
r -
~

AD—AO’48 637 STANFORD UNIV CALIF DIGITAL SYSTEMS LAB FIG 9/2
VERIFYING CONCURRENT PROGRAMS WITH SHARED DATA CLASSES. (U)
AUG 77 S OWICKI NOOO1le—75~C~ Q6O1

UNCLASSIFIED DSL—TR—lkl NL

A04048 ~~ 7

END

2 -79

‘3

I

_ _ _ _ _ _ _ _
/-a

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~~r.

(~~ ITA L SYSTEMS LABO RATORY (
C1

~
STANFORD ELECTRONICS LABORATORiES1

OEMRT~~NT ~ ELECTRICAL Ef~INEERIN6 ~•. ••
4NIZLV~

’

STANFORD UNiVERSiTY STANFORD. CA 94305

~~~~~~

WITH SHARED DATA CLASSES .

~~~~~~

& ~
-
~ ~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I .

~~

,

~I’e~hnica1 %ep~~t k~o. 147

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

This work was supported by the
Joint Services Electronics Program
under contract N-000 I 4-7S-~%-O6O 1. .

4(~~
021

-.

— ____________

41

VERIFYING CONCURRENT PROGRAMS WITH
SHARED DATA CLASSES

by

Susan Owicki

Techni cal Report No. 147

4
August 1977

Digital Systems Laboratory
Departments of Electrical Engineeri ng and Con~uter Science

Stanford Uni versi ty
Stanford, Californi a 94305

_ _ _ _ _ _ _ _ _ _ _ _ _ _

To be published in Proceedings of the Working Conference on Fon~a1Descri pti on of Programi ng Concepts, August , 1977, North Holland

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
Servi :es E1ec::ics Pro~ra:



— — —

- - - . --.-- —————----,- -- .-~~

Digital Systems Laboratory

Departments of Electri cal Engineering and Computer Science

t Stanford University

Stanford, Cal ifornia 94305

Technical Report No. 147

August 1977

-

VERIFYING CONCURRENT PROGRAMS WITH
SHARED DATA CLASSES ~~~ 

by _~~~~~~

Susan Owicki

ABSTRACT

Monitors are a valuable tool for organizing operations on shared
data i n concurrent programs . In some cases , however, the mutually ex-
clusive procedure calls provided by moni tors are overly restrictive. Such
appli cations can be p rogramed using shared classes , which do not enforce
mutual exclusion. This paper presents a method of verifying parallel pro-
grams containing shared classes. One first proves that each class pro-
cedure performs correctly when executed by Itsel f, then shows that simul-
taneous executi on of other class procedures can not Interfe re wi th its
correct operation. Once a class has been verified, calls to its procedures
may be treated as uninterruptible actions ; this simplifies the proof of
higher-level program components. Proof rules for classes and procedure
cal ls are given in Hoare s axiomatic style. Several examples are veri fied,
i ncl uding two vers ions of the readers and wri ters problem and a dynamic re-
source al locator.

Index terms: program verifi cation, program proving, concurrency, parallel
programs, monitors , cl asses , operating system design , shared c lasses



F -.

~~~

-.-

~

- -

~~

--

~~~~~~~~~~~~~~~~~ ~~~~~~~~~ 
- 

I ~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _  _ _ _ _  ______- — —~~~
‘

~~~~~

I

INTRODUCTION
. I

Verifying concurrent programs is complicated by the nondeterministic way in which
parallel processes can affect each other through operations on shared variables .
Several language features for governing this interaction have been suggested : the
monitor, (Hoare, 1974), (Brinch Hansen, 1973), is a particularly valuable tool . A
monitor resembles a Simul a class : it is a set of variables together with proce-
dures that operate on those variables . Monitors have three restrictions not found
on classes: 1) each variable in a concurrent program must belong to a mon i tor or
be local to a process; 2) monitor variabl es may not be used outside the monitor;
3) the monitor includes scheduling operations that prevent two processes from ex-
ecuting monitor procedures at the same time. These restrictions provide a syntac-
tic guarantee that two processes can not simul taneously operate on the same vari-
able. Such a guarantee greatly simplifies the proof process. However, there are
cases in which requirement 3 is overly restrictive . For example ,

1. Some operations on shared variabl es can overlap in time without inter-
ference. Exampl es are read operations and operations which modify dif-
ferent parts of a shared data structure. Even operations which modify
the same variables may do so in a way that is safe, despite simul tane-
ous execution .

2. Objects which are syntactically shared may in fact be dynamically al-• located to one process at a time, so that there is no possibil ity of
interference.

3. Even in cases where each procedure requires mutual exclusion , it may
be useful to allow the programer to implement his own scheduling
policy, rather than binding him to the monitor ’s standard pol icy.

Often a shared object will have some operations that fall in each of the categor-
ies above.

This paper discusses the specification and verification of snared data classes , a
generalization of monitors in which mutual exclusion is not automatically provided .

To verify a class, one must show that the procedures operate correctly (according
to their specifications) even when executed In parallel . The verification of a
process which uses the class can then be based on the speci fications of the pro-
cedures, wi thout regard to the details of their implementation.

It should be emphasized that the Intent is not to advocate replacement of monitors
by shared classes. The built-in mutual exclusion in monitors is a valuabl e aid to
producing correct programs, and it greatly simplifies correctness proofs. Shared
classes should be used only when they yield significant improvement in performance.
In such cases, extra care must be devoted to Insuring that the class works cor-
rectly no matter how its actions overlap in time; the proof techniques presented
here provide a means of verifying that It does.

The paper is organized as follows. Section 2 reviews the axiomatic proof method
and provides a basis for the rest of the paper. The syntax of shared classes is
described in SectIon 3, and proof rules for verifying the partial correctness of
classes and processes are given in Sections 4 and 5. Section 6 contains a number
of examples. Proofs of termination are discussed in Section 7. Finally , Section
8 suninarizes and evaluates the results.

1
II

_ _ _ _ _ _ _ _ _ _ _ _ _

2. VERIFYING CONCURRENT PROGRAMS

The verification techniques in this paper are based on Hoare’s axiomatic system
for proving sequential programs (Hoare, 1969) and on a method for verifying paral-
lel programs developed independently by Lamport (‘1 977) and the author (Owicki and
Gries, 1976). A brief review is given here.

Ifoare’s method is concerned with partial correctness. The partial correctness of
a statement S is expressed by the formula {P}S{Q}, where P and Q are as-
sertions. {P}S{Q} Implies that if execution of S begins with P true, then it
either ends with Q true or never ends at all. Hoare provides a set of axioms
and inference rules for proving partial correctness. For example,

assignment {P~}x : E{P}, where P~ is the assertion formed by
replacing every free occurrence of x in P by E
{P’}S{Q’},PFP ’ ,Q’ ~~Q,consequence where P F Q means that

(P}S{Q}
Q can be proved using P as an assumpt~on, and
the notation means that b can be deduced ~
a has been proved.

A program proof can be presented informally by giving a proof outl ine, in which
assertions are displayed at appropriate points in the program. This style is used
in the examples in this paper. In a proof outline , each statement S is always
directly preceded by one assertion, called its pre-condition or pre(S). Suppose
{P}S{Q} has been proved,and T is a statement in S. Then, if execution of S
begins with P true, pre(T) holds whenever T begins execution.

Concurrent execution is initiated by a statement with the form
cobegin S1// S2 /1 ... II S~ coend.

The statements St,.. . ,Sn are cal led parallel processes. There are no restric-
tions on the way in which parallel execution is impl emented ; inpartic ular,nothing
is assumed about the relative speeds of the processes. It is required , however,
that each assignment statement or expression evaluation represent a single uninter-
ruptible action. This rule can be relaxed when no ambiguity resul ts. For example ,
the statement x : x + l can be treated as uninterrupt ible if x is a local pro-
cess variable , but not if x is shared between processes. Actions whichmay safely

be treated as uninterruptible are called elementary. The proof rule for shared
classes in Section 4 gives conditions under which a procedure call may be treated
as an elementary action , even though it is in fact an interruptibl e sequence of
actions on shared variabl es.

.~•~- -~~~-- —~~~~~~ ~~ .
—-

The proof rule for cobegin statements is
{PJS1(Q1},. .. ,{P~}S~(Q~} are interference free

cobegin
{P1 A ... A P~} cobegin S~ // ... // S~ coend (Qi A ... A Qn}

The rule states that the effect of executing S1,... ,S~ In parallel is the same
as executing each one by itsel f, provided the processes do not “interfere” with
one another. To show that they do not, one must prove that certain key assertions
in the proof of {Pj}Sj(Qj} remain true under parallel execution of the other
processes. In this case, the proof of {Pj)Sj{Qj} will still hold , and Qi will
be true on termination of Sj If Pj was true on Initiation. For example, the
assertion (a~~b) remains true under execution of b:=b+l , while the assertion
(b= 0) does not. The invariance of an assertion P under execution of a state-
ment S is expressed by the formula {PApre(S)}S(P}. This is the basis of the
interference-free property defined below.

Definition . Given a proof {P}S{Q} and a statement T with precondition pre(T),
I does not Interfere with {P}S(Q} if the following formulas can be proved.

a) {QA pre(T)}T{Q}
b) Let 5’ be any statement in S except a component of an

elementary action.
Then {pre(S’) A pre(T)}T(pre(S’)}.

Definition. {P1}S1{Q1},. . . ,{P~}S~{Q~) are interference-free iff for each elemen-tary action I in S~, T does not Interfere with {Pj}Sj{Q~} for j~ I. (Of
course, local variables of Sj may be renamed to avoid conflict wi th variables of
S3.)

It can be proved that when the cobegin rule is used, any computation that begins
in a state wi th P1 A... A ~n

satisfied has the property that pre(S) holds when-
ever S is ready to execute. This is because the sequential proof of the process
containing S guarantees that pre(S) will hold at the instant S becomes ready
to execute, and the Interference-free test insures that it will remain true in
spite of the actions of other processes.

At times it is necessary to add statements containing auxiliary or g~ost variabl esin order to verify a cobegin statement. The auxiliary variable should be used
only in assignments to each other, so that their presence does not affect the pro-
gram’s control flow or Its effect on non-auxiliary variables.

The use of the cobegin rule and auxiliary variables is illustrated by verifying
the program

Add2: cobegin x := x + 1 II x := x + 1 coend,
under the assumption that x :=x+l is an uninterruptibl e operation. Proving
(x = O}Add2{x 2} requires the addition of an auxiliary variable y. A proof out-
line for the au~ iented program is given below.

3 L

— ,
~~~~~~~~~~~~~~ . 

