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ABSTRACT

These lectures survey attempts to apply computers directly to high level
languages using microprogrammed interpreters. The motivation for such work
is to achieve language implementations that are more effective in some measure
of translation , execution or response to the user than would otherwise be
obtained. The implied comparison is with the established technique of compiling
into a fixed general—purpose machine code prior to execution. It is argued
that while substantial benefits can be expected from microprogramming it does
not represent the best approach to design when the contributing factors are
analysed in a general system context, that is to say when wide performance
range, multiple source language, and stringent security requirements have to
be satisfied. An alternative is suggested, using a combination of interpre-
tation and a primitive instruction set and providing security at the microprogram
level.

The work described herein was supported in part by the Joint Services
Electronics Program under Contract No. N00014—75-0601. The lectures also
form part of a course on “The Microprocessor and its Application” held at
the University College Swansea under the auspices of the Informatics Training
Group of the E.E.C. in September 1977.
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INTERPRETIVE MACHINE S

3. K. Iliffe
0 International Computers Limited

0 These lectures survey attempts to apply computers directly to
0 

high level languages using microprogrammed interpreters. The
motiva t ion for such work is to achieve language implementations
that are more effective in some measure of translation, execution

• or response to the user than would otherwise be obtained. The
0 implied comparison is with the established technique of compiling0 

into a fixed general—purpose machine code prior to execution. It
is argued that while substantial benefits can be expected from
microprogracuning it does not represent the best approach to design
when the contributing factors are analysed in a general system

• context, that is to say when wide performance range, multiple
o source language, and stringent security requirements have to be

- 

satisfied. An alternative is suggested, using a combination of
interpretation and a primitive instruction set and providing
security at the microprogram level.

• The early lectures review the history and terminology of micro—
0 

programmable machin~~. Knowledge of conventional practice is
assumed. Readers already experienced in inicroprograinming should
skip rapidly to Lecture 3.

1 MICROINSTRUCTION DESIGN

If we abandon the conventional machine code (at least temporar—
ily) as a means of defining the computer’s function set it is
necessary to fall back on th. next level of description, i.e. the

0 microcode. A very extensive literature has grown up around that
subject in recent years , but I think it is true to say that no
comeonly accepted theory or principles have emerged: that is the
consequence of rapid change. in the process of manufacturing
logical devices which force a continual revision of t~ie economicsof design. In the introductory lectures vs shall study the

0 evolution of aicroprogra .d machines, but one can do little more• than present a collection of techniques. Por detailed study of
application to machine language interpretation the student is
referred to Huason (1970), where an extensive bibliography to
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1968 will be found , and to Boulaye (1971), for a shorter survey of
techniques. In the following notes I can do no more than provide
an outline of design principles and introduce terminology.

The branch of technology that enables a raw microprocessor to
interpret a given order code Is termed ‘microsystem design’. If
one machine is to interpret one order code it is a very localised
affair. If several machines must imitate two or three order codes
the need for standard procedures and documentation arises: in the
major application areas this is treated very much as an extension
of the logic design. Tucker (1967) and Husson have written inf or- •

matively on that aspect of microsystems. However, high level
languages are not nearly as well defined as machine codes, they
are generally more complex, subject to greater variation, and out-
s-Ide the control of any one laboratory. A survey by Rosin high-
lights some of the difficulties involved, Rosin (1969) . We shall
return to that subject in the last lecture, showing how it affects
machine design. For the time being, let us recall how a micro-
programmed machine handles the interpretation of a single ‘target
instruction set’ or ‘machine code’.

The first application of microprogramming as a forma l technique
is generally attributed to the designers of EDSAC—2 at Cambridge
University, Wilkes (1958) . It is a systematic way of controlling
the flow of signals through the data paths of a processing unit,
each path, or in some cases each function of the processor, being
determined by a bit in a microinstruction. If we regard the state
of the processor as defined by the assembly of registers and con—
trol flip—flops, then a microinstruction determines a simple tran—
sition from one state to another. The attraction of the technique
is that transformations of any complexity can be composed by apply-
ing a sequence of microinstructions: the limitations imposed by ad
hoc control logic, which are apparent in the areas of machine
definition and construction, are greatly reduced. At a time when
relatively complex target instructions are thought to be the key
to greater machine efficiency, the introduction of microinstruc—
tions obviously has great attraction.

The source of microinstructions is a store, which will be
called the control memory in the present context. A single bit
in the microinstruction can control the transmission of an entire
f ield from one register along several parallel paths in one
processor ‘cycle’; another bit, or group of bits, will select a
destination register and field. It is fairly easy to evolve a

• requirement for fifty or more bits in the microinstruction to 0

control the possible data paths in the processor.

The second requirement of the microinstruction is to determine
• its successor. Application of a sequencing rule determines the

string of actions carried out by the processor which, when properly
def ined , will interpret a target instruction. One of the simplest
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ways of sequencing is to place the next microinstruction address
in the one currently being obeyed. To achieve conditional branch—
ing effects it is necessary to use the state of the processing
logic in the calculation of at least part of the next address.
The elements of the machine can be visualised as in Figure 1.
The machine operates in three steps, i.e.:

