
109	3.73	. 77	22.8	*30	677	7020	0	62	24.	976	-17	-45.	55800	902
110	1.63	6. 91	125.8	*30	677	8400	0	62	18.	368	-17	-25.	79000	902
111	1.70	. 39	112.9	*30	6771	.0220	0	62	18.	113	-17	-24.	48500	902
112	2.13	. 29	23. 7	*30	6771	.2300	0	62	18.	671	-17	-23.	95700	902
113	1. 77	. 39	210.3	*30	6771	.4160	0	62	18.	080	-17	-24.	70000	902
114	1.63	7.20	127.8	*30	6771	.5540	0	62	10.	867	-17	-4.	74300	902
115	1.80	1. 24	27.8	*30	6771	.7420	0	62	12.	841	-17	-2.	51000	902
116	1.93	. 33	219.5	*30	6771	9380	ø	62	12.	343	-17	-3.	39000	902
117	1.80	5.38	66. 7	*30	6772	21260	0	62	16.	178	-16	-44.	28600	902
118	1.70	6. 55	70.2	*30	6772	3080	0	62	19.	957	-16	-21.	71500	902
119	1.43	6.72	73.8	* 1	777	340	0	62	22.	645	-16	-1.	77200	902
120	1.60	4.87	99. 5	* 1	777	2100	0	62	21.	357	-15	-45.	20500	902
121	2.00	8, 58	174.6	* 1	777	4100	Ø	62	4.	264	-15	-41.	74000	902
122	1, 83	8.77	178.6	* 1	777	6000	ø	61	48.	180	-15	-40.	89800	902
123	3.70	1.49	171. 2	* 1	777	9420	0	61	42.	726	-15	-39.	11000	902
124	1.67	. 46	319.0	* 1	7771	.1220	Ø	61	43.	310	-15	-40.	18300	902
125	1.03	4.70	283, 5	* 1	7771	.2240	0	61	44.	442	-15	-50.	17400	902
126	. 70	8, 29	325. 6	* 1	7771	3060	0	61	49.	234	-15	-57.	10400	902
127	. 30	8.71	303.7	* 1	7771	3240	0	61	50.	684	-16	-1.	71100	985
128	. 70	4. 87	298. 2	* 1	7771	4060	0	61	52.	294	-16	-8.	08200	962
129	. 97	. 34	146.1	* 1	7771	.5040	0	61	52.	023	-16		69700	902
130	. 30	1. 11	287.8	* 1	7771	.5220	0	61	52.	126	-16	-8.	57200	902
131	. 57	1.02	255.3	* 1	7771	.5560	0	61	51.	979	-16	-9.	56200	903
132	. 70	. 89	229.5	* 1	(((1	6380	0	61	51.	572	-16	-10.	57200	905
133	2.00	. 50	73.7	* 1	(((1	0828	0	61	51.	802	-16	-8.	20500	903
134	1.43	. 64	219.9	* 1	(((e	0040	0	61	51.	147	-16	-9.	79000	302
135	. 33	1. 21	340.6	* 1	1112	0240	0	61	51.	120	-16	-10.	07800	903
136	1.60	4.44	303.8	* 1	1112	2000	0	61	55.	481	-16	-22.	51600	904
137	. 30	9.40	309.8	* 1	1112	2180	0	61	24	200	-16	-27.	10000	002
138	1. 47	5. 42	≤18. 4 11 C	* 1	1110	3460	0	20	5.	020	-16	-38.	20000	004
139	1. 17	2.39	11. 2	* 2	777	1000	00	20	Э. С	200	-10	-27	60200	902
140	. 40	2.01	300.7	* 2	222	2400	0	62	0.	494	-10	-24	45400	902
141	1. 33	2.38	30.6	* 2	777	2400	0	20	3.4	979	-16	-34.	47400	904
142	. 53	3. 51	341.4	* 2	222	2240	0	20	10	404	-10	-30.	42100	904
143	. 31	2.51	8.5	* 2	777	3340	0	62	14	200	-16	-30.	24500	903
144	. 87	2.60	347.1	* 2	rrr	4500	0	02	14.	200	-10	-30.	STOOR	202

