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Summary

The basic problems of quantitative determination of mechanical

strain through holographic inter ferometry are discussed . A solu-

tion based on the calculation of local derivatives of the holo-

graphically recorded surface displacements is described . This
method uses essentially heterodyne holographic interferometry f or
the quantitative determination of the surface displacemen t from

the fringe pattern in the image plane. With this technique the

interference phase can be measured with an accuracy and reprodu-

cibility of ± 0.3° at any point in the fringe pattern , corres-
ponding to an interpolation of better than ~~~~ of one frincre .

Numerical examples are given for the sensitivity and accuracy

of surface strain measurements and the determination of bending

and torsion . Experimental results for bending and torsion of

arbitrarily curved and twisted space beams , such as tu~ bine
blades , are reported . Accuracy and agreement with theory are

within a few percent.
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1. Introduction

The general objectives of the research program have been theore-

tical and experimental investigations of methods for the quanti-

tative determination of surface strain and stress of mechanical

parts from holographic interferometry . This includes the develop-

ment of analytical and numerical methods to calculate the sur-

face strain from the object deformation as well as development

of special cpto-electronic systems to increase the sensitivity

and the accuracy for the evaluation and interpolation of holo-

graphic interference patterns .

Many forms of holographic interferometry are known for me-

chanical deformation or vibration analysis 1
~~. A common feature

of all these methods is that the interferometric informatio i is

presented in the form of interference fringes in the image or the

object under investigation . In case of mechanical deformation

and vibration studies it is known that the relevan t strain and

stress values are given by first or second order derivatives of

the interferometrically measured surface displacement2’3~~. There-

fore the quantitative determination of the local strain parameters

is only possible if the accuracy of the evaluation of holographic

interferograms is increased drastically beyond the simple tech-

nique of counting fringe orders.

To solve this problem a basically new approach for the quantita-

tive evaluation of holographic interferograms is considered . I~~t~-

~~~~~~ ho~ ograp~~i~ interferometry
4’5

~ increases the accuracy by

at least a factor 100.

Moreover the quantitative determination of mechanical strain on

the surface of an arbitrarily shaped object through holographic

interferometry requires the knowledge of the r e l a t i o n  b e t w e e n  sur-

face strain and 8urfa~ e diap la ce’n~’nt and the r e l a t i o n  b e t w e e n  d o—

r i v a t i v es  o f  the  s u r f o c e  d is p l a c e me n t  and the  i n t e r f e r e n c e  f r i n g e s

in the imag e p l a n e .  This relations have been established theore-

tically and are used to develop corresponding numerical programs

to evaluate strain , stress , bending and torsion from holographic

inter ferometry .

— ~~~~~~~~~~~~~~
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2. Heterodyne Holographic Interferometry

Holographic interferometry is a powerful tool to determine sur-

face displacement fields of solid objects. The relevan t informa-

tion is the phase difference 4 between the two optical wave fields

corresponding to the two object states before and after deforma-

tion . These phase differences show up as intensity variation , the

so-called interference fringes , in the image of the objects. How-

ever , quantitative information on the inter ference phase can only

be obtained reliably from the maxima and minima of the interference

fringes , corresponding to multiples of 180° or ir in the phase ~~~
.

Any interpolation between the fringes is difficult and not very

accurate. Heterodyne holographic interferometry is a new opto—

electronic technique which overcomes this limitation and allows

to determine the interference phase at any position within the

fringe pattern with an accuracy of better than 0.40 or 1/1000 of
4,5)

a fringe

2.1. Heterodyne Interferometry

The basic idea of heterodyne interfeometry is to introduce a

small frequency shift between the optical frequencies of the

two interfering light fields. This results in an intensity modu-

lation at the beat frequency of the two light fields’ for any

given point of the interference pattern. The optical phase dif-

ference is converted into the phase of the beat frequency 6’7~

The two light fields are then described by theif complex ampli-

tudes

• V1
(~ ,t) = a1

(~ ) exp i[w1t+~ 1
(x)]

• (2.1)

V 2
(x , t )  = a2(~ ) exp i[w2t+~2 (x )],

where a ., are the real amplitudes , •l 2 the phases , and w the1,~. , 1,2
optical frequencies.

.

~~~~~~~~~~~ 

- -  —-—- - -.— -
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A photodetector placed at the point P(x) in the superposition

of these two light fields sees the time dependen t intensity

2 2 s 2 -
~ 

-~ -~I (x, t) = 1V 1+V 2 = a1 ( x ) + a 2 ( x ) + 2 a 1 ( x ) a 2 ( x )cos  [ . w 1— w 2 ) t+ 1)1 
( x )  ( x )

2 -
~ 2 -

~ 
-
~ 

-
~ 

-
~~ 

-
~= a1( x ) + a 2 (x ) + 2 a 1( x ) a 2 ( x)cos [ c 2 t + p ( x ) ] .  ( 2 . 2 )

Equation ( 2 . 2 )  shows that  the interference phase ~~~~ =

i .e .  the optical phase difference between the two light fields , ap-

pears as the phase of the intensity modulation at the beat fre-

quency ~ =

As long as Q is small enough to be resolved by a photodetector ,

this modulation can be separated by an electronic filter centered

at ~ and the phase can be measured electrically with respect to

a reference signal at the same frequency. As will be described in

Section 2.3. the interference phase can be measured essentially

independent of the amplitude of the modulated signal and therefore

also independent of the amplitudes a1
(~ ) and a2(~ ) of the inter-

fering light fields. The accuracy for the electronic phase measure-

ment can easily be better than 10 or 211/400. Techniques and ex-

perimental realizations for the frequency shift will also be given
$ in Section 2.3.

The heterodyne method can be applied , with some restrictions, to

holographic interferometry :

— Application to real time holographic interferometry is straigh t
forward

- Application to double exposure holographic inter ferometry is
possible, of the two wavefields  are stored independently in
the hologram4’8~ . The most convenient solution with two diffe-

rent reference waves will be described in Section 2.2.
- Application to time average holographic interferometry is not

possible , since the averaged wave field shows already frozen

interference fr inges .
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It  is ins t ruc t ive  to compare heterodyne in te r fe romet ry  and clas-
sical f r i n g e  in tens i ty  detec tion wi th respect to the accuracy
of in t e r f e rence  phase measurement .  F i rs t  of all it should be
pointed out that in case of intensity detection the interference

phase can only be reliably deduced from the position of the

fringe maxima and the fringe minima , because any intermediate

value of the intensity depends on both phase and average inten-

sity , which is in general not constant across the image of the

object. The heterodyne interferometry overcomes this limitation ,

since phase and amplitude of the interference term can be sepa—

ruted electronically and the fringes travel across the image so

that the sensitivity and accuracy is the same at any position.

This difference is visualized in Fig. 2.1: ~~~~~~~ the intarfey ev~.~~
t e r n  on ? y the p osi tion s X~ o~’ th~ f e  ~~ ge ~~~~~~~ a~: i  “:~~ni~ , .Tz

r’~~ ~~p~7 o b t a i n e d ;  f r o - 2  ; 1 e t e r ~J ~~?ine i n ter ~~cr ~~met i~’i t he  ~~~ti~~ Z

i~ t~~r~~~ren e p h~i~~e 
~ 

i s  o b ta i ~ieJ  a t  any  ] e •’:~~r e I p o •~I ~io~ x , .