1. Access control memory using the microinstruction address.

2. Use the microinstruction to control the state transition
of the processor logic

3. Use microinstruction digits and the result of step 2 to
determine the next microinstruction address.

MICROINSTRUCTION

CONTROL 
(STEP 2; PROCESS OR

LOGIC

MEMORY —

_________  _________  — 
-IEXT STATUS
IDDRESS

~~M IN STR, ADDRESS J
(STEP 3L__HCROSEQUENCER

~~~~~

Figure 1: Microprogram Control
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• The development of microprogrammable machines from the above
principle of d sign leads to great elaboration of detail, the
main considerations being (a) optiinising the use of control
meraory , (b) achieving balanced timing of control memory and
processor logic, and Cc) organising the registers and data paths
of the processor to suit the class of target machines of interest.
I shall discuss each aspect of design, giving examples from some
of the earlier microprogrammed machines.

1.1 Minimising the Cost of Control Memory

Exploitation of microprogramming was not widespread until
suitable techniques for loading and manufacturing control memory
had been developed. Such techniques are discussed by Husson
(Chap ter 5), where it can be seen that the predominant forms of
construction allowed inicroinstructions to be read but not written
under program control. That is clearly sufficient for a well
defined and fixed instruction set. The later development of
semiconductor control memories with write capability has been
the main stimulus to further research in microprogram application
With all memories, however, the main design requirement is to
deliver the information required at the right time and in as few
bits as possible.

Considerations of space lead to various forms of microinstruc-
tion coding. The form in which a single microinstruction bit
controls a unique processor gate (or data path) is termed direct
control. If we can find sets of mutually exclusive control
signals, such that not more than one is activated in a given

— cycle, it is poss
~bIe 

to encode them: a field of K bits will
activate one of 2 control lines, or none at all. That is
obviously the case when one of, say, 8 registers can be gated to
one input of an adder. The same technique is used in machine
code design . It is illustrated below by the structure of the
IBM 360/30 microinstruction and by most of the ‘first generation ’
microcodes, all of which may be said to use encoded control, the
individual fields controlling microorders.

Three other common forms of coding deserve mention. In bit-
steering the particular control lines activated by a microorder
(or bit) are determined by another field of the microinstruction
The second field directs the first to one or another set of con-
trol lines; it is appropriate when the processor logic can be
partitioned into sections that do not require activation on every
cycle (and can to some degree proceed in parallel). It has been
used in combination with other techniques, for example in the RCA
Spectra 70/45 , Honeywell 4200 and IBM 360/25. Carried to the
extreme, the microinstruction ends up as a function group and a
number of operand fields, which would be difficult to distinguish
at first sight from a conventional machine code.

4 
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• The second technique derives from the observation that over
many sequences of microinstructions the values of certain control
lines will remain, constant , therefore they can be set in advance
and taken as an implicit extension of the microinstruction. That
technique will be referred to as preset control. It applies, for
example , if particular carry or shift paths are fixed in advance,
or if one of several possible register sets is being used.

- Finally, it is easy to see that all 2100 
versions of a 100—bit

direct control microinstruction will not be used, and instead of
attempting to encode individual fields it would be possible to
list all the distinct microinatructions in a particular application
and select those required by indexing a store containing the list.
For example, in a particular application there may be less than

• 1024 distinct microinstructions. In that case a 2000 word micro—
program can be compressed into 20 000 bits, a saving of 90%. All
that is required is that the fully encoded microinstruction index

• another store 100 bits wide containing the 1024 fully decoded
inst ructions (the second store is called the nanostore). The net
saving in storage space is thus 40%.

It is more like that some of the fields of the microinstruc-
tion will be fully used, leaving a residual f ield to be handled

• in the above way. The Nanodata QM—1 machine, Rosin et al (1972),
• provides an illustration. The 16 bit microinstruction is loaded

into one of the microregisters, a six bit field is then used to
select a 342—bit nanoinstruction. The latter can use the remain—

- 

• ing ten microinstruction bits as operand selectors, so it is
• - appropriate to regard them as a form of preset nanocontrol

(Figure 2) . At this point the designer faces the same set of
• choices at nanomachine level as we have already discussed in

I connection with micromachines. lie could use direct control: in
fact, QM—l does not, but obeys a far more elaborate sequence of
nanoorders. The reader is referred to the literature for details.

___________________MICRO IrISUUCT !ON ttODRESS
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______ ~AN~’1~I~TRU CT IOU LOGIC

Figure 2: Nanoprogram Control
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1.2 Timing and Control Considerations

It will be shown later that interpreting one of the common
target instructions takes approximately 20 microorders and two
main memroy cycles. If a premium is placed on memory utilisation
it follows that the effective microorder rate must be ten times
that of main memory: to achieve that the early machines use a
horizontal or multi—order microinstruction that activates between
five and ten processor p~ths fn parallel. The microinstruction
rate is synchronised to j  or the memory cycle time so that a
1.5 )isec core memory would be associated with a l50nsec or 500nsec
microinstruction rate. Horizontal coding achieves speed at the
expense of generality and ease of programming: in the next
lecture we shall introduce a more ‘relaxed ’ form of code in which
each microinstruction contains only one or two microorders, which
is naturally called vertical control.

The elementary steps of the machine execution cycle have
already been indicated . If no overlap is attempted then the
major components——control memory and processor——are alternately
idle while the othet completes its task (remember that read—only
memories, and even wrltable semiconductor memories, may require
very little time to recover for the next cycle). In order to
achieve higher performance it is necessary to use faster and
therefore more expensive components , or to overlap the elementary
steps. The options are superficially the same as in machine code
desi gn. The main differences derive from the fact that micro—
programs have been for the most part fixed, comparatively small,
and have made extensive use of multiway branch or switch instruc-
tions : the alternative of using a sequence of tests to decode
a target instruction would simply be too slow.

A control memory address is frequently composed from several
fields whose values are determined at different points in the
machine cycle. The high order fields are normally known first,
so the construction of an address reflects a gradual narrowing
down of the alternatives until the exact microinstruction can
be fetched.

In the IBM 360/Model 30, for example, a block address is
found as part of the preset control, not normally affected by
the current microinstruction; a functional branch is a field
inserted directly from the microinstruction, and a switch is the
low—order two-bit field of the control memory address, computed

• from the processor state. Thus, the successor to any instruction
is within the current block of 256 (see diagram) and may be
dependent on the outcome of one or two conditions or register
values .

6
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preset from processor logic
microinstruction

IBM 360/30 MICROIN STRUCTION BLOCK FUNCTIONAL SWITCH
ADDRESS • BRANCH

We can now see more clearly when the overlap of processor and
control memory cycles can be achieved . If the control address is
determined by the processor state at the end of the current micro-
instruction then although access might be initiated on the basis
of block/functional branch f ields the final decision has to be
delayed until the state of the processor logic is known (the
example given above falls into that category).

If the control address is determined by the processor state at
the end of the previous instruction , then the control memory can
be accessed while obeying the current instruction, e.g.

• : TIME

Previous liinst: ———— ~~0BEY I STATUS
)

Current ijinst: ACCESS / (OBEY I STATUS

Next ljinst: ACCESS I OBEY 

The timing considerations just described are shared with very
much more sophisticated processors: they result from any attempt
to overlap one instruction with others and it is easy to see that
the more ‘changes in direction ’ in the flow of control the less
effective are the overlap arrangements. It is true to say that
microprogram is more afflicted by conditional and computed
branches than machine language program, for which reason designers
are reluctant to throw away the contents of the micropipeline and
may ask the coder to deal with various ‘run—on’ conditions. What
this means in practice is that one or two instructions in written
sequence af ter a branch may be obeyed , e.g. in decoding a hypo-
thetical target instruction the microsequence is written:

Extract function field

m2 : Branch to address + function

m
3 

: Increment target instruction counter

Her e, although the branch m2 is taken , the following microinstruc-
tion is still obeyed. It is in avoiding or dealing with such
coding peculiarities and in taking account of critical memory or
1-0 timing constraints that microprogramming differs from conven-
tional coding, or has done so in the past. Luckily, increasing
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hardware power has removed many of the characteristics of micro-
program from modern machines, perhaps the only positive way in
which a microprocessor can be distinguished from a ‘mini’ is in
its dedication to the task of modelling processors rather than
users’ problems.

1.3 Highway and Register Organization

The basic requirements for imitating a given target instruc-
tion set are: -

(a) arithmetic primitives for composing the arithmetic ,
logical and addressing functions of the target machine;

(b) memory mapping and resolution compatible with the store
structure of the target machine;

(c) imitation of the internal control states, registers and
register access requirements of the target machine;

and (d) peripheral interfaces that reflect the formats, status
and timing expected by the target machine.

Within this field the degree of dedication varies with the
performance/cost objective. Different design teams have gone
about the same task in quite different ways: Husson (p41!.) makes
the point that although the IBM 360 and RCA Spectra 70 achieve the
same architecture the latter is a much- more ‘specific’ design
than the IBM models.

In this subsection I shall illustrate features of micropro-
cessor design referring to the IBM 360/Model 30 which was one of
the earliest models of the IBM 360 range and , as it happens, the
subject of an early experiment in language oriented design that
I shall refer to later. Further details will be found in Boulaye
(1971) and Weber (1967).

Figure 3 shows the data paths in the central processor of the
IBM 360/Model 30. There are twelve registers, each of one byte.
Apart from the main memory address and data buffers (MN and R) no
