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FINAL REPORT

Improved Quantum Receivers for Optical Communication

• Contract MOOO1~—76—c—O6O5
Covering ~he period January 1, 1976 - June 30, 1977

The following is a brief summary of the work performed in

this contract and also Indicates certain important open problems.

More details can be found in the attached papers.

I. SUMMARY OF RESEARCH

Our work was motivated by the potential of greatly

I’ improved optical communication that would result from the use
-

of a new class of radiation quantum states. These states

have been named two—photon coherent states (TCS)~~~, and a

thorough study of their properties has been completed

In particular, their possible generation by degenerate

parametric processes and two—photon lasers has been investigated.

Realization of the quantum measurement that leads to the

• 
predicted quantum noIse reduction has also been found

The point process counting statistics of TCS’s and their
(5)

performance in conventional optical reception were worked out

The main topic of this contract is on the communication( 
~~
.‘ - ~~~~~~~~ ~~~~~~~~~~~

the9~retiC aspects of TCS~systems. ~~~~~~~~~~~ ~he optimality

of TCS R as transmitter quantum states, in a number of linear

modulation and binary detection problems.~~ T~,

— •~~
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t~c~ 
.~~

‘Co ~~~~~~~~

e—l v a ~ee de~e4eped a theory of quantum field propagation~~
1
~~

which is essential for a correct analysis of TCS behavior

In optical transmission systems. In particular, w~_.ne*—

.~~txnderStArid the difference between near—field and far—field
I s  ~~~~~~ ~~~~~~~~~~~~~ 

- - I

TCS comi~unicatIon. While one can realize the full TCS per—

formance potential In near—field communication, the far—field

case is uncertain at present.

II. SUGGESTIONS

• The most Important open problems relating to TCS coinmuni—

cation can be identified, at this stage, to be the following:

1. Investigation into the possiblity of employing

TCS—state—generating local oscillators for greatly

improved far—field optical communication.

2. To design and subsequently perform an experiment

• which demonstrates that the desired quant~un states,

TCS’s, can be produced.

3. To ascertain the engineering requirements and

sensitivity tolerance in a practical TCS communi—

cation system, for both near and far field transmission.

IL To develop the general quantum communication

theory of optimum state selection in different

communication situations. 
-

III. PUBLICATIONS UNDER THIS CONTRACT

1. H.P. Yuen, “States that give the maximum signal—to—noise

ration for a fixed energy”, Physics Letters, vol. 56A, pp. 105—
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field”, Physical Review A, vol. 13, pp. 2226~22143, 1976.
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• 3. H.P. Yuen, “Gaussian states and parametric processes,” to
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two—photon coherent states — Part I: quantum state propaga—
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STATES THAT GIVE THE MAXIMUM SIGNAL-TO-QUANTUM NOISE RATIO
FOR A FIXED ENERGY ~

H.P. YUEN
, .~earch Laboratory of Ekctronics, Massach usetts Institute of Technolog y . Cambridge , Mass. 02139 . USA

Received 13 January 1976

Under a rad~ tion p ower constra int , the maximum, signal-to-quantum noise rat io obtainable for any state of a rddi-
ation field is found. This maximum value is achieved by the two-photon coherent states introduced previously to de-
scribe two-photon la~~rs.

Let the density operator p be an arbitrary quantum should be used and that no energy should be spent in
state of a radiation mode of frequency c. with photon tr pa 2 so that (3) becomes
annihilation operator a. We write

tr p(~ a1 )2 + trp(~ a2)2 + (tr 
~~ 

)
~ 

= N, + 4 . (6)
a a 1 + ia2 ; a 1 = 4, a2 = 4 From (5)it is clear that the minimum tr p(~ a2 ) 2 re-
for selfadjoint a1, a2. The signal-to-quantum noise ra- quired to satisfy the uncertainty principle for a given
tio defined by tr p(~ a1)2 is [ l 6 t r p ( ~~a )2J~~~.Thus we can write

(2) in terms of trp(~ a 1)Lone for the purpose of op-
(S/N)~ (tr pa1) 2/ t r p(~a1) 2 (2) ti~~~~tiOn
with ~ a1 E a1 — tr pa 1 is a useful measure of the in-
trinsic quantum fluctuation in many optical experi- IN)~ ~N, + 4— tr ~~Aa1 )2

(7)
ments. In particular, if the operator a 1 is measured at 

— [16 tr p(~ a 1 )2 1}/tr p (~~a 1 )2 .
a rece iver (optical homodyne) with the transmitted
signal in state p. (S/N)~ provides a measure on how The maximum value of (7) is readily found to be (4)
well the signal level tr pa1 can be estimated from the with corresponding

• measurement. We first show that under the energy (or tr pa 1 = [N5(W, + I)/ (2N, + 1)] 1/2 (8)
power per unit frequency) constraint

hc,.,tr pa~a~~ hwN, (3) tr p(~ a1)2 = [4(2N, + 1)] —1 - (9)

for a given N,, the optimum (S/N),, achievable by any This optimum value is achieved by the two-photon
p is coherent states 113)g previously referred as “generalized

coherent states ” [I] - These Ii3)g are eigenstates of b
(S/N) 0 =4N ,(N , + 1). (4) ar i . z a+vat with eigenvalues 13,and p12 _ .1v 1 2 =
Note that under (3), trp( Aa 1)2 cannot be made arbi- When v = 0, 113>g become the ordinary coherent States
trarily small because that requires an arbitrarily large [2] . With
N, as apparent in the following. = [N ,(N ~ + 1)1 1/2 (10)

Eq. (4) can be derived by using the uncertainty

• principle p = (N, + l)/(2N5 + 1) 112, V N,/ ( 2N, + 1)1/2 (11)
t rp (~ a1) 2 tr p(~ a2)2 ~ ‘ 1/16. (5) one finds from ref. [1] that g(13Ia il13) and
It is easy to show that all the available energy in (3) g(13I(~ a l)2 l~

3)g are indeed given by (8
g
)_(9),

The state l1l)g with parameters (1O)—(l 1) is an or-
* Work supported by the National Aeronautics and Space dinary minimum uncertainty state. In general. an ar-• Administration under Grant NGL 22-009-0 13 and by the

Office of Naval Research under Contract NR 042-342. bitrary two-photon coherent state 13)2 minimizes the
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ratio (tr pa ’1 )2/t r p( ~~a’1 )2 for ate parametric amplifiers [3—61 . Not only do they
have absolutely small (

~
a?)discussed previously [1,41,a1 = a 1 cos 0 + a2 sin ~ (12) they also lead to higher (S/ N)  for a fixed radiation

power in the state as shown above. If these I13)g can
= arc tan i (gz~v — v p )  (13) be experimentally generated from two-photon stimu-

21p1 lvi + M V  + lated processes, they may lead to significant improve-
The maximum value (4) obtained from I13)~ can be nent in optical system performance . They may also

compared to the value frtd applications in physical experiments where a (S/ N)
beyond the one-photon laser limit (14) is sought for

(S/N)1~.> = 4N, (14) low noise sensitivity
obtained with a coherent state p = Ic~)(QI . By spending -

a portion of available energy as quantum noise in a2 to
decrease the quantum noise in a1, the resulting signal- References
to-quantum noise.ratio is increased from a coherent
state as if N, is effectively increased to N,~ + N,. 11) H.P. Yuen , P1~ys . Lett. 51 A (1975) 1.

Among other things, this improvement in (S/N),, leads 121 R.J. Glauber, Phys. Rev. 131 (1963) 2766.

to a higher information capacity for optical communi- 131 H.P. Yuen, in Proc. 1975 Conf. Information science and
systems, John Hopkins University, (19 75) pp. 171 —177.

cations with states l13)~ [3]. 141 H.P. Yuen, submitted to Thys . Rev .
The two-photon coherent states It3)~ can be pro- 

~5J D. Stoler, Phys. Rev. Lett. 23 (1974) 1397.
duced from ideal two-photon lasers [1, 4] or degener- (6) E.Y. Lu, Len. Nuovo Cimento 3 (1972) 585.
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Two-photon coherent states of the radiation field*

Horace P. Yu’ 4
Rasea&u Laborat ory of Electronics. Massachusetts Institute of Technology, Cambridge. Mo~sachusetts 02139

(Received 26 June 1975; revised manuscript received 3 March 1976)

The concept of. two-photon coherent state is introduced for applications in quantum optics. It ia a simple
generalization of the well-known minimum-uncertainty wave packets. The detailed properties of two-photon
coherent st ates are developed and distinguished from ordinary coherent states. These two-photon coherent
stales are mathematically generated from coherent states through umtary operators associated with quadratic

• Hamiltonians. Physically they are the radiation states of ideal two-photon lasers operating far above threshold,
according to the self-consistcnt-field approximation. The mean-square quantum noise behavior of these states,
which oasically the same as those of minimum-uncertainty states , leads to applications not obtainable from
coherent stateS or one-photon lasers. The essential behavior of two-photon coherent states is unchanged by
small losses in the system. The counting rates or distributions these states generate in photocount experiments
also reveal their difference from coherent states.

I. INTRODUCTION In general, a two-photon coherent state differs
from a coherent state in several ways: they are

In a recent study’ of quantum communication the- generated by different photon processes , they have
ory it was found that if optical radiations can be different quantum statistical properties, and they
generated in a minimum-uncertainty states” rather have different coherence properties. Basically,
than a coherent state,4 significant performance coherent states are generated from ideal one-
improvement may result in an optical communica- photon stimulated processes, whereas TCS’s are
tion system. For a fixed radiation mode of fre- obtained from ideal stimulated two-photon process-
quency us with photon annihilation operator a, the es for two photons of the sassi e mode. The usual
coherent states I a) (a a) = a a)) have relatively multiphoton parametric processes7 are one-photon
large quantum fluctuations when us/2ir ~ 1O~ Hz. processes in the present sense, as they involve a
Writing a =a , + ia2 for self-adjoint a ,, a2, a coherent single photon from each separate mode. The
state f a) gives (Aa~) =(Aa~)=*. A noise energy5 quantum noise properties of TCS’s are basically

Is then obtained if either a, or a2 is measured the same as those of minimum-uncertaint y states.
in optical homodyne detection. This quantum noise Minimum-uncertainty states and coherent states
is frequently dominant over other noise sources in can be easily confused- The above illustration in
optical communications; for example, an equiva- terms of (~.a~) and (Aa~) is a good indication of
lent noise temperature of ~‘34OO °K is obtained for their differenc e, if we note that they describe the
+1w at the YA1G laser frequency, However, states fluctuations of the field variables directly mea-
with (~a~)<< ~ and correspondingly larger (~ a~) sured in a homodyne experiment. Further careful
are permitted by the uncertainty principle discussions will be found in Sec. ifiE and else-
(Aa~) (Aa~) ~ ~~, such as the minimum uncertainty where in the paper.
states with ~~~~~~~~~~~~~ If one can generate Minimum-uncertainty states were studied at the
such small (~ a~) states by an explicit physical very early days of quantum mechanics; the Ken-
process, it should not be surprising that they may nard packets are particularly familiar in the con-
be profitably used in many applications, text of electrons. It is therefore no surprise that

Minimum-uncertainty states cannot be obtained, much previous work has touched on various as-
however, from available optical sources, all of pects relating to the present two-photon coherent

• which generate coherent states and their random states, including much work on quantum field the-
or classical superpositions. An investigation of ory and interacting Bose fluids. It is impossible

• • the possible ways to generate minimum-uncer- for the present author to give an accurate histori-
tainty states leads to a broad class of radiation cal survey of the literature pertaining to minimum-
states that we call “two-photon coherent states” uncertainty states and their generation by quadrat-
(TCS’s), They include the minimum-uncertainty ic Hamiltonians. The particularly relevant papers
states of which the coherent state is a special now known to the author include Refs. 9— 13 in
case. A detailed study of these TCS’s is reported quantum optics and Refs. 14_17 in quantum field
in this article. A few of our results have been theory. Nevertheless , it appears that TCS’s have
briefly stated in Ref. 6. not been systematically studied before, at least in

13 2226
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the contex t of quantum optics. These and other ad- frequency us, we have the usual canonical variables
ditional papers will be mentioned in relation to (q,p),
some of our results whenever appropriate. q ( N/ 2W) II2 (a t +a), p iUKus ) h i’ 2(a i 

— a ) .  (2.4)
This work is not at all a study of possible math-

ematical generalizations of coherent states. In In general, we can ifltroduce two dimensionless
fact, the TCS’s can be considered as “coherent seif-adjolat operators (a,, a2),
states” in a broad sense , as discussed later. How- aza , +za 2; a,aa~, a2 =t4 . (2.5)
ever , they should be distinguished from the coher-
ent states of Glauber,4 because in quantum optics We also write
the term coherent state is usually understood in aaa ,+ia2; a,, a3 real , (2.6)
the Glauber sense which carries the implication
of equal fluctuations in the quadratures a, and a2. and refer to (a,,a3) or (a,, a5) as the quadrature

In Sec. II we establish notations and briefly re- components (quantum or classical) of the radiation
capitulate the basic results in quantum optics used mode. These quadrature components are the nat-
in this paper. For a single degree of freedom, the. ural variables in describing a TCS, even when the
definition and properties of two-photon coherent mode has a single frequency. Defining the eigen-
states are developed in Sec. III , together with a states a,), of a1, Ia2)2 of a2,
discussion of the contrast between TCS’s and ordi-
nary coherent states . The generation of TCS’s a ,la ,),=a ,Ia ,>,, a21a 2)2 =a iIaz)2 , (2.7)
from quadratic Hamiltonlans is presented in Sec.

we haveW, with illustrative examples. The general struc-
ture and properties of the corresponding unitary ,(a, I a’) = 2 i r ’1~ exp[_ (a, — a’)2 + 4a’(a’_ a’*)J .
transformation are fully determined. Physical

(2.8)interpretation of quadratic Hamiltonians is devel-
oped In Sec. V in terms of stimulated two-photon From (2.6) it follows easily that
processes, which include two-photon lasers and

(a)=a, ( N ) = f a j ’ , (2.9)d’igenerate parametric amplifiers. We argue that
TCS’s describe ideal two-photon lasing states in (~ a~)=(Aa~)~~~, (2.10)
analogy to the coherent-state description of one- -
photon lasers. The approximation which leads to where ( AM 2> a((M— (M )) 3)  for an operator M.
this conclusion is formalized in the Appendix. We The angular bracket (M) represents the expected

also show that the mean- square noise behavior of value trpM of M with respect to a quantum state
TCS’s remains essentially the same when the ef- p which may be either pure or mixed. The uncer-
feet of small damping and additive noise are in- tainty principle on (a,,a2) is

eluded. In Sec. Vi we briefly discuss the coher- 
~~a2)(~.a2) 

~ - (2.11)
ence properties and counting statistics of two-pho-
ton coherent states. The usefulness of TCS’s in Thus Ia) is a minimum-uncertainty statc . From
certain applications is brought out in Sec. Vfl. The the arithmetic-geometric mean inequality, (2.11)
detailed theory of multimode TCS’s will be given implies
In a separate treatment. (b.a~) +(Aa~) ~ 4 (2.12)

so that I a) can be characterized as the states withU. COHERENT STATES AND OPERATOR both minimum-uncertainty product and minimum-REPRESENTATION uncertainty sum.
For a single mode of the field with photon ansi- The differential operator representation of

• hilation operator a, a coherent state ’”5 a) is an M(a’,a) in the coherent-state representation is~~~
of a, 

(as. ~(aIM(a’,a)14,)=M —+—l(a14 1) , (2.13)ala)=ala) . (2.1) aa*/
• • • It can be obtained from the vacuum state ~ via from which one can show

the unitary displacement operator D(a) ~ e’-’ ‘“ ‘, (a IM(a’, a) I~) = (a Ø)M °°(a , ~), (2.14)
• I a) =D (a) I o) . (2.2) where

From (2.2), M~~(a* ,a)~ (a IM Ia)  (2.15)
• ~~~~~~~~~~~~~~~~~~~~~~ (2.3) is the normal-order form3 of M. Note that it is

If the mode has a harmonic time variation with important to keep the separate dependence of M t”1

~~~~~~~~~~ - . — —~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .—--— . —_--~~. -~ ~~~~~~
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on a4 and a in (2.14)—M”7 is a function of two ability density funcUon~ describing the outcome
complex variables (a ,a). Equation (~‘.l4) explic- statist ics of a simultaneous quantum nleasurement
itly shows the fact ’9 that M~~(a ,a) un.quely de- of two noncommuting observables~2’~’° (or a mea-
tel-mines M. In terms of Uth) (a 4 , a;!,!), the surement of the non-seif-adjoint operator a, opti..
Schr6dinger equation iha U ‘at =H (a ’, a) U becomes ’9 cal heterodynirtg).3’ We will use p~ (a , a) or the

au~~ 
/ a ,~ characteristic functions to represent a density

~~~ 
__

~~~
_ = H ( a , a + - (2.16) operator , particularly because P(a , a) for a TCS

is too singular. In terms of ~~
‘=‘, we have

• These results are at least valid for bounded oper-
ators or unbounded operators which are polynomi~ p = fe ’s ‘ “4pt”(a~, a)e ’e~’ad2a d~i/in2 , (2.25)
als in a and a’.

In a number of mathematical senses ,21’24 any trpM = f [~~~(i~~, q)J
~x~(’’, 17)e t” 2 d2,7/in, (2.26)

density operator p can be expressed in the diago-
nal P representation,~~ if 

~~~~~~~ ii) = tr(Me”~e”) exists.

o=fP(a *, a)Ia)(a d2a , d’a s d (Re a) d (I ma) .

