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Sect ion I

Summary of Program for

Reporting Period

Program Objectives

To develop practical , real time methods for suporessing

noise which has been acoustically added to speech .

To demonstrate that through the incorporation of the

noise suppression method s , speech can be effectively

analyzed for narrow band digital transmission in practical

operating environments.

Summary of Tasks and Results

Introduction

This semi—annual technical report describes the current

status in five research ar eas for the period 1 Ap ril 1977

through 30 September 1977.

Application of the SABER method for Improved Spectral



p

Analy sis of Noisy Speech—Steven F. Boll.

A method is developed for reducing the effect of’

acoustically added background noise when spectrally

analyzing speech using Linear Prediction. Fundamental to

the method is the result that the spectral magnitude of

speech plus noise can be modeled as the sum of magni tudes of

speech m d  noise. This phase independent model allows for

noise to be suppres sed by subtracting the expected noise

spectrum from the locally averaged speech spectrum . Using

the Spectral Averaging for Bias Estimation and Removal , or

SABER method , a noise reduction and corresponding signal to

noise improvement of 15 dB is realized on both digitally

added white Gaussian noise and acoustically added helicopter

noise.

Current Results on Dual Input Nonstationary Noise

Suppre ssion Using LMS Adaptive Noise Cancellation — Dennis

Pulsipher.

The previous Semi—Annual technical report described the

successful application of the two microphone Widrow— f4off

Least Mean Square (LMS ) algorithm for removing digitally

added noise from speech. The method is now being applied

for removing nonstationary acoustically added noise.

- 2 -
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Preliminary results show that narrow band period ic noise can

be completely eliminated and broad band colored noise can be

reduced by at least 10 d~3. When used in realistic operating

environments , a filter length on the order of 300 ins, is

required for broad band noise reduction.

estimation of the Parameters of an Aut oregress 1ve— t~oving

Average Process in the Present of Noise—William Done.

This task considers an approach to parameter estimation

in the presence of noise which involves the construction of

a new model which explicity accounts for the effects of

noise.

An analysis method is developed for parameter

extraction which is significantly change from the standard

LPC methods used when no noise is present. It is shown that

the addition of noise to an all—pole or autoregressive (AR)

process results in pole— zero or autoregre ssive—moving

average A RMA process. Method s for estimating the parameters

of the A RM A process are considered.

Multirate Signal Processing—H. Ravindra

The aim of this project is to simulate a system on a

digital computer , which can increase or decrease the

samp ling rate of a digitized acoustic signal. These two

i__lw1 I~~~T ’



operations a~’e called Interpolation and Decimation

respectively. This project is the first phase of a- larger

project which involves the simulation of a CVSD system , with

an idea of studv tn~ the problems of tandemin g . Since the

CVSD performance (signal—to—noise ratio) is better at higher

sampling rates , an Interpolation/Decimation scheme is

required to translate the sampling rate from 6.67 KHz to

higher rates.

Simulation of Continuously Variable Slope

Delta Modulation (CVSD ) H. Ravindra

A FORTRAN CVSD simulation was developed and implement ed

using the specification defined by Joe Tieney in Network

Speech Compression note 15 , April 23, 197k. Usinv~ the

Multirate Signal Processing program CVSD coded speech can be

g e n e r a t e d  at  rates of 9.6 , 16 , 20 , and 32 KBPS based on

input speech sampled at 6.67 KHZ.

Future Efforts

SABER Development: The SABER algorithm will be

modified to work in a “stand—alone ” mode. In this

implementation the speech will be windowed and transformed.

The spectral magnitudes will be averaged and the noise bias



removed. Then using the saved phase a time signal will he

regenerated. This implementation will allow for noise

suppression without affecting the bandwidth compression

analyzer. Also intelligibility and quality measurements

using the DRT will be conducted on the processed speech and

compared with scores havin g no noise suppression .

Adaptive Noise Cancelling: Fundement al performance

limits for the method’ s ability to reduce acoustically added

noise in realistic environment will be established.

Performance of the method in nonstationary noise

environments will be demonstrated. Requirements for real

time , practical implementation will be specified.

Parameter Estimation in Noise: Research will continue

towa rds  d e v e l o p m e n t  of e f f e c t i v e  p a r a m e t e r  e x t r a c t i o n

methods with consider noise as a fundamental component in

the modeling process.

I
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A PFLICAT ION OF THE SABER METHOD FOR

IMPROVED SPECTRAl ANALYSIS OF NOISY SPEECH

Steven  F. Boll , Ph. D.
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1
Chapter I

Abstract

A m e t h o d  is d e v e l op e d  for  r e d u c i n g  the  e f f e c t  of

acoustically added background noise when spectrally

analyzing speech using Linear Prediction. Fundamental to

the method is the result that the spectral magnitude of

speech plus noise can be modeled as the sum of magnitudes of

speech and noise. This phase independent model allows for

noise to be suppressed by subtracting the expected noise

spectrum from the locally averaged speech spectrum. Using

the Spectral Averaging for Bias Estimation and Removal , or

SABER method , a noise reduction and corresponding

signal— to—noise improvement of 15dB is realized on both

digitally added white Gaussian noise and acoustically added

helicopter noise.

- 6 -  
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Chapter II

Sumnary

This report describes an integrated noise

suppression—speech analysis method for reducin g the effect

of’ background noise when spectrally analyzing speech using

Linear Prediction. Basically it is shown that additive

noise exhibits Itself as a bias added to the desired speech

spectrum . Through spectral averaging this bias will build

up allowing it to be effectively removed using its expected

value calculated during non— speech activity. The method Is

called SABER , an acronym for Spectral Averagin g for Bias

Estimation and Removal. This chapter summarizes the

Objectives , Assumptions , Approach , and Results for the

method. Detailed developments are provided in subsequent

chapters.

Objective s

1. Develop and integrate a noise suppression algorith m

into the narrow band LPC speech analysis algorithm.

2. Insure that the algorithm ’s effectiveness should be

independent of any specific environment’ s noise

c h a r a c t e r i s t i c s .