specific allocation of content is made by hardware. The data
paths are uniformly 8 bits. The microinstruction is 60 bits
long, encoded into the following wicroorder groups:

(I) Store access: Fields ~M, CN, CU
(ii) Data flow: 4—bit literal field CK

(iii) ALU control: CA, CF, CE , CC, CV, CD, CC, CZ

(iv) Sequencing: Cli, CL

(v) Status: CS

8
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Figure 3: Simplified Data Flow of the IBM 360/Model 30 CPU
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For example , under group (i):

CM (3 bits) indicates: No action

Read f rom address IJ , UV, or LT to R
Regenerate

• Write from R

CU (2 bits) selects main or local (register) storage.

Under group (iii):

CA (4 bits) selects one of 10 inputs to the ALU through the
A register

CE (2 bits) selects one of R, L, D or the literal CKCK

CC (3 bits) selects the actual ALU function

CF (3 bits) modulates the A—input to ALU, i.e. high digit,
low digit , none, low or cross—over

CC (2 bits’~ modulates the B—input to the ALU

CV (2 bits) selects true, complement or six—correct form of B

CZ (4 bits) gives the destination, one of ten registers.

Thus in one microinstruction, which takes 75Onsec, an 8—bit
arithmetic or logical operation is carried out, half a main store
cycle is controlled , and the next microinstruction is selected.
In the next cycle the main store operation must be completed
while other operations are carried out.

If we consider the loop of instructions which interprets the
target machine code it clearly consists of first fetching the
instruction, then looking at the function/format digits and pre-
paring each operand by computing an address and accessing the store
when necessary, and then branching to the ‘semantic’ microsequence
that interprets the target function. The instruction will normally
terminate by servicing interrupts before proceding to the next in
sequence. Elementary IBM 360 instructions take between 15 and 30

• Ilsecs in execution, i.e. 20—40 microinstructions: the large number
reflects the fact that any address or arithmetic calculation
involving operands of more than 8 bits has to be carried out
serially by byte.

In order to achieve higher performance the inicroregisters
and internal data paths must be more closely matched to those of Jthe target machine, and supplementary functional units introduced
to minimise the ‘mismatch’ between the micropr~~essor and the
target system architecture.

10



2. GENERALiZED HOST MACHINES

~1e have seen some of the ways in which specific feattn.es are
built into microprogrammable machine to . help in modelling particu—
lar order codes. However, our main objective is to consider sys—
tems at a level removed from machine, code , where the target
iflstruction sets can to some extent be chosen to suit the available

• hardware: in the last lecture we can attempt to answer the question
• of whether the need for specific adaptation will still arise.

I shall now discuss design generalisations that have been
fa~zored in recent years as the result of rapid reduction in the
cost of storage and logical devices. In the latter context
‘regularity’ of hardware is at least as important as circuit or
gate count, which is greatly to the benefit of the inicroprogrammer.
I shall refer to the class of processors under discussion as host
machines in order to suggest their role and to avoid undue emphasis
on ‘microprogram’ or ‘microprocessor’ technology. In practice,
the principal use of host machines has been in the form of instruc—
Set emulators (e.g. IBM 360 imitating the IBM 1401). The design
objective of producing a ‘universal emulator ’ became feasible with
the introduction of writable control memories. It is clear from
the outset that machines capable of imitating ~~~ instruction set
at competitive speed could not be produced at competitive cost,
nevertheless such a machine is invaluable as a vehicle for research
into computer architectures. The ICL Research Emulator El, Ilif fe

• May (1972), the Standard Computer Corporation MLP—900, Rakocsi
(1972), the Stanford University EMMY , Neuhauser (1975), and the
Nanodata Corporation QM—l, Rosin, et al (1972), provide examples
of generalised facilities, while in the commercial field the
Borroughs Corporation B—1700 is particularly interesting from the
point of view of memory allocation.

All the machines in this category use vertical instruction
coding which allows much greater flexibility in function sequenc-
ing than the older horizontal designs, and at the same time a
simpler and more familiar form of program input. The reader may
compare the example of microprogramining given in Weber (1967) with
the program style of any of the machines mentioned above, which
bears comparison with a conventional assembly program listing
except for the primitive nature of the arithmetic, the absence
of address modification, and the elaborate f ield selection and
branching functions.

In moving to vertical coding it is normally the case that the
main memory system has a much higher data rate than the host needs ,

• even with the fastest control store. The extra capacity is used
in direct memory access by I.-0 devices, in dual processor con-
figurations, and in many instances by using the main memory as a
source of microinstruction. The last option is particularly
attractive because it affords an escape from the rigid limitation

11
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on microprogram that is imposed by a separate cnntrol store. On
the other hand it does impose a control structure wh ich is
difficult to rationalise: perhaps the simplest view Is to look
upon the interpreter as providing system standards, operating sys—
tern interfaces, protection , etc, which are not normally present
at the microcontrol level.

The ~ol1owing subsections correspond to the main design areas
noted in the last lecture, with illustrations drawn from the
machines mentioned above. Further examples can be found in less
readily accessible specifications for many machines currently on
the market.

2.1 Ceneralised Arithmetic and Data Paths

One of the obvious ways in which MSI or LSI components affect
the arithmetic system is in allowing register lengths to be
standardised at a reasonably high value, rather than making use
of specialised lengths seen in earlier machines. The effects are
to speed up the tnai,thine and to save control memory, because
operations previously performed by a loop of microinstructions
can now be carried out in one.

The host is still specialised with regard to arithmetic width
and shift paths. Two methods have b~�en employed for variable
precision arithmetic up to a prescribed field size:

(i) using a third input to the ALU, which is in fact a mask allow-
ing carries to propagate. The SCC I~fl’L—900 allows the micro-
instruction to select one of 32 possible masks which can be
used to propagate carry to the ‘normal’ sign position. A
mask may also be used to permit operations on unpacked fields
such as 6—bit characters stored in byte positions. One of the
difficulties of working with unpacked data, however , is that
it may eventually have to be aligned to an external interface
such as the store address bus.

(ii) allow the effective ALU width to be variable, i.e. taking
sign, carry and zero—test signals from any position of the
ALU. This method is used in the El emulator and the B—l700 ,
where the sign is part of preset control. If there are more
than one arithmetic widths in use concurrently it is desirable
to have more than one preset sign position, selected by micro-
instruction.

Variation in ALU width has an obvious counterpart in shift
functions. To reproduce exactly the shift patterns of a word of
arbitrary length it is necessary to preset the point at which end
connections are made, which is more difficult to engineer than
sign adjustment because a stream of bits is being handled. The

• El emulator does al l ow shift lengths from one to 64 bits, but the
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logic 1.s expensive and most designers have settled for single or
double length shifts and rotations. For high level language
interpretation that is probably sufficient.

A final area where both the ALU and shifter are affected is in
the type of arithmetic carried Out. The predominant types are
binary integer , decimal, and floating point. Generalised
facilities for the last are usually complex and of limited value
itt either the connuercial or research context. Decimal facilities
can be built into the ALU in varying degrees, from fully signed
operations down to facilities for detecting carries at the decimal
digit positions. The choice rests entirely on the final cost!
performance required. Although an important area of design it can
be ‘factored out’ in comparative studies of language—oriented and
fixed Instructions set machines, for which reason I shall not
extend the discussion at this point. It is important to remember
that if a host has good arithmetic facilities then any lapse in
handling the control or data access side of a language will be
Conspicuous, and conversely.

If the path from memory is not selective enough (and it usually
is not) facilities are required for extracting fields from micro—
registers for input to the ALU. Such facilities are expensive and
may be confined to limited field selection or to particular

• 
- registers (e.g. in the shift unit). Thus, the B—l700 provides full

extraction on one 24—bit register and 6—bit subfield addressing on
most others. The El emulator can extract any byte from the 15
microregisters for comparison or control purposes. The MLP—900
can conveniently use the third ALU input to select fields within
registers. Apart from the obvious hardware cost of selecting any
field in any register, space will be taken to identify the field
in microinstructiona. It does not appear that high level languages
demand complete generality, and limitations could be accepted
simply on the grounds of coding efficiency.

• 2.2 Memory Mapping and Address Translation

The unstructured nature of machine codes, allowing instruc tions
to be used as data, and vice—versa, requires a strict correspond—
ence to be maintained between the target machine and its represen-
tation In the host. (There are exceptions: in mapping the IBM
1401 onto the IBM 360 it is more convenient for the latter to use
EBCDIC character codes , converting to and from BCD in those
instructions sensitive to BCD formats). In most instances the
target machine word is ‘rounded up ’ when necessary to fit the
host, not attempting to make use of every bit in store. However,
the B—1700 goes to the length of resolving memory addresses to the

• bit level and allowing any string of up to 24 bits to be read or
written, starting (or finishing) at a given position. In that
case 100% memory utilisation can always be achieved .
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The memory word or part—word is made available for analysis
in the microregisters.  It is an advantage to be able to select
ftmrt two or three potential data registers in order to avoid

• extr.t ‘move ’ micruinstructions. At this point there is also the
oppor runity to nap the data into a more easily managed form . The
‘cro~~points’ of the El emulator and ‘language boards’ of the
MLP-900 both allow the choice by program of alternative hardwired
data paths to and from memory . They may be used, for example, to
prepare an instruction for decoding, to align 6—bit characters
to 8—bit byte boundaries , or to handle parity conventions on a
‘Iore tgn ’ data bus. The diagram shows the cross point paths used
by El to read ICL 1900 instructions , which enable fun ction,
register and modifier fields to he accessed without shifting the

f f f f  fE:im aaaa aaa i aaaal
STORE DATA REGISTER 

~~0G 5432 1010 .... 765-1 3210j

SI” !’

L~/J 
\ /~~~~~‘7

IL . . ftf.r f f t f  Oxxx 0000 Ofmrn Ofmrn a taa a~ aa aa~
NICROREGISTER 3210 6543  2 10 610 010 .. 32 ’ 0t

target instruction microregister. The effect of the crosspoint is
-

• 
