Research on Molecular Lasers Final Report 31 August 1977 Cornell University Ithaca, New York 14853 sponsored by: Advanced Research Projects Agency ARPA Order No. 2062 DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited | Security Classification | | | | | | |--|--|--|----------------|--|--| | | | MTROL DATA - RA! | | | | | (Security classification of title, body | of abstract and index | and annotation must be en | tered whe | n the overall report is classified. | | | ORIGINATING ACTIVITY (Corporate auth | 100) | | Za. REP | ORT SECURITY CLASSIFICATION | | | Compall Hairmanian | | | | Unclassified | | | Cornell University | | | 26 GROUP | | | | Ithaca, NY 14853 | | | 20. CHO | description and texts. | | | PEPORT TITLE . | | | | 101-000/3-921-00 | | | Research on Molecula | r Lasers. | | | of malagoral fundaments | | | DESCRIPTIVE NOTES (Type of repert en | 44-4-4-4-4-4-4 | | <u> </u> | | | | | | | 7 | | | | Final Repet. 1 0c | teher 68-30 | September 76 | | | | | AUTHOR(S) (Last name, first name, jallie | 2 1 | A CONTRACTOR OF THE PROPERTY O | | The state of s | | | Wolga, George J. Wo | ga Get Te | rrill A./ Coo | | | | | 101 | | | - 1 | | | | Rauer, Simon H./Bau | ier, Molaulan | Ross A./Me | tari | ane | | | REPORT DATE | AND PROPERTY OF THE PROPERTY OF | | | | | | | - 1011 | 70. TOTAL NO. OF PA | GES | 75. NO. OF REPS | | | 11) 31 Aug 77 | シングリカ・ | 19 | | 60 | | | CONTRACT OR GRANT MO | | SA ORIGINATOR'S RE | PORT NL | MBER(S) | | | N00014-76-C-0426 | | | and the second | en a company de la | | | | THE . | 7) | | mana substituti ng 179 sa 1970 king set | | | ARPA Orde | R-2062 | N/A . | | | | | | | Sh. OTHER REPORT N | O(5) (Ar | y other numbers that may be sesigned | | | | | | 10.6015 | | | | | | N/A | - Miles | | | | AVAILABILITY/LIMITATION NOTICE | 5 | | | | | | | DISTRIBU | TON STATEMENT | A | Light to the section of the section of the section of | | | And the transported by the contract being | Approved | for public release | | Charles and the control of the | | | per carrier destination of the | | bution Unlimited | | | | | SUPPLEMENTARY NOTES | | 12. SPONSORING MILIT | ARYAC | TIVITY | | | | | the second of the second constitution and the second of | | | | | | | Office of | Nava: | l Research | | | | *** | | | | | | | eterorolly in the con- | | | | | | ASSTRACT . " | | and the second | | Carlon personal security of | | | | | | | | | | m · | | | | · · · · · · · · · · · · · · · · · · · | | | Inis report sum | marizes resea | rch conducted at | Corn | ell University | | | under ARPA sponsorsh | in during the | duration of thi | e con- | tract The | | | midel AIGH Spoils01511 | Th courtific rue | amacitou of thi | s con | tract. Ille | | | broad objectives wer | e to provide | quantitative inf | ormat | ion concerning | | | The state of s | and the state of the same of the same of | | | | | | molecular and chemic | al lasers. T | he parameters de | alt w | ith were: | | | now locar transition | | To de la companya del companya de la companya del companya de la c | | | | | now locar transition | C ONA NIMMITAA | CCHOMOC'S LOCOM | ~~ · | and commons on | | sitions and pumping schemes; laser gain and saturation parameters; measurements of relaxation and energy transfer between the translational, rotational, vibrational, and electronic modes of prominent laser molecules. 098550 Security Classification | 14. | | Lin | LINK A | | LINK 9 | | LINKC | | |-----|--|------|------------------------|------------------|----------|---|-------|--| | | KEY WORDS | ROLE | WT | ROLE | WT | HOLE | #1 | | | | Molecular Lasers | 100 | rote That
in Valley | - 1299
