AD-AG	SSIFIE	B-K ADV DEC	DYNAMI ANCED 1 77 P BKD-	CS INC ECHNOL COOK, TR-3-2	ROCK	VILLE M NPOWER NE, R M	D FORECA ICQUIE	STING.	NAVAL	REQUIR	EMENTS	F0ET		1
	OF AD A048645				DENERATIK	1.4.4				III A		Statements Statements Statements Statements Statements		First 200 1 1 2 2 2 20
NUMBER OF STREET													Ê	
			-			1		and a second		in a survey		in the second se	and the second se	
IIII IIII					J.	Juli Lula		n Indi		t Service	-		SELVEN	
END DATE FILMED 2 -78 DDC														
1										_				

Top Pamela/Cook, Timothy P./Kane Robert/McQuie BHD-TR-3-235 Advanced Technology Manpower Forecasting . Naval Requirements for Skilled Manpower and the Introduction of New Technology . C EINAL REPORT. 22 Oct 76 PROPERTURINE 31 Oct 77, JAN 6 1978 JAN 6 1978 SILV B-K Dynamics, Inc. -15825 Shady Grove Road Rockville, Maryland 20850 15 Prepared Under Contract Number N00014-77-C-0026 30 December 277 65 (DISTRIBUTION STATEMEN Approved for Public release; Distribution Unlimited PREPARED FOR THE OFFICE OF NAVAL RESEARCH 800 N. Quincy Street Arlington, Virginia 22217 387 575

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
BKD TR-3-235	NO. 3. RECIPIENT'S CATALOG NUMBER
Advanced Technology Manpower Forecasting	5.FTYRETOREDUCT & PERIOD COVERED 22 Oct. 1976 - 31 Oct. 1977
	6. BREATHENSIC ST. REPORT NUMBER
^学が過ぎる Cook Timothy P. Kane Robert McQuie	B. CONTRACT OR GRANT NUMBER(*) N00014-77-C-0026
B-K Dynamics, Inc. 15825 Shady Grove Road Rockville, Maryland 20850	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS NR 347-039
CONTROLLING OFFICE NAME AND ADDRESS	1231 December 1977
	13 NUMBER OF PAGES
MONITORING AGENCY NAME & ADDRESS(II different from Controlling Offi	ce) 15. SECURITY CLASS. (of this report)
	Unclassified 15. Declassification/Downgrading Schedule
DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different	JAN 6 1978
KEY WORDS (Continue on reverse side if necessary and identify by block num Manpower Forecasting Forecasting by Disaggregation Forecasting by Linear Programming Manpower Projections	mber)
ABSTRACT (Continue on reverse elde II necessary and identify by block must This study investigates the feasibility and u niques applied to the manpower requirements a planning and programming cycles. A major the towards creating data bases in computer and a from 1950 to the present, 3rd generation comp electro-optics technologies, and 24 weapon sy bases) from 1946 to the present. Three method	usefulness of forecasting tech- and research and development rust of the effort is directed nuclear manpower requirements outer, nuclear, laser, and ystems (aircraft, ships, and odologies are used to forecast —

(income)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Item No. 20 (Continued)

manpower requirements for emerging technologies. Growth curves and historical analogies are used to forecast manpower requirements based on similarities between existing and emerging technologies which are useful in validating more complex forecasting techniques. A system disaggregation technique is used to analogize manpower requirements on a component by component basis compared between an existing reference system and a perceived application of a new technology. A linear program allocates manpower over a 30-year period to forecast changes in the number of skills required by the addition or deletion of technology represented in the 24 weapon system types.

TR-3-235

Advanced Technology Manpower Forecasting

1

11

Naval Requirements for Skilled Manpower and the Introduction of New Technology

FINAL REPORT

B-K Dynamics, Inc. 15825 Shady Grove Road Rockville, Maryland 20850

Prepared Under Contract Number N00014-77-C-0026

30 December 1977

Approved By:

Richard K. Honey Richard K. Hovey Vice-President

PREPARED FOR THE

OFFICE OF NAVAL RESEARCH 800 N. Quincy Street Arlington, Virginia 22217

NTIS	W. a lection
DDC	B ff Section
UNANNOUNCT	
USTIFICATION	
DICTORRELIDEN /	AVAL ARE DY CHEES
DISTRIBUTION/ Dist.	AVAL ABT IT CUDES SP_CIAL

ADVANCED TECHNOLOGY MANPOWER REQUIREMENTS

(]

TABLE OF CONTENTS

			Page
ABST	RAC	T	iv
Ι.	INT	RODUCTION	1
	Α.	Background	1
		 Forecasting Requirement Related Efforts Tasks 	1 1 2
	в.	Problem	3
		 Scope of Effort R&D Cycle and Manpower Requirements Objective 	3 4 5
	c.	Approach	5
		 Micro-Individual Systems Forecast Graphic Analogy System Disaggregation Analogy Macro-Modified Linear Program Technology Areas 	5 5 5 5 6
п.	DIS	CUSSION	7
	Α.	Methodology Selection Process	7
		 Literature Search Data Sources 	7 8
	в.	Graphic Analogy Technique	8
		 Concept Data Application Validation 	8 10 13 15
	c.	System Disaggregation Technique	16
		 Concept Data Application Validation 	16 16 18 19

-1-

ADVANCED TECHNOLOGY MANPOWER REQUIREMENTS

TABLE OF CONTENTS (cont'd)

			Page
	D.	Modified Linear Programming Technique	19
		 Concept Data Application Validation 	19 23 25 27
	ε.	Timing of Forecasts	28
	SUM	MARY	31
IV.	CON	CLUSIONS	32
۷.	REC	OMMENDATIONS	34
BIBLI	OGRA	РНҮ	

APPENDIX

1

1

[]

1

[

[]

[]

0

1

0

13

DISTRIBUTION LIST

LIST OF ILLUSTRATIONS

Page

U

[]

[]

[]

[]

I-1	Naval Manpower Demand and Supply	2
I-2	Functional View of the Defense RDT&E Process	4
II-1	Technological Forecasting Taxonomy	7
11-2	U.S. R&D and Sales Selected Electronics Technologies	10
II-3a	Computer Time Line	11
11-3b	Nuclear Reactor Time Line	11
II-3c	U.S. Navy Digital Computer Manpower Requirements	12
11-3d	U.S. Navy Nuclear Technology Manpower Requirements	12
II-4a	U.S. Navy Nuclear Manpower Requirements	13
II-4b	U.S. Navy Digital Computer Personnel	13
11-5a	Computer Activity (Equipment Shipments) in \$ Vs. Time	14
II-5b	U.S. Commercial Digital ADP Revenue	14
11-5c	Breakdown of U.S. Commercial Revenue for Selected Items	15
11-6	Smoothed Forecasts of Selected Technologies Superimposed	15
11-7	Generic Disaggregation Forecasting Technique	17
11-8	Program Technology Function	18
11-9	System Disaggregation Application	20
II-10	Components Unique to a Mark 76 HEL Radar	21
II-11	Input Vectors of Systems and Navy Manpower Requirements	25
11-12	Changes in Number of Enlisted Personnel Accompanying Addition or Removal of One More System	26
11-13	Enlisted Personnel by Percentage at Various Skill Levels Associated Navy Wide with Various Technologies	27
11-14	Changes in Mix of Enlisted Personnel Requirement	28
11-15a	Combatant Ship Acquisition Event Phasing and Synchronization (Representative)	29
II-15b	Combatant Ship Acquisition Procedures	30

ABSTRACT

The study investigates the feasibility and usefulness of forecasting techniques applied to the manpower requirements and research and development planning and programming cycles. A major thrust of the effort is directed towards creating data bases in computer and nuclear manpower requirements from 1950 to the present, 3rd generation computer, nuclear, laser, and electro-optics technologies, and 24 weapon systems (aircraft, ships, and bases) from 1946 to the present. Three methodologies are used to forecast manpower requirements for emerging technologies. Growth curves and historical analogies are used to forecast manpower requirements based on similarities between existing and emerging technologies which are useful in validating more complex forecasting techniques. A system disaggregation technique is used to analogize manpower requirements on a component by component basis compared between an existing reference system and a perceived application of a new technology. A linear program allocates manpower over a 30-year period to forecast changes in the number of skills required by the addition or deletion of technology represented in the 24 weapon system types.

ADVANCED TECHNOLOGY MANPOWER REQUIREMENTS

I. INTRODUCTION

A. Background

1. Forecasting Requirement. The Navy does not now have an adequate way to measure qualitative and quantitative personnel requirements for ships and aircraft that will be operational in the mid- and long-range periods. Highly competent technicians require long lead times to acquire, train, and assign technical experience even when the Bureau of Personnel knows the type and number needed. The problem is compounded when new systems enter the fleet and inadequate means exist to anticipate the import of advanced technology applications.

With no means to measure the impact of technology, as it is being developed, on manpower there is no feedback to weapons systems developers through program managers who can request alternative designs with a more favorable manpower impact. Currently, manpower impact statements are not felt by systems developers until after DSARC III and as late as three years after Initial Operational Capability when contractor maintenance empirical data is supplied.

The reduction of man-hours required to operate and maintain the fleet is a recognized CNO objective. While certainly in part based on cost of personnel (some 65 percent of the total Navy budget), an even greater concern is the availability or supply of men and women in both numbers and quality. The Chief of Naval Recruiting and the Office of Naval Research have expressed concern over high recruit training attrition and the trend towards proportionately fewer mental groups I and II accessions compared to enlistees during the draft environment. Therefore, a need exists to forecast early in the technology development cycle (late 6.2, early 6.3), the impact of technology on manpower requirements to provide some information on the efficacy of possible applications with a view towards assessment of the aggregate effects of all ongoing development programs and on individual assessments of one project. A means to measure the impact of technologies now being developed on a future Navy which is attracting recruits who are tending to test less well than their pre-volunteer counterparts is needed.

2. Related Efforts. Because of the conflict between private sector demand and military requirements, ONR is actively investigating and defining methodologies to forecast the domestic labor supply and commercial and industrial demand for that labor. The eventual goal is to be able to identify and project the dimensions of the manpower pool available to the Navy over a five-to-ten year planning period. ONR's first step is to link the Urban Institute's Race-Age-Sex-Search-Turnover Model (RASST) with the Wharton Quarterly Model of economic output. The RASST model forecasts employment and unemployment for 16 race-age-sex groups. The Wharton Model produces an industrial breakdown of employment into nine sectors. The joint output will be a five year projection which will produce a demographic breakdown of employment and labor force participation by the 16 race-age-sex categories, as well as an industrial breakdown of employment. Particular attention is

-1-

employment and labor force participation by the 16 race-age-sex categories, as well as an industrial breakdown of employment. Particular attention is being given to the participation rates of ten demographic groups as the likely source of enlistees.

Illustration I-1 depicts the major segments, interactions, and influences on the Navy's ability to man its requisite billets.

The effort herein described is collateral to the above demographic projection efforts, but part of ONR's attempt to develop research tools to meet changing technical, operational, and economic conditions.

ILLUSTRATION I-1

Naval Manpower Demand and Supply

3. Tasks. The goal of this effort is the assessment of the feasibility and usefulness of identifying advanced technology impact on manpower requirements in the future time frames (1981-2001). The initial objective in this effort is the assessment of manpower requirements in quantitative and qualitative terms based on advanced technology forecasts (evolutionary) in an individual weapon system context and a total force context. Specifically the tasks are:

Forecasting Individual Weapon System Requirements Analogy Approach. Perform a historical pattern analysis of the directly related manpower requirements based on two existing technologies' expansion from inception to 1986. In this way, the actual manpower patterns can be checked against projected patterns and an assessment made of the adequacy of the forecasting methodologies used over the historical years. Then analyze the significant commonality of manpower requirements among the existing two technology fields. If sufficient commonality exists, then analogize the manpower patterns of the new technology fields relative to past development of the baseline fields. Finally, perform dynamic trend extrapolation on the baseline fields from 1969 to 1975 and, if valid, apply the techniques to the new technology fields starting in year 1984 with 1976 through 1983 corrected from the static projection, the correction factor being the different policy/allocation sets selected for the out-years.

- Disaggregate Approach. Describe an inquiry structure and appropriate system functional disaggregation to isolate differences among existing technology applications and proposed new technology applications to highlight the critical new component or subsystem as the possible change in manpower requirements.
- Forecasting Total Force Requirements. Describe and validate a forecasting methodology that assesses the Navy-wide manpower impact of the introduction of one or more technologies into the fleet.
- Application of the Forecasts. Identify potential users and the usefulness of advanced technology manpower requirements data in terms of timing, level of detail, and accuracy required.

B. Problem

1. Scope of Effort. The application of technology to ships, aircraft, weapons, and supporting technology is made possible by a concert of technology developed programs beyond the Navy alone. Many major developments made available to the Navy come from DoD, other services, and especially the private sector. The Navy's RDT&E program consists of 600 task areas subdivided into 3,000 work units, each with some potential for changing current practices or current hardware.

The Navy's one-half million man force with 85 ratings or skills, on the whole, interacts to some degree with technology. Of those that directly interface with technology, about 30 percent are operators and 70 percent are maintainers. The total force is derived from an iterative process among DoD's perceived responsibilities, Congressional allocations among competing needs, and the Executive fulfillment of a defense strategy. The Navy's response to its assigned roles and missions is a weapons program balanced between capability and threat. Manpower requirements are a reflection of the need to man the billets of the selected weapons and supporting services.

While there is a direct relationship between the quantity and skills of operators and the number and types of weapons, the relationship is less direct for maintainers. With 70 percent of the enlisted force involved in maintenance and supporting services, a majority of manpower requirements are more directly related to logistics and maintenance strategies than operator needs per se. A significant alteration in maintenance and logistic strategies could have as profound an influence on total force requirements - in both quantity and quality - as major technological innovation. It is more likely than not that the Navy in the year 2000 will have less shipboard maintenance than it now has, and among its land based maintenance team, it will have more civilians comprised of both Navy and contractors than it now has.

