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Improved Quantum Receivers for Optical Communication

Contract NOOOl4-76-C-0605
Covering vhe period . January 1, 1976 - June 30, 1977

The following is a brief suﬁmary of the work performed in
this contract and also indicates certaln lmportant open problems.
More details can be found in the attached papers.

I. SUMMARY OF RESEARCH

Our work was motivated by the potential of greatly
improved optical communication that would result from the use
of a new class of radiation quantum states. These states
have been named two-photon coherent states (TCS)(I), and a
thorough study of their properties has been completed(l)'(Z).

In particular, thelr possible generation by degeherate

parametric processes and two-photon lasers has been investigated.
Realization of the quantum measurement that leads to the
predicted quantum noise reduction has also been found (3)-(&),
The point process counting statistics of TCS's and their
performance in conventional optical reception were worked out(s).

\\\39 The main topic of this contract is on the communication

( Too-pho*en  coherer™ s+ tes)

theoretic aspects of TCS, systems. ;ye—haae—shoua the optimality
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of TCS, as transmitter quantum states, in a number of linear
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a theory of quantum field propagationn

which is essential for é correct analysis of TCS behavior

{ % in optical transmission systems. In particular, we new— [
t E
; —wunderstamd the difference bstween near-field and far-field ?f
1S now wnd@y Tl

TCS communicatioq. While one can realize the full TCS per-

formance potential in nea:-field communication, the far-field

R,

case is uncertain at present.
II. SUGGESTIONS

The most important open problems relating to TCS communi-
cation can be identified, at this stage, to be the following:

l. Investigation into the possiblity of employing i:

s H TCS~state-generating local oscillators for greatly
i improved far-field optical communication.
2. To design and subsequently perform an experiment

which demonstrates that the desired quantum states,

TCS's, can be produced.

3. To ascertaln the engineering requirements and
sensitivity tolerance in a practical TCS communi-

] cation system, for both near and far field transmission.
4, To develop the general quantum communication

theory of optimum state selection in different

communication situations.

III. PUBLICATIONS UNDER THIS CONTRACT

1., H.P. Yuen, "States that give the maximum signal-to-noise

“ - ration for a fixed energy", Physics Letters, vol. 56A, pp. 105-
1 106, 1976.

:g 2. H.P. Yuen, "Two-photon coherent states of the radiation

; field", Physical Review A, vol. 13, pp. 2226-2243, 1976.
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3. H.P. Yuen, "Gaussian states and parametric processes,” to
be submitted to Physical Review.
4, H.P. Yuen and J.H. Shapiro, "Optical communication with

two-photon coherent states - Part I: quantum state propaga-
tion and quantum noise reduction", to be published in IEEE
Transactions on Information Theory. |
5. H.P. Yuen and J.H. Shapiro, "Optical communication with
two-photon coherent states - Paré III: quantum measurements §
realizable with photoemissive detectors™, to be submitted |
to IEEE Transactions on Information Theory.
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STATES THAT GIVE THE MAXIMUM SIGNAL-TO-QUANTUM NOISE RATIO
FOR A FIXED ENERGY*

H.P. YUEN
~'esearch Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Mass. 02139, USA

Received 13 January 1976

Under a radiwation power constraint, the maximum signal-to-quantum noise ratio obtainable for any state of a radi-
ation field is found. This maximum value is achieved by the two-photon coherent states introduced previously to de-

scribe two-photon lacers.

Let the density operator p be an arbitrary quantum
state of a radiation mode of frequency w with photon
annihilation operator a. We write

= FI £ it
a=a) tiay; aj=a;, a,=a 1)

for selfadjoint @y, a,. The signal-to-quantum noise ra-
tio defined by

(S/N)p = (tr pay )2/tr p(4a; )2 )

with Aa; =g —trpa; isa useful measure of the in-
trinsic quantum fluctuation in many optical experi-
ments. In particular, if the operator a is measured at
a receiver (optical homodyne) with the transmitted
signal in state p, (S/V), provides a measure on how
well the signal level tr pa; can be estimated from the
measurement. We first show that under the energy (or
power per unit frequency) constraint

hw tr pa'a < hw N 3)
for a given N, the optimum (S/N), achievable by any
pis
(S/N)g =4N, (Ng +1). C))
Note that under (3), tr p(Aa,)? cannot be made arbi-
trarily small because that requires an arbitrarily large
N as apparent in the following.

Eq. (4) can be derived by using the uncertainty
principle
tr p(Aay)? tr p(Aay)? > 1/16. (5)

It is easy to show that all the available energy in (3)

* Work supported by the National Aeronautics and Space
Administration under Grant NGL 22-009-013 and by the
Office of Naval Research under Contract NR 042-342.

should be used and that no energy should be spent in
tr pa, so that (3) becomes

tr p(Aal)2 + trp(Aa2)2 +(tr pal)2 =N +-;-. (6)

From (S) it is clear that the minimum tr p(Aa,)? re-

quired to satisfy the uncertainty principle for a given

tr p(Aa;)? is [16tr p(Aa§)2] =1, Thus we can write

(2) in terms of tr p(Aa; )“alone for the purpose of op-

timization

(S/N), = {Ng +3— tr p(8ay ) o
— [16 tr p(Aa;)?] ~1}/tr p(Aa))?.

The maximum value of (7) is readily found to be (4)
with corresponding

trpa; = [NV, + 1)/QN +1)] 12 ®)

tr p(Aay)? = [4QN, +1)] -1 ©)

This optimum value is achieved by the two-photon
coherent states |B), previously referred as “‘generalized
coherent states” [1]. These |8), are eigenstates of b
= pa + va® with eigenvalues §, and |u|2 — [v]2 = 1.
When » =0, lﬁ)g become the ordinary coherent states
[2]. With

B= [NV, +1)]12 (10)

p= N+ D/2Ng + D2, v = NJQN+ D2 (11)

one finds from ref. [1] that ¢(Bla;1B) and
Bl(da )218), are indeed given by (8)~(9).

The state IB)g with parameters (10)—(11) is an or-
dinary minimum uncertainty state. In general. an ar-
bitrary two-photon coherent state |3), minimizes the

10§
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ratio (tr pa} )2/tr p(Ad)y)? for
@) =a, cos ¢ +a, sin ¢ (12)

i(u*v —v*w)
2lullvl +u*v+v*u

¢ =arc tan (13)
The maximum value (4) obtained from l[i)8 can be
compared to the value

(S/N) %= 4N, @14)

obtained with a coherent state p = |a)(al. By spending
a portion of available energy as quantum noise in a, to
decrease the quantum noise in @, the resulting signal-
to-quantum noise.ratio is increased from a coherent
state as if NV is effectively increased to N2 + N,.
Among other things, this improvement in (S/N), leads
to a higher information capacity for optical communi-
cations with states |8), [3].

The two-photon coi\erent states |f3), can be pro-
duced from ideal two-photon lasers [1, 4] or degener-

PHYSICS LETTERS
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ate parametric amplifiers [3—6] . Not only do they
have absolutely small (Aaf)discussed previously [1,4],
they also lead to higher (S/NV) for a fixed radiation
power in the state as shown above. If these lﬁ)g can

be experimentally generated from two-photon stimu-
lated processes, they may lead to significant improve-
mnent in optical system performance. They may also
find applications in physical experiments where a (S/N)
beyond the one-photon laser limit (14) is sought for
low noise sensitivity
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Two-photon coherent states of the radiation field*

Horace P. Yu<«
Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massach 02139
(Received 26 June 1975; revised manuscript received 3 March 1976)

The concept of a two-photon coherent state is introduced for applications in quantum optics. It is a simple
generalization of the well-known minimum-uncertainty wave packets. The detailed properties of two-photon
coherent states are developed and distinguished from ordinary coherent states. These two-photon coherent
states are mathematically generated from coherent states through unitary operators associated with quadratic
Hamiltonians. Physically they are the radiation states of ideal two-photon lasers operating far above threshold,
according to the self-consistent-field approximation. The mean-square quantum noise behavior of these states,
which i+ oasically the same as those of minimum-uncertainty states, leads to applications not obtainable from
coherent states or one-photon lasers. The essential behavior of two-photon coherent states is unchanged by
small losses in the system. The counting rates or distributions these states generate in photocount experiments

also reveal their difference from coherent states.

1. INTRODUCTION

In a recent study' of quantum communication the-
ory it was found that if optical radiations can be
generated in a minimum-uncertainty state®® rather
than a coherent state,* significant performance
improvement may result in an optical communica-
tion system. For a fixed radiation mode of fre-
quency w with photon annihilation operator a, the
coherent states |a) (@ |a)=a|a)) have relatively
large quantum fluctuations when w/27 = 10'? Hz.
Writing a =a, +ia, for self-adjoint a,,a,, a coherent
state |a) gives (Aad =(Aal)=1. A noise energy®
imw is then obtained if either a, or a, is measured
in optical homodyne detection. This quantum noise
is frequently dominant over other noise sources in
optical communications; for example, an equiva-
lent noise temperature of ~3400°K is obtained for
4w at the YAIG laser frequency. However, states
with (Aa?) <« § and correspondingly larger {(Aa3)
are permitted by the uncertainty principle
(Aa?)(Aa?) = L, such as the minimum uncertainty
states with (Aa})(Aa})=. If one can generate
such small (Aa?) states by an explicit physical
process, it should not be surprising that they may
be profitably used in many applications.

Minimum-uncertainty states cannot be obtained,
however, from available optical sources, all of
which generate coherent states and their random
or classical superpositions. An investigation of
the possible ways to generate minimum-uncer-
tainty states leads to a broad class of radiation
states that we call “two-photon coherent states”
(TCS’s). They include the minimum-uncertainty
states of which the coherent state is a special
case. A detailed study of these TCS’s is reported
in this article. A few of our results have been
briefly stated in Ref. 6.

In general, a two-photon coherent state differs
from a coherent state in several ways: they are
generated by different photon processes, they have
different quantum statistical properties, and they
have different coherence properties. Basically,
coherent states are generated from ideal one-
photon stimulated processes, whereas TCS’s are
obtained from ideal stimulated two-photon process-
es for two photons of the sane mode. The usual
multiphoton parametric processes’ are one-photon
processes in the present sense, as they involve a
single photon from each separate mode. The
quantum noise properties of TCS’s are basically
the same as those of minimum-uncertainty states.

Minimum-uncertainty states and coherent states
can be easily confused. The above illustration in
terms of (Aa?) and (Aa3) is a good indication of
their difference, if we note that they describe the
fluctuations of the field variables directly mea-
sured in a homodyne experiment. Further careful
discussions will be found in Sec. IIIE and else-
where in the paper.

Minimum-uncertainty states were studied at the
very early days of quantum mechanics; the Ken-
nard packets® are particularly familiar in the con-
text of electrons. It is therefore no surprise that
much previous work has touched on various as-
pects relating to the present two-photon ccherent
states, including much work on quantum field the-
ory and interacting Bose fluids. It is impossible
for the present author to give an accurate histori-
cal survey of the literature pertaining to minimum-
uncertainty states and their generation by quadrat-
ic Hamiltonians. The particularly relevant papers
now known to the author include Refs. 9-13 in
quantum optics and Refs. 14-17 in quantum field
theory. Nevertheless, it appears that TCS’s have
not been systematically studied before, at least in

2226




13 TWO-PHOTON COHERENT STATES OF THE RADIATION FIELD 22217

the context of quantum optics. These and other ad-
ditional papers will be mentioned in relation to
some of our results whenever appropriate.

This work is not at all a study of possible math-
ematical generalizations of coherent states. In
fact, the TCS’s can be considered as “coherent
states” in a broad sense, as discussed later. How-
ever, they should be distinguished from the coher-
ent states of Glauber,* because in quantum optics
the term coherent state is usually understood in
the Glauber sense which carries the implication
of equal fluctuations in the quadratures a, and a,.

In Sec. II we establish notations and briefly re-
capitulate the basic results in quantum optics used

in this paper. For a single degree of freedom, the.

definition and properties of two-photon coherent
states are developed in Sec. III, together with a
discussion of the contrast between TCS’s and ordi-
nary coherent states. The generation of TCS’s
from quadratic Hamiltonians is presented in Sec.
IV, with illustrative examples. The general struc-
ture and properties of the corresponding unitary
transformation are fully determined. Physical
interpretation of quadratic Hamiltonians is devel-
oped in Sec. V in terms of stimulated two-phcton
processes, which include two-photon lasers and
degenerate parametric amplifiers. We argue that
TCS’s describe ideal two-photon lasing states in
analogy to the coherent-state description of one-
photon lasers. The approximation which leads to
this conclusion is formalized in the Appendix. We
also show that the mean-square noise behavior of
TCS’s remains essentially the same when the ef-
fect of small damping and additive noise are in-
cluded. In Sec. VI we briefly discuss the coher-
ence properties and counting statistics of two-pho-
ton coherent states. The usefulness of TCS’s in
certain applications is brought out in Sec. VII. The
detailed theory of multimode TCS’s will be given
in a separate treatment.

II. COHERENT STATES AND OPERATOR
REPRESENTATION

For a single mode of the field with photon anni-
hilation operator a, a coherent state'* |a) is an
eigenstate of a,

ala)salu). 2.1)
It can be obtained from the vacuum state |oz via

the unitary displacement operator D(a)=e®'-e"¢
|@)=D(a)|0). 2.2)
From (2.2),
("|a),QN("1)-|Ize-l-l’l:. (2.3)

If the mode has a harmonic time variation with

frequency w, we have the usual canonical variables

(¢,p),
g=(n/2w)"*a' +a), p=i(3hw)'’/*a' -a). (2.4)

In general, we can introduce two dimensionless
self-adjoiat operators (a,,a,),

a=a,+ia,; a,=a', a,=a. (2.5)
We also write
as=a, +ia,; a, a,real, (2.6)

and refer to (a,,a,) or (a,, @,) as the guadrature
components (quantum or classical) of the radiation
mode. These quadrature components are the nat-
ural variables in describing a TCS, even when the
mode has a single frequency. Defining the eigen-
states |a,), of a,, |a,), of a,,

aa),=a,la,), a|a),=a,|a,),, 2.7
we have
(a,[ar)=(2/n)" 4 exp[-(a, - a’)?+1a’(a’- a’*)].
(2.8)
From (2.6) it follows easily that
(@=a, (N)=|a|?, (2.9)
(Aa})=(aa3)=1%, (2.10)

where (AM?) =((M - (M))?) for an operator M.
The angular bracket (M) represents the expected
value trpM of M with respect to a quantum state
p which may be either pure or mixed. The uncer-
tainty principle on (a,,a,) is

(aa3)(aaz)= g . (2.11)

Thus |a) is a minimum-uncertainty state. From
the arithmetic-geometric mean inequality, (2.11)
implies

(aa}) +(aal)> 3, (2.12)

so that |a) can be characterized as the states with
both minimum-uncertainty product and minimum-
uncertainty sum.

The differential operator representation of
M(a',a) in the coherent-state representation is® '*

(a|M(a', a)lw>=M(a', 7+ %)«-m , (2.13)
from which one can show _

(a|M(a,a)|8)=(a|B)M"(a*,B), (2.14)
where

M™(a*, a)=(a|M]|a) (2.15)

is the normal-order form® of M. Note that it is
important to keep the separate dependence of M

e
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on a* and a in (2.14)—M™ is a function of two
complex variables (a*, ). Equation (.14) explic-
itly shows the fact'® that M (a*, a) un.quely de-
termines M. In terms of U™ (a*, a;¢,t.), the
Schrddinger equation i%13U /3¢t =H(a',a)U becomes"

y au(ll)
iR o

These results are at least valid for bounded oper-
ators or unbounded operators which are polynomi.
als ina and a'.