- 1299 | | e maren | | | | | Chemical Lasers | | (al free | | jerco | | | | | | Vibrational Relaxation | | | | | | | | | | Energy Transfer | | | | | 23DA | | | | | Chemical Reaction Rates | | | d an i | 01.001.0 | | | | | | HF, DF, CH1, HF-CO ₂ , DF-CO ₂ , HC1 | | | | | | | | | | Reactions with Boron Hydrides | | | | | | | | | | | 813 | | | | | | | | | | | | 771100 | | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | | | | | | 1 12 1 1 1 | 47.7 | - 10 A | 18 TO 18 | | | #### INSTRUCTIONS - I. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report. - 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations. - 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200. 10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized. - REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified in meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title. - 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered. - 5. AUTHOR(5): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement. - 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication. - 7s. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information. - 7b. NUMBER OF REFERENCES. Enter the total number of references cited in the report. - 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written. - 8b, 3c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc. - 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report. - 95. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the spansor), also enter this number(s). בין לפרנינוני לוב שב וו בב 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those Physical Street imposed by security classification, using standard statements such as: - (1) "Qualified requesters may obtain copies of this report from DDC." - (2) "Foreign announcement and dissemination of this report by DDC is not authorized." - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through. - (5) "All distribution of this report is controlled. Qualified DDC users shall request through If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known. - 1L SUPPLEMENTARY NOTES: Use for additional explana- - 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address. - 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached. It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS). (S). (C). or (U). There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words. 14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, mixtury project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional. ## Final Report 1 October 1968-30 September 1976 White Soutise AVAIL and/or SPECIAL DIST WINTION AVAILABILITY CODES RTIS DDS WAR THOMNCED Professor R. A. McFarlane RESEARCH ON MOLECULAR LASERS (607) - 256 - 4075 | 1. | ARPA Order Number | 2062 | |-----|----------------------------|--| | 2. | Program Code Number | 3E20 | | 3. | Name of Contractor | Cornell University | | 4. | Effective Date of Contract | 1 October 1968 | | 5. | Contract Expiration Date | 30 September 1976 | | 6. | Total Amount of Contract | \$ 1,142,000 | | 7. | Contract Number | N00014-76-C-0426 | | 8. | Principal Investigator | Professor G. J. Wolga | | 9. | Telephone Number | (607) -256-3962 | | 10. | Project Scientists | Professor S. H. Bauer (607)-256-4028 | | | | Professor T. A. Cool
(607)-256-4191 | sponsored by: 11. Title of Work Advanced Research Projects Agency ARPA Order No. 2062 The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government. #### Topical Report Summary This report summarizes research conducted at Cornell University under ARPA sponsorship during the duration of this contract. The broad objectives were to provide quantitative information concerning molecular and chemical lasers. The parameters dealt with were: new laser transitions and pumping schemes; laser gain and saturation parameters; measurements of relaxation and energy transfer between the translational, rotational, vibrational, and electronic modes of prominent laser molecules. The work was conducted over a period of eight years. All of the results obtained have been published. In this report we shall summarize the work done and the results obtained in the following manner. Under the heading of each of the faculty investigators we provide a Program Summary of work done under