This study is concerned with the total numbers and skills required to perform the running of the Navy, but it is indifferent to who does it - Navy military, civilians, or contractors. The Total Force Requirements Forecasting Methodology states what the distribution of skills and numbers could be with the introduction of one or more technologies based on the assignment of skills to old technologies. The support tail is directly related to the platform or technology and not distributed between sea and shore. One Individual System Forecasting Methodology relates one technology and its directly attributable skill without addressing any characteristic distribution or utilization of that skill (nuclear propulsion-nuclear ratings). The other Individual System Methodology concerns itself only with the skill required and not numbers associated with a component or subsystem change due to new technology in an existing weapon system or uniquely identifiable functional grouping of hardware.

2. R&D Cycle and Manpower Requirements. To be useful, a manpower forecast must be able to influence the weapon system developers. Assuming the forecast is reliable and relied on, the manpower impact data must be available when the system specifications can be reasonably altered to function with more or less manpower. Illustration I-2 depicts the RDT&E process and the ingestion points for manpower requirements information in various indicated formats. Forecasts from the Individual Systems Methodologies are useful at 2 and 3 points. The Total Force Requirements Forecast is helpful to the 2 points. The needed time domain, level of detail, and accuracies required by the potential users influenced the selection of methodology approaches and the emphasis placed on their development.

ILLUSTRATION I-2

NEEDED HANPOWER PROJECTIONS

1) Technological Impact In General Manpower Fields

Grade Distribution for New Weepon Systems, i.e., Officer, Petty Officer, Seeman Ratios For A Given New System Like The Aegis Ship

(3) Program Objective Hemorandum, Henpower Which Gives FY DP+2 Years Data

Personnel Distribution By Skill and Grade

3. Objective. This study selected, applied, and validated several manpower forecasting methodologies to assess the feasibility and usefulness of measuring the impact of advanced technology on manpower requirements. Since the literature is not encouraging on the success of past manpower forecasting efforts, this study necessarily limited itself to three methodologies and five technologies with an emphasis on validation of the forecasts.

C. Approach

- 1. Micro-Individual Systems Forecast
 - (1) Graphic Analogy

For purposes of exploiting present technology forecasting techniques on future manpower requirements predictions, methodologies presently in use have been selected. One is a static projection by historical growth analogy combining dynamic trend extrapolation by curve fitting. With this approach, policy and allocation assumptions permit a range of options with each option varying on the number of uncontrollable factors. The reliability of the methodology is measured by the consistency of the results over many iterations of the problem. Ultimately, the goodness of results depends on the forecasters' judgment in quantification. Static projections are constrained by present policy sets and are accepted as reliable for three to eight years in the future. Beyond that point, present policy or resource allocation issues normally develop projections that are less than reliable. Consequently, dynamic extrapolation normally commences at future year points. Dynamic methodologies are characterized by the quantification of controllable factors.

(2) System Disaggregation Analogy

The functional disaggregation of an existing system into its component parts and substituting the new technology into its proper structural form is another static methodology for manpower forecasting which is derived by analoging the existing manpower requirements adjusted for the changes in numbers or skills of manpower associated with the new technology component. It is extremely reliable when there are few component changes and denigrates rapidly when significant numbers of components are replaced because of the difficulties of assessing, by analogy, the synergistics effects of multiple technologies in one system.

2. Macro-Modified Linear Program. This dynamic methodology was selected during the course of the study as a direct result of the Phase II inquiry into the potential users of manpower forecasts.

A standard computerized linear program was modified to allocate manpower skill levels over an array of ships, aircraft, weapons, and bases characterized by their technology. The model assumes an implicit relationship among these variables and a direct relationship among distributable skill levels. For validation purposes, the 85 ratings were aggregated into three skill groups. Total Navy requirements for the years 1945 through 1975 were distributed over existing and planned "technologies" to determine the ratios of high, medium, and low skill groups required for that technology based on past skill distributions. 3. Technology Areas. There are three basic elements to forecasting: methodology, forecaster, and data. A reliable data base is available for the technology areas of computers and nuclear propulsion with respect to both technology expansion and manpower requirements from inception of the technology in the late 1940s to present programs for the near future (1986). The advanced technology areas of electro-optics (E-O), lasers, and phased array radar (PAR) have approximately ten years of history from their basic research breakthrough with five years experience in advanced development. They are presently primary components of programmed future weapon systems. All were selected based on familiarity and potential for impact.

II. DISCUSSION

A. Methodology Selection Process

1. Literature Search. Much theoretical work has been done in both manpower forecasting and technology forecasting. Illustration II-1 depicts the scheme of various possible approaches. The objective in this effort was less methodology development than empirically validating several acceptable forecasting techniques. Two manpower forecasting surveys were relied on for evaluation of the most appropriate techniques: Patter's Methods for Predicting and Assessing the Impact of Technology on Human Resource Parameters, and Kelley's An Evaluation of the State of the Art.

ILLUSTRATION II-1

Technological Forecasting Taxonomy

EXTRAPOLATION

JUDGMENTAL

• Polls • Panels

• Delphí

PROJECTION

Regression
Biological Growth
Economic Growth

ANALOGY

• Correlation

• Curvilinear Correlation

NORMATIVE

NETWORK CONSTRUCTION

Morphological
 Decision Trees
 Functional Array

· runctional Array

MATRIX CONSIDERATION

• Cross Impact

Mission Network
Systems Analysis

• Systems Analysis

Neither these surveys nor other literature reviewed provided a solution to the problem of forecasting manpower requirements based on emerging technology. Nearly all efforts in the field have been theoretical or descriptive. Of 80 dissertations reviewed, only two studies attempted an application using empirical data, but both were unsuccessful due to data limitations.

There is no one best forecasting method, whether extrapolative or normative. The selection is determined by the data of immediate concern; the same technique may produce forecasting errors for other aspects of the data. The selection of a technique required a great deal of analysis of the data and a comparison of various possible methods. It is interesting that much of the effort of forecasting, after data assembly, is aimed at analyzing the forecast errors. Since one major aspect of the effort is the forecasting of manpower requirements for new technology as early as possible in the development cycle, lead time errors of seven years were of practical interest. The second point of interest is that later forecasts were much better than earlier forecasts, indicating that familiarity with the data is important. Finally, while many forecasting techniques tend to be simplistic and, therefore, implicitly less credible, graphic and historic analysis was essential in providing some variables and validating the results of the more rigorous linear program forecast. It is intuitively unwise to use the same forecasting technique to produce variables for a needed forecast.

2. Data Sources. The major part of this effort was data collection and analysis. The data needs of the linear program are comprehensive in scope and detailed in depth. The appendix to this report details the data used in the macro forecast. The following list is representative of the general material used. Section II-D discusses some of the problems with conflicts and non-availability of needed data. One insurmountable problem with the System Disaggregation approach here is the classification of data. Although available, they are not included because of security restrictions.

General Reference Material

- Industry promotional periodicals such as <u>Laser Focus</u>, <u>Elec-</u> tronics, and <u>Computer</u>
- Burea of Personnel's Official Statistics published in MARP 1300.1 (Green Book)
- Department of Labor, Bureau of Labor Statistics' publications
- Unpublished material from Navy Historical Museum
- U.S. Navy official unit diary summary, unpublished memos, Bureau of Personnel Library.

B. Graphic Analogy Technique

1. Concept. The objective of selecting this technique was to develop a growth pattern for existing technologies to provide insight for analogizing manpower requirements to emerging technologies. The primary comparison between the mature technology and the emerging technology was to be by historical analogy. The relative success of this appraoch is independently less important than the insights that it provides for the more complicated technique of linear programming.

Various growth curve models, such as exponential, Gompertz, and logistic were used. The problem of deciding from a set of data which curve is appropriate was decided by plotting on graph paper to arrive at a straight line. Also, slope characteristics were identified. Various slope equations are available, and once fitted, provided the appropriate linear trend. These methods depend upon the smoothness of data in order to deal with two practical problems. There is first the problem of measuring the slope at different times. This is important here because two technologies developed independently at different times are being compared. This is resolved by smoothing with a moving average. Secondly, the fact that the method depends on eye comparison to see which looks most like a straight line can lead to difficulties, especially when the vertical scales are all in different units.

The important element of growth curves is that they can be transformed either to a linear or simple exponential model. The linear form was used as the basis for extrapolation. This method does require a very small random component superimposed on the growth curve to avoid poor forecasts (Gilchrist). All transformations here were based on data with exponential characteristics and were taken by logs. A least squares was fitted and antilogs taken to give the fitted exponential growth curve. The bias, which increases with the standard deviation, proved to be non-systematic. However, standard deviations tended to be small due to smoothing and institutional characteristics of the data, such as fixed percentage increases in programmed dollars for specific technologies.

Most manpower forecasting literature supports using economic tools. In addition to the mathematical tools discussed above, the applicability of various input-output models was considered. Agarwall asserts that manpower demand represents requirements of skill-mix against specific levels of technology and productivity. Changes in technology, productivity, and skill composition go hand in hand, but the interrelations are flexible because of substitution between capital and labor, between different skills, and between education, training, and experience of personnel. This intuitively correct production model was modified by Stainer to include the concept of technical dynamism expressed as an exponential over time. However, Kelley suggests that the rate of change of technology is dependently related to the productivity rate of labor. Therefore, Kelley questions the efficacy of the productivity rate (dollar output per unit input) used in all Cobb-Douglas production function models for manpower forecasting. Kelley concludes that the real difficulty in manpower forecasting is the structural and institutional form of the input data and not theoretical formulations.

The linear program used in the macro technique does reflect the general form suggested by Kelley without explicitly dealing with productivity rates.

2. Data. Information was compiled on four of the technologies of interest both to gain insight into different aspects of their historical growth and to provide data for establishing causative relationships. Illustration II-2 is representative of data compiled from various industrial publications and unpublished government working papers. All dollars here and elsewhere have been adjusted by the Labor Department's GNP inflater.

ILLUSTRATION II-2

U.S. R&D and Sales Selected Electronics Technologies (in millions) (1967 = 100)

							NUCLEAR	INSTRUMEN	TS
	DOD ELECT	RONICS		DIGITAL				FECERAL	GOV'T
EAR	PROCURE- MENT	RDT&E	ELECTRO- OPTICAL	ADP SYSTEMS	LASERS	COMMUNI- CATIONS	INDUSTRY	PROCURE - MENT	RDT&E
951									
953									
954									
955									
956				261.		326			
957	4601.	317.		412.		405.			
958	5072.	575.		259.		366 .	52.		
959	5123.	1067.		429.		180.	61.		
960	5240.	846.		609.		187.	66.		
961	4855.	2258.		903.		772.	96.	11.	5.
962	5468.	3348.		1060.		999.	123.	29.	14.
963	4964.	2125.		1427.		852.	112.	42.	18.
964	4907.	2172.		1588.	4.	978.	113.	65.	36.
965	4402.	1949.	79.	1596.	27.	1291.	137.	70.	32.
966	4596.	2034.	98.	1751.	35.	1211.	142.	67.	33.
967	4916.	2245.	19.	2420.	52.	912.	114.	70.	35.
968	4371.	2188.	22.	2937.	53.	1198.	122.	67.	33.
969	4243.	2070.	47.	3751.	58.	1202.	115.	65.	32.
970	3984.	2111.	31.	2977.	58.	1288.	177.	58.	29.
971	4131.	2138.	33.	3444.	28.	1085.	32.		
972	4152.	2181.	45.	4391.	28.	1333.	35.		
973	3803.	2090.	48.	4931.	29.	1514.	24.		
974	3682.	2237.	54.	4624.	30.	1525.	26.	7.	
975	3789.	2421.	47.	3607.	30.	1404.	28.		15.
976	3948.	2570.	51.	3715.	33.	1513.	28.		35.
977	7051.	4945.	104.	7312.	62.	2912.	52.		73.
978	7570.	5143.	119.	8474.	69.	3239.	55.		79.
979	8089.	5341.	134.	9637.	76.	3566.	59.		88.
980	8608 .	5538	149	10800	82	3903	62		02

0

Computer and nuclear reactor time lines are presented in Illustrations II-3a and II-3b to provide background on qualitative growth pictures and possibly a rationale for variations in known manpower and dollar growths.

ILLUSTRATION II-3a

Computer Time Line

1937	IBM MARK I development began (AIKEN)
1942	MAUCHLY/ECKERT ENIAC began - Army funding
1944	MARK I complete
1945	ENIAC devel. complete - military application
1946	ECKERT - MAUCHLY Computer Corporation - Univac Contract with Census Bureau
1950	E-M Merger with Remington Rand - Univac Division
1951	Univac I given to Census Bureau in 1951
1949	Stored Program on Cambridge England machine 1949
1953	IBM 701
1954	IBM 650
1956	Total value of installed computers - \$269M
	IBM 75.3%, Sperry-Rand 18.6%, Burroughs 4.4%, RCA 1.6% NCR .1%
1957	CDC break-off from Sperry-Rand
1958	Univac solid-state 80 transister technology
1959	IBM 7090 (solid-state 709)
1959	Total value of installed equipment - \$18
1958-1960	Tubes, Transistors
1959	Digital Equipment Company PDP-1 delivered
1959-1965	2nd generation transistor computers
1960	CDC 1604
1964	Honeywell H-200; 1401 Replacement
1964	Integrated circuits (II, Fairchild); third generation
1964	360 IBM - by bid integrated circuits
1965	360s delivered
1966	Integrated circuits competition with other technology
1967	Time-sharing system from GE
1968	CDC 7600
1970	GE-Honeywell merger
1971	RCA sellout to Sperry-Rand

ILLUSTRATION II-3b

[]

0

0

U

1

l

Nuclear Reactor Time Line

1942	Hanferd test bed critical
1942	Hanferd production reactor started
1944	First production reactor
1951	EBRI (Argonne, Idaho) first power generator breeder
1953	Submarine reactor (Idaho Falls)
1955	Nautilus sea trials
1957	Shippingport commercial power generator

Illustrations II-3c and II-3d show the naval requirements for digital computer and nuclear reactor personnel. The Navy does not now have military personnel trained in laser, phased array radar, nor electro-optics as an identified subspeciality.