3. Require the algorithm to only need a single micr ophone.

~~~~
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~~~. In implementing the algorithm , a minimal impact should

result on existing narrow band systems.

e.g. The same channel parameters should be used , thus

allowing for the new system to be compatible

with other LPC terminals.

5. In the absence of noise the method should generate

synthetic speech equivalent in intelligibility and

quality to standard LPC systems.

6. The method should not only be able to improve spectral

resolution but also improve pitch and voicing

estimation.

7. The method should use standard , well understood

estimation techniques and be implementable in real

time .

Assumptions

1. The background noise is acoustically or electrically

added to the speech.

2. The background noise environment remains locally

stationary to the degree that its spectral magnitude

expected value just prior to speech activity equals its

ex p e c t e d  v a l u e  d u r i n g  speech a c t i v i t y .

3. If the environmen t changes to a new stationary state ,

there exists enough time (on the order of 300 ms ) to

estimate a new background noise spectral magnitude

expected value before speech activity commences.

- 8 -



4 , I f th~ enviro nme nt~ changes to a new stationar y stat ” ,

the ali~orit hm requires a speech activity detector t.o

signal the program that speech has ceased and a new

noise bias can be estimated.

Approach

1. The fundamental property is developed which

demonstrates that the spectral magnitude of the noisy

speech  can be e f f e c t i v e ly  mod e l ed  as the sum of

magnitudes of speech and noise. This result is called

the phase independent model.

2. eased upon the phase independent model , an estimate of

the speech magnitude spectrum is calculated as follows:

a. The n o i sy  speech  m a g n i t u d e  is ave raged  over

stationary vocal tract intervals. Averaging yield s

a low variance bias noise tern added to the speech

spectrum.

b. This sample mean is then removed by subt ractin g the

expected noise spectrum from the averaged speech

spectrum.

c. Negative magnitude frequency components are then

r emoved  to f u r t h e r  i nc r ea se  no i se  r e j e c t i o n .

d. The resultin g magnitude spectrum is then squared

and inverse transformed yielding autocorrelation s .

e.  F r o m  these  a u t o co r r e l a t i o n s  p r e d i c t o r  and

reflection coefficients are calculated usin g the

Levinson ’ s recursion .

- 9 -
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Ps
3. In addition , pitch and voicin g information are

calculated from the noise cancelled spectrum using a

cepstral pitch tracker.

Results

1. The method will suppress white noise up to the limit

allowed through reduction in variance of the sample

mean. As shown In Section VI , the expected value of

noise reduction equals approximate 15dB.

2. it is shown that the variance between actual speech

spectrum and the SABER estimate equals the variance of

the sample mean of the additive noise. This coupled

with the fact that a 15dB reduction in noise energy is

achievable suggested the following experiment for

measuring signal—to—noise improvement. Speech having

an average ShR of 25dB was processed with linear

prediction and compared with speech having a SNR of

10dB and processed with SABER. Both informal listening

tests and spectral comparisons demonstrate that the two

outputs are essentially equivalent. This experiment

sugges t s  t h a t  a 15dB i mp r o v e m e n t  in SNR is possible

using SABER.

3. Preliminary experiments demonstrate that correct pitch

values can be recovered when applying a cepstral pitch

tracker to the noise cancelled SABER spectral estimate.

7 _ _ _  
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C ha p t e r  I I I

Syrmtem Description

I n t r o d u c t ion

This chapter describes the  v a r i o u s  a l g o r i t h m  stages for

implementing the SABER method. Theoretical justification in

support of these procedures is provided in the  su bse q u e n t

chapters.

Data Buffering

Data from the A/D converter is stored in a buffer

system which is similar to standard vocoder designs. The

analysis frame length should be at least twice as large as

the maximum expected pitch period for adequate frequency

resolution [1]. The analysis frames are advanced in time by

overla pping by one—half the window length. As is 3hown in

Appendix A , the one—half overlap is optimum for m inim izin g

the variance of the sample mean of the magnitude spectra .

Spectral Magnitude Calculation
I

The data in each analysis buffer is windowed with a

Hamming window. The buffer length is then doubled by

extendin g with zeros. Padding with zeros is necessary since

the .autocorrelations required for the Levinson ’s recu r s ion

- 11 -
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are obtained by inverse transforming the squared ma gnitude

frequency spectrum. Therefore to prevent temporal alia sing

due  to t h e  c i r c u l a r c o n v o l u t i o n a l  p r o p e r t y  of the DFT , the

zero ex tension is necessary. Following augmentation the DFT

of the buffer is taken and the spectral magnitude is

computed:

= (4(k) + 4(k))~~
2 k = 0, 1 , ..., L -

w h e r e

XR ( k )  + jX 1(k) DFT(x(j)}

M a g n i t u d e  A v e r a g i n g

As is shown in Chapter VI , the variance of the noise

spectral estimate is reduced by averaging over as many

spectral magnitude sets as possible. However the

non— stationarity of the speech limits the total time

Interval available for local averaging. The number of

averages is limited by the number of analysis windows which

can be fit into the stationary speech time interval. If’

only reflection coefficients are to be estimated , a 128

point analysis can be used , resulting in a five set average

over a 381i point stationary speech time interval. If both

reflection coefficients and pitch are to be estimated from

- 12 -
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the same analys is window , t hen  a 256 po in t  w in dow m u s t  be

used , resulting in two set average.

Noise Bias E s t i m a t ion

The SABER method reauires an estimate of the expectA d

value of’ the noise magnitude spectrum ,uN
:

= E {IN I }

Th is est imat e is ob ta ine d b y a v e r a g ing the  signal  m a gn i tu d e

spectrum IX I during non-speech activity. Estimating U
N 

in

t h i s  m a n n e r  p lac~es certain constraints when implementing the

met hod. If the noise remains stationary during the

s u b s eq u e n t  speech a c t i v i ty ,  then  an i n i t i a l  s t a r t up  or

cal ib r a t ion per iod of ’ no ise—only signal is required. During

this period (on the order of a third of a second) an

estimate of UN 
can be computed. If the noise environment

is nonstationary then a new estimate of UN m u s t  be

calculated prior to bias removal each time the noise

spec t r u m  c h a n g e s .  Since the estimate is computed using the

n o i s e — o n l y  s i gn a l  d u r i n g  n o n — s p e e c h  a c t i v i t y ,  a voi ce s w i t c h

4 is required. When the voice switch is off an ave raged  noise

spectrum can be recomputed. If the  no i se  m a g n i t u d e  s p e c t r u m

is changing faster than estimate of it can be computed , then

time averaging to estimate UN 
cannot be used. Likewise if

the expected value of the noise spectrum changes after an

estimate of it has been computed , then noise reduction

-13 -
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through bias removal will be less effective or even harmful.

Thus  in s u m m a r y ,  an estimate of the expected noise

spectrum , UN I is calculated by averaging the noise signal

taken during non-speech activity. This approach not only

requires a speech activity, detector and a short segment of

noise only signal prior to speech activity, but requires

that the noise spectrum remain slowly varying with respect

to the bias estimation.

Noise Bias Removal

T he SABER spe c t r a l  est imate is obtained by

subtracting the expected noise magnitude spectrum UN f r o m

the avera ged magnitude signal spectrum lx i . Thus:

SA(k) tx( k)( - UN
(k)  k = 0, 1 , ..., I - 1 V

Where L:DFT buffer length.

After subtracting, the differenced values having

n e g a t i v e  m a g n i t u d e s  are  set to some sma l l  p o s i t i v e  v a l u e

r e l a t i v e  to the  ave rage  e n e r g y .  These  n e g a t i v e  differences

repre sent frequencies where the sum of speech plus local

noise is less than the expected noise. As is shown in

Chapter VI , replacing negative differences with small

p o s i t i v e  v a l u e s , r e s u l t s  in an s m a l l e r  s p e c t r a l

approximation error.

V 
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I t  was dec id ed t h a t  when  sp eech ac t iv i t y is p r e s e n t

that g
~ 

is used and when opeech activity is absent that

is used. This choice has the desirable effect of amplifying

t he  sy n t h e s i s  o u t p u t  d u r i n g  spee ch  ac t iv ity  an d a t t e n u a t in g

the synthesis output during non— speech activity, since

w ill  be gr e a t e r  t h a n  g . The procedure for determining
S

wh e t h e r  to use  g
~ 

or g
5 

was to exam ine the  ener gy chan ge

before and after noise removal. Let H equal the amount of

ener gy reduction in dE . Then:

9
R = 20 log 10 

—
~~~g
S