his direction. In addition, a list of the graduate students trained under sponsorship of this contract is included. Finally, a complete bibliography of research publications sponsored by this contract is included. Program Summary (G. J. Wolga) The work supported by this program was devoted entirely to the study of gas lasers: atomic, molecular, and chemical. The individual areas of study will be briefly reviewed below. #### Collisional Effects in Atomic Lasers Magnetic, double resonance studies on near infrared transitions in He-Ne lasers were used to determine collision dependent decay rates. The theory of magnetic, double resonance was augmented and applied to transitions in the He-Ne laser. #### Basic Parameters and Techniques in Molecular Lasers The gain distribution, population densities, and rotational temperature were accurately measured for the conventional, flowing gas CO_2 - N_2 - He laser in our laboratory. These were the earliest published reliable results and provided insight into the rapid rotational thermalization process. Similar parameters were measured for the $\mathrm{N}_2\mathrm{O}$ - N_2 - He laser with comparisons to the CO_2 laser. The Lamb dip was studied in CO_2 and $\mathrm{N}_2\mathrm{O}$ lasers. The technique of sequential Q-switching of a molecular laser was developed. The first direct measurement of the rotational relaxation time in CO_2 was made in our laboratory. #### Studies of Optical Saturation in Molecular Systems The influence of collisions on optical saturation and Lamb dip formation was studied in the ${\rm CO_2}$ laser. The use of an intracavity ${\rm CO_2}$ absorption cell in a ${\rm CO_2}$ laser led to the observation and quantitative study of repetitive passive Q-switching of this laser. Tuned laser spectroscopy of ${\rm SF_6}$ permitted the study of optical saturation on a single vibration-rotation transition in this molecule. A theory was developed to describe the complex frequency dependence of optical saturation of molecular vibration-rotation transitions. #### Molecular Relaxation Vibrational deactivation of the (00°1) level of CO_2 by collisions with HF(v=0) and DF(v=0) was first studied in our laboratory. The method of laser induced fluorescence was augmented by electron paramagnetic resonance to permit study of the relaxation of molecules by atoms. The following systems were studied quantitatively with this method to yield room temperature atom-molecule rate constants: HF(v=1), F, O, H, C1; DF(v=1), O, C1, F; $CO_2(00^\circ 1)$, O, C1, F. A resonance effect in electronic to vibrational energy transfer was discovered and a rate constant for the V \rightarrow E process between HF(v=1) and Br($^2P_{3/2}$) was determined. ### Students (G. J. Wolga) | Student | Degree Granted | Present Affiliation | |--------------------|-------------------|---| | T. O. Carroll | Ph.D. | State University of
New York, Stony Brook | | N. Djeu | Ph.D. | Naval Research Laboratory | | T. Kan | Ph.D. | Lawrence Livermore Laboratory | | Dr. S. Marcus | Post Doc. | MIT Lincoln Laboratory | | H. T. Powell | Ph.D. | Lawrence Livermore
Laboratory | | R. S. Chang | M.S., Ph.D. | Chemistry Department -
Kansas State University | | G. P. Quigley | Ph.D. | Los Alamos Scientific
Laboratory | | Dr. M. I. Buchwald | Post Doc. | Los Alamos Scientific
Laboratory | | C. R. Miller | no degree granted | Raytheon | | T. R. Manuccia | no degree granted | Naval Research Laboratory | | T. A. Reitter | M.S. | unknown | ## List of Publications (G. J. Wolga) - N. Djeu, T. Kan, C. R. Miller, and G. J. Wolga, Sequential Q-Switching of Vibration-Rotation Transitions in the CO₂ Gas Laser, J. Appl. Phys. 39, 2157 (1968). - T. O. Carroll and G. J. Wolga, Effect of Collision Broadening Upon Magnetic Resonance in a He-Ne Laser, Phys. Rev. Lett. <u>21</u>, 670 (1968). - T. O. Carroll and S. Marcus, A Direct Measurement of the Rotational Relaxation Time in CO₂, Physics Letters <u>27A</u>, 590 (1968). - N. Djeu, T. Kan, and G. J. Wolga, Gain Distribution, Population Densities, and Rotational Temperature for the (00°1)-(10°0) Rotation-Vibration Transitions in a Flowing CO₂ - N₂ - He Laser, IEEE J. of Quantum Electronics QE-4, 256 (1968). - N. Djeu, T. Kan, and G. J. Wolga, Laser Parameters for the 10.8μ N₂O Molecular Laser, IEEE J. of Quantum Electronics QE-4, 783 (1968). - N. Djeu and G. J. Wolga, Observation of New Laser Transitions in N_2O , IEEE J. of Quantum Electronics QE-5, 50 (1969). - T. Kan, H. T. Powell, and G. J. Wolga, Observations of the Central Tuning Dip in N₂O and CO₂ Molecular Lasers, IEEE J. of Quantum Electronics QE-5, 299 (1969). - T. O. Carroll, Double-Resonance Spectroscopy in Gas Lasers, IEEE J. of Quantum Electronics QE-6, 516 (1970). - N. Djeu and G. J. Wolga, Optical Saturation of a Single Vibration-Rotation Transition in the v_3 Fundamental of SF₆, J. Chem. Phys. 54, (1971). - T. Kan and G. J. Wolga, Influence of Collisions on Radiative Saturation and Lamb Dip Formation in CO_2 Molecular Lasers, IEEE J. of Quantum Electronics QE-7, 141 (1971). - N. Djeu and G. J. Wolga, Frequency Dependence of the Optical Saturation of Vibration-Rotation Transitions, J. Appl. Phys. 42, 3226 (1971). - H. T. Powell and G. J. Wolga, Repetitive Passive Q Switching of Single-Frequency Lasers, IEEE J. of Quantum Electronics QE-7, 213 (1971). - R. S. Chang, R. A. McFarlane, and G. J. Wolga, Vibrational Deactivation of CO₂ by HF and DF at 75 and 100° C, J. Chem. Phys. <u>56</u>, 668 (1972). - G. P. Quigley and G. J. Wolga, Deactivation of HF(v=1) by F, O, and H Atoms, Chem. Phys. Lett. 27, 276 (1974). - M. I. Buchwald and G. J. Wolga, Vibrational Relaxation of CO₂(001) by Atoms, J. Chem. Phys. <u>62</u>, 2828 (1975). - G. P. Quigley and G. J. Wolga, The Deactivation of HF(v=1) and DF(v=1) by O, Cl, and F Atoms, J. Chem. Phys. 63, 5263 (1975). - G. P. Quigley and G. J. Wolga, A Resonance Effect in Electronic-to-Vibrational Energy Transfer Deactivation of HF(v=1) by Br(²P_{3/2}), J. Chem. Phys. <u>62</u>, 4561 (1975). Program Summary (S. H. Bauer) Our research program yielded some successful and some unsuccessful experiments in the sense that the proposed objectives were either achieved or were not. However, in the latter case useful information was developed. We can point to five distinct areas listed below in chronological sequence. Attempts to develop a chemical CO_2 laser [CO oxidation with N_2O and F_2O under shock tube conditions] failed. The kinetics of N_2O and F_2O decompositions were unraveled. The vibrational relaxation times of ${\rm CO_2}$ with five collision partners were measured over a range of temperatures. These data were useful in modeling and exposition of the ${\rm CO_2}$ - GDL operation. A new chemical lasing system was discovered: $C_3O_2 + 0 \rightarrow CO + 2CO$ and an atomic boron laser was found. Also very extensive computer modeling of the chemical aspects of the $CS_2 + 0$ and $C_3O_2 + 0$ lasers was undertaken and completed. The reaction between H_3B and 0 atoms were studied in a moderate pressure flow system. A full mechanism was developed for the production of BO^* . At the termination of the contract we were left with incompleted studies of various fuel plus oxidizer combinations which generated high levels of chemiluminescence in the visible when ignited with a CO₂ laser pulse. The objective was to find appropriate conditions for the production of the electronically excited laser for the visible. The visible laser was not obtained. # Students (S. H. Bauer) | Student | Degree Granted | Present Affiliation | |--------------------|-----------------|--| | M. I. Buchwald | Ph.D. | Los Alamos Scientific
Laboratory | | N. A. Nielsen, Jr. | Ph.D. | Post-Doctorate Fellow at York University | | G. K. Anderson | Ph.D. | Los Alamos Scientific