1

ILLUSTRATION II-3c

U.S. Navy Digital Computer Manpower Requirements

3. Application. Various curve fitting techniques were applied to exponentially and linearly smoothed data to identify the most appropriate curve for each set. Visual identification was tried as well as slope equations. Nuclear manpower requirements were exponential in form, therefore, a dynamic growth projection was made using a least quares method to determine estimates of the forecasted x-axis intercept and slope. A similar procedure was used on computer personnel using a Gompertz curve model. Both results are shown on Illustrations II-4a and II-4b.

ILLUSTRATION II-4a

Ship									
	1								
Tear	SSN	SSBN	FBM	CAN	CGN	DL GN	AS	SUPPORT	TOTAL
1954	45							40	85
1957	135							121	256
58	225	53					30	277	545
59	360	159			121		60	630	1330
1960	495	318			121		118	958	2010
61	720	477		114	242		182	1735	3470
62	810	848		114	242		246	2260	4520
63	855	1537		114	242		278	3026	6052
64	1035	1749		114	361		310	3569	7138
65	1035	1961		114	361		342	3145	6958
66	1170	2332		114	361		342	3618	2917
67	1440	2385		114	361		342	4642	9398
68	1755	2385		114	361		342	5071	10142
69	2115	2385		114	361		342	5411	10862
1970	2295	2385		114	361		174	5529	11172
71	2565	2385		114	482		405	5467	11410
72	2745	2385		114	604		406	5121	11177
73	2835	2385		114	604		406	4839	11163
74	2970	2385		114	723		406	4618	11216
75	3060	2385		235	844		406	4851	11701
76	3150	2385		235	966		406	4000	12141
77	3375	2385		355	1085		418	5346	12904
78	3510	2385	67	355	1085		470	5510	11101
79	3690	2385	134	355	1085	117	470	\$765	14001
1980	3870	2385	201	355	1085	214	470	5160	11260
81	4050	2385	268	478	1085	351	470	5452	13/00
82	4230	2385	268	478	1085	468	470	5610	14539
83	4320	2385	268	478	1085	468	470	5684	16164
84	4455	2385	268	478	1085	46.8	470	6765	15158
85	4455	2385	268	478	1085	468	470	6765	153/4
86	4500	2385	268	478	1085	468	470	6707	153/4
87	4545	2385	268	478	1085	460	470	5010	13440

U.S. Navy Nuclear Manpower Requirements

ILLUSTRATION II-4b

U.S. Navy Digital Computer Personnel

AL AL<	54111	Machine Accounting	Nuclear Veapons	Comunications Technician	Data Systems	Data Processing	
1946 105 105 1950 -0.6 -4.5 51 652 -6.5 51 652 -6.5 51 651 -6.5 51 652 -6.5 51 947 -6.5 51 947 -6.5 52 951 -6.6 55 729 -7.6 55 729 -7.6 55 729 -7.6 56 7.69 -7.6 57 831 27.9 58 100 27.9 59 101 1145 50 729 -7.6 51 1422 708 130 62 1412 708 130 1217 64 2111 156 506 2173 64 2111 157 -7.6 5133 65 1290 1095 861 4161 66 <td< th=""><th>ear</th><th>-</th><th>-</th><th>CTM</th><th>DS</th><th>DP</th><th>TOTAL</th></td<>	ear	-	-	CTM	DS	DP	TOTAL
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1948	105					Int
1950 436 457 51 652 653 52 951 962 54 661 963 54 661 729 54 769 723 54 1041 789 1330 59 1050 1145 1330 59 1050 1145 1330 59 1050 1145 139 2237 61 1225 621 1041 789 1960 1181 1145 550 727 61 1225 621 1091 2257 62 1872 935 330 3137 65 2190 1095 861 2713 353 65 2190 1095 861 275 530 66 2174 1397 194 4166 1500 1175 2557 750 530 67 2072 1611							105
51 952 951 953 52 951 953 53 947 947 54 961 961 55 729 729 56 769 769 57 811 851 59 1061 289 990 1165 2195 990 1165 2195 990 1185 130 990 1185 130 990 1185 130 990 1185 130 1412 935 130 44 2111 156 45 2190 1095 46 2111 156 46 2111 156 46 1300 1079 46 2111 156 500 1176 2657 513 1500 1176 2657 514 1500 1176 2657	1950	438					416
52 951 963 53 967 964 54 9661 729 55 779 729 56 769 811 59 1050 1145 130 59 1050 1145 279 56 769 1310 287 59 1050 1145 270 56 1276 621 270 56 1272 935 330 2137 51 1672 935 330 2137 56 2190 1095 681 273 56 2190 1095 681 273 56 2190 1095 681 2676 358 57 2074 1000 176 2557 630 570 3204 169 344 640 779 651 1970 3204 1645 1064 1325 7028 726 <td>51</td> <td>852</td> <td></td> <td></td> <td></td> <td></td> <td>852</td>	51	852					852
53 947 947 54 661 661 55 729 729 56 769 769 57 811 811 56 1041 289 1330 56 1050 1145 2195 57 811 821 811 58 1050 1145 2195 58 1050 1145 2105 58 1070 205 130 2257 64 2111 156 500 2166 64 2111 156 500 2166 65 2180 1091 - 4580 66 1861 831 891 4106 66 1300 1079 - 4580 67 3304 1649 3414 8407 77 27052 1611 3225 7028 75 1867 1697 8546 7009 <td>52</td> <td>851</td> <td></td> <td></td> <td></td> <td></td> <td>851</td>	52	851					851
54 661 723 55 779 725 56 769 71 56 769 81 56 1040 105 56 1040 115 56 1040 115 56 1040 115 57 1115 550 61 1276 621 1412 706 139 2257 61 1672 935 330 1137 64 2111 155 566 2773 63 1872 935 330 1337 64 2111 155 566 2773 65 2190 1095 681 - 4580 66 1007 1017 - 4580 67 2074 1007 - 4580 68 1009 1645 1049 4146 7009 77 1064 1646 <t< td=""><td>53</td><td>947</td><td></td><td></td><td></td><td></td><td>947</td></t<>	53	947					947
55 729 729 56 769 768 57 811 811 58 1061 289 59 1050 1145 59 1050 1145 58 1222 706 54 1222 706 54 1222 706 54 1222 706 56 2180 1095 56 2190 1095 56 2190 1095 56 2190 1095 56 2190 1095 56 2190 1095 66 1861 831 550 1176 2657 56 1300 1176 570 3304 1669 571 2072 1611 572 1867 7028 573 1866 1864 574 1866 1864 575 1611	54	661					861
56 769 71 57 811 811 56 1061 289 1990 1091 1145 56 1091 1145 57 811 289 61 1276 129 62 1412 701 2816 63 1472 935 330 2139 64 2111 155 566 2773 63 1872 935 330 2137 64 2111 155 566 2773 65 2190 1095 681 4166 64 1201 117 - 4580 65 2374 1207 1217 - 4580 66 1201 127 - 4580 1496 1511 1970 3504 1845 1344 1460 7009 727 7028 7028 7028 7028 7028 7028 <t< td=""><td>55</td><td>729</td><td></td><td></td><td></td><td></td><td>729</td></t<>	55	729					729
57 811 811 56 1041 289 1330 59 1050 1145 2195 1560 1181 1145 520 1560 1181 1145 2195 151 1225 621 139 151 1415 550 2876 151 1412 706 139 2257 153 1412 706 139 2257 153 1512 705 501 2713 154 2111 935 500 2713 155 2180 1091 - 450 156 2190 1091 - 450 1500 1176 2657 5313 56 1500 1176 2657 7233 702 702 170 2055 1611 3257 702 702 170 2057 1631 3257 702 702	56	769					769
56 1041 289 130 59 1050 1145 2195 1640 1181 1145 550 2876 61 1226 621 1807 2876 62 1412 706 139 2237 64 2111 156 506 2773 64 2110 1095 681 616 65 2190 1095 681 616 64 2110 1095 681 616 65 1361 831 691 563 67 1364 1618 3769 681 1970 3304 1618 3769 681 1970 2055 1613 3225 7028 71 2055 1651 3324 7026 7028 73 1500 1375 1325 7028 7026 7028 73 1504 1564 1791 342 66	57	831					831.
59 1050 1145 2195 1940 1181 1145 550 2876 61 12256 621 1847 2875 61 12256 621 139 2257 63 1871 935 130 2171 64 1871 935 130 2171 65 1861 1031 091 - 458 66 1861 1031 091 - 458 66 1861 1031 091 - 458 67 1364 1500 1176 2657 5131 68 13004 1618 3769 868 1970 3304 1669 3414 8407 77 2052 1611 3255 725 7028 1866 7009 708 6794 3514 6794 3546 6794 702 702 702 702 702 702 702 675 <	58	1041	289				1330
1960 1181 1145 550 2876 61 1226 62 1847 1847 62 1412 706 139 2257 63 1872 935 330 3137 64 2111 156 506 2773 64 2111 1565 606 4166 64 2190 1095 681 616 64 2190 1095 681 616 65 2190 1095 681 616 67 1364 1618 3769 681 1970 3304 1618 3769 863 1970 2055 1613 3225 7028 71 2055 1613 3225 7028 71 2057 1631 3225 7028 73 1604 1791 3424 6407 75 1604 1791 3424 6737 75<	59	1050	1145				2195
61 1226 621 1847 62 1842 706 139 2237 63 1872 935 330 2137 64 12180 1055 506 2713 65 2180 1055 506 2713 65 2180 1057 601 2107 65 2166 1397 2017 4166 66 1961 1307 1017 - 460 66 1300 1176 2657 5131 1500 1176 2657 769 861 1970 3304 1669 3414 8407 77 2052 1611 3125 7028 75 1866 1694 3416 7009 76 1866 1694 3546 6734 77 1865 7038 3326 6737 77 1865 7038 3426 6737	1960	1181	1145	550			2876
62 1412 706 139 2257 63 1872 935 330 1317 64 2111 156 506 2773 64 2111 156 506 2773 64 2110 1095 681 4166 64 1861 831 691 - 4580 67 2074 1107 1019 - 4580 69 1304 1618 31049 661 1970 7 4580 1970 3304 1618 3125 7253 7 7 1970 7 7026 7 7027 7028 7 7028 7 7028 7 7028 7 7028 7 7028 7		1226		621			1847
02 1872 935 330 1137 64 2111 156 506 2733 65 2180 1095 881 4166 65 2190 1095 881 4166 65 1990 1095 881 4166 66 2374 1500 1176 2557 69 3004 1618 3769 861 1970 3304 1669 34,14 8407 77 2072 1631 3225 725,25 73 1887 1664 1674 3546 6994 75 1866 1674 3542 6770 7028 77 77 1651 7038 3146 6994 77 77 1651 7038 3142 6997 77 77 1651 7038 3148 6997 77 77 1651 7038 3148 6997 77 77 77 77 77		1412		706	139		2257
•• 2111 156 506 2773 55 2190 1095 801 4166 64 1861 831 891 - 456 65 2190 1095 801 4166 563 563 65 1861 831 891 - 458 563 66 1861 1091 - 458 513 513 513 513 513 513 513 513 516 513 3264 6163 3134 6407 71 2355 7253 725 725 725 7026 7253 7026 7026 7026 7026 7026 7026 7026 7026 7026 7026 7026 7026 7026 7026 7026 7026 7026 7027 7026 714 7026 7027 7026 7026 7027 7026 714 7026 7027 7026 714 7026 714 70		1872		935	330		3137
*** 2/3*0 1095 081 4166 *** 1361 831 091 - 4580 *** 2374 1/07 1/07 5313 *** 2374 1/07 1/07 5313 *** 100 1/17 5313 1/07 5313 *** 100 1/07 1/07 640 1/07 1/07 *** 100 1/07		2111		156	506		2773
67 1961 831 691 - 583 67 1297 1297 1297 - 456 1500 1376 1616 2557 5333 1970 3304 1618 3769 866 1970 3304 1669 3434 6407 71 2355 1613 3265 7253 73 2077 1636 3125 7028 73 164 1644 1740 3444 6407 75 1604 1791 3424 6409 7028 75 1604 1791 3424 6409 7028 76 1604 1791 3424 6409 7028 77 651 2036 3140 6407 77 1651 2036 3140 6407 703 1181 7600		2190		1095	881		4166
67 23/4 1187 1019 - 4580 66 1500 1176 2657 5313 69 3304 1618 3769 6681 1970 3304 1618 3769 6681 71 2355 1613 3265 7233 71 2072 1613 3225 7028 73 1667 1706 3416 6709 74 1664 1664 354 6794 75 1604 1791 3342 6727 75 1604 1693 3052 6681 77 1651 2036 3148 6647		1901		631	891		3583
1500 1176 2657 5333 1970 3304 1618 3769 8681 1970 3304 1669 34,44 8407 77 2355 1611 3265 725 78 2072 1631 3225 7028 74 1887 1764 3414 7009 75 1864 1791 342 6974 76 1864 1893 3522 6931 77 1651 2038 3141 7603 78 1864 1791 342 6947 77 1651 2038 3141 7603		23/4		1187	1019		4580
3304 1618 3769 6681 1970 3304 1618 3769 6681 71 2355 1613 3265 7253 72 2072 1613 3225 7028 73 1867 1706 3416 6709 74 1664 1664 3654 6794 75 1604 1791 3342 6727 76 16646 1883 3052 6681 77 1651 2036 3148 6647				1500	1176	2657	5333
177 1304 1669 34,34 0407 77 2355 1611 37265 7253 77 2072 1631 3326 7028 73 2072 1631 3325 7028 74 1807 170 3416 7009 75 1807 1791 34542 6994 76 1804 1791 3542 6994 77 1851 2038 3148 9037 78 1844 2378 3141 7903	1070			3304	1618	3769	8681
1 2355 1613 3285 7233 72 2013 3325 7028 73 1887 1706 3416 7009 74 1646 1694 3454 6994 75 1604 1791 3342 6737 76 1664 1893 3052 6581 77 1651 2036 3148 6837 78 1844 2378 3141 7603	1910			3304	1669	34.34	8407
71 2072 1631 3125 7028 73 1867 176 3416 7009 74 1646 1871 3456 7009 75 1646 1871 3455 6494 76 1646 1871 3052 6494 77 1651 2038 3148 6437 78 1848 2378 3148 7403	12			2355	1613	3285	7253
74 166 1674 3416 7009 75 1604 1791 3342 6737 76 1604 1791 3342 6737 76 1666 1883 3052 6581 77 1651 2038 3148 6837 78 1844 2378 3148 7693				20/2	1031	3325	7028
75 1000 1071 3546 6074 76 1000 1071 3547 6074 77 1051 7030 3012 6037 77 1051 7030 3014 6037	74			188/	1706	3416	7009
76 1666 1883 3052 6581 77 1651 2036 3146 643 1851 2036 3146 6437 1864 2376 3161 7400	76			1040	1074	3654	0994
77 1651 2036 3148 6637 78 1844 2378 3161 740	76			1004	1/91	3342	6/3/
10 1001 2000 3140 0037	17			1461	2010	3052	0561
1044 (3/6 318) 7401	78			1044	2174	3146	0037
79 1861 2446 1184 1445	79			1861	2445	1105	1403
1960 1866 2409 3199 7553	1960			1844	25.00	1202	2003
				1858	2414	1202	76.34