Dur ing the non— speech noise bias estimation time

period , values of R taken each analysis frame are averaged

together giving an average estimate of noise power reduction

~~~~. As Is shown In Section VI , this average value for wh i te , 
V

Gaussian noise is abou t  15dB. Speech activity is detected

by comparing the current value of H with L If the current

value of H is within 5dB of the average , the g5 is picked as

the gain term. If the current value is smaller than the

average by 5dB or more , then is used. Again the

reasoning behind this procedure is that in the absence of

speech activity the power reduction should be largest and

near its expected value. With speech present , a larger

6 -  
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pe r c e n t a ge of t he s p e c t r um is now speech , t hus su b t r a c t in g

off the no ise bias will only slightly reduce the total

power. Thus g5 ~ g,~and R<<fl.

There a r e  di f f ic u l t ies w i t h  th is de t e c t ion p roce d ure

howeve r .  If the  s i g n a l — t o — n o i s e  r a t i o  is low R < < R  even

during speech activity. This results in t he wrong  ga in t e r m

being chosen and the speech synthesis is attentuated rather

than amplified. Likewise at the other extreme if the noise

reduction value for  the  c u r r e n t  f r a m e  dro ps 5dB below the

average during non— speech activity, the synthesis will be

amplified. The 5dB value was an empirically determined

threshold.

Pitch Detection

When the noise contains periodic components in the

frequency range used for pitch detection , the pItch tracker

can track the noise rather than the pitch. If these

harmonics are first removed by the SABER method , then a

pitch tracker which uses spectral magnitude information can

be used to extract the actual pitch period . One such pitch

detection scheme is the cepstral pitch tracker [3 ]  A fter

computing SA the log is taken followed by a DFT. During

voiced speech , the real cepatrum will exhibit a spike at a

distance from the origin equal to the pitch period. If

pitch detection is to be done based on the SABER output

t spectrum , then a sufficiently long analys is time window is



required. A 256 point analysis window based on a 6.67 KHz

sampling rate was used for cepstral pitch tracking.

1
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Chapter lV

Results

I n t r o du ct ion

T hi s cha p t e r  p r e s e n t s  the  r e s u l t s  of t h r e e  ex per im e n t s

designed to demonstrate the improvements in noise deduction

an d spectral resolution solving from the application of the

SABER al~ orIthrn to speech analysis. Two types of’ noisy

speech were used. In experiments one and two Gaussian noise

was digitally added to clean text to produce two data bases

having specified signal— to—noise ratios of 10dB and 25dB.

These controlled data bases allowed for access to both the

clean and noisy speech. In experiment three speech recorded

In a helicopter environment with acoustically added noise

was used ik]. Synthetic speech was generated from each data

base. Results consist of synthesis time waveforms and

corresponding all—pole spectra when standard linear

prediction analysis and SABER analysis are used.

Experiment on 10dB SNR Data Base

To determine the improvement in spectral resolution

obtainable from the SABER algorithm , a controlled data base

was constructed. Broad band Gaussian noise was dig itized

from a standard analog noise generator. Clean text was 
V

recorded in an acoustically shielded sound proof room hav in r~

-19 -
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an anb~ ent noise level of 27dB . Both speech and noise were

ffltered as 3 .2KHz and sampled at 6.67KHz. The average

signal ~nerp y of each file was measured [~~] and the noise

was scaled and added to the speech to give an average

signal— to— noise ratio of 10dB. The file energy calculation

was taken over both speech and silent Intervals. The

vocoder analysis—s ynthesis program was modified to process

either the clean or noisy speech. Three types of synthetic

speech were generated: LPC on clean speech (L2C on S); LPC

on the noisy speech (LPC on S+N); and SABER on the noisy

speech (SABER on S+N). Note in the absence of noise , as

shown In C ha p t e r  VI , SABER r e d u c e s  to a s t a n d a r d LPC

analysis , a nd t h e r e f o r e  S A B E R  on c le a n  sp eech was no t

generated.

T he f ir st set of f ig u r e s , Figure IV.1 A through D show

synthetic waveforms and their all—pole spectra analyzed from

the vowel in the word “dogs ”. Part B shows that seco nd and

third f o r m a n t s  a re  c l e a r l y  r e s o l v e d  u si n g S A B E R , while

co nsIderably obscured using LPC. However , pa r t  D shows t h a t

com plete noise cancellation was not achieved. This was to

be expected since the clean speech had a SNR in excess of’

10+15 or 25dB.

Figures IV.2 A through D show synthetic waveforms and

their all—pole spectra analyzed from the fricative ishi in

“shade ” . Again better but not perfect spectral resolution

is achieved by the SABER algorithm over standard LPC.
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Comparisons Between 10dB and 25dB SNR

A fun lament a l que~’tion when evaluatin g the amount of

noi se rejection is: “A fter processing , how much improvement
V 

wa s there in the signal— to—noise ratio?” Since signal and

no ise ene rgi es c a n n o t  be s e p a r a t e d  an d m e a s u r e d  a f t e r

processing , it is not possible to measure an SNR improvem ent

directly. However the followIng indirect method can be

use d . I f  as is sh own in Cha p t e r  VI , the  a m o u n t  of no ise

rejection Is 15dB for white Gaussian noise , then synthet ic

speech generated by the SABER algorithm using the 10dB SNR

data base should sound approximately equal to the synthetic

speech generated by LPC using the 25dB SNR data base.

Suc h an experiment was conducted and the results are

given in Figure IV.3 A and B. Examining Figure B shows that

the all— pole spectra for LPC at 25dB has less overall

energy. This is to be expected since less noise was added

to the clean text to arrive at a 25dB SNR . Other than the

gain diffe rence , the spectra are approximately equal.

Informal listening tests supported the results shown here ,

In that LPC synthesis with a 25dB input SNR was essentially

indistinguishable to within a gain factor from SABER

synthesis w ith a 10 dB input.

I
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Exper iments on helicopter Speech

An au di o t es t  ta pe u sed in t he  N a t ional  Secur i ty

Agency ’s c o n s o r t i um t e s t in g , conta ining speech recorded In a

helicopter environment was processed. The speech was

filtered at 3.2KHz and sampled at 6.67KHz. Synthesized

speech was generated using LPC and using SABER. This

exper iment represents true field conditions since the noise

an d speech are acoustically added at the microphone , Figure

IV.~4 A and B show time and frequency functions for LPC and

SABER syntheses during noise only input. Figure A shows

synthet ic waveforms using the same vertical scale. The

avera ge energy difference was measured at 15.1dB . Figure B

shows the all-pole spectra. The periodic harmonics at

mult iples of 750Hz are clearly evident in LPC spectrum

(upper trace) with the second and fourth harmonics dominant

at about 92dB. The all—pole spectrum corresponding to the

SABER spectral estimate is given in the lower trace.

F igure IV.5 A through D show time—f requency pairs for

the vowel lu in “squirrels ” an d the fricative ish t in

“bushy ” . Note in Figure B that the SABER spectral estimate

clearly separates the low first and second torments as well

as shapening the third formant at about 1800 Hz. Also the

noise peak at 3KHz present in the LPC spectrum is now absent

in the SABEY~ spectrum . 
V
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Chapter V

Analys is of the Phase Independent Model

I n t r o d u c t ion

Ba si c to  t h e  un d e r s t a n di n g of the  SABER al gor it hm is

t he r e s u Lt  t h a t  ma gn i t u d e  of t h e  no isy speech spe c t r u m  can

be accurately approximated by the sum of the magnitudes of

speech and noise. This chapter describes this phase

independent model and develops an error analysis for judging

the effect iveness of the approximation. For notational

convenience upper case symbols will denote FourIer

transforms and lower case symbols their inverse transforms.

Thur

X = X(e~~) 
= ~~ x(k)e~~~

and

x = x(k) = .
~
- J X(e’1~)e 

3
~~dt~
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A dditive Noise Model and Zero Phase Approximation

A s s u m e  t hat  a no ise signal  n , has been a dd ed to a

speech signal s , w ith their sum denoted as x . Then

x = s + n

Tak ing t h e Four ier t r a n s f o r m  g ives

X = S + N

The des ired speech spectral magnitude , 
~~ 

is given by

1S t = ix - NI

with  its squared magnitude

1s t 2 = SS~ = + IN 1
2 

- 2iX lI N Icos( O
~ 

— ON)

where * denotes complex conjugate , O~ the phase of X and

the phase of N.

The zero phase approx imation S~ to ISI is iiven by

S2 = IX I - IN i

with Its squared ma gnitud e lS~l 2 
= 1X i

2 
+ i N l 2 - 2 1X 1 t N t

-24 -
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Error Analysis of Zero Phase Approximation

The primary consideration of the speech analyzer is an

accurate est imation of the squared magnitude function.

Taking the difference D between Is!2 and  
~~~~ 

gives

D = 1S 1 2 - Is
~l
2 

= 2 IX II N I (l - cOS(Ox - O
N
))

or

D= ~~~XN*~~ N X + 2 l X II N I

A form for D which explicitly shows Its relation to S

an d N can be developed by noting that D can be written in

the form of a perfect square.

Thus

U = _ [~x~~~”~ - (NX*)hh#2]2

or

D = ~[,fs+N ) N * 
- v4S+N)*N ]2

After some man ipulation D can be written In the following

form wh ich ex~~1icit1y shows its dependence on the

- 2 5 -
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- 
V

signal— to— noise ratio IS/NI

o = ~INI 2[/tS/ NIe s
~~ + l ~~/

’
~S/N Ie N 5 + 1]

In this unfortunately complicated form , t he zero  ph ase

a pp r o x I m a t ion e r r o r  D , can be analyzed as a function of the

signal—to—noise ratio.

Extreme Error Values

Aga in remember that all symbols are functions of radian

frequency w .  The error D w ill of course by zero whenever S

an d or N are zero.

A worse  case con di t ion , that is when D is maxImum , will

occur when

- °s = ± n/2

Then

D = - ,N,2[/l - its/NT - ~~~~~+ .ltS/NI ]2

-26 - 
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~r after squaring

= 2tN ,
2
[/iS/N~~~+ i  -

For

IS/NI < < 1  D~~ 0

For
IS/N I >> 1 U ~ 2 IN II S I

The relative error is

0/1st 2 = 2 IN I / IS I << 1

F in a l l y ,  for JS~ ~ J N f 
V

D ~i 2 IN 1 2[/i - i]

This situation is depicted graphically as

-27 
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Here the relative error is given by

D/ISI
2 

~~ 2[/2
’ - i] ~ -6dB.

Summary

This chapter investigated the spectral error Induced by

us ing a zero phase approximation to the ma gni tude spectrum.

T he w o r s e  ca se con di t ion o c c u r s  w hen t h e  ma gn i t u des of S a nd

N are equal and out of phase by ninety degrees. For other

si t u a t ions t he e rror  was ne gl igib le or s m a l l  com par ed to t he

speech spectrum. Informal listening tests judged the LPC

synthesis based upon the zero phase power spectrum to be

essent ia l l y  in di st ingu isha b le f rom LPC s y n t h e s is base d up on

the actual power spectrum. Althou gh differences can be

detected , t h ey become inconse q u e n t ial com pare d to t h e no i se

cancellation capabilities provided by using the zero phase

approximation . The application of the zero p~ ase model to

no ise suppression is developed in the next chapter.

~~~~~~~~~~~~~~
L. 

V 
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Chapter VI

Analysis and Reduction of Estimation

Error using the SABER Method

I n t r o d u c t ion

UsIn g the result of Section V that the magnitude of

speech plus noise can be accurately approximated by the sum

o f t he z ero ph a s e  es t im a t e  of sp eech an d no ise m agn it ud e ,

the followir .g linear model is implied:

lx i = S~ + IN I

wh ere

S~ zero phase approximation to the magnitude of the

Fo ur ie r t r a n s f o rm of t h e w in d o w e d  s p eech , s(k)

Ma gnitude of the FourIer Transform of the Additive

w indowed noise n(k).

and

lx i = Magnitude of the spectrum of s(k) + n(k)

Again upper case symbols denote Fourier transforms of lower

case symbols. This model shows that the noise spectrum , N I

enters in as a spectral bias added to the desired speech

spectrum , SZ. The more accurate this bias can be estimated ,

the more accurate w ill be the resulting estimated spectrum

obtained by subtracting the bias estimator from the noisy

speech magnitude , l x i .  This section describes an approach

- 
________ 

- 29 - 

_~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-



to bias estimation and removal using short time averaging.

The Non-Avera ged SABER Estimate

Assume that the additive noise n(k) is stationary and

thus that the expected value of the noise magnitude :

E {IN I } =

is constant over time . (In practice 
~‘ ri is estim atcd by a

time average taken during non— speech activity.)

A spectral estimate SA of S~ can be defined as

SA lx i - 

~ 
V

The error r in approxinatin g Sj by SA ~~

= SA 
- = - 

~N 
- J x~ + IN I

or

C t N t  -

Using this estimate the value of the  er r o r  e q u a l s  t he

difference between the magnitude of the noise spectrum and

its expected value.

- 30 -
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Re du ct ion in E r r o r  T h r o u gh A v e r a gi n g :

T he SABER S p e c t r a l  Est imate

A straight forward method for reducing the spectral

error ~ is through averaging. Av eraging magnitude spectra

x (i)j taken from possibly overl apping time window s gives

k 1 k
lx i = 

~ i~1 
Ix( i) l = 

~ ~ S~(i) + IN( fll

or

Tii =~z + TNi

T he S A B E R  spe c t r a l  est imate  i s g iven by :

SA 
= -

The spectral error c in approximati ng by is