BEST_AVAILABLE COPY

-50-

			HEADING DATE TIME									FIX			
RECH		SPEED.	HEADING	,		DATE	, IIME		L	41110	DE	L	JNGIII	UDE Q	UALITY
145	. 87	2.47	13. 2	*	2	777	5180	0	62	16.	465	-16	-35.	16400	902
146	. 90	2.83	35.2	*	2	777	6120	0	62	18.	546	-16	-32.	00500	904
147	. 63	3.15	32.1	:*:	2	777	6500	0	62	20.	235	-16	-29.	72500	903
148	. 37	2.50	7.9	*	2	777	7120	0	62	21.	142	-16	-29.	45500	905
149	. 73	6.05	267.4	:#:	2	777	7560	Ø	62	20.	940	-16	-39.	01700	905
150	. 63	5.89	260.7	*	2	777	8340	ø	62	20.	337	-16	-46.	95400	904
151	. 47	4.15	261. 1	*	2	777	9020	0	62	20.	038	-16	-51.	07800	904
152	. 60	4.86	265.3	*	2	777	9380	0	62	19.	797	-16	-57.	34300	903
153	1.00	4.31	258.8	*	2	7771	0380	0	62	18.	956	-17	-6.	45200	903
154	. 67	4. 21	263.3	:#:	2	7771	1180	0	62	18.	631	-17	-12.	45400	902
155	1. 20	4.16	263.7	*	2	7771	2300	ø	62	18.	084	-17	-23.	14800	902
156	. 50	4. 28	124.3	:4:	2	7771	3000	0	62	16.	878	-17	-19.	34200	902
157	1. 07	5.64	120.9	*	2	7771	4040	0	62	13.	785	-17	-8.	24000	905
158	. 23	6.56	128.9	*	2	7771	4180	0	62	12.	823	-17	-5.	68300	902
159	. 23	5.74	121. 5	*	2	7771	4320	0	62	12.	123	-17	-3.	22900	902
160	. 23	6.58	119.0	:*:	2	7771	4460	0	62	11.	377	-17		35000	904
161	1.07	5.07	126. 2	*	2	7771	5500	0	62	8.	184	-16	-51.	00500	905
162	. 37	5. 17	120.8	*	2	7771	6120	0	62	7.	210	-16	-47.	51800	902
163	1.37	3. 97	140.7	:#:	2	7771	7340	0	62	3.	009	-16	-40.	16600	903
164	. 40	2, 78	298. 7	*	2	7771	7580	0	62	3.	543	-16	-42.	25000	904
165	. 37	. 76	54.4	:+:	2	7771:	8200	0	62	3.	706	-16	-41.	76300	902
166	1.23	. 80	310.4	*	2	7771	9340	0	62	4.	349	-16	-43.	37400	902
167	1.70	1.03	103.1	*	2	7772:	1160	0	62	3.	951	-16	-39.	72900	902
168	. 73	. 66	81.0	*	2	7772	2000	0	62	4.	027	-16	-38.	71000	905
169	2.70	1. 53	315.6	*	3	117	420	0	62	6.	979	-16	-44.	88000	903
170	. 27	8.98	298.1	:*:	2	111	580	6	62	8.	110	-16	-49.	40200	902
171	. 60	9.29	294.4	:+:	2	111	1340	9	62	10.	420	-11		27800	302
172		4. 51	287.2	.*:	1 12	777	2200	0	62	11.	407	-17	-7.	13500	303
173	. 30	1. 38	202.8	*	4	777	2380	0	62	11.	400	-11		48888	202
174	. 10	. 96	142. 0	*	5	777	1000	0	62	10.	432	-17	-0.	40700	205
175	1.13	1.27	249.3		3	777 0	4200 5040	0	62	10	050	-17	-12	22000	202
175	. 60	2.00	200.7	- -	20	777 0	55040	0	62	40.	220	-17	-12.	45200	002
177	. 07	11.20	244 0	·T·	2	777	2000 2000	0	62	40	075	-17	-77	22400	005
178	40	12.16	242 7	-	2	777	5200 7400	0	62	20	465	-17	-59	33400	900
100	2 60	7 76	214 7	*	2	77740	1400 3160	G	62	20.	228	-18	-14	02200	902
104	2.00	2 66	276 9	*	1	7774	1140	a	62	74	929	-18	-18	28600	992
100	57	5 97	111 5		1	7774	1520	a	62	27.	553	-18	-11	19300	932
402	1 22	7 94	109 5	*	1	7774	TARA	a	62	20	652	-17	-53	44200	965
194	1. 23	1 73	188 3	*	2	7774	2260	ñ	62	20	882	-17	-53	62300	302
185	27	2 18	204 7	:*:	~	7771	2420	ñ	62	29	310	-17	-54	39100	985
186	1 27	3. 10	200 6	:*:	N	7771	4580	ñ	62	28	452	-17	-55	09000	903
187	27	2 97	180 3	*	~	77719	51.20	A	62	27	767	-17	-55	09800	982
188	22	1 53	268 9	:+:	N	77713	5260	A	62	27	760	-17	-55	87100	992
189	1 37	87	295.4	:+:	N	77716	5480	0	62	28	273	-17	-58	20400	903
190	37	2.50	259.4	*	N	77713	7100	0	62	28	195	-18	-	15300	903
191	1. 40	6.89	134.0	:+:	3	77718	8340	0	62	21	392	-17	-45	15800	902
192	1. 63	5.39	97.9	*	3	77720	0120	Ø	62	20	182	-17	-26.	35700	902
193	. 47	2.63	67.7	*	3	77720	3400	0	62	20.	649	-17	-23.	90900	904
194	1 27	18	323. 1	:+:	3	7772:	1560	0	62	20.	832	-17	-24.	20600	902