-13-

Illustrations II-5a, II-5b, and II-5c are representative of attempts to establish visual similarities in historical growths for possibly analogizing manpower patterns. It is interesting that spending patterns on digital computer equipment did not suffer the same fluctuations that other selected industries did in the 1969 and 1973 general business downturns.

Computer Activity (Equipment Shipments) in \$ Vs. Time

-14-

1960

5 vs. Time: 5 - 5.0"

1970

10²m

1945

ILLUSTRATION II-5c

Breakdown of U.S. Commercial Revenue for Selected Items

4. Validation. The growth analogy technique was attempted to forecast existing technology manpower requirements and to relate, if possible, historical similarities with the three emerging technologies. Illustration II-6 indicates relatively similar spending patterns by the Navy for computer, nuclear, electro-optic, and laser technology. The curves are superimposed on the y-axis for comparative purposes. Any similarity is assumed to be structural and is certainly non-stable. The growth forecasts on nuclear and computer manpower had small non-systematic error and the bias acceptable. Both models compare well with static extrapolation based on a ratio of a constant man per unit.

ILLUSTRATION II-6

Smoothed Forecasts of Selected Technologies Superimposed

-15-

C. System Disaggregation Technique

1. Concept. Forecasting literature favorably supports normative rather than extrapolative techniques (Potter). Presumably this is because normative techniques are essentially inductive, specific, and mostly qualitative with the exception of decision network weighting factors. The functional disaggregation technique is normative and descriptive. It starts with a conceived or perceived application for the technology and works backward through the decision process to satisfy stated operational objectives. When the application is found acceptable both technically and operationally, an existing reference system is selected for the functional system comparison. This step is essential in identifying subsystems and components which serve two purposes. The first of which is to match common components, and the second is to isolate the new technology component. Thus, by analogy with manning requirements for the reference system, manpower for the new technology system is described. The manpower requirements for the component housing the new technology is described using standard Ship Manning Document rationale. The latter part of this approach borrows heavily from the Air Force's Qualitative and Quantitative Personnel Requirements Information which is oriented towards task analyses of new systems in the production stage of the R&D cycle. The generic disaggregation technique is depicted in Illustration II-7.

This disaggregation technique has the advantage of being adaptive by closedloop feedback; it easily adjusts to changes in mission or employment of the technology; and it uses documents that are determinate of actual fleet manning. The technique does not address risks inherent in technology development nor is it concerned with the timing of the introduction into the fleet.

2. Data. This technique relies on technical documentation more so than other methods. The needed data comes from many offices, commands, and laboratories - from the Office of the CNO to the Enlisted Classification Branch. The data is broadly grouped into R&D management, reference system specification and ship manning - task analysis data.

Technology is developed in response to operational needs and these needs are stated in CNO's Required Operational Capability (ROC). CNM's response to these statements is the Science and Technology Objectives and the Navy Technical Strategies. If the strategies are ordered by mission, the technology thrust implicitly emerges. The thrusts can then be transformed into technology applications. This process is beyond the scope of this effort and is the subject of an intensive ongoing effort by CNM to establish a priority system for Navy R&D task areas. Until this is formalized, technology applications will have to be independently determined through techniques such as QUEST (NAVMAT-0312) which structures a weighting system to sedate technologies to science to missions. For purposes here, the aim is to identify the operational application of the new technology by considering the aspects of satisfying ROCs, filling technology gaps, and selection over competing means.

Reference system specifications are available through the appropriate program managers and system commands. Functional component descriptions proved to be the workable level of detail as opposed to detailed system specifications. For the example here, NAVELEX produced the component description of the SPG-55 radar which is a subsystem of the Terrier's Mark 76 fire control

P.ST

system. Component description of the perceived laser radar was developed with the assistance of Naval Sea Systems Command.

Ship (Squadron) Manning Documents are readily available and provide a reasonable means to analogize manpower requirements for components common to both the reference and perceived systems. A difficulty arises here in determining whether retraining existing skills, added personnel with upgraded skills, or completely new skills are required, but these are questions of classification and training and the basic question of what skill is needed can be derived.

3. Application. Most forecasting techniques require a great body of data in which familiarity helps shape the outcome. This technique does not have a historical perspective nor statistical basis. To create a framework and working environment before approaching the analysis, basic questions are asked:

- How is the technology defined
- How is manpower defined in terms of a given technology
- At what R&D phase can new technology systems be qualified
- What technologies are relevant to naval systems and manpower
- What are the operating system's characteristics that are determinative of manpower requirements
- To what extent should technology and manpower forecasts be tied to the naval R&D cycle.

For the most part, the questions are unanswerable and all but the first question will not directly influence the forecast. In perceiving an application for the technology, the definitional question may be most difficult. The R&D management documentation does not define technology which appears to be characterized more likely by funding source. Illustration II-8 depicts a taxonomy by program function, all of which terms describe work units under the heading of technology. This suggests that what is described as technology may not be technology at all.

ILLUSTRATION II-8

Program Technology Function

Fleet Operational Strategies	Characteristics Analysis
System Utilization Strategy	System Development
Methodology	Component Development
Application Identification	Interface Characteristics
Technology Based Large-System	End-Functions MOE Refinement
Application	Related System Support Development
Application of Technology or other Measurements	Support Data Base
Central Effects Studies	Material Studies
Subsystem Utilization in Large	(Sub) System T&E
context	Performance Standards
Feasibility Studies	Futura Technology Sustana Analysia
Simulations	Extra-rechnology systems Analysis
	Administration

Illustration II-9 presents the expanded model used to assess high-energy laser (HEL) technology. The HEL application to radar satisfies a specific General Operational Requirement and the technology thrust is given focus by the Technical Strategy. The state of the art of HEL precludes it to a shortrange system. Therefore, the Terrier's Mark 76 fire control system's SPG-55 radar was selected as the reference technology. The components for the HEL application were specified and compared with the functional description of the SPG-55. Illustration II-10 depicts those components deemed to be unique to an HEL radar set. The Ship Manning Document for a DLG with a Terrier system requires Electronic Technicians, Fire Control Technicians, and Radarmen. These ratings do not now receive training in HEL which replaces the SPG-55. The coherent receiver, analog processor, and modulator are well within the skill characteristics of general electronics ratings. The oscillator and laser generator are not. Specific task analyses must be performed to determine the estimated number of laser qualified personnel who will be needed on a given ship.

4. Validation. The disaggregation system is self-validating in accepting the need for specific skills given an applied technology. Errors can occur in two critical areas. First, if the technology is misapplied, then an invalid comparison will be made with a reference system. Second, insufficient information may be known to accurately specify the components of the perceived system application. Therefore, validation relies on the judgment of the technology developer. Here the validity of the forecast was accepted based on a consensus of naval laboratory personnel working in laser research.

D. Modified Linear Programming Technique

1. Concept. This project explored two approaches: an individual item of technology analysis and a Navy-wide analysis which involves examining the Navy's requirement for manpower at various skill levels for each year since 1943 and relating the number of personnel from each skill level associated with each technology system active in the Navy.

This section describes the research carried out in forming the concept of the approach in developing a macro-forecasting technique. Three tasks will be described. The first of these is determining, for the total Navy, the number of people required in each skill level. The second task is extending and correcting the counts of the number of each technology system for the years examined. The third task is the use of several different statistical tools to relate requirements to particular weapons systems.

For this preliminary analysis, 24 weapons systems were defined ranging from battleships to third generation computers, but they were primarily weapons systems.

Data on personnel requirements were accumulated only for the years 1944, 1952, 1957, 1962, 1967, 1972, and 1977. Estimates of personnel requirements for the other years were made by interpolation. Data on numbers of technology systems were accumulated for each year, but there were large gaps in some of the data series; these gaps were filled by interpolation.

System Disaggregation Application

1.00

the second and

Same F

The analysis involved apportioning the total number of personnel of a particular skill level and a particular year among the various weapons systems that were operational during that year. This was done by writing for each year an equation of the following type:

 aX_1 , + bX_2 + cX_3 + ... + xX_{24} + z = R₁

In the above equation, the X's and R's are counts that differ for a weapon system from year to year. The lower case coefficients are the numbers of personnel associated with a weapon system as long as it is in the force and which does not vary from year to year. The z is the number of personnel in a particular year between the personnel required and the personnel that could be allocated to all technology systems being examined. The actual formulation of the analysis was somewhat more detailed than this brief description, but it is the essence of the approach.

Estimating the mix of required skill levels was arrived at by relating the skill level of each rating to the grade level of its non-military counterpart in the Navy civilian work force. The skill required of everyone in a rating was assumed to be the grade of the journeyman or fully qualified technician as specified by Civil Service Commission job evaluation standards. For the preliminary analysis, moreover, an assumption was made that the skill level of the ratings has not changed since 1943. That a steward in 1943 required the same level of skill as a mess management specialist in 1977 seems plausible. The same is likely to apply to the rating of boatswains mate. It is less likely to apply in the case of the quartermaster rating while in the communications and electronics ratings, the assumption may even be less plausible.

It was also assumed that the skill of a rating is the skill of its journeyman job. The historical patterns have remained relatively constant, therefore, the assumption is reasonable and should have the effect of nullifying any differences in skills mix from considering apprentice helpers or foreman (as their military equivalents) as different skill levels from the workers. The identical grade structures of all ratings, however, may not have been the case in the past, and this relation should be examined in future work.

An even better estimate of skill level for a rating might result if some of the Navy's computerized tools for personnel evaluation were used. There is an elaborate procedure for evaluation of the complexity of each military job, with the tasks performed by a rating evaluated by industrial engineers and stored in data banks. The contents of this data bank with respect to civilian grade levels appears to be the logical place to begin evaluating the complexity of manpower requirements. The overall system is called the "Computerized Factor Evaluation System" (CODAP), and it should be employed as far as possible in future efforts. Another source of skill level evaluations is the decisions by the Navy Department and the Civil Service Commission about comparability between various military ratings and civilian jobs. One such decision was used here; it related to the Data Processing rating.

2. Data. The data used were, as mentioned above, incomplete in places. This was particularly true in terms of the various categories of aircraft examined. Because data for recent periods are classified, they were not used in detail here. Aircraft data for earlier periods are available in great detail, but tabulating them in usable form will take an understanding of both model types and the way aviation units are deployed. In the older reports, it is difficult to determine just what category of aircraft is being referred to, and in some places the definition of a category may have been changed without it being noted in the report.

The distinction between the total fleet of aircraft (including pipeline and planes in reserve storage), operational aircraft (including planes on loan to embassies), aircraft in operational units (including planes deadlined and in maintenance), operating aircraft (including training), and aircraft in combat and combat-related units (less than 10% of the total) becomes confused easily.

The aircraft categories themselves need additional thought. A distinction was made between combat, support and non-prop type planes with each category broken down into two classes (or variables): the older propeller driven type and the newer jet or rotary wing type. Once a start was made with these six aircraft variables, they were held constant, but the data discovered could probably be extracted more easily if different categories were used.

Data on ships in operation are also available in large quantities, and many of them have been published in quite widely used publications such as Jane's "All the Worlds Aircraft," Tabey's "Ships and Aircraft of the U.S. Fleet" and "Tlottes du Monde." Other data on ships are available in the Office of Naval History, the Navy Library, the Navy Aviation History Office, and the history offices of the various material commands. None of the sources agree, and the differences involved could contaminate future analysis because the number of ships involved in recent years has been small. Since an aircraft carrier is difficult to hide, the differences must be attributable to the way the data are reported rather than the condition of the fleet. Some reports in the past left some classes out of their final document while others included them. Research and special project submarines are examples of this. The change in the definition recently of cruisers, frigates, destroyers, and escorts makes careful and detailed tabulation necessary to get data that are comparable from year to year. In one place, the data used had to be based on actual hull numbers to get consistent data. Another area where some data used one definition and some used another relates to computers and the distinction between a "system" and a "mainframe."