In a number of mathematical senses, any
density operator p can be expressed in the diago-
nal P representation,**

:H(a',a+3-%)u"”. (2.16)

21-24

nsfP(a', a)|a)(a|d?a, d’a=d(Rea)d(Ima).
(2.17)

Let xx(n*,n) be the normally ordered character-
istic function
xw(n*, M) =tr(pe™'e’?), (2.18)

then P(a*, a) is the two-dimensional Fourier
transform of xy(n*,7n),% 2

P(a*, a)= f e eatny (i mdin/rt. (2.19)

It has not been demonstrated that P(a*, a) provides
a convenient tool in actual calculation when it is
not sufficiently well behaved.

Being the trace of the product of a bounded oper-
ator and a trace-class operator, the character-
istic functions xx(n*, M), x.(n*,7), and xx(n*,n) are
always well defined,

Xan*,m)= tr(pe™ *e™"), (2.20)
Xw(n*, ) =tr(pe=""ee") (2.21)

The Fourier transform of x,(n*,n) is the Wigner
distribution and that of x,(n*,7) is p™(a*, a),?"*
p(a*, a)=(a|p|a),

Wla*,a)= [xelne, e e dn/et, (2.22)

Xa(n*,n)= f p™(a*, a)e™ e Pa/r.  (2.23)

“~

The characteristic functions are related by

Xa(*, M =e"""xy(n*, ) =&/ 2y (n*, ),
(2.24)

which also implies relations between P(a*, a),
p"(a*, a), and W(a*, a).

The function p”’(a*, a) is always well behaved,
in contrast to P(a*, a), and is also quite conve-
nient for moment calculations. Furthermore, it
specifies p uniquely as in (2.14) and is the prob-

ability density function® describing the outcome
statistics of a simultaneous quantum measurement
of two noncommuting observables® * (or a mea-
surement of the non-self-adjoint operator a, opti-
cal heterodyning).*' We will use p*"’(a?*, @) or the
characteristic functions to represent a density
operator, particularly because P(a*, a) for a TCS
is too singular. In terms of p'*’, we have

p=jeu * ""p"”(a‘, a)e"'"e""d’a d*n/n?, (2.25)
traM = f [xne, ml=xa(n*, me'* &n/x, (2.26)

if x¥(n*, n) = tr(Me™"%e™") exists.

IIl. TWO-PHOTON COHERENT STATES

A. Definition

For a fixed radiation mode with photon annihila-
tion operator a, let

b= ua+va' 3.1)

for a pair of ¢ numbers u, v obeying

lu]?= |v]?=1. 3.2)
It follows from (3.2) that

[6,0%]=1. (3.3)

Any transformation b(a', ) which leaves the com-
mutator invariant as in (3.3) is called a canonical
transformation. The change of variables from
(a,a") to (b,b") according to(3.1)and (3.2) is there-
fore a linear canonical transformation. A theorem
of Von Neumann®*'? asserts that every canonical
transformation can be represented as a unitary
transformation, i.e.,

b(a',a)=Ual"’ (3.4)
for a unitary operator U. The structure and physi-
cal realization of the U, that leads to the linear

canonical transformation (3.1) are discussed in
Secs. IV and V;

U,aU} = pa+va'. (3.5)

The commutator (3.3) or Eq. (3.4) provides b
with properties exactly similar to those of a. One
obtains the following in a way identical to the usual
derivation for N and a:® Let N, be the “quasiphoton”
number operator,

N, =b'b=U,NU}. (3.6)

Then N, has discrete positive eigenvalues 'n, with
ground state |0,),

N, |m)=m,my, N,0)=0, 3.7
[mpy=Ug|m). (3.8)
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Similar to |n), the states |m,) can be expressed in
the form

[m,)=@")"(m1)/2|0,). (3.9)

They are complete orthonormal. Furthermore, b
acts as the lowering operator for |m,). The quasi-
particle interpretation of b and |m,) is discussed
in Sec. IV A.

The TCS’s |B), are defined to be the eigenstates
of b with eigenvalues B,

b|B),=£|3),. (3.10)

The u, v dep:ndence of a TCS has been suppressed
in the notation fﬁ),. When necessary, we will use
the more complete notation |B; u, ). With v=0,
IB), become the ordinary coherent states. In our *
later references to a TCS, it should be implicitly
understood that v+0.

From (3.4), there is an U, independent of 8
which gives

|BYe=U.|8) (3.11)
for each state |B). Therefore in parallel with |g)
|8)=D,8)[0),, D,(B) =27, (3.12)
[ 188l a8 /a1, (3.13)
B8 =exp(B*p'-£|8|2- 1|8’ |?). (3.14)

If the notation |B; u, v) is not used, the same u, v
is understood to apply to all of the |B), in an equa-
tion.

From (3.13), any state vector |¢) can be ex-
panded in terms of |B),. Similarly, diagonal op-
erator representation can be developed,

M= j M@ (g, 8)|B), (8] d*8/n, (3.15)

for the antinormal order form M (8+,8) of M. In
the |B), representation, we have [similar to (2.21)]

9
BlMe, 5 =m(ae 82 6l @i

Other properties associated with |a) carry over
identically to |B),.

The results of this subsection on IB), and lm,)
depends only on the relation (3.4), and not on the
more specific (3.5). The specific characteristics
of (3.1) are developed below. Certain properties of
TCS’s have been discussed by Stoler® in the con-
text of minimum-uncertainty states.

B. Wave functions

The general coherent-state wave function (a[ ﬁ),
of a TCS is first determined as follows: From
(3.1), (3.10), and (2.13) we obtain

3 (B a va*
3;-;<alﬂ>,-(;-3_-7)(alﬁ),. (3.17)

The solution of (3.17) is of the form
(@|B),=expla*B/u-4|a|?-va*?/2u+f(3%,8)].
(3.18)

The (a*, a)-independent f can be determined from
(3.16), (3.1), (2.13), and

(@110 =(5+ 53 ) ol

X (uu-"-;:wi),(pla), (3.19)

aa
so that the g-dependent part of f in (3.18) is - }|8|?
+v*B%/2u. From the normalization

[Keldlraarm=1,

(@|B), is thus determined up to a (a*, a; 8%, 8)-
independent phase in the form

(@|B=u"%expl- 3 |a|?- $|B]2 - (v/2p)a*
+(v*/2u)8%+(1/u)a*B +i6,] (3.20)

for a real 6,. The normalization constant is cal-
culated from the normalization of Gaussian inte-
grals.®® For p=1, v=0, (3.20) reduces to the
usual form of (a|B) for 8,=0, a choice of phase
we will adopt for {(a|8),.

While we have

(m,|B), = Bm(m1)1/ 2g=181%/ 2, (3.21)

similar to (2.3), the function (m |g), takes a more
complicated form which can be determined as
follows: As a function of the complex variables

z and ¢, e2#-** can be expanded in the Taylor
series

- n
REZL H_"(E)L, [t|<=, (3.22)
&t nl

where H,(2) is the nth Hermite polynomial with
complex argument z. Writing

@] =3 (aln)nl®),

n

and usirg (3.20) and (2.3), we find
8= (!l W)y 2(v/2p) H (B2 puv)?)
x exp[- } |ﬁ|"' +(v*/2u)8%. (3.23)

For p=1, v=0, the asymptotic forms of H,(z) for
various™® argz all lead to (2.3), as they must.
Equation (3.23) shows that the counting statistics
of a TCS is far from the Poisson (2.3).

Sl o siale

Aol il Al L




D

2230 HORACE P. YUEN 13

The wave function (a,|8), can be readily determined from (3.20) and (2.8). Thus we find

2 1/ L~y

. -1/2 L) pl2
.(G.IB),=(—) (b=-v) exP(-Elﬁ] -y(mﬁ

m
From (3.20) we have

(B; 1, v [Bos oy Vo) = (Boht* = vou*)/?
1

2+2a,“ﬁu-Haf>. (3.24)

xexp (- 4181~ 118, e

Note the Gaussian form of (3.24) and (3.25). Var-
ious reduction of (3.24) and (3.25) to the previous
formulas can be easily observed. The relative
phases of (3.20), (3.21), (3.24), and (3.25) are
mutually consistent, as well as being consistent
with the above wave functions for the coherent
states.

From

#8)e= 3 6nmp) (m, |y,
for the quasiphoton number states [m,) we obtain
e |mg)=Q.(u, v;m,n),
m<n, m odd, n odd, (3.26a)
=Q, (1, v;m,n) +Q,(k,v;m,n),
m<n, m even, n even, (3.26b)
=Q,(u, v;m,n),
m>n, m even, n even, (3.26c)
(3.26d)

. = y=(mene1)/ 2, (m=m)/ 2 (‘ 2)(”")/2("”1/2
Qx(ﬂ-, v, "I,n) 13 14 [(n_m)/Z]! ("”)”zr

=0, otherwise;

(3.26e)
Qz(“' Vs m’n)
/
2 “_(””U/ 2yl 2 am/ 2(_q)ng-nem) /2 (n(;lzl rln(!"): ;)1 :
(3.261)

Note that m and » must be both even or both odd in
order that (n|m,) be nonvanishing. Thus only an
even number of photons would be counted for the
state [0,) = [0),. Other wave functions of {m,) can
be obtained accordingly. These wave functions
provide the statistics of various measurements on
the radiation states |8), and |m,).

C. Quantum fluctuations and characteristic functions
From (3.1) and (3.2),
a=usb-vb', (3.27)
so that for the TCS |8),,

- -
- VoV

83, Volt = MoV B2+ Wolt = HoV)* B.‘;) 3 (3.25)

T 2(pok* - vor*) 2(uou* - vov*)

(@y=,(8la|B),=p*p-vB*=f =B, +iB,, (3.28)

(a'a)=|B|%+ |v]?, (3.29)
(Aa?) = — p*v=(Aa'?)* (3.30)
(Aa%y=%|p-v|?, (3.31a)
(aa?y=%|p+vl?, (3.31p)

(8a,8a,) =((a, - B)(@, - B)) =%i(u*v - vep +1),
(3.32a)
(aa,Aa,)=i(p*v-vrp-1). (3.32b)

Equation (3.32) is, of course, consistent with the
commutator

[ana2]=[bu bz]’%i- (333)
Compared to the case of a coherent state where

(a|(aa)'(aa)|a)=0, (3.34)

a TCS [ﬁ}, has added quantum noise energy

£Bl(8a)'(8a) |B), = |v|*. (3.35)
For self-adjoint b,, b,, and real 8,, B,, let
b=b,+ib,, PB=p,+iB,. (3.36)

The TCS |B), can be characterized as the states
which minimize both (Ab})(Ab%) > p and (Ab})
+(Ab2) > 1. On the other hand, |B), minimizes the
uncertainty product only when

u=06v, for & real. (3.37)

These minimum uncertainty states® include the
eigenstates of a,, a, in the limit u, v=<, such that
(3.2) holds. Specifically, the eigenstates |a,),
are obtained when 6~ 1 and the eigenstates |a,),
are obtained when 6~ ~ 1. As with the minimum-
uncertainty states, the mean-square quantum fluc-
tuations in a, and a, can be exchanged in {8, from
(3.31). On the other hand, they are fixed at ; for
coherent states.

Thus for a mode of frequency w, a significant
noise energy® i/iw is obtained if either of the qua-
drature components is measured in a coherent
state, while (Aa?) <« | with corresponding large (Aa})
can be obtained for measurement of a, in a TCS.




T

A mathematical scaling of a will, of course, lead
to (Aa?) < even in an ordinary coherent state.
For example, (Ab%)<; is possible with b given by
(3.1). In actual applications such scaling cannot
affect the system performance. In Sec. VIIB we
will show how the noise in a coherent-signal can
be reduced if |B), is available, which is impossible
by scaling on |8). The fact is that (Aa?) measures
the absolute amount of noise in a quadrature com-
ponent and a is a more fundamental variable than
b. See Secs. IIIE, IV A, and VI for further dis-
cussion and clarification.

From (3.20) one readily obtains

Ka|8)|*= | ] expl-(1 - 2¢ Na, - B,)?
-(1+2C)(a,-B,)?

+4C,(a,-B)(a,~B,))], (3.38)
where
C=-v/2u=C, +iC,, C,, C,real, (3.39)

and @ is given by (3.28). From (3.2), |C[?<4, so
that ;

le;l <4, fe,l<i. (3.40)

Thus (3.38) is indeed a Gaussian joint probability
density function in (a,, @,), with mean (ﬁ,,ﬁz) and
variance

o?=E[(a, - B)?)=3(1+2C)/(1-4|C|?), (3.412)

o?=E[(a,-B,)%]=3(1-2C))/(1 - 4|C|). (3.41b)

The notation E[R] indicates the probabilistic aver-
age of a random variable R with respect to its
density function.®® The correlation coefficient is

r=E[(a, - B)(a,-B,))/0,0,=2C,(1-4C )2,
(3.42)

This density function is illustrated in Fig. 1.
Equation (3.38) is conveniently expressed in the
matrix form

o (e, aj)= Ka IB>1|2

= |u|" expl-§(a, - T)TA" (e, ~ )],

(3.43)
where
a"( al)’ d:i(a" d:), (3.44)
— & b
a,=E(a]=3,, (3.45)

A=A, i1, 1=( ¢ °). (3.46)
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A, 5( <Mf> i<Aa(Aaz’ Aa,Aa,) ) ,
%(MlA"z"A"zA‘h) (M§>
(3.47)
A_.gz(l-zc.. 22C, ) (3.48)
-2C, 1+2C, £

In terms of the variables (a*, a), (3.38) becomes
p}l’(a a)= | " |.l exp[—i(g, - E.)ré_.l(g. - E.)]
(3.49)

' through the transformation

o2 L)) e

2
ﬁ.s( L iadl (A"A“'))mmf, (3.51)
(aaaa"y (aa')
where T denotes the transpose of a matrix.
The antinormally ordered characteristic func-
tion x4 (n*, n) for

‘r,"'(-.. a,)

FIG. 1. Representation of a two-photon coherent
state by p™ @@, a,) from (3.38), with a}>0%; a coherent
state is obtained for o{=03.
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0, = |B), 8| (3.52) fact is important in some applications as indicated
A in Sec. VIIB, because the original (Aa?) and (Aa?)
14 Shen can be both larger than } from (3.31) unless /v
Xa(n,,m;) = exp(in] @, - 317 An,) , (3.53) is real.
2 o) D. Diagonal operator representation for 3) @ |
2.5( M2\, n=n+in,, (3.54) o
-2, Let p, represent a density operator which can e

and the Weyl characteristic function is, from
(2.32),
X&An,, n,) = exoiinla, - inJAn,) . (3.55)

Since A >0 (positive definite),** the Wigner distri-
bution is also a Gaussian density function. The
antinormally ordered characteristic function
X(m, 1) is

X, m) =explinf@ - inT(A -, ].  (3.56)

The antinormal-, symmetrized-, and normal-
order moments of (a',a) can be calculated from
(3.53), (3.55), and (3.56), respectively. Note that
these Xy, Xw» Xa» and W, p™ for TCS’s are all
Gaussiaa. The above matrix forms are convenient
for generalization to the multimode situations.