to save 5 or 6 steps In the typical interpretive loop of 25—30
microinstructions. It can be seen as complementing the internal
data selection functions : in a machine with powerful field
selection orders crosspoints would be less important.

Apart from data, addresses have to be matched to the conven-
tions of the host. For example, if the target machine uses
decimal addressing and the host uses binary then conversion must
take place before accessing the store. Similarly, if the target
machine operates in virtual program space then virtual to real
translation is called for.  If page and segment table accesses
are implicit in each memory reference the address conversion could
easily exceed the combined steps of instruction decode and instruc-
tion execution. The alternative of using hardware assistance——
allowing the host to work in virtual space——is expensive and still

• leads to delay in memory access. Fortunately, in the environment
of high level language execution it is possible to work in a
virtual address space but avoid most of the overhead of address
translation.

2.3 Representj~~~the Target Machine State

The primary data of an interpretive program are the registers,
the program counter , the instruction register, control flags ,

I 6



channel status and control words of the target machine. A
generalised host would expect to have room for the largest target
machine state of interest, but even so it is unlikely to require
more than a few hundred bytes of storage for tha t purpose, which
often justifies a file of fast registers, the scratchpad (or
local memory in IBM) , in addition to the microregisters themselves.

It is a common requirement to access the scratchpad using an
index value. For example, a target machine ‘register—register’
instruction contains two indices. Microinstructions do not admit
the type of address calculation found in.machine instructions sets,
therefore it is necessary to carry out some preliminary scratch-
pad address calculation. That happens often enough——at least
once in most target instructions——to justify building in predic-
tive indexing hardware, which works in the following way. Certain
microregister fields are designated (by preset parameters) as
scratchpad indices. When any of those field values changes a
scratchpad access is initiated (relative to a preset base), so
that the corresponding scratchpad element is available for read-
ing or writing in the next microinstruction (compare the main
store address registers of the CDC 6600). The crosspoints for

• the El emulator are designed to place the target instruction

PRESET INDEX DESCRIPTOR

2 2 3 1 8

I I I I
F F

6’ 6’ 6’
, •

6’ — I S
S — — I S

MI CROREGI STER ’ 
..~~~~~~ ~~ BASE ADDRESS

BYTE’ .-~~~~ BY+E/ IN SCRATCHPAD
- WORDRAII GE ACCESS

register and modifier digits in the position of pred ictive indices,
allowing the register and modifier values to be used without delay.

The primary data of a high level language machine are the
intermediate results, control flags , and the control , stack and
environmental pointers that allow access to contextually relevant
data. For the most widely used languages the ‘state’ can be
mapped into a register file quite easily; moreover, its access
patterns correspond closely to those of conventional target

• machines, hence the scra tchpad organisation of a ‘universal
emulator’ is equally applicable to the major programming languages.
Whether there are alternative organisations suited to a wider
class of languages is a question we shall consider later: it might
be argued that a language is ‘major ’ because it happens to fit

• onto conventional hardware, and that when that constraint is
removed more attention can be given to problem-oriented languages.

• 15
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2.4 Generalised Control of Peripherals

- 
- At this point we must draw a broad distinction between .

emul ition of the non—privileged users’ instruction set and that
of the operating system. The latter would include instructions
for channel selection, requesting device status and sending
co~nmands as well as receiving and sending data. It may also
include special addressing modes for channel control words, page
and segment table control, interrupt register and timer access,
handkeys, displays, fault indicators and so on. Full—scale
emulation , to the extent of running the target machine’s periph—
era ls, engineering test programs, channel commands and operating

• systems involves at least twice the design effort of the non—
privileged instruction set alone and will almost certainly involve
physical adaptation of the peripheral interfaces.

In the present context, recognising that most languages are
non-specific with regard to the means of peripheral control , the
preferred approach is to match the 1—0 statements to the host
system using machine language and microcode procedures.

2.5 The Effect of Large Scale Integration

The level of complexity achievable in bipolar LSI devices has
reached the point of presenting complete slices (2 or 4 bits) of
control or arithmetic circuitry in a single package. However,
such circuits are only realised in favourable commercial/technical
situations, i.e. wide applicability and high functional content
in relation to edge connection. Some of the machine features
discussed above would fail on both counts. On the other hand, I
have indicated that language execution makes less stringent
demands then universal emulation, hence the ‘generality’ aimed at
by device manufacturers may well provide effective support for -

•

the target instruction sets of interest in the context of high
level languages.

How much does generality cost in terms of performance? That
is impossible to say without detailed analysis of a range of
target machines. An indication can be given by comparing the
vertical encoding of the ICL register—store ‘ORX’ instruction on
the El emulator with the horizontal form for the 1904E. In terms
of microorders, the El obeys 30 compared with 14 for the special-
ised host. The difference is by sequence control (13:6) , function
decode (5:2) and operand access (10:5). However, the most start—
l ing figure in each case is the ratio of support activity to ‘use
ful’ function: about 15:1. Our main concern in designing
language—oriented target machines must be to reduce that ratio.

16

.6. — — —



_____ - • - - -~~~~~~~

I

3. INTERPRETATION OF HIGH LEVEL LANGUAGES

The existence of readily microprogrammed host machines
naturally gives rise to speculation about the likely return from

• bypassing the normal instruction set. To do so succeefully involves
the solution of a range of problems concerning definition, security,
expansion,maintainability and so on, whose solution is taken for
granted in conventional systems. Before looking at the broader
ptohl.ems it would be reassuring to have some measure of the poten-
tial advantage of microcoding, which is the subject of this lecture.

It is easy to find performance improvements in the region of
10:1 or more for a particular algorithm expressed in microcode
compared withmachine code. In evaluating such figures it must be
remembered that they derive from three contributing sources:
(i) the inherent speed of microcode which is the result of the

- • simplicity of the instructions and the use of high speed control
store ; (ii) occasional advantages of the microfunctions over the
target machine functions, especially in bit manipulation and con—
trol sequencing; and (iii) advantages gained from bypassing the
arch itectural framework of the target machine, especially its
protection mechanisms.

It would be meaningless to draw conclusions from isolated
algorithms . The minimum basis of comparison is taken to be the

• combination of hardware and sof tware supporting one of the major
programming languages, which provides the syntax and semantics
for a broad class of problems. The main parameters of performance
are taken to be:

(1) compile and load time

(ii) execution time

(iii) size of the support system

(iv) object program size

(v) diagnostic aids in (1) and (ii)

The two techniques used for performance comparison are bench-
mark testing, in which space and time measures are obtained for a
representative sample of source programs, and factor ing, in which
performance is inferred from independent measures on artificially
chosen statements. From the design point of view the second is
much more usef ul, though except in the case of Algol 60 there do

• 
- not appear to be any widely published sets of reference statements.

Needless to say, the object of design is to optimise performance
at a given system cost over a prescribed set of languages.

The weights attached to the measured parameters will vary from
one class of use to another and no attempt will be made to deter-
mine them here. The aim is to show how variations in processor

1•1
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furmc t ion——specifically those brought about by microprogramming——
affec t the parameters (I) — (iv). At the same time the qualita—
t (vc effect of diagnostic aids will be assessed . It will be seen
that the time measures depend partly on performance of a second
language which will be referred to as the system implementation
language (SIL), so whether the machine is good at compiling
Fortran, say, depends on what it has to do to produce executable
code, and how well it does it: as far as possible the second fac-
tor will be isolated by measuring the overall performance of run
time support modules. Which applies also to execution of the func-
tions of the language by stored microprogram or hardware because
that does not usually vary from one language implementation to
another and it can be measured in basic arithmetic speeds. It
would be relevent , however, if one implementation chose to use a
decimal radix, while ut:other imp 1r~mentation of the same language
on the same machine used binary. Most of the language implemen-
tations reported in the literature have been rendered useless from
the design point of view by not keeping the executive algorithms
constant : in other words, if a performance gain P is generated
it is impossible to tell how much of P derived [rots the interpre-
tive technLque and how much from improved arithmetic or run—time
support.

The following subsections make a broad distinction between
procedure coding, illustrated by some of the scientific languages,
and data access, which is examined in the context provided by
Cobol.

3.1 Algol, Euler and Expression Evaluation

Factored measurements of Algol performance are reported by
Wichmnan (1973). In Table 1 I have abstracted some figures for
machines with roughly comparable arithmetic times. It is well
known that the Burroughts B—6700 uses a target instruction set
tailored to the representation of Algol: its effect can be seen
in the times for procedure entry. One would also expect it to be
effective in array assignement, but in this particular case the
compilers spot the indices [i,i] etc and generate optimised code
for the conventional machines . The advantage of the language—
oriented code is to simplify the compiler rather than speed up
execution.

The importance of individual statement times depends on the
weights attached to them in the final performance measure. In
general, arithmetic and array access operations have the highest
weights, procedure entry is an order of magnitude less important,
and array declarations an order of magnitude less than that. It
must be remembered that experimentally observed times reflect a
complex combination of hardware, software and support system.
Implicit in many decisions is the designers’ assessment of
different language features, and his budget reflects an assessment

18
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of the importance of the language as a whole.

TABLE 1: SOME ALGOL STATEMENT EXECUTION TIMES

Statement Execution time in microseconds

8—6700 IBM 370/165 Univac 1108

x := 1.0 5.5 1.4 1.5
x :— 1 2.7 1.9 1.5
x := y 3.9 1.4 1.5