~~~
SA SZ IX J I1N~~~Ix I ÷ l,~,

or

t lNl u~4

I

-3 1 -
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As suming first that the zero phase approximation S~ ~~

an accurate approximation of Is I as argued in Chapter V and

secon d that during the total time segment over which the

avera ges are taken that the speech spectra S
z
(i) rema in

essentially constant , t h en

~~~~~~~~ 
V

T hus t he a v e r ag e d sp ec t ra l ma gn i tu de e r ro r

represents

~= 1~~- LJ~~~S~ IS,

Assum ing stationarity this shows that as more

time—averaged spectra are used , the  sam p le mean  IFif w i ll

conver ge to U
N 

and w ill converge to S
~ 

. Unfortunately

the nonstationarity of the speech limits the time interval

over wh ich averages can be taken. Thus the error can only

be reduced to the extent to which the sample mean IN ! has

c o n v e r ged to the  mean

In terms of mean squared error , the var iance of the

e r r o r

= var(’~) = (((SA 
- ~~)2)

equaL~- ‘he vari ance o’ the sample mean Of’ the ma gnitude

-32 -
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noise spectrum:

= VAR( I N I )  = E f (IN I -

IN I

The error will be minimized to the same extent that the

variance of the sample mean has been minimized.

In summary, the no ise— suppression , signal  est imat ion

problem , us ing the zero phase approximation linear model ,

can be reduced to a spectral estimation problem.

Unfortunately due to the nonstationarity of’ the speech , only

a limited number of spectral time averages can be used to

m inimize the variance of the sample mean. Thus complete

no ise cancellation is not possible. At this point

justification for the name SABER is apparent. The noise

spectrum shows up as a bias on the desired signal. To

remove the bias , avera ges are taken for as long as the

un derlying speech remains stationary. Averaging will reduce

t he var iance  of the local noise bias. The bias can be

partially removed by subtracting off the expected value of

no ise bias. The smaller the variance , the better the noise

red uction.

_ _ _ _ _ _  
______ _ _ _ _ _ _  

_ _ _ _ _
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Expected Value of Noise Reduction

~h~~n the additive noise n(k) is zero mean , white , and

Gaussian , an est im a te  of the  ex pec te d v a l u e  of no ise

reduction can be computed. In turn th -~ amount of noise

re d uct ion can be equ a t e d to th e va ri an ce of t h e e r ro r

bet we en t h e S A B E R  est im a t e , an d the speech spectrum.

Specifically, from the last chapter let

~~~ = - = -

Def ine o~ as the  var iance  or ave ra ge power of the

additive noise. Then

(72 = E{n2(k)}

Us ing the resilts of Appendix B , the expected value of the

no ise ma gn i t ude , MN , havin g a x distribution of order two

will equal:

E{ J N J ) ~f~1” I analysis window lenqth

The square d noise spectral magnitu de , hav ing a

distribution of order 2 will equal

E~lN l 2} =

- 34 -
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Theref - re ‘ ‘~~~ varIan~~e of the magnit u de wil l equal

F I (i N l - 1I N)~~ 
FJ l N l

2
l - (1 -

W ithout averaging , by sim p ly su b t r a c t ing t he m ean f r o m

the ma gnitude spectrum , the ex pected value of’ no i se
reduction will equal 6.66dB:

10 log 1 
E {1 N1 2} 

= 6.68 dB
- M N ) }

Further Reduction in Variance Through Averaging

The noise variance can be reduced by averaging

ma gnitude spectra taken from possibly overlapping time

windows. This technique has been carefully investigated by

Welch (5). A summary of his variance analysis is described

in Appendix A. Again because of the nonstationarity of the

speech spectra , only a limited time interval is available

for averaging. Using Welch ’s formulation , the variance is

minimized by firat specifying the type and length of window

required , second the time interval available for averaging, 
V

and then averaging ma gnitude spectra based upon windowed

- 35 -
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data overlapped by one—half a window length. For this

implementation , a 19.2 ms Hamming window was used with a

time interval of 57.6 me- . This allowed for a total of five

w indows to be used. The variance of the sample mean after

averaging equaled

- UN)
2} 0.275 Var {IN~ = (fl.275)(.21 )~

The expected value of noise reduu.~tion is

10 log
~~ 2 = 12.4 dB

(0. 275) (0. 21 )~~L

Discussion

The choice of window length and averaging interval

values represent a compromise in conflicting requirements.

For acceptable spectral resolution a window length greater

than twice the expected largest pitch period is required

(1]. For minimum variance a large number of windows are

required for averaging. Finally, for acceptable time

resolution a narrow analysis interval is required. Using a

Ham ming window the effective averaging time interval reduces

from 57.6 ma to approximately 39 ma due to the window edge

attenuation . A 19.2 ma window length has been found to

result in acceptable frequency resolution [6). Thus to

-36 -
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achieve better noise reduction some compromise in both time

and frequency resolution was necessary.

Negative Magnitude Stripping

An additional technique for reducing the spectral error

is to replace 3A with zero when ever the difference goes

negative. During non— speech activity this will on the

average reduce the result ing noise power in half for an

addi t ional 3dB improvement. When speech is p r e sen t  and

is larger then ~~ the  spec t r a l  e r ror  between S~ and 3A will

be larger than if zero is used for the estimate. That is

for: -

< MN

have

> 0

(Sz - ~A~~
> (Sz - 0)2

k 
_ __ _ _ _  
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Summary

This section developed an equality between the error in

the SABER spectral estimate and the variance of the sample

mean of the additive noise spectral magnitude. For additive

noise which is white , zero mean , and Gaussian , the expected

value of noise reduction resulting from averaging,

su btracting off the mean and zeroing out negative difference -

components was approximately 15dB. -



Ap p endix A

Var iance Reduction Through Averaging Magnitude Spectra

introduction

It was shown in Chapters V and VI that the noise

spectrum shows up as a bias on the desired signal. To

remove -the bias , averages are taken for as long as the

underlying speech remains stationary. Averaging will reduce

the variance of the local noise bias. The bias can be

partially removed by subtracting off the expected value of

noise bias. The smaller the variance , the better the noise

reduct ion . Due to the nonstationarity of the speech only a

limited time interval is available for averaging. This

ap pendix reviews an analysis published by Welch [5] for 
-

determining the variance reduction possible as a function of

avera ging interval , M , window length , L , w in d ow shape

w (j), j = 0,1 , .. ., L — 1 , and overlap interval D.

Us ing the results of this analysis the amount of

variance reduction was calculated.

Data Segmentation

Define x(j) j 0, 1 ,..., M — 1 to be samples of a

second order , stationary stochastic sequence. Data segments

possibly overlapping of length L are defined with

- 39 -
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starting points D units apart. Thus define

x 1(j) x(j)

x 2(j) :x(j + D) j 0 , 1 , ..., L — 1

X K
(j )  x ( j + ( K — 1 )D )

A s s u m e  t here a re  K se gm e n t s  cover in g t h e  en t ire a v e r a gi n g

interval :

(K - l ) D + L = M

Magnitude Spectrum Calculation and Averaging

Using ~ data window , w(j) (for t h i s  analysis a Hamming

w i n d ow was  se l ec t e d) , t he w in dowe d da ta  se qu e n c e s  a re

forme d :

fx (j)w(j) }, . . . {x
k
(J)w( j) }

For each windowed data sequence , the disc re te  Four ier

transform is calculated:

1-1 -j ?JL ~Xk(t) ~ 
xk (i)w(i)e 

I 0, 1 , . .. ,  t. - 1
1=0

-40 -
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f o l l o w e d b y the  magn i t ude  sp e c t r u m :

iX k (Q )I = (Re2{Xk(9.)) +

Averaging the spectral estimates gives

l x ( 2 , ) i  = 

~ k~1 
lX k(i)I

Var iance of 1X 1

Def ine the  covar ianoe of ~‘X 1 as

d(J) cov {JX k(i)I~ iX k+j(Q)I~

Then it can be shown that

var {IX (i) I ) = ~f(o) + 2 ~ ~jJ~ d(J))

~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~
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F u r t her , defining the correlation of f X~ as

p(j) correlation {IX k(.Q)I , IX k+j(~
)I} = 

~~~~

-

~~~~

-

t hen  —

var{xk(i)} I K-i .