Once the data have been assembled in a complete and fully understood table, they are ready to analyze. Even though these raw data do not answer the specific question posed for the study, they are nevertheless interesting and thought provoking. In this way, defects would be spotted and additional data brought to light. This requires preparation and definition of the variables and detailed footnotes of the documents where each number is based on their location. Each variable, if plotted, would convey an otherwise unavailable picture of what has happened to the Navy in the last 35 years.

To relate numbers of people to number of systems, 34 years of counts of the number of technology systems and counts of the number of skill levels were prepared. Systems and skill level mixes change from year to year, but the rates of changes are different for each. One system, such as battleships, gradually phases out, while another, such as nuclear power carriers, phases in. In a particular year, each new system phasing in increases requirements while each old system phasing out decreases them. As a result, the number of personnel at a skill level changes from year to year. If the system of generating requirements is reasonably accurate, the above observation provides the basis for moving from the known total Navy requirements to the unknown requirement for an individual technology system. As long as there are more years than systems, the individual requirements may be estimated by solving some sort of series of simultaneous equations.

Several methods of doing this are available. All of them involve apportioning or allocating the number of personnel, known as a single total for the Navy as a whole, among the individual technology items, known as a total for each system. In algebraic terms, this is equivalent to the following expression:

 $aX_1 + bX_2 + eX_3 + \dots + xX_{24} + z = R$

where: $X_1 = #$ of systems of type 1

- a = # of personnel of skill level associated with
 system 1
- R = number of personnel required for a year
- z = number of personnel unaccounted for

With available data, 34 such equations can be written. Several methods of solving them simultaneously are available. Ordinary algebraic methods could be used, or mathematical programming or regression analysis.

For this particular formulation of a problem, algebraic methods and regression analysis are not appropriate, because we know something more about the data than is stated in the above expression. It is known that the coefficients cannot be negative or zero. If a technology system is operating, it must have some personnel to operate it. Any solution that produces negative coefficients is bound to be wrong in terms of operations, no matter how right it may be in terms of mathematics. With imperfect data, negative coefficients are often obtained so that a solution method must be chosen that will not produce negative coefficients. This leaves mathematical programming as a practical solution method. 3. Application. Linear programming is the most widely available tool, although other methods of solution could be examined and experimented with. In the work of this project, the model was formulated as follows.

The linear program used is General Electric's LINEP\$ using a two-phase simplex method.

The model consists of a basic matrix drawn from the 24 systems enumerated in Illustration II-11, three vectors of manpower requirements data (one for each skill level), a vector of crew sizes, an identity matrix with 1's in the prin cipal diagonal, 0's elsewhere, and a matrix of 1's. Each component has a different purpose, and they may be put together in different ways to change the rationale of the model, reduce its size, and eliminate redundancies and contradictions in the logic. The columns of semi-skilled, skilled, and highly skilled manpower requirements are tabulated at the right of the illustration. The counts of systems are tabulated in the other columns. Equations were written specifying minimum number of personnel and all skill levels associated with a particular class of ship. Vector J is the objective function; the solution for the objective function is specified here to account for as many personnel as possible.

ILLUSTRATION II-11

-	MTTLE-	CN	IL LAS			CUISERS		DE	THOYER	-													-	00	TERS		-	
100	Seres .	-			-		-		CALES	OTHER.			-	-								A CONT	BAC PR	240	100			•
	CRUISERS	L HELO	CONV	HITL	an	RIGHTLE	RISSILE	-	HIGHTLE		CONV	BITT	-		100	-	100	-	-	-				GEN	GEN	SENI	STLLED	HIGHLY
		•										·····		-		-												
43	23	18	12	0	52	0	0	504	0	• 3000	180	0	0	*1200	0	• 370	0	0	•17	•7021	0		.4900	0	0	769	392	347
44	27	64	25	D	65	0	0	714	0	4551	235	0	0	*8200	ō	*660	ō	0	29	*9652	0		• 20 30	0	0	1357	683	606
45	27	71	28	0	79	0	0	732	0	7034	253	0	0	*9000	0	.900	0	5	• 29	*8370	0		•2100	0	0	1494	777	717
46	10	10	15	0	• 35	0	0	.400	0	• 2000	•163	0	0	*6800	ō	*900	Ó	22	•19	•5725	0		.960	0	0	418	209	209
47			14	0	• 30	0	0	• 250	0	*590	•100	0	0	.5500	ő	*610	Ó	30	•15	• 3941	0		•490	0	0	208	111	106
48	2	7	13	0	25	0	0	146	0	485	.97	0	0	. 3850	*50	.560	0	22	12	3074	0		• 340	0	0	179	90	90
49	1	7	11	0	18	0	0	155	0	452	.93	0	0	•2380	*120	*500	ě.		16	1459	0		•236	0	0	206	99	107
50	1		22	0	13		0	147	D	386	.90	ō	0	1880	262	.480	ō	68	18	1066	0		209	0	0	162	79	
51	1		17	0	15	0	0	244	0	608	•115	ä	0	1861	437	. 180	0	-	22	1265	97		• 360	0	0	324	152	185
52		10	19	0	19	0	0	299	0	641	•125	ō	o	2749	778	.440			12	1749			• 380	0	Ó	354	141	226
53		10	19	Ó	19	3	0	101	0	657	•120	ō	0	2382	1125		•2	170	11	2164	183		• 340	0	0	332	162	212
54		1	20	0	10	0	ō	304	ō	650	+119	ĩ	ō	2449	1117			270	28	2055	199		• 300	0	ő	295	148	199
55	1	1	23	0	17	0	â	311	ō	444	+115	;	ä	1096	1610	.475	. 25	574		1714	476		•260	ō	0	261	111	186
54	1	1	24	0	16	0	0	320	0	499	.110	:		1781	1780			266		2174	147		• 260	0		261	110	201
\$7	2	i	27	o i	15	0	i	117		474	.100		ĩ	1440	1944			127		2087	417		•260	0		257	115	202
-	ā	i	26		11	i	;	116		421	.101	:		10.14	2210			412		1454	41		•260	0	ő	217	124	201
		;	24		10		:	204						10.54				410	15	1227	475		•260	70		226	121	204
60		;	21					267	2	-01	102	:		1 360	1100			40.2	10	1060	450		•250		ő	218	120	207
61	0		25	ō			i	221	11	401	94		:	1080	1544	****	-	476		948	486		• 260	120	0	215	127	210
47	a		26	a			;	217	22	474		1.		1040	1004			412	ó	829	517		•250	189		220	115	222
41			25			11		219	22	412				1070	15.14			491		710	\$17		242	216		211	140	214
			25					214		470				1028	1401					1001			224	279	ő	204	141	241
			26	ő	;	20		221				19			1474			400		1003			+217	157	ň	224	165	270
			22		;	22	:	216	14	455		20		113	1400					740			.240	411	21	210	171	272
47			22		;		:	215			70			105	1450			501			100		247	541	61	216	178	271
			22		;		;	22.5				20			1400			474		143	-06		247	675		219	178	287
	:						:	230							16.20	. 101		101					214	206	174	188	164	755
10	:							170						474	1617			554			74.9		21.4		218	161	153	211
71		-		:			:	171		144		**		-03	1333			506		305			202	194	225	144	141	230
										340	20	23		-0	-1450			500		-035	-3/3		100		114	147		120
		-					:			2/3		57		-0	-1400			241		-530			140				111	204
		:		:		-	:	115		134				-0	11120			411	:				147		242		170	197
	0	!		1	g					210			42	•0	-1370	- 303		433		-730	10.70		141			113	1.00	107
-	0			-	3		3		45		11	34	41		-1310	- 200	-100	423		- 70								
-	0	!	11	1	1					164			41	.0	•1250													
"	0	1	13	2	0					179			41															

Input Vectors of Systems and Navy Manpower Requirements

With data arrayed by estimates, a series of runs was made for analysis. They are summarized in Illustration II-12. In each run, less than five technology systems assumed a non-zero value showing that most of Navy technology at any given time is closely related to a few items. It also shows the results of using incomplete and dummy data as well as the need for some ingenuity in formulating the model.

ILLUSTRATION II-12

Changes in Number of Enlisted Personnel Accompanying Addition or Removal of One More System

RUN	WEAPON SYSTEM CHANGE	SEMI SKILLED	SKILLED	HIGHLY SKILLED	TOTAL
2	GUN CRUISERS	11,667	5,556	6,111	23,334
	NUCLEAR CARRIERS	65,000	65,000	10,000	230,000
5	BATTLESHIPS	29,987	15,225	12,015	57,227
6A					
7A	BLIMPS	4,723	2,342	4,332	11,397
	NUCLEAR CARRIERS	65,000	65,000	100,000	230,000
7	3D GENERATION COMPUTERS	511	511	787	1,809
6	DIESEL SUBMARINES	526	385	769	1,680
	FBM SUBMARINES	3,017	2,946	4,428	10,391
68	BATTLESHIPS	26,864	13,027	8,702	47,963
	BLIMPS	3,375	1,244	670	5,289
	DIESEL SUBMARINES	526	385	769	1,680
	FBM SUBMARINES	3,017	2,946	4,428	10,391

To say that items of Navy technology are closely related to each other is to say at the same time that the variables in Illustration II-11 are highly correlated with each other. This problem arises frequently in statistical analysis and a number of procedures have been developed for dealing with them ploying a nonlinear programming code. This would be the equivalent of regression analysis with the possibility of non-negative solutions illuminated.

Another approach to analyses of highly correlated data would be formulating the model in a different way. It is now formulated in terms of a personnel balance: the sum of the people associated with each item of technology must balance approximately the sum of the requirements at each level of skill. An alternative would be a solution in terms of overall effectiveness: the sum of the effectiveness of people associated with each of the items of technology should equal the sum of the effectiveness of people associated with each level of skill required. This would involve estimating the coefficients of both sides of the algebraic expression that is the foundation of the model. This can be done, but it involves a completely different solution methodology than discussed above.

Other alternatives of both formulations and solution methodologies are available.

4. Validation. The model is forecasting unreasonably high changes in total number of personnel required with one change in a technology. As stated above, this is due partly to the structure of the data base, but mainly to the personnel balance requirement. What is very significant is the allocation of the relative mix of skills to each technology. Illustration II-13 distributes the allocation of skills by percentages associated with a few selected technologies. Retired technologies tend to have been allocated a skill mix of over 50 percent semi-skilled with the remainder evenly allocated to skilled and highly-skilled. When skill groups are summed by percentage over all technologies and all years they validate extremely well with Illustration II-14 which are plots of the skill group percentages of actual requirements. For example, 3rd generation computers entered the fleet in 1971-72. When the allocated percentages are compared to the actual average mix it compares favorably with 30, 28, and 42 percent for semi-skilled, skilled and highly-skilled respectively.

ILLUSTRATION II-13

Enlisted Personnel by Percentage at Various Skill Levels Associated Navy Wide With Various Technologies

	Percentages*	•
Semi- <u>Skilled</u>	Skilled	Highly <u>Skilled</u>
52	27	21
50	24	26
31	23	46
63	24	13
28	28	44
28	28	44
29	28	43
	Semi- <u>Skilled</u> 52 50 31 63 28 28 28 29	Semi- Skilled Skilled Skilled 52 27 50 24 31 23 63 24 28 28 28 28 29 28

* Personnel for a technology include operators, crews, closely associated weapons, support, and related activities in the U.S. Navy.

ILLUSTRATION II-14

E. Timing of Forecasts

The timing and form of needed manpower requirements forecasts vary with the user and his position in the development process or acquisition cycle. OP-O1's asserted need for a macro-level forecast of advanced technology manpower exists before the technology is specified as a component or system. The forecast of highly-skilled, skilled, and semi-skilled requirements will provide a rationale for discussions with program sponsors on trends in skill mix, the aggregate impact of independently generated future requirements, and OP-O1's relative ability to balance authorizations among air, sea, and subsurface sponsors.

Weapon designers have no express need for manpower skill forecasts, but can use data on the supply of naval personnel by human factors engineering characteristics. These human factors are design points for component development, independent of any association with a system. Usually a system is characterized in the development cycle by its critical component which will be combined with previously specified components. The complement of components determines manpower requirements which suggests the need for forecasts may be well before the critical component technology entrance into 6.3 if it will likely result in a system increment as opposed to a replacement system.

Manpower forecasts for the major system acquisition cycle takes several different forms characterized by successively greater detail with respect to numbers and skills required. Illustrations II-15a and II-15b depict a representative program acquisition and the points and types of manpower data needed. Only points 1 and 2 are true forecasts. Points 3 and 4 are relatively late in the cycle and require timely action to address needed changes. Illustration II-15b explains the significant terms in II-15a.