x :— y + z 5.5 1.4 3.4
x :— y * z 11.3 1.4 4.0p
el(l) := 1 5.3 1.6 2.7• 
e2[1,1] :— 1 7.7 1.7 5.8
e3[l,l,l) :— 1 11.3 1.7 9.0

begin array a[l:500];end 408. 242. 918.

p1(x) 28.6 60.7 127.
p2(x ,y) 30.5 83.6 137.

[Note: The times for the IBM 370 probably err on the low side

• because of the effect of the cache)

In comparing object code size, Wichmnan gives the following
figures normnalised with respect to Atlas:

Burroughs 8—5500 0.16

Univac 1108 0.31

CDC—6600 0.56

The advantage of the Algol—oriented intermediate form in compari-
son with some of the best conventional systems is evident. To
understand how such results are obtained we must examine some
target machine states and the functions applied to them.

The advantage of language—oriented intermediate code is that,
provided an ‘expression—evaluation’ mechanism is built in to the
interpreter, the details of register transfers that are usually
found in machine code can be omitted. The compiler is simplified ,
the code is more compact. It is not inherently faster, because
the data access is indirect, but in many instances that is more
than compensated by savings in other parts of microprogram. The
stack mechanism is the best known means of expression evaluation:
the reader is no doubt familiar with the reverse polish form of
code used in Burroughts B6700 and other machines and the various
stack and environmental (display) pointers associated with it. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



However, the apparent simplicity of the Burroughts represe~ ra—
tion leads to some complexity in the machine functions them selves.
The value call operator (VALC) has to be able to detect and
interpret all the operand types that can legitimately be presented
in the course of computation, including indirect references
through the stack and procedural definitions arising in parameter
lists. In most applications the questions answered by examining
tags could be answered in advance by the compiler: as a general
rule unnecessary tests at execution time should be avoided except
as deliberate backup for the compiler, the support system or data
security.

In contrast , dynamic tag testing is essential to languages
such as Euler and APL because the type of a variable is not pre-
dictable at compile time . Let us examine the Euler representation
in greater detail and see how one of the target machine syllables
fits onto the architecture of the IBM 360/Model 30 described in
the first lecture (for greater detail, see Weber (1967)).

The representation of a variable is a [tag,value] pair, the
tags having the following significance:

0 Null 5 Reference (m,loc)

1 Integer 6 Procedure (in, link)

2 Real 7 List (length, b c)

3 Boolean 8 (“nassigned)

4 Label (mp, pa) 9 Block mark (in stack)

The run—time environment consists of three storage arcas: Program,
which is indexed by pa (program address) and link (return address);
Var iable , indexed by b c  (location), where all defined data is to
be found, and the Stack , which consists simply of block marks
giving static and dynamic chain links, references to parameters
in the Variable space, and intermediate results. Operators exist
to test the tag of a variable, e.g.

isn A Is A an integer?

returns the boolean value true or false. Standard operators such
as + — * / mod max abs can be applied to numeric values, yielding
numeric results, and failing if illegal tags are encountered .

A list is an ordered set of values, each of which is either an
elementary type or a list. Lists can be created dynamically, and
operators exist for enquirtng the length, detaching the tail ,
selecting an element and concatenating two lists. The existence
of reference variables causes the variable space to be maintained
by scanning pointers and recovering space which is no longer-
referenced, updating pointers when compacting the active store
areas.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  - — - - - --• -- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The Euler program area consists of sequences of operator
syllables (by tes), each followed by the appropriate number of
bytes giving literal values or indices. The program is represent—
ad in reverse Polish form, e.g. the statement:

‘if v<n or t — 0 then d else e’

would be represented by the following string of 27 bytes:

• [ @ bn disp 
~ 

Nai~J ~ C ) b~ : disp
J kcl

load @v) (v) load @n) (n)

[LE t I cn 1 t~
(
~0I [@ I:~~ 

disp 
~ (

~~aic] t
lit

l at 0J 01
test true? Y:d N:(boad @t) (t) load zero

LEQI [on pa(d)I ii~’~ i : pa(e) 1
test true? Y:d N: goto e

Note that the @ operator forms a reference on the stack, which
• va1~ converts to the corresponding value. The translation is

thus a simple reordering of the input string, replacing variables
• by [block number, displacement) pairs. The latter are converted

into [mark number, bc ] pairs on loading to the stack. In the
program the logical connectives give a destination to which cen—

• trol passes if the top of stack element has the required value.
Figure 4 gives the microcode for the and, or and then operators.
A Boolean variable has the binary form ‘OOllOOOy ’, i.e. tag 3
and value y = 1 for true. The microregisters 13 are used as
program counter, IJV points to the top of stack. For simplicity,
the address incrementing microorders, which are really byte—
serial , have been written as ‘13 + 1’ etc.

The sample microsequence checks the tag of the operand and
interprets the logical connective in 8 microinstructions, 4 main
m9mory cycles, or 6 ~isec (7.5 if false). The corresponding IBM
360 target instructions would take the form:

CLI 0(STACK) , LOCT
BE ORTRUE
CLI 0(STACK), LOGF
BME TYPERROR
SM STACK, — ‘4’

The interpretation of that sequence takes 32 1.lsec if ‘true’, 90
usec if ‘false’. It occupies 24 bytes of program as opposed to

• . 3. That puts microprogram interpretation in its most favorable
light: dynamic type assignment, minimal arithmetic content and
n.m ive compiling techniques. It is easy to see that even with
dynamic type assignment it is often possible for the compiler to
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BEST AVAIL&BLE cOPY
CYCLE : -

~ U READ MAI N

1J 4— JJ + 1 /* FETCH INSTRUCTIoN */

G ~ R WRITE MAI N

BRANCH ON R0R1

(0 1 ) (1
~~) (TI)

MM ~~~ - UV READ MAIM

BRANCH ON G2G 3 /~ FETCH TOP OF ST~\~~ */

(0 0 )  (01 )  ( 10)  ( 11)
R4— R + #DO WRITE MAIN

HZ LZ SET S4S-,

BRANCH ON G4G~ -—_____________

(00) 
- 

(01 ) 
-

~ (10) Tfl)
MU +— U READ MAIN

U +— IJ ± I /* DESTINATION ~/
_________ - BRA N CH ON G~,S5

( 0 0 )  (01) (10) ~Tl)(o:~, TRUE): I~~ R WRITE M A I M

TYPE TEST S4 1* GO TO ERROR It’ FALSE *1

MM .— IJ READ MA IN

/* DESTINATIO N *1

WRITE M A I N

GO TO CYCLE

Figure 4: Mi (rocode for Euler Logical Connectives
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predict the result of an operation as far as type is concerned ,
and to oi~it further checks, as in:

.~! 
x = Y .~~..

which must give a Boolean on top of the stack.

The advantage in space which results from the syllabic form of
target instruction is a combination of two effects: the localisa—
tion of the operator/operand space implied by the source language,
and the use of working registers implied by the stack. It would
be possible to compress an operand ‘address’ to 3 or 4 bits, for
example, provided changes of ‘context’, in which the full meaning
of the operand is expanded, can be effected without excessive
overhead. Unfortunately , very little is known about the conse-
quences of one choice or another; it is not even clear that pro-
cedure boundaries should play a part in defining context. The use
of a stack mechansim may not be optimal: we can see that some
run—time maintenance activity is involved of which a compiler could
avoid , and it is known that the majority of expressions found in
practice are of very simple forms which do not require the full
generality of stack evaluation. Hoevel and Flynn (1977) suggest
an alternative primitive form of instruction which recognises many
important special cases. Space gains of up to 5:1 for Fortran
compared with IBM System 370 optimising compiler are reported .

3.2 Cobol Interpretation

The major parts of a Cobol program are the Data and Procedure
Divisions. The program operates on files of records and uses
internal records for workspace. Each possible record format is
declared in the Data Division: the same physical record may be
mapped according to man y different declarations, so there is no
question of concealing representations or placing descriptive tags

• as parts of the record. The elementary items of data have a wide
variety of representations with a dozen or so basic data types.
The elementary items are named , and may be collected into named
groups, which in turn may be grc~~c~ , up to the level of the
record name itself. With the aid of PICTURE descriptions editing
characters can be inserted in a field for output (and conversely
for input) with the result that the ‘type’ code associated with a
data item can be of almost any length.

Within a record individual items or groups of items may be
repeated. The number of actual occurrences may vary, depending
on a field in a fixed position in the same cecord. Repeated items
are selected by following the repeated group or field name in the
Procedure Division by one or more subscripts , or by using an
implied Index value. The coefficients of the associated storage
mapping function can be determined by the compiler.
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Flit’ Prt~cedure Division is composed of a number of Segments ,
wht~;’ signiiicanct’ derives from the days of programmed overlays.
A Stgiuent comprises a number of labelled paragraphs , parh contaIn-
i~~, one or more sentences. A sentence consists of one or more
Cobol statements.

Individual statements have a fairly simple syntax, a verb
followed by data names and Segment or paragraph names, e.g.

ADD 1’ TO Q GIVING DAY_TOTAL ROUNDED
wher e  P, Q and DAY_TOTAL are dat:’ names. The definition of Cobol
implies strict observation of dec imal rounding and truncation and
is subject to the types of operan~i~ and the size of intermediate
r&~ ults (18 digits). The compiler is required to indicate if
operands are incompatible, or if intermediate results ar*~ o, ,t  of
range. Some indication of verb trequencies is given by the
following measures from a benchmark test:

VERB DYNAMIC STATIC
USAGE USAGE

MOVE 30% 33%
IF 10% 18%
COTO 11% 19%
ADD 10% 6%
PERFORM 7% 87.
WRITE 4% 3%
READ 3% 27.
Others 57. 11%

Thus for execution purposes seven verbs account for 97 of executed
statements, while the same seven account for almost 90Y. of stored
statements. The target code can be chosen purely as a compromise
between compiler and microcode, without concern for reconstructing
the source string (which affects APL coding for example). The
final form depends on what are regarded as reasonable limits for
field sizes in one Cobol source module. In the target Instruction
tisied in Table 2 the maxima are taken to be:

Variables: 4096 ; Indices: 256 ; Files: 256 ; Data areas: 64

Procedure variables: 256.

In the design used here, which is based on a Cobol interpreter
written for the ICL El emulator, each Cobol statement is represent-.
ed. by a sequence of 16—bit target instructions.
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0 - TABLE 2: A COBOL TARGET INSTRUCTION LANGUAGE
— 4 12
Vormat #J. F ~I

• f =0: Source operand at DQT[n]
f—l: Destination at DqT[n]
f~2: Operand at DQT(nJ
f—3: Operand n
f—6: Branch within code area, offset n

4 4  8
Format #2 f ~v n

f—7: n—byte literal operand, type v
• f—8: Scale operand , partial result,..., by n

f—9: Arithmetic; scale first operand by n
V(ADD , SUBTRACT , SUBTRACT—GIVING , MULTIPLY .

DIVIDE , DIVIDE—REMA INDER , ... , etc)
f”lO: Branch DEPEND ING, via Procedure variable n

- • f—il: Branch n, depending on condition v
. f—l3: v[MOVE, COHPARE . SET INDEX , DEBUG, STOP,

and call RUNTI}IE support]

RUNTIME : ACCEPT TIME , DATE , DAY, DISPLAY ,
• OPEN , CLOSE , READ , WRITE , REWRITE , START, DELETE,