var{lx (~)l) = - 

K [i 
+ 2~~ 

~~~~~~~ 
P(fl}

A s s u m ing th a t  the  spe c t r u m of x ( j) is f lat a nd

Gaussian , the correlation p(j ) of I X I is given by

1-1 L-1
p (j) = 

~ w( k )w( k + j14/ ~ w2(k)
k=0 k=0

M in imum Var iance D e t e r m ina t ion

For a fixed averaging interval , M , window length , L ,

and window shape w(j), the optimal spacing D can be

calculate d to minimize the expres8~~ofl :

- 42 -
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[1 + 2~~~

Note that p (j) is greater than or equal to zero. For

I (no ov erlap) p(j) = 0 and the variance will reduce as

1/K. By overlapping segments , K in c r e a s e s  at th e ex p ens e of

an increasing p(j). After some calculation the minimum as

suggested by Welch , was found to occur for D = L / 2 , that i s ,

ove rlap by one—half a window length.

When us ing the following parameters imposed by the

speech analysis constraints:

M = 3 8 4

L = 1 28

D = 6~

‘ (= 5

the resulting value for F was calculated to be 0.275.
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Appendix B

C a l c u l a t ion of t he Mean an d Var ianc e

I n t r o d u c t ion

This appendix develops estimates for the mean and variance

of the ma gni tu de spectrum for wh i te , zero—mean Gaussian

noise. Of course , th is de v e l o p m e n t  is not  or igi n a l , w i th

this version taken in part from Ingebretsen [7].

Mean and Var iance of t he Four ier Trans form

Let x(k) be a zero mean , wh ite Gaussian sequence with

X~ e
JW ) its Fourier transform. Then

X(c 3’~) XR (e
~
’
~
) + jX

1 (e JW )

where X R an d are the real and imaginary parts of X .

X
R

an d X
1 

w ill be normal since x(k) is normal. In addition

E(xR} = E{X
J
} = 0

It can be shown (8) that

V 
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COv{X
R(e

J
~

1 ), xR(e )} = COV(X
1

(e~ 1 ) X j(e
3
~
2)} 0

fo r  
~

-
~i ~

Ju1 3w
Thus the  v e c t o r  pa irs (X

R
(e ) ,  X R (e 

2 ) )  a n d
Jw~ 3w2(X

1
(e ) ,  X1 

(e ) )  are independent since X is Gaussian .

Likewise , an d X
1 

are independent of each other.

Using the indapendence of x(k), the var iance of t he

real an d imag in a r y  pa r t  of X ( e Ju) is given by

var{X
R

(e
~~
)} =

or

varfxR
(e ) } = o2~cos 2(kw)

where

E{x2(k)} = 
2

Assum ing the transform is taken using a window of - . - 

-

- 

length L s:mples the n 

- 

- - .: V . 