. -•-—
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~ 

{x 0}
y :~ 0;{x = yAy=O)
cobegin

{x~~y}x : x+ 1 (x=y+ 1}
II

{y O}[x :~ x+l;y: 1]{y=l)
coend
{x=y+ 1 Ay=l}
{x 2}

Here the notation [x :=x+1;y:=l] indicates an elementary action; assignments
to auxiliary variables can always be Included in an elementary action because they
take no “real” execution time. The sequential proof of each process is trivial .
The interference-f ree test requires four steps, which show that each assertion in
one process remains true under the action in the other process. For example, to
show that (x=y) is invariant under [x :~ x+l ;y := 1), one must prove

{x yA y 0) x : x  +1;y := 1(x =
which is trivial .

3. SYNTAX OF SHARED CLASSES

A shared class closely resembles a monitor. It defines a set of variables , pro-
cedures which operate on the variables, and an initialization statement. Theclass
variables may not be referenced outside the class itself. Execution of class pro-
cedures by different processes may overlap in time: this is the major difference
between classes and monitors.

As an example, consider the class type Counter defined by the declaration below.

~ype Counter:class;begin var c:integer;mutex :semaphore;
procedure Add(y:integer);

begjn var t:integer;
waTf[mutex); t: = x ; x : t+y; signal (mutex)end ;

procedure Sub(y:integer);
begin var t:integer;

walT(mutex); t: = x ;x := t - y; signal (mutex)end;
begin x := 0; mutex : 1 end

end Counter
An instance of the class Is created by the declaration

var C:Counter,
and the class procedures are then invoked by the statements C.Add(i) and
C.Sub(i).

A few coninents on the exampl e are in order. The class procedures are written in
terms of elementary actions; thus incrementing x requires two steps. Semaphores
are used for synchronization here and throughout the paper, but the proof tech-
niques to be developed are Independent of the particular synchronization method.
Note that Counter is essentially a monitor , since each procedure uses mutex
to obtain exclusive access to the shared variabl e x. Later examples will illus-
trate other kinds of classes.

Several additional syntax restrictions are necessary for the proof methods pre-
sented later. First, each variabl e used inside a cobe9in statement must be de-
d ared inside a class or a process. This simpl i fies the interference-free test,
since a process variable can not be modified by an action of another process, and
a class variable can only be changed in a class procedure. For similar reasons, a
shared class variabl e may not be passed as an actual parameter to a procedure in
another class , since this would complicate the Interference-free test for that 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


class. In addition , the actual var parameters in a procedure call must be dis-
tinct from each other as wel l as ffom the value parameters ; this restriction is
needed for Hoare’s procedure call rule (Hoare, 1971).

Lastly, it must be possible to partition the class variables into control and data
variables. The control variables are used for synchronization , and are invisibl e
outside the class in the sense that they do not appear in its specifications.
Each class procedure body has the form

begin declarations ; enter; operate; exit end,
where the enter, exit and operate sections satisfy the following conditions.

1. enter and exit are elementary actions, and operate is composed
of elementary actions (a procedure call to a previously-verified
class is elementary).

2. enter and exit do not use (read or write) any data variables , and
they call only locally-defined classes.

3. operate does not use any control variables .
In the class Counter, x is a data variable and mutex is a control variabla;
the enter and exit actions are wait(mutex) and signal (mutex).

Condition 1 prohibits class procedures from calling each other. Nonrecursive
calls could be handled by in-line expansions of the procedure. Allow ing recursive
calls is possible, but would require a stronger proof rule than che one in Section
5.

Any procedure trivially satisfies conditions 2 and 3, since enter and exit can
be null statements. However, class verification is usually impossibl e unless
enter includes all the synchronization required to lock out procedures which
could interfere with the operate section. Thus conditions 2 and 3 effectively
prevent the operate section from containing a monitor-like wait which releases
the mutual exclusion lock. In most monitors, wait and signal occur at the begin-
ning and end of procedures, so this requirement is not too restrictive.

4. CLASS SPECIFICATIONS

Class specifications describe the visibl e characteristics of a class , including
the initial values of data variables and the effect of each procedure on data vari-
ables and var parameters. A class invariant, which gives the relation between
control anw aata variabl es, is used in proofs only inside the class itself. The
components of the spec i fications for a class C are listed below; the program
variabl es which may appear free In each assertion are indicated in parentheses.

C. Initial (C.data)
C.I(C.data,C.control) (the class invariant)
For each procedure C.p(var x;y)

C.p.Pre(C.data,x,yE~ller)C.p.Post(C.data,x ,y,caller)
C.p.Change(C.data) (the set of data variables changed by C.p),

where caller is the identity of the process
which Invoked C.p, implicitly passed as a value parameter.

The specifications for class Counter of Section 3 are
Counter.Initial : x 0
Counter.!: O~ mutex11
Counter.Add.Pre: x x 0 Counter.Add.Post : x x 0 +y
Counter.Add.Change: {x}
Counter.Sub.Pre: x x0 Counter.Sub.Post: x=x 0-y
Counter.Sub.Change: {x}

5


~~~.

r 
_ _ _ _ _ _ _ _ _ _

Verification of class specifications is accomplished using the two-step method de-
scribed in Section 2. The restrictions on variabl es in the clauses of the spec i-
fications l imit the scope of the interference-free test in the proof.

Sequential correctness
1. (true) initialization (C. Initial AC.!)
2. For each procedure C.p,

{C.p.PreAC.I) body of p IC.p.PostAC.I)
where for each statement S in the body of p, pre(S) FC.I.

3. For each procedure C.p, the set C.p.Change contains all data variables that
appear on the left-hand-side of assigrmients in C.p, and all variabl es in
D.q.Change for each procedure D.q. called in the operate part of C.p.

Interference
4. For each pair of procedures C.p and C.q, including p=q, the proofs in 2

above are interference-free, except possibly for the Initial and final asser-
tions C.p.PreAI and C.p.PostAI.

5. If C contains a call to a class D not local to C, then each assertion P
in the proof of C is invariant over actions of D, i.e. for all D.r

{D.r.PreA P} D.r(var a; e) {P)

Verifying the specifications in this way assures the C.! holds at all times (ex-
cept possibl y duri ng elementary actions, which effectively take no time). Inaddi-
tion , if C.p.Pre is true at the instant when C.p.enter begins execution, it
can be shown that C.p.Post must hold at the instant (if any) when C.p.exit
terminates. When C.p executes by itself, the sequential correctness proof im-
plies that it performs correctly. The Interference-free tests cover every action
which could interfere with C.p by modifying a shared variable. All shared van-
ables belong to a class and can only be modified in class procedures. Step 4 in
the proof checks all actions in class C and (implicitly) all classes local to
C. Since the specifications of C contain only local variables , globa l variables
can appear in assertions in C only as a result of a class call. Thus step 5
checks all global classes whose variables could appear in the proof of C. Be-
cause C.p.Pre and C.p.Post do not have to pass the interference-free test, it
is necessary to assume that C.p.Pre holds at the Instant when execution begins ,
and C.p.Post is not guaranteed to hold beyond the instant of termination. This
will be discussed further in Section 5.

To illustrate the proof method, the class Counter is verified below. An array
of auxiliar y variabl es

var m: array processid of 0. .1

has been added to give a stronger invariant ,
Counter.!: O.imutex .~.l A mutex = 1 - ( ~ m[i) )

processld

Sequential correctness
l. {true)x :~ 0;mutex: l ;m:~ O{x OACoUflter .I}

_  

6 1 
~. ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ . 

- .



______________ _______-..-—.-.-,~.—- —.~~~~ .-~,--~‘--- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -:::• !~r— _________________

2. {x = x0 A Counter.!)
[wa it(mutex) ;m[ca llerj :=l]
fx = x0 A m[caller) = 1 A Counter ..!)
t := x;
{ t = x 0 A m[caller] = lit Counter. I)
x : t + y;
{x = x0 + yitm[caller] = 1 A Counter.!)
[signal (mutex);m[ca ller] : 0]
Ix = x0 + yA Counter. I)
A similar proof can be carried out for Counter.Sub.

3. Both procedures change x and no other data variabl es, so Add .Change and
Sub.Change are correct.

Interference
4. The interference-free property for Counter comes from the mutual exclusion

provided by the semaphore operations. In general , if statements S and S’
are mutually exclusive , a proof outline can be found in which

pre(S)Apre(S’) F false.
Then the invariance of pre(S’) under S follows immediately, for the
test reduces to 9

{fal se}S {pre(S’)}

and (false) 1(P) can be proved for any T and P. In the class Counter ,
for example, the assertion

P: x=x 0 A m [caller]=l A Counter.!

must be proved invariant under execution of x : t+y by another process.
The formula to be proved is

{.P A pre(x :=t+y)}x :=t+y {P}.

Now renaming caller to caller ’ in P gives

P A pre(x:= t+y) F I A m [callerj=l A m [caller ’J= l

where caller $ caller ’ . Then
P A pre(x := t+y)

~
— mutex~ .-.l A mutex >0

~
- false

Thus the statements are mutually exclus ive, and the interference-free property
must hold. The pre- and post-condi tlons of Add and Sub , which are notprotected
by mutual exclusion , are not required to pass the interference-free test.

5. No verification is required here, since Counter does not call any other
classes.

5. CLASS PROCEDURE CALLS

Once a class has been verified , programs using the class may safely treat calls to
class procedures as elementary actions. From this viewpoint , a call to procedure
C.p is equivalent to a nondeterministic assignment statement thatgives new values
to the variabl es in C.p.Change. The new values must satisfy C.p.Post, but
otherwise are unconstra ined. The obvious proof rule for such an action is

(C.p.Pre}C.p{C.p.Post).
However, thi s rule is not adequate. The proof of a process that calls C.p must
pass the interference test, so the pre-condition of C.p (likeall pre-conditions)
must be invariant under the execution of other processes. Frequently the asser-
tion C.p.Pre will not be acceptable. The proof rule below, a combi nation of
Hoare’s procedure call rule and rule of adaptation (Hoare, 1971), can be used to
obtain a pre-condition which is interference-free.

~~ 7
- —,-. .--- —.-.- ,-.— --— ,- -.- --—. a.--- --—.. -.--—. —-—.--. - . -

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
~~~~

