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Summary

The basic problems of quantitative determination of mechanical
strain through holographic inter ferometry are discussed. A solu-
tion based on the calculation of local derivatives of the holo-
graphically recorded surface displacements is described. This
method uses essentially heterodyne holographic interferometry for
the quantitative determination of the surface displacement from
the fringe pattern in the image plane. With this technique the
interference phase can be measured with an accuracy and reprodu-
eibility of + 0.3° at any point in the fringe pattern, corres-
ponding to an interpolation of better than 10—3 of one frince.
Numerical examples are given for the sensitivity and accuracy

of surface strain measurements and the determination of bendinag
and torsion. Experimental results for bending and torsion of
arbitrarily curved and twisted space beams, such as tuvrbine
blades, are reported. Accuracy and agreement with theory are

within a few percent.
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1. Introduction

The general objectives of the research program have been theore-
tical and experimental investigations of methods for the quanti-
tative determination of surface strain and stress of mechanical
parts from holographic interferometry. This includes the develop-
ment of analytical and numerical methods to calculate the sur-
face strain from the object deformation as well as development

of special cpto-electronic systems to increase the sensitivity
and the accuracy for the evaluation and interpolation of holo-~-

graphic interference patterns.

Many forms of holographic interferometry are known for me-
chanical deformation or vibration analysisl). A common feature

of all these methods is that the interferometric information is
presented in the form of interference fringes in the image ofr the
object under investigation. In case of mechanical deformation

and vibration studies it is known that the relevant strain and
stress values are given by first or second order derivatives of
the interferometrically measured surface displacement2'3). There-
fore the quantitative determination of the local strain parameters
is only possible if the accuracy of the evaluation of holographic
interferograms is increased drastically beyond the simple tech-

nigque of counting fringe orders.

To solve this problem a basically new approach for the quantita-
tive evaluation of holographic interferograms is considered. Fete-
rodyne holographic interferometry4'5)

at least a factor 100.

increases the accuracy by

Moreover the quantitative determination of mechanical strain on
the surface of an arbitrarily shaped object through holographic
interferometry requires the knowledge of the relation between sur-
face strain and surface displacement and the relation between de-
rivatives of the surface displacement and the interference fringes
in the image plane. This relations have been established theore-
tically and are used to develop corresponding numerical programs

to evaluate strain, stress, bending and torsion from holographic

interferometry.




2. Heterodyne Holographic Interferometry

Holographic interferometry is a powerful tool to determine sur-
face displacement fields of solid objects. The relevant informa-
tion is the phase difference ¢ between the two optical wave fields
corresponding to the two object states before and after deforma-
tion. These phase differences show up as intensity variation, the
so-called interference fringes, in the image of the objects. How-
ever, quantitative information on the interference phase can only
be obtained reliably from the maxima and minima of the interference
fringes, corresponding to multiples of 180° or T in the phase ¢.
Any interpolation between the fringes is difficult and not very
accurate. Heterodyne holographic interferometry is a new opto-
electronic technique which overcomes this limitation and allows

to determine the interference phase at any position within the
fringe pattern with an accuracy of better than 0.4° or 1/1000 of

_ 4,3)
a fringe .

2.1. Heterodyne Interferometry

The basic idea of heterodyne interfeometry is to introduce a
small frequency shift between the optical frequencies of the
two interfering light fields. This results in an intensity modu-
lation at the beat frequency of the two light fields for any
given point of the interference pattern. The optical phase dif-

ference is converted into the phase of the beat frequency6’7).

The two light fields are then described by their’ complex ampli-

tudes
> > i >
v, (x,t) = a; (%) exp 1[mlt+¢l(x)],
; {(2+1)
> > : "
Vz(x,t) = a2(x) exp 1[m2t+¢2(x)],
where a are the real amplitudes, ¢ the phases, and w the
1,2 ey 2 1yd
optical frequencies.
n
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A photodetector placed at the point P(x) in the superposition

of these two light fields sees the time dependent intensity

> 2 2, > 2> > > > “ =
I(x,t) = |V1+V2[ = al(x)+a2(x)+2a1(x)az(x)cos[(ml—wz)t+¢1(x)-¢2(x).
2 > 2, . ->
= al(x)+a2(x)+2al(x)a2(x)cos[9t+¢(x)]. (2.2}
Equation (2.2) shows that the interference phase ¢(§) = ¢l(§)—@2(§),

i.e. the optical phase difference between the two light fields, ap-
pears as the phase of the intensity modulation at the beat fre-

quency Q = W mwy.

As long as Q2 is small enough to be resolved by a photodetector,
this modulation can be separated by an electronic filter centered
at 2 and the phase can be measured electrically with respect to

a reference signal at the same frequency. As will be described in
Section 2.3. the interference phase can be measured essentially
independent of the amplitude of the modulated signal and therefore
also independent of the amplitudes al(;) and a2(§) of the inter-
fering light fields. The accuracy for the electronic phase measure-
ment can easily be better than 1° or 2II/400. Techniques and ex-
perimental realizations for the frequency shift will also be given

in Section 2. 3.

The heterodyne method can be applied, with some restrictions, to

holographic interferometry:

- Application to real time holographic interferometry is straight
forward

- Application to double exposure holographic interferometry is
possible, of the two wavefields are stored independently in
the hologram4’8). The most convenient solution with two diffe-
rent reference waves will be described in Section 2.2.

- Application to time average holographic interferometry is not
possible, since the averaged wave field shows already frozen

interference fringes.




It is instructive to compare heterodyne interferometry and clas-
sical fringe intensity detection with respect to the accuracy

of interference phase measurement. First of all it should be
pointed out that in case of intensity detection the interference
phase can only be reliably deduced from the position of the
fringe maxima and the fringe minima, because any intermediate
value of the intensity depends on both phase and average inten-
sity, which is in general not constant across the image of the
object. The heterodyne interferometry overcomes this limitation,
since phase and amplitude of the interference term can be sepa-
rated electronically and the fringes travel across the image so
that the sensitivity and accuracy is the same at any position.
This difference is visualized in Fig. 2.1l: From the interference
pattern only the positions Xjof the fringe maxima and minima

¢, = mm are obtained; from heterodyne'interferometry the actual

tnter ference phase ¢n is obtained at any desired position z .

2.2. Two-reference-beam Holographic Interferometry

Double exposure holographic interferometry probably is the most
common and convenient kind of holographic interferometry. It is
therefore very important to find a solution to use the described
heterodyne method together with double exposure holographic inter-
ferometry. This is possible if the two wavefields are stored in-
dependently in the hologram, so that during reconstruction the
different frequencies for the two interfering light fields can be
introduced by using two reference waves of different frequencies.
The most convenient realization is to use two different reference
waves for that purpose4'8).

Multiple-reference-beam holography has been proposed and applied
by various researchers for inspecting phase objects, holographic
recording of polarization, or as means for introducing flexibility
into conventional double exposed holograms. Indeed, if each image
has its own reconstruction beam, one has access to each image se-

parately, as well as to their mutual interference pattern. A
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double-exposure double-reference~beam holographic setup, as
shown in Fig. 2.2, is basically a superposition of two indepen-
dent holograms of the same, but deformed, object on the same

hologram plate.