The minimum noise (Ab;) obtainable in a TCS
for a self-adjoint b,

b, =v,a,+v4, Yi+vi=1, (3.57)

is the minimum eigenvalue of A;, with the mini-
mizing value of (y,,7,) given by the corresponding
eigenvector.®® The result can be expressed in the
following form: Let

v +iv,=e’® (3.58)
for a real ¢ and let
a’ zae'®. (3.59)

Then a} minimizes (Ab?) when

¢ =tan"[i(u*v - v*u)/2| 1| |v|+ prvevep)
(3.60)
and the minimum fluctuation is
(aa?)=1(|n| - |v|2. (3.61a)

The conjugate variable a} is the one which max-
imizes (Ab2), with

aa?y=1(|u+ [v])2. (3.61b)

From (3.61), the TCS |B), can be seea to mini-
mize the uncertainty product

(aai?)(aay?) > &, (3.62)

for a’ defined by (3.59) and (3.60). Thus |g), are
the minimum-uncertainty-product states for a’
and can therefore be understood as generalized
or rotated minimum-uncertainty states. This

writtea as a random superposition of coherent
states, i.e.,

o,--fP.(a', a)|a)(a|d?a, (3.63)

for a positive true probability density function
P,(a*, a). It follows that

trp,(Aa )--+fP (a,, a)a, - a,)da da,>%,

(3.64a)

for
a, =f}’.(al, a,)a,da,da,,
and similarly,
trp, (a2 >%. : (3.64b)

Equation (3.64) states the obvious physical fact
that the introduction of classical randomness
merely increases the noise in @, and a,.

A TCS with (3.31) therefore cannot be a mixture
of cohereat states. In fact, the density operator
P, cannot be writtea in the diagonal form (2.17)
with P(a*, a) belonging to the class of tempered
distribution. This can be seén from the normally
ordered characteristic function x%(n,,n,). For a
TCS, A - —I cannot be positive definite. Thus
x5 does not possess a Fourier transform. If we
insist on having a diagonal P representation for
p,, We will need the Fourier transform of "** for
a real variable x and y>0. It does not appear to
be useful to talk about the Fourier transform of

such a quantity, which certainly does not belong to :

the class of tempered distribution. Further dis-
cussion of this dxvergence is given in Ref. 27.

One may still consider the diagonal P represen-
tation of p, as belonging to the class of distribution
Z,,* or alternatively as the limit of a sequence
of well-behaved density functions,?® Since no use-
ful method of calculation has resulted from such
viewpoints and since o' (a*, @) is sufficient for
our purpose, we will say that the P representation
of p, does not exist and we will not employ it in the
following.

Note, however, that a generalized P, represen-
tation of p, does exist and can be useful. Thus

o= [ P,(8*,8)|8, | a8/ ‘ (3.85)

may be used to represent |B),, with




i

P,(B*,B8)=08°(B-B). (3.66)

Equation (3.66) also describes random mixtures of
IB), in the same way as (3.63). In particular, it
remains useful with the introduction of an additive
noise. However, it is inconvenient if (&, v) are
time varying. While it can be used in moment
calculations by expressing M(a',a) in normal-
order form M™(b’, 5) in terms of the variables
(', b), it is no longer particularly suited to be
calculations of (a',@) normal-order moments en-
countered in the description of most experimental
results. Therefore (3.65) will also not be em-
ployed in this paper.

E. Coherent states versus two-photon coherent states

As mentioned in Sec. I, two-photon coherent
states were encountered in many different stud-
ies, but they received little attention in quantum
optics. Obviously this is due largely to the fact
that these states are not generated from available
optical sources, but other factors may have also
contributed.

It is well known that the mathematical form of a
minimum-uncertainty state at a frequency w, is
identical to that of a coherent state at a different
frequency w,. Therefore one may tend to view
minimum-uncertainty states as just coherent

states of a different frequency, particularly since 3

the frequency is often normalized away. This
viewpoint is erroneous, because in the state space
¥w,) ®3(w,) a minimum-uncertainty state at w,
is given by |8),® |0), while a coherent state at w,
is |0)® |B). Physically, no photocounts would be
registered for a coherent state at w, in a counting
experiment employing detectors responding only
to fields at w,. In this connection one may also
note that for a fixed mode the frequency is also
fixed by the dispersion relation. Changing the
frequency of a fixed mode by dielectric modulation
would not yield a minimum-uncertainty state atfre-
quency w, from a coherent state at frequency w,. A
coherent state ata different frequency w, would be
obtained instead.

Alternatively, one may regard TCS’s and ordi-
nary coherent states as (mathematically) equiva-
lent, since they are related through a unitary
transformation or some kind of scaling. The ques-
tion of scaling was already dealt with in Sec. IIIC
concerning the noise in quadrature components.

It is true that two-photon coherent states are co-
herent states in a broad sense: they are the co-
herent states with respect to b(v #0) instead of a.
However, this abstract unitary equivalence means
little in describing actual experimental results.
Thus (1, | @), =(n|a) but (n]a), has little resem-
blance to 011 a). Ingeneral, for an arbitrary uni-

TC——— ﬂ
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tary transformation U we can define a set of states

[y=Ula). (3.67)

The functions (x| ) cannot be obtained by simple
scaling on (x @) and has to be computed anew via
(x|U|a). This paper develops such specific re-
sults for the Uy of (3.5).

With respect to a, whose zero eigenstate is the
radiation ground state occurring in nature, the
properties of |a), are quite different from |a) in
many respects, as presented in this section. Since
the term coherent state is usually understood in
the original sense (2.1), a new terminology is re-
quired for finer distinction between coherent states
in the broad sense. The term two-photon coherent
states® is adopted because of the close connection
between these states and quadratic Hamiltonians
or two-photon lasing processes, discussed below.

IV. QUADRATIC HAMILTONIAN
AND STRUCTURE OF U,

From (3.11) and (3.20) we can see that U{"(a*, a)
is an exponentiation of a quadratic form in (a*, @).
Such a U{™(a*, a) can be written as (a|e™|a) for a
self-adjoint operator M quadratic in (a',a), from a
theorem of McCoy.*” Therefore U, must be the
unitary operator generated by a quadratic Hamil-
tonian Hy. The mathematical solution Uglt,t,) of
the Schrodinger equation

., U
i —53=HoUq, Uqlto,t0)=1, (4.1)

is investigated in some detail in this section, which
gives all of the U;.

A. Positive definite quadratic Hamiltonian
Consider the general quadratic Hamiltonian
Ho=h(fa'a+f]a*+f,a"*+fJa+f,a"), (4.2)

where the ¢ numbers f, may be time dependent.
From Hermiticity f, has to be real. For a mode of
frequency w, we have f, =w, and /if,a'a represents
the free radiation energy of that mode. The f, and
f, terms then represent interaction energies. In
particular, the f, terms describe a two-photon
mechanism, whereas the f, terms describe the
usual one-photon or linear driving mechanism.

If a physical system with Hamiltoniz~ given by
(4.2) is stable, H, should not have a spectrum
ranging through the entire continuum from -« to
= in order for a ground state to be defined, i.e.,
the spectrum of Hg should be lower bounded. By a
shift of scals nne may require that the Hamilton-
ian be positive definite.*® If this condition is not
satisfied, (4.2) cannot be properly used to de-
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scribe a physical system of interest in our present
context. It has to be extended to incluae a more
complete description of other relevant /actors of
importance.

Under the condition

£.>21 1, 4.3)

the Hamiltonian (4.2) can be changed, similar to
the Bogoliubov transformation,*® to the following
form:

Ho=fob'b+fo(lnsfs-vAl+[v]3), (4.4)
b=pa+va'+pufi-vf;, 4.5)
p=[2/f,(f, - LI} 3f %e'e, (4.62)
ve[(f, - f)/fo} 2, (4.6b)
FALVER (VAL LS 4.7

where ¢ is an arbitrary phase. The canonical
transformation (4.5) is an inhomogeneous linear
one, with (4.6) obeying (3.2). The Hamiltonian
(4.4) is manifestly positive definite, and (4.3) is
indeed the necessary and sufficient condition for a
classical H, of the form (4.2) to be positive defin-
ite.

Similar to the situation of an interacting Bose
fluid, b* of (4.5) can be interpreted as the quasi-
boson creation operator with a quasiparticle spec-
trum f,. The quasiparticle ground state is the |0,)
of (3.7), whereas |m,) are the excited states. It
seems highly unlikely, however, that the radiation
states [m,) may be generated optically.

The following observation should be made: A
linear canonical transformation from a to b can al-
ways produce f, terms in b from a free Hamilton-
ian kf,a'a. In fact, it is easily checked that an f,
term results if and only if the v term mixing b' is
present in the transformation. The transformed
Hamiltonian contains a constant term |»|?, so that
the eigenstates of b have this added excitation ener-
gy compared to the true ground state |0). Such a
Hamiltonian is clearly not physically equivalent to
(4.2). In this sense the operator a is more funda-
mental than b and further justifies the need for
viewing |a), as a two-photon coherent state with
respect to a.

Our following results on Ug(t,{,) are actually
valid independent of the condition (4.3). Neverthe-
less, one should note the significance of the posi-
tive definiteness of (4.2).

B. Explicit solution for U, (1.15)

The solution Ug(t,f,) can be obtained by normal-
ordering techniques,® among many possible meth-
ods. With (4.2), the solution U§™(a*, a;t,t,) of
(2.16) is of the form
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US'a®, a;1,,) =exp[ A(t) + B(t)a? + C()a*?

+D(t)| a|? + E(t)a + F(t)a*),

(4.8)
where

48 - 2@rCHfIF P, (4.92)
22 - if1 1R, (4.9b)
' ‘fi—ct =-2(4f1C?+2£,C+f), (4.9¢)
B —_iaric+n)0+), (4.54)
L - ifIF+D DY), (4.9)

dF_ . * -
?7—-:[(4f,C+f,)F+2f,C+f,], (4.9f)

with the initial condition
Alty) =B(t,) =C(t,) = D(t,) =E(t,) = F(t,) =C. (4.10)
From (4.8) and (2.14) we get
(@[Uq(t,1,)|B) =exp{- }|a|? -~ }|B]*+A(0)+ B()B?
+C()a*?*+([D(t)+1] a*B
+E(t)8+F(t)a*}. (4.11)

Equation (4.11) can be written in the form of
(a|B+£(t); u(t)v(t)), apart from a phase factor.
Using (3.20), we find by comparison that

Uglt, 1) |B)=|B+E(t); u(t), v(t))e'*®,  (4.12)
o(t): o(t) + i [B*L(t) - BL*(D)], (4.13)

for a real-valued (B,¢) independent function ©(t)
and

A(t) =3 Inp(t) + v*(1)E3(2) /2u(2)

-3lem)r+i00), (4.142)
B(t)=v*(t)/2u(t), (4.14b)
C(t)==-v(t)/2u(t), D(t)=1/p(t)-1, (4.14c)

E@0)=v*Ou)/t() - £*(), FO)=£()/u(0).

(4.14d)

If (4.14) is substituted into (4.9), the equations of
motion for u, v, £, and ©are obtained,

dp

F =ihn - 2ifdv, % =—ifiv+2ifu,  (4.15)

L -itstv-ram,

~ —
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R VAL [‘((u )_; ). (4.17)
Equations (4.15)-(4.17) are equivalent to (4.9). The
initial condition (4.10) becomes

i w(0)=1, v(0)=0, (4.18)
£(0)=0, (4.19)

while ;
e(0)=0 (4.20)

is obtained from (4.12). The general solution (4.8)
or (4.12) can be given in quadrature once the solu-
tion for (4.15) is given in quadrature, since the
other equations can then be immediately integrated.

Defining
¢
5,60 [ fiar, 4.21)
%
f =2if, 240t (4.22)

the solution of the first-order coupled differential
equation (4.15) under (4.18) is equivalent to the
solution of the following equation for a new vari-

able €:
gd-f_ =f‘el -f’ e(o)=°s (4-23)
€=2C 21Tt to), (4.24) |

Once C is obtained through (4.23) and (4.24), all of
the other variables A, B, D, E, and F can be
given in quadratures from (4.19). But Eq. (4.23),
a case of the well-studied Riccati equation, does
not admit a solution in quadrature in general, al-
though many methods and results on its solution
are available %%

The existence and uniqueness of a solution to
(4.23) imply that the solution of (4.9) and (4.10) al-
8o exists and is unique. Thus (4.8) is indeed the
solution we seek. With U™ (a*, a) given by (4.8),
the explicit operator expression of Ug(t,¢,) is

12 1 11 2
U(t,to)._.eA(t)eC(l)d +F(t)a ell[D(l)#l]« deB(t)a +E(t)a o

(4.25)

Equation (4.25) can also be written as
exp(y,a®+v,a'a+y,a®+v,a'+v,a)

for a set of ¢ numbers y,.”

g C. Examples

Equation (4.23) can be integrated when f/f* is
independent of ¢, i.e., when

fo(8)=r(t) explid, ~ 2iF(t, t,)], (4.29)
¢, independent of ¢, for a real-valued function »(f)
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which can take on both positive and negative values.
Under (4.26), one finds readily from (4.23), (4.24),
(4.9d), (4.14c), and (4.18) that

n(t) =e'* "%’ cosh[28(1)], (4.27a)
u(t) = ie**2-49 ¢t &) sinh[2&(1)], (4.2T0)
&= [ ‘vir)ar, (4.28)
L)
]
t0=i [ (Fiv-fuar. (4.29)
'0

Equation (4.26) is especially interesting because
of the resonant factor e?*“‘*~‘%’ obtained when f,
=w. This factor is automatically present in our
later physical interpretation of (4.2). The noise
behavior in this case is of great interest. Thus
when (with also f, = w, ¢,=0)

¢,=37, (4.30)

r =const independent of ¢, we have from (3.61) and
4.27)

(Aal(t))=%e ', (aaf(t))=te'™, (4.31)

for a’ =ae'“t, In this case the noise in one quadra-
ture component, apart from the optical oscillation,
decreases exponentially while the conjugate com-
ponent has exponentially increasing noise. The
quadrature components a, and a, are completely
symmetrical here. We can choose the sign of 7,
or equivalently the phase of », to cause either
one of them to have decreasing noise. For
¢,=0, r=const, we again have (4.31) with a’
=qge!“@t*/1) The nature of phase control in a’ from
the phase of f, should be clear in this example.

Equation (4.15) can be integrated for a constant
f, independent of time, with

w(t) =cos(at) + (iw/x) sin(rt),
v(t) =i(2 f,/)) sin(a?),

for A=(w?-4|f,|?)*/2=0. The quantum noise is
purely oscillatory in this situation, without attenu-
ation in time.

Equation (4.15) or (4.23) may be integrated in
many other situations. A way of generating such
example is discussed below.

(4.32)

D. Properties of Uy (2.10)

A number of general features exhibited by Uy(¢,t,)
are now observed. From (4.15) we have

‘ﬂ: .d_v: . .
Bt =V ar +ify, (4.33)

which is a complex equation. The real part of this
equation is implied by (3.2), but the imaginary part




2236 HORACE

is an additional constraint on the pair u(f), v(f) ob-
tainable from an H,. Thus not every pair of func-
tions u(f), v(t) obeying (3.2) can occur in a Upy(t,t,).
Only those obeying (4.33) are permitted in the form
(4.12). However, this does not impose any con-
straint on the mean-square fluctuation behavior ob-
tainable in (3.61), since only |u|, |v| are involved
here. Moreover, (4.27) shows that any particular
pair of values (u, v) obeying (3.2) can be obtained
at a specific ¢ with a proper choice of f,, even un-
der (4.3) with /, fixed.