-
~~—---~

.-,---.-- . 
- --——- .---

~
--— ‘l

- - - -  - -.- ,--------—--—- — . - —

Class procedure call: Let C be a class with specifications as described in Sec-
tion 4. Then in process I

{3k(C.p.Pre ’ AVb (C.p .Post ’DQ))} C.p(i;~ ) {Q}
where a= actual var parameters

~~~
= actual value parameters

C.p.Pre’ = C. p .Pre x ‘ cal~ler

C.p.Post’ = C.p.Post ~ cal~ler

~ is any assertion — —k=variables free in C.p.Pre’ or C.p.Post’, but not in a , e, Q,
or the class variables of C

b= C. p. Change

The rule of adaptation in sequential programs is discussed in Guttag , et al.(l977).
For concurrent programs, it can be justified as a derived proof rule. For if
{P}S{Q} can be proved using the class call rule , it can also be proved by expand-
ing procedure calls in-line and using the techniques of Section 2. Details are
given in the Appendix.

In most cases, the formulas proved using the class call rule can also be derived
informally by treating the procedure cal l as a nondeterministric assignment. This
view is legitimate for partial correctness, but not for termination. An assign-
ment statement always terminates, but class procedures may loop G become blocked
at a synchronization operation. Section 7 discusses methods of proving termina-
tion for class procedures and parallel programs .

As an example of the use of the class call rule , consider a proof of
{x= t}Counter.Add(l) {x t+l}.

Application of the call rule gives
{3x0 (x= x0 A V x(x=x 0+l D x= t+l))}Counter.Add(l){x =t+1 }.

Since (x=t) F (3x0(x x0 A Vx(x x0+l ~ x=t+l))), the rule of consequence yields
(x = t}Counter.Add(l) {x t+l).

The class call rule allows the original pre- and post-conditions , x=x 0 and
x=x 0 +l , to be “adapted” to x=t and x=t +l. Thus the value of x can be
related to a program variabl e rather than the artificial constant xe,. More im-
portant, the new pre—condition may be invariant under the actions of other pro-
cesses where the old was not. This is illustrated in the proof outl i ne below (the
program is essentially the example of Section 2).

{x - 0}
t : 0;
I x= t i t t = 0)
cobegin

{x = t} Counter.Add(l) { x t + l}
//

• (t = 0}[Counter.Add(l);t :l) {t=l}
coend
{x 2)

The formulas for both calls to Counter.Add(l) are proved using the class call
rule , as are the four interference tests. For exampl e, to prove that x = t is
invariant under (Counter.Add(l);t :=l], one must prove

{x=titt=0)[Counter.Add(1);t:= l] (x = t},
which requires another use of the class call rule.

8

—--- ———-. - . . - - -. --- - -- ~~~- -- .- .- .—,-~~~~--——
-
~~~~~—-- .~~~~~~~~ .- -~—-- -~~~~~- -. - - - - - —



-
.~~~~~~~ ~~~~~~~ 

- -

6. EXAMPLES

This section presents several examples of shared classes and discusses the main
• points in their verification .

Exampl e 1. Monitor-like classes where all procedures are mutual ly exclusive are
proved by first verifying the enter and exit actions. Once mutual exclusion is
established , the interference test is trivial. In Section 4, the class Counter
was verified using this method. The most comon reason for using a monitor-like
class, rather than a monitor , is to provide a special-purpose scheduler.

floare’s proof rules for monitors include an invariant J~ J holds when no pro-
cesses are executing monitor procedures. Such a monitor invariant is a special
case of the class invariant. For example , if mutual exclusion is accomplished
with a semaphore mutex , and J is a monitor invariant , then (mutex = 1 D J)
is an equivalent class invariant . Hoare’s proof rul es for monitors can bederived
from the class rules , but only for monitor procedures which fit the
enter ;operate ;exi t pattern.

Example 2. A class for managing a dynamicall y allocated resource needs procedures
for acquiring and releasing a resource unit , as wel l as the usual procedures for
operating on it. A process first executes Acquire , then some sequence of oper-
ations , then Release. Acqu ire and Release require mutual exclusion , but re-
source operations do not ; they have null enter and exit actions. The declara-
tion below shows the important features of such a class.

~~~ Alloc : class;
begin var Resource: array unitld of resource;

• free: powerset of unit ld;
freeCount,mutex : semaphore;
owner: array unit ld of processid;
a,b. auxiliary integer;

procedure Acquire(var unit: unitld);
begin {wait(freeCount); a :=a+l J

wait(mutex);
unit :=oneof(free); owner[freei : caller ;
[free := free — {unit}; a : a — 1]
signal (mutex)

end
procedure Rel ease(unit: unitld);

begin if owner[unit] $ caller then return ;
wait(mutex);
[free := freeu (unit); b : b+ l J
owner[free] := null;
signal (mutex);
[signal (freeCount); b := b - li

end
procedure opl(unit: unit ld ,...);

begin operate on Resource[unit] end
procedure op2. .
begin free := allunits ; freeCount := unitCount;

owner := null; a := 0; b :=0
end

end Alloc
The control variables of Al l oc are mutex and freeCount; the other variables
are data variables. A b c is specified as follows :

9

~
-
~~~~~~~~

-- 
~~~— 

—
~
-•--

~~~~~~ —_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- _~~~ r-r ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~!I

Initial: free = allUnits A owner = null A a = b = O

I: (Vi€unit ld (i c free D owner[i] null) A freeCount = size(free)+b-a
A O<freeCount < unitCount)

Acquire.Pre : true Acquire Post: owner[unit] = caller
Acquire.Change: (free,owner,a}
Release.Pre: owner[unit] caller Release.Post: unitcfree
Release.Change: (free ,owner,b}
opLPre: owner[unit]= caller it ... opl.Post: owner[unit] = caller A
opl .Change: [Resource[unit])
op2.Pre: owner[unit] = caller h ... op2.Post: owner[unit) = caller A

~~ op2.Change: (Resource[unit]}

The sequential step in the class verification is quite straightforward. The in-
- : 

terference-free proof involves four cases.
1. {Acquire ,Release) under {Acquire,Release}: mutual exclusion provided by

mutex.
2. {Acquire,Release} under {opb ,op2): opl and op2 do not modify any

variables needed in assertions of Acquire or Release.
3. (opl ,op2} under {Acquire ,Release}: the only variabl e used in opl or op2

and modified in Acquire or Release is ownerluniti. The pre-condition
of ach action in opl or op2 should include owner[unit]= ci. ler. Now
Acquire only changes owner[iJ when owner[i) null; Release only
changes owner[iJ when owner[iJ= caller ’, where caller $ caller ’. Thus
neither will change ownerfunit] while opl or op2 is being executed.

4. {opl ,op2} under Copl ,op2}: Suppose opl and op2 are executed at the
same time. Let owner[unitj = caller in opi and owner [unit’]=caller ’
in op2; then caller $ caller ’. Thus unit + unit’, and the two procedures
are operating on different resource units .

Example 3. Many search table organizations allow searches to go on in parallel
with each other and with the addition of a new entry. The specifications of such
a tabl e manager are given below. The tabl e stores keys in a data structure I.
The form of T is not important, but the entries are indexed in some way, and
select(T,i) retrieves the entry with index I. Maxsize gives the maximum num-
ber of entries in 1, and size(T) gives the current number.

~~~ table: classbegin var T: tabletype;
Initial : Size(T)=O
I : size(T)<Maxsize A Vi ,j(Select(T,i)=Select (T,j)Dj j)
procedure Insert(x: key;var i: Tindex);

Insert.Pre : T=T 0 itsize(T) < MaxsizeA’.’i(select(T,i)$x)
Insert.Post: extend(T,T0,x)Aselect (r,i)=x , where

extend(T,T0,x) 3 i(sel ect(T,i) = x it select(T0,i) = null
it Vj(i $jDselect(T,j) = select(T0,3)))

Insert.Change: IT)
procedure Search(x: key;var i: Tindex);

C. Search.Pre: T= T~Search.Post: (i $ nullDSelect(1,i)=x) A
(i = null~~Vj(Select(T0,j) I~x))Search.Change =,

The specifications for Search imply that x will be found if it was In I
when Search began. If it was added later , it may or may not be found .

10

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~



r ~~~~~~~~~~~~~~~~~ — - -  . --

The code for procedures Search and Enter is not given ; presumably sequential
verification is possible. For parallel execution , Search can not inte cere with
either Search or Insert, since it does not modify any shared variables. In
most cases, parallel Insert s would not be safe, so Insert must include code to
lock out other Inserts. To avoid interference with Search, Insert should be
written in such a way that the assertion (T=T ~ V extend(T,T0,x) 

) holds after
each action; thi s will guarantee that Search and Enter are interference-free.

Example 4. Lamport (1977) presents an interesting pair of database operations to
show that elementary actions (to use the terminology of this paper) are not neces-
sarily sequential . In his example, operations p and q give different (correct)
results depending on whether execution of p precedes, fol lows , or overlaps exe-
cution of q. Thus if p and q occur in parallel , the resulting state is dif-
ferent from one which could be reached by p;q or q;p. It is still possibl e,
however, to specify and verify the correct behavior of p and q as elementary
actions.

Example 5. The well-known readers and writers problem involves a file which must
be synchronized so that read operations can occur in parallel , but a write opera-
tion blocks both reads and writes. Several solutions have been published , e.g.
Courtois, et al. (1971), Brinch Hansen (1972). Here we show how such a file can
be represented and specified as a class.