The hologram H(g), which is the inter ference of reference and
object waves in the hologram plane (x,y), consists in this case

of

H(X) = R,O* + R*O. + R,O* + RX (2.3)

Jial o 2500 2o

where Rl and R2 are the two different reference waves used to

record O, and O

1 2 respectively.

Upon illumination of the hologram with the two reference beams
Rl and R, l+R2 with H(x).

As shown in Fig. 2.3, two pairs of reconstructions, viz. RlR;Ol,

e . 2 ’ : : = il J
R2R202 and RleOl, R1R202, will be in exact register giving rise

i 1 * * * *
to interference. The images RlRlOl’ RZRZOZ and RlRlOl' R2R202

are the primary and conjugate self-reconstructions, respectively,

eight terms result from the product of R #

of the two independent holograms with their own reference waves.
i i * * * * 1

In addition, R2R101’ R1R202 and R2R101’ R,RZO2 are the primary

and conjugate cross-reconstruction, respvectively, of the two

holograms with the wrong reference waves.

The locations of the reconstructed images depend on the mutual
position of the reference waves and the object during recording.
For the experimental demonstration of the various reconstructions
and their respective location in Fig. 2.3 the reference sources
were approximately at the same distance from the hologram as the
object. Therefore, following Eq.(2) in Ref. 8 all reconstructed
images are virtual and appear focused at nearly the same distance

behind the hologram as the original object. For reasons of aberra-

tions it is recommended to work exclusively with the interfering !

pair of primary, self-reconstructed waves RlRiO1 and R2R502. |

— p—— B




The directions of propagation of various reconstructed waves

can also be constructed and visualized with the help of a

sphere of radius k in the k-space where each propagation vector

is represented by a point on that sphere. For the example scetched
in Fig. 2.4 the object vectors ﬁOl and i02 have been chosen along
the z direction, i.e. normal to the hologram plane. The optimum
choice of the reference sources to avoid disturbing overlapping

of the different reconstructions can be deduced from Fig. 2.4. Sym-
metrically positioned reference beams with respect to the object
location are not recommended, since for this case the two pairs

of interfering images will be reconstructed along the same propa-
gation direction. The best choice is to have both reference sources
at the same side of the object with a mutual separation as small
as possible. This means that the angular spacing between the two
reference waves should be just larger than the angular size of the

object in the corresponding direction, so that the reconstructions

* * * * i i i -
RlRlol’ R2R202 and RZRlol’ Rleo2 carrying interference informa
tion are mutually separated and do not overlap with RzRiO1 nor

*

R1R202.

Two-reference-beam holographic interferometry is expected to be sen-
sitive to repositioning errors for the reconstruction process be-
cause misalignments of hologram and reference waves will not affect
both reconstructed waves in the same manner. Angular misalignment
of both hologram plate or reference waves causes mainly an addi-
tional linear phase deviation across the hologram between the
reconstructed wave fieldsg). The effect of these linear phase de-
viations on the image of the object, obtained by a lens in the re-
constructed wave field, can be simulated by a wedge positioned at
the hologram plane affecting only one of the reconstructions. The

corresponding schematical arrangement is shown in Fig. 2.5.

The effect of this wedge on the image can be calculated using the
Fresnel approximation for the stepwise propagation of the light
field from plane to plane. The result is both a linear phase dis-
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tortion wo(xl) across the object and a virtual transverse dis-
placement ué of the object. The relations to the phase devia-

tion wH(xz) in the hologram plane are found to beg)

wH<x2) = kaxz, wo(xl) = [kqb/(a+b)]x1, ué = oa. (2.4)

For holographic interferometry the phase distortion wo(xl) across
the object is dangerous because it changes the interference pat-
tern, whereas a lateral shift ué does only reduce the fringe con-
trast. Fortunately the phase distortion can be nearly eliminated
by placing the lens as close as possible to the hologram, so that
b/ (atb) << 1. In this case the lateral shift is approximately

a' = ad.:
(o) o

An analysis of the phase deviation introduced by different kinds
of misalignment shows that for plane or quasi plane reference
waves only rotations of the hologram plate and a change of the
mutual angle between the two reference waves are importantg). The
phase deviation in the hologram plane (x,y) due to rotations, is

given by

by = ka% - Kak = (R -k) (0 x k) (2.5)
where il and 22 are wavevectors of the two reference waves,

A% = (Ax,Ay) is the change of coordinates due to the rotation

w = (Ao ,AB +0Y) » and }H = (x,y) are coordinates in the hologram
plane. It is seen that the phase deviation depends only on the dif-
ference Ak = (il-ﬁz) of the two wavevectors and does vanish for
identical reference waves, which is the case in classical double
exposure holography. The maximum slope of the phase deviation is

obtained from Eq. (2.5) as

2]1/2, (2.6)

it et s 2 A
. kﬁk Ay szB) + (Asza AkxAy)

y

where the z-axis is assumed to be normal to the hologram surface

and Aa, AB, Ay are the angular rotations around the x,y,z-axis,
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respectively. With a partially symmetric choice of the reference
waves one can obtain Akz = 0, so that the rotation Ay around the
normal to the hologram plate remains as the only essential con-
tribution to the phase deviation. A change AS§ of the mutual angle

§ between the two reference waves produces a phase difference

> >

flos~lc )

- - 1 2 >

wH(xH) [f = | Xy AS, (2.7)

T

which yields a maximum slope of
o = (ak2+ak?) Y2 (ax+ak2+ak?) " 25 (2.8)
X vy X Y z

In any case the alignment requirements are considerably less
stringent than in real-time holography. If the same experimental
setup is used for recording and reconstruction, usually only a
slight readjustment of the rotational position of the hologram
plate as can be deduced from Eg. (2.6) is necessary to get mini-
mum or zero fringes across the hologram and at the same time maxi-

mum fringe contrast in the image.

Two-reference-beam holographic interferometry is applied in the
following way to realize the heterodyne method for double expo-
sure hologaphic interferometry (see Fig. 2.2): The first object

state O, is recorded using beam R, as a reference. A stop is

1 1
placed in beam R, so that it does not illuminate the hologram

plate. The second object state 0, is recorded in the same manner,
except that beam R, is used as a reference and beam Rl is stopped.
All light fields during recording have the same optical frequency

Wp* After processing the hologram is reconstructed with geometri-
cally identical reference waves Rl and Rz, but of slightly diffe-
rent optical frequencies wy and Wy s respectively. The reconstruc-
ted wave fields Ol and 02

spective reference waves. This meets precisely the conditions

have the same frequencies as their re-




[

4
»

{
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necessary for heterodyne interferometry between these two re-
constructed wavefields. The frequency difference ( = Wy =W, has
to be small enough to be resolved by photodetectors (Q/2m < 100 MHz).
The relative frequency change Q/uol'2 is therefore smaller than

2x10_7 for visible light. The resulting changes in the propagation

of the light waves are thus very much below any optical resolution.