Any desirable pair of functions u(f), v(¢) obeying
(4.33) and (3.2) can be generated by an f, through
(4.15), This corresponds to the solution of the
Riccati equation (4.23) for various f. For example,
we can assume (f, = w, £,=0)

u(t)=et*® cosh(yt), v(t)=e'*®sinh(yt), (4.34)

and determine the phase ¢(f) so that (4.33) is sat-
isfied. Equation (4.34) has the interesting charac-
teristic that

(Aaj(t))=4ie="", (aaj(t))=te", (4.35)

without any shift of phase to a’. Substitution of
(4.34) into (4.33) shows that ¢(f) obeys the differen-
tial equation

¢ _ 1
dt  cosh*(yt) + sinh*(yt) ’

so that
6(¢) = (w/y) tan™ [tanh(r?)]. (4.36)
The corresponding f,(¢) is given by
fy=4tanh(2yt) - iy/20. (4.37)
Any arbitrary state |, ) will evolve into

90)=Ualt,to) 403 = [ Ualt,t)|8) (Bluo>ds/7

(4.38)

under Ug. If |#,)= | By oy vo ), (4.38) can be read-
ily determined from (4.12),

Uqo(t,t,) [ Bos oy Vo)
= | Bo+ E(t, b); 12, ), vt b)) Yet® o, (4.39)

o(t,t)=e(t) + 5i [B*L(t, 6) - BL* (¢, 4)], (4.40)
where
u(f, ‘0) - “o“(‘) > "ov.(t):
(4.41)
U, ) = pov(t) + vou (1),
8(t, o) = ok (8) + vt *(8), (4.42)

and u, v, ¢, and © in (4.40)-(4.42) are the solutions
to (4.15)-(4.20).
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Therefore, under an arbitrary Ugl(t,t,) a TCS
will remain a TCS for all time, but with $, u, and
v time varying. By solving u(/), v(t), and £(f) in
terms of p, and v, and u(f,4,), v(t,t,), and 6(Z,4,),
(4.39)-(4.42) and (4.27) show explicitly that any
|5; u,v) can be obtained from any given |Sy; ko, Vo)
by a Ug(t,t,).

It also follows from (4.41) that if f, is turned off
at time ¢, then

u(l) = “(,,)cnu. t,)' v(t) - v(t,)e"“"l’. (4.43)

1°".us apart from the optical oscillation the values
u and v are invariant in the absence of two-photon
interaction in Hy. Furthermore, such invariance

is obtained when and only when

£=0, (4.44)

i.e., ¥(f)=0. In general, u(f) and v(¢) are deter-
mined only by f,(f) independently of f,(t), as seen
from (4.15). This is in accordance with the fact
that the new quantum noise behavior is entirely a
consequence of f,#0. Such correlation between f,
and v is also observed in Sec. IVA.

On the other hand, the added value {(¢) depends
on both £, and f, but is always zero for f, =0,

Uqlt,t)|8)=|B),, when f,=0. (4.45)

Therefore all of the U, ’s are generated by Hy with
f3=0. The addition of f; merely introduces a con-
stant shift to b, as in (4.5). The states (4.39) are
eigenstates of

B(8) = u(t) alt,) + () a'(t,), (4.46)

where a(f,) is the Schrodinger-picture fixed photon
annihilation operator. We have

b(t)=Ug(t,t,) alty) UL, L)+ () =U alU}. (4.47)
Equation (4.47) also shows
w(8) agy(t) + v(t) al(t) =alt,) + £(2) (4.48)
for the Heisenberg operator
ay(t)=UL(t, L) alt,) Uy(t,t,).
Equation (4.48) implies, by solving for a,(t),
ay(t) = u*(t) alty) - v(t) a'(t,) - £'(0), (4.49)
t(@) =v() £%(8) - p* () £(0). (4.50)
Equations (4.49) and (4.39) give
U 4lt 1) | Boj bos ¥o ) = | Bo + £ ,A); (1), v (1)) e '™,

(4.51)

o) =-ot)+ 3 i[B*L (1) - BEZ (D], (4.52)

B(8) = o *(8) = vr* (1), v, (8) = vou(t) - powlt),
(4.53)

E(8) = pot'(8) + vt (1), (4.54)
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where u, v, £, and @ are still the solution to
(4.15)-(4.20). The state U 5(t,1,)| 3), is obtained
from evolution of the system backwards in time
under the same f(f) in Hy, and the operator b(¢) is
similarly the a,(!) moving backwards, apart from
a constant.

Even though no solution of Uy(¢,t,) in quadrature
can be obtained in general, its structure and be-
havior have already been fully determined. These
behaviors are important in the applications of
TCS’s.

V. STATE OF TWO-PHOTON LASING RADIATION

We suggest that the output radiation of an ideal
monochromatic two-photon laser is ina TCS. In
contrast, the output of an ideal one-photon laser is
in an ordinary coherent state. Thus TCS’s are the
characteristic states of two-photon lasing pro-
cesses (two photons from the same mode).

A. Two-photon laser

Two photons of the same frequency w from the
same radiation mode can be absorbed in a single
atomic transition between two levels 2 and 1 via
an intermediate state, i.e., a transition second or-
der in p+A. Under the usual dipole approximation
the parities of levels 2 and 1 have to be identical.
First-order dipole transitions between the two lev-
els are forbidden in this circumstance. On the
other hand, higher-order multipole contributions
to second-order P+ A transitions, which may con-
rect states of different parity, can be significant.*?
First-arder transitions between states of opposite
parity are also possible via the A? term in the
radiation interaction Hamiltonian,**=* This is pos-
sible because in the multipole expansion of the
vector potential A(T), higher-order multipole terms
introduce atomic coordinates into the A*> Hamilton-
ian. Two-photon absorption spectroscopy is an
important experimental technique by now,* and
many discussions of two-photon absorption pro-
cesses can be found in the literature.

The radiation-matter (to be referred to as atoms)
interaction responsible for the two-photon transi-
tion can be expressed in the form

Hi=hpMa"+p*M'a?),

where p is a coupling ccefficient and M is the
atomic polarization operator which flips the state
of the atom If the A> mechanism is under consid-
eration, H, is a true Hamiltonian.*~** If virtual
transition through an intermediate state has been
suppressed through a nonlinear susceptibility, or
equivalently through the coupling coefficient p,
(5.1) is only an effective Hamiltonian. In this case
it can be derived by following a procedure similar

(5.1)
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to the standard quantum theory of parametric in-
teraction.'®**” By methods widely used in nonlinear
optics,” classical equations of motion for the field
and the active atomic variables can be obtained in
which the virtual intermediate states are accounted
for through p. Examples of such treatment for two- |
photon systems can be found in many places.*® ' |
These classical equations of motion with a quan-
tum-mechanically computed susceptibility can be |
directly quantized. The effective quantum Hamil- ;
tonian follows from the resulting quantum equa- |
tions of motion. . |

In addition to absorption, two-photcn emission
which provides a two-photon lasing mechanism is
also described by (5.1). In considering the condi-
tions for stimulated two-photon emission in c.ther
the standing-wave or traveling-wave configuration
with loss included, it is easily found that stimulated
emission cannot be set up from spontaneous emis-
sion alone. A sufficiently strong field at the lasing
frequency w has to be present initially.***' There-
fore we consider the two-photon lasing configura-
tions depicted in Fig. 2. It is not the purpose of
this article to present the semiclassical theory of
two-~photon laser operation, or to discuss the op-
erating consideration in a realistic material sys-
tem, But the following facts may be observed:

In the traveling-wave configuration, Fig. 2(a),
the gain is obtained from a large external pump
field which may have many frequencies but which
is still in a single temporal mode. Neglecting var-
ious loss mechanisms, this lasing process can be
described by the interaction Hamiltonian (5.1) with
an initial radiation state p, having a nonzero
amount of power, trp,a'a+#0. If a laser is used for
the external pump, p,=|a){(a|, but intense ther-
mal light can also be used. The radiation state p,
as well as other dynamical variables, are spatial-
ly dependent in this case. In the standing-wave
case, Fig. 2(b), only a single standing-wave mode
is under consideration. The gain is initially ob-
tained from the usual one-photon lasing mechanism,
the host atoms for both lasing transitions being

contained in the same cavity.'* The Hamiltonian is 3
now ﬂ
b T ST
e v
- '
—AM~— ) .
b 3w %u
<
i, E, €, _]L_ €/ .
(a) Ep-E; = 2hw (b) Ep-€, = 2hw
E2-E = he

FIG. 2. Two possible configurations for stimulated
two-photon emission.
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H =hwa'a+p,Ma® +pIMla®+p Ma' +ptMfa),
(5.2)

with a vacuum initial state; the subscripts 2 and 1
for p and M refer to the two-photon and one-photon
lasing material. Population inversion is required
in both configurations. Other possible configura-
tions for two-photon lasers can be developed, but
these two seem to be the most important.

Spontaneous two-photon emission has been ex-
perimentally observed,® but not stimulated two-
photon emission. Two-photon stimulated emission
was first suggested for giant pulse generation.*®

When such a two-photon laser operates far above
threshold with amplitude and phase stability, the
fluctuation in M should be relatively small, so that
M is approximately a ¢ number. By ignoring the
quantum nature of M, (5.2) or (5.3) becomes an H,
of the form (4.2). If the dissipative mechanisms
are also neglected, (4.12) shows that a TSC |B),
will be obtained. A similar argument was used by
Glauber'® to suggest that a coherent state describes
one-photon laser radiation far above threshold. As
we show in the Appendix, this can be formalized in
the so-called self-consistent-field approximation
(SCFA), which has been used in one-photon laser
theory.®**** Therefore a two-photon device of this
type operating well above threshold can be expected
to produce a state |B), with further small classi-
cally random fluctuations in the varinhle #, ina
way exactly analogous to one-photon lasers where
| @) is produced with small classical fluctuations
in a@. This argument can be made for a standing-
wave, a traveling-wave, or an arbitrary spatial-
temporal mode.

B. Effect of perturbations in the two-photon system

An additive Gaussian noise and a damping me-
chanism can be introduced to account for some un-
avoidable sources of noise similar to the one-pho-
ton case, while still preserving that distinguishing
feature of TCS’s with (Aa{® and (Aa;?) smaller than
1. This can be illustrated as follows: The quan-
tum effect of loss is incorporated through the den-
sity operator relaxation equation

ap:_

" %[H‘,, pl+ %7 (2apa’ - a*ap - pata)

+y#i(atpa +apat - a'ap - paa'), (5.3)

with Hg given by (4.2). The damping rate is y and
7 represents the thermal noise contribution from
the reservoir that couples to the radiation field.
This quantum description of loss has been exten-
sively discussed in the literature.®*~*" For an ini-
tial coherent state, (5.3) can be solved exactly

through the Fokker-Planck equations for p"a*, a).
In particular, all of the characteristic functions
are still in Gaussian form,® and for y #4r,

1 vy r
” iy =(ratr)é
(Bap,()  pore ey

i -t
‘i be 41)(1 -e ), (5.4)
with a’ =ae'“*. It can be readily shown that (Aa?(t))
>0 and that the uncertainty principle is obeyed for
all ¢, Note that even when # =0, the state is no
longer pure in the presence of y. Asymptotically
we have

Ba(t)) ~vi/8r, (Baj*(t))==; t—=w=, 2r>y.
(5.5)

The condition 2» >y can be satisfied together with
the stability condition (4.3) for the usual values of
Y

w>2r>»>y., (5.6)

Thus for <1 the corresponding state approaches
an eigenstate of a,. In any case the quantum fluctu-
ation in a, vanishes as { ==,

From the results of Sec. IVB, it can be seen that
two-photon laser is a phase-sensitive device. If a
uniform random phase is assumed, i.e., if a’=ae’®
for ¢ uniformly distributed in [-7, 7] is the dy-
namical observable one has to deal with, then

(Bal?)=(aa?)=}((a})+(8a})). (5.7)

Equation (5.7) contributes a noise greater than §
for both quadrature components and one distin-
guishing characteristic of a TCS is lost. The de-
tailed theories of one-photon lasers show that am-
plitude fluctuation is suppressed in a laser operat-
ing far above threshold, and the phase fluctuation
is also inversely proportional to the average pho-
ton numbers. Moreover, these amplitude stabili-
zation and phase stabilization properties are gen-
eral features of a wide class of self-sustained os-
cillators, quantum or classical.’®* If the two-
photon laser belongs to this class, the phase would
diffuse away from some initially measured value
only slowly for high-power operation similar to the
one-photon case. The phase can then be tracked
and the relative phase determined accurately. As
a result the field may be regarded to be in a true
TCS. Whether the perturbation introduced by the
atomic fluctuations may indeed be sufficiently
small so that |13 ), does not become |p) can be de-
termined only by explicitly working out the detailed
quantum theory of two-photon lasers. The quantum
theory of one-photon lasers has been extensively
developed,®**” but the two-photon laser requires
more careful approximations because of the small
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noise in one quadrature component and the more
delicate equations of motion involved. Hopefully,
the TCS picture can be checked experimentally, as
discussed in Sec. VI, by practically realizing a
two-photon laser. In any case, |l3), serves as the
basic description to be averaged further by a
classical density function in the presence of other
random interference.

Recently, the quantum theory of multiphoton
lasers, including a quantum treatment of the atoms
and the loss ruechanism, was discussed by McNeil
and Walls.**%* However, the nature of their ap-
proximations was not clarified and they produced
lasing results from models®**® which cannot lase
because of the absence of an input field to provide
a nonzero gain. While some qualitative features
of their two-photon results are in agreement with
the TCS picture, such as large total fluctuation
from (3.35), they suggest that the photon statistics
are similar to the one-photon case. The Poisson-
like distribution they find in Ref. 59 is obtained for
an unrealistic loss model, in addition to the above
error. The lossless photon distribution they ob-
tain in Ref. 61 is neither Poisson nor of the form
(3.23). Since the atomic populations rather than
the atomic polarizations were treated as a con-
stant in the derivation of that distribution, it ap-
pears that it is valid near, instead of far above,
threshold. A complete and careful calculation of
the two-photon laser state remains to be carried
out.

C. Degenerate parametric amplifier

A degenerate parametric amplifier interpretation
can be given to (4.2) similar to the above two-pho-
ton laser interpretation. When the material sys-
tem is suppressed through a susceptibility and
when the pump field is treated classically, a two-
photon coherent state lB), would be obtained from
a degenerate parametric amplifier such as the one
depicted in Fig. 3. An intense initial field at fre-
quency w has to be present in addition to the pump
field for degenerate parametric amplification. A
TCS is already present in the treatment of nonde-
generate parametric amplifiers by Mollow and
Glauber'’ in the joint Wigner distribution for the
signal and idler modes, even though a coherent
state plus noise is obtained for each of these
modes.®? That a TCS can be generated in a single-
mode degenerate parametric amplifier was also
observed by Stoler'! and by Lu.'®

The phase-sensitive behavior of a two-photon
laser is reminiscent of parametric processes, and
a degenerate parametric amplifier is a kind of two-
photon laser. A basic distinction, however, can
be made. In the parametric case the final and in-
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itial states of the atoms are identical, but they are
different in the two-photon case. The question of
quantum statistics is similar in both cases. The
pump field of Fig. 3 should be treated as a quan-
tum degree of freedom, A fully quantum treatment
of degenerate parametric oscillators can be equal-
ly or more complex than a fully quantum treatment
of two-photon lasers, depending on whether the
atomic variables are included in the parametric
case and whether the important intermediate state
is included in the two-photon case when present.

No single-mode degenerate parametric oscilla-
tion above threshold has been observed. Careful
consideration has to be given to any possible com-
peting processes in the actual development of a
two-photon laser or degenerate parametric ampli-
fier, such as third-harmonic generation.

VI. COHERENCE AND PHOTON COUNTING

Two-photon coherent states are not coherent ac-
cording to Glauber’s original definition.** That is,
they do not factorize the correlation functions
which describe photon counting experiments em-
ploying ordinary photodetectors. However, they
factorize a different set of correlation functions
obtained by transforming a to b in the field expan-
sion. This kind of transformed correlation func-
tion gives the joint counting rates for detectors
operating with an interaction mechanism different
from the usual dipole absorption,'® in analogy with
detectors that function by stimulated emission
discussed by Mandel.** Thus a TCS is fully co-
herent in a sense closely related to the usual de-
finition of optical coherence. Further detailed dis-
cussion can be given only in the multimode treat-
ment of TCS.