2 . 2 .  Two- reference-beam Holographic In t e r f e romet ry

Double exposure holographic in terferometry  probably is the most
common and convenient kind of holographic interferometry. It is
therefore very important to find a solution to use the described

heterodyne method together with double exposure holographic inter-

ferometry. This is possible if the two wavefields are stored in-

dependently in the hologram , so that during reconstruction the

different frequencies for the two ir’terfering light fields can be

introd uced by using two reference waves of different frequencies.

The most convenient realization is to use two different reference

waves for that purpose4’8~ .

Multip le-reference-beam holography has been proposed and applied

by various researchers for inspecting phase objects , holographic

recording of polarization , or as means for introducing flexibility

into conventional double exposed holograms . Indeed , if each image

has its own reconstruction beam , one has access to each image se-

parately, as well as to their mutual interference pattern . A
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double-exposur e double—reference-beam holographic setup , as

shown in Fig. 2.2 , is basically a superposition of two indepen-

dent holograms of the same , but deformed , object on the same

hologram plate .

The hologram H(x) , which is the inter ference of reference and

object waves in the hologram plane (x,y) , consists in this case

of

H (x) = R
101 + R~O1 + R2O~ + R~02, (2.3)

where R1 and R2 are the two different reference waves used to

record 01 and °2’ respectively .

Upon illumination of the hologram with the two reference beams
÷ 9)

and R2 eigh t terms result from the product of R1+R2 with H (x).

As shown in Fig. 2.3 , two pairs of reconstructions , viz. R1R~O1,
R2R~O2 and R2R1O~

, R1R2O~ , will be in exact register giving rise

to interference . The images R1R~O1, R2R~O2 and R1R1O~
, 1~2 R 2 O~

are the primary and conjugate self-reconstructions , resoectively ,

of the two independent holograms with their own reference waves .

In addition , R2RtO1
, R1R~02 and R2

R10~ , R 1 R20~ are the primary

and conjugate cross-reconstruction , respectively , of the two

holograms with the wrong reference waves.

The locations of the reconstructed images depend on the mutual

position of the reference waves and the object during recording.

For the experimental demonstration of the various reconstructions

and their respective location in Fig. 2.3 the reference sources

were approximately at the same distance from the hologram as the

• oblect. Therefore, following Eq.(2) in Ret.. 8 all reconstructed

images are virtual and appear focused at nearly the same distance

behind the hologram as the original object. For reasons of aberra-

tions it is recommended to work exclusively with the inter fering

pair of primary , self-reconstructed waves R1R~01 and R2R~02.
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The directions of propagation of various reconstructed waves

can also be constructed and visualized with the help of a

sphere of radius k in the k-space where each propagation vector

is represented by a point on that sphere . For the example scetched

in Fig. 2.4 the object vectors 
~Ol 

and k02 have been chosen along

the z direction , i.e. normal to the hologram plane . The optimum

choice of the reference sources to avoid disturbing overlapping

of the different reconstructions can be deduced from Fig. 2.4. Sym-

metrically positioned reference beams with respect to the object

location are not recommended , since for this case the two pairs

of inter fering images will be reconstructed along the same propa-

gation direction . The best choice is to have both reference sources

at the same side of the object with a mutual separation as small

as possible. This means that the angular spacing between the two

reference waves should be just larger than the angular size of the

object in the corresponding direction , so that the reconstructions

R1R~01, R2R~O2 and R2R1O~ , R1R20~ carrying interference informa-

tion are mutually separated and do not overlap with R2R~01 nor

R1R~02.

Two—reference—beam holographic interferometry is expected to be sen-

sitive to repositioning errors for the reconstruction process be-

cause misalignments of hologram and reference waves will not affect

both reconstructed waves in the same manner . Angular misalignment

of both hologram plate or reference waves causes mainly an addi-

tional linear phase deviation across the hologram between the

reconstruc ted wave fie1ds9~~. The effect of these linear phase de-

viations on the image of the object, obtained by a lens in the re-

constructed wave field , can be simulated by a wedge positioned at

the hologram plane affecting only one of the reconstructions . The

corresponding schematical arrangement is shown in Fig. 2.5.

The effect of this wedge on the image can be calculated using the

Fresnel approximation for the stepwise propagation of the light

field from plane to plane. The result is both a linear phase dis-

______ 
_ _ _  _ _ _ _ _ _-. 

~~~~~~~~~~~ . 

-
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tortion ~~0 (x 1) across the object and a virtual transverse dis-

placement u~ of the object. The relations to the phase devia-
9 )tion ~~~(x 2 ) in the hologram plane are found to be

~H
(x 2) = kcx x2 , ~p ( x

1
) = [kab/ (a+b)]x 1~ u ’ = aa. (2.4)

For holographic interferornetry the phase distortion i~~~~ ( X
1

) across

the object is dangerous because it changes the interference pat-

tern , whereas a lateral shift u~ does only reduce the fringe con-

trast. Fortunately the phase distortion can be nearly eliminated

by placing the lens as close as possible to the hologram , so that

b/ (a+b) << 1. In this case the lateral shift is approxima tely

u ’ = ad
o 0

An analysis of the phase deviation introduced by different kinds

of misalignment shows that for plane or quasi plane reference

waves only rotations of the hologram plate and a change of the

mutual angle between the two reference waves are important9~~. The

phase deviation in the hologram plane (x,y) due to rotations , is

given by

= — 

~~~~~~ ~ 
x 
~~ 

(2.5)

where 
~l 

dnd 
~2 

are wavevectors of the two reference waves ,

= (~ x,~ y) is the change of coordinates due to the rotation

= (~a,A~~,i~y), and = (x,y) are coordinates in the hologram

plane . It is seen that the phase deviation depends only on the dif-

ference ~~ = (~ 1 k2) of the two wavevectors and does vanish for

identical reference waves, which is the case in classical double

• exposure holography . The maximum slope of the phase deviation is

obtained from Eq. (2.5) as

2 2 1/2
a = ~~k~ I~Y— k~~ B) + ~~~~~~~~~~~~~~ ] , ( 2 . 6 )

where the z-axis is assumed to be norma l to the hologram surfa ce

and &z, t~B,  ~y are the angular rotations around the x ,y , z aXiS~
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respectively. With a partially symmetric choice of the reference

waves one can obtain ~k = 0, so that the rotation E~y around the

normal to the hologram plate remains as the only essential con-

tribution to the phase deviation . A change t~i~ of the mutual angle

S between the two reference waves produces a phase difference

-~ -$•

(k -k1 2  -~~
= x Aô , (2 . 7 )

1 1( 2 1 
H

which yields a maximum slope of

a = (~ k
2+i~k

2)~~
”2 (~k

2+~k
2+~k

2) l~
’2
~ 6 (2.8)x y x y z

In any case the alignment requirements are considerably less

stringent than in real-time holography . If the same experimental

setup is used for recording and reconstruction , usually on ly a
slight readjustment of the rotational position of the hologram

plate as can be deduced from Eq. (2.6) is necessary to get mini-

mum or zero fringes across the hologram and at the same time maxi-

mum fringe contrast in the image.

Two-reference-beam holographic interferometry is applied in the

f~ 1lowing way to realize the heterodyne method for double expo-

sure hologaphic interferometry (see Fig. 2.2): The first object

state 01 is recorded using beam R1 as a reference . A stop is

placed in beam R2 so that it does not illuminate the hologram

plate. The second object state 02 is recorded in the same manner ,

except that beam R2 is used as a reference and beam R1 is stopped.