BEST_AVAILABLE COPY

REC#	SPEED HEADING			DATE,TIME LATITUDE				LONGITUDE			FIX		
ia.e.													
195	. 43	. 64	309.9	*	3	77722220	0	62	21.009	-17	-24.	66300	902
196	1. 77	4. 23	130.5	*	4	777 80	Ø	62	16. 157	-17	-12.	44000	902
197	. 30	9.60	38.0	*	4	777 260	9	62	18. 427	-17	-8.	62100	902
198	1.37	. 67	167.3	*	4	777 1480	0	62	17. 537	-17	-8.	19100	903
199	. 40	2.35	258.6	:+:	4	777 2120	0	62	17. 351	-17	-10.	17200	902
200	1.13	6.15	155.8	*	4	777 3200	Ø	62	10.986	-17	-4.	02100	992
201	. 33	5. 71	297.9	*	4	777 3400	0	62	11. 878	-17	-7.	62500	902
202	. 30	8.67	305.2	*	4	777 3080	0	62	13. 377	-17	-12.	18900	902
203	1.10	9.08	309.1	*	4	777 5040	0	62	19.680	-17	-28.	88100	902
204	. 40	9.13	308.7	*	4	777 5280	9	62	21. 966	-17	-35.	03000	902
205	. 30	1. 30	338.7	*	4	777 5460	0	62	22. 330	-17	-35.	33700	982
206	1.33		329.4	*	4	777 7060	0	62	23. 216	-17	-36.	46700	905
207	1.40	1.70	274.2	*	4	777 8300	0	62	23. 390	-17	-41.	58400	905
208	. 37	6. 14	299.9	*	4	777 8520	9	62	24. 514	-17	-45.	79800	902
209	. 55	9.42	317.1	*	4	777 9120	0	62	26. 814	-11	-00.	42200	905
210	1.10	2.18	314.2	*	4	77710180	0	62	28.484	-17	-54.	13300	902
211	. 80	. 41	310.5	*	4	77711060	0	62	28. 597	-17	-34.	07200	302
212	1.03	3.88	138.2	*	4	77712080	0	62	20.703	-17	-48.	89100	902
213	. 67	. 61	216.2	*	4	77712480	0	62	20. 374	-17	-49.	41100	902
214	1.20	. 93	265. 3	*	4	77714000	9	62	25. 282	-17	-31.	31000	904
215	. 23	5. 66	114.5	:*:	4	77714140	0	62	24. 793	-17	-49.	49400	902
216	. 35	. 29	179.2	*	4	77714340	0	62	24. 694	-17	-49.	49100	30Z
217	1. 27	. 67	231. 5	*	4	77710000	0	62	24.170	-17	-50.	91600	905
218	. 30	1. 38	131.3	*	4	77716080	0	62	23. 893	-17	-30.	24200	902
219	. 33	2.03	87.0	*	4	77716280	0	62	23. 330	-17	-48.	78300	903
220	1. 17	2.09	342.9	*	4	77717380	0	62	26.260	-17	-00.	10400	302
221	1.80	4.67	304.2	*	4	77704000	0	62	30. 984	-18	-0.	40100	902
222	1.70	. (3	228.0		4	77721060	0	62	30, 136	-18	-7.	20500	902
225	. 43	3. 96	200.0	*	4	77707460	0	62	28. 043	-18	-8.	20000	202
224	1. 70	4.43	202.0	*	4	777 400	0	62	21. 363	-18	-14.	20200	902
225	1. 53	8.09	203.4	*	5	777 480	0	62	10.166	-18	-20.	02000	504
226	. 30	8.41	208.1	*	5	777 1060	0	62	7. 341	-18	-21.	33300	202
221	1. 51	7.67	196.1	4	0 6	777 0490	0	61	55 200	-18	-34.	07000	202
228	1 00	7.49	107. 5	-	5	777 4760	0	61	44 647	-10	-412	24 200	002
229	1.00	5 20	130.7	-	5	777 5500	0	61	41. 017	-10	-54	52000	002
230	1. 21	0.37	207 5		5	777 6400	0	61	42.100	-10	-59	07000	992
231	. 20	7.95	205.0	-	5	777 6260	a	61	43.002	-19	-2	25500	980
022	4 47	7.96	14 7	-	5	777 7760	a	61	49 940	-19	c.	97700	992
074	1. 11	2 80	00 0		5	777 9200	a	64	49. 240	-10	-70	54400	997
234	1. (3	5.00	400 5	-	5	77740400	a	64	45 400	_10	-40	57600	905
230	4 03	3. 61	254 7	-	5	777111000	a	64	45. 720	-19	-42	49100	982
027	1. 05	7 25	154 2	*	5	27211200	ā	61	47 769	-18	-40	49700	902
220	1 90	71	40 1	:*:	5	77713240	Ø	61	43 817	-18	-79	70000	903
230	47	2 47	281 9	:4:	5	77713500	0	61	44 129	-18	-40	81000	993
240	1 07	2 61	86.6	:4:	5	77714540	ø	61	44 295	-18	-36	94400	903
244	20	5 22	228 6	*	5	77715120	A	61	43 256	-18	-39	43000	982
242	22	98	315 2	*	5	77715320	ø	61	43 488	-18	-39	91600	982
247	1 77	22	28.2	*	5	77717180	ø	61	43.840	-18	-39	51700	902
244	1.20	46	348. 6	*	5	77718300	0	61	44. 378	-18	-39	74600	902