Here let us consider photon counting experiments
associated with a single radiation mode whose
spatial dependence has been integrated through the
spatial response of a photoabsorption detector.
For any state p the distribution (»|p|n) can be
generated by an ideal detector if the counting time
T is large enough.®® Therefore we consider the
generating function

QM) =) (1= (nlp|n), (6.1)
(@™ =(N:++(N=1)+-(N-n+1)) (62)
= (-1 5 i (6.3)

With the Glauber model'® of an n,-atom photodetec-
tor with quantum efficiency s and a sufficiently
small counting time T, the generating function for
the counting distribution p(n,T) of registering n
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counts in time T is merely a scaling of (6.1),

pin, 1) =L )'2_'2(;_;'3?& : (6.4)

A=l

From (3.23) the function Q(A) for a TCS can be
evaluated in closed form using the summation for-
mula for Hermite polynomials,*

Q(x)=r‘“exp[l(l— N1 =162

+1- (l-k)"fl(zi:;

2u‘ H“)]

(6.5a)
r=[|ulr- @222 (6.5b)

From (6.5) the coefficients g, = (a™a")/{a'a)" for a
first-order coherent field'® can be computed by
(6.3). In particular, (a'a)=|v|?*+|B|?, as given by
(3.29), and

(a"a?) =(a'a)*+2|B|2(4|v|?+3)|v|?
—(u* B+ pug* ) (L+4|v |+ [v]2+2]v |
(6.6)

Any value g, >0 can be generated from (6.6) by
proper choice of (u,#,8). In particular, g,<1 for
a TCS if and only if

2|v|*+ |v|2+2(4] |2+ 3)|vP|BP
< (U v*B2+ uvp*?) (1+4|v|?), (6.7)

and g, =1 if the sign is reversed. For =0, we
always have g, >1 from the noise |v|2, but g,<1 is
clearly possible for small v and large p with non-
vanishing 3. Recall that g,<1 is a characteristic
quantum effect without classical analog, and that
currently available sources all generate g,=1.
Stoler'! and Lu'® have previously observed that g,
<1 may be obtained from a state of this kind.

For most values of (u,v), g, can be tuned by
varying 8 in a TCS from (6.7), exhibiting both anti-
correlation (g, <1) and enhanced correlation (g,
>2) effects. This fact permits one to check whether
a certain particular TCS is obtained by a Hanbury-
Brown-Twiss experiment. The photon counting
distribution (3.23) or (6.4) is also sufficiently dif-
ferent froma Poisson distribution that its measure-
ment will reveal the presence of a TCS. The in-

2w -
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W
FIG. 3. Phase-matched degenerate parametric amp-
lification with pump field at frequency 2.
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fluence of nonideal detectors and noise on these
photocount statistics should be worked out in de-
tail for actual comparison with experiments.

VII. APPLICATIONS OF TWO-PHOTON
COHERENT STATES

We will briefly describe some novel applications
of two-photon lasing processes which result from
the quantum properties of TCS. Quite apart from
rheir quantum characteristics, two-photon lasers
also exhibit certain pulse-shortening behavior ab-
sent in the one-photon case.® Their particular
nonlinearity may lead to many interesting phenom-

. ena and applications, including the realization of

very-high-power lasers. However, only certain
applications of TCS’s will be treated here. These
applications also illustrate the essential differences
between TCS’s and ordinary coherent states.

A. Ideal linear amplifier

Under the action of a two-photon amplifier, an
input coherent state |B) will be changed to |g),,
from (4.45). For simplicity we assume p and v to
be real. From (3.28),

(al)‘ EB: =(“ = V) Bly (7.13)
(a), =y =(n +v) ;. (7.1b)

Thus one of the original quadrature components is
linearly amplified while the other is linearly at-
tenuated. The nonlinearity of a two-photon ampli-
fier is therefore of the simplest kind; it is piece-
wise linear.

To be definite let v >0 The quantum noise (A3%)
decreases from @aB3H=4to (AB’) (1 - v)?, while
that of ;3, increases to 4(LH- vy, from (3 31) If we
define the signal-to-noise ratio

(8/N),,=(a,?/BaP), j=1,2, (7.2)

where the average is taken in a state p, we find
that (S/N), is invariant in the amplification and at-
tenuation, i.e.,

(S/N) iy = (S/N) ygy,+ (7.3)

The above definition of signal-to-noise ratio is
meaningful. If we try to determine the value of 8,
by measuring a, in a coherent state or TCS, (7.2)
provides a standard or measure on how well one
may estimate $3,,°*! or equivalently how “noisy” 8,
is in the “best” measurement.

We can interpret |8) as the state of an optical
signal presented to a receiver which generates
|8 by a two-photon amplifier Uq(t,1,) and then
measures a, on |B),. It is obvious physically that
the signal-to-noise ratio cannot be improved by
amplification. The introduction of f; into U, does

-




not increase the signal energy, i.e., the part of
which is proportional to 3;. The advantage of am-
plification is practical, similar to the classical
case. Raising the signal level makes possible
easier measurement of 3,. Since the two-photon
amplification process (4.45) operates above thres-
hold, it can be superior to one-photon amplifiers
operating below threshold in its possibilities of
yielding higher gain and lower noise. If amplifica-
tion for both quadrature components is desired,
the input beam can be first split and two different
Uq(t,t,) applied to B, and g, separately. Ideally,
no signal-to-noise degradation will occur from
(7.3).

The above amplifier performance is not sensitive
to the addition of a Gaussian noise. Since we are
now utilizing the bigger noise component, there is
no need to maintain (Aa?)<j and a random phase
would not seriously degrade the system perfor-
mance. Therefore the process described by Uy(¢,t,)
provides a possible mechanism in the realization
of an ideal linear amplifier.

k. Local oscillator

One may take advantage of the absolutely small
(Aa?)« % in | B), in the reception of a coherent-
state signal with a size-limited detector. By em-
ploying a local oscillator which generates radiation
in state IB),, it is possible to attenuate the quan-
tum noise by an amount which compensates the
large diffraction loss incurred in free space or un-
guided propagation. This is achieved by coupling a
mode in |B8), to the incoming mode in |a) in the
form of a new mode

ag=€ag+(1-€?)/%a,, (7.4)

where ¢ 2represents the fraction of energy received
and ag, a;, and ag are the photon annihilation op-
erators for the signal, the local oscillator, and
the receiver mode. The quantum noise in ay is
clearly dominated by that of a, for small € 2, The
signal-to-noise Tatio in am becomes ~ta} (or
(Aa%,)~0, whereas it is i A €’aj fora coherent-
state local mode (Aa%,)=4% r discussion
can be tound in Ref. 1. N nd!(antage of

(Aa?%,) <<} cannot be obtained if 2 a one“;bhoton-laser :

local oscillator is used to produce a coherent-
state receiver mode ay and a Ugy(t,t,) subsequently
applied, because of the corresponding signal at-
tenuation. An absolutely small (Aa3,) is needed in
this scheme.

If an arbitrary amount of power is available, it
is possible to have a state with (Aa?) =0, Hm.
ever, for a fixed total radiation energy

trpata<s, (7.5)
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a decrease of (Aa?) in |B), can be obtained only at
the expense of spending a portion of available en-
ergy S in the form of added quantum noise energy
|v|2, from (3.35). Thus (Aa})~0 requires S~=.
This consideration is not important in the context
of local oscillators at a receiver where large
enough amount of power is usually available to
make (Aa}) sufficiently small. A four-orders-oi-
magnitude reduction from the quantum noise { of
@, (|v|?=10%) for a GHz bandwidth optical signal
= w/27>10'5 Hz requires only a |v|? correspond-
ing to ~1 pW. This will usually bring il down to the
level of other extraneous noises. Furthermore,
even a ten-orders-of-magnitude reduction of the
quantum noise requires ~1 W under the same con-
dition.

Other practical cousiderations also should not
invalidate the utilization of this small-noise prop-
erty. With proper signaling and reception schemes
one can always observe the signal quadrature com-
ponent without significant degradation from ran-
dom-phase modulation. From (4.43) it is assured
that free-space propagation of |8 )¢ Will not disturb
the quantum noise characteristics. The rotation
(3.59) can be readily compensated in an optical
receiver without affecting the signal level, so that
TCS’s are as good as minimum-uncertainty states
in this application. These and many other problems
involved in a realistic communication system will
be treated elsewhere.

C. Transmission source

Further performance improvement can be ob-
tained if the transmitter generates information-
carrying radiation in a TCS. In this case the radi-
ation power constraint (7.5) poses a major limit-
ation on the achievable signal-to-noise ratio. It
has been shown that®” TCS's provide the maximum
(S/N), obtainable for one of the quadrature compo-
nents among all possible states satisfying (7.5).

By spending a fraction S/(2S+1) of S as quantum
noise energy with, e.g.,

p=(S+1)/(2S+1)2/2, v=5/(25+1)*/2  (7.6)

B,=8,=0, ' (1.7)
we have ’ ;

(S/N), 18, = 4(S%+S). * (7.8)
Compared to the signal-to-noise ratio

(S/N)y1sy=4S (7.9)

in a coherent state, we see that the available “sig-
nal energy” is effectively increased from S to S?
+8. This is actually a reduction of quantum noise.®
Among other things, this increase in (S/N), leads
to a higher information capacity even when the

et
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other quadrature component is not employed for
information transmission.! In the presence of
other extraneous noise, quantum noise reduction
in a transmitter state |B), can also be obtained
with only a relatively small lul’, as illustrated
above.

Finally, we observe that the new photocount sta-
tistics may itself lead to novel applications in
communications.

VIII. CONCLUDING REMARKS

We have discussed in some detail the properties
of a class of radiation states which are closely
related to the well-known coherent states. These
two-photon coherent states possess a number of
distinguishing characteristics which lead to poten-
tial device applications for quantum noise reduc-
tion. They may also find application in experi-
mental situations that require low noise sensitivity.

It has also been suggested that these states can
be obtained from two-photon stimulated processes,
or equivalently that they provide a good description
of two-photon laser states. The ultimate validity
of this proposition must be tested by an elaborated
quantum- statistical theory of two-photon lasing
processes and above all, hopefully, by experiment.

Our present work was motivated by the desire to
realize physically certain specific quantum states
and quantum measurements for practical applica-
tions. It appears that the general problems of
state and measurement synthesis are interesting
and useful areas in quantum optics and electronics,
as well as in the foundations of quantum mechanics.
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APPENDIX: TWO-PHOTON LASING STATE
IN THE SCFA
Here it is shown that the radiation state of a two-
photon laser is a TCS in the self-consistent-field

approximation (SCFA),**** if loss is also neglected.

Let H be the total Hamiltonian of an atom-field
system:

H=Hyp+Hyyqa+Hyaes (A1)
‘with Hyg g g+ Hyy, given by (5.2). In the SCFA, the
total density operator is assumed to factorize,

P=Pat®Pyq- (a2)
The equation of motion for the radiation density

operator p,, can be obtained from that of p by
tracing over the atomic variables with the result

a i
S =% [Ha, pydl, (A3)

where H is given by (4.2), with

fizw, f, =Pgtl‘(M3P.¢), fs =P;t1‘(M.P..)- (A4)

Thus a TCS will be developed from an initial co-
herent state from (4.12), and (A4) gives the effec-
tive field Hamiltonian under the SCFA. Note that
a resonant factor e?*“! is automatically present in
f2, from the atomic resonance in M.

Even though the above derivation is given for a
single frequency, it applies equally to any spatial-
temporal mode if H, is in the form (5.1). The
same result is obtained for a parametric oscillator
by interpreting M, as the pump photon destruction
operator and p, as the susceptibility, with M,=0.
However, it seems less justified to neglect the
quantum fluctuation of the pump photon, which is
also described by a boson operator as the
signal mode.
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Administration under Grant No. NGL 22-009-013 and
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Abstract

Recent theoretical work has shown that novel quantum states,
called two-photon coherent states (TCS), have significant poten-
tial for improving free-space optical communications. In this
three-part study, the communication theory of TCS radiation is
explored. The present work, part I, addresses the issues of quantum-
field propagation and optimum quantum state generation. In particular,
the quantum analog of the classical Huygens-Fresnel-Kirchhoff
diffraction theory for quasimonochromatic scalar waves is developed.
This result, which describes the propagation of arbitrary quantum
states as a boundary-value problem suitable for communication-system
analysis, 1is used to treat a number of quantum transmitter optimiza-
tion problems. It 1s shown that under near-field propagation con-
ditions a TCS transmitter maximizes field-measurement signal-to-

noise ratlo among all transmitter quantum states; the performance




of the TCS system exceeds that for a conventional (coherent
state) transmitter by a factor of Ns + 1, where Ns is the average
number of signal photons (transmitter energy constraint). Under
far-field propagation conditions, it is shown that use of a TCS
local=-oscillator in the receiver can, in principle, attenuate
field-measurement quantum noise by a factor equal to tr« diffrac-
tion loss of the channel, if appropriate spatial mode-mixing can
be achieved. These communication results are derived assuming that
field-quadrature quantum measurement 1s performed. In part II

of this study, photoemissive reception of TCS radiation will be
considered; it will be shown therein that homodyne detection of
TCS filelds can realize the rield-quadrature signal-to-noise ratio
performance of part I. In part III, the relationships between
photoemissive detection and general quantum measurement are estab-
lished. In particular, a synthesis procedure will be obtained for

realizing all the measurements described by arbitrary TCS.




: ¢ Introduction
- .~ The quantum-mechanical theory of -optical communications
seeks to delineate the ultimate physical constraints imposed
on the transmission of information. The work to date in this
field has focused on determining optimum quantum measurements for
various detection and estimation probiems [(1]-[4]. However,
to determine the ultimate performaﬁce limitations imposed by
quantum effects, it is 21so essential to consider optimum quantum-
state generation, because post-measurement statistics (hence
detection and estimation performance) depend on both the
quantum state and the quantum measurement. Indeed, Yuen has
shown that certain "generalized" coherent states of the radia-
tion field possess novel quantum noise characteristics which
offer the potential for greatly improved optical communications
[5]-[7]. These new states are related to the ordinary co-
herent states of Glauber, but have not been experimentally
observed. They have been called two-photon coherent states,
because they can be generated, in principle, by stimulated

" two-photon processes [7]. In this paper and the sequel [8], [9],
we shall consider the use of two-photon coherent state (TCS)

radiation in free-space optical communications.

In the usual formulation of quantum communication theory,
the electromagnetic field 1s quantized by representing the

positive-rréquency field within a receiver region as a sum of




orthogonal space-time modes, and imposing the photon annihila-
tion operator commutation rule on the coefficients in this
expansion [4,Ch. 5], [10] This 1n1t1a1-va1ue problem approach is
not wéi&-;ﬁited to the study of optimum quantum transmitter
design. For such a study, it 1s necessary to have a quantum-
mechanical diffraction theory, analogous to the classical Huygens-
Fresnel-Kirchhoff theory, in which quantum field propagation in
vacuum can be rigorously treated as a boundary-value problem.
Because some of the 1ssues of a quantum diffraction theory are not
directly related to communication,we will not present a full
treatﬁent of such a theory in this paper. On the other hand, we
shall develop, in Section II, those features of quantum state
propagation which provide the basis for representing any optical
channel in a quantum-mechanical form convenient for communication
analysis.

The development of quantum diffraction theory will be for
arbitrary quantum states; in Sections III-V we shall apply this
theory to TCS radiation. Under near-field propagation conditions,
with a fixed field-quadrature measurement, it will be shown that a
TCS transmitter maximizes post-measurement signal-to-noise ratio
over all transmitter quantum states satisfying an average energy
constraint. The TCS system substantially outperforms a conventional
transmitter of the same energy. Under far-field propagation
conditions, with a fixed field-quadrature measurement, it will be
shown that use of a TCS iocal-oscillator in the receiver can, in
principle, attenuate post-measurement quantum noise by a factor

equal to the diffraction loss of the channel , if appropriate spatial




mode-mixing can be achieved.