~~~ rwfile: class;begin var f: array l..filesize of frecord;
reading : auxiliary array processld of O..l;
writing : auxiliary array processld ~TO..l;.synchronization variabl es... —

Initial : V i c processld(reading[i] = writing [i]=O)
I: (max(reading[i])=o V E writing[1]=O) A Ewriting[i]~~l
procedure startread;

startread.Pre: reading [caller] = 0
startread.Post: reading[caller] = 1
startread.Change: {reading[caller]}

procedure endread;
endread.Pre: reading [caller] 1
endread.Post: reading[caller] = 0
endread.Change: {reading[caller]}

procedure startwrite;
startwrite.Pre: writing[caller) = 0
startwrite.Post: writing [caller) = 1
startwrite.Change: {writing[caller]}

procedure endwri te;
endwrite.Pre: writing[caller]=l
endwrite.Post: writing[caller] = 0
endwrite.Change: {writing[caller]}

procedure read (i: l..filesize;var x: frecord);
• begin x : f[i] end

—

read.Pre: readlng [caIler] = 1 read.Post: x = f [i]
read.Change: $

procedure wr i te: (I: l..fi l esize; x: frecord);
begln ff1) : x end
write.Pre: writ.ing[caller] = 1 write.Post: f[IJ = x
write.Change: {f[i]}

b~9j~ reading := 0; writing := 0 end - - -

end rwfile Il

_____ ~~- .~~~
— ~~~

_ i_ -~~ — ~~~~~~~~~~~~~~~

—_- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :•‘~~~~~~~~~- .--•‘- -- --:rr~ w~~~- — - -
~~~~~

- - - ~~~~.

Procedures startread ... endwrite can be taken from any of the solutions to
the probl em. Their correctness is assumed. Sequential proofs for read and I -
write are trivial. For the i nterference-free proof , one must first show that
startread ... endwrite can not interfere with read by changing
reading [caller]. This is easy, since startread and endread only change
reading [caller’), where caller 4 caller ’, and startwri te and endwrite do
not change reading at all. The proof for write is similar. For the various . -
pairs of read, write operations, the interference tests are passed as follows .

read/read: no shared variabl e modified in read
read/write: mutual exclusion is impl ied by the invariant

(inax(reading [i])=0 V E writing [i]= 0)
write/write: mutual exclusion is implied by the invariant

(E wrlting[i] ~ l)

Exampl e 6. The class defined above has one drawback. It is possibl e for a pro-
cess to use the class unsafely - for example, by calling read without having
called startread. Such a program could not be verified , since the pre-condition
of read requires reading[caller)=1. It would be better, however, if unsafe
actions could be prevented altogether. The class pFile implements a protected
file.

type pFile: class
begin uFile: rwfile;

Initial : true

• I: V i c processld (1$ caller in any procedure D
reading[i] = writing (l)=0)

procedure pRead (f: 1. .filesize ;var x: frecord);
• begin uFile.startread;uFile~read(i,x);uFile.endread endpRead.Pre: true

pRead.Post: x=uFile.f [i]
pRead .Change =

procedure pWrite (i: l..filesize;x: frecord);
begjn uFile.startwri te;uFile.wri te(i ,x);uFile.endwrite end
pWrite.Pre: true
pwrite.Post: uFile.f [i]=x
pWrite.Change = {uFile.f[i]}

end pFile
The class uFile Is declared inside pFile ; thus its procedures are not access-
ible outside of pFIle. Since uFile has already been verified , calls to its
procedures can be treated as elementary actions while veri fying pFile. Thus the
enter and exit actions are elementary, as required . Gi ven the specifications
of uFile , class pFile is easy to verify .

7. TERMINATION

Section 5 showed how class procedures can be treated as nondeterministic assign-
ment statements in partial-correctness proofs. This is not valid for termination

• proofs, however. For example , the procedure defined by
procedure stop; begin wait(s); signal(s) end

is equivalent to a null statement with respect to partial correctness, but not
wi th respect to termination . To deal with termination , the class specifications
must be extended to include delay assertions giving the conditions under which
each procedure may fail to terminate. To prove termination for a process that
cal ls a cl ass procedure, one must prove that the procedure’s delay condition can
not remain true. 

12



~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.,.

~~~

— ~~~~ —~
.-

~~~
- -,r

~ M~~~_.__~
__ .-.--,--~- - - - - -. ______

When the cobegin statement was introduced , no assumptions were made about the im-
plenientation of concurrency. To deal with termination , however , some knowl edge of
the schedul i ng rules is required . Here two assumptions are made. First , the
scheduler is fair; i.e. a process p~roceeds at a n~on-zero rate unless itb lock s,exe_

• cuting wait(semaphore). Second , if a process is blocked at wait(s), it must
continue after a bounded number of signal(s) operations have been performed.
Thus semaphore schedul ing must be fair, although not necessarily fi rst-come-first-
served .

The proof methodology for termination is essentially that of Lamport (1977); it is
reviewed informally here. The basic notion is a relation A -

~~ B (A leads to B)
between sets of program states.

Definition. Let A and B be sets of states for a program S. Then A -÷ B iff
a computation which reaches a state in A must eventually reach a state ‘in B.

Sets of program states will be described by assertions , which may include the
predicates start(i ,L) to indicate that process I is ready to execute the state-
ment labeled L, and finish(i ,L) to indicate that i has just finished state-
ment L.

Formulas like A -* B are proved by starting with a partial-correctness proof out-
line for the program S and applying axioms and inference rules for termination .
For exampl e,

assignment L: x : E legal (E)
(start(i,L)Apre(L))-+ (finish(i ,L)Apost(L))

The rules for other sequential statements are similar and will not be given here.
• For concurrent statements,

cobegin L: cobegin L1:S1 If. ../f Ln: S~ coend

start(i ,Lj) -
~

finish(i ,Li), for l~~i~~n

(start(O,L)A pre(L)) -* (finish(0,L) A post(L))

signal L: signal (sem)
(start(i,L)Apre(L)) + (finish(i ,L)Apost(L)Asem = sem’ +l)

In the axiom for signa l , sem ’ represents the value of sem at the instant when
signal began. It may not be possible to deduce sem = sem’+l from the post-
condition of L, since that assertion must be interference-free. However, the
state sem=sem ’+l must occur, even though it may not persist , and this is re-
flected in the axiom .

The rule for wait(sem) is harder to express , since ‘wait will terminate only ‘if
other processes execute a sufficient number of signals.

wait L: wait(sem)

• (start(i,L) A pre(L) A sem = 0) ~- sem>O

(start(i ,L)Apre(L)) (finish (i ,L)Apost(i ,L)A sem=sem ’-l)

In order to prove that L: wait(sem) terminates, one must show that the semaphore
sem can never stay at zero while a process is waiting at L. In other words,
other processes are guaranteed to perform enough signa l operations to allow pro-
cess I to pass 1.

The termination rule for a class call involves its delay assertion. C.p.Delay is
verified by prDving 13

—
—

~~~~~~~~~~~~~~~~~~~~~~~~~~~

- ~~~ - - - - -~~~ - ---- - - - -_~~~~~~~~~-~~~~~~~~~~-

C.p.Del ay -” ’~’C.p.Delay F start(body of p) -
~~ finish(body of p),

In other words C.p, must terminate unless the condition C.p.Delay persists
throughout execution of C.p. Once C.p.Delay has been verified , the followi ng
rule can be used to prove that a call to C.p. terminates.

class procedure call 1: C.p(a; e)
(start(i,L)Apre(L)AC.p .Delay) -

~ -C.p.Delay
(start(i ,L)Apre(L)) (finish(i ,L)Apost (L)AC.p.post’)

where C.p.post’ = C.p.post ~ Y 
cal

1
ler

The procedure call rule has the same form as the semaphore wait rule. In fact,
wait and signal are essentially procedures in a pre-defined class, with

sem.wait.Delay: sem = 0
• sem .signal.Oelay: false.

The exampl es below illustrate verification of the delay clause and its use to
prove properties related to termination .

Example 1. In the class Counter of Section 3, both procedures are guaranteed to
- 

-
- terminate, i.e.

Counter.Add.Delay: fal se •1
• Counter.Sub.Delay: fal se

The delay clause is verified using the partial correctness proof outl ine in Sec-
tion 4. Both Counter.Add and Counter.Sub have the form

{m[caller] = OitCounter.I}
a: [wait(mutex);m[caller] :=-l]
{m[caller]=-l A Counter.I}
sequential statements
b: [signal (mutex);m[caller):= 01
{m[caller] = OACounter .I}

where Counter.IJ ((mutex l -E m [i])A0jmutex .~.l)

(The original proof outline did not include m [callerJ=O in the pre-condition of
the wait operation , but it is obviously valid , and could be derived formally by
adding another auxiliary variable.)

To veri fy the delay clause , one must show
false + ~false J- start(caller,a) + flnish(caller ,b) .

or F start(caller ,a) 4 finish(caller ,b).

The sequential operations will always terminate, as will b: signal(mutex), so it
is only necessary to show that a: wait(mutex) terminates. From the proof rule
for wait , wait(mutex) must terminate if

(pre(a)Amutex = O) + mute x>O
‘

I 
can be proved. Now

~~~ 

(pre(a) A mutex = O)F (Counter.! A m [caller) = 0 Amutex 0)
I- 3caller ’(m[caller ’]

~
Ohcaller $ caller ’).