All light fields during recording have the same optical frequency

After processing the hologram is reconstructed with geometri-

call y identical reference waves R1 and R2, but of slightly diffe-
rent optical frequencies w1 and ~2’ 

respectively. The reconstruc-

ted wave fields Oi and 02 have the same frequencies as their re-

spective reference waves. This meets precisely the conditions

• _ 
_ _ _--•—-- .--_ _ _ _ _  --• —-~~~~~~~ -

p—•—- 
~~~~~~~~~~~~~~~~~~~ - -~~
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necessary for heterodyne interferometry between these two re-

constructed wavefields. The frequency difference ~ = has

to be small enough to be resolved by photodetectors (cu/2rr 100 MHz).

The relative frequency change 
~‘~ 1,2 

is therefore smaller than

2x10 for visible light. The resulting changes in the propagation

of the light waves are thus very much below any optical resolution .

2.3. ExRerimental Realization and Results

Besides the standard holographic technique and equipment one needs

for heterodyne holographic interferometry also methods to generate

the desired frequency offset ~) ,  to detect the modulated signals ,
and to measure their phase accurately. For small frequency off-

sets (~ < 2n x 1 kHz) a mechanically rotating X/2-plate and sub-

sequent polarizing elements can be used as in the early experiments

of heterodyne interferometry6~ . For the sake of stability , accura-

cy, and measuring speed, however , larger frequency offsets

~ 2ir x 100 kHz) are advisable. This can be realized adequately

only with either rotating radial gratings10~ or acousto—optical

modulators~~~ . The disadvantage of the rotating radial grating

is the fixed intensity ratios between the different object and

reference beams , given by the diffraction efficiency of the gra-

ting, which does not allow to optimize the light economy for both

recording and reconstruction independently . Moreover, most rota-

ting radial gratings show residual amplitude modulation due to

grating imperfection which may disturb the phase measurement

eventually.

For the phase measurement one needs a signal to act as a reference.

Therefore at least two photodetectors are placed in the image of

the object under investigation . One detector may be at a fixed

position while the other scans the image , or both detectors may

be movable at a fixed relative mutual separation . The latter

measures rather fringe density or slope of the interference phase

function than the interference phase itself. Nevertheless it has

:-
~~
-- . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -  -• ----- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— —
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the advantage to be less sensitive to slight variat ions of the
position of the detectors , as long as their mutual separation is

kept constant, and to yield directly local derivatives , which are

in case of displacement measurements related to the strain. The

integral interference phase can be calculated sufficiently accu-

rate by summation of the increments. Photomultiplier tubes rather

than semiconductor photodiodes should be used as photodetectors

because of their nearly noise free and phase distortion free high

gain. The disadvantage of photomultiplier tubes to be bulky can

be overcome by using fibre optics to collect the light in the

image plane.

All electronic amplifiers and filters in the signal paths should be

designed carefully to avoid phase distortion which could reduce

the accuracy of the phase measurements. Especially narrow band

filters for noise reduction should be avoided . A bandwidth of

somewhat less than half the modulation frequency ~2 is advisable to

cut down the d.c. component arid harmonics. The phase is measured

either by a phase sensitive detector and a calibrated , variable

phase shifter or more conveniently by a zero-crossing phasemeter.

Both kinds of instruments are commercially available with resolu-

tion down to 0.10 for the phase. The zero-crossing phase meter

requires for proper operation , i.e. to avoid multiple zero cros-

sings , a signal—to-noise ratio of at least 20 dB and a noise band-

width of less than the signal frequency . The signal noise introduceE

a phase error 6~ due to the fluctuations of the zero-crossings .

This phase error is found to be

= (SNR) 112 N 112 
= (SNR) 1”2 (T/T) 1’~

2, (2.9)

where N = u T  is the number of zero crossings observed during the

integration time u of the phase meter. This means that a single

measurement (N = 1) with SNR = 20 dB yields 6~ = 6°. This is re-
duced to 

~4, 
= 0.06° for N = 10 which corresponds for example

to u = 100 ms for a frequency of 100 kHz (T = 10 ~js).

— i—I.- 
--
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The SNR of the detector signals can be estimated from the holo-
graphic set up,  the hologram e f f i c i e n c y , and the laser power. In
case of sh o t - n o iR e  l imited detection with a photomultiplier the
signa l—to—noi se  r a t io  is found to be

SNR = P y 2
n~~n~ A~ /2A h vB , ( 2 . 1 0 )

where P = power of the reconstructing reference beams , y = f r inge
contrast , = hologram e f f i c iency , 

~D = quantum e f f i c i ency  of the
detector , AD = detector area , A0 = area of reconstructed object
in the image plane , hv = photon energy , B = detection bandwidth .
The power P of the reference beam is def ined  as the power f a l l i n g
on that  area of the hologram , which contributes to the recon-
structed image. An estimation for the following reasonable experi-

mental parameters P = 5 m W , ‘~ 
= 0.5, = 0.1 (bleached hologram) .

= 0.1, A~ = 7.8x10
6 

in
2 

~~ 
= 1 mm), A = 0.1 in2 , h~, = 3.8 10

19

Ws (A = 0.514 nm), B = 10 kHz , yields a SNR of about 40 dB. With-

out taking special precautions to save light one needs about 20

times more laser output power , i.e. = 100 mW in the above

example , than actually used to reconstruct the image, due to the

losses at the optical components and comparatively large spots of

the reference beams on the hologram to get a uniform illumination .

Besides the phase error due to amplitude noise, as given in

Eq. (2.9) and (2.10), additional phase fluctuations may occur

in the signal. These are mainly r aused by instabilities , e.g.

in the path length if the two reference waves , and by mechanical

instabilities of the position of detector and reconstructed image.

The overall accuracy of phase measurement, including these phase

fluctuations , has recently been investigated experimentally 12~
for a special application . The first experimental verification

of heterodyne holographic inter ferometry was made for pure bending

of a cantilever5~ . The results indicated an accuracy of inter-

ference phase of 6~ = 0.3°, which corresponds to less than 1/1000

of a fringe .

• •1,~ _____________ .— . •-—-- — — —•
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A somewhat more advanced setup for heterodyne holographic inter-

ferometry is shown in Fig. 2.6. In this case the frequency shift

of c~ = 2rrxl00 kHz is realized by two commercially available

acoustooptical modulators M1 and M2 in cascade to give opposite

frequency shift. During recording both modulators are driven with

40 MHz , so that the net shift is zero. During reconstruction

one modulator is driven with 40 MHz and the other one with 40.1 MHz

so that the net shift is the desired 100 kHz. An array of three

detectors is used to scan the image . The two differences t~t,. and

t~ in the orthogonal directions ~ and g are measured rather than
the interference phase ~~~~~ itself. The electronic equipment

for automatic measurement and data acquisition is shown in Fig. 2.7.

The driver for the two acoustooptical modulators (40 MHz and 40.1

MHz) is seen at the bottom. The three photomultipliers , D1, D2,
in Fig. 2.6, get their light from the detection points in the

image plane by optical fibre-bundles . In the center box the beat

frequency at 100 kHz is filtered out from the photomultiplier sig-

nals with a bandwidth of B = 10 kHz. The signal amplitudes are

kept approximately constant independent of the intensity across

the image by control of the photomultiplier voltage . The phase

differences and Aq are measured with two zero-crossing phase-

meters , which interpolate the phase angle to 0.10 and coun t also

the multiples of 3600, which corresponds to the fringe number.

The detector array is mounted on a step-motor driven stage to scan

the image. The programmed scanning pattern is executed by the X-Y

control un it (top of Fig. 2.7). For any measured position the

~,~ —coordinates as well as the interference phases are digitally

recorded on punch tape to be available for fur ther data processing.

The measuring time for one position , including disp lacement and

data punch , is only a few seconds.

The overall accuracy of the phase measurement , including phase

fluctuations due to instabilities in the optical setup , are de-

termined experimentally. A double exposure , two-reference-beam
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hologram of an object which has not been deformed between the

two exposures is recorded . The measured phase difference between

the signals of two detectors at a constan t separation of 3 mm

is measured at different positions in the object image . The

result is shown in Fig. 2.8. The vertical bars indicate the

digital resolution of ± 0.05° of the phasemeter reading. The
measured phases show statistical variations with 6~ = 0.220

around an average value of ~ = 1.05
0. This means that the inter-

ference phase can indeed be measured with an accuracy of better than

= 0.3°, corresponding to an interpolation of l0~~ of an inter-

ference fringe.

2.4. Discussion and Conclusions

It has been shown and experimentally verified that heterodyne

holography has the following outstanding properties :

-3 • 0
— fringe interpolation to better than 10 of a fringe (ó~ = + 0.3

— measurement with the same accuracy at any desired position in

the image, therefore high spatial resolution (> 100 x 100 points)

- independen t of brightness variations across the image ,

- inherently direction sensitive , (i.e. increase and decrease of

inter ference phase can be distinguished) ,

- computer readable output both for position and phase easily

obtained (allows also on-line data-processing)

For these reasons heterodyne holographic interferomnetry is con-

sidered to be the most powerful technique to collect data for

quantitative measurement of surface displ~ cement of solid objects.

Moreover, the heterodyne technique can be applied to nearly all

known kinds of holographic interferometry , except for time average

holograms. This list includes

- real time holographic interferometry : high temporal resolution ,

e.g.  for vibration studies with an upper l imi t given by the
frequency o f f s e t  c~; however the overall stability is expected
to be smaller than for double exposure holography

- 
— 

— 

- 

-_ _
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— vibration analysis from multiple exposure holographic inter-

ferometry recorded with stroboscopic illumination and syn-

chroneous switching between the t .io reference  beams

- dep th contouring using dual i l lumina t ion  source or dual wave-
length recording ; by changing the angular position of the mode

selection etalon of a single mode Ar—laser the frequency be-

tween two exposures can be shifted by 6.7 GHz , yielding depth

contours of about 22.5 mm separation and therefore 20 urn re-

solution for 6~ = 0.3°.

3. Quantitative Determination of Surface Displacement, Strain

and Stress

In most practical applications of holographic interferornetry to

solid objects rather the differential • change of the surface dis-

placement, i.e. strain , tilt , bending, torsion , than the dis-

placement itself is of primary interest. In the following the

necessary theoretical relations between optics , geometry and me-

chanics will be worked out and illustrated with numerical and ex-

perimental examples .

3.1. Surface Displacement and Mechanical Deformation

The displacement of the object surface is completely described

by a vector ~(x,y,z), where the coordinates x, y, and z are re-

stricted to the surface of the object, defined by a function

z = f(x ,y) , or F(x,y,z) = z—f(x ,y) = 0 . (3.1)

If we suppose that the derivatives of the displacement are small

compared with unity, the vector gradient u~1( = grad ~ may be Se-

parated additively in a symmetric part Cik ? the strain , and a

skew-symmetric part c~ 1( the rotation
13
~,
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p 11( grad u = 
~
)U

t /~~
X

k 
= +

~ik 
= 5ki 

= 
~ (u~1( + u1(1) ,  (3.2)

1
~~~ ~ki 

