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INTRODUC TION

Inflated vehicles of biconic shape have been proposed for use as
strategic ballistic weapons. The forecone and base disk would be relatively
rigid and separated by an axial compression column (Fig. 1). The aft frustum
would consist of fabric stretched between forecone and base and supported by
internal pressurization. A major concern is that rising external pressures
during reentry will increasingly displace the cloth surface and alter the
aerodynamic characteristics of the ''softened' vehicle until an altitude is
reached below which the mission is compromised. The present theory pre-
dicts static aerodynamic derivatives for the perturbed (''banana'') biconic.

Inflatable structures have been studied for many years. Just since 1972,
articles have appeared on the shape of balloons, flexible deceleration devices,
air bags for ground effect vehicles, inflated paragliders, inflated sails,
inflated marine cantilevers, air springs, lighter-than-air vehicles, inflated
pontoons, space inflatables, inflatable rocket nozzle extensions, etc. None
of these is referenced here, because none describes an inflated yawed cone
(nor, in fact, any inflated yawed shape in hypersonic flow).

The displacements expected (Fig. 1) depend generally on the imposed
axial tension, the amount of internal pressurization, the elasticity of the :
frustum fabric, and the scale or size of surface deflection. The value of
the present analysis is that it explicitly retains and displays the effects of

two of these important features: the amount of axial tension and the amount

of internal pressurization. Other features are necessarily omitted; we assume
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that the cloth is inelastic (unless the level of pressurization is uniquely that
which makes the unyawed, symmetric shape conical) and that the fabric dis-
placement is small enough for the present linearized description. Three
other assumptions are made that may be important in special applications:
that the external pressures are Newtonian, the vehicle is slender and non-

porous, and the angle of attack is small compared with the cone half-angle.




. ANALYSIS

! An axisymmetric biconic, whose rigid forecone has semiapex angle
(6 << 1) and length Tx1/9 (Fig. 2), and whose frustum has semiapex angle

7(tr << 1) and theoretical length L, is placed in a hypersonic flow at small

yaw angle o (¥ << r). The bow shock wave is assumed to lie so close to the
body (Mz-r2 >>1 and y - 1 << 1, where y is specific heat ratio) that external
pressures can be approximated by Newtonian values.

PRESSURES ON AFT FRUSTUM

Let r be the radius in any cross section and ¢ the meridian angle

2 measured from the windward ray, and let . = tan™ ! (r /r), where subscript ¢

¢
or x denotes differentiation of local radius r with respect to ¢ or x, respec-
tively. Variables ¢ and p are shown in Fig. 3a, which depicts what would be
seen by an observer stationed at x = 0 and looking aft. Figure 3a is a spherical
triangle whose legs are smal:l angles. Because of the slender-body approxi-

mation, the laws of plane trigonometry apply in Fig. 3a. Without deformation,

R and p = 0. From the sine law

w
1]

r sin p/sin ¢ << 1;
¢ = r, sin ¢/sin (¢ - p) <1

The Newtonian pressure coefficient is 2 coszé , where 6 is the angle
between the downwind direction and the external surface normal. This nearly
’ right angle is shown as one side of the spherical triangle in Fig. 3b. The

angle ¢ - u is common to both Fig. 3a and Fig. 3b. From the cosine law for
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Fig. 3. Frustum Trigonometry
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sides of a spherical triangle
cos 8 = -y + (B-a)cos (¢ - )
Combination of these relations leads to the external pressure coefficient

Cy = 2[r cos p+a cos (¢- P)]Z (1)

Let displacements r - rx of the fabric frustum be small: Ir - x| << rx.
Since displacements are expected to be continuous around the entire circum-
ference, p is of order | which is assumed small compared with r. If
o is also assumed small compared with r, the linearized pressure coefficient

on the frustum is simply
C_= 21-2 + 47(r_ - v + @ cos ¢) (2)
P x

which clearly could have been obtained without introduction of the small dis-

placement angle . On the rigid forecone, where the semiapex angle is 0
2
Cp=29 + 40 o cos ¢ (3)