art it and to

			WEADTW		D.4.000 (0.7.1.00							FIX
REC#		SPEED	HEADING		DATE, TIME		L	ATITUDE	LO	NGITU	DE Q	JALITY
245	2.30	. 09	125.8	* 5	77720480	ø	61	44. 259	-18	-39.	39800	905
246	1. 67	3. 51	342.3	* 5	77722280	Ø	61	49.834	-18	-43.	16400	903
247	1. 43	2.52	328.4	* 5	77723540	0	61	52. 912	-18	-47.	18100	902
248	30	1.75	300.3	* 6	777 120	0	61	53. 176	-18	-48.	14100	902
249	1 43	32	198.5	* 6	777 1380	0	61	52.739	-18	-48.	45200	903
250	55	1 62	80.5	* 6	777 1580	0	61	52, 828	-18	-47.	32200	904
251	1 33	1 66	312.7	* 6	777 3180	ø	61	53. 731	-18	-49.	40100	905
252	22	1 58	302 4	* 6	777 3320	ø	61	53. 929	-18	-50.	06300	902
257	20	89	65.8	* 6	777 3500	0	61	54, 039	-18	-49.	54500	902
254	1 13	46	319.2	* 6	777 4580	0	61	54, 430	-18	-50.	26200	902
255	20	86	9.0	* 6	777 5160	ø	61	54, 684	-18	-50.	17700	903
256	47	76	24 0	* 6	777 5420	ø	61	54, 984	-18	-49	89300	904
257	1 00	4 99	166 2	* 6	777 6420	ø	61	50.130	-18	-47	36000	903
258	33	. 93	306.7	* 6	777 7020	ø	61	50.315	-18	-47.	88700	903
259	1 70	82	8 1	* 6	777 8440	ø	61	51, 696	-18	-47	46900	905
260	27	6 94	340 8	* 6	777 8580	Ø	61	53, 226	-18	-48	60000	905
264	40	9.75	329 3	* 6	777 9220	ø	61	56. 582	-18	-52	82600	905
060	0	9.06	331 1	* 6	77710120	Ø	62	3 194	-19	-	59800	903
262	. 03	7 68	357 3	* 5	77710440	ñ	62	7 287	-19	-1	AAEAA	903
064	40	7 50	17 0	* 6	22211080	ñ	62	10 156	-18	-59	12400	994
025	97	4 64	307 4	* 6	77712040	й	62	13 337	-19	-3	49900	902
000	57	5 16	192 0	* 6	27712390	ä	62	10 477	-19	-4	79700	907
200	20	5 67	174 1	* 6	22212560	G	62	8 796	-19	-4	42200	994
201	07	4 90	164 9	* 6	77713490	a	62	7 294	-19	-7	56466	902
000	50	1. 20	252 6	* 6	77714190	ā	62	7 638	-19	-3	62400	902
2070	. 00	. 00	302. 0 776 A	+ 6	77714444	ä	62	7 895	-19	-3	86500	902
270	. 43	. 65	330. 4 76 A	+ 0	77715760	a	62	0 414	-19	-7	000000	902
271	. 07	4 20	207 4	* 6	77716060	a	62	9 649	-19	-4	22200	902
272		1.20	293. I 006 6	4 6	77716700	ä	62	0.040	-19	-5	61766	902
275	4 47	. 50	405 4	4 6	77747700	ä	62	7 915	-19	-5	10000	902
075	1.13	4 47	100.4	* 6	77719460	0	62	7 967	-19	-7	61100	997
270	. 03	1. 17	246 0	* 0	77710100	ā	62	9 420	-19	-7	85600	904
276	. 35	7 00	346. 0	* 0	77749760	a	62	7 929	-19	-6	19100	997
277	4 57	3.05	241. 4	+ 0	77704000	a	62	5 514	-19	-19	54200	982
070	1. 35	4.00	240.2	+	77721000	a	62	9.511	-19	-18	34400	994
000	4 47	4 22	777 4	+ 6	77722500	a	62	9 897	-19	-19	79800	997
0.54	1.15	2. 34	333.1	* 0	77722400	a	62	9 996	-19	-21	27600	995
201	. 22	2.01	270.0	+ 0	77702060	a	62	10 409	-19	-20	23000	903
202	. 21	2. 40	30. 3	* 0	77723200	~		10. 400	40	-00	25/000	000
283	1. 17	. 99	000 6	* 1	777 540	0	62	11. 068	-19	-20.	46466	902
284	50	1 24	200.0	* 1	777 4440	0	62	11.011	-19	-24	20400	902
285		1. 34	672.4	- T	777 2220	a	62	44 455	-19	-17	20000	997
200	1, 13	1.66	155 S	+ 7	777 0400	a	62	10 057	-19	-15	91500	982
287	- 55	4.60	100.0	* 7	777 2920	a	62	10.007	-19	-16	42030	902
208	1 10	1.13	314.7	+ 7	777 4060	0	602	10.200	-19	-17	50500	987
189	1.10	. 58	508. S	4 7	777 4000	0	602	10. 651	-19	-17	21600	982
290	. 2.3	4 60	240.0	* 7	777 4460	0	62	10 155	-19	-19	06600	992
2.91	43	1. 68	104 4		777 5400	G	602	4 004	-19	-21	22400	902
232	1.03	4 77	104 0	* 7	777 9440	0	64	56 994	-19	-22	67100	982
295	4.45	5 70	149 2	* 7	777 9490	G	61	51 765	-19	-16	04700	902
1 34	1 127	J. (11	142.6	·T· 1	111 2100	0						

BEST AVAILABLE COPY

-53-

REC#		SPEED	HEADIN	G	DATE,TIME		L	ATITUDE	L	ONGIT	UDE Q	FIX UALITY
295	57	8 60	144 5	* 7	777 9520	ø	61	47.795	-19	-10	04700	902
296	47	8 16	144 4	* 7	77710200	ø	61	44, 695	-19	-5.	36200	902
297	70	52	71 5	* 7	77711020	ñ	61	44 811	-19	-4	63400	993
299	63	27	111 7	* 7	77711400	A	61	44 747	-19	-4	29400	964
099	47	25	260 9	* 7	77712080	ñ	61	44 721	-19	-4	63100	903
200	57	27	190 4	* 7	77712420	ñ	61	44 569	-19	-4	69000	992
200	77	8 56	215 4	* 7	77713280	Ø	61	39 218	-19	-12	71300	902
202	47	5 80	212 9	* 7	77713540	ñ	61	37 106	-19	-15	58700	903
202	53	5 30	212 0	* 7	77714260	ñ	61	34 708	-19	-18	73400	903
204	1 30	2 37	209 8	* 7	77715440	ø	61	32 035	-19	-21	94200	902
705	47	71	91.8	* 7	77716120	ø	61	32 024	-19	-21	24600	902
306	43	60	95.0	* 7	77716380	ø	61	32.002	-19	-20	69900	905
307	40	1. 91	180.8	* 7	77717020	0	61	31. 237	-19	-20	72000	905
308	43	1.06	60.5	* 7	77717280	ø	61	31, 464	-19	-19	87900	903
199	57	. 21	100.7	* 7	77718020	ø	61	31. 442	-19	-19	63300	902
310	40	44	84.7	* 7	77718260	ø	61	31, 458	-19	-19	26600	903
311	37	171	53.6	* 7	77718480	ø	61	31. 614	-19	-18	82300	905
312	1.40	2.91	203.4	* 7	77720120	ø	61	27, 869	-19	-22	22300	903
313	30	4.99	294.5	* 7	77720300	ø	61	28, 490	-19	-25.	07900	902
314	1.50	. 24	56.7	* 7	77722000	ø	61	28, 690	-19	-24.	43800	902
315	. 30	. 36	61. 1	* 7	77722180	0	61	28, 743	-19	-24.	23900	902
316	. 33	7.25	59.9	* 7	77722380	ø	61	29, 954	-19	-19.	85500	902
317	. 87	9.45	61. 1	* 7	77723300	ø	61	33. 922	-19	-4.	86466	902
318	. 37	8.86	69.5	* 7	77723520	ø	61	35.062	-18	-58.	40700	902
319	. 47	8. 51	77.3	* 8	777 200	ø	61	35. 938	-18	-50.	25400	903
320	. 93	2.54	160.8	* 8	777 1160	0	61	33, 698	-18	-48.	61900	903
321	. 37	. 49	65.6	* 8	777 1380	ø	61	33. 773	-18	-48.	27400	902
322	. 47	. 41	69.6	* 8	777 2060	ø	61	33. 839	-18	-47.	89900	902
323	. 93	. 44	60.7	* 8	777 3020	0	61	34. 042	-18	-47.	13800	903
324	. 43	5.70	129.0	* 8	777 3280	0	61	32, 486	-18	-43.	10900	903
325	. 47	4.67	191.7	* 8	777 3560	Ø	61	30.349	-18	-44.	04000	902
326	11. 13	3. 55	144.6	* 8	77715040	0	60	58, 165	-17	-56.	43200	902
327	1. 10	4. 22	145.9	* 8	77716100	ø	60	54. 312	-17	-51.	07080	208
328	1.33	. 75	155.8	* 8	77717300	ø	60	53. 405	-17	-58.	23200	365
329	. 53	2.66	5.4	* 8	77718020	0	60	54, 819	-17	-49.	95800	905
330	. 67	2.74	349.8	* 8	77718420	0	60	56. 620	-17	-50.	62200	905
331	. 60	5, 51	358.0	* 8	77719180	ø	60	59, 926	-17	-50.	86200	992
332	1.77	7.30	355.8	* 8	77721040	ø	61	12, 794	-17	-52.	83200	902
333	. 40	7.80	354. 9	* 8	77721280	ø	61	15.904	-17	-53.	40400	902
334	. 40	7,85	353. 1	* 8	77721520	Ø	61	19, 023	-17	-54.	19000	905
335	. 97	7.71	353.6	* 8	77722500	0	61	26. 435	-17	-55.	92000	902
336	1.33	7.72	354.3	* 9	777 100	0	61	36, 684	-17	-58.	04700	902
337	. 43	8.07	352.5	* 9	777 360	0	61	40.155	-17	-59.	00500	905
38	. 70	5.13	274. 2	* 9	777 1180	0	61	40. 418	-18	-6.	56400	903
339	. 60	7.16	256.4	* 9	777 1540	0	61	39, 406	-13	-15.	36600	902
340	. 67	7.48	256. 2	* 9	777 2340	0	61	38. 217	-13	-25.	57700	903
341	. 30	3.68	308.9	* 9	777 2520	0	61	38. 910	-18	-27.	38400	902
342	. 30	3.43	344.6	* 9	777 3100	0	61	39, 902	-18	-27.	96666	902
343	. 50	2.11	33.9	* 9	777 3400	6	61	40.776	-18	-26.	12200	302
344	. 37	1.45	49.9	* 9	777 4020	6	61	41. 120	-18	-25.	89566	203