Laboratory | | P. Walsh | not yet granted | | ## List of Publications (S. H. Bauer) - M. C. Lin and S. H. Bauer, The Bimolecular Reaction of N₂O with CO, and the Recombination of O with CO, as Studied in a Single Pulse Shock Tube, J. Chem. Phys. <u>50</u>, 3377 (1969). - M. C. Lin and S. H. Bauer, Reactions of F_2O in Shock Waves. I. Kinetics and Mechansim of F_2O Decomposition, J. Am. Chem. Soc. 91, 7737 (1969). - H. Henrici, M. C. Lin, and S. H. Bauer, Reactions of F₂O in Shock Waves. II. Kinetics and Mechanism of the F₂O - CO Reaction, J. Chem. Phys. 52, 5834 (1970). - M. C. Lin and S. H. Bauer, A Chemical CO Laser, Chem. Phys. Lett. 7, 223 (1970). - M. I. Buchwald and S. H. Bauer, Vibrational Relaxation of CO₂ with Selected Collision Partners. I. H₂O and D₂O, presented at 1971 Cambridge Symposium on Molecular Energy Transfer; J. Phys. Chem. 76, 3108 (1972). - P. Walsh and S. H. Bauer, Vibrational Relaxation of CO₂ with Selected Collision Partners. II. CH₄, CD₄ and CH₃F, J. Phys. Chem <u>77</u>, 1078 (1973). - S. Tsuchiya, N. Nielsen and S. H. Bauer, Lasing Action and the Relative Populations of Vibrationally Excited CO Produced in Pulse-Discharged CS₂ + O₂ + He Mixtures, LPS Report No. 93, May 1972; J. Phys. Chem <u>77</u>, 2455 (1972). - J. Stricker and S. H. Bauer, Stimulated CO Emission of the $(1\rightarrow0)$ Band in a Pulse Initiated (CS₂ + O₂) Chemical Laser, Chem. Phys. Lett. <u>28</u>, 98 (1974). - J. Stricker and S. H. Bauer, An Atomic Boron Laser, Chem. Phys. Lett. 30, 477 (1975). - N. Nielsen and S. H. Bauer, Development of a Computer Model for the $(CS_2 + O_2)$ Chemical Laser: Documentation of Chemical Reactions and of Energy Transfer Processes, J. Phys. Chem. Reference Data (submitted). - G. K. Anderson and S. H. Bauer, Mass Spectrometric and Spectroscopic Study of the Reaction of H_3BCO and B_2H_6 with Oxygen and Nitrogen Atoms, J. Phys. Chem. (submitted). ### Program Summary (T. A. Cool) Our efforts have been primarily concerned with the study of chemical lasers since the inception of the ARPA supported contract. This support was instrumental in the development of the first purely chemical laser in our laboratory during the summer of 1969. Studies of the performance of this device and of the key kinetic processes involved in its operation were our major concerns for much of the contract period. These chemical laser related studies fell into several categories: - (a) Characterization of the performance of large scale DF- ∞_2 transfer chemical lasers. - (b) Spectroscopy and studies of the performance characteristics of a variety of cw hydrogen halide chemical lasers (HF, DF, HCl, etc.). - (c) Measurement of vibrational matrix elements and dipole moment function for HF and DF. - (d) Laser induced fluorescence studies of vibrational energy transfer in several molecular systems over the range 200-700° K. More recently we have used a CO_2 laser to vibrationally excite the O_3 molecule for studies of vibrational energy transfer in O_3 . This work has led to important conclusions concerning the laser enhanced reaction of O_3 and NO. Present studies of this reaction in our laboratory have complemented previous work at NBS and the Naval Research Laboratory. Students (T. A. Cool) | Student | Degree Granted | Present Affiliation | |----------------|----------------|--| | J. L. Ahl | M.S. | McDonnell Douglas,
St. Louis, MO | | E. Devis | Ph.D. | University of the Andes,
Bogota, Columbia | | R. A. Lucht | Ph.D. | Los Alamos Scientific
Laboratory | | D. I. Rosen | Ph.D. | McDonnell Douglas,
St. Louis, MO | | J. A. Shirley | Ph.D. | United Technology, Inc.,
Hartford, CONN | | R. R. Stephens | Ph.D. | Hughes Research Labs,
Malibu, CA | | W. H. Whitlock | M.S. | Allied Chemical,
Morristown, NJ | | K. K. Hui | Ph.D. | Hughes Aircraft Co.,