In deriving the foregoing communication results, we shall

assume that the field-quadrature quantum measurement, i.e., that of

a, the cosine quadrature of the TCS radiation mode, is performed.

~ When using conventional radiation, the a; measurement can be

accomplishea by homodyning [11]. However, because the statistics
of photoemissive detection depend, non-trivially, on the gquantum
state of the radiation field, the preceding statement regarding
homodyning must be re-examined for TCS sources. In [8] we shall
present a detailed analysis of photoemissive TCS detection;
homodyning, will be shown therein to realize the same signal-to-
noise ratio as the al measurement for an arbitrary quantum state.

The full equivalence of homodyning and the a., measurement will be

1

established in [9].
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II Quantum Field Propagation

Open almost any graduate text on communication theory (12]-(14],
and there, in the introductory chapter, you will find a generic
block diagram for a single communication link, much like that
shown in Fig. 1. The ubiquity of Fig. 1 stems from its inclusion
of virtually all single-link communication problems, e.g., source
coding, signal-set selection, channel coding, and optimum receiver
principles. Its appearance in thé 1970 review article on quantum
communication theory by Helstrom 33 El' (1], belies the fact
that to that time attention had been focused almost exclusively
on receiver optimization. Moreover, Helstrom's recent monograph [4]
attests to the continued absence of a quantum-transmitter op-
timization theory.

A primary cause for the present dearth of quantum-transmitter
analysis is, we believe, the cumbersome quantization procedure

employed in prior studies. The radiation field 1is usually quantized

at some initial time to within a spatial volume V that is large enough

to contain the field over the space-time region of interest [la].

In order to use the volume quantization procedure to develop

a8 quantum transmitter theory, we must take V to be a very large
spatial volume containing the transmitter, the propagation path,
and the receiver. Once the field has been quantized ., at an appro-
priate initial time, within V the quantum characteristics of the

receiver entrance-aperture field over the detection interval can

in principle be determined.

T




The foregoing volume-quantization procedure for quantum
field propagation [15] is seldom employed. When all the radiation
sources produce fields which are in coherent states or their

\élagéicéiEQ-rindom Supe;aoéiiioBSi;¥ﬁéﬁfadiation fi;id 1nhéhe ) e
neighborhood of the receiver can be determined by classical
diffraction theory techniques (c.f. Section II.2). On the other
hand, for TCS radiation ( and other quantum states which do not
possess well-behaved P-representations), classical techniques do
not suffice. Moreover, to use the volume-quantization procedure
in this case we must explicitly describe the radiation source
in quantum-mechanical terms. The need to introduce the source
dynamical variables into the propagation problem unduly complicates
the task of explicitly determining the quantum characteristics
of the received field. Thus, our first concern herein will be to
formulate a quantum diffraction theory, similar in spirit to 1its
classical counterpart, in order that the quantum field generation
and field propagation problems can be separated. Quantum channels
can then be conveniently analyzed within the framework of Fig. 1.
II.1 Specification of Quantized Aperture Fields

Classical diffraction theory treats electromagnetic wave
propagation as a boundary-value problem. The archetypal free-
space diffraction problem is to determine the field over the
plane z=L, for a wave propagating nominally in the +z direction,1
given the fleld over the plane 2z=0. Let E(+)(§,z,t), where

r = (x,¥,z), x = (x,y), be the positive frequency electric field

1 In other words, the wave under consideration has no components in

its angular spectrum which transport power in the -z direction.

ittt




operator for a scalar wave2 that propagates nominally in the +z
direction in vacuum. The corresponding quantum diffraction problem

is as follows. Given the quantum characteristics of

e, &, = BV z,0,0) (2.1)

determine the quantum characteristics of

5, VG0 = a0, (2.2) |

for an arbitrary positive L. Herein we show how to formulate
these planar characterizations; the propagation question is
addressed in Section II.Z2.

The classical positive-frequency electric field, E(+)(?,t),
can be expanded on a fixed transverse plane

g = {(i,y,z):-~<x,y<~} ’

and an arbitrary time interval Tz in terms of a complete orthonormal

(CON) set of spatio-temporal mode functions {En(i,t): (i,t)ezszZ} s leee, |

MG = £ @m0 = feg G (2.3)

where

—

As in classical optics, the scalar wave analysis is not completely
rigorous. However, because the generalization of our quantum

propagation theory to vector waves involves only added notational burden ,

we restrict ourselves to the scalar case.

s bt o




L_ Iz En(x,t)ezxi,t)didt-énn..
z z

(2.4)

L6 G0 (Er e )= GEE8 (-t

and {en} are the classical mode-amplitudes. When this classical

field i1s quantized, the classical mode-amplitudes are changed to
a set of quantum operators, {Anan} i where {An} is a set of mode-
dependent c-numbers, and {an} is a set of modal photon annihila-
tion operators obeying the following canonical commutation rules

(CCR)
: [an,g;.] = Sont o [9n,anl]_-dp, LA ; . (2.5)

The proper way to carry out this quantization procedure is not
described in this paper; its relationship to the usual volume
quantizﬁtion procedure will be discussed in a moment.

In general, we choose not to work with the electric field

operator obtained by the preceding method, but rather with the

' field operator

E,(X,t) = ggncn(i.t), (2.6)

obtained by dropping the An. For quasimonochromatic (narrowband)
fields in free space with a nominal radian frequency Wos the field
(2.6) is proportional to the positive-frequency electric field

operator, viz

£, (x,0) = (Bu/2e) %, (5,00 vy




where € is the vacuum permittivity. The quasimonochromatic
condition is not actually required in our theory once it is under-

stood that we are working with the field Ez, rather than the usual

electric field Ez(+). For simplicity, however, quasimonochromaticity

will be assumed henceforth.

From (2.4) and (2.6) we have t-e field commutator
(E,(%,t) , EF(X',t")]= &(3-%')8(t-t") , (2.8)

where E;(X,t), the adjoint operator of Ez(i,t), is the negative-
frequency counterpart of the field operator Ez(i;t). Equation
(2.8) imposes a condition to be fulfilled by the quantized field at i
any transverse plane, and forms the foundation of our propagation
analysis.Apart from a proportionality constant, Helstrom has shown
{4, Ch.5] that (2.8) gives the electric-field commutator in the
limit of paraxial propagation. More generally, by excluding
evanescent waves and augmenting (2.6) to include waves which pro-
pagate nominally in the =z direction, we can obtain the usual
volume-quantization commutator [4], [10], [15] for the electric-
field operator §z(+) from a planar-quantization procedure, and

vice versa. We shall, however, purposefully retain the evanescent-
wave contribution to (2.6) because of its role in preserving the
field commutator (2.8) at all planes transverse to the nominal
direction of wave propagation. Indeed, the validity of (2.8)

at any z-plane will force us to identify the quantum-noise sources ?

responsible for its preservation, thus making evident to what

extent we can control the quantum state at the receiver in subsequent

: ' communication analyses (cf. Sections IV, V),




A complete specification of the quantized electromagnetic
field requires, in addition to (2.4), (2.6), (2.8), knowledge
of the density operator, p, describing the states of the modes.

In the absence of classical statistical dependence, we have that

(2.9)

where pn describes the state of the nth

mode. The state of a
quantized aperture field EAz(i,t), the field Ez(i,t) restricted to
an aperture A in zz, can be given similarly by a modal ex-
pansion with a density operator specifying the state of the modal
photon operators. If the planaf‘field E (x t) is speciried
first, the state of EAz(x,t) can be determined from that of Ez(i,t)
by modal transformations (see Appendix).
To -solve the propagation problem we must show how the
§-function commutator, (2.8),1s preserved and how the density operator

is transformed by free-space diffraction.

II.2 Modal Theory of Propagation

Consider the line-of-sight free space optical communication
channel, whose propagation geometry is shown in Fig. 2. A
quasimonochromatic quantized radiation source produces a field
in the z=0 plane that 1s propagating nominally in the +z direction

_ and is space-=limited to a transmitter exit aperture A After

o.
propagation through L meters of free space, the field is collected

over a receiver entrance aperture AL. For convenience, we shall

assume that A. and AL are circular apertures of diameters d. and

0 0

d., respectively whose centers lie on the z-axis. The quantum

L
propagation problem is simply stated: given the quantum field

o e




E produced by the source over the transmitter aperture, determine

the quantum field that results over the receiver aperture. A

more precise formulation follows. 5

Suppose the source produces a field in the transmitter pupil

that is time limited to an interval
To= {t: g -T<t<t } .

We denote the field operator in the transmitter aperture by

EA (i,t). This operator has the mode expansion
0
E, (%,t)= Ja_z%(x,t) : (2.10)
Ao ] nnn ’ ] i = a

where {Cg} is a CON set on onTo , and the {an} satisfy the CCR.
To complete the quantum aperture field specification, we assume

the {an} in (2.10) have a known density operator p, .
0

In a similar manner, we assume that the receiver time limits
the field in its entrance aperture to an interval, TL’ that is : %
sufficient to encompass the entire source transmission. We :
denote the field operator in the receiver aperture by EA {2,t),

L ]
which we expand as follows

- Lo
EAL(x,t)- gbncn (x,t) . (2.11)

In Eq. (2.11) the {an} form a CON set on ALXTL, and, according to

«l0=

5
o
¥
3
]




field operator defined on (ZO-AO) xT

our planar quantization procedure, the {bn} must satisfy the
CCR. To solve the propagation problem we must determine Pa s

L

the density operator for the (bn}, from p Our solution

A L]
0
to this quantum field problem must subsume the classical fileld

behavior, i.e., the average received field
EAL(i,t)ETr{pA E, (x,t)) (2.12)
L "L

must be given in terms of the average transmitted field

E, (i,t)ETr(pAoEAo(i,t)) (2.13)

0

~

by the classical diffraction formula .
Conceptually, it is convenient to solve this propagation
problem by a three-step procedure:
i) determine from EAo(i,t) and DAO the quantum characteristics
of Eo(i,t), the field operator over the entire z=0 plane,

1.e., for (x,t) € L xT;

0
11) determine from E0(§,t) and its density operator, 0,
the quantum characteristics of EL(E,t), the field operator
over the entire z=L plane, i.e., for (X,t) ¢ T3
111) determine from EL(i,t) and its density operator, p;,
the quantum characteristics of EAL(;’t)‘
Within the foregoing schema, tasks 1) and 1i1) are trivial.
Specifically, we can decompose Eo(i,t) into EAO(E,t) plus a

0 All the spatio-temporal modes

o~




of the latter operator must be in the vacuum state because we assume
that the source acts on the half space z>0 only through the aperture
Ao, and we assume that there is no classical interference present, }

such as thermal noise. Thus if we exnand Eo(i,t) i1 the form

Ey(x,t)= E(ancg (X,8) + e To(X,t)) , (2.14)

where {f’} are CON on (L,-Aj)* T ;, and the {c } satisfy the CCR,
we find that task 1) is completed taking

p.=p, @0><0| . (2.15)
0 Ao n

Task iii) is conceptually even simpler; it corresponds to ex-

tracting from a quantum planar field on ZLxTL the spatio-temporal

i

modes that span ALxT . Task 1i) will be accomplished by exploit-
ing the classical mode theory of diffraction. The following
classical results are well known [16 ]J,[17]; they are presented to ﬁ

establish notation .

A. Classical Fields

b As in (2.1), (2.2 ) let us use Eo(i,t) and EL(i,t)
i to denote the classical fields associated with Eo(i,t) and EL(i,t)

; ! respectively. In the quasimonochromatic limit in which we are

working Eo and EL can be uniquely decomposed into their propa-

gating and evanescent wave components, viz

eo(i,t)-sgci,t)+£g(},c) . (2.16)

and Ep(X,t)=ED(X,t)+E 5 7 (2.17)




where the two-dimensional spatial Fourier transforms of the
propagating-wave (eP) components vanish for spatial frequencies
bé&ond'mo/Zuc in magnitude and those of the evanescent-wave (E°)
components vanish for spatial frequencies below m°/2nc in magnitude.
The propagating-wave component of EL is generated by the
propagating-wave componer.t of EO through the quasimonochromatic

diffraction integral

£ (%,t)= [dt' ! ax' EN(®,t)Gp (X,65%",8') , (2.18)
L
where the Green's functlon™Gy satisfies =~ ' == w=n=- =~

0, (%, 653" ,¢" )= I af circ (A F)6(t-t'-L/c(1-| xoflz)l/z)

sexp { -J2n[LA°-1(1- |A°?|2)1/2-f-(i—2')]} . (2.19)

In (2.19), A, 1s the wavelength associated with w_ and fis a

two-dimensional spatial frequency. The evanescent-wave component

of Ep, will be nearly zero, regardless of Ed’ for the usual

case of L>>J\d

Inasmuch as EA is the restriction of EL to AﬁzT , and the
L

boundary condition on z=0 is Eo(f,t)so for (x,t)ﬁonTo, the foregoing

results imply that

EAL(;,t)' I?;' Jgi' B, W5 BT, (aBa R 0t -




Now, because G, is a compact operator [17], [18] that maps

L
La(onTb) into LZ(ALXTL) via (2.20) , 1t possesses a modal

decomposition of the form3

Gy (X,;%",t")= 5n,§/2cn¥<;,u>c,?'<;:s> , (2.21)

where {Cg} and {Cg} are CON sets, so-called output and input

eigenfunctions, on A XTL and AOXTO respectively. These eigen-

L
functions are determined from the Fredholm equations

e e e 5ol s
Irodtz I%;F Ry Xyt 30 80 5y (pa b o, £ (20455 ) & (222)

1/2 L=

Irdt' f%?'cg(i',t')GL(i,t;i',t')-nn g (x,t) , (223)

0 0

where the kernel KL is

- - - L . - - X
KL(xl,tl;xz,t2)= I?;' Iii' GL (x',t';xl,tl)GL(x',t';xz,tz) . (2.24)

3 Strictly speaking, to make GL a compact operator we should

replace the §-function In €¢2.19) by the bandlimited é-function

W sinc[W(t-t' - L/c(1-|40f|2)1/2n for some finite W. The parameter

W is the bandwidth of the quasimonochromatic radiation. As the proof

of the quantum propagation theorem and all subsequent manipulations
can be carried out with some additional labor using the bandlimited G

we have chosen to present the simpler formulation.

L’

vl e 2 ol b Ll L el Loy Sl e St il e (et - e L e s bt Ll L o

S PR T PR T S S TITR g




The eigenvalue, nn, associated with nth input-output eigen-

function pair is, physically, the fractional energy transfer from
AO’XTO to AL.X TL that results when we transmit Cno('i,t). Because
the free-space channel is a passive non-absorbing propagation

medium, we héve
0< n <1, for all n. (2.25)

There are two loss mechanisms that make nn<1. First, there is
the radiative loss that i1s incurred when AL is not large enough
to encompass the entire z=L plane fleld that results from trans-
mission-of Cno(;,t). Second, there 1s the evanescence loss that
is incurred because Cno(;,t) contains spatial-frequency components
beyond lo'l in magnitude.

By use of the mode decomposition for GL we can replace the
diffraction integral (2.20) with an equivalent parallel-channel

(modal) description. Specifically, if we expand Ea using the
0

input eigenfunctions {Cno} as the basis set, viz

- 0,= - :
EAo(x,t)- g"n‘n (X,t) (2.26)

‘
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we find that E has the expansion

A,

o | T
.EAL(x,t)- Eannnl/zcn(x,t) (2.27)

Ly .

in terms of the output eigenfunctions {Cn

B. Quantum Fields

Just as in the classical case, let us decompose the

field operators E. and E; into their propagating and evanescent

0 L
wave components, i.e.
E,(X,6) = EP(R,¢) + ES(X,0) , (2.28)

We are interested in developing the quantum characteristics of
EL given those of Ed. From the classical description of the
propagation process, it is apparent that Ei is not influenced
by E; in the usual case of L>>lo. Thus, the annihilation op-
erators in any mode expansion of Ei must all be in the vacuum

state, and we can concentrate our attention on ELP.