ILLUSTRATION II-15a

Combatant Ship Acquisition Event Phasing and Synchronization (Representative)

ILLUSTRATION II-15b

Combatant Ship Acquisition Procedures

KILESTONES	-	2		
RESPONSIBILITY	CONCEPTUAL	VALIDATION	ENGINEERING	PRODUCTION
ONR/NMC	Feasibility Studies Concept Generation Design to Cost Goal	Preliminary Design Refined Design to Cost Goal	Contract Design 1st Ship Spec Design to Cost Ceiling	Construction Fitting Out Shakedown
Annao	Force Studies Target Directive Conditioning Paper Operational Reguire- ments ments ments	Tactical Operational Requirement TOP Level Requirement Decision Coordi- nating Paper Update	Tactical Opera- tional becurements Recutionating Paper Update (3)	Operational Exceptance
FUNDING .	RDT&E 6.3 Shipbuilding and Conversion Navy Conceptual Base Line	KDT&E 6.3 Functional Base Line Shipbuilding and Conversion Navy 2 Budget	RDT&E 6.4 Allocated Base Line	RDT4E 6.4 6.6 Production Base Line Operational Support Base Line
PROJECT MANAGER (RM)	Development Proposal Advanced Procurement Plan Ship Acquisition Plan Outline 1st Test & Evalua- 1st Test & Evalua- tation Master Plan	Top Level Specs. Ship Acquisition Plan Integrated Logistic Plan 2nd Test & Evalua- tation Master Plan	Jrd Test & Evaluation Solicitation Package	Ship Acquisition Project Manager Transfer
RM/PARM	Ship Project Direc- tive Combet System Design Requirement Design	Long Load Time Specs. Combat System Manage- ment Plan Ship Project Direc- tive Revision	Combat System Design Ship Logistic Ship Logistic Maragement Flan Material Ship Project Directive	Combat System Tactical Operational Manual Program Integration Package
Participating Manager (PARM)	Computer Program Life Cycle Management Plan	Computer Program Life Cycle Management Plan	Computer Program Product Base Line	Computer Program Operational Support Dase Line

III. SUMMARY

1.415

This study investigates the feasibility and usefulness of forecasting techniques applied to the manpower requirements and research and development planning and programming cycles. A major thrust of the effort is directed towards creating data bases in computer and nuclear manpower requirements from 1950 to the present, 3rd generation computer, nuclear, laser, and electro-optics technologies, and 24 weapon systems (aircraft, ships, and bases) from 1946 to the present. Three methodologies are used to forecast manpower requirements for emerging technologies. Growth curves and historical analogies are used to forecast manpower requirements based on similarities between existing and emerging technologies which are useful in validating more complex forecasting techniques. A system disaggregation technique is used to analogize manpower requirements on a component by component basis compared between an existing reference system and a perceived application of a new technology. A linear program allocates manpower over a 30-year period to forecast changes in the number of skills required by the addition or deletion of technology represented in the 24 weapon system types. IV. CONCLUSIONS

A. Task 1

Historical analogy allows a few "casual" similarities between past and future characteristics to control the predicated outcome so as to be analogous.

Historical analogy allows the introduction of forecasters bias by limiting the outcome to a limited set of existing comparison technologies.

Projection by analogy is well suited for technologies that will be constrained by known policy sets with respect to one or more causative characteristics such as the number of platforms displaced or mandatory contractor maintenance.

B. Task 2

Functional disaggregation is the most reliable of the three methodologies and is equal to the reversed pruned tree network analysis in clarity and exactness.

The functional disaggregation methodology is limited to a single system at a time step-wise analysis; it addresses first eschelon personnel only.

The disaggregation methodology is useful only when the application of the new technology can be reasonably perceived, usually mid-way during the advanced development phase.

Functional disaggregation methodology requires a higher degree of expertise with the involved technology than most other forecasting techniques.

C. Task 3

Total Force Modified Linear Program Methodology is more favorable to the manpower planner than individual systems methodologies for its ease of use, its generalized expandable data base, and apparent reliability.

The Modified Linear Program is of little use to the weapon planner's assessment of his system's explicit manpower requirements.

The Total Force Methodology percentage allocations of gross skill groups are very reliable forecasts based on the comparison of the present requirements.

A 20-year span exists between the introduction of technology into Advanced Development (late 6.3), which coincided with commercial introduction, and a specification of a skill explicitly related to that technology.

The All Volunteer Force policy of the elimination of jobs perceived as less desirable has influenced the current ratio of 75 percent of total manpower requirements being deemed skilled or highly skilled.

Despite the CNO policy goal of reduced manpower, in part through technology, the great diversity of present and future technology tends to narrow billet classification and therefore broaden skill requirements.

D. Task 4

1

The weapon planner's needs for human factors data is decidedly different than manpower planner's needs for assessing the impact of the technology on force levels and skills.

The weapon designer's orientation of engineering a system towards such things as specific color and space acuity, eye-hand coordination, upper body strength is not supported by the methodologies herein, nor anywhere in the literature.

Manpower planners need force level by skill forecasts in advance of technology completing exploratory development.

V. RECOMMENDATIONS

The macro-linear programming forecasting technique should be further exercised with specific attention to the following tasks:

- Complete the historical table of systems counts.
- Consider redefining the aircraft as "aircraft in squadrons."
- Determine whether the impact of a vessel on requirements should be considered as beginning on date of commissioning or date of launch.
- Extract from the files, the manpower requirements for all 34 years under consideration.
- Rerun the data as was done here using a larger linear programming routine, preferably the routine employed by Control Data Corporation.
- Explain the effect of solutions with alternate formulations, transformations of data, and alternate solution methodologies.

BIBLIOGRAPHY

-

-

[]

[

[

BIBLIOGRAPHY

---, Manpower Impacts of Industrial Technology, New York State Department of Labor, 1970.

Agarwal, S.P., Manpower Demand, Meerut, India, 1970.

Bartholomew, D.J., et al., Some Statistical Techniques in Manpower Planning, CAS Occasional Papers #15, HM Stationary Office, London, 1970.

Blaug, OECD Occupational and Educational Structures of the Labour Force and Levels of Economic Development OECD, 321 pp., 14 refs. 1970.

Demaree, R.G. and Marks, M.R. et al., Development of Qualitative and Quantitative Personnel Requirements Information, Technical Report No. AMRL-TDR-62-4, December 1962 (AD 296 997).

Doeringer, Peter B. and Prose, Michael J., <u>Internal Labor Markets and Man</u>power Analysis, Heath, Massachusetts, 1971.

Dunnette, M.D., <u>Work and Non-Work In The Year 2001</u>, University of Minnesota, California, 1973.

Freeman, C., This Measurement of Scientific and Technological Activities, UNESCO Statistical Reports and Studies, 63 pp., 33 refs. 1969.

Gilchrist, W., Statistical Forecasting, John Wiley, New York, 1976.

- Haase, P.E., <u>Technological Change and Manpower Forecasts</u>, Industrial Relations (California U), 5(3)59-71 14 refs. 1966.
- Jackson, William, Lord Jackson, <u>Manpower for Engineering and Technology</u>, British Association for Commercial and Industrial Education, London, 1969.

Kelly, S.C., Chirikos, T.N., and Finn, Michael, G., <u>Manpower Forecasting in</u> the U.S.: An Evaluation of the State of the Art, Center for Human Resource Research, Ohio State, Columbus, 1975, (for Dev. Soc. Sys. and Human Resources, NSF).

Laslett, R.E., <u>A Survey of Mathematical Methods of Estimating the Supply</u> of and Demand for Manpower Engineering Industry Training Board, Occasional Paper No. 1, London, 1972.

McCarthy, M.C., The Employment of Highly Specialized Graduates: A Comparative Study in the U.S.A. and the U.K., D.E.S. Science Policy Studies, 3 HMSO, 36 pp., 31 refs. 1968.

Potter, N.R. and Dieterly, D.C., <u>Methods for Predicting and Assessing The</u> <u>Impact of Technology on Human Resource Parameters</u>, AFHRL-TR-74-71, August 1974.

Stainer, G., <u>Manpower Planning: The Management of Human Resources</u>, Heineman, 1971.

APPENDIX

[]

0

0

U

[]

0

0

[]

0

0

[]

[]

0

[]

[]

0

Π

15.19

CODES USED IN DATA TABLES AND ON CHARTS

A.	Chart	Office of Naval History
Β.	Report	House Armed Services Committee
c.	Tables	DoD Comptroller
D.	Book	Janes
Ε.	Pamphlet	Navy Comptroller
F.	Book	Navy Aviation History Office
G.	Book	Janes
н.	Report	GSA
J.	Slides	Navy Data Systems Command
κ.	Report	Sec Navy
L.	Memo	For Navy Program Planning Office
Μ.	Charts	BuPers
N.	Report	Admiral King
Ρ.	Book	U.S. Warships WWII
Q.	Report	Naval Avn Log Summary
R.	Book	Naval Avn History Office
s.	Tables	DoD Comptroller
Τ.	Journal	Intl Defense Review
U.	Tables	DoD Comptroller
٧.	Book	Morrison
W.	Paper	Tim Kane - Morrison
Y		See 0

U

I

[]

[]

[]

0

1

[]

0

DATA TABULATIONS

822040116444660 --(X) 23 (KNP) 88 CB -28 -28 BATTLESHIPS AND BATTLECRUISERS (1) 23 (E) BB -(Q) CB BB --(C) --(B) --(¥) 88 SHIP YEAR 43 45 55 60 65 20 75 3

[]

[]

U

[]

[]

[]

Π

Point line

- Augusta

[

Π

1	42 CL								
[] .	(K) CA 17								
[]	~ CB								
[]									
[]	FFG (New Def)				41	40	50	99	64 64 64 64
[]	(E) DL DLGN DLGN				2	25	31	25 27 28	9 6 2
[]	Vew Def)								
	5-				14	28	34	28	27 26 27
	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC				14	16	15	01 0 0 0	<i></i>
	DDS DLGN CGN						~ ~~	, n n n n	n
	(D) CCG CLG CLG						99		n
	CL						44	10000	40
Π	sers								
[]	(Cruis				11213	14 14 14	13	20000	27 23
IL SI	-								
RUISE	DLGN				00		~~~	J	
	(B) 0LG* 0LG*				16 18	8888	33	2	
П	CC				44	~ ~ ~ ~ ~	~~~	,	
[]	(A) CB CA,CL CDG,CLG CG,CGN	71 ? 25 18	នានទទន	222995	13 13	14 14 14	5 E E E	299	
	Ship Year 43	45	50	55	99	65		2	75 77

the address of the state of the

		•	DLGN		ო ო ო ო ო ო
		•	CLG DLG FFG		
u u			299F	52 65 79	440000040111
1	(pa	S	СĞ	52 65 79	
U	ontinu		ป	19 0 33	
[]	ers (Co	KNP)	CA	110-10	
	Cruise	-	8	000	
[]		5	(N) -		
Π		5	rip FI		
		(1)	5	Year 72	

[]

[]

8

[]