= 
~~~ 

( u ~1( — U 1(1
)

For elastic deformation of an isotropic material the relations be-

tween stress °ik and strain Li k is given by Hooke ’s law

°ik 
= 

l+v klk + l— 2v ~ik xx yy~~ zz~~~
’ (3.3)

where E is the modulus of elasticity and v is Poisson ’s ratio

~
6ik = 1 for i = k and = 0 for i ~ k).

For the discussion of the relations between surface displacement

and surface strain it is appropriate to select the x,y,z coordi-

nate system for the object point p so that the z—axis is parallel

to the surface normal and the x— and y—axis are parallel to

the tangential plane (Fig. 3.1). From the observed surface dis-

placement, however , it is not possible to determine grad ~ =

~
u.±/3x.

~ 
completely, because only the variations of ~ (x,y,z) along

the surface z = f(x,y) are accessible. This means , expressed in

the special coordinate system shown in Fig. 3.1, that only the

six components

p . = au ./~x1 a

can be obtained , where here and the following greek indices

(e.g. a, ~) are used for in-plane components (u ,u ) and in-

plane coordinates (x y).The three remainiria components

=
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have to be determined from additional relations. These relations

are obtained from the known mechanical boundary conditions at the

object surface14~ . They read

Tk 
= n. o i~~~ (3.4)

stating that the external forces T1( are in equilibrium to the

stress components normal to the surface. In most practical cases

the surface under observation is free of external forces (T1( = 0)

This implies a . = 0, i.e. all normal stress components are zero,

and leads with Eqs. (3.2) and (3.3) to the 3 required additional

relations

= 

~~zx’ ~yz 
= —

~~ y . U~~ = — 
~~~~~~~~~ 

(ii xx+Pyy
)
~ 

(3.~~)

With the Eqs . (3.2) and (3.5) the vector gradient of the surface

displacement 
~ik 

= grad U can be determined completely from the

observation of the displacement vector on the surface. The com-

ponents of the rotation vector are exp licitely

0 = 0 = ~u /~y, 0 0 = —~ u /~x, 2 = = (~ u /~~x—~~u / ? .y ) .x zy z y xz z ‘ix 2 y x
(3.6)

Bending and torsion are given by the change of curvature of the

surface. The original curvature of the object surface is described

by a tensor K with the elements

K = ~
2f/~ x ~x (3.7)

a

where z = f(x ,y) defines the surface and are the orthoqonal

coordinates (x,y) in the tangential plane1~~ at the point P

(Fig. 3.1). Therefore the surface can be approximated around P

by the quadratic form

.
~~~—.- 

,
,• - ~~~~~~~~~~~~~~~~ 

• 
•- 

~
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1 1 2 1 2
Z = 

~~ 
K

a~~
x

a
x

~ 
= 

~ 
K ;.~~:

X + K xy XY + ~ K~~~ , y . ( 3 . 8 )

The coordinates ~~~~
‘ = (x ’ , y ’ , z ’) of the surface after displace—

men t u are obtained from

= X + U. (3.9)

The displacement i~ is also expanded in a power series around the
point P. To simplify the calculations any contribution of cor-

responding to a rigid body motion rather than a deformation of

the surface may be assumed to be zero, without loss of generality .

This means that at the point P both the displacement ~ (P) and the

rotation ~ (P), as given in Eq. (3 . c~) ,  vanish . Since Eq. (3.~~)

for the surface approximation is linear in z and quadratic in x

and y the displacement component u~ is expanded up to quadratic

terms while u
~ 

and uy are broken off after the linear terms . The

coordinates of the sur face  a f te r  disp lacemen t read now

x ’ = x + (
~ u~ /~ x) x + (

~ u~ /~ y) y 
= (1 + c ,~~ ) x + y

y ’ = + (~ Uy/3X) x + (3 u ~ /~ y )  
~ 

= (1 + Cyy y + Cxy X

= z + ~ (a 2u2/~x
2) x2 + (D 2u2/~xay) xy + 

~~

- (~~
2
u~~/~~y

2
) y 2 .

The change of curvature is obtained by introducing Eqs. (3.10) into

the original quadratic form of the surface, as given in Eq. (3.8)

and looking at the change of the coefficients in the new quadratic

form afterwards . Restricting oneself to linear contributions in

E
8~ 

since << 1, one gets finally the nice looking relations

= 
~

2
U

z 
X

a~~~~8 ay
E

y~~~~~ay K yB (3.11)

The change of curvature is seen to consist of two different con-

tributions , namely the variation of the surface tilt u~/~x~~)x~
and the influence of the surface strain c~~~, which reduces the appa-

.