CANCEL, CALL, EXIT , etc.

Cobol control structure is the source of some complexity be-
cause of the use of procedure variables and debugging options.
Apart from the normal branching determined by GOTO statements it
is possible to specif y that a particular paragraph cr sequence of
paragraphs should be PERFORMed one or more times , or until a
condition is satisfied (possibly varying some elements on each
repetition). A simple compiler cannot tell in advance which

• paragraphs will be the subject of PERFORM , so it will insert a
possib].e branch to a ‘procedure variable ’ at the end of each
paragraph: if PERFORM does not apply, the branch ‘drops through’
to the next paragraph in sequence. Further complication derives

• from the ALTER verb, which can be used to change the destination
of a GOTO. Rather than change the stored object code the branch
is again directed through the procedure variable table.

The complication arising from debugging is that any attempt
to access a named data item, paragraph, f ile or index may be

- required to enter a debug procedure. In most compilers that means
-~ 

- that the code generated for handling debugged elements is differ—
- ent from (and slower than) normal code, even when executing with

- DEBUG OFF. In interpretive systems the same target code is
generated in all cases and the branch is taken in the interpreter.

• 25
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• In the Data Divirion all names are mapped unambiguously into
indices in the lists of data qualifiers (DQT), f ile and index

• table. Procedure variables are indexed in the Procedure DIvi~ ion .
Information built up during the compilation phase can be carrl*-’ii
over into execution without change in many cases. Figure 5 shows
t h e  o.*dular structure of Cobol as far as it affects the interp rt •—
ter. The DQT contains a 64—bit descriptor for each variable ,
g ivir .g:

the  index of the base pointer for the record currently
contalnir~ the variable
offset acid l imit of the variable within the record area
whether the debug option appi ics
operand type and scaling information
it stibst r ipted. the index of mapp ing parameters in the

~,ubsct ipt information table
if edited , the index of editing parameters in the edit
informa t ton table.

At runt irne  t h e  data qualifier element DQT(n] is interpreted to
give the .c’hlress pointer to a sequence of bytes (or b i ts)  w i t h i ; ,
the a rea  d€ ’I iue d  by t he  base. About 20 microsteps are required to
extract t i e  d a t - c  a t t r i b u t e s  and place them in microregisters ,
fol lowed by whatever is needed to extract  the data i t s e l f  and
present it f*’r t he  next operation . Hence the management of the
DQT represents a significant part of the interpretive overhead .

In measuring Cobol performance the time and space requirem ents
of .i set of test statements were measured , and final figures of
m trlt o bt a t i w d  by weighting the resufls according to dynamic or
st-~ttc usage. For space, a gain of 1:3 resulted in comparison
with the ICL 1900 program requirements. It appeared possible to
improve on that by adding to the function set. For time , an over-
* 11 improvement of 1:2.5 was observed in comparison with the
onventlonal compiler on the ICL 1900. That figure is disappoint-
ing. It is accounted for in part by the arithmetic complexity of
Cobol. Nevertheless the average Cobol statement appears to need
about 200 microsteps (as opposed to 500), and In several instances
the conventional, compiler generates code that runs faster than the
interpreter , for much the same reason as we saw earlier in looking
ml Algol implementations. However , another factor proves to be
signIficant : the time spent in the interface between the language
in rerpreter and the supporting SI!..
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4. INTERPRETIVE SYSTEM DESIGN

Improving on the range—defined instruction sets of fifteen
year3 ago without meeting comparable system objectives is not
particularly difficult. To present a realistic alternative it
must be shown how prograimning standards can be maintained through
a very wide power range ; it must be possible to develop and main-
tain new languages and subsystems taking f ull advantage of the
architecture without endangering system security; storage and con-
trol structures must be created to suit modern applications rather
than those of the early 1960’s. As far as I know, no ‘microsystem’
has been developed with the required properties. Even so, it is
not sufficient to show that variable microcode achieves better
results than fixed instruction sets: we also need to be con-
vinced that it is the best way of using modern technology. In
this lecture I shall draw together some of the results observed in
language—oriented machine design and suggest two alternative
system frameworks in which the demonstrated advantages could be
retained.

4.1. The Effect on Language Parameters

As I have already indicated, many of the measures of language
performance are affected strongly by the choice of supporting
system , which we suppose to be reflected in the semantics of the
System Implementation Language (SIL). For example, suppose the
SIL is in fact a copy of the Executive package of a conventional
machine range, and that a Cobol application package is obeyed
(a) using the fixed instruction set and (b) using a Cobol target
code such as discussed in the last lecture. Then the observable
effect on storage requirements would be as follows (using typical
figures for the ICL 1900): 

(a) (b)
Fixed Instr. Fixed+Cobol

Fixed instr. lJcode 16 Kbyte 16 Kbyte
Cobol target l~code 0 9 Kbyte
Executive (kernel) functions: 16 Kbyte 16 Kbyte
System functions (spooling,
command language, etc) 20 Kbyte 20 Kby te
Cobol run—time support: 25 Kbyte 25 Kbyte
Cobol application — data (say) 9 Kbyte 9 Kbyte

- code (say) 9 Kbyte 3 Kbyte
Total 95 Kbyte 98 Kbyte

In other words, the reward for a great deal of effort and invest-
ment in control memory is negligible as far as storage is concerned .
Of course , one can present the picture in other ways and use the

• speed gain to advantage if there is sufficient 1—0 capacity, but
• - the point remains that unless the support system gains similar

advantages from the interpretive techniques the improvement in
• language performance will be seriously diluted . Let us assume ,
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therefore , that the S1L itself bend Its from the use of micro—
p rogram. The effect may be seen as space reduction and a gain in
spe~ed; n~ re prof ably It wi l l he seen as improvement in funct Ion
amid fl exibility. In reviewing the parameters listed earlier
se~’~e of the requirements of the SIL will be noted.

(i) Compile and Load Time.

Substantial (say a factor of 5) gains in speed can be made in
the portions of a compiler concerned with lexical and syntax
an’ttysis , and to a lesser extent in code generation , by microcode
interpretat ion of syntax tables. Where in—line coding has been
used in the past the speed gain Is smaller but significant saving
in space is achieved by table—driven techniques. Compile time is
indirectly affected by the choice of object code under (ii).

Load time is normally determined by the supporting system.
If all programs have to be mapped into a (virtual or real) linear
store the time and space overheads in starting a job step may be
significant (comparable with the compiler itself in many conven-
tiona l systems). Moreover, the operating inconvenience is
significant and may result in such anomalies as separate ‘batch’
and ‘load-and—go ’ language systems. There is no reason, however ,
why the SIL functions should not allow program execution with
explicit structure. For example, the operating environment shown
in Figure 5 can be maintained with no appreciable execution over-
head on the part of the SIL. In that case, the load time is
negligible.

(ii) Execution Time

Excluding arithmetic and 1—0, execution time is governed by
the time of access to variables and the change of control environ-
ments , i.e. the subsets of the program space immediately available
from particular points in the program. It is the ‘localisation ’
of the environment which allows short addresses to be used and
produces the greatest contribution to code compaction . The dia-
gram shows the components of a generalised access chain. Data
elements are assumed to be created in blocks (activation records
or file areas) which are not necessarily contiguous in store, but
selectable by an index n. Data identifiers in the source text
ate mapped into indices m, which are used to refer to a table of
attiibutes (cf the DQT in Cobol) which give record pointer , off—
sel , size, type , and possibly other information derived by the
comp iler and required during execution. In general, several sets

• of attributes may refer to the same record, and one set of
attributes can refer to several record areas (through dynamic
adjustment of the control environment).

28

—— -_5--5-- 5 - - -5- - - - - -



OBJECT CODE ATTRIBUTES CONTROL DATA
ENVIRONMENT STORAG E

— (STATIC • • . • • . DYNAMIC)

Languages differ in the amount of attribute information
carried into the execution phase, the method of changing the con-
trol environment, the time at which attributes are assigned, and
hence in the ways of distributing components of the access chain
in storage. In Fortran, for example, attributes and record
pointers can be absorbed into the object code; in APL the object

- code and attributes are dynamically assigned; in Algol the (g,n)
pair and size can be absorbed into the object code while the type
is sometimes attached to the data in the form of a tag. Where
explicit maintenance of attribute and environment is demanded by
the language there can be significant gains from using microcode.
The ratio of addressing and control instructions to arithmetic in
the output of a conventional compiler is in the region of 4:1, so
assuming a 5:1 speed increase from microcoding the former an over—
all speed gain of 5:1.8 or 2.8:1 is indicated . One would expect
more for the highly structured or ‘dynamic ’ languages. Further
speed gains can be expected where specialised arithmetic functions
are called for, e.g. array, complex, controlled precision or
character string manipulation. A minimum overall gain of 3:1 in
speed of m ‘production’ compiler to range standards would be a
realistic objective for the languages in common use.

A language allowing free assignment of pointers (reference
variables) entails potentially serious support overheads in the
assignment and recovery of space, not necessarily eliminated by
the provision of a large virtual store. Even if the SIL recognises
pointers it seems preferable for the language subsystem to under—
take its own space management to take advantage of known local
characteristics. The language ‘pointer ’ is evaluated in terms of
the underlying program structure at the time of use: that opera—
tion occurs frequently and benefits from processor adaptation to

• - the extent that once an evaluation has been carried out the result
can be used repea tedly on successive items of data. It is then

- 
required of the SIL to allow language interpreters to work with
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‘absolute ’ as well as vir tual addresses. In the next subsection
we shall see what that implies . (The alternative of having b oth
the SIL and the language microcode work in a virtual space support-
ed by hardware can be disregarded because of the delay in access—
ing memory and the poor store utilization that results.)

Space management functions are principally concerned with
searching for and updating pointers and physically moving blocks
of data. They are time consuming and in many languages their use
is discouraged by artificial means, so the gain from making them
more efficient would be seen in program flexibility (in the user
language and the SIL) rather than in execution t ime.