-54-

												FIX
REC#		SPEED	HEADING	3	DATE,TI	ME		LATITUDE	LC	NGITU	JDE QI	UALITY
- 15	37	4 74	00 1		777 40	10 0	. 6	41 052	-19	-24	85700	982
240	. 21	1. 51	49.5		777 44	10 0	1 6	41 205	-18	-24	43000	902
245		4 70	244 6	* 9	777 52	50 C	1 6	1 40 659	-18	-26	63900	994
240	70	6 47	277 8	* 9	277 54	10 0	6	1 39 518	-18	-29	92300	992
240	57	99	87.4	* 9	777 64	30 0	1 6	1 39 576	-18	-28	86100	905
242	- 07	1 96	60 0	* 9	777 63	10 0	1 6	1 39 824	-18	-27	95500	995
254	60	1 72	10 1	* 9	777 71	aa e	6	40 844	-18	-27	57200	993
250	97	1 39	91 8	* 9	777 80	30 0	1 6	40 800	-18	-24	23500	993
257	27	1 67	322 1	* 9	777 82	40 0	6	41.152	-18	-25	31300	992
254	47	7.90	274.9	* 9	777 85	20 0	6	41.465	-18	-33.	06200	904
755	37	4.07	4.3	* 9	777 91	40 0	6	42.955	-18	-32.	82800	902
356	70	4. 21	279.8	* 9	777 95	50 0	6	L 43. 457	-18	-38.	96900	902
357	30	5.81	234.0	* 9	777101	40 0	6	L 42. 431	-18	-41.	94900	902
38	. 30	5.56	169.0	* 9	777103	20 8	6:	L 40.792	-18	-41.	27800	902
359	. 53	1.73	78.6	* 9	777110	40 0	6:	L 40.975	-18	-39.	37200	902
360	. 67	1. 14	49.3	* 9	777114	40 0	6:	1 41. 472	-18	-38.	15200	902.
361	. 30	. 73	114. 3	* 9	777120	20 0	6:	L 41. 382	-18	-37.	73100	902
362	. 30	1. 01	157.9	* 9	7771220	30 Ø	6:	L 41.100	-18	-37.	49000	902
363	. 57	9.01	. 9	* 9	777125	40 0	6:	L 46.209	-18	-37.	32400	905
364	4. 17	. 19	227.4	* 9	777170	10 0) 6:	L 45.671	-18	-38.	55900	902
365	. 50	1.66	98. 2	* 9	777173	40 0	6:	L 45.552	-18	-36.	82300	902
366	. 80	1.40	42. 9	* 9	777182	20 0	6 6	L 46. 373	-18	-35.	20900	902
367	1.77	5.24	322. 9	* 9	777200	30 0) 6:	L 53.772	-18	-47.	04700	902
368	. 37	9, 84	312. 8	* 9	777203	90 e) 6:	L 56, 226	-18	-52.	67400	902
369	. 57	8. 01	324.6	* 9	777210	40 0) 6:	L 59.932	-18	-58.	27100	902
370	. 87	8, 92	8.0	* 9	7772150	50 0	62	2 7.597	-18	-55.	98200	902
371	. 33	9.11	. 9	* 9	7772210	50 E	62	2 10.636	-18	-55.	87600	305
372	. 27	9.78	355.3	* 9	111225	20 6	1 52	2 13.238	-18	-36.	33200	302
373	. 27	9.97	4.8	* 9	777224	50 E	5 50	2 15.890	-18	-33.	80000	202
374	. 27	9.38	. 0	* 9	777005	10 6	1 54	2 18.393	-18	-35.	80000	202
375	. 30	8.46	01.4 20.0	* 7	777 4	50 E		2 23.141	-10	-44	01300	002
376	. 30	4.97	38.0	*10	777 7	10 0		2 24.310	-10	-41.	95000	002
511	. 30	3.61	531.0	44.0	777 5	10 C 30 C	00	2 20.316	-10	-41	274 00	902
378	. 21	1. 11	700 7	4410	777 40	50 E	6	2 20.444	-18	-42	28500	902
200	27	1 12	S00. 1 91 9	*10	777 14	20 0	6	20.700	-18	-41	64700	982
204	20	54	209 2	*10	777 200	30 D	6	2 25 921	-18	-41	90100	982
292	20	37	16 3	*10	777 21:	30 0	1 62	2 26 927	-18	-41	83400	982
282	20	2 89	62.9	*10	777 23	50 0	62	2 26. 313	-18	-40	62600	904
384	57	8.68	53.7	+10	777 31	ag e	62	2 29. 231	-18	-32.	04400	905
385	37	9.33	62.8	*10	777 33;	20 0	62	2 30.795	-18	-25.	44500	902
386	. 33	8.36	57.9	*10	777 35;	20 0	62	2 32.279	-18	-20.	32600	905
387	. 33	6.35	63. 6	*10	777 41:	20 0	62	2 33. 220	-18	-16.	21100	902
388	. 20	2.45	94. 9	+10	777 42	10 0	62	2 33. 178	-18	-15.	15000	902
389	. 43	. 93	85. 0	+10	777 450	30 e	62	2 33, 213	-18	-14.	27700	902
390	. 53	4.06	177.6	*10	777 522	20 0	62	2 31. 046	-18	-14.	07600	904
391	. 60	7.41	76. 9	*10	777 55	30 e	62	2 32.052	-18	-4.	68500	905
392	. 63	2.05	100.9	*10	777 636	50 0	62	2 31, 806	-18	-1.	91900	902
393	. 67	. 81	91. 4	*10	777 710	50 0	62	2 31, 793	-18		75000	904
204	4 00	1 64	167 2	4.1 14	272 964	10 0	6.3	2 29 998	-17	-59	SSEMA	902