~~~~~~
-

‘ ~~~~~~~~~~~~~~~~~~~ 

— — --— _ _ _  ____ - ------- -

~~~~~~
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rent curvature proportional to its original value v~~ . In the

case of dominan t bending and torsion the contributions of the

second terms in Eq. (3.11) can be neglected , since the pro-

ducts of the curvature K and the strain ~ will be small.

The bending (change of curvature) AK
5 

and the torsion (rate of

twist) dc25/ds for an arbitrary direction s on the surface are

obtained from AK by the relations

AK = AK cos20+2AK cos~3sin0+AK sin2O ,
S xx xy yy

(3.12)

dO / d s  =AK cos2G+ I (A K  — A K  ) sin2O,s xy 2 yy xx

wher e B is the angle between the x-axis and the direction ~ (Fig.

3 . 1) .

Af t e r tha t , all relations between surface disp lacement and mecha-

nically relevant deformations are established. F~:om EqS. (3.2)

and (3.11) it is seen that the in—plane strain c 0 is obtained

from the first derivatives of the in-plane displacement u
~ i u~~

whereas the change of curvature AK
aB 

is mainly determined by the

second c3erivatives of the out-of-plane displacement u7.

3.2. Calculation of Displacement Vectors from Interference Fringes

in the Image

The considered geometry of the setup for the holographic interfero-
metry is shown in Fig . 3.2. It is assumed that  the same imag ing
system is used for all the holographic interferograms with diffe-
rent sensitivity vectors 

~~
. This can be realized using either

different illumination source Q or different observation direc—

tions16 ’17~ , e.g. different portions of the hologram and the lens

aperture18~ . It has also been suggested to use entirely different

views of the object to get the sensitivity vectors 
~~

, but this
is not recommended because of the differen t projections of the

object formed in the images which makes proper position measure—

ments and coordination of individual points on the surface quite
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difficult and inaccurate . The actual observation point P’U~’ ,~~’)

in the image plane is simply related to the pcint P(~~,q) in the

conjugate object plane by the magnification . Therefore the

(~~ ,n, t) are used as image coordinates . The object coordinate

system (x,y,z) for the corresponding point on the surface is

mainly determined by the surface normal ~ , as shown in Fig. 3.1.

16)The interference phase measured in the image is given by

~~~~~~~ 
(k
Q
k
A
) 

~ 
= 2k 

~~~~~ 
= 2k Un

(
~~~f l )~ 

( 3 . 1 4 )

where kQ and are the wave vectors of the illumination and the

observed light , respectively, an. U~~(~~ n) is the appearant compo-

nent of the displacement ~ in the direction of the sensitivity

vector ~~~~~~~~ If  the displacement vector is represented by its

components ~~~~~~~ in the image coordinate system ~~~~~~ Eq. (3.14)

can be wr itten as

U ( ~~,ri) e 1((~~,n) ~~~~~~~~ (3.15)

where enk are the components of the ~~~(~~,n) in the image system.

Using three linearly independent sensitivity vectoi~ Eq. (3.15) can

be inverted to calculate the displacement components

u (~~,~~) = ~kn~~ ’~~ 
Un (~~ n)~ 

with f e 1( 6~~ . (3.16)

The elements f1(~~(~~ n) of the inverse sensitivity matrix can be

calculated either analytically or numerically from the recording

and imaging geometry which determines the sensitivity vectors

The derivatives of the displacement u~~(F~,q) in the image system

are directly obtained from Eq. (3.16), taking into account that

also the inverse sensitivity fkn~~~
T
~ 

depends on the position

in the image plane. In general the contributions of the differen-

_ _ _ _ _ _ _  

-

~~~~~~~~~~~~~~~~~~~~~
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tial change of the sensitivity vectors En (~~
fl) cannot be neg—

lected 14’17 ’19~ . At least an estimation of these contr ibutions

is recommended in each special case. Therefore the derivatives

in the image system read

= 

~kn~ n”~~~cz~ 
+ U ,  (3.17a)

= fkn 
2
~ + 

~~~kn”~~~a~ 
(
~
U /ar

B
)

+ (~~f1(/~~~~
) (
~ U / 3 ~~~) + 

~kn’ a~~ 8~ 
U~~. (3.17b)

More than three sensitivity vectors lead to an overdetermined

equation system for ~~~~~~~ One can take advantage of that to

eliminate the zero fringe amb igu ity 16
~ or to improve the accuracy

by least—squares solutions of Eqs. (3.16) and (3.17). The zero

fringe ambiguity is due to the fact that in general the absolute

fringe order or interference phase cannot be determined from an

interferogram unless the absolute value of the displacement is

known for at least one object point accessible in the image. It

has been shown that the determination of the absolute fringe order

is always very inaccurate if the viewing directions are restricted

to a relatively small solid angle by the limitations of the imaginç

optics or the hologram20~
’ . Therefore it is advisable to determine

the absolute displacement just for one point of the object by some
20)other techniques , e.g. using a second view of the object or

elastic connection to an undisplaced reference point. Since the

absolute displacement appears in Eqs. (3.17) only in the correctior

terms with U n ? it has not to be determined very accurately for

strain and bending measurements . Moreover one can try to reduce th

differential change 
~~~nk”~~ a~ 

of the sensitivity vectors as much

as possible , e.g. by plane wave i l luminat ion (
~~ 

= cons t.)  and
telecentric imaging 

~~ 
= const.). However this complicates the

holographic setup and l imits  the size of objects quite dras t ica l ly

The next step is to t rans fo rm the displacement and its derivatives
from the image system to the object system . For each point P the

~~~~- .~~~~~~~~~—--- _ _ _ _ _ _-

~~~

-- - -__- - 
•
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relation between the image system (~~,ri ,~~) and the object system
(x,y,z) can be described for that purpose approximately by a
general rotation in space

X = R~~ 
~k

’ (3.18)

where R~~ is orthonormal , i.e. R
IflkR k = o~~. This approximation

is valid as long as the distance between object surface and ob-
ject plane (E~,ri) is small compared with the viewing distance. The
rotation matrix Rmk is mainly determined by the direction of the

surface normal

-
~ 2 2 2

= (n~ ,n ,n~ ), with n~ + n + n~ = 1, (3.19)

in the image system . If the orientation of the x—axis in the tan-
gential plane is chosen so that it corresponds to the optical

projection of the c—axis , i .e.  in the (F ~, ç )  plane , the ro ta t ion
matrix is explicitely given by

[ n
c
/N 0

R~~ = —n~ n / N  N —n n /N~ (3.20)

L~ 
n n ç j

with N = ÷V~i~~~ . The inverse rotation matrix is simply ob-

tained from R~~~ = R k? since R~~ is orthonormal.

Using Eq. (3.18) the components of the displacement i in the ob-

ject system are obtained by

U(x ,y,z) = R
~1(

u
~~
(
~~
,n). (3.21)

For the transformation of the derivatives , however , it has to be

considered that the observed displacement ~ (x,y,z) is restricted

to the surface defined by Eq. (3.1). Therefore one gets