Thus some process caller ’ Is in the sequential part of Counter.Add or
Counter.Sub. Eventually caller ’ wil l execu te V(mu tex) , leaving mutex >O.
Thus (pre(a)Amutex O) mutex >O , as requ i red, and the delay clause Is yen -
fled.

—

14

- -

• - •

• ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~ • ,. . -

_ _ _

1’
Example 2. For the dynamically allocated resource (Example 2 in Section 6), the I -

delay clauses are
Alloc.Acquire.De lay : free=empty
Alloc .Release.Delay : false

Acqu i re can not be blocked permanently at wait(mutex) by the reasoning used a-
bove. It can be blocked forever at wait(freeCount) only if the condition

• freeCount=0 remains true. Now the class i nvariant implies
freeCount = size(free)+b-a.

As long as freeCount=0 , no process can add to a, and a must eventually return
to 0. Thus

freeCount=0 -‘ (a=OVfreeCount>O).
Combining this with the invariant yields

free 4 empty -‘ freeCount>0.
Thus
(free= empty -“ free~~empty) F (start(wait(freeCount)) finish(wait(freeCount)))

and
(free= empty -‘ free~ empty) F start(Acquire) -* finish(Acquire),

ending the verification of the delay clause.

To verify that a call to Al l oc.Acquire terminates, one must show that
free = empty -~ free $ empty

in the program which uses Alloc . This can usually be accomplished by showing
that each process that acquires a resource unit will eventually release it. For
example , suppose each parallel process has the form

begjn Si; Alloc.Acquire ; S2; Alloc .Release end
where Sl and S2 do not contain calls to Alloc.Acquire or Al loc .Release. If
S2 can not be blocked ,

finish(i ,Al loc.Acquire) -~
. finish(i ,Alloc .Release)

which impl i es that the set of free units can not remain empty forever. If Si
can not be blocked , the process must terminate , and if all processes have this
form, the entire cobegin statement must terminate.

In many applications , concurrent programs are intended to run forever. Termina-
tion proofs are not relevant for such programs , but it is often important to show
that a process can not be “starved ,” i.e. permanently blocked . For processes with
the following form:

do forever
Li: begin Sl; Alloc.Acquire; S2; Alloc .Release; 12: end ,

freedom from starvation can be expressed by
start(i ,Ll) -

~~ finish(i ,L2) .
By the same reasoning as before, the processes can not starve if Si and S2 can
be proved to terminate.

Example 3. The first solution to the readers and writers probl em (Courtois,et al.,
1971) was unfair to writers in the sense that a stream of readers could keep a
writer permanently locked out of the file. With this implementation , the delay
clauses for the class rwfile include

rwfile.startread .Delay = false
rwfile.startwrite.Delay = max(reading [i]) = 1.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



- - _-- -~~-.—-,•‘---—- -•- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - --— ‘ ~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~~~ —‘~~~~~~~~-~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ —

- Proving that a process calling rwfile.startwrite can not starve requires proving -

that there will always be a time when no readers are using the file. Such a proof
would be impossible for most programs. In general , the use of an unfair schedul-
ing algorithm makes starvation a real possibility .

8. SUMMARY

Any proof method for concurrent programs must account for the many ways that ac-
tions from different processes can be interleaved during execution . The techniques
described in Section 2 handle such interleaving by requiri ng that the assertions
used in proving each process be unaffected by the actions of other processes. The
proof rule for shared classes (Section 5) reduces the number of steps in this in-
terference test; it treats a procedure call as an indivisibl e non-deterministic
assignment statement. Section 4 gives the rules for verifying that partial cor-
rectness is preserved under this transformation . Although information about ter-
minat lon may be lost, it can be recovered froni the delay clause in the procedure
specifications. Treating procedure calls as elementary operations simplifies both
partial-correctness and termination proofs by decreasing the number of distinct
actions to be considered . Proving that a class meets its specifications can in
principl e be quite complex , because of the interference test. In most cases, how-
ever, veri fication is relatively simple because the procedures fall into one of
the following categories.

1. Procedures provide code for mutual exclusion.
2. Procedures do not modify shared data.

- : 3. Procedures operate on different parts of the shared data.
4. Shared data is dynamically allocated to one process at a time.

In these cases the proofs will be straightforward. It ‘is only when procedures
simultaneously operate on the same data that a detailed interference test will be
required . This latter kind of programing is in general so difficult and unrel i-
able that it should be avoided except under extreme efficiency constraints. Most
practical applications of shared data classes fall Into one or more of the classes

-

- above and so are not hard to verify.

The proof techniques developed in this paper are similar in spiri t to the reduc-
tion method (Lipton , 1974, 1976). Reduction also simplifies the proof of parallel
programs by allowing a sequence of actions to be treated as a unit. The two

-

• methods differ In the kinds of sequences that can be grouped together, the means
of proving that a grouping is safe, and the kinds of properties that are preserved.
In reduction , the actions to be combined must have the same effect in all execu-
tions and must be guaranteed to terminate once started. Class procedures, on the
other hand , may represent non-deterministic actions and may fail to complete. Re-
ductions are justifi ed by proving that once a sequence is started , it can not be
blocked, even temporarily. Usually this is easier than proving partial correct-
ness by the interference-free method . Reduction preserves both the val ues corn-
puted by a program and its termination/deadlock properties ; information about pro-
cess starvation may be lost. The class procedure rule preserves the values com-
puted ; termination information is lost, but can be recovered from the delay asser-
tion . Partial correctness, termination , and safety from deadlock or starvation
can be proved with the shared class techniques . Lipton presents reduction pri-
marily as a tool for proving freedom from deadlock, but it could also be used for
partial correctness and termination. Overall , the conditions for applying reduc-

• - tion are quite strict , and the class procedure rule can be used In many programs
where reduction is not safe. The price of this flexibilit y is the potential corn-
plexity In proving that a class meets its speci fications. When both methods ap-
ply, reduction is likely to give an easier proof.

Monitors are a special case of shared classes ; their semantics are such that moni-
tor procedures may always be considered elementary. Sllberschatz , et al., (1977)

16

— .-- ~~~~~~~~~~~~~~~~~~~~~~
- _ _ ‘

~~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .,~~_ -

propose extending concurrent Pascal (Brinch Hansen , 1975) with a new type, the dy-
narnically-managed class. This is another instance in which easier proof rules ap-
ply. A fruitfu l extension of this work would be the application of the general
proof rule to deri ve simpler rules for important special cases.

REFERENCES

Brinch Hansen, P. (1972). Acta Informatica , !~
190.

Brinch Hansen, P. (1973). Operating Systems Principles. (Prentice Hall , Englewood
Cliffs, New Jersey).

Brinch Hansen, P. (1975). IEEE Trans. on Software Eng. , SE-I, No. 2, 199.
Courtois, P. J., Heymans , R., and Parnas, D.L. (1971). Comm. ACM,14, No. 10, 667.
Engeler, E. (1971). Symp. on Semantics of Algori thmi c Languages. (Springer-Verlag

New York).
Guttag, J., Horning, J. and London , R. (1977). Proc. Formal Desc. of Programing

Concepts , (North Holland, Amsterdam).
Hoare, C.A.R. (1969). Comm. ACM, ‘12 , No. 10, 576.
Hoare, C.A.R. (1971). in Engeler, 102.
Hoare, C.A.R. (1974). Corn. ACM, 17, No. 10, 549.
Lamport, L. (1976). Mass. Computer Associates Report CA-76l0-O7l2.
Lamport, 1. (1977). IEEE Trans. on Software Eng., SE-3, No. 2, 125.
Lipton , R. J. (1974). Yale Computer Science Research Report #30.
Lipton , R. J. (1976). Corn. ACM, 18, No. 12, 717.
Owicki , S. and Gnies , B. (1976) Acta Informatica 6, 319.
Owicki , S. (1977) Technical Report 133, Digi tal Systems Lab , Stanf~.,rd.
Silberschatz, A., Kieburtz, R. B., Bernstein, A. J. (1977). IEEE Trans. on Soft-
ware Eng., SE-3, 210.

APPENDIX

In thi s appendix , the class procedure call rule of Section 5 is justified by show-
ing that it can be derived from the other axioms and inference rules.

Theorem. Suppose that C is a class in a program 5, where procedures of C
are called only from the processes of S and not from other classes. Let S’ be
the program obtained from S by replacing each call C.p(~ ;~) of a class proce-dure C.p.(var~~,~) by

begin~~:~~ ;~~:=~ ;body of C.p;i:=~
’ end.

Then if {P}S{Q} can be proved, {P}S’{Q} can also be proved.

Repeated application of this theorem can be used to remove all class calls , be-
cause there is no cycle of classes which call each other. (If S had such a
cycle, {P}S{Q} could not be proved , since all classes cal l ed by C must be
venif led before C).