[]

~~~~~~

| I            |     |                                         |     |                                                                                                                               |                                  |                          |                                        |                                                                                                             |                |    |
|--------------|-----|-----------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------|----|
| <b>[</b> ].  |     | DDG<br>(New<br>Def)                     |     |                                                                                                                               | m                                | 29                       | 37                                     | 38                                                                                                          | 37<br>38<br>38 |    |
| []           | -   | 900                                     |     |                                                                                                                               | -                                | 21                       | 28                                     | 55 55 <b>8</b>                                                                                              | 53             |    |
| []           | (E  | DDR<br>DDR<br>(New<br>Def)              |     |                                                                                                                               | 223                              | 184                      | 184                                    | 93                                                                                                          | 32<br>33<br>35 |    |
|              |     | 00                                      |     |                                                                                                                               | 218                              | 179                      | 181                                    | 122<br>93<br>93                                                                                             | 32             |    |
| 8            |     | PF (109)<br>DLG*<br>DEG<br>DDG          |     |                                                                                                                               |                                  |                          | 45                                     | 4 4 5<br>4 5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 45             |    |
| []           | 9   | DL<br>DE<br>LFR<br>IFS                  |     |                                                                                                                               |                                  |                          | 234                                    | 184<br>167                                                                                                  | 125            |    |
| 8            |     | DER                                     |     |                                                                                                                               |                                  |                          |                                        |                                                                                                             |                |    |
| RIGATES      | (C) | Destroyers<br>Frigates                  |     |                                                                                                                               | 226<br>223<br>240                | 226<br>225<br>221<br>227 | 283<br>290<br>265                      | 223<br>216<br>216                                                                                           | 154<br>134     |    |
| LOYERS AND 1 | -   | 000<br>010<br>010                       |     |                                                                                                                               | °-2                              | 11<br>13<br>19           | 22<br>24<br>25                         | 3                                                                                                           |                |    |
| DEST         | 8   | DD, DE<br>DL, LFR<br>IFS                |     |                                                                                                                               | 231<br>270                       | 225<br>214<br>237<br>230 | 246<br>244<br>227                      | ì                                                                                                           |                |    |
| ]]           |     | DEC<br>DEC                              | 365 | 8 2 6 2 2 8 8 9 7 7 7 8 8 1 1 5 1 5 8 8 1 1 5 7 8 8 8 1 1 5 7 8 8 8 1 1 5 7 8 8 8 1 1 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 522448                           | 4 9 <del>6</del> 6 4     | <b>4</b> 2<br><b>4</b> 2<br><b>4</b> 2 | 64 19                                                                                                       |                |    |
| []<br>[]     | (A) | DD, DL<br>DDE, DDR<br>DDG, DLGN<br>DLGN | 372 | 134<br>143<br>143<br>247<br>247<br>249<br>250<br>250<br>253                                                                   | 240<br>2337<br>245<br>240<br>240 | 226<br>234<br>234<br>232 | 237.<br>240                            | 128                                                                                                         | 4<br>10        |    |
| II.          |     | Ship<br>Year<br>43                      | 45  | 8                                                                                                                             | . 8                              | 65                       |                                        | 8                                                                                                           | 75             | 11 |

...

Instead

PATROL 29 37 33 34 14 MINE 84 38 36 25 25 81 ( T0TAL ) 1 AUXIL 1197 2765 2655 2664 2664 1171 1171 1171 1176 1176 94 960 90 90 90 90 860 80 80 [] URG OTHER SHIPS (C) AMPHIB 1159 1157 1157 1153 97 77 66 65 1 PATROL 1 9 1 MINE 1 (B) TOTAL SHIPS [] (T0TAL) 4452 4452 6608 6661 6657 6657 6657 6657 4474 4474 4401 4401 4401 4423 4432 4432 4432 4432 4432 4457 4457 4457 3347 4451 3347 7034 1 CMD & AUXIL 1640 1 **AMPHIB** 1 3307 1 (A) PATROL 1469 1 MINE 618 1 Ship Year 43 75 50 65 20 99

|      |       |      | OTU   | ED CUTDC   |                   | 17.              |                   |                   |                     |                   |
|------|-------|------|-------|------------|-------------------|------------------|-------------------|-------------------|---------------------|-------------------|
|      |       | (1)  |       | CALING AND | CONCINU           | (Da              | ( )               |                   |                     |                   |
| MINE | PATRL | AMPH | AUXIL | (TOTAL)    | MINE              | PATL             | AMPH              | AUXIL             | ( 101AL )           | *                 |
| 611  | 1469  | 1256 | 1215  | 4551       | 194<br>291<br>317 | 96<br>134<br>141 | 103<br>340<br>468 | 413<br>654<br>877 | 806<br>1419<br>1803 | 800<br>141<br>180 |
|      |       |      |       |            |                   |                  |                   |                   |                     |                   |

|          |               | 0 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                     | 20040                                        |       |
|----------|---------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------|
|          | * SS          |                                                                                                             | - 0 0 0 0 -                                  |       |
|          | *<br>SSN      | 43382225555190000000000000000000000000000000                                                                | 53<br>57<br>60                               | 64    |
|          | SSN           | \$33855519 E E E E E E E E E E E E E E E E E E E                                                            | 53<br>60<br>61                               | 64    |
|          | SS            | 180<br>235<br>255<br>94<br>96<br>93<br>93<br>93<br>93<br>93<br>93                                           | 24<br>28<br>28<br>29<br>24<br>28<br>20<br>24 | :=    |
|          | (AA)<br>SSN   | 33186008154139632111                                                                                        | 40<br>59<br>62                               | 8     |
|          |               | - 252                                                                                                       |                                              |       |
|          | (KNP)<br>SS   | -51 =<br>203                                                                                                |                                              |       |
| IES      | (L)<br>SS     | 237                                                                                                         |                                              |       |
| SUBMARIN | SS (V)        | 180<br>257<br>257                                                                                           |                                              |       |
| ATTACK   | (K)<br>SS     | 235                                                                                                         |                                              |       |
|          | (D)<br>SS SSN | AGSS<br>SST<br>AGSS<br>AGSS<br>74 45                                                                        | 60 4/<br>49 54<br>35 57<br>25 60             | 12 64 |
|          | (C)<br>SSN SS | (-SSBN)<br>(-SSBN)<br>(-SSBN)<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97 | 50<br>50<br>12<br>12<br>12<br>12             | =     |
|          | SS            |                                                                                                             |                                              | 6     |
|          | (B)           | ~~~~~                                                                                                       |                                              |       |
|          | o SS          | 6233838888                                                                                                  |                                              |       |
|          | Shil          | Year<br>43<br>55<br>55<br>60<br>60                                                                          | 5                                            | 75    |

STRATEGIC SUBMARINES

0

0

8

0

0

0

0

[]

[]

U

.

|        | ⊢                            |                                       | s                                       |     |            |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------|------------------------------|---------------------------------------|-----------------------------------------|-----|------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | 98                           | (4)                                   | SUPPORT<br>QUADRON<br>RECCE &<br>OTHER) | 28  | 53         | 33  | 33<br>27<br>31<br>16<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|        | C AMA<br>AMA                 | 25                                    | nsn                                     | 26  | 22         | 39  | 6 8 8 4 4 4 9 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | ROP PROP                     | 103<br>27<br>119<br>119<br>116<br>119 | BAT<br>ADRONS<br>HELO<br>USMC           | 26  | 26         | 27  | 3338833833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|        | JEI                          | 00400                                 | SQUA<br>SQUA<br>(OTHE<br>USN            | 134 | 141        | 135 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | TOTAL                        |                                       |                                         | 162 | 166        | 181 | 164<br>156<br>172<br>161<br>160<br>160<br>164<br>162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | щ<br>Э                       |                                       |                                         | 10  | 5          | 19  | 510<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | OTHI                         |                                       |                                         | 26  | 50         | 28  | 38 3 3 4 4 2 2 3 3 3 4 3 5 3 3 4 5 5 3 3 4 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SNOS   | ¥                            |                                       |                                         | Ħ   | 15         | 20  | 22<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>23<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SQUADE | #ELO                         |                                       |                                         | 84  | 83         | 74  | 72<br>73<br>79<br>81<br>85<br>84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AIR    | NAVY                         |                                       |                                         | 8   | m          | 7   | <b>レアららら444</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | RECON                        |                                       |                                         | 1   | ~          | Ξ   | 01000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|        | (E)<br>Patrl<br>(VP)<br>Navy |                                       |                                         | 30  | 30         | 30  | 24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | ASW<br>(VS/HS)<br>NAVY       |                                       |                                         | 25  | 27         | 24  | 22129188520<br>23130818750<br>23130818750<br>23130818750<br>23130818750<br>23130818750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>2313081750<br>231300<br>231300<br>231300<br>231300<br>231300<br>231300<br>231000<br>231000<br>231000<br>2310000000000 |
|        | ¥                            |                                       |                                         | 26  | 56         | 27  | 22 52 52 52 52<br>52 52 52 52 52<br>52 52 52 52 52 52 52 52 52 52 52 52 52 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1      | atk<br>%                     |                                       |                                         | 25  | 23         | 25  | 25<br>26<br>27<br>28<br>28<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| l      | Id. NAVY                     |                                       |                                         | 6/  | <b>3</b> 8 | 81  | 65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>65<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1      | Squa<br>Year<br><b>4</b> 3   | <b>45</b><br>50                       | 55                                      | 99  | 65         |     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

COMBAT PLANES

0

[]

[]

0

0

0

[]

-

Π

|       |                |     |            | A   | TIVE INVI | ENTORY |      |      |       |       |         |        |
|-------|----------------|-----|------------|-----|-----------|--------|------|------|-------|-------|---------|--------|
| A/C   | (R)<br>ON HAND | đ   | *<br>ATROL | -   | * NSI     | ATTA   | CK   | FIGH | ITER  | .01)  | TAL)    |        |
|       | COMBAT         | JET | PROP       | JET | PROP      | JET    | PROP | JET  | PROP  | (JET) | (PROP)  | (TOTAL |
| Year  |                |     |            |     |           |        |      |      |       |       |         |        |
| 43    | 9696           |     | 1382       |     | 352       |        | 3678 |      | 3284  |       | (9698)  | 8696   |
| 45    | 2110           |     | 3710       |     | 1230      |        | 9407 |      | 14778 |       | (20122) | 56166  |
| 2     | 4637           |     | 24.15      |     |           |        |      |      | 2     |       |         |        |
|       | 1181 9899      |     |            |     |           |        |      |      |       |       |         |        |
|       | 9372           |     |            |     |           |        |      |      |       |       |         |        |
| 33    | 9422           |     | 969        |     |           | 15     | 1344 | 491  | 3306  | 506   | 2800    | 3306   |
|       | 8713           |     | 904        |     | 786       | 36     | 955  | 820  | 3715  | 856   | 6360    | 7216   |
|       | 8742           |     | 965        |     | 1056      | 45     | 1150 | 824  | 3770  | 869   | 6941    | 7810   |
|       | 8818           |     | 973        | -   | 1048      | 74     | 1338 | 2375 | 2450  | 2450  | 5809    | 8259   |
|       | 8829           |     | 1000       | 100 | 776       | 127    | 1468 | 3032 | 1422  | 3259  | 4666    | 7925   |
| 55    | 8884           |     | 1004       | 305 | 525       | 123    | 1786 | 3487 | 633   | 3915  | 3948    | 7863   |
|       | 7961           |     | 905        | 449 | 155       | 137    | 1749 | 3726 | 113   | 4312  | 2922    | 7234   |
|       | 7591           |     | 832        | 542 | 8         | 316    | 1466 | 3482 | 37    | 4340  | 2337    | 6677   |
|       | 7408           |     | 729        | 594 |           | 1027   | 1131 | 2694 | 6     | 4315  | 1869    | 6184   |
|       | 7030           |     | 705        | 602 |           | 1232   | 857  | 2210 |       | 4044  | 1562    | 5606   |
| 99    | 6074           |     | 656        | 601 |           | 1326   | 726  | 1718 |       | 3645  | 1382    | 5027   |
|       | 6305           |     | 621        | 510 |           | 1279   | 552  | 1797 |       | 3586  | 1173    | 4759   |
|       | 6420           | 1   | 638        | 629 |           | 1412   | 518  | 1768 |       | 3846  | 1156    | 5002   |
|       | 6265           | 42  | 602        | 452 |           | 1515   | 432  | 1482 |       | 3491  | 1034    | 4525   |
|       | 5420           | 82  | 522        | 423 |           | 1483   | 406  | 1360 |       | 3348  | 928     | 4276   |
| 65    | 5127           | 130 | 437        | 423 |           | 1535   | 275  | 1277 |       | 3365  | 712     | 4077   |
|       |                | 176 | 400        | 429 |           | 1551   | 236  | 1199 |       | 3355  | 636     | 3991   |
|       |                | 228 | 336        | 374 |           | 1662   | 169  | 1185 |       | 3449  | 505     | 3954   |
|       |                | 245 | 296        | 337 |           | 1777   | 57   | 1231 |       | 3590  | 358     | 3943   |
|       |                | 263 | 234        | 291 |           | 1534   | 20   | 1185 |       | 3011  | 254     | 3265   |
| 2     |                | 294 | 143        | 232 |           | 1643   | 1    | 1146 |       | 3315  | 144     | 3459   |
|       |                | 318 | 138        | 184 |           | 1620   | -    | 1041 |       | 3163  | 139     | 3302   |
|       |                | 325 | 118        | 181 |           | 1517   |      | 962  |       | 2985  | 118     | 3103   |
|       |                | 331 | 16         | 168 |           | 1560   |      | 936  |       | 2995  | 16      | 3086   |
|       |                | 341 | 63         | 153 |           | 1441   |      | 894  |       | 2829  | 63      | 2892   |
| 15    |                | 355 | 41         | 137 |           | 1438   |      | 752  |       | 2682  | 41      | 2723   |
| +1 En | - 42.AE        |     |            |     |           |        |      |      |       |       |         |        |

|            | TOTAL         | *1200<br>*8200<br>*5600 |                                                                                                                                                                                                                      | *1450<br>*1400<br>*1420<br>*1370<br>*1310<br>*1310 |
|------------|---------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| ( panui    | PROP          |                         |                                                                                                                                                                                                                      | 000000                                             |