2 vi 
UI. TWO-PHOTON COHERENT STATES

A. Definition
Let X N ( ~7 ,  ,j) be the normally ordered character-
istic function For a fixed radiation mode with photon annihila-

, . tion operator a let
xN(,r,I1)a tr(p~e e ’ 9, (2.18)

b.~za+va ’ (3.1)
then P(a’, a) is the two-dimensional Fourier
transform of XN(17 ,77),~~

2’ for a pair of c numbers M, ~ obeying

* • I,~I2 _ 1v 12 = 1.  (3.2)
P(a *, a) = e’ ‘~,(,i ’, ,~)d2 ip/e2 . (2.19)

It follows from (3.2) that
It has not been demonstrated that P(a’, a) provides [b b’] = 1. (3 3)
a convenient tool in actual calculation when it is ‘ -

not sufficiently well behaved. Any transformation b(a’, a) which leaves the corn-
Being the trace of the product of a bounded opel-- mutator invariant as in (3.3) is called a canonical

ator and a trace-class operator , the character- transformation. The change of variables from
istic functions ~~~~~~~~ XA(’l ,’l), and x ,Ø7’,77) are (a,a’) to (b , b’) according to(3.1)and(3.2) is there-
always well defined, fore a linear canonical transformation. A theorem

* , of Von Neumann32”7 asserts that every canonical
r~(’r, i) a tr(pe ’ ‘e”4) , (2,20) transformation can be represented as a unitary

,(,7~, 77) s tr(pe~’’”°’). (2.21) transformation, i.e.,

The Fourier transform of ~~~~ 
,7) is the Wigner b(a’, a) = UaU’ (3.4)

distribution and that of X~
(7F’, i~

) Is pt”1(a~, a),~”2’ for a unitary operato r U. The structure and pt1ysi-
pta) (as , a) a (a lp l a) , cal realization of the UL that leads to the linear

canonical transformation (3.1) are discussed in
W(a *,a )=fx *,n)e4 **i.~~* d27J/ 1r 2 , (2.22) Secs. W and V;

ULaU’~.iha + va’. (3 ,5)
a~* ii2a/r . (2. 23) The commutator (3.3) or Eq. (3.4) provides b

The characteristic functions are related by 
with properties exactly similar to those of a. One
obtains the following in a way identical to the usual

XA(~7 ,  77) = e 1’t Xin (77~, ,) e~
4I2 l ‘x,(ii*, ii), derivation for N and a: 3 Let N, be the “quasiphoton”

(2.24) number operator ,

which also implies relations between P( a ’, a) ,  N,ab’b=U LNU’~. (3.8)

j,1”(a , a), and W(ae , a). Then N, has discrete positive eigenvalues n, with
The function p°”(a , a) Is always well behaved, ground state 10,),

in contrast to P(a’,a) , and Is also quite conve-
nient for moment calculations . Furthermore, it N, m,) = m,~rn,), N, 0,)=0 , (3.7)

specifies a uniquely as in (2.14) and is the prob- m,)=U~ I~ ;). (3.8)

-.4
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Similar to In) , the states I”,) can be expressed in 1$ a
the form 1 aI8),=~~~ — .~ — -—~—-)(a I8),. (3.17)

• I n 1,) = ( bt r (,n t ) t ~2 I o,). The solution of (3.17) is of the form
They are complete orthonormal. Furthermore, b (a Is), exp[a *5/ri — a 

~~
— va ~ /2 ~ +f(P ’, 5)] .

acts as the lowering operator for rn ,). The quasi.
particle interpretation of b and mm,) is discussed (3.18)
In Sec. WA . The (a’, a)-independentf can be determined from

The TCS’s Is), are defined to be the eigenstates (3.16), (3.1), (2.13), and
of b with eigenvalues 5,

bI s) ,=8 $) ,. (3.10) ,( $I b I a )

The M, v dep~ndence of a TCS has been suppressed 
• ain the notation ~5),. When necessary, we will use .ta+!~_ .+v j__ ) ,~ft (a) , (3.19)

the more complete notation 113; ~z , v) . With v =0 , 2 a

8), become the ordinary coherent states. In our • so that the 8-dependent part of f in (3.18) is —4 Is Is
later references to a TCS, it should be implicitly + ~‘52/2~i, From the normalization
understood that v*O.

From (3.4), there is an UL independent of 5 f lta I8),I2d~a/r = 1 ,
which gives

Is) =U LI $) (3.11) (aIs~, is thus determined up to a (a’,a;5 ,5)-
independent phase in the form

for each state Is). Therefore in parallel with Is)
5),=D,($) Io) ,, D,(13) e~ ’_ 5 ’b , (3.12) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

f I5)g,(SI d25/ ir =1 , (3.13) .i-(v ’/2M)52+(l/u)a S +i9 0} (3.20)

,‘.8 Is’), = exp($ 5’— 4 Isv — 4I8’ I9. (3.14) for a real e0. The normalization constant is cal-
- culated from the normalization of Gaussian inte-

If the notatio~i IS; M, v) is not used, the same gs, p grals.2° For g~ = 1, v = 0, (3.20) reduces to the
is understood to apply to all of the J5), in an equa- usual form of (a Is) for 9~= 0, a choice of phase
tion. we will adopt for (a Is),.

From (3.13), any state vector 14 ) can be ex- While we have
panded in terms of Is>,. Similarly, diagonal op.. (m ,I5>,=$~ (m !)~~

/2e~~~
2l92 , (3.21)erator representatio n can be developed ,

similar to (2.3), the function (mi s), takes a more
M =f M ~~($*~$) I 5),~(8 J d25/ r , (3.15) complicated form which can be determined as

follows: As a function of the complex var iables
for the antinormal order form M ”~(5 ,5) of M. In z and !, e21

~~t
2 can be expanded in the Taylor

the Is>, representation, we have [similar to (2.21)] series

,(SI M ( b ’,b) I~~
) =M (~3*~~ + )  ,($l 1.) .  (3.16) e~” ’2 ~ H,(z)t ’

, It I<’°~ (3.22 )

Other properties associated with I a) carry over where 1f, (z) is the nth Hermite polynomial with
identically to Is ,. complex argument z. Writing

The results of this subsection on Is), and ni,)

• depends only on the relation (3.4), and not on the (aJ$),=E (a l n) (nI$) ,
more specific (3.5). The specific characteristics
of (3.1) are developed below. Certain properties of az,d usir.g (3.20) and (2.3), we find• TCS’s have been discussed by Stoler 9 in the con- 

1 , 2
text of minimum-uncertainty states. (‘~~)

‘ ‘~~~ (p/2~ ) H 9[ ~3 (2~iv) I
x exp[_ 4 Is 2 

+ (p */ 2 M) 52] (3.23)
B. Wive fun ctions For gs = 1, v = 0, the asymptotic forms of H,,(z) for

The general coherent-state wave function (a Is), various73 argz all lead to (2.3), as they must.
of a TCS Is first determined as follows: From Equation (3.23) shows that the counting statistics
(3.1), (3.10), and (2.13) we obtain of a TCS is far from the Poisson (2.3).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ .- --_~~~~~-• _-~-~~~~-_ -..• •
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The wave function ,(a, IS), can be readily determined from (3.20) and (2.8). Thus we find

‘2 \ ” ~ l / 2 exp( !I .12 M .=.!.. S2 2a .....L. . M.+V a~) (3.24)1(a1i8),=~ — ) ( u — v )  — z  L 
~~~~~~~~ ~~~~~~~~• I ~‘i-om (3.20) we have

(13; i.’, v~50; n,,, 1/,,) =Qz 0i.L —  v0v ’) ~~’~
1 

5*5 “0M M0” ~
p0~~— g L ~,v) ’

— v~w ° 
— 

2(M0u — v0vi 2(M 0~L ’ — v~~’) 5° (3.25)

r
• Note the Gaussian form of (3.24) and (3.25). Var- ~~~~~~~~~~~~~~~~~~~~~~~~~ (3.28)

ious reduction of (3.24) and (3.25) to the previous
formulas can be easily observed. The relative ~~

7
~
7) i~~ I~~

+ p 1 2 , (3.29)

phases of (3.20), (3.21), (3.24) , and (3.25) are - (Aa2) = — ~~p_ ( ~~ t2)  (3.30)
mutually consistent , as well as being consistent
with the above wave functions for the coherent = I I — w l~ , (3.31a)

states. (~.a~)=* l ,. i+v I~ (3.31b)
From (Aa ,~a,) (a, — ~j (a2 — 3~)) =4 i( ~. i v  — “s z  + 1 ) ,

(nI$),= E~.n l m n ,>(m , l 8), (3.32a)

for the quasiphoton number states I rn,) we obtain (Aa 2da ,) = 4i(~i ‘p — v ’jz — 1). (3.32b)

(n 1m,) = Q, (~L , v;m ,n) ,  Equation (3.32) is, of course, consistent with the
commutatorn,-~ iz , rn odd, n odd , (3.26a)

[a ,, a2] = [ b ,, b2] =4i - (3.33)
• =Q,(~.&,w;m ,n)+Q2(M, P;nl,n),

Compared to the case of a coherent state where
m even, n even , (3.26b)

=Q2(i&, v; m,n) ,  (aI(Aa )’(Aa)la) =0 , (3.34)

m>n , m even, n even , (3.26c) a TCS fe), has added quantum noise energy

• =0, otherwise; (3.26d) ,( I(dia )’(Aa) 1 13),= I~~
I2 . (3.35)

~ n) ~ —0,~.n.1)/ 2~~ (*-m)I2 (_‘ 2)(*~ !)/2(n! ) t / 2  For self—adjoint 5,, b2, and rea l 8,, 5~, let
[(it — m)/2]! (ml ) L/2

b E b ,+ib 2, 5~~5, +i$ 2 .  (3.36)
(3.26e)

The TCS Is), can be characterized as the states

Q2(~, v; m,n) which minimize both (~b~) (~b~) ~ ~ and (Ab~>
~ 4. On the other hand, 5), minimizes the

a ~
_(m.N.1)/2

~,nI2V * m/ 2 (...1)92_ (fl4 .a)/2 (nIml)1 ’2 uncertainty product only when
(n /2)t (rn/2)!  -

M=5~, for 5 real . (3.37)
(3.26f)

Note that m and it must be both even or both odd in These minimum uncertainty states2 include the
r order that (n I m,) be nonvanishing. Thus only an eigenstates of a,, a2 in the limit ~.i, v — ~, such that

even number of photons would be counted for the (3.2) holds. Specifically, the eigenstates j a ,),
state 10,) = Io ,. other wave functions of un ,) can 

are obtained when 6— 1 and the eigenstates la~ )~

be obtained accordingly. These wave functions are obtained when 5— — 1. As with the minimum-

provide the statistics of various measurements on uncertainty states, the mean-square quantum flue-

the radiation states 1(3) , and ~n)  tuations in a, and a-, can be exchanged in 5\, from
(3.31). On the other hand, they are fixed at ~ for

C. Quantum fluctuations and characteristic functions coherent states.
Thus for a mode of frequency t~ , a significant

From (3.1) and (3.2), noise energy5 
~Iiw is obtained if either of the qua_

a = — yb’, (3.27) drature components is measured in a coherent
state, while ( A.a~’) << with corresponding large (~ a~)

so that for the TCS iS),, can be obtained for measurement of a, In a TCS.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •5. •~.’ •.- ••_ .• • - - - -
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A mathematical scaling of a will, of course, lead / (ba~) 4(Aa,Aa2 +4.a3~-.a,) \
to (Aa~) <4 even in an ordinary coherent state. ‘SI,,,For example, (Ab~) < 4  is possible with b given by ,~~ 2 +~~ 2Ai ,)  (Aa~)
(3.1). Zn actual applications such sca ling ca nnot (3.47)
affect the system performance. In Sec. VIIB we /
will show how the noise in a coherent signal can A-’ =2( ’ — 2 C , - —2C 2 (3 48)

• be reduced if is), is available, which is impossible — k —2C 3 I *-2c , /
by scaling on 5). The fact is that (A&,) measures
the absolute amount of noise in a quadrature corn- In terms of the variables (a’, a), (3 .38) becomes
ponent and a is a more fundamental var iable than p~” 1(a ’, a) a ~ ~~~ exp[—4(a~ — &1)’ A’ ’(a1 —b. See Sees. III E, W A , and VU for further din-
cussion and clarification. (3.49)

From (3.20) one readily obtains 
• 
through the transformation

I(aIP),12 = ~.L~~1exp[_ (1_2c ,)(a,_$,)2 
~~~~~ 

a~ ~(1 £ \ (a~\~~~ ‘3.50)
- 

~5*1~/ U 1/ \a2/

+4C2(a,_~~,)(a2 _
~ 2)] , (3.38) (As 2) (AsAS’)’

\ a AnT (3.51)
• where ~~ (Aa Aa’) (As t2)  /

Cn_ .  v/2 jz aC ,+iC 3, C ,, C2 real , (3.39) where T denotes the transpose of a matrix.
The antinorinally ordered characteristic func-• and 5 is given by (3.28). From (3.2), I d 2 ’ 4~ t ion ~~(ip* , t7) for

that

j c,)’4, 1c 2 I’4 . (3.40)

• Thus (3.38) is indeed a Gaussian joint probability
density function in (a,, a3), with mean (a,, ~

) and
variance

o~~ E[(a , ._~~ ,)2J=4(i +2C,)/(1 — 41C j2) , (3.41a’)

— ft2) 1= 2(1 — 2Cj /(1 — 4~C Is) . (3.41b)

The notation E[R] indicates the probabilistic aver- ,

age of a random variable R with respect to its
density function n The correlation coefficient is

raE[(a, — ~,)(a 2 — ~2)]/a,o’2 = 2C2 (1 — 4C ,)-t /2

(3.42) • 
• . : -

This dens ity function is illustrated in Fig. 1. ••

Equation (3.38) is conveniently expressed in the .- ‘

matrix form
p ”(a,, aa)aI(a IS),I2 ~~ . . • •2

• • =I~I-’~~ —4 ,— &.)TA-’ ,_ .)1, . . . - (.
(3.43) •

• 
:

• where

(3.44) 

.

(3.45)
— 

i i o ’~ 
FIG. 1. RepresentatIon of a two—photon cobez-~it

• A uA ,+41, I~ ( ) ,  (3.46) ate bypt”~~i 1, a 2) from (3.38), ith at’UL a coherent
\o 1/ state Is obtained for a?=aj .

- - . - • - - - .
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ -— ..i•_ • , ‘ t• ..
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• 
~, ~ Is),,(s I (3.52) fact is Important in some applications as indicated

In Sec. VIIB, because the original (Aa~) and (Aa~)
is then• can be both larger than 4 from (3.31) unless ,z/&.’

x~(’i,, ‘72) = exp(ii~!&, — 4i~,!A;), (3.53) Is real.

= 
I 2,~ \ . 