The pressure P, inside the frustum is assumed to be uniform and to be

given as the multiple P of the nominal external zero-lift pressure
pi/q = Pz'rZ

where q is dynamic pressure. The pressure difference P; - P (= Ap) across

the fabric is then

Ap/q = 2:%(P - 1) - 4r(r - v +a cos ¢) (4)

-12-
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FORCE COMPONENT EQUATIONS
Let the product of stress and skin thickness be denoted by Tx, T¢, and

T*?. The first two are tensions per unit surface length in the axial and
azimuthal directions, respectively. T*? is the shear force per length, In
order for forces on a surface element of length dx and width rd¢ to be in
equilibrium, each component of force must vanish. For a slender body

(rx << 1) and small surface displacement (r¢/r << 1), the radial, axial, and

azimuthal components are related, respectively, as

rAp + (T rr ) _+ (Tx¢r¢)x + (T¢r¢/r)¢ + (Tx¢rx)¢ -1?=0 (5)
< : ~Aprr_ + (r'r’")x + T:"’ =0 (6)
-apr, + T: +(rT*®) =0 (7)

AXIAL TENSION

Our interest lies in small displacements from a conical shape (r = rx),
such as the cone expected at zero angle of attack if the level of internal
pressurization is that for which the cloth was shaped. The zero-order

integrated form of Eq. (6), the axial component balance, is then

»xT™ = C + (1/2) Ap(rx)° 8)

Physically, the constant C represents the compressive force (+2w) in the
central column (Fig. 1) that stretches the fabric in the absence of aerodynamic

pressures, When the zero-order form of Ap, given by Eq. (4), is used in the

-13-
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second right~-member term above (and it is naturally assumed that P is of
order unity and x is of order L), this last term of Eq. (8) is found to be of
order q-r4Lz. The present theory is intended to apply where the left member
of Eq. (8) is, instead, of the lower order q'rZLZ. This intent is fulfilled when

the zero-order axial tension is normalized as

xT* = T2qsL° : 2 << T =0(1) 9)

Changes in Ap affect s only through the last term of Eq. (8), which is of
order -rZ compared with the constant term and is neglected in Eq. (9). Changes
in skin length, which might affect g through axial elasticity, vary as the
square of skin displacement and are similarly neglected. The normalized
axial tension parameter T is thus a known parameter in the present linear
treatment.

SHEAR STRESS

The circumferential or "hoop'' tension per station, T'P, is expected to
congist of both zero- and first-order contributions. A physical reason for
changes in ¢ being of first order when those in T* are of second order is
that the fabric skin is not fixed to a rigid frame on any meridian as it is at
fore and aft stations. The shear force per length, ’I'xq’, on the other hand,
is of first order. There is no zero-order component of Tx¢, because it is
assumed that erection of this inflated vehicle was achieved without any torsion
built in between the rigid forecone and base (Fig. 1).

Examination of the several terms in the left member of Eq. (5) reveals

that the third and fifth terms involve ’I’x¢. In the third term, both Tx’ and r ¢

-14.




are of first order; this term is therefore of second order and is neglected.

1 5 The fifth term, (Tx¢rx)¢, contains only one possibly first-order term, namely,
T:¢T. We can express this term as a function of displacement immediately by
multiplying Eq. (6) by r. However, these replacement terms for T:’-r are of
order Ap r-rz, which is small compared with rAp, the first term of Eq. (5).

As a result, both terms involving T*? can be omitted from Eq. (5).

Examination of the three terms in the left member of Eq. (7) reveals

that the first term, -Ap r¢, must be considered as first order if rAp is called
zero order. The third term, however, is of order -rTx¢, which is of order
TT;¢, a term that was found above to be of order rAp-rZ. i.e., of second
order and negligible. On this basis, Eqs. (5) and (7) can and will be solved

for small displacements of the skin on a slender cone without consideration

of shear stress. Equation (5) with (9) then becomes

]+ 'r"(::‘;-‘ﬂ- 1) =0 (10)

X

Equation (7) with (4) can be integrated to the form

T = 790, x) + 2+2q(P- 1)[r - r(0,x)] (11)