2.3. Experimental Realization . and Results

Besides the standard holographic technique and equipment one needs
for heterodyne holographic interferometry also methods to generate
the desired frequency offset Q, to detect the modulated signals,
and to measure their phase accurately. For small frequency off-
sets (2 < 2m x 1 kHz) a mechanically rotating A/2-plate and sub-
sequent polarizing elements can be used as in the early experiments
of heterodyne interferometrys). For the sake of stability, accura-
cy, and measuring speed, however, larger frequency offsets

(Q = 2m x 100 kHz) are advisable. This cano?e realized adequately

only with either rotating radial gratingsl or acousto-optical

1). The disadvantage of the rotating radial grating

modulatorsl
is the fixed intensity ratios between the different object and
reference beams, given by the diffraction efficiency of the gra-
ting, which does not allow to optimize the light economy for both
recording and reconstruction independently. Moreover, most rota-
ting radial gratings show residual amplitude modulation due to
grating imperfection which may disturb the phase measurement

eventually.

For the phase measurement one needs a signal to act as a reference.
Therefore at least two photodetectors are placed in the image of
the object under investigation. One detector may be at a fixed
position while the other scans the image, or both detectors may

be movable at a fixed relative mutual separation. The latter
measures rather fringe density or slope of the interference phase

function than the interference phase itself. Nevertheless it has
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the advantage to be less sensitive to slight variations of the
position of the detectors, as long as their mutual separation is
kept constant, and to yield directly local derivatives, which are
in case of displacement measurements related to the strain. The
integral interference phase can be calculated sufficiently accu-
rate by summation of the increments. Photomultiplier tubes rather
than semiconductor photodiodes should be used as photodetectors
because of their nearly noise free and phase distortion free high
gain. The disadvantage of photomultiplier tubes to be bulky can
be overcome by using fibre optics to collect the light in the

image plane.

All electronic amplifiers and filters in the signal paths should be
designed carefully to avoid phase distortion which could reduce

the accuracy of the phase measurements. Especially narrow band
filters for noise reduction should be avoided. A bandwidth of
somewhat less than half the modulation frequency Q is advisable to
cut down the d.c. component and harmonics. The phase is measured
either by a phase sensitive detector and a calibrated, variable
phase shifter or more conveniently by a zero-crossing phasemeter.
Both kinds of instruments are commercially available with resolu-
tion down to 0.1° for the phase. The zero-crossing phase meter
requires for proper operation, i.e. to avoid multiple zero cros-
sings, a signal-to-noise ratio of at least 20 dB and a noise band-
width of less than the signal frequency. The signal noise introduces
a phase error §¢ due to the fluctuations of the zero-crossings.

This phase error is found to be

5ig iR 1/2 1/2

(SNR) N (SNR) ~ (t/T) : (2.9)

6¢

where N = 1/T is the number of zero crossings observed during the
integration time t of the phase meter. This means that a single
measurement (N = 1) with SNR = 20 dB yields ¢ = 6°. This is re-
duced to 8¢ = 0.06° for N = 10 which corresponds for example

to r = 100 ms for a frequency of 100 kHz (T = 10 ups).
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The SNR of the detector signals can be estimated from the holo-
graphic setup, the hologram efficiency, and the laser power. In
case of shot-neoise 1limited detection with a photomultiplier the

signal-to-noise ratio is found to be

2
SNR = Py anDAD/ZAOh\\B, (2.10)
where P = power of the reconstructing reference beams, y = fringe
contrast, Ny = hologram efficiency, fip quantum efficiency of the

detector, A detector area, Ao = area of reconstructed object

in the imagz plane, hv = photon energy, B = detection bandwidth.
The power P of the reference beam is defined as the power falling
on that area of the hologram, which contributes to the recon-
structed image. An estimation for the following reasonable experi-

= 0.1 (bleached hologram).
=19

mental parameters P = 5 mW, y = 0.5, Ny
6 2

np = 0.1, Ay = 7.8x10 ° m (¢p = 1 mm), A = 0.1 me, Hy = 3.8 10
Ws (A = 0.514 nm), B = 10 kHz, yields a SNR of about 40 dB. With-
out taking special precautions to save light one needs about 20
times more laser output power, i.e. PL = 100 mW in the above
example, than actually used to reconstruct the image, due to the
losses at the optical components and comparatively large spots of

the reference beams on the hologram to get a uniform illumination.

Besides the phase error due to amplitude noise, as given in

Eq. (2.9) and (2.10), additional phase fluctuations may occur

in the signal. These are mainly caused by instabilities, e.g.

in the path length if the two reference waves, and by mechanical
instabilities of the position of detector and reconstructed image.
The overall accuracy of phase measurement, including these phase
fluctuations, has recently been investigated experimentallylz)
for a special application. The first experimental verification

of heterodyne holographic interferometry was made for pure bending
of a cantilevers). The results indicated an accuracy of inter-
ference phase of §¢ = 0.30, which corresponds to less than 1/1000

of a fringe.
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A somewhat more advanced setup for heterodyne holographic inter-

ferometry is shown in Fig. 2.6. In this case the frequency shift

of ¥ = 2mx100 kHz is realized by two commercially available

acoustooptical modulators Ml and M2 in cascade to give opposite

frequency shift. During recording both modulators are driven with

40 MHz, so that the net shift is zero. During reconstruction

one modulator is driven with 40 MHz and the other one with 40.1 MHz

so that the net shift is the desired 100 kHz. An array of three

detectors is used to scan the image. The two differences Ad,

]

and

A¢_in the orthogonal directions £ and n are measured rather than

o

n
the interference phase ¢ ({,n) itself. The electronic equipmen

for automatic measurement and data acquisition is shown in Fi

25
g.

i TA8

The driver for the two acoustooptical modulators (40 MHz and 40.1

MHz) is seen at the bottom. The three photomultipliers, Dl'

3

image plane by optical fibre-bundles. In the center box the beat

D
2!
D, in Fig. 2.6, get their light from the detection points in the

frequency at 100 kHz is filtered out from the photomultiplier sig-

| nals with a bandwidth of B = 10 kHz. The signal amplitudes ar

kept approximately constant independent of the intensity across

the image by control of the photomultiplier voltage. The phas

e

e

differences A¢€ and A¢ are measured with two zero-crossing phase-

meters, which 1nterpolat; the phase angle to 0. l and count also

the multiples of 360 , which corresponds to the fringe number.

The detector array is mounted on a step-motor driven stage to scan

the image. The programmed scanning pattern is executed by the X-Y

control unit (top of Fig. 2.7). For any measured position the

¢£,n-coordinates as well as the interference phases are digitally

recorded on punch tape to be available for further data processing.

The measuring time for one position, including displacement and

data punch, is only a few seconds.

The overall accuracy of the phase measurement, including phas

fluctuations due to instabilities in the optical setup, are de-

e

termined experimentally. A double exposure, two-reference-beam
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hologram of an object which has not been deformed between the

two exposures is recorded. The measured phase difference between

the signals of two detectors at a constant separation of 3 mm

is measured at different positions in the object image. The

result is shown in Fig. 2.8. The vertical bars indicate the

digital resolution of + 0.05° of the phasemeter reading. The
measured phases show statistical variations with §¢ = 0.22O

around an average value of ¢ = 1.05°. This means that the inter-
ference phase can indeed be measured with an accuracy of better than
8§ = 0.30, corresponding to an interpolation of 10“3 of an inter-

ference fringe.