~~~~~~~~~~ 

- 

•~~TT.. 
_ _ _ _ _
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au ’
= 

~~~~ 
(- + -~---~ ~-~--- ) = -

~~
-

~~~~~ (R~~+R~~ 
.
~~
.—), (3.22 a)

1 a a f3 a
2

2m m — 1 — l ~f — l —1 ~f m —l )~ f= 
~~~~~~~ 

Rya+Ryz ~~~~ 
R

~~~
+R

~~Z ~ 
+ 

~~ yZ

( 3 . 2 2 b )

where the Eqs . (3 .1)  and (3.18) have been us ed . Because of the

special choice of the object system at the observed point P (see

Fig. 3.1), the derivatives of the surface are 
~
f/
~
Xa 

= 0 and

D 2 f/ ~~X a~ X~ 
= K aB ? following the definition of curvature in Eq. (3.7

Finally the derivatives of the displacement in the object system

can be calculated with

= R~~ (au~/a~~ ) R
1 (3.23a

~
2
U /

~~
X
~~~

X
B 
= R~~~(~~

2
u~ / ) R 1

R + R ~~~(~ u~ /~~~~)R
1
K

8
. (3.23b

Remember t h a t  greek indices (a ,B,y ,ô) refer only to in—plane co-

ordinates (x ,y )  or ~~~~~ respectively .

Surface strain c . and rotation 0. are obtained from the measuredik ik
interference phase by consecutively applying Eqs. (3.14), (3.16),

t I . 17 a ) ,  (3 . 2 3 a)  and ( 3 . 2 )  or (3 . 6 ) .  For the calculation of bending

and torsion (change of curva ture  A K )  Eqs. (3.l7b) , (3.23b) and

(3.1 1) have to be used addi t ional ly .

3.3. Surface  S t ra in  Measurement

The sensitivity of the described method for the moasurernep4- of
surface  s t ra in  C ik using heterodyne holoqraohic inte r fe romet ry  is

estimated for the special case of three sensitivity vectors sym-

metr ica l ly  distr ibuted around the c-axis  at the ang le ~ and a

simple rotation of the object system around the c—axis by the

angle 4.5 (Fig. 3.3). The sensitivi ty vectors and the rotation of th

object system are then given by
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5 m B  0 cos B [1 0 0

e k 
= —sinB/2 V~ sinB/2 cos6 ; R~~ = 0 Cos V sin ’~

~ —sinB/2 —/~ sinI3/2 cosl3
j 

—sin S-’ cos ’

(3.24)

Assuming that the errors of the phase measurements ~~~ are indepen-

dent and equal for U1
, U2 and tJ 3 the sensitivity 5c for the strain

components can be calculated versus the angles B and -‘ - through

Eqs. (3.2), (3.17a) , and (3.23a). Neglecting the second terms for

the differential change of the sensitivity in Eq. (3.l7a) one gets

2~ 22 1 óu 1 4cos • • sin SU— , ~~E = — . + — ,xx 3 5 m B  AE~ xy 2 . 2 2 ~. r
3smn B 3cos B

2cos 4 cos 2
~ sin 2 

~SU= + — , (3.25)yy \ . 2 23sin B 3cos B

where A~ stands for the separation of the detectors either in

~— or n-direction and 5U = 2 k 5 q  is the accuracy of the displace-

ment measurement from the interference phase. Figure 3.3 shows
0numerical results of Eq. (3.25) for ~~ = 0.4 , A = 514 nm , and

a spat ial  resolution of A~ = A~ = 3 mm in the image plane. The

sensitivity 5c for the different strain components and for dif-

ferent rotation angles of the surface normal are nearly the

same. The main dependence is on the angle ~ between the sensiti-

vity vectors and the c—axis . A sensitivity of óc = 10 6 
= 1

iistrain is already obtained for B = 50~ which can even be realized

by observing the object through d i f f e r e nt portions of the same

hologram .

The practical application of surface strain measurement with  hete-

rodyne holographic interferometry will be discussed for the example

of a cylindrical tube with internal pressure as variable load.

~~~~~~~~~~~ 

.
~~ 

• : 

~~~~~~~~~~~~~
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A computer program has been developed for the numerical evalua-

tion of the measured data , taking the object shape and the geome-
try of the optical setup into account. Experimental results , how-
ever , are not yet available, but the computer program has been
tested with simulated data and the accuracy and sensitivity of

the strain measurement are investigated and compared with the

above estimation .

The test object is a cylindrical tube , closed at both ends , as showr

in Fig. 3.4. Following Saint-Venant’s principle the length is choser

lar ge enough compared with the radius R to get undisturbed deforma-

tion at the center section of the tube. For a thin-walled tube (b<<P

the stresses at the surface are found to be approximately 2U

= pR/b , c
y = pR/2b, a = 0, (3.26)

where p is the internal pressure. Using Hooke ’s law , as given in

Eq. (3.3) , one gets for the strain components

Ex 
= o

~~
(2—v )/2E , c~, = Ox

(l_2v)/2E s c~ = —a
~~
(3v/2E) . (3.27)

From geometrical considerations the components of the displace-

ment u(x,y,z) become then

u
~ 

= 0, Uy u0+c~ y = + = Rc~ = RE t~ 
(3.28)

where u0 is some bias displacement in the y-direction and the
tangential  strain has been introduced as the force parameter

instead of the pressure p.

The optical geometry is shown in Fig. 3.5.  Three divergent sources

~~~ ~~~ 
are symmetrically dis t r ibuted around the c-axis in the

hologram plane and i l luminate  the object consecutively to record
three two-reference-beam double-exposure holograms with d i fferen t
sensitivity vectors E~ . The holograms are located at A, which is

also the center of the lens aperture forming an image of the ohjectj

/ .
. 

i -~ -~~~~~~~~~~~ .~——- - - ——~--—— ~~~~~~~~~~~~~~~~~~~~~~~~ - 
—

~~~~~~~
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~- ---~~~~~~
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and its reconstructions in the image plafle (Y,ri ’). To insure that

all three double-exposure holograms see the same object displace-

ment it is recommended to record first the initial object state

successively on all three holograms by their corresponding illumi-

nation sources Q and then , after deformation , recording the second

object state in the same manner . It has been verified experimentally

that for this purpose the three holograms can be recorded on the

same plate mounted on a precision slide by shifting and repositio-

ning the plate between the exposures. Thus the three holograms are

accessible independently yielding the same image of the object but

different fringe patterns. The numerical values for the parameters

of the optical setup are as follows: image and object distance

d1 
= d2 

= 1.0 m , separation of illumination from hologram center

0.36 m, outer diameter of the tube 2R = 0.2 m.

The expected fringe pattern and the detector array in the image

plane is shown in Fig. 3.6. The separations of the detectors are

= An = 3 nun. The simulated input data are calculated from a
very crude approximation assuming constant sensitivity vectors

for the entire object , as given by Eq. (3.24) for 8 = 10°, which

is only true for ~ = n = 0.

The expected phuse differences ~~~~ and A~~ measured with the

detector array are tabulated in Fig. 3.6 for two positions and

the three sensitivity vectors . Also given are the absolute phase
values which can not be directly obtained from the holograms ,

as discussed in Section 3.2. In the first position ~ = n = 0 mm

the surface is parallel to the image plane while in the second

position ~ = 66.0 mm , r~ = 0 nun the surface is inclined by about

450

The computerprogram for the evaluation of s t ra in  and stress at
the surface follows essential ly the outl ines in Se ction 3 . 2 .  The
input consists of three sets of information :

- object surface geometry ,

- optical geometry for recording and reconstruction ,

- measured data of inter ference phase and position

in the image plane.