| ובא (נטוונ | , Pi          | **00                    | 1                                                                                                                                                                                                                    | 1450<br>1400<br>1420<br>1370<br>1310<br>1250       |
| HDAL FLAN  | TOTAL         |                         | 2142<br>2142<br>2298<br>3527<br>3527<br>3527<br>3527<br>3527<br>2528<br>2554<br>2552<br>2554<br>2562<br>2552<br>2562<br>2194<br>2105<br>2194<br>2105<br>2194<br>2121<br>2121<br>2121<br>2121<br>2121<br>2121<br>2121 |                                                    |
| 3          | NLY<br>PROP   |                         | 1880<br>1861<br>2749<br>2749<br>2382<br>2382<br>2449<br>1834<br>1834<br>1834<br>1886<br>1156<br>1048<br>1028<br>822<br>822<br>713<br>705<br>587<br>705<br>587<br>705                                                 |                                                    |
|            | (x)<br>NAVY C | 000000                  | 262<br>437<br>778<br>1778<br>1255<br>3317<br>788<br>778<br>788<br>788<br>788<br>788<br>788<br>788<br>788<br>7                                                                                                        |                                                    |

100 COMBAT DI ANES

[]

0

0

0

[

| 118/1   |      | A/C                    | Year | 43  | 45   |       | 8    |            |      | 55   | 3    |      |      | 99   |      |      |      | 65   |     |       | 8          |                      | 75         | 11 |
|---------|------|------------------------|------|-----|------|-------|------|------------|------|------|------|------|------|------|------|------|------|------|-----|-------|------------|----------------------|------------|----|
|         |      | NO                     | OBSN |     |      | 413   | 126  | 101        | 194  | 237  | 233  | 164  | 150  | 135  | 129  |      |      | 20   |     |       |            |                      |            |    |
|         | (R)  | HAND                   | A UT | 8 0 | 28   | 2222  | 131  | - 6        | 12   | 121  | 12   | 12   | 13   | 13   | 12   | 16   | 11   | 16   |     |       |            |                      |            |    |
|         |      | ~                      | IL   | 78  | 64   | 95 88 | 33   | 12         | 20   | 200  | 31   | 87   | 22   | 50   | 85   | 202  | 51   | 81   |     |       |            |                      |            |    |
|         |      | TOTAL                  |      | 878 | 2897 | 1701  | 1319 | 876        | 1444 | 1516 | 1464 | 1451 | 146/ | 1455 | 1414 | 1670 | 1727 | 1701 |     |       |            |                      |            |    |
|         |      | MAR<br>JET             |      |     |      |       |      |            | ~    | 9 08 | 285  | 105  | 133  | 120  | 109  | 96   | 110  | 88   | 225 | 63 60 | 1922       | 66 20                | 66         |    |
|         |      | NING                   |      |     |      |       |      |            | 20   | 15   | •    |      |      |      | 136  | 126  | 121  | 96   | 124 | 119   | 103        | 2 9 9                | 28         |    |
|         |      | JET JET                |      |     |      |       | •    |            | •    |      | •    | •    |      | •    | 4    | ==   | 15   | 15   | 54  | 58    | 528        | 222                  | 24         |    |
| SUPPORT | (S)  | 130's<br>TRANS<br>PROP |      |     |      |       | 436  | 531        | 603  | 584  | 592  | 590  | 533  | 514  | 491  | 460  | 454  | 449  | 417 | 395   | 355<br>288 | 244                  | 235        |    |
| LANE    |      | OBSN                   |      |     |      |       | 124  | 43 C       | 99   | 20   | 09   | 52   | 40   | 45   | 40   | 38   | 242  | 18   | 121 | 113   | 102        | 68 68 68<br>68 68 68 | 35         |    |
|         |      | OTHER                  |      |     |      |       | 33   | 22         | 20   | 4/   | 51   | 51   | 9 6  | 15   | 6    | 114  | 23   | 54   | \$÷ | 45    | 9 6 I 8    | 829                  | 13         |    |
|         |      | ( PROP )               |      |     |      |       | 593  | 670        | 739  | 10/  | 703  | 693  | 619  | 574  | 676  | 738  | 652  | 617  | 909 | 010   | 599        | 411                  | 345        |    |
|         |      | TAL)<br>(JET)          |      |     |      |       | •    |            | ~    | 39.9 | 28   | 105  | 124  | 120  | 113  | 107  | 125  | 103  | 818 | 26    | 68 66      | 121                  | 118        |    |
|         |      | (101AL)                |      |     |      |       | 593  | 670<br>670 | 741  | /10  | 19/  | 198  | 727  | 694  | 789  | 845  | 111  | 720  | 687 | 764   | 611        | 534                  | 484<br>468 |    |
|         |      | (PROP)                 |      |     |      |       |      |            |      |      |      |      |      |      |      |      |      |      |     |       |            |                      |            |    |
|         | (.s) | (JET)                  |      |     |      |       |      |            |      |      |      |      |      |      |      |      |      |      |     |       |            |                      |            |    |
|         |      | (TOTAL)                |      |     |      |       |      |            |      |      |      |      |      |      |      |      |      |      |     |       |            |                      |            |    |

| 8  |        |                      |    |    |                |    |    |            |                   |                    |                                 |
|----|--------|----------------------|----|----|----------------|----|----|------------|-------------------|--------------------|---------------------------------|
| 8  |        |                      |    |    |                |    |    |            |                   |                    |                                 |
| 1  |        | NAVY<br>US&OS        |    |    | 236            |    |    | 242<br>224 | 247<br>247        | 214<br>202<br>189  | 169<br>147<br>161<br>165<br>165 |
| [] |        | AL)                  |    |    |                |    |    |            |                   |                    |                                 |
| Π  |        | (TOT)                |    |    |                |    |    | 1052       | 1087              | 1043<br>861<br>861 | 849<br>818<br>775<br>764        |
| (1 |        | (NOT<br>OS           |    |    |                |    |    | 136        | 120               | 0106               | 92<br>91                        |
| U  | s      | ALL                  |    |    |                |    |    | 916        | 060<br>096<br>096 | 933<br>791<br>762  | /52<br>725<br>683<br>673        |
| 0  | ATION  | -                    |    |    |                |    |    |            |                   |                    |                                 |
| П  | ISTALL | (TOTAL               |    |    | 260            |    |    |            | (24)              | 22                 | 24 24 0                         |
| 0  | OR IN  | S MC                 |    |    | NM             |    |    |            |                   |                    |                                 |
| 11 | MAJ    | (0)<br>N&US          |    |    | 80<br>70<br>44 |    |    |            | 4                 |                    |                                 |
| П  |        | US                   |    |    | 20             |    |    |            | 20                |                    |                                 |
| 0  |        | SMC<br>DTAL)         |    |    |                |    |    | 66)<br>59) | (12)              | 37)                | 95<br>88<br>88<br>88            |
| U  |        | ÞĒ                   |    |    |                |    |    | 50         | 200               | 10000              |                                 |
| 17 |        | AL                   |    |    |                |    |    | 61<br>56   | 61                | 46                 |                                 |
| A  |        | US US                |    |    |                |    |    | 205<br>203 | 210               | 188                |                                 |
| U  |        | (E)<br>ASES<br>fotal |    |    |                |    |    | (16)       | (66)              | 45.05              | 2228 88                         |
| Ų  |        | AVY<br>NG BA         |    |    |                |    |    |            |                   |                    |                                 |
| 17 |        | RATI                 |    |    |                |    |    | 25         | 27                | 25                 |                                 |
|    |        | OPE                  |    |    |                |    |    | 64<br>66   | 72                | 59                 |                                 |
| 18 |        | Base                 | 43 | 45 | 20             | 55 | 99 | 65         |                   | 2                  | 75                              |

75

20

BLIMPS AND MISCELLANEOUS

0

0

8

[]

1

[]

1

[]

0

0

P.

| Comp.<br>Year<br>43 | (H)<br>SYSTE<br>GNL<br>MGT      | SPEC                            | (TOTAL) | UNITS                                            | COMPUTERS<br>OWNED                                                                                  | CPU'S<br>LEASED                               | CONTR                |                                                     | 3D<br>Gen                                  | (J)<br>COMPUTERS<br>TOTAL                                                              | S<br>2D<br>GEN                                                                                    |
|---------------------|---------------------------------|---------------------------------|---------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------|-----------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 45<br>50<br>55      |                                 |                                 |         |                                                  |                                                                                                     |                                               |                      |                                                     |                                            |                                                                                        |                                                                                                   |
| 60<br>65<br>70      | 567<br>659<br>665<br>611<br>527 | 77<br>104<br>158<br>317<br>394  |         | 54<br>67<br>87<br>90<br>123<br>134<br>119<br>203 | 70<br>91<br>138<br>178<br>236<br>278<br>324<br>259<br>413<br>499<br>529<br>529<br>582<br>779<br>030 | 180<br>231<br>244<br>271<br>293<br>222<br>207 | 20<br>23<br>19<br>20 | (439)<br>(644)<br>(763)<br>(823)<br>(894)<br>(1021) | 23<br>61<br>88<br>174<br>218<br>225<br>226 | 70<br>91<br>120<br>189<br>236<br>279<br>357<br>436<br>644<br>763<br>880<br>912<br>1021 | 70<br>91<br>120<br>189<br>236<br>279<br>357<br>(413)<br>(583)<br>(675)<br>(706)<br>(694)<br>(796) |
| 75<br>77            | 535<br>519<br>486<br>487<br>475 | 507<br>510<br>595<br>623<br>654 |         |                                                  | 930<br>934<br>1040<br>1115<br>433                                                                   | 206<br>196<br>189<br>173                      |                      | (1137)<br>(1140)<br>(1236)<br>(1304)<br>(1336)      | 220<br>231<br>242<br>254<br>270            | 1041<br>1048<br>1063<br>1123<br>1147                                                   | (817)<br>(821)<br>(869)<br>(877)                                                                  |
|                     |                                 |                                 |         |                                                  |                                                                                                     |                                               |                      |                                                     |                                            |                                                                                        |                                                                                                   |

-

# PERSONNEL REQUIREMENTS BY SKILL LEVEL

| 1      |      |      | g.    |      | TOTAL<br>PERS<br>ON | ESTD | PERS R | QMT  |       | RQI | MT     | SHORT<br>IN ROMT |
|--------|------|------|-------|------|---------------------|------|--------|------|-------|-----|--------|------------------|
| 1      | YEAR | SEMI | SKILL | HIGH | BOARD               | SEMI | SKLD   | HIGH | TOTAL | OF  | ACTUAL | COUNT            |
| 0      | 43   | 51   | 26    | 23   | 1508                | 769  | 392    | 347  | 1508  |     |        |                  |
| 0      | 4    |      |       |      | 2600                | 1357 | 683    | 606  | 2646  | +1  | 3/4%   |                  |
|        | 45   | 50   | 26    | 24   | 2988                | 1494 | 777    | 717  | 2988  |     |        |                  |
| 01     | 6    | 50   | 25    | 25   | 835                 | 418  | 209    | 209  | 836   |     |        |                  |
| 11     | 7    | 49   | 26    | 25   | 425                 | 208  | 111    | 106  | 425   |     |        |                  |
| Part . | 8    | 50   | 25    | 25   | 358                 | 179  | 90     | 90   | 359   |     |        |                  |
|        | 9    | 50   | 24    | 26   | 411                 | 206  | 99     | 107  | 412   |     |        |                  |
| 11     | 50   | 49   | 24    | 27   | 331                 | 162  | 79     | 89   | 330   |     |        |                  |
| U      | 1    | 49   | 23    | 28   | 662                 | 324  | 152    | 185  | 661   |     |        |                  |
|        | 2    |      |       |      | 736                 | 354  | 141    | 226  | 722   | -1  | 9/10   |                  |
| 17     | 3    | 47   | 23    | 30   | 706                 | 332  | 162    | 212  | 706   |     |        |                  |
| 11     | 4    | 46   | 23    | 31   | 642                 | 295  | 148    | 199  | 642   |     |        |                  |
| 1.1    | 55   | 45   | 23    | 32   | 580                 | 261  | 133    | 186  | 580   |     |        |                  |
|        | 6    | 44   | 22    | 34   | 592                 | 261  | 130    | 201  | 592   |     |        |                  |
| 11     | 7    |      |       |      | 598                 | 257  | 135    | 202  | 593   | -5, | /6     |                  |
| 1      | 8    | 42   | 22    | 36   | 564                 | 237  | 124    | 203  | 564   |     |        |                  |
|        | 9    | 41   | 22    | 37   | 552                 | 226  | 121    | 204  | 551   |     |        |                  |
| 0      | 60   | 40   | 22    | 38   | 544                 | 218  | 120    | 207  | 545   |     |        |                  |
| 11     | 1    | 39   | 23    | 38   | 552                 | 215  | 127    | 210  | 552   |     |        |                  |
| 1.1    | 2    |      |       |      | 584                 | 220  | 135    | 222  | 577   | -2  |        |                  |
|        | 3    | 36   | 24    | 40   | 585                 | 211  | 140    | 234  | 585   |     |        |                  |
| 11     | 4    | 35   | 24    | 41   | 587                 | 206  | 141    | 241  | 588   |     |        |                  |
| 0      | 65   | 34   | 25    | 41   | 659                 | 224  | 165    | 270  | 659   |     |        |                  |
|        | 6    | 33   | 26 .  | 41   | 664                 | 219  | 173    | 272  | 664   |     |        |                  |
| 13     | 7    |      |       |      | 674                 | 216  | 178    | 271  | 664   | -1  | 1/2    |                  |
| 11     | 8    | 32   | 26    | 42   | 684                 | 219  | 178    | 287  | 684   |     |        |                  |
| 1.1    | 9    | 31   | 27    | 42   | 606                 | 188  | 164    | 255  | 607   |     |        |                  |
|        | 70   | 30   | 28    | 42   | 542                 | 163  | 152    | 233  | 548   |     |        |                  |
| 0      | 1    | 29   | 28    | 43   | 511                 | 148  | 143    | 220  | 511   |     |        |                  |
| 1      | 2    |      |       |      | 490                 | 147  | 138    | 220  | 505   | +3  | 1/20   |                  |
| -      | 3    | 29   | 28    | 43   | 475                 | 138  | 133    | 204  | 475   |     |        |                  |
| 07     | 4    | 29   | 28    | 43   | 457                 | 133  | 128    | 197  | 458   |     |        |                  |
| 11     | 75   | 29   | 28    | 43   | *459                | 133  | 129    | 197  | 459   |     |        |                  |
| 0      | 6    | 29   | 27    | 44   | 460                 | 133  | 124    | 202  | 459   |     |        |                  |
|        | 7    |      |       |      | 461                 | 130  | 113    | 213  | 456   | -1  | 1/10   |                  |
| 0      |      |      |       |      |                     |      |        |      |       |     |        |                  |

Π

0

14

NAVY PERSONNEL

|          |             | (F)             |         |                   |         | (M)                                    |
|----------|-------------|-----------------|---------|-------------------|---------|----------------------------------------|
|          |             | REQUIRE         | D       |                   |         |                                        |
| YEAR     | UN<br>Rated | SEMI<br>SKILLED | SKILLED | HIGHLY<br>SKILLED | (TOTAL) | ACTIVE<br>DUTY                         |
| 43<br>45 | 1.154       | 203             | 683     | 606               | 2646    | 1508<br>2600<br>2988<br>835<br>425     |
| 50       | 312         | 42              | 141     | 226               | 722     | 358<br>411<br>331<br>662<br>736<br>706 |
| 55       | 257         |                 | 135     | 202               | 593     | 642<br>580<br>592<br>598<br>564<br>552 |
| 60<br>65 | 220         |                 | 135     | 222               | 577     | 544<br>552<br>584<br>585<br>587<br>659 |
| 70       | 171         | 45              | 178     | 271               | 664     | 664<br>674<br>684<br>606<br>542        |
| 75       |             | 147             | 138     | 220               | 505     | 490<br>475<br>457                      |
| 77       | 105         | 25              | 113     | 213               | 456     | 460                                    |

ß

R

0

0

0

Ð

1

1

and the second

-

1

1

[]

# DISTRIBUTION LIST

0

L

-

•[]

[]

( and a second

0

[]

[

0

0

0

0

U

0

B

Official distribution list for the Contract N00014-77-C-0026

Defense Documentation Center 12 copies Cameron Station Alexandria, VA 22314 Office of Naval Research 2 copies Information Systems Program Code 437 Arlington, VA 22217 6 copies Office of Naval Research Code 102IP Arlington, VA 22217 Office of Naval Research 1 copy Code 200 Arlington, VA 22217 Office of Naval Research 1 copy Code 455 Arlington, VA 22217 Office of Naval Research 1 copy Code 458 Arlington, VA 22217 Office of Naval Research 1 copy Branch Office, Boston 495 Summer Street Boston, MA 02210 Office of Naval Research 1 copy Branch Office, Chicago 536 South Clark Street

Office of Naval Research New York Area Office 715 Broadway - 5th Floor New York, NY 10003

Chicago, IL 60605

1 copy

Naval Research Laboratory Technical Information Division, Code 2627 Washington, D.C. 20375 6 copies

1 copy

Dr. A. L. Slafkosky Scientific Advisor Commandant of the Marine Corps (Code RD-1) Washington, D. C. 20380

Naval Electronics Laboratory Center 1 copy Advanced Software Technology Division Code 5200 San Diego, CA 92152

Mr. E. H. Gleissner Naval Ship Research and Development Center Computation and Mathematics Department Bethesda, MD 20084

Commanding Officer Fleet Material Support Office Mechanicsburg, PA 17055 3 copies