2.4. Discussion and Conclusions

It has been shown and experimentally verified that heterodyne

holography has the following outstanding properties:

- fringe interpolation to better than 10-3 of a fringe (8¢ = + 0.30),
- measurement with the same accuracy at any desired position in
the image, therefore high spatial resolution (> 100 x 100 points)
- independent of brightness variations across the image,
- inherently direction sensitive, (i.e. increase and decrease of
inter ference phase can be distinguished),
- computer readable output both for position and phase easily

obtained (allows also on-line data-processing)

For these reasons heterodyne holographic interferometry is con-
sidered to be the most powerful technique to collect data for

quantitative measurement of surface displacement of solid objects.

Moreover, the heterodyne technique can be applied to nearly all
known kinds of holographic interferometry, except for time average

holograms. This list includes

- real time holographic interferometry: high temporal resolution,
e.g. for vibration studies with an upper limit given by the
frequency offset Q; however the overall stability is expected

to be smaller than for double exposure holography
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- vibration analysis from multiple exposure holographic inter-
ferometry recorded with stroboscopic illumination and syn-

chroneous switching between the two reference beams

- depth contouring using dual illumination source or dual wave-
length recording; by changing the angular position of the mode
selection etalon of a single mode Ar-laser the frequency be-
tween two exposures can be shifted by 6.7 GHz, yielding depth
contours of about 22.5 mm separation and therefore 20 um re-

solution for 6¢ = I

3. Quantitative Determination of Surface Displacement, Strain

and Stress

In most practical applications of holographic interferometry to
solid objects rather the differential change of the surface dis-
placement, i.e. strain, tilt, bending, torsion, than the dis-
placement itself is of primary interest. In the following the
necessary theoretical relations between optics, geometry and me-

chanics will be worked out and illustrated with numerical and ex-

perimental examples.

3.1. Surface Displacement and Mechanical Deformation

The displacement of the object surface is completely described
by a vector J(x,y,z), where the coordinates x, y, and z are re-

stricted to the surface of the object, defined by a function
z = £(x,¥],; Or F(x,v,2) = z=£(x,y) = 0. 3« 1)

If we suppose that the derivatives of the displacement are small
compared with unity, the vector gradient i = grad u may be se-
parated additively in a symmetric part €k’ the strain, and a

3
skew-symmetric part Qik the rotation1 ),
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Mgy ™ grad u = Dui/axk R

g M (3.2)
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For elastic deformation of an isotropic material the relations be-

tween stress o,

and strain e,
ik :

ik is given by Hooke's law

\%
Oik = el + +¢ )], (3.3)

E [ (
I+v -%ik 1-2v ik ‘®xx €yy 2z

where E is the modulus of elasticity and v is Poisson's ratio
(aik = 1 for 1 = k and Gik =0 for i1 # k).

For the discussion of the relations between surface displacement
and surface strain it is appropriate to select the x,y,z coordi-
nate system for the object point P so that the z-axis is parallel
to the surface normal n and the x- and y-axis are parallel to

the tangential plane (Fig. 3.1). From the observed surface dis-
placement, however, it is not possible to determine grad u =
au.i/axk completely, because only the variations of G(X,y,z) along
the surface z = f(x,y) are accessible. This means, expressed in
the special coordinate system shown in Fig. 3.1, that only the

six components

TP Bui/axOl
can be obtained, where here and the following greek indices
(e.g. a, B) are used for in-plane components (ux,uv) and in-

plane coordinates (x,y).The three remainino components

My, = aui/az
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have to be determined from additional relations. These relations

are obtained from the known mechanical boundary conditions at the

4)

object surface1 They read

stating that the external forces T, are in equilibrium to the

stress components normal to the suiface. In most practical cases
the surface under observation is free of external forces (Tk = 0).
This implies Gy = 0, i.e. all normal stress components are zero,
and leads with Egs. (3.2) and (3.3) to the 3 required additional

relations

3 Vv
D | e — T =—1——(u

+u {3,5)
Xz zx’ “yz v “zz -y xx vy

With the Egs. (3.2) and (3.5) the vector gradient of the surface

displacement LTS grad 4 can be determined completely from the

k
observation of the displacement vector U on the surface. The com-

ponents of the rotation vector ¢ are explicitely

Ax-3u /3y
(3uy/ X _ux,”)L
({3.%)

N~

= = ) e i 6 = - = =
Qx 7zy auz/By, QY G auz/ax, Qz yx
Bending and torsion are given by the change of curvature of the

surface. The original curvature of the object surface is described

by a tensor k with the elements

e
Kag = ] f/axaaxB (3.7)

where z = f(x,y) defines the surface and x_ are the orthogonal

coordinates (x,y) in the tangential planelg)

at the point P
(Fig. 3.1). Therefore the surface can be approximated around P

by the quadratic form
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i 1 2 1 2
= = = = + Ay ion o
z 5 Kaﬁxaxs > Kxxx nyxy 2 Kyy Y (3.8)
The coordinates x' = (x',y",2'") of the surface after displace-
ment G are obtained from
> > -
XV = % '+ u. (3.9)

The displacement u is also expanded in a power series around the
point P. To simplify the calculations any contribution of u cor-
responding to a rigid body motion rather than a deformation of

the surface may be assumed to be zero, without loss of generality.
This means that at the point P both the displacement U(P) and the
rotation 5(?), as given in Eg. (3.6), vanish. Since Eg. (3.8)

for the surface approximation is linear in z and quadratic in x
and y the displacement component u, is expanded up to quadratic
terms while u, and uy are broken off after the linear terms. The

coordinates of the surface after displacement read now

X' = x + (aux/ax) X + (Bux/ay) Yy = (1 + Exx) X' Exy Y

'o= + (3 X + (3u /9 =y + r
Y Y ( “y/ ) % ( y/ yi'y ( syy) R (3.1
z2' = z + % (azuz/axz) x2 + (azuz/axay) xy + % (azuz/ayz) y2-

The change of curvature is obtained by introducing Eqs. (3.10) into
the original quadratic form of the surface, as given in Eq. (3.38),
and looking at the change of the coefficients in the new quadratic
form afterwards. Restricting oneself to linear contributions in
CaB’ since €4 << 1, one gets finally the nice looking relations
Ak = k' =k = Bzu /X X, =K __€ =€ _K

aB aB aB z a "B ay yB oy yB* 3. 113

The change of curvature is seen to consist of two different con-
2

tributions, namely the variation of the surface tilt 9 uz/axaaxq

and the influence of the surface strain €’ which reduces the appa-

SR S -
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rent curvature proportional to its original value KQP. In the
case of dominant bending and torsion the contributions of the
second terms in Eqg. (3.11) can be neglected, since the pro-

ducts of the curvature « and the strain €, will be small.

af R
The bending (change of curvature) AKS and the torsion (rate of
twist) dQS/ds for an arbitrary direction g on the surface are

obtained from Ak by the relations

Ak = Ak C0529+2AK cos9sinf+Ak sinze,
s XX Xy vy
(3.-12)
il
O = — - i
dus/ds Anycos26+ > (AKyy AKxx) sin28,
where 8 is the angle between the x-axis and the direction s (Fig.