HOOP STRESS
The windward circumferential tension per station, T’(o,x). consists of
both zero- and first-order contributions when P > {. The zero-order part,

from Eq. (5), is the zero-order value of rAp, namely Z-r3(P = 1)gx. The

first-order part will be called A’I"(o.x). Elimination of T’(¢, x) between

a-m
"y

-15-




Eqs. (10) and (11) and elimination of Ap by use of Eq. (4) lead to an equation

for displacement r. When zero-order terms are removed, one is left with
2
(P - 1)[r(0,x) - > + r¢¢] - 2mx(r,_ - 7+ cos ¢) + TL (rrx/x)x
- AT?(0,x)/27q = 0, P>1 (12)

Because Eq. (12) describes the displacement on any meridian ¢, the unknown
function AT¢(o,x) can be replaced by the value on the windward meridian of

all the other left-member terms in Eq. (12).
(P - 1)r¢¢ - fo(rx -r+acos ¢)+ TLZ(rrx/x)x
= 7(P - l)rw(o.x) - 27x[r_(0,%) - 7 + 0] (13)

+ TLZ[r(O,x)rx(o, x)/x]_, P>1

Care must be taken, however, to ensure that the hoop stress is non-
negative, because compressive stresses cause membrane buckling immediately.
T? is expected to vanish on all meridians when the vehicle is underpressurized
(P<1). In this situation, the circumference is expected to be reduced, with
the surplus fabric being taken up in folds. These can be interior or exterior
folds; the present analysis does not describe the folds. In this linear analysis,
such reduction in circumference must be small and is treated as a first-order
perturbation from the conical shape associated with P = 1, even at zero angle

of attack. Specifically, when 0< 1 - P << |, Eq. (12) becomes

'rzx(P -1) - Zq-x(rx - t+a cos ¢) + TLZ(rrx/x)x =0 (13)
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There is a very narrow zone of internal pressures, inte rmediate
between the external windward pressure and the slightly lower external
leeward pressure, for which a positive hoop stress may occur over a limited
range of (leeward) meridians. This transition range where P~ 1 is not
considered in detail, inasmuch as terms that were otherwise of first order
are there no longer large compared with neglected second-order terms, such
as those involving shear.

DISPLACEMENT WHEN P > 1{

It is convenient to introduce dimensionless variables R and y for dis~

placement and station as follows:

RESSEENE gt ; R e 7 (14)

With this choice, T disappears from the differential equation:

o R
(P - DRy, - Zy(Ry+ X cos ¢)+(y +Ry)y

= (P - - @], [RO.Y)
(P “RW(O’Y) ZY[Ry‘o'Y)+T]+[ y +Ry(°’Y)]y (15)

For boundary conditions, it is required that the displacement R vanish at the
biconic shoulder (the forward end of the membrane) and at the base, where,

respectively

y, = T°1% qu ; yyupnlid (16)

For convenience, the length ratio € is introduced, where

g=x,/L=y,ly, (7)

-17-




The derivative R . should also vanish on windward and leeward meridians

¢
for lateral symmetry.

The appearance of cos ¢ in the only forcing function in Eq. (15), and
the homogeneous boundary conditions along windward and leeward meridians,

indicate that the solution has a similar variation with ¢. Let

R(¢,y) = Ry(y) + R (y) cos ¢ (18)

Then, equating coefficients of cos ¢ and (cos ¢)o, one has an ordinary

differential equation for Ri(Y)

R{ - 2yR{ + (R /y)’ - (P - 1)R = 2yo/r {19)

where primes indicate differentiation with respect to y; however, one has no
information with regard to axisymmetric displacements RO’ such as might
be caused by levels of internal pressures other than that for which the conic
skirt was shaped.

An expression for the axisymmetric displacement Ro can be developed
by introducing a stress-strain relationship such as

(r-) _ /rx=(T? -1 \/hE=2:3P-P_ )qx/hE
sym sym ref / ref’d

where hE is thickness times the elastic rnodulus in hoop tension. In

normalized variables

Ro=Cpy’ .  Cg= 1P - P_ )0E) ! @2qrT™)!/2
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Because R here does not vanish at Yy and y, as required in the present
analysis, it appears that the ordering of magnitudes for the various terms in
the differential equations (5) through (7) probably falls in a small neighborhood
of the end constraint points. For example, the shear stress is expected to
peak at the end points, and perhaps one of the shear terms is not negligible
there when R does not vanish identically.