D. Diagonal operator representation r liD, ,‘a
?1,-(  ) , i7 77 , +i 1~2,  (3.54)

\ _2tp ,/ Let p. represent a density operator which can e
written as a random superposition of coherent

and the Weyl characteristic function is, from states, i.e.,
(2.32),

o.=fP.(a *, a)Ia) (a l d2a , (3.63)
X’w(’7,, ‘72) = exo(i?741’&5 — ~~~~~~~ (3.55)

for a positive true probability density function
Since A >0 (positive definite),34 the Wigner distri- p~(a’, a). It follows that
bution is also a Gaussian density function. The
antinormally ordered characteristic function trp.(Aa~) =~+f P,(a,, a3)(a , —

~c~,(’h, ’h) is

~~~~~~~~~~~~~~~~~~~~~~ Ii),? ,]. (3.56) (3.64a)

forThe antinormal- , symmetrized-, and normal-
order moments of (a?,a) can be calculated from 

~, f  P,(a,, a2)a,da,da2,
(3.53), (3.55), and (3.56), respectively. Note that
these Xg, Xv, XA , and W, p°” for TCS’s are all and similarly,
Gaussian. The above matrix forms are convenient

trp~(Aa~) 
~~ I. 

- 
(3.64b)

for generalization to the multimode situations.
The minimum noise (~b~) obtainable in a TCS Equation (3.64) states the obvious physical fact

for a self -adjoint b ,, that the introduction of classical randomness
merely Increases the noise in a, and a2.b,ay1a,+y2a2, y~+y~=1 , (3.57) A TCS with (3.31) therefore cannot bea mixture

is the minimum eigenvalue of A,, with the mini- of coherent states. In fact, the density operator
mixing value of (y,,y2) given by the corresponding p, cannot be written in the diagonal form (2.17)
eigenvector.~ The result can be expressed in the with P(a’, a) belonging to the class of tempered
following form: Let distribution. This can be seen from the normally

ordered characteristic function xS(n,, ‘72). For a
y, +iy2 ae~ (3.58) TCS, A — Ii cannot be positive definite. Thus

for a real 0 and let x’~, does not possess a Fourier transform. If we
insist on having a diagonal P representation for

a’aae”. (3.59) we will need the Fourier transform of e”~ for

Then a~ minimizes (Ab~) when a real variable x and y>O. It does not appear to
be useful to talk about the Fourier transform of

•ztan ’[i(jz ’v_ v ’g.~)/(2Igi l I~I ÷~i’v+v ’M)J such a quantity, which certainly does not belong to
the class of tempered distribution. Further dis-(3.60) cussion of this divergence is given in Ref. 27.

and the minimum fluctuation is One may still consider the diagonal P represen-
tatIon of p, as belonging to the class of distribution

(Ad?) =~~( I i~ 1 — I v 1)2 - (3.6la) Z3,~ or alternatively as the limit of a sequence
• 

- The conjugate variable 5’3 Is the one which max- of well-behaved density functions,23 Since no use-
• lmizes (Ab~), with ful method of calculation has resulted from such

(Ad”)= ’(I
~
iI + ~~ 

(3.GIb) viewpoints and since &“(a’,a) is sufficient for
our purpose, we will say that the P representation

From (3.61), the TCS Is), can be seen to mini- of p, does not exist and we will not employ it in the -/mize the uncertainty product following.

(3 62) Note, however , that a generalized I’, represen-
(Ad?) (Ad?) - Th ’ tation of a, does exist and can be useful. Thus

for a’ defined by (3.59) and (3.60). Thus 5), are - - •

the minimum-uncertainty-product states for a’ p =f P,( P ,  5) Is),,($ I d25/w (3.65)
and can therefore be understood as generalized
or rotated minimum-uncertainty states. This may be used to represent J~),, with - . ‘1

— - .~~~~~~~_ ‘ __~~~~~~~~~ •~~~~~.~~~~. ~~ ~~~~~~ ~• . -- -— , -~~~‘.-
..—,—=,-~~- • • - - 4
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p,(8r , 8) 62(8 — ~~) .  (3.66) tary transformation U we can define a set of states

EquatIon (3.66) also describes random mixtures of
5), in the same way as (3.63). In particular, it I )=U ~a) . (3.67)

remains useful with the introduction of an additive The functions (xl)  cannot be obtained by simple
noise. However , it is inconvenient if (si p v) are scaling on (xla) and has to be computed anew via
time varying. While it can be used in moment I U~ a). This paper develops such specific re-
calculations by expressing M(a ’, a) in normal- suIts for the U5 of (3.5).
order form M~~(b’,b) in terms of the variables With respect to a, whose zero eigenstate is the
(b’, b), it is no longer particularly suited to be radiation ground state occurring in nature, the
calculations of (a’,a) normal-order moments en- properties of a), are quite different from Ia) in
countered in the description of most experimental many respects, as presented in this section. Since
results. Therefore (3.65) will also not be em- the term coherent state is usually understood in
ployed In this paper. the original sense (2.1), a new terminology is re-

quired for finer distinction between coherent states
E. Coherent states semis two-photon coherent states -

in the broad sense. The term two-photon coherent
As mentioned in Sec. 1, two-photon cohrrent states~’ is adopted because of the close connection

states were encountered in many different stud- between these states and quadratic Ramiltonians
ies, but they received little attention in quantum or two-photon lasing processes, discussed below.

• optics. Obviously this is due largely to the fact
that these states are not generated from available IV. QUADRATIC IIAMILTONIAN
optical sources , but other factors may have also AND STRUCTURE OF UL

• contributed.
It is well known that the mathematical form of a From (3.11) and (3.20) we can see that U~~(a’,a)

minimum-uncertainty state at a frequency ~, ~ 
is an exponeritiation of- a quadratic form In (~ * , a).

identical to that of a coherent state at a different Such a U~~(a~,a) can be written as (al e ~~Ia) for a
seif-adjoint operator P4 quadratic In (a’,a), from a

frequency 
~~~~~ 

Therefore one may tend to view theorem of McCoy.37 Therefore U5 must be the
minimum-uncertainty states as just coherent
states of a different frequency, particularly since unitary operator generated by a quadratic Hainil-

the frequency is often normalized away. This tonian H0. The mathematical solution U 0(t~ ‘~
) of

the Schriidinger equation
viewpoint is erroneous, because in the state space
X(w,) ®~~(w3) a minimum-uncertainty state at w , 

~~ =H 0U0, U0(t0, t0) = 1, (4.1)
is given by I$),® 10), while a coherent state at w2
is 10,0 Is>. Physically, no photocounts would be is investigated in some detail in this section, which
registered for a coherent state at w 2 in a counting gives all of the U5.experiment employing detectors responding only
to fields at w,. In this connection one may also A. Positive deflnite quadratic Hamiltonian
note that for a fixed mode the frequency is also
fixed by the dispersion relation. Changing the Consider the general quadratic Hamiltonian
frequency of a fixed mode by dielectric modulation H0 = ~(f ~a’a ÷ fa 2 +f2a’2 + fa  +f3a’) , (4.2)
would not yield a minImum-uncertainty state at fre-
quencyw ,fromacoherentstate at frequencY cu1. A where the c num’3ers f~ 

may be time dependent.
coherent state at a different frequency 

~~ 
would be From Hermlticity 1, has to be real. For a mode of

• obtained instead, frequency w , we have f~ 
= ~~~ and fff, a’a represents

Alternatively, one may regard TCS’s and ordi- the free radiation energy of that mode. The !2 and
nary coherent states as (mathematically) equiva- f~ 

terms then represent Interaction energies. In
lent, since they are related through a unitary particular, the /2 terms describe a two-photon
transformation or some kind of scaling. The ques- mechanism, whereas the f~ 

terms describe the
tion of scaling was already dealt with in See. InC usual one-photon or linear driving mechanism.
concerning the noise in quadrature components. If a physical system with Hamiltoniz” given by
It is true that two-photon coherent states are co- (4.2) Is stable, H0 should not have a spectrum
herent states in a broad sense: they are the co- ranging through the entire continuum from —~~~ to
herent states with respect to b(v *0)  instead of a. re In order for a ground state to be defined, i.e.,
However, this abstract unitary equivalence means the spectrum of H0 should be lower bounded. By a
little in describing actual experimental results. shift of sc~’ nne may require that the Hamilton-
Thus (n,Ia),=(n i tY)  but (n j a), has little resem- Ian be posLue defInite.18 If this condition is not
blance to (n Ia). In general, for an arbitrary uni- satisfied , (4 .2) cannot be properly used to de-

— - — ~• •- •. •~___.,_;,
- - - • . •  , -
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— scribe a physical system of interest in our present U8 ’t(a , a; ! , I~) i~exp[A(t)  +B(t) a 2 
+ C(1)a ’2

• context. It has to be extended to Incluae a more
complete description of other relevant ~actors of ~-DQ) ~a~ +E(i) a + F( t)a J ,
importance.

Under the cond ition (4 .8)

where11>2 1121 (4 .3)
dAthe Haniiltonlan (4.2) can be changed, similar to — 2(2f ~C+f ~’F2 +f~F), (4 .9a)

the Bogoliubov transformation,39 to the following
form: dB if ~’(D+1 ~~, (4 .9b)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (4.4)
- dC

b ‘ua+va’+Mf ~’ — vf 3 , (4 .5) ~~~~
- — 2(4f ~’C2 + 2f 1C +f2) ,  (4 .9c)

~1a(2/ fo(fj ...fo) J~~2f *e i8 , (4.6a)

(4.6b) 
.~~. = j (4f C +f 1 ) (D +1) ,  (4.14)

fo a(f ~_ 4 I f z I 2 y / *, (4.7) dE
F ~~ - = — i(2f F+f )(D+1), (4 .9e)

where 0 is an arbitrary phase. The canonical
transformation (4.5) Is an inhomogeneous linear dF 

= — i [(4f ~C .t-f1)F ÷2f ~C +131, (4 .9f)
one , with (4 .6) obeying (3.2). The Hamiltonla.n dl
(4.4) Is manifestly positive definite, and (4.3) is with the Initial condition
indeed the necessary and sufficient condition for a
classical !f~ of the form (4 .2) to be positive detin- A(~ ) = B(t0) C(t 0) D( l0) = E (t 0) = F (10) =0. (4.10)
ite - From (4.8) and (2.14) we get

Similar to the situation of an interacting Bose
fluid, b’ of (4.5) can be interpreted as the quasi- (a I U0(t , t0) Ia> = exp {— -

~ 
a 12 — I a 12 + A(t)  +B(t) 13 2

boson creation operator with a quasiparticle spec-
trum!0. The quaslparticle ground state is the 10)
of (3.7), whereas I m,) are the excited states. It + E(t) 5 + F(Oa*}. (4.11)
seems highly unlikely, however , that the radiation
states I ~,z,) may be generated optically. Equation (4.11) can be written In the form of

The following observation should be made: A (a Ia+ C(t); p (t) v( t)) , apart from a phase factor.
linear canonical transformation from a to b ~an at- UsIng (3.20), we find by comparison that
ways produce!3 terms In b from a free Hamilton- U0(t,10)Ij3) = l 1 3 +C ( O ; J~( t ) , p ( t)) e t~~

t) , (4.12)
Ian hf1a’a. In fact , it Is easily checked that anf2
term results if and only if the p term mixing b’ is ~ (t) e(t) + ~ i 113 C(t) — 13C *(t) J , (4.13)
present in the transformation. The transformed for a real-valued (13, C) independent function 0(1)
Hamlltonlan contains a constant term I } 2 , so that ~~~
the elgenstates of b have this added excitation ener-
gy compared to the true ground state 0). Such a A(t) ..~~~ In~.t(t) + v~(t) C2 (t) / 2g.t( t)
llanailtonlan is clearly not physicaliy equivalent to 

— ~IC(,)I2 +,e 1), (4.14a)(4.2). In this sense the operator a is more funda-
mental than b and further Justif ies the need for B(t)= v~(t)/2~ (t) , (4.14b)
viewing I a), as a two-photon coherent state with

• . respect to a. C(l) = — v(l) /2u(l), D(t) = 1/ M (t ) _. 1~ (4.14c)
Our following results on U0(t , t~) are actually

valid Independent of the condition (4.3). Neverthe- E ( t) = v 5(lhL (l)/ C (t)~ C (t), F (t) =~ (t) / g ~(t) .
less , one should note the significance of the posl-
tive definiteness of (4.2). (4.14d)

Ii (4.14) Is substituted Into (4 .9), the equations of
B. Explicit so) utlon for tJ~ is.i, motion for j~, v , ~, and Oare obtained,

The solution (.To(t , I~) can be obtained by normal- =Ef~.t— 2if v , ~j ..~~~f i 2zf i~~, (4.15)ordering techniques ,~ among many possible meth- dt
ods. With (4.2), the solution U~~(a , a;t ,4) of

dC =i (f : v— 1 3 M) ,(2.16) Is of the form

S

4 1

— .- --.~.---~ -- ~~~~~~~~~ ______ _
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nO i Id C
= 
~ +

~~ 
[
~ ~

-
~

-) — 
~~~~~ 

which can take on both posit ive and negative values.
4.17) Under (4.26), one f inds readily from (4.23), (4.24),

(4.9d), (4.14c), and (4.18) that
EquatIons (4.l5)—(4 .17) are equivalent to (4.9). The
initial condition (4.10) becomes MV) = e ~~ ~ ~~ cosh[261(1) 

~
, (4 .27a)

M(O) =l, v(0)=0 , (4.18) P(i )~~ i e 2 ~~” 0~ SUth~2) R ( 1) ] ,  (4.27b)

C (O)=0 , (4.19) 6~(l)~ ( r(r)dr , (4 .28)

while

e(0)=0 (4.20) C(t) = i ( (f ~ v—f 3 s~)d t .  (4 .29)
.1 ,

is obtained from (4.12). The general solution (4 .8)
or (4.12) can be given In quadrature once the solu- Equation (4.26) is especially interesting because
tion for (4 .15) is given in quadrature, since the of the resonant factor e~ ’ ’ ~o~ obtained when!,
other equations can then be immediately Integrated. = w. This factor Is automatically present in our

Defining - later physical interpretation of (4.2). The noise
behavior In this case is of great interest. Thus

11(1, 1,,) 1 f 1(r)  dr , (4.21) when (with also/1 = w , t~ = 0)

(4.30)

I ~2j f 3 e’5 ’~’~i~, (4.22) r =const independent of 1, we have from (3.61) and
the solution of the first-order coupled differential (4.27)
equation (4.15) under (4.18) is equivalent to the (~~a~2( t ) ) =.~e~4 Y* , (Ai ~s 2 ( g ) ) =k e 4rt , (4.31)
solution of the following equation for a new vari-
able e: • - for a’ =ae 1’~”. In this case the noise in one quadra-

ture component, apart from the optical oscillation,

~~ =j~e2 —/ , e (0) = 0, (4.23) decreases exponentially while the conjugate corn-
dl ponent has exponentially increasing noise. The
e ~2C e~”~’. ~~ (4.24) quadrature components a, and 03 are completely

symmetrical here. We can choose the sign of r ,
Once C Is obtained through (4.23) and (4.24), all of or equivalently the phase of r , to cause either
the other variables A , B , D, E , and F can be one of them to have decreasing noise. For
given In quadratures from (4.19). But Eq. (4.23), 02 =0 , r=const , we again have (4.31) with a’
a case of the well-studied Riccati equation, does ,ae t ( W t _ f/4 )  The nature of phase control in a’ from
not admit a solution in quadrature in general, al- the phase of 12 should be clear in this example.
though many methods and results on its solution Equation (4.15) can be integrated for a constant
are available ~~~~~~~ 

/2 Independent of time, with
The existence and uniqueness of a solution to

(4.23) imply that the solution of (4.9) and (4.10) a!- M(t) = cos(Xt) + (iw/X) sin(Xt), 
(4.32)

so exists and is unique. Thus (4.8) is indeed the v (t)= i (2f 2 / x ) s ln(xt) ,
solution we seek. With U°’~(a

8 , a) given by (4.8),
the explicit operator expression of U0(t , t~) is for X (w2 

~4 I/2I2Y”2 ~ 0. The quantum noise is

U(t , t0) = eA ~~) e~~’ 
)S~~.F( t )S t t)*t 14~S e~ 

t)82 .E( ~~ purely oscillatory in this situation, without attenu-
ation in time.

(4.25) EquatIon (4.15) or (4 .23) may be integrated In

EquatIon (4.25) can also be written as many other situations. A way of generating such
example Is discussed below.

exp(y1a’2 + y3ata + y3a 2 + v4a’ + y3a)

for a set of c numbers y 7 D. Properties of U0 (f.t•)

A number of general features exhibited by U0(t ,t0)• C. Examples are now observed . From (4.15) we have
EquatIon (4.23) can be integrated when f/f • Is

•~~~ ~~,dv 8 
+ if1, (4.33)Independent of 1, i.e., when dl di

f ~(i) = r(I ) exp(i~ 2 — 2ii~(t , l~)J, (4.25) whIch Is a complex equation. The real part of this
- S

4)~ Independent of 1, for a real-valued function r( 1) equation is implied by (3 .2), but the imaginary part
• 4 ..

4~5

-~~ 
- -

.-..~- ~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ -S- --~- .-—- • .  ~~~~~ -
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is an additional constraint on the pair MV), v(I) ob- Therefore , under an ar bitra ry U0(1 , t0) a TCS
tam able from in H

~
. Thus not every pair of func- will remain a TCS for all time, but with 0, u,  and

tions js(I ) ,  v(1) obeying (3.2 ) can occur in a U0(1 , 10). &‘time varying. By solving M ( l) ,  v( 1), and C(I) in
Only those obeying (4.33) are permitted in the form terms of 

~ 
and 