- ~~~~~ - ii
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The object surface is speci f ied  by a number of s u r f a c e  p o i n t s
on selected cross—sections of the object in a s u i t a b ly chosen

coordinate system. In case of the tube this cross-sections are

obviously chosen perpendicular to the cylinder axis. All inter-

mediate points on the sur face are obtained by quadratic inter-

polation which yields at the same time the direction of the sur-

face normal and t’te curvature ~
- if desired . The position and

or ien ta t ion  of the object  w i th  respect to the image system is

speci f ied  by the geometr ical ly determined shift and rotation of

the respective coordinate systemS .

The optical geometry is defined by the coordinates of the illumi-

nation sources Qn
(
~~

i r
~~
c) and the observation points ~~~~~~~~ in

the image system, the image and object distances d1 and d2, and

the wavelength A. Additional geometrical parameters are the sepa-

ration A~ and A~ of the detectors in the array.

The data input from the measurement consists of the phase diffe-

rences A~~ and for the three sensitivity vectors collec-

ted during a scan in the image plane at the corresponding position

The incremental steps during the scan are preferably

chosen equal to the detector separation A~ or A~~. For the starting

point the absolute phase values should be known , either by
additional measurements or at least by an estimation .

The program calculates the intersection of the line—of—sigh t from

the image point P’ (E,r i ) through the center of the aperture A wi th

the object sur face  to determine the corresponding surface point
P (
~~,r,,c). The sensi t iv i ty  vectors , the inverse sens i t iv i ty  ma t r ix

f , i t s derivat ives ~f /3~ , and the rotat ion ma t r ix  R are cal—nk nk a mk
culated numerically for any point of observation to determine the

derivatives of the displacement ~u1(/~ x on the object surface.

The f ina l  output  consists of the components of the surface  st ra in

C B~ 
the surface rotations 0.~, and the corresponding coordinates

on the object.  The surface stress a can also be calculated forczB
given values of the modulus of e last ic i ty  E and Poisson ’s ratio v .
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For the considered test object a tangential strain of r..~ =

Sx lO 5 and the values v = 0.34 and E = 7.26xl01° Nm 2 fo r alu-
minium have been assumed. This yields , following Eqs. (3.26)

and (3.27) theoretical surface strain and stress values of

5.00xl0 5 0.0 1 4.37xl06 0.0
I ;  a = Nm

9.65xl0 6j czI3 0.0 2.l9xlO 6

independent on the position . These stresses correspond , for a wall

thickness of b = 3 mm , to an internal pressure of p = l.3lx105 Nm 2 
=

1.43 at.

The computer results for the simulated input data given in Fig. 3.6

are for

= 0 mm , r~ = 0 mm: = 66 mm , r~ = 0 mm :

4. 56xl0 5 —5.  32 xl0 10
~ 3 .7 2xl0 5 3.l 3x10 9

C ~~~, E =
aB —5.32xl0 1° 5.22xl0 6 J 3.l3x10 9 5.66x10 6

J

The deviat ions between theory and computer results are mainly  due
to the approximation of coi~sta nt  sensi t ivi ty  vectors mad e for the
calculation of the simulated input data , whereas the numerical

evaluat ion take s the ef fec t ive  geometrical variat ions of e andnk

~nk 
into account. This fact is illustrated by comparison of the

two terms for the derivative ~~~~~~ in Eq. (3.l7a) . For ~ = n = 0
one f inds

= 5 .OOxl O — 4 .42xl0 6, ~u ’/~~ = 9.64x10 
6 

— 4 .42xl0 6 ,

wh ich shows clearly that  the second contributions due to the
differential change of the sensitivity vectors are not always

negli gible. However , thi s result also indic a tes tha t an accuracy
for the absolute phase of about 

~~on = 3600 (one fringe) would be

sufficient to give an error of less than 3x10 for c~~~.
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Furthermore the computer program has been used to investigate the

influence of the geometrical parameters on the accuracy of the

strain measurement. Independent deviations of the coordinates

of the illumination sources 
~n 

and the object distance d2 by 10%

of their initial values have been assumed . It should be noted that

these errors mean displacements of more than 30 mm , which is cer-

tainly exaggerated . The resulting relative rms error of the strain

with respect to its maximum value c~ is found to be for

= 0 nun , r~ = 0 mm : = 66 mm , n = 0 mm :

~1
12.2% 2.1% 5.1% 2.5%

2.1% 2.9% 2.5%

This show s clearly that the holographic sur face  s t ra in  measurement
is not very sensitive to geometrical errors in the optical setup .

Finally the sensitivity has been tested by calculating the resul-

ting strain for the minimum detectable phase differences ~~ = 0.4°

as input , keeping ~~ = 0 at the same time . The rms values for the

surface strain at ~ = r ~ 
= 0 (  := 00) and at the same position with

the object tilted by = 45 around the c-axis are found to be for

.~~ 00: 450:

4.55x10 7 3.2lx10 7 
14.53~ l0~~ 2.28x10 7

= , 6C =

3.21x10 7 4.54x10 aB 
L2.28

~
b0 7 2.29xl0 7

These numerical results agree very well with the estimations of the

sensitivity shown in Fig. 3.3 at 8 = 10°, corresponding to the actu

setup (Fig. 3.5).

The conclusion from these investigations is that one can determine

with heterodyne holographic inter ferometry the local surface strain~
c with a sensitivity and accuracy of better than 5E = 10 6 

=
aB aB

1 ~strain at a spatial resolution of 3 mm even for objects with

a curved surface and an optical setup as shown in Fig. 3.5.

~~~
—

~~‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ TIT~
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3.4. Pure Bending and Torsion

In the case of pure bending and torsion the change of curvature

AK , as defined in Eq. (3.11), can be determined approximately using
+ 14)a single sensitivity vector E. Pure bending and torsion is cha-

racterized by the fact that a neutral line with zero strain exists

inside the structure and that the strain increases linearly from

the neutral line to the surface. Usually these structures are rela~
tively thin , so that the surface  is close to the neutral line and
therefore the surface strain c iS still small compared with thectB
surface tilt, i.e. c <<0 , 0 . Moreover the differential changex y
of the surface strain along the surface can be assumed to be neg-

ligibly small , which means that the line-element ds remains nearly

constant. These assumptions allow to determine the change of cur—

vature AK from only one measured component U = (uE ) of the displace—
-p -~ment u in the direction of the sensitivity vector E.

Following Eq. (3.11) in the case of negligible in—plane strain

~~cz8~~~B 
= 0) the change of curvature is essentially given by

AK = a
2u la x ax . (3.29)
z a B

Therefore one expects to obtain the AK
8 

from the second derivative

of the observed displacement

______ 

aU
1( 

aek au1( 3e1( a e k
ax ax

8 
= 

aX ax
8 
ek + + + U~ ~~~a (3.30)

where ek are the components of the sensitivity vector ~ in the

(x, y , z) coordinate system. The calculation of the change of sur-
face strain along the surface requires special care , since

the orientation of the surface will also change due to its initial

curva ture K
8
. The surface strain is obtained following Eq.

(3.2) from the in-plane components

I~j1( 
= 

im~~i
’
~m~ ~~~ 

(3.31)

J
b ~~~ 

-. 

— ~~ — r ~~~ 
—
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of the vector gradient 
~~~ 