Before sketching a proof of the theorem, we review the structure of class proce-
dures and define some names for assertions and sets of variables . Recall that the
variabl es of C can be partitioned into data and control variabl es: let C.c
name the set of control variables and C.d the data variables . Each procedure
C.p has the form

begin declarations ; enter ; operate ; exit end ,
where enter and exit are elementary actions on C.c and operate is composed
of elementary actions on C.d. A proof outl ine for C.p has the form

17

- —-——- - -•-- —~ — —‘----- - -- ——‘—------~ -___I_ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

_ _ _ _ _ _ _ c • ~~— - —--- - - —‘~~~~~ --— - -‘ - ~~~~~~~~~~~~~~ —

—
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ — —. _________ - —

C.p.(var x ,~): {p.preAl }
p.enter;
{p.entered}
p.operate;
(p. leaving}
p.exit;
{p.postA U

where the program variables free in p.pre and p.post are from C.d., ~~

‘

, or ~~~~,

and the other assertions may have free variables from C.c. in addition. We will
require p.pre~~3C.c(p.entered), i.e. p.pre is equivalent to p.entered with
respect to variabl es in C.d. Such a choice for p.pre is legitimate for the
proof outline , since p.enter is i ndependent of the variabl es in C.d. Likewise ,
we require 3C.d(p.entered)E 3C.d(P), for each assertion P from p.entered to
p.leaving, i.e. p.entered and P agree on C.c. Again , this is legitimate ,
since p.operate is independent of C.c. Recall that each assertion in the proof
outline , except the first and last, is i nvariant over all actions in class proce-
dures.

In order to prove the theorem, we must show how to derive a proof for P{S’}Q,
given one for P{S}Q. The approach will be to define a tranformation M on the
assertions in a proof of S such that, for each statement T ‘in 5,

{P)T(Q} F (M(P))T’{M(Q)}.
A simpl e choice for M(P) is P itself. This would be adequate for the sequen-
tial proof, but in general it will not pass the interference test. This is be-
cause the grain of action in S is the class procedure, while in S’ it is the
elementary action wi thin the procedure. Even though P was interference-free in
S, it may not be in S’. Thus, M(P) must be a weaker assertion than P itself.
Now if M(pre(S)) implies that the variables accessed by S are in a state con-
sistent with pre(S), executing S will result in a state in which those vari-
ables are consistent with post(S), regardless of the values of other variables.
The syntax of shared classes allows S’ to be partitioned into three kinds of
statements, which use disjoint sets of variables.

{Tl} main program neither C.c nor C.d
{T2} p.enter ,p.exit C.c.
{T3} p.operate C.d

(This is a slight oversimpl i fication - the main program may call a class which is
also called in C, so that its variables are in either C.c or C.d. Step 5 in
the interference test for veri fying C assures that this will do no harm).

For a statement Ti in the main program , M (pre(Tl)) will imply that all non-
class variabl es are in a state consistent wi th pre(Tl), and that if all pro-
cesses were to finish executing class procedures, pre(T1) would hold in the re-
sulting state. The assertion WH(P,Active), defined below , essentially states that
P would hold if all processes left the class. Let

Active = {v: process v is executing a class procedure in[v) );
(Active and in are auxiliary variables in 5’). Then

WH ( P,V )~~Va(( A in[vJ.post DP)
v€V

where a= u (infv).Change uvar parameters of inEvi).
Note that WH(pre(Tl),Active) implies that non-class variables are in a state
consistent with pre (Tl), so Ti executes exactly as it would if pre(Tl) were
true. The only exception is at a procedure call T=C.p(~ ,~ ) in S, which
Is started by p.enter In S’. In the proof of 5, the class call rule was used
to verify T, so

pre(T) F3k(p .pre A Va’(p.postDpost(T))) -1
18



_ _ _  -

-

(The substitution of actual parameters is ignored here, since it is covered by as-
signment statements in 5’. Al so, we can add an auxiliary variabl e to record the
values of k which satisfy the assertion; this makes it possible to remove 3k
from the assertions.)

Now if WH(pre(T),Active ) holds before class entry, then WH(post(T),Active) will
hold after entry, because the process executing enter joins the active set.
WH(post(T),Active) remains true throughout the class body, because all variables
which can be modified by C.p are quantified in WH(post(T),Active). So just be-
fore p.exit, WH(post(T),Active) holds ; also p.leaving holds (this will be
proved shortly). Since p.leaving 

~
- p.post, and p.post .AWH(post(T),Active)

D WH(post(T),Active’~(v}), WH(post(T),Active) must hold after exit. Thus,
letting pre(T’)EWH(pre(T),Active) Is sequentially valid. It is also inter-
ference-free: the quantifiers prevent actions in the class procedures from affect-
ing WH(pre(T),Active), and pre(T) is invariant over actions of other processes
outside C.

For actions in procedure C.p to perform correctly, it is sufficient that
C.p.pre hold on entry. If I is a call to ~~~~~~ in 5, we know that
WH(pre(T)) holds before entry, and pre(T) F p.pre. But we need to know that
p.pre, not just WH(p.pre), holds after p.enter. This can be proved by adding
the assertion A WHB(pre(T),Active,r) to M(pre(T)). WHB(pre(T),Active,r)

r € procedures
essentially states that if pre(T) F r.pre (which is always true when I is a
call to C.r), then r.pre would hold if all procedures which car. block r would
finish.

To express WHB(pre(T),Active ,r), we need to consider the circumstances under
which procedure C.r can be entered. Since r.enter uses on1y control variables ,
C.r can be entered unless some C.q has set the control variables to lock out
C.r. Procedures r and q are said to lock (lock(r,q)) if there is no control
state consistent with both of them being in execution.

The proof of C showed that C.r and C.q are interference-free. Because there
is no ‘interaction between the enter/exit actions and the operate section, it can
be proved that the non-interference comes about in one of two ways

1) lock(q,r): C.q and C.r can not be in execution at the same time
2) -,lock(q,r): the non-interference test involved no knowledge of the

state of control variabl es. Thus for I an action in p.q, if
C.r does not interfere with pre(T) then C.r does not interfere
with 3C.c(pre(T)). In particular, C.r does notinterfere with p.pre.

Returning to the assertion WHB(pre(T),Active,r), if pre(T) (- r.pre, then
WHB(pre(T),r) should guarantee that r.pre would hold if procedure C.r were entered.
Now any procedure C.q which can falsify r.pre must satisfy lock(r.q), so C.r
can not pass r.enter while C.q Is in execution. Now WH(pre(T)) means that
pre(T) would hold if all processes left class procedures. But r.pre would hold
If all procedures which block r were inactive , since the other procedures do not
falsify r.pre. This gives the formula for WHB(pre(T),Active,r):

• WHB(pre(T),Active ,r) EVvariables(pre(T)Dr.pre)DWH(r.pre rBlock),
where rBlock=Actlveu{q: block(r,q5)

- 
The final form of the transformation M(P), for an assertion P in process v, not -

~~

In a class body, is
WH(P,Active) A V r (WHB(P,Active,r)) A C.! A in[v)= nul l A v 4 Active

For an assertion P in the body of C.p in process v, where Q is the post-
condition of the call of C.p, M(P) Is

WH(Q,Active) A V r (WHB(Q,Actlve ,r))A P A In [v]=C.p A v c Active 
____ 

~~~~ -- -- -- --- ~~~ 


- -

I

t

A formal proof that M yields a valid proof for S’ can be accomplished by using
induction on the structure of statements I in S . to show that

{pre(T) }T { post(T) } F { M(pre(T)) }T ’ (M(post(T)) } .
The proof is not given here; it primarily involves manipulation of log i cal formu-
lae. Hopefully, the reader is satisfied with the informal arguments for sequen-
tial validity . Non-interference for WH has been discussed ; non-interference
for WHB is similar. The only difference is that actions in C.q with -,lock(r,q) •

can modify variabl es in r.pre without invalidating r.pre , so- those variables
do not have to be quantified in WHB. Finally, for I in a class procedure,
pre(T) must be invariant over actions in C, and actions outside C can not af-
fect its variables.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~——~~~~~~~~~~~~~ —- • --~~~~~~~~~~~~



-
-

— _.. ...n_ d~~~~~~ f i M . t. ~~. ~ - 
- 

- - _________

S E C U R I T Y  CLASSIF ICAT ION OF THIS PAGE (When Data Ent.r ,d )

REPORT DOCUMENTATION PAGE 8EFORE COMPLETING FOAM
• 1 REPORT N U M B E R  2. GOVT ACCESSION NO. 3. RECIPIENT S CATALOG N U M B E R

Technical Report No. 147
4. TITLE (and Subt itle) 5. TYPE OF REPORT & PERIOD COVERED

Veri fying Concurrent Programs wi th Shared
Data Classes Technical Report

6. PERFORM ING ORG.  R E P O R T  NUMBER

7. AUTHORIsI _________________________________
8. C O N T R A C T  OR G R A N T  NL)MB E Rk~

Susan Owicki
N-000l4-75-C-060l ‘/

9. PERFORMING ORGANIZATION NAME A N D  ADDRESS 10. PROGRAM ELEMEN T . PROj .~~ I ‘.~~~K

Digital Systems Laboratory AREA & UN I T NUMBE~~~.

Stanford Unive rsity ~~~~~~~~~~~

Stanford, CA 94305
______________________________________________________________ 

12. REPORT DATE 13. NO. OF PAGES
11 . CONTROLLING OFF ICE N A M E  AND ADDRESS August 1977 20

15. SECUR ITY CLASS . (of this report )
Joint Servi ces Electroni cs Program

14. MONITORING AGENCY NAME & ADDRESS (if di n, from Controlling Off ice) unclassified

15.. D E C L A S S I F I C A T I O N / D O W N G R A DIN G
SCHEDULE

16. DISTRIBUTION STATEMENT (of thi s report)

Reproduction in whole or in part is permi tted for any purpose of the
U. S. Government

17 . DI STRIBUTION STATEMENT (of the abstr act enter.d in Block 20, if different fro m report)

18. SUPPLEMENTARY NOTES

19. K E Y  W ORDS (Cont i nue on rever ie sid u if necessary and identify by bloc k numb er)

program veri fi cation , program proving, concurrency, parallel programs,
monitors, classes, operating system desi gn , shared classes

2AA B STRACT (Continue on r.~ersa aid. if n.c.slery and identify by block number)

Monitors are a valua ble tool for or gani zi ng opera ti ons on share d data in con-
• current programs. In some cases , however, the mutually exclusive procedure

calls provided by monitors are overly restricti ve . Such applications can be
progranuned using shared classes, which do not enforce mutual exclusion. This

- oaper presents a method of verifying parallel programs containing shared classes.
One fIrst proves that each class procedure performs correctly when executed by
Itself, then shows that simultaneous execution of other cl ass procedures can
not interfere with Its correct operation. Once a class has been verified, calls ~~~~~~~~~~~~~~~

I~I% ~°~~‘ I A ?)
~~~~~~~~~~~~~~~~~~~~~~~wmo~ oc i NOV 15 us OSSOLEIS SECURITY CLASSIFICATION OF THIS PAGE )Wh•n Data Entered )