-]6-
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= | P
By (X:8)= zzlb“(“ (x,t) , (2.32)

in terms of the classical ouput eigenfunctions, then the photon

operators {bn} satisfy
= 1/2 1/2
b =a n, +cn(1-nn) » (2.33)
where {nn} are the classical eigenvalues and {en} are vacuum-
state photon operators. The density operator OAL for the {bn}

is determined from p, and (2.33) through (A.2), (A.4). 1In
0

particular, 1if

= ®
we obtain
iy GbALn (2.35)
n

where for each n p is computed from p via (A.9).
A.n Aon

L
Proof:

We have, from (2.28)-(2.30) and the surrounding discussion,

that

EL(i,t)-

k | ' Igt' Igi'no(i',t')GL(i,t;i't')+ELe<i,t) . (2.36)

-18- |




Restricting (2.36) to A xT, and using the fact that Eo(f,t)-
EAo(x,t) on onTo we find

By Fot)e far [aR'E, (Bie)o (E,6E,e0)

b Ay

& [ Idt'di'Eo(i',t')GL(i,t;f',t') + ELe(i,t) p
We now use (2.37) to evaluate the series (2.32) and obtain with
the aid of (2.21)
ME se ' (2.38)

b =a N,

where dn is the operator

i

B
|

ffdt'di'Eo(iit)GL(i,t;i't')+ELe(i,t). (2.3

L L §

Because {bn} obey the CCR, it follows that

a=e, (1-n 1/ %exp(g0,) (2.40)




in terms of a set of photon operators {cn} and arbitrary phase'
factors {¢ }. Furthermore, since Eo(i',t') is a vacuum-state
field on (IyxT)=(A,xTo) as 1s E °(X,t) on A xT, the {c_} are all
vacuum-state operators. For any {on} the state of the modes
described by tpe photon operators {exp(Jon)cn} is therefore the
vacuum € 0><0| , so (2.33) and the theorem follow immediately with
the 1ncgnsequential choice ¢n-0; the density operator transformation
is given in the Appendix.

Remarks :

The basic physical content of the quantum propagation theorem
is as follows. For EAO and EAL expanded in the series (2.31) ,
(2.32) with~

Tr(pA an)- & 3 ‘ (2.41)

0 n

the classical mode theory of diffraction implies that

Tr( DALbn)- a ,hl/z (2.42)

Now, 1if nn<1 we cannot have

' 1/2
- bn-annn »
because bn would violate the CCR. There has to be, in this case,
a photon operator Chs that satisfies the CCR, which contributes

to bn according to (2.33). Physically, when,,ﬁgl the output

eigenfunction;;nL(§,t) couples to modes that are not generated by

'-20-




EAo(i,t). Because all such fields are in vacuum state, (2.33)

is consistent with the classical mode result (2.42). The develop-
ment in Section Y’provideslg detg;led example of the role such
auxiliary modes play in preserving the commutator (2.8), as well

as the effect of auxiliary modes on the extent to which the receiver
state can be controlled.

The quantum propagation theory developed in this section is
actually more general than the preceding theorem indicates. In
particular, it can be applied to arbitrary linear propagation
media, and can handle the case of non-vacuum c¢_ 1in (2.33),

c.f. Section V.1.

C. Coherent State Propagation

An ordinary optical source is one whose radiation field is
in a Glauber coherent state or a classically random superposition
of such states. In free-spece quantum receiver theory, quantiza-
tion of such a source is generally performed (conceptually) in
the receiver entrance aperture or fictitious measurement cavity,

even though the field is physically quantum mechanical in the

. neighborhood of the source. By means of the quantum propagation

theorem we can rigorously Jjustify the use of classical propagation

theory for ordinary sources. Srll, 4
Suppose that the quantized transmitter fleld, EA (X,%),
0

has a density operator in the modal expansion (2,13) whose P-
representation possesses a classical analog, i.e., it has the
coherent state expansion

#

9A - I(@'a ><a I)P(Q ' PYREAL ’000;0 "a s*°°a .’o.o)ndau /ﬂ »
0 n b n 4"78 n 1 2 n n n

=21
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where Pnl/n is a classical probability density. The
quantum prop;;ation theorem (2.31)-(2.33) in conjunction with the
density-operator transformation calculus presented in the Appendix
can be readily used to show that the receiver field, EA;(i,t),

has the density operator

pAL-
1/2 4 1/2 e e 0 e eo0 ° . . L ) . LI ) 2

I(gﬂn Cn><nn anI)P(alsazt Che % 8y » G, )gd Qn/' (2,4t

in the modal expansion (2.32)“, Equations (2,43)» (2.44) demonstrate

that the received field behaves, quantum mechanically, as though

the propagation were classical and quantization were applied at the

receiver. We shall see, in the sequel, that the guantum propagation

theorem has signigicant content for more general quantum transmitters.

Equation (2.44) has to be modified in the presence of classical
interference or noise, which is not our concern here.
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IITI Two-Photon Coherent States

We now introduce a class of radiation states that are closely
related to ordinary coherent states, but which possess a number
of advantages from a communication viewpoint. A comprehensive
discussion of the mathematical and physical nature of these states
has been ziven elsewhere[7], so that the present discussion serves
primarily to establish notation and indicate the possible comm-
unication impiications.
III.1 State Specification and Generation

For a single radiation mode of frequency w, with photon
annihilation operator a, the two-photon coherent states(TCS)
jﬂzg are defined to be the eigenstates of a transfermed photon:-- -

operator b with eigenvalues 8. Specifically, we define
b = ua + va , (3.1)
for complexu andv such that

lul2 =lv]2 =1 ; (3.2)

the TCS |s>8 satisfies

b|8>s' B|e>g ] (3.3)

When v-0,|B>g becomes the ordinary coherent state |B>.

For non-zero v, the state p-|8>8 <p| does not possess a well-

&
behaved P representation.

«23=




The TCS|$>g has the following important fluctuation behavior

g<Blale> = uss- veusg (3.4)

g<Blafales, = (812 + |02, (3.5)

<Aai2> - |u_v|2/n P <A§22> = |u'+v|2/u . (3.6)
where

asa, + jaz (3.7)

for self-adjoint a,, a, defines the quadrature components of the
mode in question and Aa15a1-<a1> is the fluctuation in ay, i=1,2.
(In these expressions, the angular brackets denote quantum ex-
pectation with respect to a given density operator.)
For arbitrary u, v, the TCS|B>8 achieves the minimum uncer-
tainty product

<Aai2><Aa52> = 1/16 , (3.8)

for the quadrature components of the photon operator

. .
a'=a expl) J tan - i -.v B) . > (3.9)
2lullv] +uve+vy

-20-




with

day® = (lul - [vD24 , <aay®>= (Jul + [v))?/8 .(3.10)

When u/v is real, TCS are the usual minimum uncertainty states

for the Heisenberg 1nequality<Aa12><Aa22

>>1/16. In the 1limit
u,ve® with u/v+1 and u/v+-1, TCS become the eigenstates of a; and
a, respectively, viz

<Aa12>»0 5 for u/v+1 ,
(3.11)

<Aa22>»0 4 for u/v+-1 .

It follows from (3.6) or (3.10) that the quantum fluctuations
in a, and a, (or ai and aé) can be exchanged, at constant min-
imum uncertainty product, by varying u,v in a TCS. For coherent-

5= l/hl, and random super-

state radiation we have that <Aa12> = <Aa2
position of coherent states alﬁays increases the fluctuation
levels. Thus, the exchange of quadrature-fluctuation levels 1s

not a feature of conventional sources.

Whereas a coherent-state radiation field 1s generated by a
one-phof.on laser operated well above threshold, a TCS can be
generated, in principle, by a two-photon laser operated well
above threshold. The theoretical relationship between TCS radia-
tion and stimulated two-photon processes has been elaborated in [7].

As yet, no TCS radiation has been experimentally observed, although

the generation of such light remains a physical possibility.

-25-




Naively, the rationale for improving free-space optical

communication performance through use of TCS radiation is as follows.
At the transmitter, we impress analog or digital information

onto the average value of the a quadrature of a single TCS radia-
tion mode. By controlling u,v we can reduce the quantum fluc-
tuation on the signal (al) quadrature below the level for co-

herent states. Thus, measurement of a; at the receiver yilelds a
higher signal-to-nolise ratio for analog communication or lower

error probablility for digital communication than that obtained

with a coherent-state transmitter of the same energy.

III.2 State Propagation :

The preceding description of potential TCS communication
advantages 1s oversimplified because it neglects the effects of
propagation from the transmitter to the receiver. Consider the
line-of-sight free space propagation channel that was analyzed

in Section II. Suppose that a TCS transmitter produces a field
EAo(i,t) whose state, pAo, in the expansion (2,31) is

pAO- Is>gg<8|%|o><ol s (3012)
i.e., the first input eigenfunction is in a TCS and all the re-
maining eigenfunctions are in vacuum state. Via the quantum propaga-
tion theorem we can separate the state generation and propagation :

problems and find that EA (f,t), the receiver field, has state
L

DAL'91%|0><0| (3.13)

-26-




in the expansion (2.32), 1In (3.13), P, 1s the state of the first
output eigenfunction; it is the state of a photon operator

172 4 &4 (l-nl)l/zc" i (3.14)

b = ny
‘ where a, ¢ are photon operators that are 1n.states|8>g an? |0>

respectively. The output field state p, can be found from (A.1l1),
and i1s in general a mixed state.

For the purpose of eliciting the effect of propagation on
TCS quantum noise reduction, it is simpler to calculate
the fluctuation behavior of b directly from (3.4)-(3.7) and (3.14) than
to use the transformed state (A.11). We find that

4
3
<b> = n11/28 3 : (3.15)
o> = n (1812 + V%), (3.16)
<ab,?> = [n,u-v|? + (1-n,)1/4 (3.17)
1 1 1 : . K
2 2
<Ab2 > = [nllp + v|° + (l—nl)]/u 5 (3.18)
2 .
where bsb1 + Jb2 defines the quadrature componentss of b.

Comparison of (3.6) and (3.18) reveals the following behavior:

the TCS ncise reduction that is manifest on a; whenlu-v|2< 1l 1is

nearly absent from b, unless n,3l. Physically, when n <<l

=27=




the gquantum characteristics of b are dominated by the vacuum co-
herent state properties of c¢ through (3.14). Thus, to reap the
communication benefits suggested by (3.6) we should arrange the
pfopagation geometry so as to achieve a near unity fractional

energy transfer (eigenvalue) for the TCS transmitter mode; such a

. situation will prevail in the clazsical near-field propagation
regime [19]. Alternatively, for the classical far-field propagation

regime in whichn, <<1l, we could conceivably improve on (3.17) by

1l
use of a TCS local oscillator near the receiver to cause the

photon operator ¢ in (3.14) to be in state |8>g. These near field

and far field cases are considered in Sections IV and V respectively.

-28-
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IV Quantum Transmitter Optimization
The discussion surrounding (3.14)-(3.18) has the following
generalization. Suppose a quantum transmitter produces a field

operator E, (;,t) with state
0
Py ™ |><|®|0><0]| , (4.1)
0 n :

where |> is an arbitrary pure state. When n1<<1 the resulting
state, P> for the first output eigenfunction in the expansion of
EAL(f,t) will be approximately a coherent state (insofar as field
fluctuations are concerned)

~ 1/2
pl-lnl / <a>><nll/2<a>| (4.2)

in the absence of receiver state control, where a is the photon
operator assoclated with the first transmitter mode. Evidently,
with a field-measurement receiver, whatever benefits may be
derived from optimum quantum state generation at the transmitter,
they are limited to the regime whereiln nIZl when no receiver
state control can be employed. It therefore behooves us to
briefly address the eigenvalue behavior of the classical free-

space mode decomposition before attempting a quantum transmitter

theory.




IV.1 Near Field and Far Field Propagation

For the usual case in which the aperture diameters do and dL,
and the path length L, are all_muqh larger than‘the nominal wave-
length xo,evanescence loss can be neglected and hence the Fresnel

approximation

G (X,t5%'t") = §(t-t'+L/c)
(=3 1)t exp[-J2nL(1+|x-%'|2/2L2)/A ] (4.3)

can be used in place of (2.19) . The mode decomposition (2,21) -
(2.24) associlated with the Fresnel approximation Green's function
is well known [19], [20]; the salient features are summarized
below.

Because of the delta function time dependence in ( 4.3),
if we take TL = TO-L/c we obtain the factored mode decomposition
{cno(i)xm(t); an(f)xm(t-L/c);nn} where the temporal input modes
{xm(t)} are an arbitrary CON set on T, and the spatial mode de-

composition satisfies

fdi2<dLJl(del22-21|/AOL)/2AOL|§2-21|)exp[Jn(|§1|2-|§2|2)/x°LJ

Ag

"B (Ra) = maa (KT (4.4)

[ a6, 2m a0  eml-gant(iriz-xt 12721201,
0

Al Bl | (4.5)
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T Explicit results for {Cno(i); an(i); nn} are available [20].

The eigenvalues depend parametrically on the Fresnel number
2
D = (modL/uxoL) (4.6)

and the input and output eigenfunctions are prolate sphercidal
wavefunctions. For our purposes it 1s sufficient to note the

asymptotic behavior of the eigenvalue distribution. Suppose the
eigenvalues are arranged in decreasing order, then in the far-

field region, D<<1, the maximum eigenvalue, nys 1s approximately equal to

D, and all other eigenvalues are insignificant. When D$>l; near-field

propagation prevails; there are..then.D eigenvalues near 1 and the ;
rest are insignificant. 4

IV.2 Near-Field Transmitter Optimization

Consider the following problem of quantum state optimization
in near-field free space communications. A continuous real-
valued random variable awith density function p(a) 1is to be
transmitted from onTo by placing the photon annihilation operator
a for the mode ;lo(i)xl(t) in state Py Let us assume that linear

modulation is employed so that when als chosen for transmission,

p. 1s constrained to satisfy

a

<a>=Tr(P,a)=0K , (4.7)

where K 1s a positive constant. The receiver measures b the

l’

i
|




cosine quadrature of the photon annihilation operator b associated
with the mode clb(i)xl(t-b/c) on ALxTL. Because we are in the
near-field propagation regime, we may assume n121, and hence

b~a, bl:al. The problem is to choose p and K to maximize the

average signal-to-noise ratio

K2 o2 (4.8)

e Idap(a)Tr[pa(Aal)zl

»

SNR

where as is the mean-square value of the parameter q; subject to

the average photon number (energy) constraint

e ’ gy S B . -
. Srae . wrn e o ¥ @ 4h e L e e 2

Idap(u)Tr(oaa+a)§Ns » (4.9)

on the transmitter state. The classical average transmittead

energy 1s
fdap(u)lTr(paa)lz-Kzgi . (4.10)

Thus, because<afa§ﬂ<a>|2, (4.9) 1s a more severe and more appro-
priate energy constraint for the quantum transmitter problem than

the classical constraint KzaziNs.

We now show that the optimum state pao and modulation con-

stant K° satisfy:

.Da°-|KOG(2Ns+1)1/2’gg<K°°(2Ns+1)1/2| ’ (4.11)

K =[a?(2N_+1)/Ng +1)

]-1/72 (4.12)




where the TCS Ix°o(2ns+1

u=(Ng+1)/ (2N +1) /2, veN_/(2N_+1)1/2 (4.13)
That the optimization depends on p(a) only through-;z-should not
be surprising because SNRav is a second-moment quantity. The
proof that (4.11)-(4.13) constitute optimum choices of p and K
is as follows.