3.1).

After that, all relations between surface displacement and mecha-
nically relevant deformations are established. From Egs. (3.2)

and (3.11) it is seen that the in-plane strain €,a 1s obtained

. A

from the first derivatives of the in-plane displacement ux,uy,

whereas the change of curvature Ak is mainly determined by the

aB
second derivatives of the out-of-plane displacement u, -

4

3.2. Calculation of Displacement Vectors from Interference Fringes

in the Image

The considered geometry of the setup for the holographic interfero-
metry is shown in Fig. 3.2. It is assumed that the same imaging
system is used for all the holographic interferograms with diffe-
rent sensitivity vectors En' This can be realized using either

different illumination source Qn or different observation direc-
16,17)

aperturels). It has also been suggested to use entirely different

tions , €e.g. different portions of the hologram and the lens
views of the object to get the sensitivity vectors En' but this
is not recommended because of the different projections of the
object formed in the images which makes proper position measure-

ments and coordination of individual points on the surface quite
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difficult and inaccurate. The actual observation point P'(Z',n')
in the image plane is simply related to the pcint P(f,n) in the
conjugate object plane by the magnification. Therefore the
(£,n,z) are used as image coordinates. The object coordinate
system (x,y,z) for the corresponding point on the surface is

mainly determined by the surface normal H, as shown in Fig. 3.1.

The interference phase measured in the image is given byl6)

¢n(£,n) =(kQ-kA)n u = 2k (Enu) = 2k Un(E,n), (3.14)

where KQ and EA are the wave vectors of the illumination and the
observed light, respectively, anu Un(g,n) is the appearant compo-
nent of the displacement U in the direction of the sensitivity
vector En(g,n). If the displacement vector is represented by its
components ui(i,n) in the image coordinate system (&,n,z), Eg. (3.14)

can be written as

U, (E/n) = e | (E,n) u(E,n), (3.15)

where e i are the components of the En(i,n) in the image system.
Using three linearly independent sensitivity vectomws Eq. (3.15) can

be inverted to calculate the displacement components
u(g,n) = fkn(g,n) Un(g,n), with fmnenk = smk' (3:16)

The elements f n(i,n) of the inverse sensitivity matrix can be

k
calculated either analytically or numerically from the recording

and imaging geometry which determines the sensitivity vectors

En(éln) .

The derivatives of the displacement ui(E,n) in the image system
are directly obtained from Eq. (3.16), taking into account that
also the inverse sensitivity fkn(g,n) depends on the position

in the image plane. In general the contributions of the differen-
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tial change of the sensitivity vectors En(g,n) cannot be neg-
lectedl4’17'19). At least an estimation of these contributions
is recommended in each special case. Therefore the derivatives

in the image system read
auk/agu = fkn(BUn/aia) s (afnk/agd) Un’ (3.17a)

0 2 2
27up/9E 3k, = £, (37U /3E DEL) + (BF /BE ) (BU /3E,)

B B

2
+ (afkn/ags)(aun/aga) 2 fkn/BEQBEB) Un' (3.17b)

More than three sensitivity vectors lead to an overdetermined
equation system for ui(g,n). One can take advantage of that to

eliminate the zero fringe ambiguityls)

or to improve the accuracy
by least-squares solutions of Egs. (3.16) and (3.17). The zero
fringe ambiguity is due to the fact thét in general the absolute
fringe order or interference phase cannot be determined from an
interferogram unless the absolute value of the displacement is
known for at least one object point accessible in the image. It
has been shown that the determination of the absolute fringe order
is always very inaccurate if the viewing directions are restricted
to a relatively small solid angle by the limitations of the imaginc
optics or the hologramzo). Therefore it is advisable to determine
the absolute displacement just for one point of the object by some
other techniques, e.g. using a second view of the objectzo) or
elastic connection to an undisplaced reference point. Since the
absclute displacement appears in Egs. (3.17) only in the correctior
terms with Un' it has not to be determined very accurately for
strain and bending measurements. Moreover one can try to reduce the
differential change (afnk/aga) of the sensitivity vectors as much
as possible, e.g. by plane wave illumination (ﬁo = const.) and
telecentric imaging (EA = const.). However this”complicates the

holographic setup and limits the size of objects quite drastically

The next step is to transform the displacement and its derivatives

from the image system to the object system. For each point P the

\ r -
. .. - - . ~
- ool i
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relation between the image system (%,n,z) and the object system
(x,y,2) can be described for that purpose approximately by a

general rotation in space
(3.18)

where Rmk is orthonormal, i.e. RmkRnk
is valid as long as the distance between object surface and ob-

= 5mn’ This approximation

ject plane (£,n) is small compared with the viewing distance. The
rotation matrix Rmk is mainly determined by the direction of the
surface normal

+* 2 2
aA(P) = (n ,nc), with'me +n '+ n_ = 1. {3.19)

n
ERTn £ n z

in the image system. If the orientation of the x-axis in the tan-
gential plane is chosen so that it corresponds to the optical
projection of the £-axis, i.e. in the (£,7) plane, the rotation

matrix is explicitely given by

( nc/N 0 -ng/N
Rmk = -ngnn/N N —nnnc/N (3.20)
L ng nn n, \
with N = +V§:;E: The inverse rotation matrix R;; is simply ob-
tained from R-km = Rmk' since Rmk is orthonormal.

Using Eq. (3.18) the components of the displacement U in the ob-

ject system are obtained by
- ]
um(X.y.z) Rmkuk(i.n)- {3.41}
For the transformation of the derivatives, however, it has to be

considered that the observed displacement G(x,y,z) is restricted

to the surface defined by Eq. (3.1). Therefore one gets

‘.__‘,L‘ B
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N tu e BSe ne o gl eq o on 3 R
W, YRR, Tk, T R {Rales8)
" 2
b R e S 38, —au—';‘ = i
§§uaxe i BEYBEG Yo Yz axa 8B "6z 8xq QEY YZ axqaxﬁ'
(3.22b)

where the Egs. (3.1) and (3.18) have been used. Because of the
special choice of the object system at the observed point P (see
Fig. 3.1), the derivatives of the surface are af/axa = 0 and
32f/3xa3xB = K,g+ following the definition of curvature in Eqg. (3.7
Finally the derivatives of the displacement in the object system

can be calculated with

=1

du /3x, = Ry, (Bup /38 ) R (3.23a;
82, /9% 8%, = R_. (80’ /36 JEIR TR t4B . (AWI/BE IR Tk .. (3.23b
m a B mk k Y 6" "ya 88 mk k Y' yz aB :

Remember that greek indices (a,8,Yy,8) refer only to in-plane co-

ordinates (x,y) or (£,n), respectively.

Sur face strain €ik and rotation Qik are obtained from the measured
interference phase by consecutively applying Egs. (3.14), (3.16),
6.17a), (3.23a) and (3.2) or (3.6). For the calculation of bending
and torsion (change of curvature Axk) Egs. (3.17b), (3.23b) and

(3.11) have to be used additionally.