~~~ 
and M(I ,10) , v(f , 1,), and o(i , t, j,

(4.12). However , this does not impose any con- (4.39)—(4.42) and (4.27) show explicitly that any
• - straint on the mean- square fluctuation behavior ob- I p; j~, i’) can be obtained from any given ø~; ~,. v0)

tam able in (3.61), since only IM I, I w l are involved by a
here. Moreover , (4.27) shows that any particular It also follows from (4.41) that If!, is turned off
pair of values (js , v) obeyIng (3.2) can be obtained at tIme 1, then
at a specific I with a proper choice of f3, even un- (I) M(t,~~

(Y(t. ~~)
, ~ l) = v(11)e “ ~~~ (4.43)

der (4.3) with!, fixed.
Any desirable pair of functions M(t), &‘(t ) obeying 1’.us apart from the optical oscillation the values

(4.33) and (3.2) can be generated by an!2 through M and i’ are invariant in the absence of two-photon
(4.15). This corresponds to the solution of the interaction in H0. Furthermore , such Invariance
Riccati equation (4.23) for various f. For example, is obtained when and only when
we can assume (f1=w , ~ =0) f ~=0 , (4.44)
MV) e’’” cosh(yt), vU) = e1-

~~ sinh(yt), (4 .34) i.e., v(t) =O. In general, M(t) and v(t) are deter-
and determine the phase 0(t) so that (4.33) Is sat- mined only by f , (1) Independently of f , (t) ,  as seen
I.sfled. Equation(4.34) has the Interesting charac- from (4.15). This is in accordance with the fact
teristic that that the new quantum noise behavior is entirely a

(Aa~Q)) =*e~ ’ , (An~(t ) ) =~ es? * , (4.35) consequence of f,*O. Such correlation between!,
and v is also observed in Sec. WA .

without any shift of phase to a’. Substitution of On the other hand, the added value CU) depends
(4.34) into (4.33) shows that 0(1) obeys the ~Ifferen- on both f, and f, but is always zero for 13=0
tial equation U0(t ,4) Ia) = Ia>,, when!, =0. (4.45)

d~ 1 Therefore all of the U~ ‘a are generated by H0 with

~i co.h~(yt)+sinh’(yt) ’ f~.O. The addition of f3 merely Introduces a con-
so uiat stant shift to b , as In (4.5). The states (4.39) are

elgenstates of
•(t) = (ia/7)tan4(tanh(yt)I. (4.36) b(t) 1M(t) a(~ ) + v(t) a’(t~

), (4.46)
The corresponding f , (t) is given by where a(t~) is the Schrödinger-picture fixed photon

f,=~ tanh(2yt)— ty/2w. (4.37) annthllatlon operator. We have

Any arbitrary state I 4’~
) will evolve Into b(t) = U0(l , I,,) a (l~) U~(t , t~) + C(t) UL aUZ. (4.47)

l~~)=U0(t ,10)l~0>= JUQU,10)Ia)(a I4?0)d a/ r 
Equation (4.47) also shows

MU) aU) + v(t) 4(1) = a(t~) + C(t) (4.48)
(4.38) for the Heisenberg operator

under U0. If I~o )= l i 3,,;Mo,vo> , (4.38) can be read- aH (t)  U ~(t , t~) a (t~) U0(t , ta) .ily determined from (4.12),

• U0(t , t0) f ~ .,;M 0, ~ 
Equation (4.48) ImplIes , by solving for a,(t),

• a (t) = M’(t) a(10) — s’(t) a’(t ~
) — C’(t), (4.49)

• I~~+ C(t ,to) ;MQ, to), v(t ,to) )e l
~~’*0 ), (4.39)

C’(t) ~ t’(t)C 5(t)— M (t)C(1) . (4.50)

• •(t , t~) se(t) + ~ i [a c(: , t~) — ~~‘(t, t~)J, (4 .40) EquatIons (4.49) and (4.39) give
where U~ (: ,:,) J~~; ~~ 

v,, ) J i 30 +C~
(1) ; i,(1), v,( t) ) e ~~’”2 ,

Js(t ,10)=M0M(l)+v0v (l), 
- 

(4 51)
(4.41)

v(t , 1~) = i.tov(t ) + I’0M 5(t), •,(1) — e(1) + k i[il C,(1) — 13c~(t) J, (4.52)

= M0M (t) — v0v (t), v,(t) = v0MU) —6(t , 10) p0C(t)+ v0C (t), (4.42)
(4.53)

and it , v , C, and 0 In (4 .40)—(4.42) are the solutions
to (4.15)—(4.20). CAt) = M0C’(t) + ,‘0C ’5(’), (4.54)

~

T

~ 

-
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where M, v , C, and 0 are still the solution to to the standard quantum theory of parametric in-
(4.15)—(4.20). The state U~ (t ,10) I 0) , Is obtained teraction.46’4’ By methods widely used in nonlinear
from evolution of the system backwards in time optics ,’ classical equations of motion for the field

• under the same !~(t) in H~ , and the operator b(t)  is and the active atomic variables can be obtained in
similarly the a (i) moving backwards, apart from which the virtual intermediate states are accounted
a constant . for through p. Examples of such treatment for two-

Even though no solution of U0(t ,10) In quadrature photon systems can be found in many places.48

can be obtained in general, its structure and be- These classical equations of motion with a quan-
baylor have already been fully determined. These turn-mechanically computed susceptibility can be
behaviors are important in the applications of directly quantized. The effective quantum Hamil-
rcs ‘s. tonlan follows from the resulting quantum equa-

tions of motion.
V. STATE OF TW O-PHOTON LASING RADIATION - In addition to absorption, two- photcn emission

which provides a two-photon lasing mechanism is
We suggest that the output radiation of an ideal also described by (5.1). In considering the condi-

monochromatic two-photon laser is In a TCS. In tions for stimulated two-photon emission in ~ ther
contrast , the output of an ideal one-photon laser iS the standing-wave or traveling-wave configuration
In an ordinary coherent state. Thus TCS’s are the with loss Included, it is easily found that stimulated
characteristic states of two-photon lasing pro- emission cannot be set up from spontaneous emis-
cesses (two photons from the same mode). sion alone. A sufficiently strong field at the iasing

frequency w has to be present initIally.49

~’ There-
A. Two-photon laser fore we consider the two-photon lasing configura-

Two photons of the same frequency ~, from the tions depicted in FIg. 2. It is not the purpose of
same radiation mode can be absorbed in a single this article to present the semiclassical theory of
atomic transition between two levels 2 and 1 via two-photon laser operation, or to discuss the op-
an intermediate state , i.e., a transition second or- crating consideration in a realistic material sys-
der in ~~~‘ ~~

‘
. Under the usual dipole approximation tern. But the following facts may be observed:

the parities of levels 2 and 1 have to be identical. In the traveling-wave configuration, Fig. 2(a),
First-order dipole transitions between the two 1ev- the gain is obtained from a large external pump
cia are forbidden in this circumstance - On the field which m~ty have m~iny frequencies but which
other hand, higher-order multipole contributions is still in a single temi,oral mode. Neglecting var-
to second-order ~ ~ transitions, which may con- bus  loss mechanisms , this lasing process can be
nect states of different parity, can be significant .4’ described by the interaction Hamiltonian (5.1) with
First-order transitions between states of opposite an Initial radiation state p0 having a nonzero
parity are also possible via the A2 term in the amount of power , trp0a’a *0. If a laser is used for
radiation interaction Hamiltonian.4 ’ ”  This is pos- the external pump, p0 = a) (a I, but intense ther-
sible because in the multipole expansion of the ival light can also be used. The radiation state p,
vector potential A (s), higher-order multipole terms as well as other dynamical variables , are spatial-
Introduce atomic coordinates into the A’ Hamilton- ly dependent in this case. In the standing-wave
Ian. Two-photon absorption spectroscopy is an case , Fig. 2(b), only a single standing-wave mode
Important experimental technique by now,45 and is under consideration. The gain is initially ob-
many discussions of two-photon absorption pro- tained from the usual one-photon lasing mechanism,
ceases can be found in the literature, the host atoms for both lasing transitions being

The radiation-matter (to be referred to as atoms) contained in the same cavity.’9 The Hamiltonian is
Interaction responsible for the two-photon transi- now -•
tion can be expressed in the form

• H,=h( pMa”+p M’a’), (5.1) E 3 E2

where p Is a coupling c~efflcient and M is the
atomic polarization operator which flips the state - -- I: ~of the atom If the A’ mechanism is under consid- 

~~~

‘ 

~, ~• eratlon, H1 is a true Hamiltonian.4 ”44 if virtual
transition through an intermediate state has been tel E2 - E 1 . 2L t b )  E2 -E.~ ~~~suppressed through a nonlinear susceptibility, or - .

equivalently through the coupling coefficient p,
(5.1) Is only an effective Hamiltonian. In this case FIG. 2. Two possible configurations for stimulated
it can be derived by following a procedure similar two—photon emission.

- - - - 
~ • -•.— -~~- - ~~~~~~~~~~~ .
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H = ~(~a’a +p3 M3atS +p~’M ~a
2 +p 1M1a’ +p~M ta), through the Fokker- Planck equatIons for p~ (a , a).

In parilcular, all of the characteristic functions
(5.2) are still In Gaussian form,5~ and for y * 4r ,

with a vacuum initial state; the subscripts 2 and 1 l y  V

for p and M refer to the two-photon and one-photon (A s(t
~~~~~~i~ 

±
~~

- -
~~

— e ”~~ ’r
laslng material. Population inversion is required

• in both configurations. Other possible configura- + I2(y *4r)~ 
— e ”~~ ”) (5.4)

tions for two-photon lasers can be developed, but
these two seem to be the most important . with a’ =ae~~. It can be readily shown that (Aa7(t))

• Spontaneous two-photon emission has been ex- >0 and that the uncertainty principle is obeyed for
perimentally observed ,as but not stimulated two- all 1. Note that even when if = 0, the state is no
photon emission. Two-photon stimulated emission longer pure in the presence of ~~~

. Asymph’tically
was first suggested for giant pulse generation.4° we have

When such a two-photon laser operates far above
threshold with amplitude and phase stability, the ~~~~~ — y ff/ 8r , (aa2~(t)) — 

~ ; I —~~ , 2,’>> v.

fluctuation in M should be relatively small, so that . (5.5)
M Is approximately a c number. By ignoring the
quantum nature of M , (5,2) or (5.3) becomes an H0 

The condition 2r>>y can be satisfied together with

of the form (4.2). LIthe dissipative mechanisms the stability condition (4.3) for the usual values of

are also neglected, (4.12) shows that a TSC 113 )~will be obtained. A similar argument was used by w >2r>>y. (5.6)
Glaubert8 to suggest that a coherent state describes

Thus for ~~ 1 the corresponding state approaches
one-photon laser radiation far above threshold. As
we show in the Appendix, this can be formalized ~ 

an eigenstate of a1 - In any case the quantum Cluctu-

the so-called self-consistent-field approximation 
atlon In a1 vanishes as I —

(SCFA), which has been used in one- photon laser From the results of Sec . W B, It can be seen that

theory.~”~’ Therefore a two-photon device of this two-photon laser Is a phase-sensitive device. If a
uniform random phase is assumed, I.e., if a’ = ae1

type operating well above threshold can be expected
to produce a state 113)I with further small classi- for t~ uniformly distributed In (.-r, sri is the dy-

namical observable one has to deal with, then
cally random fluctuatlortc In the vnrl~’!~’ ft, L’~ a
way exactly analogous to one-photon lasers where ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(5.7)
I a) is produced with small classical fluctuations
In a. This argument can be made for a standing- Equation (5.7) contributes a noise greater than ~
wave, a traveling-wave, or an arbitrary spatial- for both quadrature components and one distln-

temporal mode. guishing characteristic of a TCS is lost. The de-
tailed theories of one-photon lasers show that am-
plitude fluctuation is suppressed in a laser operat-

B. Effect of perturbations in the two-photon system Ing far above threshold, and the phase fluctuation
is also inversely proportional to the average pho-

An additive Gaussian noise and a damping me- ton numbers. Moreover, these amplitude stabili-
chanism can be introduced to account for some Un- zatbon and phase stabilization properties are gen-
avoidable sources of noise similar to the one-pho- eral features of a wide class of sell-sustained os-
ton case, while still preserving that distinguishing
feature of TCS’swith (&~’) and(A.a~’) smaller than clilators , quantum or ciasslcal.59 55 lithe two-

~
. This can be illustrated as follows: The quan- 

photon laser belongs to this class, the phase would
diffuse away from some initially measured value

turn effect of loss is incorporated through the den- only slowly for high-power operation similar to the
sity operator relaxation equation one-photon case. The phase can then be tracked

and the relative phase determined accurately. As• ep z
• — = — ~ (H0, p 1 + y (2apa’ — atap — ~xz’a) a result the field may be regarded to be in a true

+ vif(at pa + cpat — a’ap — psu’) (5 3) TCS. Whether the perturbation introduced by the
atomic fluctuations may Indeed be sufficiently

-
• • , with H0 given by (4.2). The damping rate Is y and small so that 1a3 ), does not become I~> can be de-

Pt represents the thermal noise contribution from termined only by explicitly working out the detailed
• ‘ the reservoir that couples to the radiation field, quantum theory of two-photon lasers. The quantum

This quantum description of toss has been eaten- theory of one-photon lasers has been extensively
sively discussed in the literature.’5’ 5’ For an inl-~ developed ,55

~ ’ but the two-photon laser requires
tial coherent state , (5.3) can be solved exactly more careful approximations because of the small