BEST AVAILABLE COPY

-55-

REC#		SPEED	HEADING		DATE, TIME		L	ATITUDE	L	ONGITUDE	Q	UALITY
395	. 30	5. 55	111. 5	+10	777 9220	0	62	29. 389	-17	-56. 23	100	902
396	. 30	5.28	115.3	*10	777 9400	ø	62	28. 713	-17	-53. 12	800	902
397	1. 20	5. 17	119.0	+10	77710520	ø	62	25. 707	-17	-41. 39	200	902
398	30	5.89	127.2	*10	77711100	ø	62	24. 638	-17	-38.35	200	905
299	30	4.94	255. 9	+10	77711280	ø	62	24. 276	-17	-41. 46	000	902
460	47	2.50	212.7	*10	77711560	ø	62	23, 295	-17	-42.82	160	902
401	70	1.75	263. 0	*10	77712380	ø	62	23. 146	-17	-45. 44	300	905
462	60	9.85	104.0	+10	77713140	ø	62	21. 713	-17	-33. 07	200	905
403	1 20	3 55	128.7	*10	77714260	ø	62	19.048	-17	-25, 90	600	902
404	20	2 96	179.1	+10	77714440	ø	62	18, 159	-17	-25.87	700	902
405	37	85	339.5	*10	77715060	ø	62	18.450	-17	-26. 11	100	902
496	57	1 20	100.3	*10	77715400	ø	62	18. 329	-17	-24. 67	200	903
407	57	6 45	119.8	+10	77716120	Ø	62	16. 615	-17	-18. 24	500	984
402	20	9 11	126 6	*10	77716300	Й	62	14.986	-17	-13. 525	500	992
409	20	8 43	123.2	+10	77716480	ø	62	13.600	-17	-8. 975	500	982
410	67	8 16	127.2	*10	77717260	ø	62	10. 476	-17	- 14	100	902
411	1 12	2.05	292 6	+10	77718340	ñ	62	11 371	-17	-4 74	399	995
412	67	8 00	307 9	+10	77719140	й	62	14 649	-17	-13 78	400	902
417	47	8 96	311 3	+10	77719400	a	62	17 214	-17	-20 05	-	905
44.4	40	7 11	296 9	+10	77720040	a	62	18 234	-17	-25 27	700	995
114	97	29	55 7	*10	22221000	ā	62	18 380	-17	-25 30	SAA	992
415	- 23 EQ	95	91 1	+10	77721360	ā	62	18 768	-17	-24 07	100	992
410	20	2 40	256 2	+10	77721540	a	62	18 197	-17	-25 57	200	902
410		2.40	180 8	*10	77722460	a	62	17 485	-17	-25 59	900	992
410	20	44	4 1	+10	77723040	a	62	17 607	-17	-25 59	100	902
439	20	52	127 9	*10	77723220	ā	60	17 510	-17	-25 32	200	997
420	20	. 02	192 7	+10	77723400	a	62	17 492	-17	-25 15	100	900
422	07	50	755 2	*11	777 300	a	62	17 997	-17	-25 27	766	993
422	20	1 14	217 2	+11	777 500	a	62	17 718	-17	-25 68	100	994
425	. 20	90	111 5	*11	777 1100	a	62	17 609	-17	-25 08	200	907
424	1 47	1 16	70 0	+11	777 2380	ñ	62	18 192	-17	-21 630	SAA	982
120	40	4 99	295 8	+11	777 3020	a	62	19 646	-17	-25 421	100	964
427	97	7 57	292 9	+11	777 3580	A	62	21 791	-17	-39 44	200	903
100	57	7 79	288 0	*11	777 4700	a	62	23 874	-17	-47 96	199	902
420	40	9 24	297 0	+11	777 4540	a	62	24 356	-17	-54 48	-	995
170	77	7 92	298 8	+11	777 5400	a	62	26 510	-18	-6 76	100	902
474	70	0 57	220.0	+ 11	777 6220	a	62	28 440	-18	-19 65	100	964
422	27	9.24	290.4	+11	777 6420	A	62	29 416	-18	-24 721	200	964
432	20	5 30	312 1	+11	777 7000	a	62	30 484	-18	-27 28	200	905
433	1 20	9 54	286 4	*11	777 8120	a	62	33 717	-18	-51 13	100	905
434	27	0 74	294 7	*11	777 8340	a	62	74 494	-18	-57 555	500	992
430	4 47	0.04	204.1	+11	77710020	a	62	395 85	-19	-22 14	100	982
430	20	0.14	200.1	*11	77710200	a	62	29 191	-19	-27 250	100	902
470	20	8 42	291 3	*11	27710380	Ø	62	40. 107	-19	-32 38	700	902
470	27	g 59	289 4	+11	77711000	A	62	41 152	-19	-38 86	700	982
440	27	8 40	289 7	*11	27711460	A	62	43 336	-19	-52 13	200	982
444	40	5 96	287 5	+11	77712100	Ø	62	44 648	-19	-57 100	300	902
142	22	4 30	287 6	+11	77712300	0	62	44, 482	-20	- 08	300	902
447	22	8 68	330 7	+11	77712500	Ø	62	47. 995	-20	-3 18	200	905
444	53	0 05	700 0	+11	77713300	G	62	52 073	-20	-10 10	200	907