Culver City, CA | ### List of Publications (T. A. Cool) - T. A. Cool and J. A. Shirley, Gain Measurements in a Fluid Mixing O₂ Laser System, Appl. Phys. Lett. <u>14</u>, 70 (1969). - T. A. Cool, Power and Gain Characteristics of High Speed Flow Lasers, J. Appl. Phys. 40, 3563 (1969). - T. A. Cool, R. R. Stephens, and T. J. Falk, A Continuous-Wave Chemically Excited CO₂ Laser, Int. J. of Chemical Kinetics 1, 495 (1969). - T. A. Cool, R. R. Stephens, and T. J. Falk, DF-CO₂ and HF-CO₂ Continuous Wave Chemical Letters, Appl. Phys. Lett. <u>15</u>, 318 (1969). - T. A. Cool and R. R. Stephens, A Chemical Laser by Fluid Mixing, J. Chem. Phys. 51, 5175 (1969). - T. A. Cool and R. R. Stephens, ${\rm HB}_{\rm r}$ ${\rm CO}_2$ Continuous-Wave Chemical Lasers, J. Chem. Phys. 52, 3304 (1970). - T. A. Cool and R. R. Stephens, Efficient Purely Chemical CW Laser Operation, Appl. Phys. Lett. <u>16</u>, 55 (1970). - T. A. Cool, R. R. Stephens and J. A. Shirley, HCl, HF, and DE Partially Inverted CW Chemical Lasers, J. Appl. Phys. 41, 4038 (1970). - T. A. Cool, A Summary of Recent Research on Continuous-Wave Chemical Lasers, Modern Optical Methods in Gas Dynamic Research, edited by D. S. Dosanjh, Plenum Press, NY, pp. 197-220 (1971). - T. A. Cool, J. A. Shirley, and R. R. Stephens, Operating Characteristics of a Transverse Flow DF-CO₂ Purely Chemical Laser, Appl. Phys. Lett. <u>17</u>, 278 (1970). - T. A. Cool, J. A. Shirley, R. N. Sileo, and R. R. Stephens, Purely Chemical Laser Operation in the HF, DF, HF-CO₂, and DF-CO₂ Systems, AIAA Paper No. 71-27, presented at AIAA 9th Aerospace Sciences Meeting, New York, NY, 25-27 Jan., 1971. - R. R. Stephens and T. A. Cool, Continuous-Wave Chemical Laser for Laser Induced Fluorescence Studies, Rev. Sci. Inst. 42, 1489 (1971). - R. R. Stephens and T. A. Cool, Vibrational Energy Transfer and Deexcitation in the HF, DF, HF-CO₂ Systems, J. Chem. Phys. <u>56</u>, 5863 (1972). - D. I. Rosen, R. N. Sileo, and T. A. Cool, A Spectroscopic Study of CW Chemical Lasers, presented at the Third Conference on Molecular and Chemical Lasers, May 1-3, 1972, St. Louis, Missouri, IEEE J. of Quantum Electronics QE-9, 165 (1973). - T. A. Cool, Transfer Chemical Lasers: A Review of Recent Research, presented at the Third Conference on Molecular and Chemical Lasers, May 1-3, 1972, St. Louis, Missouri, IEEE J. of Quantum Electronics QE-9, 72 (1973). - J. L. Ahl and T. A. Cool, Vibrational Relaxation in the HF-HCl, HF-HB_r, HF-HI, and HF-DF Systems, J. Chem. Phys. <u>58</u>, 5540 (1973). - T. A. Cool and J. R. Airey, Vibrational Deactivation of $CO_2(00^{\circ}1)$ Molecules by ONF, COF_2 and O_3 , Chem. Phys. Lett. $\underline{20}$, 67 (1973). - R. A. Lucht and T. A. Cool, Temperature Dependence of Vibrational Relaxation in the HF, DF, HF-CO₂ Systems, J. Chem. Phys. <u>60</u>, 1026 (1974). - R. N. Sileo and T. A. Cool, Overtone Emission Spectroscopy of HF and DF: Vibrational Matrix Elements and Dipole Moment Function, J. Chem. Phys. 65, 117 (1976). - D. I. Rosen and T. A. Cool, Vibrational Deactivation of $0_3(101)$ Molecules in Gas Mixtures, J. Chem. Phys. <u>59</u>, 6097 (1974). - D. I. Rosen and T. A. Cool, Vibrational Deactivation of O₃(101) Molecules in Gas Mixtures: II, J. Chem. Phys. 62, 466 (1975). - R. A. Lucht and T. A. Cool, Vibrational Relaxation in HF and DF Mixtures, J. Chem. Phys. 60, 2554 (1974). - T. A. Cool, The Transfer Chemical Laser, <u>Handbook of Chemical Lasers</u>, edited by R. W. F. Gross and J. F. Bott, (John Wiley and Sons, Inc.) (1976). - K. K. Hui, D. I. Rosen and T. A. Cool, Intermode Energy Transfer in Vibrationally Excited O₃, Chem. Phys. Lett. <u>32</u>, 141 (1975). - R. J. Pirkle and T. A. Cool, Vibrational Energy Transfer for H_2-D_2 and H_2 -HCl Mixtures from 220-450 K, Chem. Phys. Lett. 42, 58 (1976). - M. S. Chou and T. A. Cool, Laser Operation by Dissociation of Metal Complexes: New Laser Transitions in As, Bi, Ga, Ge, Hg, In, Pb, Sb, and Tl, J. Appl. Phys. 47, 1055 (1976). - K. K. Hui and T. A. Cool, Double Quantum Vibrational Energy Transfer in the 0_3 -OO and 0_3 -OCS Systems, J. Chem. Phys. <u>65</u>, 3536 (1976). ## Program Summary (R. A. McFarlane) ### Production and Kinetics of Vibrationally