- ---- -, -—— -
• •~~- 

~~~~~~~~~~~~~~~
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noise in one quadrature component and the more itlal states of the atoms are identical, but they are
delicate equations of motion involved. Hopefully , different in the two- photqn case. The question of
the TCS picture can be checked experimentally, as quantum statistics is similar in both cases . The
discussed in Sec. VI, by practically realizing a pump field of Fig. 3 should be treated as a quan-
two-photon laser. In any case , I13 >~ serves as the turn legree of freedom. A fully quantum treatment
basic description to be averaged further by a of degenerate parametric oscillators can be equal-
classical density function in the presence of other ly or more complex than a fully quantum treatment
random Interference, of two-photon lasers , depending on whether the
Recently, the quantum theory of rnultiphoton atomic variables are included in the parametric

lasers, including a quantum treatment of the atoms case and whether the important Intermediate state
and the loss r~echanism, was discussed by McNeil is included in the two-photon case when present .
and Walls.59

~~ However , the nature of their ap- No single-mode degenerate parametric oscilla-
proximations was not clarified and they produced tion above threshold has been observed . Careful
lasing results from models59’60 which cannot lase consideration has to be given to any possible corn-
because of the absence of an input field to provide petlng processes in the actual development of a
a nonzero gain. While some qualitative features two-photon laser or degenerate parametric ampli-
of their two-photon results are in agreement with fier, such as third-l~armonic generation.
the TCS picture, such as large total fluctuation
from (3.35), they suggest that the photon statistics VI. COHERENCE AND PHOTON COUNTING
are similar to the one-photon case. The Poisson-
like distribution they f ind in Ref. 59 is obtained for Two-photon coherent states are not coherent ac-
an unrealistic loss model, in addition to the above cording to Glauber ‘s original definition.63 That is,
error. The lossless photon distribution they ob- they do not factorize the correlation functions
tain in Ref . 61 is neither Poisson nor of the form which describe photon counting experiment s em-
(3.23). Since the atomic populations rather than ploying ordinary photodetectors. However , they
the atomic polarizations were treated as a con- factorize a different set of correlation functions
stant in the derivation of that distribution, it ap- obtained by transforming a to b in the field expan-
pears that It is valid near , instead of far above, sion. This kind of transformed correlation func-
threshold. A complete and careful calculation of tion gives the joint counting rates for detectors
the two-photon laser state remains to be carried operating with an interaction mechanism thfferent
out. from the usual dipole absorption,1m in analogy with

detectors that function by stim.ilated emission

- . discussed by MandeI.~ Thus a TCS is fuUy co-
C. Degenerate parametric amplifier herent in a sense closely related to the usual de-

A degenerate parametric amplifier interpretation finition of optical coherence. Further detail& dis-
can be given to (4.2 ) similar to the above two-pho- cussion can be given only In the multirnode t-eat-
ton laser interpretation. When the material sys- ment of TCS.
tern is suppressed through a susceptibility and Here let us consider photon counting experiments
when the pump field is treated classically, a two- associated with a single radiation mode whose
photon coherent state 113 )~ would be obtained from spatial dependence has been Integrated through the
a degenerate parametric amplifier such as the one spatial response of a photoabsorption detector.
depicted in Fig. 3. An intense initial field at ire- For any state p the distribution (n~p~n)  can be
quency w has to be present in addition to the pump generated by an ideal detector if the counting time
field for degenerate parametric amplification. A T Is large enough.65 Therefore we consider the
TCS Is already present in the treatment of nonde- generating function
generate parametric amplifiers by Mollow and
Glauber47 in the joint Wigner distribution for the Q(~

) 
— 

(
~~ x) ( nj p ~n )  (6 1)

signal and idler modes , even though a coherent ,,~state plus noise is obtained for each of these
modes.62 That a TCS can be generated In a single- (a”a”> = (N. . - (N 1) . - (N — n + 1)) (6.2 )
mode degenerate parametric amplifier was also
observed by Stoler” and by Lu.’° (-.1)~j~~ . (6.3)

The phase-sensitive behavior of a two-photon
laser Is reminiscent of parametric processes , and With the Glauber mode1’~ of an n0-atom photodetee-
a degenerate parametric amplifier is a kind of two- tor with quantum efficiency s and a sufficiently
photon laser. A basic distinction , however , can small counting time T , the generating function for
be made. In the parametric case the final and in- the counting distribution p(n ,T) of registering n

- — .-~_L1~~~~~~~~ ~~~~~~~~~~ - ~~~~~~~~~~ — ——
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counts In time T Is merely a scaling of (6.1), fluence of nonideal detectors and noise on these

a ’Q( sn0Tx)  photocount statistics should be worked out in de-
,~ a,~’ i (6.4) tall for actual comparison with experiments.

6.1
From (3.23) the function Q(i) for a TCS can be VII. APPLICATIONS OF TWO-PHOTON

evaluated in closed form using the summat ion for- COHERENT STATES
mula for Hermlte polynomials,” We will briefly describe some novel applications

2 of two-photon lasing processes which result fromQ(x) . r”~exp[[(1 — x) i’ — ii 101 the quantum properties of TCS. Quite apart from
rheir quantum characteristics , two-photon lasers

+ [1— (1— x~vJ (
~~ 

p ~~~~~~~~~~~ p~ 
aLso exhibit certain pulse-shortening behavior ab-
sent In the one-photon case.5’ Their particular

(6 5a) nonlinearity may lead to many Interesting phenom-
ena and applicatlons, including the realization of

• [I ~ I’— (1— x)’ I vl~ J-’. (6.5b) very-high-power lasers. However , only certain

From (6.5) the coefficients g~ (a tmaa)/ (ata)R for a 
applications of TCS ’s will be treated here. These

first-order coherent field” can be computed by applications also illustrate the essential differences

(6.3). In particular , (a’c)= 1v 12 + ~~~ 
as given by between TCS’s and ordinary coherent states.

(3.29), and
A. Ideal linear amplifier

(ama 2) = (ata)a + 211312(4 1 ~I 2 + 3)~ ~ Under the action of a two-photon amplif ier , an
— (ii’v 132 + pv$ 2) (1 + 4 j  ~‘ j 2)  + I v~~ + 2 “i ’ , input coherent state t o ) will be changed to 13 >~,(6.6) from (4.45). For simplicity we assume p and v to

be real. From (3.28),
Any value g-5 >0 can be generated from (6.6) by
proper choice of (p, r’, 13). In particular , g2 <1 for (a,>, = = (p — v) 13,, (7.la)
a TCs lf azidonly lf 

~~ ,4,’~(p +v) p2. (7.lb)
21v1’+ tv I1+24 Iv Im +3 Iv~Is~ Thus one of the original quadrature components is

linearly amplified while the other is linearly at-
~ (p v $2 + pvjl 2) (1 + 4 1 v~~2), (6.7) tenuated. The nonlinearity of a two-photon ampli-

and g3 ~ 1 If the sign is reversed. For p = 0, we fier Is therefore of the simplest kind; it is piece-
always have g5 >1 from the noise I 

2
, but g2 <1 ~ 

wise linear.
clearly possible for small v and large p with non- To be definite let v >0. The quantum noise (~ I3~)
vanishing 13. Recall that g2 <1 Is a characteristic decreases from (~ i3fl = * to (A4~) = ~(p — v)2 , while

quantum effect without classical analog, and that that of 112 increases to ftp+ v)2 , from (3 .31). If we
currently available sources all generate g2 ~ 1. define the signal-to-noise ratio - -

Stoler” and Lu’° have previously observed that g2 (S/~~~ = (a )2/(~a 2) j= 1,2, (7.2)
<1 may be obtained from a state of this kind.

For most values of (p, i’), g2 can be tuned by where the average Is taken In a state p, we find
varying i3 in a TCS from (6.7), exhibitIng both anti- that (S/ N) , is invariant in the amplification and at-
correlation (g2 <1) and enhanced correlation (g2 tenuation, I.e.,

• >2) effects. This fact permits one to check whether (S/ N),11, = (S/N), 11) . (7.3)
a certain particular TCS is obtained by a Hanbury-
Brown-Twiss experiment . The photon counting The above definition of signal-to-noise ratio Is
dIstribution (3.23) or (6.4) is also sufficiently dif - meaningful. If we try to determine the value of 132
ferent from a Poisson distribution that Its measure- by measuring; in a coherent state or TCS, (7.2 )
ment will reveal the presence of a TCS. The u~- 

provides a standard or measure on how well one
may estimate 

‘~~
,““ or equivalently how “noisy” ‘3~is In the “best” measurement .

_

~~~~~~~~~~~~~~~~~~~~~~~~ 

~ We can interpret 13) as the state of an optical
signal presented to a receiver which generates

13 , by a two-photon amplifier U0Q, 10) and then
measures 03 on t o >,. It Is obvious physically that

FIG. 3. Phase-matched degenerate parametric amp- the signal-to-noise ratio cannot be improved by
lificatlon ~lth pump f Ield at frequency z~- . amplification. The introduction of f~ 

into L 0 does

— ~~~~~~~~~~~~ ‘ :...a~ ____________ A-rn
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not increase the signal energy, i.e., the part of a decrease of (~ a~) In to >, can be obtained only at
which is proportional to 13~. The advantage of am- the expense of spending a portion of available en-
pliflcatlon is practical , similar to the classical ergy S In the form of added quantum noise energy
case. Raising the signal level makes possible 1v 12 , from (3.35). Thus (~a~)—0 requires S —”c .
easier measurement of jJ,. Since the two-photon This consideration is not important in the context
amplification process (4 .45) operates above thres- of local oscillators at a receiver where large
hold , It can be superior to one-photon amplifiers enough amount of power is usually available to
operating below threshold in its possibilities of make (Aa~) sufficiently small. A four-orders-of- ., jyielding higher gain and lower noise. If amplifica- magnitude reduction from the quantum noise ~ of

tlon for both quadrature components is desired, a, (~ 
2 

~ 10~) for a GHZ bandwidth optical signal
the input beam can be first split and two different at d2ir ~ 10” Hz requires only a j v ~‘orrespond-
U 0(t ,10) applied to 13, and 132 separately. Ideally, ing to 1 pW. This will usually bring it down to the
no signal-to-noise degradation will occur from level of other extraneous noises. Furthermore ,
(7.3). even a ten-orders~of-magnitude reduction of the

The above amplifier performance is not sensitive quantum noise requires —1 W under the same con-

I

to the addition of a Gaussian noise. Since we are dition.
now utilizing the bigger noise component , there is Other practical coi,siderations also should not
no need to maintain (~a~) <

~~ 
and a random phase invalidate the utilization of this small-noise prop-

would not seriously degrade the system perfor- erty. With proper signaling and reception schemes
mance. Therefore the process described by (J~(t ,t ,) one can always observe the signal quadrature corn-
provides a possible mechanism in the realization portent without significant degradation from ran-
of an Ideal linear amplifier. dom-phase modulation. From (4 .43) it is assured

that free-space propagation of 11), will not disturb
the quantum noise characteristics . The rotation

B. Local oscillator (3.59) can be readily compensated in an optical
receiver without affecting the signal level, so that

One may take advantage of the absolutely small
(Aa~)<< ~ in lo>, in the reception of a coherent- TCS’s are as good as minimum-uncertainty states

state signal with a size-limited detector. By em- in this application. These and many other problems
Involved In a realistic communication systcrn will

ploylng a local oscillator which generates radiation
In state Io>,~ It is possible to attenuate the quan- be treated elsewhere.

turn noise by an amount which compensates the
large diffraction loss incurred in free space or un- C. Ti~ansmission source

I

guided propagation. This is achieved by coupling a Further performance improvement can be ob-
mode in to>, to the incoming mode In j a )  in the tained if the transmitter generates information-
form of a new mode carrying radiation in a TCS. In this case the radi-

aR=Ea s +(l — E 2)hl2 aL, (7 4) 
ation power constraint (7.5) poses a major limit-
ation on the achievable signal-to-noise ratio. It

where (2 the fraction of energy received has been shown that67 TCS ‘s provide the maximum

and a~, a~, and 0R are the photon annihilation op- (S/N), obtainable for one of the quadrature compo-
erators for the signal, the local oscillator , and nents among all possible states satisfying (7.5).
the receiver mode. The quantum noise in CR is By spending a fraction S/(2S +1) of S as quantum
clearly dominated by that of 0L for small e 2~ The noise energy with, e.g.,
sIgnal-to-noise ~ttio in aa, becomes ~~ a ~ for = (S + 1)/(2s + 1)’ /2 , v =S/(2S + 1)-’ /2 , (7,6)
(~4,)~~0, whereas it Is *E~a~ for a coherent-
state local mode (Aa i,) = P. ~~~~~~~ discussion 132 = P2 = 0, (7.7)
can be found in Ref. 1. No~P~~~t~h1sCedvantage of we have

• (Aa~~)<< * cannot be obtained’ If-a on~~~boton-laser
local oscillator is used to produce a coherent- (S/N),15,, 4(S2 + S). (7.8)
state receiver mode aR and a U 0(1 , t~) subsequently Compared to the signal-to-noise ratio
applied, because of the corresponding signal at-
tenuation. An absolutely small ~Aa~1,,) is needed in (S/N) , 15, ”4S (7.9)
this scheme. -

In a coherent state , we see that the available “sig-
If an arbitrary amount of power Is available, It nal energy” Is effectively increased from S to S~Is possible to have a state With (~a ~

) ~ 0. Hc~ = + S. This is actually a reduction of quantum noise .~‘
ever, for a fixed total radiation energy Among other things, this Increase in (S/N), leads

trpa?a~~S, (7.5) to a higher information capacity even when the

— _________________
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other quadrature component Is not employed for per: R. S. Kenned y, M. Lax, J. H. Shapiro, H. S.

information transmission.’ In the presence of 
Tye, and S. Y. Yuen.

other extraneous noise, quantum noise reduction APPENDIX: TWO-PHOTON LASING STATE
In a transm itter state t o ), can also be obtained IN THE SCFA