We avoid this complication in the present analysis by limiting it to
cases where R, is zero everywhere, As a result, the present analysis for
P > 1 is apparently limited in validity to two cases: (1) the case in which the
internal pressure is precisely that which produces a conic shape in elastic
cloth at zero angle of attack (P = Pref) and (2) the case in which the cloth is
inelastic (hE - =) so that the shape at zero angle of attack is conical for any
level of pressurization provided P > 1.

Equation (19) does not seem to describe any of the common, tabulated
mathematical functions. It can, of course, be integrated numerically to
provide an Rt /o profile for particular choices for P - 1, T, and §. Presented
here are profiles for large and small values of the tension parameter T. Also
presented, because of its critical importance in an application, is the variation

of displacement slope at x = L, with T.

T>>1

In this high-altitude case, y<< 1. We reduce Eq. (19) by neglecting the

second and fourth left-member terms. The immediate solution is

R, () = - @/nEn v - ¥y - ¥%) (20)

-19.
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which is independent of pressurization level, P> 1. The maximum value

of absolute displacement is given by

(r - mx) T/l = 6721 4 62 4 (1 + 1482 4 g1 /21/2

(21)

x [-2(1 + €2) + (1 + 14€% + e4H1/]

which is plotted in the dashed line in Fig. 4. The maximum occurs at a value
of (y/yz)Z that approaches 1/3 as € » 0 (vanishing forecone) and that approaches
1+ 52)/2. as € > 1~ (vanishing aftercone skirt).
T<<1

We reduce Eq. (19) by neglecting the third left-member term every-
where. The first left-member term contains the highest order derivative,
Rlu, and is retained so that the reduced version of Eq. (19) has a solution

that is uniformly valid in (yl, yz); i.e., it vanishes as required at both ends.

Because y >>1, the solution can be further reduced to

R, = -2@/7)(P + 1)yt = (y, 1) ItPV2_ (4 _ (1+P)/2,
: ; (22)

x (71 T2 exp(y” - yﬁ)] y>> 1

In this low-axial-tension limit (low altitudes), the solution retains a
dependence on pressurization level P. The solution in this limit has an
interesting character, The displacement of the windward and leeward surfaces
(ikl) increases in magnitude linearly with distance from the forward attach-
ment point until 1 - x/L is only (T/2) log (1/T). The displacement then
vanishes abruptly as x » L. The maximum value of the absolute displacement

is approximately

-20-
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A -1 (1+P)/2
(r=x) . JL)=2@+1)7(1-¢ ) (23)
This relation is plotted as the solid curves in Fig. 4 for four values of
pressurization.

Slope at x = L,

External pressures in the Newtonian approximation depend on the sur-~
face slope rather than on the displacement per se. The maximum slope
occurs at the aft attachment, x = L (on the windward side). There, from

Eqs. (20) and (22)

(-2 : T > 1;

X max (24)
{ . g1+P)/2

4P+ 1) Y R L

In addition, Eq. (19) has been integrated numerically to provide the maximum
slope for the general case where T is of order one. This variation is plotted
in Figs. 5a and 5b, which also show the asymptotic values from Eq. (24) as
dotted lines. Values in the lower half of these plots are compatible with the
assumption of linearity. Values in the upper half are shown for their

qualitative features.

DISPLACEMENT WHEN P < {

In terms of normalized variables R and y, Eq. (13) becomes

2 = e
Ryy=2yR +R /y - R/y" = y[1 - P +2(/7) cos ¢] (25)

-22-
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Again, a cosine variation of the form given in Eq. (18) is indicated. In the
present instance, Rl(Y) is the same as for P > 1, and the symmetric part

Ro(y) is proportional

R (y)! (1-P)il Ry 20 /7 (26)
Thus
1 -P+2(/1) cos ¢
R(#: V)pey = ST cos g Ri® Ylpsg o

This eliminates the need for separate solutions for this case; the solution
without folds in the skin (P > 1) is extended into the domain 0 <1 - P << {,
where the skin develops longitudinal folds (also called creases, fins, or
strakes) but where the fractional reduction in circumference remains small.