BEST AVAILABLE COPY

											FIX	
REC#	SPEED		HEADING		DATE, TIME		LATITUDE		LONGITUDE		QUALITY	
.1.15	dia	8 99	327.9	+11	77713540	ø	62	55, 122	-20	-14. 305	902	
1.16	10	9 34	327 2	+11	77714120	ø	62	57. 479	-20	-17. 6410	90 902	
447	1 07	8 85	330.0	+11	77715160	ø	63	5. 659	-20	-28. 050	00 903	
449	43	9 39	326. 8	+11	77715420	ø	63	9, 065	-20	-32. 985	30 904	
449	27	8 78	334. 2	*11	77715580	0	63	11, 175	-20	-35. 2470	30 902	
450	53	8 15	321. 1	+11	77716300	0	63	14, 559	-20	-41. 3040	00 903	
451	57	8 50	301.1	*11	77717040	0	63	17.051	-20	-50, 475	30 902	
152	22	8 37	299.6	+11	77717240	ø	63	18, 431	-20	-55, 8750	30 905	
457	90	8.76	299.8	*11	77718180	ø	63	22, 353	-21	-11. 1330	30 902	
454	60	8.70	299.8	*11	77718540	ø	63	24, 948	-21	-21, 2650	30 902	
41.5	1 17	8 53	301.0	+11	77720040	ø	63	30, 076	-21	-40. 376	30 903	
416	37	8 48	301. 9	*11	77720260	ø	63	31, 724	-21	-46. 3000	30 904	
41.7	47	8 77	297.5	+11	77720520	Ø	63	33, 480	-21	-53. 8730	30 902	
.159	22	8.57	297 7	+11	77721120	Ø	63	34, 810	-21	-59, 5556	10 905	
459	63	8 77	297.5	+11	77721500	ø	63	37. 382	-22	-10. 6430	30 902	
dER	50	8 70	301 1	+11	77722200	0	63	39, 629	-22	-19. 041	30 902	
dE1	22	9 42	300 6	*11	77722340	ø	63	40,748	-22	-23. 3110	30 903	
462	22	8 97	303.6	+11	77722540	0	63	42, 405	-22	-28, 935	30 902	
+FUF	(031)	- 11/ 7	/77/225	4								

FCHK : PAUSE 3333 FCHK SUSP

1 ... 1

BEST AVAILABLE COPY

-57-

MANDATORY DISTRIBUTION LIST

FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS, & FINAL REPORTS PUBLISHED BY OCEANOGRAPHIC CONTRACTORS OF THE OCEAN SCIENCE AND TECHNOLOGY DIVISION OF THE OFFICE OF NAVAL RESEARCH (REVISED APRIL 1977)

.....

 Director of Defense Research and Engineering Office of the Secretary of Defense Washington, D.C. 20301 ATTN: Office Assistant Director (Research)

Office of Naval Research Arlington, VA 22217 1 ATTN: (Code 460) 1 ATTN: (Code 102-OS) 6 ATTN: (Code 1021P) 1 ATTN: (Code 200)

- 1 Mini (6010 100)
- 1 CDR J. C. Harlett, (USN) ONR Representative Woods Hole Oceanographic Inst. Woods Hole, MA 02543
- Office of Naval Research Branch Office
 495 Summer Street
 Boston, MA 02210

Director Naval Research Laboratory Washington, D.C. 20375 6 ATTN: Library, Code 2620

- National Oceanographic Data Center National Oceanic & Atmospheric Administration 3300 Whitehaven St., N.W. Washington, D.C. 20235
- 12 Defense Documentation Center Cameron Station Alexandria, VA 22314

Commander Naval Oceanographic Office Washington, D.C. 20373 1 ATTN: Code 1640 1 ATTN: Code 70