with only a relatively small 
~~~ 

as Illustrated Here It is shown that the radiation state of a two-
above, photon laser is a TCS in the self-consistent-field

Finally, we observe that the new photocount sta- approximation (SCFA) ,’3”4 if loss is also neglected.
tistics may Itself lead to novel applications In Let H be the total Hamiltonlan of an atom-field
communications. system:

VIII. CONCLUDING REMARKS H=H a,,,,, +H f,.,d +H ,,, , (Al)

We have discussed in some detail the properties wi th H,,i,6+H,1, given by (5.2). In the SCFA , the
of a class of radiation states which are closely total density operator is assumed to factorize,
related to the well-known coherent states. These 

~=p6~®p14. (A2)
two-photon coherent states possess a number of The equation of motion for the radiation density
distInguIshing characteristics which lead to poten-
tial device applications for quantum noise reduc- operator p14 can be obtained from that of p by

tracing over the atomic variables with the result
tion. They may also find application in experi-
mental situations that require low noise sensitivity. !&~. = _ !. [H0, p,41, (A3)at iiIt has also been suggested that these states can
be obtained from two-photon stimulated processes , where H 0 Is given by (4 .2), with

or equivalently that they provide a good description I = ~~, i~ =p 2 tr(M ,p ~,) , f~ =p , tr( M ,p 0,) . (A4)
of two-photon laser states. The ultimate validity
of this proposition must be tested by an elaborated Th-.is a TCS will be developed from an initial co-
quantum-statistical theory of two-photon lasing herent state from (4.12), and (A4) gives the effec-
processes and above all, hopefully, by experiment . tive field Hamiltonian under the SCFA . Note that

Our present work was motivated by the desire to a resonant factor e4t
~
It is automatically present in

realize physically certain specific quantum states 12, from the atomic resonance in M .
and quantum measurements for practical appilca- Even though the above derivation is given for a
tions. It appears that the general problems of single frequency, it applies equally to any spatial-
state and measurement synthesis are interesting temporal mode if H1 Is in the form (5.1). The
and useful areas in quantum optics and electronics , same result is obtained for a parametric oscillator
as well as In the foundations of quantum mechanics, by interpreting M, as the pump photon destruction

operator and p, as the susceptibility, with M, = 0.
However, It seems less justified to neglect the
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Optical Communication with Two—Photon Coherent States — Part I:

Quantum State Propagation and Quantum Noise Reduct1on~

Horace P. Yuen and Jeffrey H. Shapiro**

Research Laboratory of Electronics
Massachusetts Institute of Technology -

Cambridge, Massachusetts 02139

Abstract

Recent theoretical work has shown that novel quantum states,

called two—photon coherent states (TCS), have significant poten-

tial. for improving free—space optical coL’lmunicatlons. In this

three—part study, the communication theory of TCS radiation is

explored. The present work, part I, addresses the Issues of quantum—

field propagation and optimum quantum state generation. In particular,

the quantum analog of the classical Huygens—Fresnel—Kirchhoff

diffraction theory for quasimonochromatIc scalar waves Is developed.

This result, which describes the propagation of arbitrary quantum

, states as a boundary—value problem suttable for communication—system

analysis, is used to treat a number of quantum transmitter optimiza—

• tion problems. It is shown that under near—field propagation con-

ditions a TCS transmitter maximizes field—measurement signal—to—
• noise ratio among all transmitter quantum states; the performance
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or the TCS system exceeds that for a conventional (co herent

state) transmitter by a factor of N5 + 1, where N3 is the average

number of signal photons (transmitter energy constraint). Under

far—field propagation conditions, it is shown that use of a TCS

local—oscillator in the receiver can, in principle, attenuate

field—measurement quantum noise by a factor equal to t)~e- ~iffeac—

tion loss of the channel, if appropriate spatial mode—mixing can

be achieved. These communication results are derived assuming that

field—quadrature quantum measurement Is performed. In part II

of this study, photoemissive reception of’ TCS radiation will be

considered; it will be shown therein that homodyne detection of

TCS fields can realize the field—quadrature signal—to—noise ratio

performance of part I. In part III, the relationships between

photoemissive detection and general quantum measurement are estab-

lished. In particular, a synthesis procedure will be obtained for

realizing all the measurements described by arbitrary TCS.
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I Introduction

•~~~The quantum—mechanical theory of optical communications 
:..

seeks to delineate the ultimate physical constraints imposed

on the transmission of information. The work to date in this

field has focused on determining optimum quantum measurements for

various detection and estimation problems [1)—f 4). However,

to determine the ultimate performance limitations imposed by

quantum effects, it is also essential to consider optimum quantum—

state generation, because post—measurement statistics (hence

detection and estimation performance) depend on both the

quantum state and the quantum measurement. Indeed, Yuen has

shown that certain “generalized” coherent states of the radia-

tion field possess novel quantum noise characteristics which

offer the potential for greatly improved optical communications

[5]—(7). These new states are related to the ordinary co-

herent states of Glauber, but have not been experimentally

observed. They have been called two—photon coherent states,

because they can be generated , in principle , by stimulated

two—photon processes [7]. In this paper and the sequel [8), [9),

we shall consider the use of two—photon coherent state (TCS )

radiation in tree—space optical communicatiàns.

In the usual formulation of quantum communication theory ,
- 

the electromagnetic field is quantized by representing the

positive-frequency field within a receiver region as a sum of

—1—
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orthogonal space—time modes, and imposing the photon annihila-

tion operator commutation rule on the coefficients In this

expansion [‘$ ,Ch.5] ,  [10]. ThIs Init ial—value problem approach Is
, .  .— ,

not well—suited to the stud y of optimum quantum transmitter

design. For such a study, it is necessary to have a quantum—

mechanical diffraction theory, analogous to the classical Hu~gens—

Fresnel—Kjrchhoft theory, in which quantum field propagation in

vacuum can be rigorously treated as a boundary—value problem.

Because some of the issues of a quantum diffraction theory are not

directly related to communication,we will not present a full

treatment of such a theory In this paper. On the other hand, we

shall develop, in Section II, those features of quantum state

propagation which provide the basis for representing any optical

channel In a quantum—mechanical form convenient for communication

analysis.

The development of quantum diffraction theory will be for

arbitrary quantum states; in Sections Ill—V we shall apply this

theory to TC~ radiation. Under near—field propagation conditions ,

with a fixed field—quadrature measurement , it will be shown that a

TC$ transmitter maximizes post—measurement signal—to—noise ratio

over all transmitter quantum states satisfying an average energy

constraint . The TCS system substantially outperforms a conventional

transmitter of the same energy. Under far—field propagation

conditions, ‘iith a fixed field—quadrature measurement, it will be

shown that use of a TCS local—oscillator in the receiver can, in
- 

principle , attenuate post—measurement quantum noise by a factor

equal to the diffraction loss of the channel if appropriate spatial
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mode—mixing can be achieved .

In derIving the foregoIng communication results, we shall

assume that the field—quadrature quantum measurement, i.e., that of

a1 the cos ine quadrature of the TCS radiation mode, Is performed.

When using conventional radiation, the a1 measurement can be

accomplishen by homodynlng [11). However, because the statistics

of photoemissive detection depend, non—trivially , on the quantum

state of the radiation field, the preceding statement regarding

homodyning must be re—examined for TCS sources. In [8] we shall

present a detailed analysis of photoemissive TCS detection;

homodyning will be shown therein to realize the same signal—to—

noise ratio as the a1 measurement for an arbitrary quantum state.

The full equivalence of homodyning and the a1 measurement will be

established In [9].

— 3—
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II Quantum Field Propagation

Open almost any graduate text on communication theory f12) [14],

and there, in the introductory chapter, you will find a generic

block diagram for a single communication link, much like that

shown in Fig. 1. The ubiquity of Fig. 1 stems from its inclusion

of virtually all single—link commur~ication problems, e.g., source

coding, signal—set selection, channel coding, and optimum receiver

principles. Its appearance in the 1970 review article on quantum

communication theory by Fleistrom et al. [1], belies the fact

that to that time attention had been focused almost exclusively

on receiver optimization. Moreover, Heistrom ’s recent monograph [4)
• attests to the continued absence of a quantum—trañ~m1tter op—

’

timization theory.

• A primary cause for the present dearth of quantum—transmitter

analysis is, we believe, the cumbersome quantizatiori procedure

employed in prior studies. The radiation field is usually quantized

at some initial time to within a spatial 
volume V that is large enough

to contain the field over the space—time region of interest [10].

In order to use the volume quantization procedure to develop

a quantum transmitter theory, we must take V to be a very large

spatial volume containing the transmitter, the propagation path,

and the receiver. Once the field has been quantized~ at an appro—

priate initial time, within V the quantum characteristics of the

receiver entrance—aperture field over the detection interval can
‘
. in principle be determined.
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The foregoing volume—quantizat ion procedure for quantum

field propagation [15] is seldom employed. When all the radiation

sources produce fields which are In coherent states or their
- - •J.-. ~~• . • — .~~~
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classically—random superpositions, the radiation field in the

neighborhood of the receiver can be determined by classical

• diffraction theory techniques (c.f. section 11.2). On the other

hand, for TCS radiation C and other quantum states which do not

possess well—behaved P—representations), ~1assica1 techniques do

not suffice. Moreover, to use the volume—quantizatlon procedure

in this case we must explicitly describe the radiation source

in quantum—mechanical terms. The need to introduce the source

dynamical variables into the propagation problem unduly complicates

the task of explicitly determining the quantum characteristics

of the received field. Thus, our first concern herein will be to

formulate a quantum diffraction theory, similar In spirit to its

classical counterpart, in order that the quantum field generation

and field propagation problems can be separated. Quantum channels

can then be conveniently analyzed within the framework of FIg. 1.

11.1 Specification of Quantized Aperture Fields

Classical diffraction theory treats electromagnetic wave

propagation as. a boundary—value problem. The archetypal free—

space diffraction problem Is to determine the field over the

• plane z-L, for a wave propagating nominally In the +z direction,1

. given the field over the plane z-0. Let ~~~~~~~~~~~ where

(x,y,z) ,  — (x ,y), be the positive frequency electric field

1 In other words, the wave under consideration has no components in

its angular spectrum which transport power in the — z direction.
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operator for a scalar wave2 that propagates nominally in the +z

direction in vacuum. The corresponding quantum diffraction problem

is as follows. Given the quantum characteristics of

• 
E0~

”
~ (i,t) E~~

’
~(i,O,t) , (2.1)

determine the quantum characteristics of

E~
’ (~~,L ,t )  , (2.2)

for an arbitrary positive L. Herein we show how to formulate

these planar characterizations; the propagation question is

addressed In Section 11.2.

The classical positive—frequency electric field,

can be expanded on a fixed transverse plane

— { (x ,y,z):—~<x,y<ch}

and an arbitrary time interval T in terms of a complete orthonormal

(CON) set of spatlo—temporal mode functions (~~(~ ,t): (~ ,
t )c E

~
xT
~
) , i.e.,

— ~e~~~(i,t) , (2.3)

‘ where

• 2
As In classical optics, the scalar wave analysis is not completely

rigorous. However, because the generalization of our quantum

propagation theory to vector waves involves only added notational burden , -

we restrict ourselves to the scalar case

— 6—
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S Z (2.4)

~ (i ,t i I ,t m ) u 1 6 ( x ~ x ’) 6 (t_ t ’)  ,

and {e~} are the classical mode—amplitudes. When this classical
‘ field is quantized, the classical mode—amplitudes are changed to

a set of quantum operators, (A na } , where Is a set of mode—

dependent c—numbers, and {a~} is a set of modal photon annihila-

tion operators obeying the following canonical commutation rules

(C CR)

- - - 
(a~,a~,) — , fa~,a~,] •0. (2.5)

The proper way to carry out this quantization procedure is not

described in this paper; its relationship to the usual volume

quantization procedure will be discussed in a moment.

In general, we choose not to work with the electric field

operator obtained by the preceding method, but rather with the

field operator

E2(,t) Ia~~
(,t) , (2.6)n

- 

obtained by dropping the A~ . For quasimonochromatlc (narrowband)

fields In free space with a nominal radian frequency w0, the field

(2.6) is proportional to the positive—frequency electric field

operator, viz

• 
E5~

’
~~(x ,t) — (f~w0/2e0)~

’2E5(x ,t) , (2.7)

—7—



where ~ is the vacuum permittivity. The quasimonochromatic

condition is not actually required in our theory once it is under-

stood that we are working with the field E5, rather than the usual

electric field E5~
’
~~. For simplicity, however , quasimonochromaticity

will be assumed henceforth.

From (2.4) and (2.6) we have t~-e field commutator

[E5(~ ,t) , E~(~~’,t’)]— 6(~—~ ’)6(t—t’) , (2.8)

where E~(!,t), the adjoint operator of E5(i,t), is the negative—

frequency counterpart of the field operator E5(~ ,t). Equation

(2.8) imposes a condition to be fulfilled by the quantized field at

any transverse p lane, and forms the foundation of our propagation

analysis.Apart- from a proportionality constant, Helstrom has shown

[ L , Ch.5) that (2.8) gives the electric—field commutator in the

limit of paraxial propagation. More generally, by excluding

evanescent waves and augmenting (2.6) to include waves which pro-

pagate nominally In the —z direction, we can obtain the usual

volume—quantization commutator [ii], [10], [ 15) for the electric—

field operator from a planar—quantization procedure, and

vice versa. We shall, however, purposefully retain the evanescent—

wave contribution to (2.6) because of its role in preserving the

field commutator (2.8) at all planes transverse to the nominal

direction of wave propagation. Indeed, the validity of (2.8)

at any s—plane will force us to identify the quantum—noise sources

responsible for Its preservation, thus making evident to what

• extent we can control the quantum state at the receiver In subsequent

communication analyses (cf. Sections IV, V)5

—8— 
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A complete specification of the quantized electromagnetic

field requires , in addition to ( 2 . 4 ) ,  (2 . 6 ) ,  (2 . 8 ) ,  knowledge

of the density operator, p, describing the states of the modes.

In the absence of classical statistical dependence, we have that

— • , (2.9)
n

where describes the state of the nth mode. The state of a

quantized aperture field EA (~ ,t), the field E (i,t) restricted toz z
an aperture A5 in £~~, can be given similarly by a modal ex-

pansion with a density operator specifying the state of the modal

photon operators. If the planar field E5( , t) is specified

first, the state of EA (~ ,t) can be determined from that of E5(i,t)

by modal transformations (see Appendix).

To -solve the propagation problem we must show how the

6—function commutator, (2.8),is preserved and how the density operator

Is transformed by free—space diffraction.

11.2 Modal Theory of Propagation

Consider the line—of—sight free space optical communication

channel, whose propagation geometry Is shown In Fig. 2. A

quaeimonochromatic quantized radiation source produces a field

• In the z0  plane that is propagating nominally in the +5 direction

-
~ and is space—limited to a transmitter exit aperture A0. After

propagation through L meters of free space, the field is collected

over a rec eiver entrance aperture AL. For convenience, we shall

assume that A0 and AL are c ircular apertures of diameters d0 and

dL respectively whose centers lie on the s—axis. The quantum

propagation problem is simply stated: given the quantum field

—9—
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Produced by the source over the transmitter aperture, determine

the quantum field that results over the receiver aperture . A

more precise formulation follows. 
-

Suppose the source produces a field in the transmitter pupil

that is time limited to an interval

-
• T~~.i (t: t0—T<t<t0}

We denote the field operator in the transmitter aperture by

E
* 

( , t). This operator has the mode expansion
0

EA (~ ,t)— Ia~C~ (x ,t) , • (2.1o)
0 n

where {~~~~~~~ ) is a CON set on A0XT0 , and the {a~} satisfy the CCR.

To complete the quantum aperture field specification, we assume

the {a~} in (2.10) have a known density operator 
~A0

In a similar manner, we assume that the receiver time limits

the field in its entrance aperture to an interval, TL, that is

sufficient to encompass the entire source transmission. We

- denote the field operator in the receiver aperture by EA (~~,t),L
which we expand as follows -

E (i,t)— }~bnr;n
L(~ ,t) . (2.11)

AL n

-
- 
In Eq. (2.11) the (c~

1
~
} form a CON set on ALxTL, and, according to

—10— 
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our planar quantization procedure, the {b~ } must satisfy the —

CCR. To solve the propagation problem we must determine 
~A ~L

the density operator for the {b } , from p
~ 

. Our solutionn
to this quantum field problem must subsume the classical field

behavior, i.e., the average received field

(2.12)

must be given in terms of the average transmitted field

EA (~
,t)ETr(PA EA (i,t)) (2.13)

0 0 0

by the classical diffraction formula .

Conceptually, it is convenient to solve this propagation

problem by a three—step procedure:

i) determine from EA (i,t) and the quantum characteristics
0 0

of E0(x ,t), the field operator over the entire z—0 plane,

i.e., for (~ ,t) c E
0
x1
0;

ii) determine from E0(~ ,t )  and its density operator , p0,
the quantum characteristics of EL(x ,t), the field operator

over the entire z—L plane, i.e., for (i,t) £ ELXTL;

iii) determine from EL(i,t) 
and its density operator, 

~L’
the quantum characteristics of E (

~ ,t).

j . Within the foregoing schema, tasks I) and iii) are trivial.

Specifically , we can decompose E0(~ ,t) into EA (i,t) plus a0
field operator defined on (E0—A0) 

X 10 5 All the apatio—temporal modes

—11-I 
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of the latter operator must be in the vacuum state because we assume

that the source acts on the half space z>O only through the aperture

A0, and we assume that there is no classical interference present,

such as thermal noise. Thus if we exnand E0(~ ,t) i i  the form

• E0(i,t) I(a~~~ (~ ,t) + c~~~(~ ,t)) , (2.14)

where {~~~~~~~ } are CON on (E 0
_A
0
)X 1 and the {c} satisfy the CCR,

we find that task i) is completed taking

~0~~A ~~
0><

~~ . (2.15)
O n  -

Task iii) is conceptually even simpler; it corresponds to cx—

tracting from a quantum planar field on ELXTL the spatio—temporal

modes that span ALxTL. Task ii) will be accomplished by exploit-

ing the classical mode theory of diffraction. The following

classical results are well known [16 ],[17]; they are presented to

establish notation

A. Classical Fields

As in (2.1), (2.2 ) let us use E 0 (i ,t )  and EL(X,t)

-
; . to denote the classical fields associated with E0(~ ,t) and EL(~

,t)

respectively. In the quasimonochromatic limit in which we are

working E0 and EL can be uniquely decomposed into their propa-

gating and evanescent wave components, viz

• 

- 
E0(~~,t)—E g (~~,t)+E~~(~~,t )  , (2.16)

and EL(~ ,
t)
~
E
~
(
~
,t)+E ~(i,t) , 

(2 .17)

—12— 
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where the two—dimensional spatial Fourier transforms of the

propagating—wave (Er) components vanish for spatial frequencIe~’

beyond w0/2wc in magnitude and those of the evanescent-wave (E
c)

components vanish for spatial frequencies below w0/2irc in magnitude .

The r~ropagating-wave component of EL is generated by the

propagating—wave componer.t of E0 through the quasimonochromatic

diffraction integral

E~ (~~,t )— Jdt~ J d~ ’ E
~
(
~’
,t )G L(~

,t;1’,t’) , (2.18 )
T~ ~o

where the Green’s functiOh~~’~~s~tisfies 
-
~~~~~

‘ 
~~~~~

-

GL(i ,t;T~’,t ’) .  f d? circ (A 0r)6(t—t’—L/c(l— I x~?( 2)l~
2)

eexp { —j2,r[LA0~~ (l— IA
0
? 

I

2

)
’

~~

’2
— F ’ (

~~~~
— V ) ) }  (2.19)

In (2.19), A0 is the wavelength associated with and f is a

two—dimensional spatial frequency . The evanescent—wave component

• of EL will be nearly zero, regardless of E
0
, for the usual

case of

Inasmuch as E is the restriction of E to A~cTT , and theAL L
• boundary condition on z—O is E0(i,t)~ O for (1,t),tA 0xT0, the foregoing

results imply that

EA (x ,t )  Jdt ’ JdX ’ EA (i
~
’,t’)G:(Z,t,

~~
’,t’) (2.20)

- ~~

. - • •
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Now , because is a compact operator [17], [18] that maps

L2(A0xT0) into L
2(ALXTL) via (2.20) , it possesses a modal

decomposition of the form

• GL(~~
,t;i’,t’) ~~~~~~~~~~~~~~~~~~~~ , (2.21)

where (~~‘} and {c~} are CON sets, so—called output and input

elgenfunctions, on ALxTL and AØ XIQ respectively. These eigen—

functions are determined from the Fredholm equations

J d t 2 fdi2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ , (2.22)

J dt’ fd~
1~
0(~~t ,t~)G (i,t;i’,t’) T~

”2C~’(i,t) , (2 2 3 )
1 A ~ ~‘ 11
0 0

where the kernel is

KL(ij,tl;i~2,t2)” ir’ J~~~
’ 0~ (x ,t ;Xl,tl)GL(X ,t ,x2,t2) . (2.24)

3 Strictly speaking, to make GL a compact operator we should

replace the 6—function in ~2.l9) by the bandlitnited 6—function

W sinc[W (t—t’ — L/c ( l — I A 0f ,2)L’2)] for some finite W. The parameter

W is the bandwidth of the quasimonochromatic radiation. As the proof

of the quantum propagation theorem and all subsequent manipulations

can be carried out with some additional labor using the bandlim.tted

• 

- we have chosen to present the simpler formulation.

r~.
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The eigenvalue, n~, associated with nth input—output eigen—

function pair is, physically, the fractional energy transfer from

A0.XTØ to ALXTL that results when we transmit c~
0(~~t). Because

the free—space channel is a passive non—absorbing propagation

medium, we have

0~ fl1~<l , for all n. (2.25)

There are two loss mechanisms that make n~ <l. First, there is

the radiative loss that is Incurred when AL is not large enough

to encompass the entire z—L plane field that results from trans—

mission•of ~~°(x ,t). Second, there is the evanescence loss that

is incurred because ~~°(x,t) contains spatial-frequency components

beyond A0
1 in magnitude.