3.3. Surface Strain Measurement

The sensitivity of the described method for the measuremen* of

surface strain ¢ using heterodyne holographic interferometry is

ik
estimated for the special case of three sensitivity vectors sym-
metrically distributed around the g-axis at the angle g and a
simple rotation of the object system around the €-axis by the

angle £’(Fig. 3.3). The sensitivity vectors and the rotation of th

}

object system are then given by
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[ sinB 0 cosf [1 0 0 ]
[ |
; : 3 Wk 5 T
o - \ -sinB/2 VY3 sinB/2 cosB | ; R i {0 cos sin &
L-sinB/Z -/3 sing/2 cosBJ | 0 -sin*' cos" i
b J
(3.24)

Assuming that the errors of the phase measurements 84 are indepen-

3 95
components can be calculated versus the angles B and */ through

dent and equal for U and U3 the sensitivity &8¢ for the strain

Egs. (3.2), (3.17a), and (3.23a). Neglecting the second terms for

the differential change of the sensitivity in Egq. (3.17a) one gets

N (2 1 4y 5 adle 78 4cos? » sin’ su
xx _ V3 sing AE’ °Fxy N 2uins  Scosis BE'
4% XY
= 2cos cos L sin " 6U
(SCYY - \ 9 - 5 AE’ (B25)
" 3sin”R 3cos™ B

where Af stands for the separation of the detectors either in

E- or n-direction and 8U = 2ké¢ is the accuracy of the displace-
ment measurement from the interference phase. Figure 3.3 shows
numerical results of Eq. (3.25) for &8¢ = 0.4°, A = 514 nm, and

a spatial resolution of A§{ = An = 3 mm in the image plane. The
sensitivity 8¢ for the different strain components and for dif-
¥
same. The main dependence is on the angle B betweéen the sensiti-

vity vectors ﬁn and the z-axis. A sensitivity of §e = 10-6 !

ferent rotation angles +' of the surface normal are nearly the

ustrain is already obtained for B = 50, which can even be realized
by observing the object through different portions of the same

hologram.

The practical application of surface strain measurement with hete-
rodyne holographic interferometry will be discussed for the example

of a cylindrical tube with internal pressure as variable load.

P e AW S e P T
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A computer program has been developed for the numerical evalua-
tion of the measured data, taking the object shape and the geome-
try of the optical setup into account. Experimental results, how-
ever, are not yet available, but the computer program has been
tested with simulated data and the accuracy and sensitivity of
the strain measurement are investigated and compared with the

above estimation.

The test object is a cylindrical tube, closed at both ends, as showr
in Fig. 3.4. Following Saint-Venant's principle the length is choser
large enough compared with the radius R to get undisturbed deforma-
tion at the center section of the tube. For a thin-walled tube (b<<FE

the stresses at the surface are found to be approximatelyzl)

Ox = pR/b, Oy = pR/2b, e - Of (3.26)

where p is the internal pressure. Using Hooke's law, as given in

Eq. (3.3), one gets for the strain components

B, ox(z—v)/ZE, Ey = ox(l-Zv)/ZE, By ™ -ox(3v/2E). (327}
From geometrical considerations the components of the displace-
ment J(X,y,z) become then

u =0, u = u +ey =u (3.28)

X y oy ot 20V Y z X £’
where u, is some bias displacement in the y-direction and the
tangential strain €, has been introduced as the force parameter

L
instead of the pressure p.

The optical geometry is shown in Fig. 3.5. Three divergent sources
Ql’ 02, Q3 are symﬁetrically distributed around the f-axis in the
hologram plane and illuminate the object consecutively to record
three two-reference-beam double-exposure holograms with different
sensitivity vectors En‘ The holograms are located at A, which is 1

also the center of the lens aperture forming an image of the object




=

and its reconstructions in the image plane(£',n'). To insure that

P all three double-exposure holograms see the same object displace-
ment it is recommended to record first the initial object state
successively on all three holograms by their corresponding illumi-
nation sources Qn and then, after deformation, recording the second
object state in the same manner. It has been verified experimentally
that for this purpose the three holograms can be recorded on the
same plate mounted on a precision slide by shifting and repositio-
ning the plate between the exposures. Thus the three holograms are
accessible independently yielding the same image of the object but
different fringe patterns. The numerical values for the parameters
of the optical setup are as follows: image and object distance

d, = d2 = 1.0 m, separation of illumination from hologram center

1
q = 0.36 m, outer diameter of the tube 2R = 0.2 m.

The expected fringe pattern and the detector array in the image

plane is shown in Fig. 3.6. The separations of the detectors are
AE = An = 3 mm. The simulated input data are calculated from a
very crude approximation assuming constant sensitivity vectors
for the entire object, as given by Eq. (3.24) for B = 100, which

is only true for £ = n= 0.

The expected phase differences A ¢y andAntbn measured with the

detector array are tabulated in éig. 3.6 for two positions and

the three sensitivity vectors En' Also given are the absolute phase
values ¢on' which can not be directly obtained from the holograms,
as discussed in Section 3.2. In the first position £ = n = 0 mm

the surface is parallel to the image plane while in the second
position £ = 66.0 mm, n = 0 mm the surface is inclined by about

45°,

The computerprogram for the evaluation of strain and stress at

the surface follows essentially the outlines in Section 3.2. The

, input consists of three sets of information:

- object surface geometry,
- optical geometry for recording and reconstruction,

i - measured data of interference phase and position

in the image plane.
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The object surface is specified by a number of surface points

on selected cross-sections of the object in a suitably chosen
coordinate system. In case of the tube this cross-sections are
obviohsly chosen perpendicular to the cylinder axis. All inter-
mediate points on the surface are obtained by quadratic inter-
polation which yields at the same time the direction of the sur-
face normal n and the curvature ¢« if desired. The position and
orientation of the object with respect to the image system is
specified by the geometrically determined shift and rotation of

the respective coordinate systemS:.

The optical geometry is defined by the coordinates of the illumi-~
nation sources Qn(g,n,c) and the observation points An(i,n,g) in
the image system, the image and object distances dl and dz, and
the wavelength ). Additional geometrical parameters are the sepa-

ration Af{ and An of the detectors in the array.

The data input from the measurement consists of the phase diffe-
rences A5¢n and An¢n for the three sensitivity vectors En collec-
ted during a scan in the image plane at the corresponding position
Pi(gi,ni). The incremental steps during the scan are preferably
chosen equal to the detector separation A or An. For the starting
point the absolute phase values ¢on should be known, either by

additional measurements or at least by an estimation.

The program calculates the intersection of the line-of-sight from
the image point P'(§,n) through the center of the aperture A with
the object surface to determine the corresponding surface point

P((,n,z). The sensitivity vectors, the inverse sensitivity matrix

S
nk
culated numerically for any point of observation to determine the

its derivatives 3f_,/3f , and the rotation matrix R are cal-
nk o mk

derivatives of the displacement auk/axOl on the object surface.