~~~~~~~~~~~ 

~~~~~~~~~



V

~cos2(kw) = + I SIN [w

E v a l uat in g t h e  t r a n s f o r m  at  eq u a l l y  space d f r e q u e n c ies

results in:

2
var{xR(e’~

)) = = k = 0, i , . . .,  i - 1.

Likewise

var(X
1

(e3” )}= L
2 

= ~~-iL k 0, 1 , .. I. - 1.

1
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Ex pe c t e d V a l u e  of Ma gn i tu de a nd

Squared Magnitude of the Fourier Transform

The f r e q u e n c y  magn i t u d e  is e q u a l  to the  s q u a r e  r oot  of

the sum of squares of two independent , normal random

var iables. It thus has a x d i s t r i b u t i o n :

X I = (x~ + x~)
1”2 = V~~V~~V1L k = 0, 1 , . .  , I - 1

The expected value of l x i  is found by evaluating the

integral:

E { I X I }  = x2e
2
~~

2
dx

Evaluating gives

E{IX(e~
”)I) = = k = 0, 1, ..., I - I

- 47 -



The s q uare d ma gni tu de w ill have a x distribution. Its

expected value is given by

2
E{ iX i 2) = J~ I ye~~’L~ dy

La ~0

Evaluating gives:

E(fX (e~1f 2J = i~
2 w k = 0, i , . . .,  i - 1

This last expression can also be obtained from

Parseval’ s relation for the Discrete Fourier Transform:

~~x (k) ~~~~~~~ 
jX(i)~k=0

_  
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I N T R O D U C T I O N

1. The precedin g semi— annual technical report

described a du~~1 input noise suppression technique for audio

signa ls . it also described several experiments performed

successfully using synthetic data , da ta  w hi ch was fo rce d to

comply with all of the underlying assumptions. The results

of these experiments were quite encouraging.

Since that time the research has continued to apply

this technique to actual acoustically recorded noisy speech.

A br ief descr ip t ion of r e c e n t  r e s u l t s  and  c o n c l u s ions

com prise this section.

OBSERVATIONS

As work w ith acoustically recorded data with high level

broad—band noise has progressed it has becone increasingly

apparent that a factor of major importance is the length of

the required filter. A look at the impulse responses of

typical hard—walled rooms indicates that the duration of

significant energy frequently lasts half a second or more.

(Figure la). Since in practice the source of the noise n is

separated from both the location of the reference noise

pick— up and the noisy speech signal pick— up, it is apparent

that the situation is not completely described by a single

room impulse response.

-51 -
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Let be the response of the room from the noise

source to the no isy speech signal pick— up position and G 2 be

the room ’s response from the noise source to the reference

noise pick up position. Then the filter to be estimated is

ne ither G1 no r G 2 but G2 G 1. (Figure 2). This filter may

be as long as the sum of the lengths of G
~ 

an d G 2(less one

point). (Figure ib)

T hi s a f f e c t s  sig ni f icant ly  the est im at ion of the no ise

sam ples u~

The optimal noise estimate Uj is

* 
.= 

*
u~ = ~ h ( j — i ) u ( i )

in actual practice , though , t h e f il t e r  est im a t e d is

., . , .  .
~~ 

I.
U.  L ~~~ )

‘~ i=n -

The error in this estimate is due to two factors , the

first is the difference caused by a finite length filter.

This error can be reduced by making the filter longer. The

~-ccond factor is the error in filter coefficient estimation .

by increasing the number of filter taps , the var iance on our

no ise estimate may in fact increase , an d t h u s  de grade  our

system performance. That is , if we increase the number of

filter coefficients we must also increase the accuracy of

est imation of the coefficients or the improvement in
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4

performance caused by lengthening the filter may be

outweighed by the degrad ation caused by mi ss— e~~tim at ion of

coefficients.

This increased accuracy required by longer filter

lengths may be achieved by decreasing the rate of

adaptation.

Since estimating long filters reauires more computation

and since a slow adaptation rate requires processing more

data , it ha~ been found that performin g such experiments is

a time consumin g prcces~ using the non—real time simulation.

Present results indicate , that for broadband noise , a

minimum ef’ 10db noise reduction using a .14 sec. adaption

filter is possible. For highly correlated noise m u c h

sho rter filters (on the order of 100 taps) can be

successfully used giving considerably better noise

rejection .

A dditional experiments with longer filters and slow

adaptation rates are currently being performed . Effort is

a l s o  be ing pu t  in t o  de t er m in i n c~ the opt imal filter length

a nd ada p t a t ion r a t e s  for  di f f e r e n t  ty pes of no ise an d

different channels , an d in the actual helicopter ooeratinr

env ir o n m e n t .

________ V



SECT I ON in

ESTIMAT I ON OF THE PARAMETERS OF AN

AUTOREGRESSIVE-MOVING AVERAGE PROCESS

IN THE PRESENCE OF NOISE

W i l l i a m  J . Done
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I N T R O D U C T I O N

Two important aspects of vocoder development have been

the achievement of high quality synthetic speech and the

development of low bitV rate communications systems. Linear

prediction (L~~) vocoders have gained importance in both of’

these areas. However , e v a l u a t ions of t he  q u a l i t y  an d

in t e l l igibi l i t y  of LP an d o t h e r  vo co d ers  a re  u s u a l ly

performed with high quality speech inputs undegraded by

background noise. When noise is added to the speech signal

p r ior to  a n a l y s is , the intelligibility and quality of the

syn thetic speech derived from the vocoders are degraded , the

results often being unacceptab le. In LP vocoders , t h e

a ddi t ion of no ise causes  p ro b l ems  in f o u r  a r e a s :  1 ) si len ce

de t e c t ion , 2) vo iced/unvoiced determination , 3-) pitch period

calculation if voiced , an d 14) spectral matching errors.

M c A u l a y  [ 10 ] has a dd ressed p r o b l e m s  1 ) ,  2), rin d 3).

Spectral matching errors , which result from the inaccurate

id e n t i f icat ion of t he  l in e a r  pred ict ion p a r a m e t e r s

(autoregressive parameters) due to the effects of noise ,

will be the primary emphasis of this research. Results

illustrating the spectral degradation due to additive white

no ise will be presented.

G iven a time series that can be successfully modeled as

a parametric process , such as an autore gressive—moving

average (ARMA) process , there are primarily two approaches 
V

that can be taken to alleviate the distortion due to

‘V 

- 
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spectra l matching errors caused by noisy data. The most

of ten use d t ec hn iq ue is to sup pre ss t he  no i se p r ior to

analysis , the analysis methods depending upon the parametric

model in use. This pre filtering technique is thus seen as a

two step process : noise removal followed by parameter

analysis. Usually the paramete r analysis step remains

unchanged from the noiseless case. Examples of prefi lterin g

include the various applicat ions of Wiener filtering,

a d a p t ive no ise c a n c e l l in g tec hn iq ues , or l in e a r  f i l t e r in g

te c hniqu es use d to el im in a t e  f r e qu e n c y  b a n d s  d om in a t e d b y

noise.

The secon d app roach  to pa r a m e t er  est im a t i o n  in the

pr esence  of no ise in v o l v e s  the  c o n s t r u c t ion of a new mo del

which explicitly accounts for the effects of the noise.

Rat her than the two stage technique of noise

suppression ——parameter extraction , the modeling approach

requ ires a one step system in which the analysis methods for

parameter extraction are significantly changed from the

analysis methods use d - when no noise is present. The

modifications are required to account for the changes in the

parametric model as a consequence of adding the noise. In

the case of an autoregressive (AR) process corrupted by

additive Gaussian white noise , the modeling approach for

parameter estimation is especially appealing. 
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t’cth approaches have advantage s and disadvantages , if

a model is successful with high qualit y signal inputs and

algorithms for parametric estimation are well establi shed ,

then prefi ltering may be desirable when noise is present.

it offers the advantage of retaining the original parameter

estimation algorithm with little or no alteration.

k~refilterin g, however , may have a side effect of distorting

the characteristics of the desired signal in the process of

suppressing the noise. An example of this could be low pass

fi l t e r in g of t h e no isy da ta in a s it u a t ion w here t h e no ise

b ecome s d om in a n t  ab ove some f r e q u e n c y  f’ L • A l t h ou gh t h e

f iltered signal may have an improved signal—to—noise ratio

( S H R ), some information contained in the signal is lost.

Another - possible disadvantage of the prefiltering approach

arises when the system is to be used in an environment where

the noise characteristics are changing. here decisions must

be made about the structure of the prefilter: should

s e v e r a l  t y p e s  of f il t e r s , each matche d to a type of noise ,

be used or should an adaptive filter structure be used.

if the time series to be characterized is successfully

modeled by a parametric representation like the AR model ,

then the modeling approach to parameter extraction may be

desirable if the effects of the noise can be included in a

modified model. The primary disadvantage of the modeling

approach is the need to change the parameter estimation

4 procedure , requiring the development of new algorithms . For

the signal— in—noise model discussed here , the addition of

I-- 
_____ _____ 
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no ise to  an AR process results in an ARMA process. Because

of th e nonlinear relationsips involved , t h e  t a s k  of’

identifying the parameters of an A Rt -IA process is much more

di f fi c u l t  t h a n  id en t i fy in g t h e  para m e t e r s  of a n AR p ro ces s .

In addition , t h e r e  is the  val idi ty  of the  pa r a m e t r ic mod e l

for  the  t ime ser ies be ing cons ide red , wh ich may pose a

limitation on the modeling technique. This approach also

shares the disadvantage that occurs in nonstationary noise

situations.

Th is section will describe a techniqu e in which an

autoregressive process of order q, AR(q) , with AR parameters

(a(i))? is identified when corrupted by additive Gaussian

wh ite noise. It will be shown that the additive noise

chan ges the time series from an AR process to an AR t - IA

p rocess , f r o m wh ich the  q or igi na l  AR pa r a m e t e r s  can be

identified. Preliminary results are given on the initial

e f f o r t s  to im p l e m e n t  t he  a lgo r it hm s n e c e s s a r y  for

determination of the desired AR coefficients.

As s t a t e d above , one limitation of the modeling

approach is the validity of the parametric mode l , an AR

process in this case. Voiced speech has been successfully

“mo deled ” by an all—pole LPC process. However , if vo iced

sp eech is a s s u m e d to be an AR process and identification of

the AR parameters is desired , the periodic or seasonal

component can hinder the “identification ” of the  AR

param eters. The parametric model must be modified to

- 58 - 
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account for the presence of the periodic component ,

introducing the concept of autoregressive— integrated moving

average (ARIIIA ) processes. Extensions of the parametric

m od el fo r  t h e  s ig n a l  to in c l u d e A R I , A R M A , an d A R I M A  f o r m s

will be considered . The MU model for voiced speech

waveforms will be emphasized. This model will be studied in

both noiseless and noisy conditions.

SYSTEM D E S C R I P T I O N

In th is sect ion , t he  proce dures  for  pa r a m e t e r

est imation in the presence of noise will be discussed. The

effects of ad ditive noise on LPC parameters will be

described and a detailed presentation of the mathematics

defining the ARMA model will be given . Of the four parts to

f o l l o w , pa r t  one w i ll p r e s e n t  the  al gor it h m  for  l ine ar

predictive coding. The effects of additive noise upon the

LPC parameters can then be observed . The popular LPC

approach can also be compared with the ARMA model technique.

Part two of the syste m description will present the

ARMA model algorithm suggested by Pagano [11 1 . The

mathematical details of this technique are given . In

developing the A Rt -IA model approach , the initial step is a

stage for estimating the ARMA parameters. Once these

estimates are available , a nonlinear regression modifies the

initial estimates, Part three will discuss possible ARMA

estimation procedures and the nonlinear regression

t - 5 9 -
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tec hnique . The last part will include a discussion of

important software not included directly in the operation of

the LPC or ARMA mode l analysis systems. Also discussed in

this last part is the data base used for analysis.

Linear Predictive Coding

If s ( k )  is a time series which can be m o d e l e d as a

q th _order autoregressive process , AR (q), then

s ( k )  = 

i~~l 
a 1 (i )s(k-i) + c ( k ) ,  1)

where (ai (i))1 are the AR parameters and c (k) is a zero mean

white noise process. In developing the expressions

characterizing LPC and presen ting only the autooorrelation

m e t h o d of a n a l y s is , the equations are much more compact if

matrix notation is used . Refer to takhou l [9] for

additional background and a list of references for LPC

development. The development of a notational convention for

L.PC us ing a matrix formulation can be found in Boll (2].

Us in g t he a u t oc o r r e l a t ion m e t h o d , t he  se qu e n c e  s ( k )  has

infinite extent but is nonzero only for 0 < k < N— i , where N

is the size of the analysis window. Form the (N+q) x 1

vector 3 , where

S = ( s( O) s( l )  ... s(N-l) 0 ... 0 )T 
2)

using D as a delay operator for vector notation , D1 s is ~ n

(N+q) x 1 vector with the sequence s(0) ... a (N— i ) beginning
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at the (i+1)th position. The superscript i can take on the

v a l u e s  1 , ..., q. For example ,

[0 s(O) s(l) ... s(N—l ) 0 ...

D2s = [0 0 s(O) s(l) . . .  s(N-l) 0 . ..  0)1, and

= [0 0 . . .  0 s(O) s(l) . ..  s(N_1)]T.

Form the (N+q) x q matrix by appending as columns the

D 1 s , I 1 , ..., q

= [D~s D2s D3s . . ~~~ ) . 3)

If’ a n e r r o r  se q u e n c e  c is def ine d as

= [ c(0) c(l) ...c (N—1) E(N) ...e (N+q—J ) J~ 4)

th e n  1) ca n be wr i t t e n  as

! 
~~s~ 1 ~~~~~~ 5)

where = [ a 1 ( l )  a 1 (2) ... a1(q) ]T is f o r m e d f r om t h e

prediction coefficients and the index k in 1) is confined to

the interval 0 ~~. k ~~. N+q— 1 . In LPC the measure of closeness

of fit is the least squares minimization of the energy in

the error signal ~, as a function of the (a i (i)}?. If the

loss function L~ is defined as
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N+q-12L
~~

=
~~ 

c (k)=c T
~, 6k=O — —

then the minimum of L
~ 

w it h res pect to the  (a i (i)1? ~~~~~

foun d. Using vector calculus ,

= [cT ) = 2~
T

The minimum of LE is ob t a i n e d b y se t t in g th is ex p ress ion

equal to zero ,

=

F rom 5)~ ~
-

~~~~~
= H and cTH = 0 or

~~~V1 —s

T = 0 .  7)

Substituting 5) into 7) gives

or

HT H a -H
T
S . 

8)
s S l
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I I
Not e that the matrix U~J~ and the  v e c t o r  are  e qua l  to

r -

R55
(0) R5~

( l )  .. .  R~ (q-1)

R
55

( 1) R
~~

(0) ... R~ (q-2)

IH : : ~~ .

[RS~ 
(q-1) R~5(q-2) ... R~5(0) 

9)

~~ 
(1)

I R (2 )ss

~~~ 
(q)

N-1- IkI
where Rss(k)= ~ s(i)s(i+jk~) - Equation 8) is a

matrix equation representation for the Yule—Walker

expressions

~~a1 (1)R (I-k) = -R55
(k), k = 1 , . . . ,  q. 10)

If the sequence s(k) is contaminated by additive noise to
I

produce the series x(k)

x(k) + s(k) + n(k) , 11)
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Constructing the matrix and the vector 
~~. 

f r o m  t he

additive noise sequence n(k), the follow ing relationships

h~~ld:

15)

HTH = HTI-( 
-

+ HTI-I + HTH + HTH . 16)-x-x -s-s -n-fl -s--n —n-i

I
The H H term is a matrix formed of the autocorrelation—n—n 

Ite rms of n ( k )  and the  te rms  H H and IITH contain the
—s—n —$1-— S

crosseorrelat ion terms between n(k) and s(k). If it can be

assumed that a(k) and n(k) are uncorrelated , 16) becomes

H H = H H + UIH-x-x -s-s ~~~~~~~‘ 17)

With 11 ), 15), an d 17) substituted into 1-n), we have

+ = -[ ~ + H J ~
’(s + n) = -[

~~~~ 
+ 18)

Where the assumption of uncorrelated signal and noise is

use d to reduce the right hand side of 18). Solving

equations 8) and 18) for and a! r e s p e c t i v e ly ,

= -[H
TH ) 1HTs 19)

V 

and
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def ine t h e l e a s t  squ a re s  est im a t e s  fo r  a
1 

and 
~~~ 