FRUSTUM SECTION FORCES

For any level of internal pressure or displacement shape, the total
axial and normal forces may be obtained by integrating external pressures.

The external pressure coefficient can be expressed as
cp/zf?' = 1+ 2[R+ (a/7) cos ¢] (28)

The axial force per station X’, to first order in the small displacement scale,

is

X’/q = dnrix(l + 3R. +R_/y) (29)

«25-
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ahd the normal force per station N’ is
’ 3 '
N’/q = 4nT x(R1 +al/T) (30)

Equation (29) assures us that there is no change in axial force for P> 1, for
then the symmetric displacement Ro vanishes in this essentially inelastic

analysis. When 0 <1 - P << 1, this relation can be written
X' /q = 4nr'x[t + 2B (3R + R, /y) P<t (31)
1 2/n) Pt T R Y

BICONIC FORCE AND MOMENT COEFFICIENTS

The axial force coefficient Cx, based on base area in the present
slender-body, Newtonian-pressure approximation is unchanged for P > 1;

for 0<1 - P<< 1, however, Cx can be written as

c, = 20%%+ (mZLZ)"/L(x’/q)dx (32)

ol
which can be written, after an integration by parts, as

y
Cy - 2v2 . 2(8% - %) 4T / =
X = - R, dy, P<i (33)
(1 - P)r° @/T) 4 1
1

The normal force coefficient slope, based on base area, can be expressed, by
use of Eq. (30) and a similar integration by parts, as
Y2

4T
- = = d ’ - 4
CNa 2 @/ R1 Yy P21 (34)
Yy

-26-
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Both Eqs. (33) and (34) have the same right member, and this is plotted

in Figs. 6a and 6b for € = 0.5 and P = 4, respectively. Limiting values are

A1) (1 + 42%ne - €%, T > 1;

Cy -2~ (35)
o

aP+ 1) G-P)yiB-Pra+ P2 -agItP)V2) 1y
which are the dashed lines of Fig. 6.
The pitching moment coefficient slope, taken about the point x = 0

(theoretical nose) and based on base area and base diameter, is given by

A

2
$C. % T2 + £2(1 - r16)) = 4T3/z(a/f)"f yR, dy (36)

Yy

MG

This static stability derivative is plotted in Figs. 7a and 7b for € = 0, 5 and

P = 4, respectively. Limiting values are

-2015T)" 1t - £)3(1 + 3e+ €%, T> 1;

vC, [k 372 4 €31 - v/0)]1~{- B/3)® + 1) 15 - P!
o
X[5-P + (P + 1)g3 - 6g(1tP)/2) T << 1

- (37)

and these appear as dashed lines in Fig. 7.

-27-




- );
;i
1-0 &= Ll | l']l]]l L} LI rfmr i, | 1 lllll-
::::::: 2 i
3|+ U :
i g -
|
FE Fye 5
% | | Eqsh .
| F ~
2 10—2{; -
&k Eq.(asa)/ﬁ
| H
o b=
s g 1
1[]—3 Lt gl 5 i da gl Loiain

0.01 0.1 10 10
T

Fig. 6a. Axial and Normal Force Coefficient, £ = 0.5

"’28-




1.0 1 | | LB ¥ 1N ETN
—___i_T. TTTTT i ll -
;“'“:—‘\\{ = 0.00 3
s oSl SR Eq.I35a) -
. - 050 \\</ ]
N == 4
o b~ N E -
=l AW T 3
| & [FEq/35h) .
B s
' —-—
<10 ; E
o E
| - 4
5 —
1[]-3 o P 5 gba 4l TR N L

0.01 0.1 1.0 10
T

Fig. 6b, Axial and Normal Force Coefficient, P = 4




>

N .
<, U1E Eq@mb)

R A

= 7}
g :

W

5"102 3

(&) =

—— .