The final output consists of the components of the surface strain

€ the surface rotations Qk' and the corresponding coordinates

aB’
on the object. The surface stress 0,p €an also be calculated for

given values of the modulus of elasticity E and Poisson's ratio v.
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For the considered test object a tangential strain of ¢_ =

t
leO—5 and the values v = 0.34 and E = 7.26x1010 Nm_2 for alu-

minium have been assumed. This yields, following Eqgqs. (3.26)

and (3.27) theoretical surface strain and stress values of

5.00x107> 0.0 1 4.37x10° 0.0

|

€ = E S Rid =
|
ke

1
|
-6 6 |
0.0 9.65x10 J 0.0 2.19x%10 J

independent on the position. These stresses correspond, for a wall
thickness of b = 3 mm, to an internal pressure of p = l.31x105 Nm_2 =

1.43 at.

The computer results for the simulated input data given in Fig. 3.6

are for
E=0mm, n =0 mm: E =66 mm, n = 0 mm:
r S -10 & -4 }
| 4.56x107°  -5.32x10710 2 20075 4 3.1Bx10 ™ |
= e = L3 7 £ = " e .
bl 00T { e 01 } B T3 ase T Sleein |

The deviations between theory and computer results are mainly due
to the approximation of coustant sensitivity vectors made for the
calculation of the simulated input data, whereas the numerical
evaluation takes the effective geometrical variations of ok and
fnk into account. This fact is illustrated by comparison of the
two terms for the derivative aui/aga in Eq. (3.17a). For £ = n =0

one finds

6 6

dul/aE = 5.00x107° - 4.42x10°°, du'/on = 9.64x10°° - 4.42x107°,
which shows clearly that the second contributions due to the
differential change of the sensitivity vectors En are not always
negligible. However, this result also indicates that an accuracy
for the absolute phase of about 6¢on = 360° (one fringe) would be

sufficient to give an error of less than 3x10.7 for caB‘
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Furthermore the computer program has been used to investigate the
influence of the geometrical parameters on the accuracy of the
strain measurement. Independent deviations of the coordinates

of the illumination sources Qn and the object distance d2 by 10%
of their initial values have been assumed. It should be noted that
these errors mean displacements of more than 30 mm, which is cer-
tainly exaggerated. The resulting relative rms error of the strain

with respect to its maximum value |e| is found to be for

£=0mm, n = 0 mm: £ =66 mm, n = 0 mm:

f12.28  2.1% 5.1%  2.58% |
o e oan] e ]
lel L 2.1%  2.9% lel 2.5%. 2.9%

This shows clearly that the holographic surface strain measurement

is not very sensitive to geometrical errors in the optical setup.

Finally the sensitivity has been tested by calculating the resul-
ting strain for the minimum detectable phase differences §¢ = 0.4°

as input, keeping ¢on = 0 at the same time. The rms values for the

A

surface strain at § = n =0 (U= Oo) and at the same position with
1

the object tilted by ".'= 45° around the g-axis are found to be for
i1_ .o }
o= 0 . 1/ = 4503
4.55x10" "  3.21x10" ' 4.53x10° '  2.28x10"
> = = 4 ’ Se = & e
aB 3.21x10 . 4.54x10 7 ag 2.28x10 7 2.29x10 g

These numerical results agree very well with the estimations of the
sensitivity shown in Fig. 3.3 at B = 100, corresponding to the actu
setup (Fig. 3.5).

The conclusion from these investigations is that one can determine

with heterodyne holographic inter ferometry the local surface strain,
eaB with a sensitivity and accuracy of better than GEaB = 10-6 = {
1 ystrain at a spatial resolution of 3 mm even for objects with ?

a curved surface and an optical setup as shown in Fig. 3.5.
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3.4. Pure Bending and Torsion

In the case of pure bending and torsion the change of curvature
Ax, as defined in Eq. (3.11), can be determined approximately using
4)

a single sensitivity vector g.l Pure bending and torsion is cha-
racterized by the fact that a neutral line with zero strain exists
inside the structure and that the strain increases linearly from
the neutral line to the surface. Usually these structures are rela=’
tively thin, so that the surface is close to the neutral line and
therefore the surface strain ¢ is still small compared with the

B

sur face tilt, i.e. ¢ <<QX, Qy. Moreover the differential change

of the surface straisBalong the surface can be assumed to be neg-
ligibly small, which means that the line-element ds remains nearly
constant. These assumptions allow to determine the change of cur-
vature Ak from only one measured component U = (UE) of the displace-

>
ment u in the direction of the sensitivity vector E.

Following Eq. (3.11) in the case of negligible in-plane strain

(EGBKYB = 0) the change of curvature is essentially given by
B .. = 3%y /9% _Ax (3.29)
af z SRR i
Therefore one expects to obtain the AKaB from the second derivative
of the observed displacement
2 2

U X 3 uk A auk aek % auk aek A2 _EnEE_ Eia

axaaxB axaaxB k axOl axB axB Bxa k axaaxB

where e, are the components of the sensitivity vector E in the
(x,y,2z) coordinate system. The calculation of the change of sur-

face strain ¢ along the surface requires special care, since

af
the orientation of the surface will also change due to its initial

curvature k .. The surface strain €4 is obtained following Eq.

af
(3.2) from the in-plane components

B

Wik = (éim_ninm) Hmk (3.31)
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of the vector gradient Mok - grad U, where the n, are the com-

ponents of the surface normal. From Eq. (3.31) one gets

s an, an A
Ak i L m - mk
¥R ax "mfmi: T i 3% Mmk L T 3 X £ $3x32)
a a o o
which reduces to the simple relation
I /9% = g (du_/ax_) + azu /9% 9%, (3.33)
Y8 a Yo z B Y o R
due ton_ = n_ = 0 and the relation dn /9x = -k, obtained from
X y Y a Ya

n= grad F and the Egs. (3.1) and (3.7). The assumption of negli-
gible change of the surface strain corresponds to BEYB/Bxa = 0
and Eq. (3.33) allows therefore to calculate aqu/axaaxB from the
tilt auz/axB. The other assumption of negligible surface strain
with respect to tilt means auz/axB >> aua/ax8 and therefore also
3U/axOl = (auz/axa)ez, at least as long as e, > S 6, OF the angle
between n and E is not larger than 45°. The last term in Eg. (3.30)
is a second order effect in geometry changes and thus negligible

unless the absolute displacement u, is extremely large. Finally,

k
one gets from Eqs. (3.29) and (3.30) the approximation

Ny © e, AR B NN BT G 1 Bez) 5
afB . axaaxB ez2 afB axY Y e22 axB axa axa axB

The derivatives of U in the object system (x,y) are obtained from
the corresponding derivatives in the image system (Z,n) similarly
as shown in Egs. (3.23)
U -1 3%y w S TS G
=3—.—R 9 = ) +5-E——R K . (3.35)
i

U
’
axa BEY Yo axdaxe agyagé yo 8RB Yz aB

=)

|

For practical purposes it is convenient to use an experimental set-

up with the illumination source Q (Fig. 3.2) close to the imaging |
lens, i.e. illumination and observation directions nearly the same.

et —— s
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To reduce the contributions of the differential change of the
sensitivity vector, the distance d2 between lens and object should
be large compared with the transverse extension of the objects

£
(d2/’max' d2/nmax
a rotation of the object system around the f£-axis by the angle

> 5). Under this experimental conditions and for

(Fig. 3.3) one obtains from Egs. (3.34) and (3.35) the following

simple explicite expressions:

"

(320/352)/cos<’

Ak =

XX
By = (3%u/dgan) - (3U/3E) tan-/d, (3.36)
Ak = (azu/anz) cos~l- 2(3U/3n) sin‘?d

Yy 2"

The two terms containing the original curvature in Egs. (3.34)

K
af
and (3.35) compensate each other as long as the sensitivity and

the imaging directions are close enough.