The

vector a
2 

can be related to 
~~ 

by p remu ltiplying 18) by

[H TH ) ~~ to give

[
~ 

+ (H~H ) 1 

~n~~’~2 = [H
TH ] ~ ll~ 

- [HTH]~ ~~~ a

= - [HTH )~ H~n

or

= [1 + (J-~ f~~)~~ !:~:~
]-

~ ~-i - + 
~~~~~~ !!~~,,] ‘

~ [HTH] ’1 ii1n

= [H TH + ]1 fJT~~ - [H TH + HTH ] ~~ H1 21)

F rom 2 1 ) it is a pp a r e n t  t h a t  t h e  a ddi t ion of n ( k ) has

d egra de d t h e  a in two wa ys:

1) a b i a s  term [HTI1 + ]1 
~~~ has been

su btracted ;

2) the relative magnit udes of the {a
2
(i))

1 
have been

change d due to the matr ix multiplying effect of

the ex pression [ !i~!i~ 
+ 
~~!±~1

’
~ !i~~5

The results of equations 18) through 21) are valuable in

showing the distortion possible when noise is added to a
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sequence that is to be the input to an LPC system. These

re-~ults are based on the explicit assumption that s(k) and

n(k) arc uncorrelated and fail to account for nonzero

crossccrrelation terms (the terms UT h , etc.). Result s

showing the distortion introduced by n(k) on the inverse

spectru ri derived from the (a
2 (ifl? 

and the effects of

assumin ’~ n (k) a nd s(k) are  u n c o r r e l a t e d w ill be s h o w n  in t he

section on Preliminary Results .
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A R M A  Mo del A pp roac h

Inclusion of the effects of additive white noise upon

an AR (q) process is discused in [3), [11], and [14]. The

potential advantage of this approach is to include the noise

effects expl icitly in a more general model than the original

AR( q) process. The model is developed on the following

assum p t io n s :

1) s( k ) is a pro per A R ( q )  se q u e n c e  d escr ib ed b y

~ a(i)s(k-l) = c (k )  22)

for a(O) 1 , a(q) ~ 0, 
and q ~ . 1 , w ith ‘(k)

independent , identically distributed (i.i.d.)

N(O , ~
2 
~ an d s(k) stationary;

2) s(k) is contaminated by n(k) to form the

observable data x(k),

x ( k )  = s (k )  + n(k), 23)

w here s ( k )  an d n ( k ) a re  in de p en de n t  an d n ( k ) is

i .i.d . N(O , ).

The model has q+2 parameters__ (a(i))?, a~~, and a~~. The data

available for analysis to determine estimates of these

parameters is the sequence x(O), .. . , x(N— 1).

- 

_ _ _ _  -



Combining 22) and 23), we have

~ a(i)x(k-i) = ~~a(i)n(k-1) + c(k), a(O) = 1. 24)

A sequence y(k) is defined as V

y (k )  = ~ a(i)x(k-i) 25)

or

y(k) = a(i)n (k-1) + £(k). 26)
• i=O

If R~ ,(k) ~ E[y(i)y(i+k)J , it can be shown , using 26),

tha t H., (k) 0 for 1k ! > q. From 26), y(k) is seen to be

stationary. Combining this with the property that

R~~(k) = 0, 1k ! , q, shows y(k) to be a moving average

se q uence  M A ( p ) ,  with p < q . Also from 26),

R~~(q) a~a(q) ~ 0 , by the hypothesis under assumption 1)

above . As a result , y (k) is a MA(q) process , and there

ex ists a sequence of random variables T1(k), i .i .d . N(O ,o~

and constants {b(i)}? such that

y(k) = b(1)~(k-1), b(0) = 1. 27)
1=0

_  

-





3) the ARMA parameters {a(iH? and (b(i)}? for the

process x(k) are related through the

a u t o c o r re la t ion f u n c t ion R yy ( k ) ,  the  r e l a t ionsh ip

being expressed by 29) and 30).

A com parison of the ABMA model approach just described

wit h a f o r c e d LPC f it of the  data , re p r e s e n t e d b y t h e

solution of 20), shows two interesting facts. First , the

fo rce d LYC mo del , from a spectral point of view , m u s t  ma t c h

the  spe c t r a l  cha rac te r ist ics of t h e  in pu t  x ( k )  as c lose ly  as

possible. This spectral match includes those

character istics introduced by the noise. The next section

will present examples illustrating the flattening effect

wh ite noise has on a forced LL’C fit. The second observation

involves the assumption of the model form. If the original

se q u e n c e  s ( k )  is A R ( q ) ,  then the addition of white noise

results in an ARMA(q,q) process , x(k). This process is

equ iv a l e n t l y  a n A R (~~) process. The forced LPC fit is

a c t u a l l y  r e p r e s e n t a t ive of the  f irs t  s te p in the  p rocess

discussed in (5] for estimating ARMA parameters , that is ,

un derfitting the AR(w ) process . The ARMA model approach can

then be v iewed as a procedure by which the AR(q) and MA(q)

parameters are estimated from the AR(°°) parameters.

Hav ing identified the mathematical relationships and

properties for the A RMA approach to parameter estimation in

t he  presence of no ise , the next phase describes the

procedure for estimating the AR parameters of the original

- 71 -

‘V 
- — --—- — ----V--- ~V~V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - V



signal s(k). The first step requires the estimation of the
q q

ARMA parameters of the expanded mode l—— {à (i)) 1, (5(i))1,

and ~~~--t he symbol “_ “ Indicating estimate. This represents

the identification of the series x(k) according to 28).

This set of parameters is then transformed to the equivalent

and {5~ ( i )}~~__ b Y the relat ionship defined in

29). A t  this stage there are estimates for the original AR

parameters {a(i)}?. The efficiency of these estimates will

depend upon the technique used to estimate the parameters of

an ARMA process . The estimation procedure , however , has no t

yet  use d t he  in f o r m a t ion ava il ab le  under  a s s u m p t ion 2)  of

the model. This information is carried in the relationship
q q

given by 30) between ( R ~~ ( i ) } 0~ on one han d , an d ( a ( i ) )
1

2 2
and ~~ on the other.

Using nonlinear regression theory, r e f i n e m e n t s  a re  m ade

on the est imates for the original parameter set according to

z f(e) +e , 31)

where ~ 
= [i~(i) 1(2) ... 1(q) 

~~~(0) ~~~(1) ..

an d 0 = [ ~ ( 1)  ~ (2)  . ..  ~‘(q) ~2 ~2 jI The (jV
(j))

~~~ and
q £

(a(i)} 1 in z and 0 , res pe c t i v e ly ,  a re  est im a te s  fo r  the  AR
q

parameters. The (a(i))-1 result from the ARMA parameter

estimation step. Then the nonlinear regression stage

produces the (~~(i))~~. In 31) the nonlinear funct ional

relationship t(.) represents that of 30), and e is a

(2q+1) x 1 vector reflecting the error between the ARMA
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para me t e r  est im a t e s  f o u n d in z an d t he  t h e o r e t ical

relat ionship to these estimates represented by 30). f’(-)

ma ps from the original q+2 parameter set to the 2q+1

parameter set of the expanded model. The nonlinear

re gress ion tec hn iq ue a t t e m p ts to f in d t he  est im a t e

of ~~. wh ich will minimize e in the least squares sense. The

Gauss—Newton metho d is proposed for this task [11] and will

be discussed in the next part.

Algor ithms

In d eve lo pi ng t he  A R MA ap p roach  in the  p rev ious pa r t ,

two steps require major algorithms: the estimation of ARMA

pa r a m e t e r s  f r o m  a t ime ser ies an d a non l inea r  regress ion

technique. The nonlinear regression (NLH) will be presented

first. Equation 31) describes the nonlinear relationship

between the parameter sets z and 0. The 2q+1 equations

com prising 31) can be written as

= i- e~, t = 1 , ..., 2q+1. 32)

The metric 18] for evaluating the effectiveness of ~ , in

minimizing e is given by

• 2q+1
= - f (0)J 2 33)

Using 30) to define the f’t~~~~’ 
t = 1 , ..., 2q+1 , gives the

follow ing set of equations:

_________  
1 - 

- - 
—- - - 

V

V V



1(i) = ~(i) + ~~ I = 1 , - . - , q

= + ~
2( I )  + eq+1~ 34)

~ ~~~~~~~~~~~ 
+ eq+k+i , 

= 1 ,

where 5(0) = 1. The {à(i)}1,  0 , and e are chosen to

minimize Q(0),

2q+ 1
= 

~ e~.1=1 35)

A n iterative procedure based on the Gauss—Newton method or

mo dified Gauss— Newton method will yield a solution ~~. to 32)

having the properties of convergence for a finite number of

functional relationships f’t ( .)
~ and the 0 will be

asymptotically efficient (7]. The Gauss—Newton method is

based on the linearization of the nonlinear functions f’t (

a b o u t  t he  so lu t ion ~~~~.