. !

r—
10_3 L uul Ll Ll i

10 ITTIIII] S i [ T 1 T 1117
Eszz~\L ‘

L1 1 11llH

y T JJ_lIllI

0.01 0.1 1.0
T

Fig. 7a. Pitching Moment Coefficient Slope, € = 0.5

10




10 T T T TT1T117] T T T 117 T N |
E £= 000 ¥

PO W 551 (% 1Y

1 llllllll

| el llllll[

10 1 llllllll LJlllljll 1 | JOREAT VS I |

0.01 0.1 1.0 10
T

Fig. 7b. Pitching Moment Coefficient Slope, P = 4




The center-of-pressure location, expressed as a fraction of the

theoretical length L, is given by

x 3 Y2

LB E. - I)=2% A

<E. & 53—(1 e) =5 (1 Zyz)Ridy (38)
Y1

This relationship, plotted in Figs. 8a and 8b for £ = 0.5 and P = 4,
respectively, is simply minus the right member of Eq. (36) minus half of

that of Eq. (34). Limiting values are obtained accordingly from Eqs. (37)

AR e AT € AN T RS

and (35).

AR

A R £ SO G W AT
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DISCUSSION

The present linearized theory has shown how ''softening'’ the vehicle
(increasing the dynamic pressure for given fabric tension) increases both
static stability and static margin (Figs. 7 and 8). Also shown (Fig. 5) is
how the slope of the fabric at the tail on the windward side increases
dramatically as the tension parameter decreases. As this slope increases,

so does local heating rate. Vehicle designs can be conceived where this

effect is more critical than zhanges in the aerodynamic coefficients. Further,
as the aft fabric slope increases, local external pressure may climb above
the given internal pressure level. Such pressures would surely create folds
(strakes) in the fabric, with radical aerodynamic and dynamic consequences.
From these considerations, it is concluded that inflated membrane
biconics are useful only in environments where the tension parameter T,
defined in Eq. (9), is at least of order one. Further, it appears that this
useful range of T cannot be appreciably extended by increasing the pres-
surization level P, where P is pi/Z Tzq). unless P is at least an order of

magnitude greater than one.




THE IVAN A. GETTING LABORATORIES

The Laboratory Operations of The Aerospace Corporation is conducting
experimental and theoretical investigations necessary for the evaluation and
application of scientific advances to new military concepts and systeme. Ver-
satility and flexibility have been developed to a high degree by the laboratory
personnel in dealing with the many problems encountered in the nation's rapidly
developing space and missile systems. Expertise in the latest scientific devel-
opments is vital to the accomplishment of tasks related to these problems. The
laboratories that contribute to this research are:

Aerophysics Laboratory: Launch and reentry aerodynamics, heat trans-
fer, reentry physics, chemical kinetics, structural mechanics, flight dynamics,
atmospheric pollution, and high-power gas lasers.

Chemistry and Physics Laboratory: Atmospheric reactions and atmos-
pheric optics, ci;ernic:] reactions in po[‘uted atmospheres, chemical reactions
of excited species in rocket plumes, chemical thermodynamics, plasma and
- laser-induced reactions, laser chemistry, propulsion chemistry, space vacuum

and radiation effects on materials, lubrication and surface phenomena, photo-

sensitive materials and sensors, high precision laser ranging, and the appli-
cation of physics and chemistry to problems of law enforcement and biomedicine,

Electronics Research Laboratory: Electromagnetic theory, devices, and
propagation phenomena, including plasma electromagnetics; quantum electronics,
lasers, and electro-optics; communication sciences, applied electronics, semi-

conducting, superconducting, and crystal device physics, optical and acoustical
imaging; atmospheric pollution; millimeter wave and far-infrared technology.

Materials Sciences Laboratory: Development of new materials; metal
matrix composites and new forms o) carbon; test and evaluation of graphite
and ceramics in reentry; spacecraft materials and electronic components in
nuclear weapons environment; application of fracture mechanics to stress cor-

rosion and fatigue-induced fractures in structural metals.

Space Sciences Laboratory: Atmospheric and ionospheric physics, radia-
tion from the atmosphere, density and composition of the atmosphere, aurorae
and airglow: magnetospheric physics, cosmic rays, generation and propagation
of plasma waves in the magnetosphere; solar physics, studies of solar magnetic
fields: space astronomy, x-ray astronomy: the effects of nuclear explosions,
magnetic storms, and solar activity on the earth's atmosphere, ionospherc, and
magnetosphere; the effects of optical, electromagnetic, and particulate radia-
tions in space on space systems.
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