The sensitivity §(Axk) of this method can be estimated from Egs.
(3.36) for the same parameters as used to calculate §e (Fig. 3.3),

viz. 66 = 0.4°, Af = An = 3 mm, A = 514 nm. For /= 0 one gets
5 =1

§(Ak) = 5x10 ° m ~, which corresponds to a bending induced strain
of ED = 5)1:10-7 = 0.5 ustrain on a surface at 10 mm from the neutral
line.

The Egs. (3.34), (3.35) have been applied experimentally to a
number of mechanical structures subjected to pure bending and tor-

sion12,14,22)

. Equations (3.36) turned out to be very useful for

fast evaluation of experiments and to give quite accurate results

for simple object geometries. In Fig. 3.7 experimental results

are shown for a turbine blade under static bending load. The ex-
perimental setup was the same as shown in Figs. 2.6 and 2.7. The
bending along the blade axis (Fig. 3.7a)shows good agreement with
mechanical theory. Note that the spatial resolution of the mea-
surement is about 3 mm and that local variations of the bending !

stiffness can be detected. The change of curvature AKS of the i
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cross~sections normal to the axis have been measured in two inde-
pendent experiments. The results in Fig. 3.7b show the excellent
reproducibility of the measurements within the expected limits.
These results are not compared with theory, since the mechanical
model used does not include the change of cross-section as a
reaction on bending load. Further experimental results for a
turbine blade under torsional load are shown in Fig. 3.8 as tri-
angles. For historical reasons the torsion is called df/dz, where
z is the blade axis. There is again good agreement with mechanical
theory, shown as circles. The estimated absolute accuracy of
about +5% for the torsion is rather limited by the uncertainty

of the mechanical and geometrical parameters, such as load, mag-
nification factor, detector separation, than by the interference
phase measurement. This becomes also clear from results of repro-
ducibility tests which indicated errors of less than 3% even for

2)

the smallest values of torsionl

4. Conclusions and Recommendations

It has been shown that heterodyne holographic interferometry is

a powerful tool for fringe interpolaticn, which allows to determine
local derivatives of the surface displacement with sufficient accu-
racy for strain measurements. This technique is very well suited
for automatisation and electronic data processing, which makes

also on-line computer evaluation poscsible. It turns out that

with heterodyne holographic interferometry one can determine even
with small angles between the different sensitivity vectors, i.e.
from a single hologram recording, strain values as small as 1 ustra.
In addition one can determine the local change cf curvature, which

is useful in case of pure bending and torsion.

An advanced optical and electronical system for heterodyne holo-
graphic interferometry has been realized and experimentally tested.

The results did confirm the expected specifications. An improve-~

ment in flexibility and simplicity of the holographic recording é

could be obtained by using two references which are very close to- |

gether. This would reduce the repositioning requirements but de-~




o
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crease the phase accuracy due to the overlapping of undesired

2)

. 2
reconstructions The performance of such a setup need further

experimental investigations.

An addition to the successful experimental tests for pure bending
and torsion and the computer simulations for surface strain evalua-
tion in case of general deformations one should verify the latter
case also experimentally, e.g. for the described cylindrical tube

as test object.

Further applications of heterodyne holographic interferometry to
vibration analysis would be certainly of great importance. Cor-
responding experimental investigations either with time resolved
real-time holographic interferometry or with stroboscopic hologram
recording are recommended to dertermine the capabilities of these

new techniques.
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P
7T X; = fringe positions, @;= mT 171
r X, = positions of interest,
E R e Pn = measured phase 5 6T
5T ) 5T
14T
PRI
g pe S -
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1 1 o ey e o (U
st o o s A O
Xn Xp+q X, X, X, X7 xa xo
— X

Biga 2.1 Comparison of fringe counting and interference
phase measurement.

X,y

e |

{ ——

Phoatographic
z Plate

Fig. 2.2 Setup for recording double exposure holograms with two
“  reference beams. R, and O, are used for the first ex--

posure, while R2 and 0, are used for the second one.
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H L 1
R,
\ z
e TR e
A)
D, L I
_”\\Y/,()z
HE z
\ p .
U |
"11_ e 2 b"sf & Xq
TR A |

B)

Fig. 2.5 Schematic arrangement for evaluating misalignment fringe
effects on the interference pattern. (A) O, and O, are
reconstructed from the hologram H by their resoec%ive
reference waves R, and R,. (B) Misalignment of R, is subst
tuted by a wedge ﬁl in t%e hologram plane H acting on 0,
only.

LASER

OBJECT

HOLOGRAM

Fig. 2.6 Setup for heterodyne holographic
inter ferometry: beam splitters S, acoustooptical
modulators M, detectors D, image plane ({,n)
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Fig. 3.1 Object coordinates (x,y,z) at point P: z has the
direction of the surface normal, u is the surface displace-

ment, s is in the tangential plane

L /\

E.‘I’.
image plane lens hologram object plck\object

Fig. 3.2 Setup for holographic interferometry: image system
(£,n,z), object system (x,y,z), illumination sources On,

sensitivity vectors E_(£.,n).
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Optical Geometry

_,;U_

e
d,=1.0m d,=1.0m
7' :
Pigi 35 Optical geometry for holographic strain measurement of

the test object. Illumination sources Ol'

Q). for

Qv 5
three consecutive hologram recordings with %ifférent
sensitivity vectors En.

4
X3
t
LY 7
X &
',"‘::,'
,.
43
oF <
L5

Aé=3mm| &£ = 0.0mm , = 0.0mm §£=66.0mm, n = 0.0mm

. £k n=1 n=2 n=3 n=1 n=2 n=3

Aekpn 295.9° -18.0° -18.0° 215.0° 164.1° 161.1°
A,’\pn 0.0° 6.0° - 6.0° 0.0° 6.0° -6.0°
\Pon -6825.6° -6771.7° -6771.7°| -4520.6° -5652.5° -5652.5°

Fig. 3.6

§
»

Expected fringe pattern with detector array and

simulated phase measurement for the test object.
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Fig. 3.7 Experimental results for pure bending of
a turbine blade under static load
a) Bending AKZ along blade axis z. The local devations
around z =200 mm appear reproducibly at different
positions within the blade profile
b) Change of curvature AKS and tilt QZ of the cross-section.
TURBINE BLADE,LOWER PART
1.00E~06 .
de o H 525 !
2 |
|
J I I I I ' I
875 c 150 p 225 € 390 F 375 G 450 J 60O
o
g
W"-‘x‘
¢ ® Theory
', @8E-~01
®.00€-01 2.20€ 02
—ly I (o000}
Fig. 3.8 Experimental results for pure torsion d6/dz of a

turbine blade around blade axis z compared with theory.
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