By use of the mode decomposition for we can replace the

diffraction integral (2.20) with an equivalent parallel—channel

(modal) description. Specifically , if we expand E A using the0
input eigenfunctions as the basis set, viz

E
A (i,t)— ~cz~~~°(i,t) 

- - 

(2.26)
0 n

—15—
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we find that EA has the expansion
L

E A
(
~~,t )r. ~n~

112
~~~(i~t) (2.27)

in terms of the output eigenfunctions

B. Quantum Fields

Just as in the classical case , let us decompose the

field operators E0 and EL into their propagating and evanescent

wave components, i.e.

E0(i,t)  E0~(~ ,t )  + E0
e(~ ,~ ) (2.28)

EL(~
,t)  — EL~(i,

t)  + EL
e(i,t) 5 (2.29)

We are interested in developing the- quantum characteristics of

EL given those of E0. From the classical description of the

propagation process, It is apparent that E~ is not influenced

by E0 in the usual case of 
L>)A . Thus, the annihilation op—

L - erators in any mode expansion of must all be in the vacuum

state, and we can concentrate our attention on EL
F.

—16—
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EA (i,t)— }b ~ 
L(j,t) , (2.32)

L n

in terms of the classical ot4ut elgenfunctions, then the photon

operators {b~
} satisfy

bn~
anrln

112+cn(1_nn)
112 (2.33)

where (n ~~} are the classical eiginvalues and (c~} are vacuum—

state photon operators. The densl.ty operator for the (b~}

is determined from and (2.33) through £A.2), (A.4). In
0

particular , if

(2.34)
0 n A0fl

we obtain

— 

~~A n  (2.35)
AL n L

where for each n p is computed from via (A.9).
ALn on

• Proof:

We have, from (2.28)— (2.30) and the surrounding discussion,

that

• 
fdtI Jd~ tE

o(~~ ,
tt)GL(i,

t;ift~ )+EL
e(i,t) . (2.36)

—18—
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F Restricting (2.36) to ALXTL and using the ract that

EA (i,t
) on A0

xT
0 we find

0

EA (r ,t)— Jdt ’ Jd~
’E A (~~

t ) GL(i,t;~~’,t’)
• A~

(2. 37)

+ 1 jdt’di’Eo(i’,t’)GL(~
,t;i’,t’) + EL

5(i ,t)  .

(Z
0xT)—(A 0

x10)

We now use (2.37) to evaluate the series - 
(2.32) and obtain with

the aid of (2.21)

b~S5.y~fl~
112 +dn (2.38)

where d~ is the operator

d~=

- 

J i~ Idir;nL*(i,t) ffdt~diIEQ(~~t)GL(~~,t;~~
t t?)+E

L
e(i,t)

L L (z
0
xr)— (A0xT0) 

—

-
. - - Because {b~ } obey the CCR, it follows that

- 

d~
1u1c~ (1_flj~

’2exp(J$~) (2.40)

4 —19—
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in terms of a set of photon operators {c~~} and arbitrary phase

factors (•~}. Furthermore, since E0(i’,t’) is a vacuum—state
field on (E0x1)—(A0xT0) as is E~7(~ ,t) on ALxTL, the (c~~} are all

vacuum—state operators. For any the state of the modes

described by the photon operators {eXP(j$n)cn} is therefore the

vacuum €~(O>< 0( , so (2.33) and the theorem follow immediately witha n
the inconsequential choice •n °~ 

the density operator transformation

is given In the Appendix.

Remarks:

The basic physical content of the quantum propagation theorem

is as follows. For ~~
‘ and E expanded in the series (2.31) ,

- 

A0 AL
(2.32) with

Tr(PA a~)z a , (2.41)
0

the classical mode theory of diffraction implies that

Tr( 
~~~ 

~ ~ 1/2 (2.42)

Now, if fl~ <l we cannot have

- - 

- bn~
an

T
~n
l/2 ,

because b~ would violate the CCR. There has to be, in this case,

a photon operator c~, that satisfies the CCR, which contributes

to bn according to (2.33). Physically , when the output

eigenfunction ~~“cTc,t) couples to modes that are not generated by

—20— 



EA (~ ,t). Because all such fields are in vacuum state, (2.33)
0

is consistent with the classical mode result (2.42). The develop-

ment in Section V provides a det~11ed example of th~ . role suc h

auxiliary modes play in preserving the commutator (2.8), as well

as the effect of auxiliary modes on the extent to which the receiver

state can be controlled.

• The quantum propagation theory developed in this section is

• actually more general than the preceding theorem indicates. In

particular, It can be applied to arbitrary linear propagation

media, and can handle the case of non—vacuum cn in (2.33),

c.f. Section V.1.

C. Coherent State Propagation -

An ordinary optical source is one whose radiation field is

in a Olauber coherent state or a classically random superposition

of such states. In free—spece quantum receiver theory , quantiza—

tion of such a source is generally performed (conceptually) in

the receiver entrance aperture or fictitious measurement cavity,

even though the field is physically quantum mechanical in the

• 
- neighborhood of the source. By means of the quantum propagation

• theorem we can rigorously justify the use of classical propagation

theory for ordinary sources. _~~_ 
- - -

• Suppose that the quantized transmitter field, E (~ ,t ) ,
• A0

ha8 a density operator in the modal expansion (2.13) whose P—

representation possesses a classical analog, i.e.,  it has the

coherent state expansion

* 2
~A0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,a2 ,

...a ,‘•.)fld an/n , (2.~

—21—
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where P Il l/n is a classical probability density . The
n

quantum propagation theorem (2.3l)— (2.33) in conjunction with the

density-operator transformation calculus presented in the Appendix

can be readily used to show that the receiver field, EA (i,t),L
has the density operator

P A —

f(~~ fln
h/2un><fln

1/2anI )P(a1,a2, • .a~~
. ;a1,a2 ,  •~~~~~~~~~

s . ~~~~~~~~~~~~~~~~ ~(2.4-

in the modal expansion (2.32)~ . Equations (2.43). (2.44) demonstrate

that the received field behaves, quantum mechanically , as though

the propagation were classical and quantization Were applied at the

receiver. We shall see, in the sequel, that the quantum propagation

theorem has signigicant content for more general quantum transmitters.

-
• 

g 
Equation (2.44) has to be modified In the presence of classical

interference or noise, which is not our concern here.
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III Two—Photon Coherent States

We now introduce a class of radiation states that are closely

related to ordinary coherent states, but which possess a number

of advantages from a communication viewpoint. A comprehensive

discussion of the mathematical and physical nature of these states

has been given elsewhere [7), so that the present discussion serves

primarily to establish notation and indicate the possible comm-

unication imp.Lications.

111.1 State Specification and Generation

For a single radiation mode of frequency 
~~ 

with photon -

annihilation operator a, the two—photon coherent states(TCS)

I8)g are defined to be the elgenstates of a transformed photon - - • • - - - —

operator b with eigenvalues B. Specifically, we define

b . U a + vat , (3.1)

for complex p andy such that

I~ I2 1v 1 2 
— 1 • (3.2)

the TCS I B> g satisfies

• ~ I~ >g~ BIB >g . (3~3)

• When V~O IB> g becomes the ordinary coherent state 8>.

• For non—zero v, the state P~IB>gg<I ! does not possess a well—

behaved P representation .

• —23—

I

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —---- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • -,  ____________



The TCSIØ>g has the following important fluctuation behavior

g<8 1a I 8> g — i*8_ vB*EB (3. 11)

g<B IataI a>g l~ I~ + I”I~ , (3 .5)

— I~ —v I 2/~ ‘ 
<
~~2

> — 
I~~~~ 

+v~
2/4 , (3.6)

where

aEa1 + j a2 (3.7)

- - - f~r ié1~ —ádj óint a1, a2 defiri ’~s the quadrature components of the 
•

mode in question and Aa1Ea~—<a1
> is the fluctuation in a

~
, 1-1,2.

(In these expressions, the angular brackets denote quantum ex-

pectation with respect to a given density operator.)

For arbitrary ii , v the TCSIB)g achieves the minimum uncer-

tainty product

• 
cóa ~

2> c~ a 2> — 1/16 , (3.8)

for the qua drature components of the photon operator

a ’Ea exp fj  tan -1 ( j ~~~ *y - \~ (3.9)

- - 

-
• I \~2I~ IIv I + ~

‘v + v’M 1)

• —211—
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with

— (~ -ii J — I-u i )2/11 , câa~
2>~ (lii i + i v l ) 2/4 .(3.10)

When p/v is real, TCS are the usual minimum uncertainty states

for the Heisenberg iñequalityicàa1
2><~a2

2>>1/l6. In the limit

u,v’~ with p/v-’l and ia/v —1, TCS become the eigenstates of a1 and

a2 respectively, viz

, for p/v4 1 ,

(3.11)

for p/v.—l

It follows from (3.6) or (3.10) that the quantum fluctuations

in a1 and a2 (or a~ and a~) can be exchanged, at constant min-

imum uncertainty product, by varying p,v in a TCS. For coherent-

state radiation we have that <~a1
2> — <~a2

2>- 1/11 , and random super-

position of coherent states always increases the fluctuation
- 

- levels. Thus, the exchange of quadrature—fluctuation levels is

- 
- 

not a feature of conventional sources.

Whereas a coherent—state radiation field is generated by a

one—photon laser operated well above threshold, a TCS can be
• generated, in principle, by a two—photon laser operated well

above threshold. The theoretical relationship between TCS radia—

tion and stimulated two—photon processes has been elaborated In [7].

As yet, no TCS radiation has been experimentally observed, although

the generation of such light remains a physical possibility.
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Naively, the rationale for improving free—space optical

communication performance through use of TCS radiation is as follows.

At the transmitter, we impress analog or digital information

onto the average value of the a1 quadrature of a single TCS radia—

tion mode. By controlling p,v we can reduce the quantum flue—

tuation on the signal (a
1
) quadrature below the level for co—

herent states. Thus, measurement of at the receiver yields a

higher signal—to—noise ratio for analog communication or lower

error probability for digital communication than that obtained

with a coherent—state transmitter of the sante energy.

111.2 State Propagation

The preceding description of potential TCS communication

advantages is oversimplified because it neglects the effects of

propagation from the transmitter to the receiver. Consider the

line—of—sight free space propagation channel that was analyzed

in Section II. Suppose that a TCS transmitter produces a field

EA (,t) whose state, ~A ~ 
in the expansion (2.31) is

0 0 -

• ~A0 
IB> gg<8I~ I~><0I , (3.12)

i.e., the first input eigenfunction is In a TCS and all the re—

• • maining eigenfunctions are in vacuum state. Via the quantum propaga— -

tion theorem we can separate the state generation and pro~.~agation - -

problems and find that EA (i,t), the receiver field, has state
L

• 
~A~~~l~~ ’0><0’ (3.13)

L n
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in the expansion (2.32)~ In (3.13), P1 is the state of the first

output eigenfunction; it Is the state of a photon operator

b — a + (l—n1)1”2c (3.14)

where a, c are photon operators that are in. states l 8>g and J o >
respectively . The output field state p1 can be found from (A.ll),

and is in general a mixed state.
For the purpose of’ eliciting the effect of propagation on

TCS quantum noise reduction, it Is simpler to calculate

the fluctuation behavior of b directly from (3.L1)_ (3.7) and (3.14) than

to use the transformed state (A.ll). We find that

cb, — , 
- 

(3.15)

<btb> — n1(181
2 

+ ~v~
2) , (3.16)

+ (l_~1fl/l1 , 
- 

(3.17)

<Ab2
2> — [ r ~1J p  + i

2 
+ (l—ri1

)]/4 , (3.18)

• where b~b1 + jb2 defines the quadrature components of b.

• Comparison of (3.6) and (3.18) reveals the following behavior:

the TCS nc’ise reduction that is manifest on a1 when Jp— v J
2< 1 is

nearly absent from b1 ~n1ess fl1:l. Physically, when

-27- 
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the Quantum characteristics of b are dominated by the vacuum co-

herent state properties of c through (3.114). Thus, to reap the

communication benefits suggested by (3.6) we should arrange the

propagation geometry so as to achieve a near unity fractional

energy transfer (eigenvalue ) for the TCS transmitter mode; such a

situation will prevail in the cla:sical near-field propagation

regime [19]. Alternatively , for the classical far—field propagation

• regime in which~n1
c<1, we could concei~ab1y improve on (3.17) by

use of a TCS local oscillator near the receiver to cause the

photon operator c in (3.14) to be in state l 8> g • These near field

and far field cases are considered in Sections IV and V respectively .
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IV Quantum Transmitter Optimization

The discussion surrounding (3.l4)—(3.l8) has the following

generalization. Suppose a quantum transmitter produces a field

operator EA (x,t) with state0

— J > < I ® ~O > < O J  , (11 .1)
0 n

where > is an arbitrary pure state. When n1<<l the resulting

state, p1, for the first output eigenfunction in the expansion of

EA (i ,t)  will be approximately a coherent state (Insofar as field
L

fluctuations are concerned)

p
1 Jn 1

1
~
’2 <a>>cn1~

”2<a>I (14.2)

in the absence of receiver state control, where a is the photon

operator associated with the first transmitter mode. Evidently,

with a field—measurement receiver, whatever benefits may be

derived from optimum quantum state generation at the transmitter,

they are limited to the regime wherein ~~~ when no receiver
- 

- state control can be employed. It therefore behooves us to

briefly address the eigenvalue behavior of the classical free—

space mode decomposition before attempting a quantum transmitter

theory.

—29—
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IV.l Near Field and Far Field Propagation

For the usual case in which the aperture diameters d0 and dL,
and the path length L, are all much larger than the nominal wave— 

- - *

length )0,
evanescence loss can be neglected and hence the Fresnel

approximation

GL(~~
,t,X t )  — 6(t—t ’+L/c) -

‘(— jA 0L)~~ exp[—j2nL(l+ J~ —i’J 2/2L2)/A0] , ( 4 . 3 )

can be used in place of (2.19) . The mode decomposition (2.21) —

(2.24) associated with the Fresnel approximation Green ’s function

is well known [19], [20]; the salient features are summarized

below.