= grad i~, where the nk are the com-

ponents of the surface normal. From Eq. (3.31) one gets

an . an m ap mk
= — — n ~j  

— n . — + ( 6 .  —n .n ) — , (3.32)ax ax m m -  1 ax mk im 1 m a xa a a a

which reduces to the simple relation

= K (au
~
/ax

8
) + a

2u /ax 3x
8 

, (3.33)

due to n = n = 0 and the relation an /ax = ~~K , obtained fromx y y a ya
= grad F and the Eqs. (3.1) and (3.7). The assumption of negli-

gible change of the surface strain corresponds to ap Q , ax = 0
2 a

and Eq. (3.33) allows therefore to calculate a u,(/axaaxB 
from the

tilt au /ax
8
. The other assumption of negligible surface strain

with respect to tilt means au
~
/ax

8 
>> au /ax

8 
and therefore also

au/ax ~ (au /ax )e , at least as long as e > ex~
ey or the angle

between ~t and ~ is not larger than 45°. The las t term in Eq. ( 3 . 3 0 )
is a second order e f f e c t  in geome try change s and thus negl igible
unless the absolute displacement uk is extremely large . Finally,

one gets from Eqs. (3.29) and (3.30) the approximation

1 a 2 U 1 au 1 a t-i 
3e at-iA K 

a B 
= .. + 

e
~
2 K 

a B 
e - —i (-

~
-
~

— 
~~~~ 

+ i— i—)

The deri vatives of U in the object system (x ,y)  are obtained from
the corresponding derivatives in the image system (!,r~) similarly
as shown in Eqs. (3.23)

2 2
— 

~~~~~~
— R 1 a U 

= a U R R  + ~~~— R 1 (3 35)
ax ~~~ ycz’ ax .ax

8 
a~~~a~~6 ya ‘~t~ yz KaB~

For practical purposes it is convenient to use an experimental set-

up with the illumination source Q (Fig. 3.2) close to the imaging

lens , i.e. illumination and observation directions nearly the same.

- 
-
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To reduce the contributions of the differential change of the

sensitivity vector , the distance d2 between lens and object should

be large compared with the transverse extension of the objects

(d / ~~ , d In > 5). Under this experimental conditions and for2 max 2 max
a rotation of the object system around the ~-axis by the angle

(Fig. 3.3) one obtains from Eqs. (3.34) and (3.35) the following

simple explicite expressions :

AK = ( a 2U/ a~
2 ) /cos~~’

AK xy = (a 2u/d~ an — ( a u / a c )  tan ’/d2 (3.36)

AK~~ = ( a 2
u / a n 2 ) cos — 2 ( a u / a n )  sin~/d2.

The two terms containing the original curvature K 8 in Eqs. ( 3 . 3 4 )
and (3.35) compensate each other as long as the sensitivity and

the imaging directions are close enough .

The sensitivity 6 (AK ) of this method can be estimated from Eqs.
(3.36) for the same parameters as used to calculate 6c (Fig. 3.3),

viz. c5~ = 0.40, A~ = A~ = 3 mm , A = 514 rim. For ‘~~

‘
= 0 one gets

6 (AK ) = 5xlO ~ m 1, which corresponds to a bending induced strain

of CD = 5xl0
7 

= 0.5 ijstrain on a surface at 10 mm from the neutral
line .

The Eqs. ( 3 . 3 4 ) ,  ( 3 . 3 5 )  have been app lied experimentally to a
number of mechanical structures subjected to pure bending and tor-

12, 14,22)sion . Equations (3.36) turned out to be very useful  for
fast evaluation of experiments and to give quite accurate results

for simple object geometries. In Fig. 3.7 experimental results

are shown for a turbine blade under static bending load . The ex-

perimental setup was the same as shown in Figs. 2.6 and 2.7. The

bending along the blade axis (Fig. 3.7a)shows good agreement with

mechanical theory. Note that the spatial resolution of the mea-

surement is about 3 nun and that local variations of the bending

stiffness can be detected . The change of curvature AK
~~ 

of the
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cross-sections normal to the axis have been measured in two inde-

pendent experiments . The results in Fig. 3.7b show the excellent

reproducibility of the measurements within the expected limits .

These results are not compared with theory , since the mechanical

model used does not include the change of cross-section as a
reaction on bending load . Further experimental results for a

turbine blade under torsional load are shown in Fig. 3.8 as tri-

angles. For historical reasons the torsion is called dO/dz , where

z is the blade axis. There is again good agreement with mechanical

theory ,  shown as circles. The estimated absolute accuracy of

about +5% for the torsion is rather limited by the uncertainty
of the mechanical and geometrical pa r ameter s , such as load , mag-
nification factor , detector separation , than by the interference

phase measurement. This becomes also clear from results of repro-

ducibility tests which indicated errors of less than 3% even for

the smallest values of torsion12~

4. Conclusions and Recommendations

It has been shown that heterodyne holographic interferornetry is

a powerful tool for fringe interpolaticn , which allows to determine

local derivatives of the surface displacement with sufficient accu-

racy for strain measurements . This technique is very well suited

for automatisation and electronic data processing , which makes

also on-line computer evaluation possible. It turns out that

with heterodyne holographic interferometry one can determine even

with small angles between the different sensitivity vectors , i.e.

from a single hologram recording, strain values as small as 1 ~istra.

In addition one can determine the local change of curvature , which

is useful in case of pure bending and torsion .

An advanced optical and electronical system for heterodyne holo-

graphic interferometry has been realized and experimentally tested.:

The results did confirm the expected specifications. An improve-

ment in flexibility and simplicity of the holographic recording
could be obtained by using two references which are very close to-
ge ther . This would reduce the repositioning requirements but de-

—~~~~~
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crease the phase accuracy due to the overlapping of undesired

reconstructions22~~. The performance of such a setup need further

experimental investigations .

An addition to the successful experimental tests for pure bending

and torsion and the computer s imulat ions  for surface s t ra in  evalua-
tion in case of general deformations one should verify the latter
case also experimentally, e.g. for the described cylindrical tube

as test object.

Further applications of heterodyne holographic interferometry to

vibration analysis would be certainly of great importance. Cor-

responding experimental investigations either with time resolved

real—time holographic interferometry or with stroboscopic hologram

recording are recommended to dertermine the capabilities of these

new techniques.
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Fig . 2 .1  Comparison of f r inge  counting and in terference
phase measurement.
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Fig. 2.5 Schematic arrangement for evaluating misalignment fringe
e f f ec t s  on the inter ference pattern . (A) 01 and 0 are
reconstructed from the hologram H by their resnechve
reference waves R and R,. (B) Misalignment of R1 
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Fig. 3.1 Object coordinates (x,y,z) at poiflt P: z has the
direction of the surface normal , u is the su r f ace  disu lace-
ment, s is in the tangential plane
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Fig. 3.2 Setup for holographic interferometry : image system
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Optical Geomet ry

j

~~~~~~~~~~~ O.36m~~~~~~~~~~r~~~~~~
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,

Fig . 3 .5  Optical  geome try for holographic s t ra in  measurement of
the test object .  Il l uminat ion sources 

~ l ’ ~~~~ Q~~ 
for

three consecutive hoiogram recordings with ~ifferent
sensitivity vectors E

1’ 1’ 12flfl 1 I
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F1Q. 3.6 Expected fringe pattern with detector array and -
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Fig. 3.7 Experimental results for pure bending of
a turbine blade under static load
a) Bending t

~
K
~ 

along blad e axis z.  The local devations
around z = 200 mm appear reproducibly at different
positions wi th in  the blade prof i le

b) change of curvature and tilt of the cross—section .
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