3 NORDA National Space Technology Laboratory Bay St. Louis, MS 39529

Norvegian Sea Overflow Norvegian Sea Overflow This card is UNCLASSIFIED This card is UNCLASSIFIED Shor, Alexander N. II. Shor, Alexander N. III. N00014-74-C-02621 NR 083-004 N00014-74-C-0262; NR 083-004 3. Turbidity Current I. Johnson, David A. Turbidity Current Johnson, David A. Contour Current Contour Current OCE76-81491 OCE 76-81491 III. ... 2 IV. -...... 'n. IV. Detailed data analysis will from the basis of Ph.D. dissertations (for A. Shor and W. J. Nuchardson). Scientific results of the cruise will be presented in these dissertations and in associated publications. Detailed data analysis will from the basis of Ph.D. dissertations (for A. Shor and M. J. Nichardson). Scientific results of the cruise will be presented in these dissertations and in associated publications. During leg 1 of cruise ATLANTES 11-94, a multidisciplinary investigation of present-duy sediment-current interactions was carried out on the insular rise south of freehand. The principal objective was to study the relationships between relatively steady thermohile flow, episodic turbidity current flow, and the types of sediments associated with these current systems. The northern freehand Basin is an optimal site for studying these effects becuue of the well-developed deep thermohaline current systems resulting from overflow from the forceptan Sea, and the substanting from overflow from the forceptan Sea, and the substanting of theritogenous (largely volcemopents) debried from the Irchland margin which has occurred since the post-placial rise in sea level. In this report, we outline the regional setting, objectives, and scientific operations of the cruise, and present examples of typical setting profiles and 1.5 Miz records from areas of particular importance. All station locations are tabulated, and sureline In this report, we outline the regional setting, objectives, and scientific operations of the returks, and present examples of typical seisance profiles and 3.5 Mir records from areas of particular liportence. All exaction locations are tabulated, and stallites fixed are fitted. NITIAL CHURS REPORT ATLANTS 21-94, LEG 1 by David A. Johnson and Alexader M. Shor. 57 pages. December 1977. Frepred for the Office of Nevel Research under Contract. NOO14-7-6-7055, NR 081-004 and for the National Science Foundation under Geart OGT/Fe1491. INITAL CHUSE REPORT, MILANTS II-44 120 1 by David A. Johnson and Alexander N. Shor. 57 pages. December 1977, Prepred for the Office of News Newsch under Contract STO013-9-2-0265: NN 093-004 and for the Mational Science Foundation under Scant OCCP618(9). investigation of presented as self-senter in transmost standard carried out on the instant arise south of ficeAad. The principal objective was to study the relationships between relatively steady thermbains flow, pisuodic tuthichy current flow. The northern of sediments associated with these current system. The northern for addiments associated with these current systems. The northern cleaned Basin is an optimal site for studying these fiftets because from overflow from the Norwejian Saw, and the system resulting from overflow from the Norwejian Saw, and the substantial input of thich has occurred since the postergatial time in saw lawsi. During Leg 1 of cruise ATLANTIS II-94, a multidisciplinary WHOI-77-70 Woods Hole Oceanographic Institution WHOL-71-70 Woods Hole Oceanographic Institution irportance. All s fixes are listed. Norvegian Ses Overflow Norsegian Sea Overflow This card is UNCLASSIFIED This card is UNCLASSIFIED II. Shor, Alexander N. Shor, Alexander N. NC0014-74-C-0262, NR 083-004 Johnson, David A. III. N00014-74-C-02621 Johnson, David A. Turbidity Current Turbidity Current Contour Current Contour Current OCT76-81491 OCE 76-81491 1 NR 083-004 2. ~ IV. IV. Petalled data analysis will from the basis of Ph.D. dissortations (for A. Shor and M. J. Richardson). Scientific results of the cruise will be presented in these dissertations and in associated publications. Detailed data analysis will from the basis of Ph.D. dissertations (for A. Shor and M. J. Nichardson). Scientific results of the cruise will be presented in these dissertations and in associated publications. During lag 1 of cruise ATLAWTS 11-94, a multidisciplinary investigation of present-our structure interactions was carried out on the insular rise south of feeland. The principal objective was to study the relationships between relativaly stady thermohine flow, pisodic turbidity current flow, and the types of sediments associated with these current systems. The northern feeland Basin is an optimal site for studying these effects because of the well-developed deep thermohaline current systems resulting from overflow from the Sourcepian Se, and the substanting input of furridomus (integrity volcamopents) dabris from the Ireland margin which has occurred since the post-placial rise in sea level. During lag 1 of cruise ATLAWTS 11-94, a multidisciplinary investigation of present-our set intracectors was carried out on the insular rise south of Teeland. The principal objective was to study the relationhips between relatively steady thermohiline flow, episodic turbidity current flow, and the types of sedimatic associated with these current systems. The northern Teeland Sasin as no principal site for studying these effects becuue of the well-developed deep thermohiline current systems resulting free overflow from the Noregian See, and the subtanting free overflow from the Noregian See, and the subtanting thermohiline group of the subtanting the Midch has occurred since the post-glacial rise in see lawel. In this report, we outline the regional setting, objectives, and scientific operations of the cruise, and present examples of typical setamic profiles and 3.5 Mir records from areas of particular importance. All station icontions are tabulated, and satellite In this report, we outline the regional setting, objectives, and scientific operations of the returds. And present examples of typical setamic profiles and 3.5 MHz records from areas of particular fixed area will station locations are tabulated, and satellite INITAL CRUISE REPORT, ATLANTIS 11-94, 12G 1 by David A. JOhnson and Alcander M. Shor. 57 pages. Johnson and Alcander M. Shor. 57 pages. Johnson and Alcander M. Shor. 57 pages. Johnson and Work and For the National Science Foundation Wolk?-(-C-055): NY 083-004 and for the National Science Foundation under Grant OGT/6-81491. NITTAL CNUESE REPORT, ATLANTS II-94, LEG 1 by David A. JOhnson and Alexander M. Shor. 57 pages. Beenher 1977. Frequet for the Office of Naval Nassarch under Contract WOOL4-7-6-CADS, NN (08-004 and for the National Science Foundation under Gamt OGT/6-81491. MHOI-77-70 Woods Hole Oceanographic Institution WHOI-77-70 Woods Hole Oceanographic Institution fixes are listed.

•