Because of the delta function time dependence in ( 4.3 ),

if we take TL T0—L/c we obtain the factored mode decomposition

n
°
~~~~m

(t
~~ cn

’
~
(
~~
)xm

(t_L /c);nn
} where the temporal input modes

{Xm(t) } are an arbitrary CON set on T0 and the spatial mode de-

composition satisfies

- 
- fd~2(dLJl(1fdLi~~2

_i
lI/A oL)/2AoLi~~2_ilI )exp[j1t( I~ ll

2
Ii2I

2)/AoL]
Ao

n~~~2~ ~~~~~~~~ ‘

— 

• 

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— y~ l/2ç L(~ ) • - 
(14.5)
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Explicit results for {c~°(x); ~~~~~~~~~~(i); n~ } are available [20].

The eigenvalues depend parametrically on the Fresnel number

D — ( ‘U0
d1JI4A L)2 (14.6)

and the input and output eigenfunctions are prolate spherc’tdal

— wavefunctions. For our purposes it is sufficient to note the

asymptotic behavior of the eigenvalue distribution. Suppose the

eigenvalues are arranged in decreasing order , then in the far—

field region, D”1, the maximum eigenvalue , n 1, Is approximately equal ta

D, and all other eigenvalues are insignificant. When D>>1, near—field
propagation - prevails; .there are-•~t.hen,D eigenvaluea near, J. and therest are insignificant.
IV.2 Near—Field Transmitter Optimization

Consider the following problem of quantum state optimization

in near—field free space communications. A continuous real—

valued random variable a with density function pG~) is to be

transmitted from A0
xT
0 by placing the photon annihilation operator

a for the mode Cj°(i)~1(t) in state ~~~~~~ 
Let us assume that linear

modulation is employed so that when ala chosen for transmission ,

p
~ is constrained to satisfy

• <a>ETr(Paa)
~

uK , (14.7)

H 
• where K is a positive constant. The receiver measures b1, the

• —31—
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cosine quadrature of the photon annihilation operator b associated

with the mode ~1
1’(
~ )X1(t—L/c) on AL

xTL. Because we are in the

near—field propagation regime, we may assume ~~~~ and hence

b:a, b1 a1. The problem is to choose Paand K to maximize 
the

average signal—to—noise ratio

- . 2~~~~• = 
K a , (14.8)

av 
J
daP(a)Tr[Pa ai

) ]

where ?is the mean—square value of the parameter a, subject to

the average photon number (energy) constraint

J
dap(a)Tr(Paa

ta)~Ns , (14.9)

on the transmitter state. The classical average transmitted

energy is

f
dap (a)ITr(Paa I 2_K2

~~ . (14.10)

Thus, because<ata>2ka)I 2r (14.9) is a more severe and more appro—

• priate energy constraint for the quantum transmitter problem than

the classical constraint K
2cs2CN3.

We now show that the optimum state 
~a
0 and modulation con—

•
- atan t K0 satisfy : • -

- 
p~O1i IK oa( 2N5+l)

l/2tuI
gg<K

0c&(2N3+l)
h/2

l ~ (14.11)

(14.12)
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where the TCS I K0c$(2N8+1)
hl’2>~ has

, v”N
5
/(2N

5
+l) 1”2 . 

• 

(14.13)

That the optimization depends on p(a) only through 
Tshould not

be surprising because SNRav is a second—moment quantity. The

proof that (4.ll)— (4.l3) constitute optimum choices of and K

is as follows.

By means of (3.4)— (3.6) it is easy to show that (14.l1)~ (14.l3)

satisfy (11.7), (14.9) with equality, and give

SNRav
O_llNs(Na+l) , ( 14.111)

which we must show to be the optimum SNRav value. We first re-

write the energy constraint (14.9) in the equivalent form

Tr[~ (Aa1)
2]+Tr[~ (~a2)

2]+K2cN8+l/2 , (14.15)

where
pE Jdap(a)p

~ 
. (14.16)

A simple convexity argument shows that and K° will satisfy

• (11,15) with equality. Moreover, when (14.15) is an equality

• (11.8) can be expressed as

SNRav~ (Ns+l/2_Tr[P(tIa2)
2))/Tr[P(Aai)

2]_1 (11.17)

~ 
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Now, because ~ is a density operator we have the uncertainty rela-

tion -

Tr[~ (8a1)
2) Tr[P(~a2)

2]>l/l6 , (14.18)

and, from (14.17), it is clear th~~ P~
0 will satisfy (11.18) with

equality. Under this minimum uncertainty condition we have

SNRav
_ (N s+l/2)/Tr [p&~al ) 2 ]_(l 1TrC;~ t~al

) 2 ]) 2_l , (11.19)

which has the unconstrained maximum

SNR°avalINs(Ns+l) , (14.20)

when

Tr[p (~a1)
2)1~13l(2N3+l)]~~ . (14.21)

The proof is now complete in that (Zl.ll)_ (4.13) satisfy the

constraints and achieve (14.19). Note that the use of ordinary

• coherent—state radiation in this linear modulation problem -

results In the maximtzed signal—to—noise ratio

SNRavII14NS ~ 
(11.22)

• 
• when K— (N5

/c12)1”2 Pci I > ~1~~
For N~ >l, the optimum TCS performance is vastly superior to the

conventional—source result.
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Note that we have not performed a combined transmitter—

receiver optimization; the measurement of a1 is fixed In advance.

For linear modulation of TCS fields, however , one can easily show

that the a1 measurement ac tually minimizes the measurement
• variance for any input signal parameter. Thus, tne performance

(14.23) cannot be further Improved by receiver optimization.

The possibility Is open that a joint transmitter—receiver
- 

optimization will lead to a superior performance than (14.20),

- which seems unlikely in the case of a continuous parameter a,

but which is obviously true in the discrete case by transmitting

photon elgenstates.

-t

- 

-

~ - 
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V Far—Field State Optimization

Recall from Section IV that under far—field propagation

conditions the quantum field fluctuation characteristics of EA (i,t)
• • - ‘

- - , - • . - -
•

-
-- 

- - p — - , • - - I_I - - - - 
-

will be dominated by the vacuum coherent—state behavior

introduced by the radiative loss in the channel. In this

section, we shall indicate how a TCS source might be used as

a receiver local oscillator to achieve a state optimization

analogous to that in Section IV.2. The present discussion

is doubly speculative in tnat it assumes a source that is

as yet unrealized (two—photon laser) and a spatial—mode

mixing for which a practical configuration has yet to be

found. However, the predicted performance increment is so

large that continued implementation research is clearly

justified. In particular, we shall find that by means of

a TCS local oscillator we can increase post—measurement

signal—to—noise ratio by a factor equal to the radiative

loss of the channel.

Suppose , as in Section IV.2, that a continuous real—
• 

- valued random variable a is to be transmitted using linear

- 
• 

modulation from A3xT0 by placing the annihilation operator

a for the mode c1
0(i)x1(t ) in state The receiver

measures b1, the cosine quadrature of the annihilation

operator b assoctated with the mode ~1
1
~( x ) x 1(t—L/ c) on ALXTL.

We shall assume far—field propagation prevails so that

-
• 

b n 1~
”2a+(l—~1)

1”2c (5.1)

• - —36—
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where ~ 1: (nd OdL/14A OL)2<<l, and c is a photon annihilation

operator whose state is unaffected by 
~a

’ Note that any

phase factor that would have multiplied (1-n 1)
1
~
’2c in (2.140)

has been absorbed into the photon operator definition for c

in (5.1). Our objective is to maximize the signal—to—noise ratio

- 
~~~~~ p(a)Th~p 1b1)2] - 

-

SNR _____________________  •

av 
~~ p(a)Tr[p1(~b1) ]

subject to the transmitter photon number constraint (11,9) by

choice of p and K. In (5.2), p1 is the state of b , which,

in the absence of any radiation source other than the trans—

mitter that produced EA will be approximately the coherent state. - --

0
(c.f. ( 11.2))

P1 I~i
112Ka><n1~

”21~ I (5.3)

Under (5.3) it is trivial to compute that the maximum signal—

to—noise ratio

• 
• 

SNRav~11T1lNs (5.11)

results when we use the coherent—state pa~ )
Ka><Kal with K (N31T 

1/2

Comparison of (5.11) and (14.22) reveals the well known SNRav
• attenuation that attends free—spacer propagation. To ameliorate

this attenuation by means of state optimization , we must

control the state of the photon operator c. The details are worked
- - 

- 
• out below .
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V.1 State Optimization by Spatial—Mode Mixing

For the assumed transmission geometry we can expand the z-L

field operatoi’ in ~he sez’~es - •--- -- • - - -- - • - -

EL(i,t)~a+a(i)xl(t_L/c)+c$R(~ )xl(t_L/c)+Zam~m(~ ,t) , (5.5)

where on 1L

• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J
2/2L2~./A 0] , (5.6)

[(l-n1)/n1]
112 

$~~(~~
) , x EA~

(5.7)

• 

1 1~~lfl •sci) x

and {$5ti)X1(t—L/c), •R(~
)X l(t_LIc), ~m~~1t~~ 

form a CON set on

• ELxTL. Note that by virtue of (11.5), the restriction of

the “signal” spatial mode, $5(x), to AL is ~~1/2 ~~L(~ )~ By

a simple calculation it follows from (5.7) and (2.8) that

•~ 
(x) is the other “received” spatial mode when we measure

C L (x) on AL, i.e., a and c in (5.5) are the operators that

appear in (5.1). Because these operators are associated

with orthogonal modes on E~ TL we may take them to be quantum—

iuechanioally independent, i.e., they are members of a set of

photon operators obeying the CCL Further, we suppose that when a is

- 
—3 8— 
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to be transmitted the mode described by a is in a coherent state

~a~’ (N3/~~)
L’2a>< (N5/~~)

hh’2aI (generated by the transmitter),

- • and the mode described by c is In state p0, controlled by a source

(the local oscillator ) in the vicinity of z L .  Our

objective is to maximize the signal—to—noise ratio (5.2)

subject to the local—oscillator energy constraint

(5 .8 )

The preceding state optimization is straightfoward.

We directly compute from (5.1), (5.2) that

SNRav_Tl lNs/ [n l/ 1l+(l_fl l ) Tr [Pc (
~ Cl) 2 ]] . (5.9)

Rewriting (5.8) as

TIl[P (AC l) 2 ]+Th [Pc (A C 2 )2]+I TI~(P cC ) I 2<NR+1/2 , (5.10)

the reasoning employed in Section IV.2 leads us to conclude

that the TCS

Pc°~
I0>gg~

(0I , (5.11)

-
• with

, v—N 1~~”2 , (5.12)
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yields the maximum signal—to—noise ratio

- 

SNRav° l+ 1+UR)
112_N

R
”22 l_n

l)/rtl 
(5.13)

When NR>>l, as will surely be the case, (5.13) becomes

11av l+(l_nl)/ZIn1NR 
•

Thus, when NR>> (l_fll)/11Th~
we find that the post—measurement

signal—to—noise ratio for the far—field propagation channel

with a TCS local—oscillator receiver reduces to the near—

field propagation coherent—state transmitter result (recall (14.22))

SNRav° : 14N
3 

. (5.15)

Apparently use of the TCS local oscillator permits the

post—measurement quantum noise to be attenuated to the point
- 

• where the transmitter quantum fluctuations dominate the signal—

- 
• 

to—noise ratio. One suspects, therefore, that additional

benefits must accrue if we use a TCS transmitter as well as

• a TCS local oscillator, and indeed such is the case. We omit

• - the general result for optimizing the signal—to—noise ratio

: (5.2) by choice of 
~a’ 

K, and under the constraints (14.9) and

(5.8) in favor of the following simpler special case. When

• — 110—
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N~ satisfies N R >>l , NR > > ( l
~ n l ) ( N s+ 1/2)/2 nl the1optimum signal—

to—noise ratio

sNRav°:IIN8(Ns+l) (5.16)

is realized by using ( 14 .11 )— (14 .~~3) for and K° and (5.11), (5 .12)

for 
~c
°• Note that (5.16) equals the optimized near—field result

(14.111). 
-

V.2 Implementation of Spatial—Mode Mixing

Having found such a remarkable performance improvement

is obtained through the beneficial spatial—mode mixing on AL of

a far—field propagation signal mode and a caret ully chosen TCS

receiver mode, we naturally inquire whether the results

are specious. Let us say that there is some finite circular

region, A5, in the z-L plane which includes AL and is such that

jA3
I0s( I d

~~
1 , (5.17)

i.e., A8 is the region occupied by the signal field in zL.

If our receiver measures the •~
(
~

) mode on A8 rather than its

restriction to AL, we would not be surprised to obtain

near—field signal—to—noise ratios, because (5.17) is precisely

the condition that ç10(i) propagates from A0 In z-O to A~
in z—L without loss. The spatial—mode mixing analysis of See—

tion V.1 therefore implies that the effect of the TCS local

oscillator is to make the AL measurement of b1equivalent to

the A5 measuremfnt of a1. This Is a hollow equivalence if to

—111—
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generate the TCS mode $R(x) on A5 we require an apparatus that

fills A5. We need a technique to generate the desired field

on A5 from a device that is significantly smaller than A5.

As yet , we have not found such a technique , but neither

have we found a general proof of Its impossibility. The one

result ‘~e have obtained is that the obvious answer, a divergent—

beam local oscillator located In front of the receiver, cannot

work. We present a brief treatment of the divergent beam

system, because it illustrates the diff icult ies encountered

in trying to realize the desired spatial—mode mixing on AL.
Whether or not any practical scheme exists for the TCS mode

generation remains an open and important problem.

The geometry of the divergent—beam .receiver system is

shown in Fig. 3. A TCS source located in the z~L_L plane 
(f
~c<L)

radiates a diverging spatial mode •~(x) from a circular

aperture A
L 
that is much smaller than AL. To achieve the

desired mode mixing on AL,~~e(x) must give rise to the field

on A8 in the zL  plane. According to the quantum

propagation theorem, this propagation from A L to A5 must be

(nearly ) lossless or else the TCS quantum characteristics

will not be preserved. Thus we require as a necessary condition

the near—field propagation condition

(lrd
z
ds/ll AoL)

2)1 (5.18)

where d L and d5 are the diameters of A 1 and A8. For typical

parameter values, (5.18) does not pose a serious difficulty .
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Unfortunately (5.18) is not a sufficient condition. It does not

suffice, for our present purposes, that there is a mode $~(i) that
- • suffers -hardly - any - -no -radiative loss--in--propagation 4rom A1 to A5.

There must be a moae $1(x) on A 1 that yields without radiative loss

a specific mode, determined from (5.7) with $~
(
~

) modified to
include the central obscuration of AL~

by A1, on A5 (see Fig. ~~~~~ ‘

• Simple recourse to Fresne]. diffraction theory demonstrates

that the above problem is over—constrained. The far—field

propagation which governs the signal mode •~(~) gives rise to a
quadratic phase curvature exp (_j1T I~~t

2/A 0L) in the z=L plane,

and this same phase curvature persists in •R~~~
• The divergent

~CS beam has a quadratic aie cux vat~.iré exp(-jir I~~I
2/A 0L~ in

the z=L plane. Because L<<L and d3
2/X0

1<<l have already been

assumed (the latter condition Is implicit in (5.18)) the mode

generated by •1(x ) on the z~L plane will be almost

orthogonal to

.113...
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appendix Transformation of Quantum States

Let ~— {aj  : l<j ~ N } be a finite set of photon annihilation

operators that obey the CCR. The density operator P5 describes

the state of these modes, so that the state P ,for the ith mode is
- a1

obtained by tracing P5 over the other modes. The following joint

anti—normally ordered characteristic function is always well defined

(7], (21)

X~(1,~V*)hh Tr[P exp(EY *a )exp(—EY a 
t)] , (A.l)

where y is a complex vector. Through normal—ordering techniques

we can derive the following integral representation for ~~ (fl

~~~ J 
X~(I,~*)exp (_EYiai

t)exp(EY*jaj)d
2
I/1r

N 
. (A.2)

Let a’— ( a~ :l<j (N } be another set of photon operators which

are obtained from a by a unitary matrix transformation

a’—Ila . (A.3)

Because a obeys the CCR and U is unitary, a’ will also obey the CCR.

The characteristic function, x ( ~~,~ *) for a’ can be computed from (A.1)

and (A.3) with the result

(A.11)

-s

— --

~

~~~~~~~~~~~~~~~ ~~~~~~ 2’ 1L’ ~r~2~ 1 
_________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



Thus, the state 
~a’ 

of a’ is determined by (A.2) and (A.14).

The above results can be formally extended to the case of an

infinite”number of modes.’ ItoweYer , 1n actual ápplThátibiis there is

usually some finite number of modes that suffices.

- The quantum propagation theorem (2.33) requires the first

half of the following unitary transformation

~

:

0

~~~~~~~~~~~~~~~~~~~~

1

. 

(l
~

n l )v2

Q
1 

~~~~

_ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _  ( A . 5 )

~~l/2

0 

.

.

. 

.

.

.

where ~~~ b~ , ~~~ c~ all obey the CCR. Under the condition

p @Pa ® PC , ( A . 6 )
• !‘~.-n ~~ n 

n

• where !E(aj 1~ 2.:{ Cj 
} 
~ we have from (A. 11)

- 
-~~~~ 

- 
-~~~~~——~ - - ~~~~~~~~~ : r~~

-
~~



• 
- - -— - --

~~~~~
-- - - — - - -~~~~ -~~~~

® 

~b ~ (A.7)
— n n

- where b~ {b ,}, and for each n% can be computed from part- of the 
- •

.1 n
two—dimensional transformation

r 

b fl1’2 ( l_ n ) 1’21 [ a

— 
I - (A.8)

[b~ 
[

_(l_n)1.~
2 ~l/2 c •

where 0<ri<l. In this case, (A.14) yields

x~ (Y ,Y*)=4(n 2r,n~”2Y*)4c(
’l_n)~”2Y,

’(l_n)112Y*) . (A.9)

In terms of the convenient density function

for coherent states J a > , we have from (A.9) and (A.2) the convolution

formula
p(n)a a’)

(A

J ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .

As an example of these transformation rules , consider the case

in which a is in the TCS I0~g with parameters ‘a’ 
V
a ) and c is in the

- 

TCS I0>g with parameters ‘c ’ ~~~ Then b , from (A.8), (A.9), has the

characteristic function

- 

‘.147...

- ~~~~~~~~~~~~~~ 
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
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•- -

x~~~(Y ,Y ’ ) ’  exp (_4A~~/2) , (A.ll)

- - :~ where 
~l~~~2’ ~ [~

.2
~1; 

~~~~~~~~ 

(~ .1~
)- - -

E_UaVa~~~c~
)
c~~

_
~ IM a

2T*IM c I 2(~~
T
~fl -

A — fl~~~~

1 

~~~

__ _--_ — J (~~~1)T 
, (A.l3)

L~ a I 2 4I~ c I 2(1T~
) 
~~~~~~~~~~~~~~~~~ 

-

1 r i l
— 

I 
1/2 . (A.111)

L~

Equation (A.ll) represents a TCS with added Gaussian noise and so is

a mixed state in ~enera1. It can be shown that (A.l].) becomes a pure
ft ft

state if and only if 
~a

VaUc “
~ 

is real.

LI -
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Figure Captions

Fig. 1 Generic block diagram for a single communication link.

Fig. 2 Free space propagation geo~netry. 
-

~~ 

- • 
~~~~

S•
•~~~ 

- .

Fig. 3 Divergent—beam local oscillator geometry . TCS local

oscillator radiates a diverging beam from the A1 aperture

in z-L-.L, where A1 is much smaller than AL and I is much

• smaller than L. This locaL-oscillator aperture prevents

any signal light from reaching the central portion of AL.
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