(iii) Size of Support System

The S1L code benefits in two ways: in many situations, e.g.
in compiling to language—oriented code, it has to do less; and
it does it more ef f ic ien t ly  than other high level system program-
ming languages, or more elegantly than a macroassembler. Size
reductions in the region of 5:1 have been achieved for compilers.
Each language microcode represents a space overhead of at least
10 Kbytes, plus a similar amount for the resident SIL.

(iv) Object Program Size

Tailoring the object code to fit the source language shows the
clearest gains over conventional systems because of the elimina-
tion of unnecessary function , register and address bits. An
overall reduction in procedure size of 4:1 for large programs,
inc luding att r ibu te tables , would be a realistic aim. No signi-
f icant  gains in data mapp ing over a conventional system with  word
and character addressing can be expected . Gains in space can be
seen as gains in main memory and channel capacity and to a smaller
extent in f i le  space.

(v) Diagnositc Aids .

As any APL user discovers , interpretive methods can give
exceptionally good diagnostic information , sufficient to overcome
eccent r icities of the language itself. Unfortunately , diagnostic
quality is one that canno t be measured and is often overlooked in
favc~ui of marginal improvements in the others.

4.2 Microsystem Problems

The use of microprogram brings its own problems, and raises
the question of whether the implied comparison with machines of
the mid—6 0 ’s was the correct one to use . In the system context,
the obstacles to using in te rpret ive  mic roprogram are as follows.

3()
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- (A) Range Definition

The microprogram appropriate to a high performance machine is
quite different from that of a slower microprocessor . There

- - is also an absolute speed limitation: a machine executing
target instructions at 10 MIPS is obeying microorders at least
10 times as fast , which is beyond the power of vertically
encoded (i.e. easily programmed) host machines.

- - (B) Security

Microprogram derives part of its speed advantaLe by ignoring
the security checks inherent in fixed instruction sets. For
a small amount of microprogram under control of the manufac-
turer that is tolerable. The language performance figures

• obtained in practice give the interpreter responsibility for
resources normally regarded as protected , i.e. absolute
addresses , in which case the security of the system is in the
hands of language implementors .

(C) Flexibility

Microprogram is a static form of code. It cannot easily be
moved in store. Fast control memories and scratchpads are
necessarily small , so the problems of sharing resources

- between interpreters and scheduling their use have to be
solved .

Of the above, (B) alone is sufficient to prevent widespread
use of microprogram in commercial systems. Four types of response
can be recognised:

1. Embed the Microprogram in a Conventional System

We have already noted that the space and t ime advantages are
• diluted in the context of a conventional system, nevertheless,

those that remain are obtained with minimum investment in redesign.
The IBM APL Assist Feature running under DOSIVS, OS/VS1 and OS/VS2
has been made available on the System/370 Models 135 , 138 , 145 and
148 (Hassitt and Lyon (1976)). It consists of an additional 20
Kbytes of microprogram, resident in main store , which interprets
APL statements. It carries out virtual——real addreBs translation
according to the rules of the host system, but returns control to
the host to service interrupts and page faults. Hence,system
integrity depends upon correct use of addresses in the APL micro-
code.

2. Extend Security Boundaries to the Microprogram Level

The in—line checks that can be used without impairing perfor—
inance are restricted to key comparison, lockout on fixed sized

S
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blocks ci store , etc . The El emulator Drovides w r i t e  p r o t e c t i o n
on 1 6—word f rames of scratchpad , 64—word frames of control memory ,
1f~ I~~ord f t ames of main memory and all 1—0 multiplex positions.
Tht~ main drawback to such schemes is their inaccuracy and the
dt [dculty encountered in handling dynamically changing or moving
pru~ rams , which occur quite frequently in modern systems .

3. Control Address Formation in Microcode

An alternative , which can be seen as a generalisation of the
first approach , is to validate addresses when they are formed ,
then to restric t their use so that further checks are unnecessary.
The SIL Is responsible for forming addresses (from segment capei-
bilitles); the language microcode can modify them within given
limits ~‘nd ~‘cess the store diroet-ty. Addresses are distinguishM
by tags so that the SIL can find and update them when necessary ,
iudependent of the source language. This method is used in thr.
Variable Computer Sy~ tem(L1iffe and May (1974)) on the El emulator ,
which makes provision for tag manipulation. For complete security,
however, specialiseci hardware support is necessary.

‘+. Separate the Language Processors Physically

A special case of ~he second approach , which is attractive
because technology is available in the form of low—cost micro-
programmable machines. The separation is conceptually physical ,
in the form of multip le processor—memory pairs, but it could be
achieved by time—sl icing.

From the general des i gn viewpoint either of the last two
approaches can be used to provide a viable system model. Each
intends to cover a wide range of performance by using multiple
computers. From 3 it can be seen that because access to program
space is controlled the SIL and user programs can coexist in the
main memory and control store (if it exists), and that programs
can be distributed over the available memory space. This
‘distributed program ’ model is well suited to the class of
applications with dynamically changing program requirements, or
which can be expressed in terms of cooperating parallel processes.

From 4 a more specialised ‘dedicated language’ model is derived .
Each program, together with its interpreter, has unrestricted use
of the local memory space of a processor—memory pair during
execution , but it is rolled in and out by the scheduler which forms
part of the SIL. The SIL microcode and system procedures can be
protected by holding them in read—only memory. Access to shared
dat ;t or to overlays must be through some form of secondary store
manager, which checks the rights of the user against declared
accessibi l i ty  of the data , a re la t ively  slow operation. The
disadvantages of the dedicated—language model are the sensitivity

~-‘f programs to physical store sizes , the amount of unproductive
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traffic between central (i.e. secondary) memory and language
piocessors, the poor utilization of processor and memory resources
(if it is argued that processors and memory are give—away items,
why bother with microprogram at all?). Nevertheless, such a
system is in many ways the easiest to understand , it is least
affected by failure bf one of the processor—memory pairs, and it
lends itself to the ‘personal computer’ mode of working in the
same way that private cars lend themselves to private transport,
however inefficient.

Each model presupposes the use of a system implementation
language (SIL) whose aim is to provide a set of functions that
can be used in all language applications to reduce development
effort and code duplication at both micro— and target machine
levels. In so doing it sets standards that can also be used in

-
~~ the variable part. There is no doubt that certain operations such

as input—output and frequently used arithmetic procedures are
properly part of the SIL. How far one can go depends on the type
of system: if the integrity of system data cannot be guaranteed

. (which is the case for dedicated—language models) the amount of
support the SIT., can give is limited. On the other hand , commit-
ment of the SIL to support facilities that are rarely used compli-
cates the system and wastes resources. The interesting design
area is thus the ‘fringe’ of functions just inside or just outside
the SIL, which I can best illustrate by reference to the Variable
Computer System developed on the El research emulator and later

• t ransferred to another host machine.

• 4 .3  An Example of a SIL: The Variable Computer System

VCS is implemented at two levels of control: microprogram and
the system target language (VCSL) in which all compilers and sys-
tem utilities are written. The VCS procedures can be called
either at microcode or at machine code level. It follows that if
a microprogrammed procedure is called from machine level, or vice—
versa, some code must be obeyed to adapt from one level to the
other. It is undesirable to impose restrictions at this point
because one cannot always predict whether a procedure will be

• committed to microprogram; the descrimination must be dynamic or
immedIately before task initiation, at worst. For that reason
the list of procedure activations associated with any process con-
tains both micro and machine level linkage information. Again ,
it is undesirable to impose limits on the depth of procedure call,

• therefore linkage information is stacked in main memory , the host
machine link stack having very limited use.

Procedure activations form part of the process state vector
(PSV) , which also contains VCS registers, environment pointer,

• current program pointer and various flag bits that are mapped into
the host registers . As calculation proceeds it is possible that
other host registers will be used, but it is required that all
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state information will be contained in the PSV at points wheic •t
change of procedure or process may occur. In tha t way the VCS
can eftect process m~n~~ ernent without explicit knowledge of the
language state , and with a fair degree of independence of the
h~*~;t machine. Similarly, by recognising tagged addresses the VCS
ena carry out store management without  exp licit declaration of
ttw mapping used in current processes.

Pro~cdurL’ entry and exit is controlled through a dynamic ch.iin
of m’~ark~.d lI flks. The purpose of the marks is to distinguish task
initiat ion , system call and user procedure calls, allowing various
levels of restart  to be employed and providing excellent diagnostics
at both control levels.

The in r , r p retatton to be placed on a program segment is
indicated by a control type assigned to a particular compiler.
Control typ~ zero is used for pure data: any attempt to obey it
will fail. Control type 1 is for system use , type 2 for VCSL
target code , and type values for language extensions, e.g. to
cobol , APL , ctc , are assigned 3, 4, ... on a global basis. The
control, type is examined on procedure call and return (in the case
of metchine level code) , branching to the appropriate in terpre ter .

It can bee seen that the PSV’s are key control s t ruc tures  tha t
mus t be protected if system security is tc be ensured. The me’~t
ef f ic ien t  and flexible basis for protection is a c a p a b i l i t y  ~.i h*’rre
such as that of the Basic Language Machine . Many of the VCS
functions are concerned with creating and manipulating abstract
system objects In a consIstent way, the PSV’s being the representa-
tion of the abstract idea of a ‘process’. In particular , we find
functions fo r :

(1) setting up operating environments (bases) and dcflning
the resources found in them ;

(ii) creating , starting and stopping processes;

(iii) entering and leaving procedures;

and (iv) controlling access to resources.

Here a ‘resource ’ is a stoiage segment, PSV , 1—0 device, or a set
of resources. The recursiv~ nature of this definition allows each
base to be constructed as a tree. Clearly , the integrity of any
object depends in the end on maintaining the integrity of its