Excited Carbon Monoxide for Chemical Laser Application This project concerned the utilization of the reaction of atomic oxygen with acetylene to produce vibrationally excited CO $$0 + C_2H_2 \rightarrow CO^* + CH_2 + 51 \text{ kcal/mole}$$ $$0 + CH_2 \rightarrow CO^* + 2H + 71 \text{ kcal/mole}$$ of potential use as the active medium of a chemical laser. A high capacity oxygen atom source was developed using a CW microwave magnetron and the above reactions initiated by the injection of C_2H_2 into the flowing atom stream. By studying the overtone emission from CO at 2.8 microns detailed information on both the nascent and relaxed CO vibrational population distribution was obtained using a computer simulation of the observed spectrum with both $N_{\rm V}$, the population density in level v and T, the translation/rotation temperature as controllable parameters. The relaxation rate for the process $$CO(v) + CO(0) + CO(v-1) + CO(1)$$ was obtained for levels v = 2 to v = 13 by using a new analysis appropriate to our very high speed flow conditions and which permitted a very substantial decoupling of the equations for individual vibrational level populations. It was demonstrated that because of the relatively higher V-V rates for quenching levels v = 5 and v = 6 that a total inversion condition could be established in the chemically formed CO. Further, the modeling of the vibrational distribution as a function of time using the measured V-V rates was entirely consistent with our experimental observations. The rate at which oxygen atoms lead to the quenching of vibrationally excited CO(v=1) was studied over the temperature range 273° K to 389° K. In this case CO molecules were excited using the second harmonic of a 9.6 μ CO₂ laser and by monitoring the change in fluorescence decay rate as a function of 0 atom concentration the following data were obtained | T°K_ | k sec ⁻¹ torr ⁻¹ | |------|--| | 389 | 4.2×10^3 | | 359 | 2.1×10^3 | | 306 | 1.3×10^3 | | 273 | 0.89×10^3 | These rates are about a factor of two faster than a simple Landau-Teller extrapolation of similar data taken in a shock tube with temperature near 2000° K. #### Milestones A new technique using high speed flow conditions was developed and applied to measure the rate at which CO(v=0) molecules collisionally relax vibrationally excited CO molecules. A computer model was developed to demonstrate that in the $O-C_2H_2$ reaction a "total vibrational population inversion" could be obtained using the preferential relaxation by cold CO. Measurements were made in the laboratory of the spontaneous emission from the oxygen-acetylene reaction demonstrating that such an inversion could be realized in practice. The rate at which oxygen atoms collisionally relax CO(v=1) molecules was measured over the temperature range 273° K to 389° K. #### Students ### (R. A. McFarlane) | Student | Degree Granted | Present Affiliation | |----------------|----------------|---| | Y. S. Liu | Ph.D | General Electric Research
Laboratory | | M. S. Lewittes | M.S. | University of Colorado | ## List of Publications (R. A. McFarlane) - Y. S. Liu, R. A. McFarlane and G. J. Wolga, Totally Inverted Vibrational Population of CO Formed in the Reaction of Atomic Oxygen with Acetylene, Chem. Phys. Lett. 14, 559 (1972). - Y. S. Liu, R. A. McFarlane and G. J. Wolga, Measurement of V-V Energy Transfer Probabilities in CO-CO Collisions Following the Reaction of Oxygen with Acetylene, J. Chem. Phys. 63, 228 (1975). - Y. S. Liu, R. A. McFarlane and G. J. Wolga, A Study of the Dynamic Behavior of the Vibrational Population Relaxation in Carbon Monoxide, J. Chem. Phys. 63, 235 (1975). - R. A. McFarlane, Microwave Discharge Atom Source for Chemical Lasers, Rev. Sci. Instrum. 46, 1063 (1975). - M. S. Lewittes, C. C. Davis and R. A. McFarlane, Temperature Dependence of the Second Order Quenching Rate Constant for the Relaxation of CO(v=1) by Atomic Oxygen, in preparation.