_
_ _ _ _ _ _ _

unclassified
SECUR ITY CLASSIF ICATION OF THIS PAGE (Wh.n Data L~~tered~
19. K EY WORDS (Continued)

S

20 ABSTRACT (Continued)

I to its procedures may be treated as uninterruptible actions ; this simpl ifies
I the proof of higher-level program components. Proof rules for cl asses and

procedure calls are given in Hoare ’s axiomatic style. Several examples are
veri fied, including two versions of the readers and wri ters problem and a
dynamic resou rce al loca tor.

I

a

I
k j DO1 unclassified

Lt EOITION OP I NOV II IS OI$OLETE SECURITY CLASSIFICATION OF 1P41$ P001 (When Data Entered)

- —,~~~~ — - ~~~~~~~~~~~~~~~~~~~~ -~~~~~~ ‘-- —- ~~~~~~~~~~~~~~~~~~~~~~~ ~~
- ‘-- ~~L1~c, ~~~~~ - .. -

~
-

,- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- -

~~~~
• ‘ ‘

~~ 
‘ •

~~~~~~ 
--

~~~~~~~~~~ 
— - -

-- __. ..qlI ~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

JSEP REPORTS DISTRIBUTION LIST

Department of Defense Commandant
US Army Command and

Director General Staff College
Nationa l Security Agency Attn : Acquisitions, Library Div .
Attn : Dr. T. J. Beahn Fort Leavenworth, KS 66027
Fort George G. Meade , MD 20755

Commander
Defense Documentation Center (12) US Arm y Communication Comma nd
Attn : DDC—TCA (Mrs . V. Caponio) Attn : CC-OPS-PD
Cameron Station Fort Huachuca , AZ 85613
Alexandria , VA 22314

Commander
Assistant Director US Arm y Materials and
Electronics and Computer Sciences Mechanics Research Center
Off ice of Director of Defense Attn : Chief , Materials S d .  Div .

Research and Engineering Watertown , MA 02172
The Pentagon
Washington , D.C. 20315 Commander

— US Army Materiel Development
Defense Advanced Research and Readiness Command
Projects Agency Attn : Technical Lib., Rm. 7S 35

Attn : (Dr. R. Reynolds) 5001 Eisenhower Avenue
1400 Wilson Boulevard Alexandria , VA 22333
Arlington , VA 22209

Commander
US Army Missile R&D Command

Department of the Army Attn : thief, Document Section
Redstone Arsenal , AL 35809

Commandant
US Army Air Defense School Commander
Attn : ATSAD—T—CSM US Army Satellite Communications
Fort Bliss , TX 79916 Agency

Fort Monmouth , NJ 07703
Commander
US Army Armament R&D Command Commander
Attn : DRSAR—RD US Army Security Agency
Dover , NJ 07801 Attn : IARD—T

Arlington Hall Station
Commander Arlington , VA 22212
US Army Ballistics Research Lab.
Attn : DRXRD-BAD Project Manager
Aberdeen Proving Ground ARTADS
Aberdeen , MD 21005 EAI Building

West Long Branch, NJ 07764

NOTE: One (1) copy to each addressee unless otherwise indicated .

1 7/77

I ~~~~~~~~~~~~~ -~~~~~~~- --



~~~~- —~~~--._ ~~~~~~ 
— - ---

~
------—‘—- — a. -- -- --

~~~~~~
-
~~~~~~~~~~~~~~~~

--
~~~~~~~~~~~~~~: L~~~~~~~

I

Comrnander/~)irector Commander
Atmospheric Sciences Lab . (Ea)M) US Army Electronics Command
Attn : DRSEL-BL-DD Attn : DRSEL—TL-E (Dr . J. A.  Kohn)
White Sand s Missile Range , NM 88002 Fort Monmouth , NJ 07703

Commander Commander
US Army Electronics Command US Army Electronics Command
Attn: DRSEL-NL-O Attn: DRSEL-TL-EN

(Dr . H. S. Bennett) (Dr . S. Kroenenberg)
Fort Monmouth , NJ 07703 Fort Monmouth , NJ 07703

Director Commander
TRI-TAC US Army Electronics Command
Attn : Tr-AD (Mrs. Briller) Attn : DRSEL-NL-T (Mr. R. Kulinyi)
Fort Monmouth , NJ 07703 Fort Monmouth, NJ 07703

Commander Commander
US Army Electronics Command US Army Electronics Command
Attn : DRSEL-Cr-L (Dr. R. Buser) Attn : DRSEL-NL—B (Dr. E. Lieblein)
Fort Monmouth , NJ 07703 Fort Monniouth , NJ 07703

Director Commander
Electronic Warfare Lab . (ECOM) US Army Electronics Command
Attn: DRSEL~-WL-MY Attn : DRSEL-TL--MM (Mr . N. Lipetz)
White Sands Missile Range , NM 88002 Fort Monmouth , NJ 07703

Executive Secretary , TAC/JSEP Commander
US Army Research Office US Army Electronics Command
P. 0. Box 12211 Attn : DRSEL-RD-0 (Dr . W. S. McAfee)
Research Triangle Park, NC 27709 Fort Monmouth , NJ 07703

Commander Director
Frankford Arsena l Night Vision Laboratory
Deputy Director Attn : DRSEL-NV-D
Pitman-Drnn Laboratory Fort Belvoir , VA 22060
Philadelphia , PA 19137

Col. Robert Noce
Project Manager Senior Standardization Representative
Ballistic Missile Defense US Army Standardization Group , Canada
Program Office Canad ian Force Headquarters

Attn : DACS—DMP (Mr. A. Gold) Ottawa , Ontario , Canada KIA )1C2
1300 Wilson Boulevard
Arlington , VA 22209 Commander

US Army Electronics Command
Commander Attn : DRSEL-NL-B (Dr . D. C • Pearce)
Harry Diamond Laboratories Fort Monmouth , NJ 07703
Attn : Mr. John E. Rosenberg
2800 Powder Mill Road Commander
Adoiphi , MD 20783 Picatinny Arsenal

Attn: SMUPA-TS-T-S -I~~ 
-

HQDA (DAMA—ABZ-A ) Dover , NJ 07801
Washington, D.C. 20310

-4 -

2

L~~ --



_ _ _  

-- - - - - 
- - .~-.------— ~~—----. : . .~:

I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _. _ _~~~~~~_ _ . _  . — —. — - - -

Dr. Sidney Ross Mr. W. Edwards
Technica l Director AFAI~~rE
SARFA-TD Wright-Patterson AFB , OH 45433
Frankford Arsena l
Philadelphia , PA 19137 Professor R • E • Fontana

Head , Dept . of Electrical Engineering
Commander AFIT/ENE
US Army Electronics Command Wright—Patterson AFB , OH 45433
Attn : DRSEL-NL-RH-1

(Dr. F. Schwering) Dr. Alan Garscadden
Fort Monmouth, NJ 07703 AFAPL/POD

Wright—Patterson AFB , OH 45433
Commander
US Army Electronics Command USAF European Office of
Attn : DRSEL—TL— I Aerospace Research

(Dr. C. G. Thornton) Attn : Major J. Gorrell
Fort Monmouth , NJ 07703 Box 14, FPO, New York 09510

US Army Research Office (3) LTC Richard J. Gowen
Attn : Library Department of Electrical Engineering
P. 0. Box 12211 USAF Academy, 00 80840
Research Triangle Park , NC 27709

Mr. Murray Kesselman (ISCA )
Director Rome Air Development Center
Division of Neuropsychiatry Griffiss AFB, NY 13441
Walter Reed Army Institute

of Research Dr. G. Knausenberger
Washington, D.C. 20012 Air Force Member , TAC

Air Force Office of Scientific.
Commander Research , (AFSC) AFSOR/NE
White Sands Missile Range Boiling Air Force Base , DC 20332
Attn : STEWS-ID—R
White Sands Missile Range , NM 88002 Dr. L. Kravitz

Air Force Member , TAC
Air Force Office of Scientific

Department of the Air Force Research , (AFSC) AFSOR/NE
• Boiling Air Force Base , DC 20332

Mr. Robert Barrett
RADC/ETS Mr. R. D. Larson
Hanscom AFB, MA 01731 AFAI~/DHR

Wright—Patterson AFB , OH 45433
Dr. Carl E. Baum
AFWL (ES) Dr. Richard B. Mack
Kirtland APS, NM 8711Y

Hanscom MB , MA 01731
Dr. E. Champagne
AFAIO/DH Mr. John Mottsmith (MCIT)
Wright-Patterson ATh , OH 45433 HQ ES!) (AFSC)

• Hanscom AFB , MA 01731
Dr. R. P. Dolan
RADC/ETSD Dr • Richard Picard
Hanscom AFE , MA 01731

Hanscom Am , MA 01731

3

-‘

_ _  _ _ _  _ _ _  _ _ _  ~~--—-~~~~~~ --- ----~



_~~~~~~~—~~r: ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
- 

- 
• -

Dr. J. Ryles Naval Research Laboratory
thief Scientist Attn : Code 5210-—J . E. Davey
AFAL/CA 4555 Overlook Avenue , SW
Wright—Patterson Am , OH 45433 Washington, D.C. 20375

Dr. Allan Schell Naval Research Laboratory
RADC/gFE Attn : Code 5460/54l0—-J . R . Davis
Hanscom AFE , MA 01731 4555 Overlook Avenue , SW

Washington , D.C . 20375
Mr. 11. E . Webb , Jr. (ISCP )
Rome Air Development Center Naval Ocean Systems Center
Griffiss Am , NY 13441 Attn : Code 75——W . J. Dej ka

271 Catalina Boulevard
LTC G . Wepfer San Diego , CA 92152
Air Force Office of Scientific
Research , (AFSC) AF~)SR/NP Naval Weapons Center

Boiling Air Force Base , DC 20332 Attn : Code 601--F. C. Essig
China Lake , CA 93555

LTC G. McKemie
Air Force Office of Scientific Naval Research Laboratory
Research , (AFSC) AFOSR/NM Attn : Code 5510——W . L. Faust

Rolling Air Force Base , DC 20332 4555 Overlook Avenue , SW
Washington, D.C. 20375

• Department of the Navy Naval Research Laboratory
Attn : Code 2627——Mrs . D. Folen

Dr. R. S. Ailgaier 4555 Overlook Avenue , SW
Naval Surface Weapons Center Washington, D.C. 20375
Code WR—303
White Oak Dr. Robert R. Possum
Silver Spring, MD 20910 Dean of Research

Naval Postgraduate School
Naval Weapons Center Monterey , CA 93940

• Attn : Code 5515——H . F. Blazek
China Lake , CA 93555 Dr. G. G. Gould

Technica l Director
Dr. H. L. Blood Naval Coastal System Laboratory

• Technical Director Panama City, FL 32401
Nava l Undersea Center
San Diego , CA 95152 Naval Ocean Systems Center

Attn : Code 7203——V . E. Hildebraiid
Naval Research Laboratory 271 Catalina Boulevard
Attn : Code 5200——A . Brodzinsky San Diego , CA 92152
4555 Overlook Avenue, SW
Washington, D.C. 20375 Naval Ocean Systems Center

Attn : Code 753——P. H. Johnson
Naval Research Laboratory 271 Catalina Boulevard
At~n: Code 7701——J . D. Brown San Diego , CA 92152
4555 Overlook Avenue , SW
Washington , D.C. 20375

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • - -



~~~~~~~

- - - • -

Donald E. Kirk Naval Research Laboratory
• Professor and Chairman Underwater Sound Reference Division

Electronic Engineer , SP—304 Technical Library
- 1 

Naval Postgraduate School P. 0. Box 8337
Monterey, CA 93940 Orlando, FL 32806

Naval Air Development Center Naval Surface Weapons Center
Attn : Code 01-—Dr. R. K. Lobb Attn : Technical Library
Johnsville Code DX-21
Warminster , PA 18974 Dahigren , VA 22448

Naval Research Laboratory Naval Surface Weapons Center
Attn : Code 5270—-B . D. McCombe Attn : Technical Library
4555 Overlook Avenue , SW Building 1—330 , Code WX—40
Washington , D.C. 20375 White Oak

Silver Spring , MD 20910
Capt . R. B. Meeks
Naval Sea Systems Command Naval Training Equipment Center
NC #3 Attn : Technical Library
2531 Jefferson Davis Highway Orlando, FL 32813
Arlington, VA 20362

Naval Undersea Center
Dr. H. J. Mueller Attn : Technical Library
Naval Air Systems Command San Diego , CA 92152
Code 310
JP #1 Naval Underwater Systems Center
1411 Jefferson Davis Highway Attn : Technical Library
Arlington, VA 20360 Newport , RI 02840

Dr. J. H. Mills , Jr. Office of Naval Research
Naval Surface Weapons Center Electronic and Solid State
Electronics Systems Department Sciences Program (Code 427)
Code DF 800 North Quincy Street
Dahigren, VA 22448 Arlington, VA 22217

Naval Ocean Systems Center Office of Naval Research
Attn : Code 702-—H. T. Mortimer Mathematics Program (Code 432)
271 Catalina Boulevard 800 North Quincy Street
San Diego , CA 92152 Arlington , VA 22217

Naval Air Development Center Office of Naval Research
Attn : Technical Library Naval Systems Division
Johnsville Code 220/221
Warininster , PA 18974 800 North Quincy Street

Arlington , VA 22217
Naval Ocean Systems Center
Attn : Technical Library Director
271 Catalina Boulevard Office of Naval Research
San Diego , CA 92152 New York Area Office

• 715 Broadway, 5th Floor
New York, NY 10003

I

IL • •. •
~~ •• -- --



- - - ~~~~~~ ~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

-

-1
Office of Naval Research Mr.  L. Suinney
San Francisco Area Office Naval Electronics Systems Command
One Hallidie Plaza -Suite 601 Code 3042, NC #1
San Francisco, CA 94102 2511 Jefferson Davis Highway

Arlington, VA 20360 
. 

- -

Director
Office of Naval Research David W. Taylor

Branch Office Naval Ship Research and
495 Summer Street Development Center
Boston , MA 02210 Code 522.1

Bethesda , MD 20084
Director
Office of Naval Research Naval Research Laboratory

Branch Office Attn : Code 4105 — Dr. S. Teitler
536 South Clark Street 4555 Overlook Avenue , SW
chicago, IL 60605 Washington , D.C. 20375

Director Lt. Oir. John Turner
Off ice of Naval Research NAVMAT 0343
Branch Office CP #5, Room 1044

1030 East Green Street 2211 Jefferson Davis Highway
Pasadena , CA 91101 Arlington, VA 20360 

~1-
Mr. H. R. Riedl Naval Ocean Systems Center
Naval Surface Weapons Center Attn : Code 746 - H. H. Wieder
Code WR—34 271 Catalina Boulevard
White Oak Laboratory San Diego, CA 92152
Silver Spring , MD 20910

Dr. W. A. Von Winkle
Naval Air Development Center Associate Technical Director
Attn : Code 202 — T. J. Shopple for Technology
Johnsville Naval Underwater Systems Center
Warininster , PA 18974 New London, Cl’ 06320

Naval Research Laboratory Dr . Gernot M . R. Winkler •: 
-

Attn : Code 5403 — J. E. Shore Director , Time Service
4555 Overlook Avenue , SW US Naval Observatory
Washington , D.C. 20375 Massachusetts Avenue at

34th Street , NW
A. L. Slafkovsky Washington, D.C. 20390
Scientific Advisor
Headquarters Marine Corps
MC -RD 1 Other Government Agencies
Arlington Annex
Washington , D.C. 20380 Dr. Howard W. Etzel

Deputy Director
Harris B. Stone Division of Materials Research
Off ice of Research , Development , National Science Foundation
Test and Evaluation 1800 G Street

NOP 987 Washington , D.C. 20550
The Pentagon, Room 5D760
Washington D.C. 20350

8

I



.~~~~-~~-‘ ~~~~~~~~~~~~~ ~~~~~~~~~~~ -_- ~~~~~- — ~
——-

~~ z:~~~

• Mr. J. C. French Director of Laboratories
Nat iona l Bureau of Standard s Division of Engineering and
Electronics Technology Division Applied Physics
Washington, D .C. 20234 Harvard University

Pierce Hall
Dr. Jay Harris Cambridge , MA 02138
Program Director
Devices and Waves Program Director

• Nationa l Science Foundation Electronics Research Center
1800 G Street The Univers ity of Texas
Washington, D.C. 20550 Engineering—Science Bldg . 112

Austin, TX 78712
Los Alamos Scientific Laboratory
Attn : Reports Library Director
P .  0. Box 1663 Electronics Research Laboratory
Los Alamos , NM 87544 Univers ity of California

Berkeley, CA 94720
Dr. Dean Mitchell
Program Director Director
Solid—State Physics Electronics Sciences Laboratory
Division of Materials Research University of Southern California
Nationa l Science Foundation Los Angeles , CA 90007
1800 0 Street
Washington , D.C. 20550 Director

Microwave Research Institute
Mr. F. C. Schwenk, RD—T Polytechnic Institute of New York
National Aeronautics and 333 Jay Street

Space Administration Brooklyn , NY 11201
Wash ington, D.C. 20546

Director
M. Zane Thornton Research Laboratory of Electronics
Deputy Director , Institute for Massachusetts Institute of Technology

Computer Sciences and Technology Cambridge , MA 02139
National Bureau of Standards
Washington , D .C. 20234 Director

Stanford Electronics Laboratory
Stanford University

Nongovernment Agencies Stanford , CA 94305

Director Stanford Ginzton Laboratory
Columbia Radiation Laboratory Stanford University
Columbia University Stanford , CA 94305
538 West 120th Street
New York , NY 10027 Officer in Charge

Carderock Laboratory
Director Code 18 — G. H. Gleissner
Coordinated Science Laboratory David Taylor Nava l Ship Research
University of Illinois and Development Center
Urbana , IL 61801 Bethesda , MD 20084

• 
Dr. Roy F. Potter
3868 Talbot Street
San Diego , CA 92106