representation, I.e. the store , and of the procedures that are
applied to it , i .e. the activation records contained in the PSV ’s

Prog r am structure is dynamic . A new base is able to  share  the
inforr it ion available to its ‘pa re n t ’ at the time of i ts  creat Ion ,
with  the ef fec t  that  a hierarchy of bases is set up with the
‘system ’ at the apex. The base s t ructure  is important in building

34

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ - ~~~-~~~~-- -~~~~ ——



~ 
-~~~----.~~~~ - . --~~~~~~~~~~~~~~~

- - ‘ . -  --- - —- — ---—-
~~- •  ~~~~~~~~~~~~~~~~~~~~

— - - ---~-—-~~ - -• - - —-———-—.———,————— —-——--—,——---—,— ——.---—----——-- -—— -•--• - ,—— •,-. —. •—

t language subsystems and dependent application environments:
Figure 5 shows a typical three—level base structure to which
one or more Cobol modules might be attached.

SYSTEM 

—t

BASE SYSTEM MODULES

COMP I LER

M RU NT IME SUPPORT

BASE SU RSYS’rF.M DEViCES
& PkOCE~~~ES
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CO3OL OBJECT CODE 
_______
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________ 

t.Li\\\ I_I OUTP
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FROM PROCEDURE FROM I)AT7~
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Figure 5: VCS Base Hierarchy
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Resources are defined by various types of capabi l i ty ,  f ound
in capability segments at the branch points of the program tree.
The most time—critical VCS functions are those concerned with
forming addresses from segment capabilities (codewords), and with
usin~ them to access memory. For system reasons a codeword refers
indirectly to store via a global segment table (GST). The corres—
poncRng address retains the GST index In order to check the
accesstbllity and position of the segment, which happens each time
an address is loaded into a register (from the PSV). The access
code is used to control shared (read—only) access by several
processes or unique (update) access by individuals. All such
control and conversion together with the recycling of CST Indices
and memory is exercised by VCS microprogram , which provides a
good example of the application of microcode to system problems .

The ‘read’, ‘write’ and ‘modify’ instructions which should
strictly speaking be found on the VCS function list are too
critical to handle by microsubroutine call. Users are therefore
allowed to issue them directly fo r binary data and trusted to
obsrnrve the limit and protection codes.

CODEWORD J [type] [GST index]

GST[g] [access control] [fbi] ( fbi: [limit]

ADDRESS [tag] [type] [GST index][limit] [bl] 1 [DATA] 
absolute or relativised

byte location

In the course of design numerous candidates for positions in
the VCS function list have to be considered . A fundamental pro-
blem in extending the system is to achieve valuable effect with-
out degrading overall performance. Sometimes a microcode branch
is obtained ‘for free ’, while at other t imes a new facility en—
tails extra tests in a critical path. The available control store
in a range of host machines has also to be considered . Options
considered in that light are:

(i) selection of set elements by key rather than index
value;

(ii) provision of paging facilities;

(ill) static chaining in the procedure activation list;

(iv) introduction of a third segment type consisting of a
set of tagged elements; 
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(v) use of semaphore variables for interprocess communication .

There are many possible variations of the addressing rule such
as (1) and (ii) but each entails a loss of space or time that
skilled programmers will try to circumvent. The best programming
environment appears to be a set of dynamically constructed ,
variable sized segments: they make optimal use of store and
their access overheads are well understood. It is left to sub-
system designers to map programs efficiently onto the tree struc-
ture , so that the store management implicit in a language such as
APL is carried out in part by the language subsystem (which is
aware of the details of APL usage) and in part by VCS functions
which provide the containers for the APL workspaces.

VCS procedures are not intended to represent high level con-
trol structures directly, though they happen to be adequate for
VCSL and simple languages such as Fortran. Recognition of static
levels involves extra work in procedure management and a variety
of actions dealing with special cases that could not be built in-
to a fixed system, so It is intended that such structures be
mapped by the language microcode into simulated control stacks.

• It seemed probable that mapping a display structure such as those
found in Algol—derived languages would benefit from the ability to
manipulate sets of addresses, but the practical implementations
studied so far have used indirect mapping techniques, i.e. a new
form of ‘pointer’ peculiar to the language is Invented and mapped
dynamically onto the VCS structures (cf the Data Qualifiers in
Cobol) . The advantage of such techniques is that they can take
account of language parameters in the design of pointers , but we
noted earlier that 20 or more microsteps may be taken to recon-
struct the absolute VCS address.

Finally, various forms of semapore signalling were consid-
ered , but only a minimal ‘busy’ flag was implemented in the PSV.
The argument against greater elaboration is that the access
mechanism of the Global Segment Table already provides direct con-
trol over shared resources, associating the control variable with
the resource itself, so there is little point in providing more
obscure functions to the same end . The release of a segment for
rescheduling at the end of a critical section is not automatic :
to force it at procedure exit, for example, would again imply
intolerable overheads, so an explicit VCS Release function is
required.

The Variable Computer System provides support for language—
oriented microprograms in easily portable form: an investment of
about 8 Kbytes of microcode transfers the VCS functions, VCSL
support codes, compilers, utilities, etc to a new host machine.
It provides the type of support which is needed if the advantages
of microcode are to be fully realised for each language, and
although the function list could be improved in the light of
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experience I think it is a sound method of exploiting the current
generation of general purpose emulators, acknowledging that system

• security rests on the correct design of language interpreters.

4.4 Future Developments

Careful choice of words has left the most critical question
unanswerech leaving aside short—term expedients , is a general pur-
pose host machine with two levels of writable control the best
starting point for processor design? I think not, for three
reasons.

Firstly, the arguments that have been used are based on mea-
sures of high level language implementation, whereas a substant ial
part of information processing still lies outside that well—
defined area. Several systems of mediocre performance and limited
applicability have resulted from the assumption that a high level
language or set of languages would cover the field. On the other
hand without the formality of high level constructs it is diff 1—
cult to see how to make use of writable control memory.

But even accepting the limitations of high level languages it
can still be argued that the interpretive approach is not optimal
in many instances and that the system problems outlined earlier
have still not been solved. It has to be shown that there is a S

better approach to language implementation with the range and
flexibility of conventional systems. We begin by drawing a
distinction between the inherent coding advantages of micropro—
granined interpretation and the benefits which result from using
fast storage or ducking behind the range architecture.

Microprogrammed interpreters have improved on fixed , complex
target instruction sets to the extent that much of the redundant
information in the instruction stream has been eliminated. The
figures given earlier show a reduction from 500 to 200 microsteps
for the average Cobol statement, or a reduction from 15:1 to 6:1
in the ratio of support steps to useful arithmetic and logic .
That suggests there is still room for improvement , which might be
found in a hybrid form of contr’~l in which in—line and interpre-
tive methods can be mixed. After all, an interpreter Is simply a
means of calling a subroutine from the target instruct ion stream:
it8 weakness is that the interpretive overhead is paid on every
syllable. In other words , if we think in terms of an 8—bit
function syllable, 128 codes might be assigned to hard—wired
functions, the other 128 to procedure entries in a variable
‘control environment’.

The starting point I suggest is that each language should be
analysed from the point of view of minimising the product of micro—
steps and space in the representation of programs, covering both
instruction and descriptor decoding. I expect , though I do not
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know of a fully tested example, that the best code a compiler can
• produce will be a mixture of microsteps and monosyllabic procedure

calls. In other words, the separation into ‘interpreter ’ and
‘target’ code is no longer relevent.

The problem of presenting the control stream to the processor
at high speed cannot be solved by committing the entire interpreter
to control memory because it is now diffused through the program
space. As it happens, it was not at all clear how to do that in
a flexible manner for a general purpose multilanguage system . The
conversion of ‘microsteps’ to ‘nanoseconds’ can best be treated in
the broader context of speeding up memory access rates: look ahead ,
use cache buffers, or in the last resort pay more, but do not
attempt to deal specifically with the restrictions of control
memory or scratchpad. It will be noted in passing that for the
multiçomputer architectures envisaged the path from memory to
processor is shorter than that of a centralised system with shared
store highways, therefore the benefit of high speed control memory
would be less marked .

Returning to system problems , we are left with (A) range cover ,
which it was (and still is) hoped to achieve using multiple compu-
ters, and (B) security. The dedicated—language system is not
affected by the use of hybrid control: no assumptions are made
about program security. The distributed—program system does
depend on controlled address formation, which was achieved in the
Variable Computer System by a policy of trusting the language
subsystems. With hybrid control it becomes imperative to have
hardware—enforced protection. It is also the case that many of
the key VCS functions at present implemented by microsubroutine
calls could be implemented by in—line code.

The above discussion has been based on vaguely defined ‘micro—
steps’ comparable with the vertical microinstructions of present—
day machines. The reader may feel concerned at reverting to a
processor style not far removed from that of twenty years ago. Is
there a danger of inventing more and more complex ~nicrosteps and
repeating the evolutionary cycle that led to the IBM System/360
and other ‘range’ architectures? The return in space that can be
expected from more complex instructions depends on finding
frequently repeated diagrams or n—grams that can be suitably

• packaged. They are more likely to occur in arithmetic , where
‘hardened ’ floating point and decimal operation can be expected ,
then in control sequences. It would not be surprising to see the
host arithmetic functions develop in the direction of curr~nt
machine codes (with type interpretation placed on descriptor or

• tag gields), but the many nodes of data access appear to benefit

- 
very little from complex addressing rules.
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