By means of (3.4)-(3.6) it is easy to show that (4.11)-(4.13)
satisfy (4.7), (4.9) with equality, and give

o
SNRav 'uNs(Ns+l) ’ (4.14)

which we must show to be the optimum SNRav value, We first re-

write the energy constraint (4.9) in the equivalent form

Tr[B(Aal)2]+Tr[3(Aaa)2]+K2;?ENs+1/2 . (4.15)

where

o
1]

Idap(a)pc . (4.16)
A simple convexity argument shows that pao and k° will satisfy
(4.15) with equality. Moreover, when (4.15) is an equality

(4.8) can be expressed as

SNR, = (Ng+1/2-Tr (5 (8a,)?]) /17 (5 (8a,)]-1 (4.17)




Now, because P is a density operator we have the uncertainty rela-

tion
Tr((8a,)?1Tr(p(8a,)°121/16 , (4.18)

and, from (4.17), it is clear the% p ° will satisfy (4.18) with

equality. Under this minimum uncertainty condition we have
SNR__=(N_+1/2)/Tr[p(ba,)?]-(4Tr[ol0a,)%1)™%-1 , (4.19)
av s 1 1l
which has the unconstrained maximum

o
SNR avﬂth(Ns+l) ’ (4.20)

when

Trlp(sa, ) d=M(an_+1)171 . (4.21)

The proof is now complete in that (4.11)-(4.13) satisfy the
constraints and achieve (4.19). Note that the use of ordinary
coherent-state radiation in this linear modulation problem-

results in the maximized signal-to-noise ratio
SNRav-llNs 5 (4.22)

when 1<--(Ns/<=t2)1/2 , P~ Ka><kal .

For Ng>1, the optimum TCS performance is vastly superior to the

conventional=-source result,

et e e vl L i
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Note that we have not performed a combined transmitter-
receiver optimization; the measurement of a, is fixed in advance.
For linear modulation of TCS filelds, however, one can easily show
that the a; measurement actually minimizes the measurement
variance for any input signal parameter. Thus, tne performance
(4.29) cannot be further improved by receiver optimization.

The possibility is open that a joint transmitter-receiver
optimization will lead to a supérior performance than (4.20),
which seems unlikely in the case of a continuous parameter a,

but which is obviously true in the discrete case by transmitting

photon eigenstates.
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V Far-Field State Optimization

Recall from Section IV that under far-field propagation
conditions the quantum field fluctuation characteristics of L
will be dominaégd by the vacuug éohéfeét-state beﬁ;vior
introduced by the radiative loss in the channel. 1In this
section, we shall indicate how a TCS sourcemight be used as
a receiver local oscillator to achieve a state optimization
analogous to that in Section IV.2. The present discussion
i1s doubly speculative in that it assumes a source that is
as yet unrealized (two-photon laser) and a spatial-mode
mixing for which a practical configuration has yet to be
found. However, the predicted performance increment is so
large that continued implementation research is clearly
Justified. In particular, we shall find that by means of
a TCS local oscillator we can increase post-measurement
signal-to-noise ratio by a factor equal to the radiative
loss of the channel. 2

Suppose, as in Section IV.2, that a continuous real-
valued random variable a is to be transmitted using linear
modulation from AOXTO by placing the annihilation operator
a for the mode ;lo(i)xl(t) in state p . The receiver
measures bl’ the cosine quadrature of the annihilation _
operator b associated with the mode clL(i)xl(t-L/c) on ALxTL.

We shall assume far-field propagation prevalls so that

b'n11/2a+(1-n1)1/20 (5.1)

=36
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vy

T

where n]; (ndOdL/uAOL)2<<l, and ¢ is a photon annihilation
operator whose state is unaffected by Po* Note that any

phase factor that would have multiplied (l-nl)l/zc in (2.40)

has been absorbed into the photon operator definition for ¢

in (5.1). Our objective is to maximize the signal-to-noise ratio

2

®  [a pla)rip; a0

subject to the transmitter photon number constraint (4.9) by
choice of Py and K. In (5.2), Py is the state of b, which,

in the absence of any radiation source other than the trans-
mitter that produced EAowill be approximately the coherent state.
(c.f. (4.2))
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P Inll 2Kﬂ><ﬂl Ka| (5.3)
Under (5.3) it is trivial to compute that the maximum signal-

to-noise ratio
SNRavtllnle (5.4)

B
results when we use the coherent-state pa-IKa><Ka| with K=(Nj/a ) .

Comparison of (5.4) and (4.22) reveals the well known SNR,,

attenuation that attends free-space propagation. To ameliorate
this attenuation by means of state optimization, we must

control the state of the photon operator c¢. The detalls are worked

out below,

T




V.1l State Optimization by Spatial-Mode Mixing
For the assumed transmission geometry we cén expand the z=L

field operator in the series ... . e e, sl

B (X, £)mad (X)) (£-L/)4e 4 (X)X (£-L/e) +IapEy (R,8) 5 (5.5)

where on 2L
¢s(x)=

o ax12,0G0) (-0 1) Fexpl-g2rL(1s |3-E" 1272 /0 1 , (5.6)
& 0 - T A RS e e (Lot L

[-n)/m 32 6 (), x ea
op(R)= (5.7)

-(n /(02 6 (%) , x €2 -a

L 'L

and {¢s(§)x1(t-L/c), ¢R(i)xl(t-L/c), Em(i,t)} form a CON set on

ELXTL. Note that by virtue of (4.5), the restriction of

1/2

the "signal" spatial mode, ¢_(x), to A, 1s n,7/% ¢.M(x). By

a simple calculation it follows from (5.7) and (2.8) that
¢B (x) is the other "received" spatial mode when we measure
| _ ClL(x) on Aj, 1.e., a and ¢ in (5.5) are the operators that
appear in (5.1). Because these operators are associated
x T

LL
mechanically independent, i.e., they are members of a set of

with orthogonal modes on & we may take them to be quantum-

photon operators obeying the CCR. Further, we suppose that when a is
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to be transmitted the mode described by a is in a coherent state
pa-l(Ns/;z31/2a><(Ns/;251/2a| (generated by the transmitter),

and the mode described by c¢ is in state Pos controlled by a source
(the local .oscillator) in the vicinity of z=L. Our

objective is to maximize the signal-to-noise ratio (5.2)

subject to the local-oscillator energy constraint
Tr(p cte)N (5.8)
c =K ° %

The preceding state optimization is straightfoward.

We directly compute from (5.1), (5.2) that

SNR__=n,N_/[n,/4+(1-n ) Trp_(Ac,)?1] . (5.9)

Rewriting (5.8) as

Tr[pc(Ac1)2]+Tr[Dc(Aczfﬁ+lTr(pcc)|2§NR+1/2 . (5.10)

the reasoning employed in Section IV.2 leads us to conclude

that the TCS
p %=|0>_<0| (5.11)
¢ 43 %

with

u=(Ng#1)1/2 ) vy 12 (5.12)




yields the maximum signal-to~noise ratio

uNs
172 o AL4
-Ng

X Q -
: SNRav =

. (5.13)

1+ (1+hp) 1°(2-n )/n,

When Ng>>1, as will surely be the case, (5.13) becomes

(o] uNS
SNRav o o (5.14)
1+(1-nl)/unlx~lR

Thus, when NR>>(l-n1)/“m_we find that the post-measurement

signal-to-noise ratio for the far-field propagation channel

with a TCS local-oscillator receiver reduces to the near-

field propagation coherent-state transmitter result (recall (4.22))
SNR,,° T 4 . ' (5.15)
Apparently.use of the TCS local oscillator permits the

post-measurement quantum noise to be attenuated to the point

where the transmitter quantum fluctuations dominate the signal-

to-noise ratio. One suspects, therefore, that additional

benefits must accrue 1f we use a TCS transmitter as well as

a TCS lofal oscillator, and indeed such is the case. We omit

the general result for optimizing the signal-to-noise ratio

(5.2) by choice of p,, K, and P, under the constraints (4.9) and

(5.8) in favor of the following simpler special case. When




i Nz satisfies Np>>1, NR>>(l-n1)(Ns+1/2)/2nl the‘optimum signal-

| )

to-noise ratio

°~
SNR_ ~uNs(Ns+1) (5.16)

| ‘ 1s realized by using (4.11)-(4.13) for p ° and K° and (5.11), (5.12)
for pco. Note that (5.16) equals the optimized near-field result
; (4.14).

V.2 Implementation of Spatial-Mode Mixing

4 Having found such a remarkable performance improvement

is obtained through the beneficial spatial-mode mixing on AL of
;ffér-field propagation signal mode and a careiully chosen TCS
receiver mode, we naturally inquire whether the results

are specious. Let us say that there is some finite gircular

region, As, in the z=L plane which includes AL and 1is such that

JASI¢S(§)I2di:1 s (5.17)
S Elels As is the region occupled by the signal field in z=L.
If our recelver measures the ¢s(§) mode on A, rather than its
restriction clL(i) to A;, we would not be surprised to obtain
near-field signal-to-noise ratios, because (5.17) is precisely
the condition that clo(i) propagates from A0 in z=0 to A&
in z=L without loss. The spatial-mode mixing ahalysis of Sec-
tion V.1l therefore implies that the effect of the TCS local
oscillator is to make the AL measurement of blequivalent to

the As measurement of a. This 1s a hollow equivalence if to




generate the TCS mode ¢R(§) on As we require an apparatus that
fills As. We need a technique to generate the desired field
on As from a device that is significantly smaller than As'

As yet, we have not found such a technique, but neither
have we found a general proof of its impossibility. The one
result we have obtained 1s that the obvious answer, a divergent-
beam local oscillator located in front of the receiver, cannot
work. We present a brief treatment of the divergent beam
system, because it illustrates the difficulties encountered
in trying to realize the desired spatial-mode mixing on AL.
Whether or not any practical scheme exists for the TCS mode
generation remains an open and important problem.

The geometry of the divergent-beam.receiver system is
shown in Fig. 3. A TCS source located in the z=L-£ plane(£<<L)
radiates a diverging spatial mode ¢L(§) from a circular
apérture AZ that is much smaller than AL. To achieve the
desired mode mixing on AL,¢2ﬂ§) must give rise to the field
¢R(§) on As in the 2z=L plane. According to the quantum
propagation theorem, this propagation from A, to As must be
(nearly) lossless or else the TCS quantum characteristics
will not be preserved. Thus we require as a necessary condition

the near-field propagation condition
2
(ndzgs/uxot) >1 (5.18)

where dl and ds are the diameters of Ap and As. For typical

parameter values, (5.18) does not pose a serious difficulty.




Unfortunately (5.18) is not a sufficient condition. It does not
suffice, for our present purposes, that there 1; a mode °l(;) that
suffers hardly any  no radiative loss in-propagation :from Ap to As.
There must be a mode ¢£(§) on szthat yields without radiative 1loss
a specific mode, determined from (5.7) with ¢s(§) modified to
include the central obscuration of A; by Ap, on A (see Fig. 3).
Simple recourse to Fresnel diffraction theory demonstrates

that the above problem is over;constrained. The far-field
propagation which governs the signal mode ¢s(§) gives rise to a
quadratic phase curvature exp(-JnIiIz/AOL) in the z=L plane,

and this same pnase curvature persists in ¢R(§). The divergent
TCS beam has a quadratic phase curvature exp(éjnliiz/xolJ in

the z=L plane. Because £<<L and dsz/k°l<<1 have already been
assumed (the latter condition is implicit in (5.18)) the mode
generated by ¢,(x) on the z=L plane will be almost

orthogonal to ¢R(§).

L
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Appendix Transformation of Quantum States

Let 9.__-{9.J : 1<J<N} be a finite set of photon annihilation
operators that obey the CCR. The density operator Da describes
the state or.these modes, so that the state Dai,ror tgé ith mode 1is
obtained by tracing Da over the other modes. The following Jjoint

anti-normally ordered characteristic function is always weil defined

(71, [21]
X§(X,Y*)=Trlp, exp(ivi*ai)exp(-zviai*)] : (A.1)
- i

where Y 1s a complex vector. Through normal-ordering techniques

we can derive the following integral representation for Da (7]

t
0" I x%(l,l*)exp(-fviai )exp(iY*iai)dzx/nN . (A.2)

Let g'-{aj :1<J<N} be another set of photon operators which

are obtained from a by a unitary matrix transformation
a'=va . (A.3)
Because a obeys the CCR and U is unitary, a' will also obey the CCR.
U
The characteristic function, %{1,1*) for a' can be computed from (A.l)

and (A.3) with the result

x%' (1.1‘)'x-:-(§f1,(9+1)*). . (A.4)




Thus, the state p_, of a' is determined by (A.2) and (A.4).

The above re;ults can be formally extended to the case of an
infinite-number of modes. " 'However, in actual applications there is
usually some finite number of modes that suffices.

The quantum propagation theorem (2.33) requires the first

half of the following unitary transformation

F T 1/2 1/2 ke
L] i L ] O [ ] : L ]
. ; . | . ! .
! : i
L] i L] ' L ‘ L] 1
] 1/2 1/2; ;
bn E T'In | (l-nn) an
o ' o : . °
@ % ° { 3 . ! -
f ! i -
® ' L] ; L] x e  ;
o - » : ; : (A.5)
. ‘ 1/2 T i
° ° L] !
. hiin yir2 ; o L i |
n ' n n 1
L] . L] ' L ] Ll ;
t i i
; ; i
3 ; . f . . H
L : J o 2 E > - :—. J
; where bn’ br", a.s c, all obey the CCR. Under the condition 1
|
: Pgo P 8 ® 6 » (A.6) ;

== n n n n

" Where az{a;}, g={cy} , we have from (A.4)




P=® o (A.7)

_where<g;{bj}, and for eachrhpb can be: computed from part of the ' 1
n

two-dimensional transformation

; o [ b 1 : F al/2 (1—n)1/2] r' g ']

e S R

(A.8)

1 . . i P
' . .

where 0<n<l. In this case, (A.4) ylelds

R R T

x5 (v, v =xG (0 2y, 0 2y S1-m 2y, (-m) V2 L (a9)

In terms of the convenient density function p(n)(a,a')5<a|p|a>
for coherent states |a>, we have from (A.9) and (A.2) the convolution
formula
p{Ma,a¥)
(A.

| o800 ((1-n)"1/2(aun?/28), (1)1 2 (a-n/28)9)a%8/m (2m) .

As an example of these transformation rules, consider the case

in which a 1s in the TCS IO’s with parameters W_, V,, and ¢ is in the
" TCS |0>g with parameters U, V.. Then b, from (A.8), (A.9), has the

*.characteristic function

bu7-




-where Y=Y, +]Y5, ) A (e

L o e e

£

Xa(Y,Y#)= exp(-zgnxq/z) ! (A.11)

N ST LA S e LB | [ . FT
* 3 V2 2 i
-uavafx-ucvc(l-n) lu i “mlu, [€(2=n) |
A = a7l LT L (a3

2 2 N * |

lu 19 +lu 1 “(1-n) -uavan-ucvc(l-n)_J
o R

Q = 1/2 . (Acl"‘)

- 4

Equation (A.1l1) represent“s a TCS with added Gaussian ndise and so 1s
a mixed state in general. It can be shown that (A.l1l) becomes a pure

' 30K
state if and only if "a"a"c v i1s real.

c

SRR
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Pig. 1l
Fig. 2
Fig. 3

Figure Captions

Generic block diagram for a single communication link.
Ffae space propagation geometry. et b
Divergent-beam local oscillator geometry. TCS local
oscillator radiates a diverging beam from the AL aperture
in z=L-£, where A, is much smailer than Ap and £ is much

smaller tnan L. This local~oscillator aperture prevents

any signal 1light from reaching the central portion of AL.
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