The secon d of the major algorithms to be discussed is

the method for obta ining estimates for the ARMA parameters

of a time series. The method used will -probably be based on

one of follow ing techniques : Hannan (6); Graupe , K r a u s e ,

an d Moore [5); or Steiglitz (12]. Hannan ’s t echn iq ue is a

three step procedure adaptable to iteration if desired. The 
- 

-

following is a brief summary of the procedure. Notation is
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based on that used previously in this section .

1) Initial estimates for the AR parameters. Using

the property that R~~~(k) 0 for 1k! > q for a

r-IA(q) process y(k), estimates of the AR
q

coeff icients {a(i))1 are found from the solution

of

~~( i ) R ~~~(i-k) = - R (k), k = q+1 , . . . ,  2q.

N - 1 — J k j
with R ( k )  = 

~ x(i)x( i+k) , k 0 , . . - , 2~~ .

1=0
fl Initi al estimates tor the MA parameterr.

Form f~~(k) = 

i~0 j~0 
a(i)a (j)R~~(k+i~j). 36)

Note that this is the autocorrelation function of

y(k) obtained by using 25). If the power spectrum

estimate for y(k), S yy(u), is non—negative , it can
q

be factored to give (b(iH 1, estimates of the MA

parameters. This is essentially the

A u t o c o r r e l a t ion P a r t ial R e a l iza t ion m e t h o d  of

Ata shroo (1]. If ,~,(w) 
i 0, 0 < w < , then

Hannan ’s technique proceeds to obtain the
— q

(b(i)} 1 through several intermediate steps.
‘I

3) Ref ine the initial ARMA estimates. The initial

— 
q 

— 
q

est imates (a(iH 1 and (b( i)) 1 are modified by

c a l c u l a t ing c o r r e c t ion f a c t o r s  wh ich are  a dde d to

the initial estimates found in step 2) above. Theq
procedure is to first modify the 11(i))

1 
, then the

— q
MA para me te rs  ( b ( i ) }

1 , followed by a final

- 75 -

~~~—
V
~~~

-V - 

- - _—-—V —~~~~~~~~~~ -~~~~---r~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~ 

~ ~-~
-
~~y-~



mo dification of the (a(i)}?. Step 3) can be

re pea te d to f o r m  an iterative approach.

T he it e r a t ive p roce dure  of Ste p 3) is associated with the

solut ion of equations 29) and 36), wh ile the Gauss—Newton

NLR procedure is associated with the solution of 30).

H a n n a n ’s t e c h n iq ue is base d u p on Four ier t r a n s f o r m a t ion of

the data and carries a large computational burden .

The t e chn iq ue p r e s e n t e d b y Grau pe , et. al., [5], has

the advantage of using only linear operations. The process

is summarized as follows : 
-

1) Given an AHMA(q ,p) process with AR parameters
ci p

( a ( i )}
1 

an d MA p a r a m e t e r s  ( b ( i ) }
1 , cons ider this

to be an A R (~~) p rocess w ith  p a r a m e t e r s - -

From the  d a t a , estimate the (~~
( i ) )

~ for  some lar ge

integer value for N.

2) Using the expressions generated by the
N q

relat ionship between the {a ( i f l 1,  {a(i)J
1 

, and

a process is obtained for estimating

f irst  the  ( b ( i ) )~ and then the (a(i))’1. Bot h

stages involve the solution of a system of linear

equat ions.

This method is computationally more appealing than Hannan ’s —

method. However , the v a l u e  of N , wh ich determines the order

of the a (i) approximation , may be rather large for some

processes in which the zeros of the MA filter are near the

un it circle.

-- --

~~~~~~~~~~~~~~~~~~~~~~~~~~~~; 
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Steiglitz ’s [12] method for I d e t i t t t y i n g  the A U and MA

parameters of a process is based on the mode 1 iterative

scheme for system identification by Steiglitz and McBride

[13). Steiglitz ’s ap proach to identifying the ARMA

parameters is the following: 
V

1 ) Assume  the  s equence  to be iden t i f ied , x ( k ) ,  is the

out put of the unknown system.

2) Assume the input to this system , u ( k ) ,  is a

Kronecker delta funct ion .

3) Minimize the error criterion

= 

:~~~~ 

e2(k) = 2~
!
~r f [2f -~- X(z) - 

P1~1 U(z)J
2 dz 

)

by the appropriate choice of A(z) and B(z), the

z—transforma of the denominator parameters
ci p

a nd n u m e r a t o r  para m e te r s  ( b ( i ) )  ,

respectively. (3(z) and X(z) are the z— trans forms

of t h e  u n k n o w n  s y s t e m ’s in p u t  and  o u t p u t

s e q u e n c e s , respectively. A0 (z) is the z—transform

of an initial guess for the denominator filter.

14 ) By re placing A0(z) with the A(z) determ ined in

ste p 3 ) ,  new est imates for A(z) and B(z) can be

foun d. This iterative procedure can then be

cont inued until the desired accuracy is obtained.

The solut ion of 37) for the {a(i))1 and the (b(i)J~ in v o l v e s

the solut ion of a system of q+p+1 linear equations.
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Software

The last part of this section describes the software

nee d ed to ge n e r a t e  t h e  da ta  base used for  sim u l a t in g an AR

process corrupted by additive white noise. The data derives

from two no ise files obtained by digitizing the output of an

analo g noise generator . The analog signal is prefiltered

w ith a low pass filter having a 3.2 kHz cutoff frequency and

is sampled at 6667. Hz. From two files generated in this

manner , one is sca led  so t h a t  its sam p le var iance  is

approximately 1.0. This sequence is s(k), the exc itation

sequence for the AR process to be simulated. The second

no ise f i le n 0(k) is used to gc~ er a t e  n ( k ) ,  the additive

no ise.

A two s te p p rocess g e n er a t e s  the  da ta  base fo r  a

particular AR process .

1) Design and generation of the AR process. Using

the pro gram ARPGEN.SAV , t he user  des igns an A R ( q )

process , il q 120. The filter is checked for

sta bility by analyzing the partial correlation

coeff icients derived from the AR parameters. The

power spectrum of the inverse filter corresponding

to the AR coeff icients is calculated and

d isplayed . If the model is acceptable , the time

series s(k) corresponding to this process is

compute d using the noise sequence c (k) mentioned

above as the excitation to the AR filter.
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2) Generation of the additive noise. A fter finding

approximations to the variances of s(k) generated

in 1 ) an d the  no ise f i le no (k) described above ,

the program SPLUSN .SAV can be used to generate

either of the outputs

n(k) C . n0(k)

or

x ( k )  = s(k) + c • n0(k).

The constant c is computed by SPLUSN.SAV so that

the quantities c• n0(k) and s(k) will have a

spec ified signal— to—noi se ratio.

Using the above system of data and the two programs

discussed , var ious AR processes and additive noise sequences

can easily be synthesized in preparation for analysis by the

A RMA no ise model approach.

_ _ _ _  
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PRELIMINARY RESULTS

One of the objectives of this research is to

characterize the effects of additive white noise on LPC

analy sis systems. The following data illustrate the

degradation caused by additive noise. Results are presented

for a speech waveform sample at varying levels of noise.

Figure 1 shows the speech frame used as the example for this

sect ion . The time waveform is shown in Fig. la). Sampled

at 6667. Hz , this frame of 128 samples corresponds to about

19 mseo . of speech. This frame represents a portion of the

schwa vowel la! in the word “rust” . This particular vowel

was s e l ec t ed  because  of the  n e a r l y  un i f o r m  di s t r ib ut ion of

formants. Also , the formants drop in peak magnitude at a

cons tant rate as frequency increases (on a dB scale). Fig.

ib) shows the DFT of this frame of speech , a f t e r  win d ow ing

with a Hamming window. On the dB scale , t he  n e a r l y  u ni f o r m

formant structure of the schwa vowel is apparent.

Superimposed on Fig. ib) is the spectrum corresponding to a

10 pole LPC fit of this frame. The LPC spectrum is smoother

and matches the formant peaks well.

Fig. 2, a)—e), show the effects of additive white

no ise with progressively smaller signal—to—noise ratios:

140, 30, 20 , 10 , and 0 dB. The SNR is found by averaging the

energy in the speech and the noise sequences over several

secon ds. The ratio of these energies is then used to

determine the SNR , def ined as
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Figure 1 : Example frame used as s(k)
a) 128 samples of the vowel /a/, sampled at 6667. Hz.
b) Spectrum of /a/ and a 10 pole LPC fit to that

spectrum .
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b)

Figure 2: Illustr atIons of the effects of additive white noise on
the example speech frame and 10 pole LPC approximations
to the resulting spectrum .
a) 4O dB SNR

j b) 3O dB SNR
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Fi gure 2: c) 20 dB SNR
d) 10 dB SNR
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Superimpo sed on each spectral plot is the corresponding 10

pole LPC fit. A ll spectral graphs in Figures 1 and 2 are on

the same scale and can be compared directly. The following

noise effects are noted:

1) with decreasing SNR , the noise “floor ” rises ,

obscuring more of the formant structure of’ the

speech;

2) the formants identified by LPC analysis in

increasingly poorer StiR ’s tend to be wider in

bandwidth and have their peaks at slightly higher

frequencies;

3) the formant structure identified by LPC is badly

degraded for StiR’s below about 20 dB .

The importance of the assumption of uncorre lated signal

and noise is demonstrated in the next set of data. This

assumption is primary to the autocorrelation correction

methods of’ parameter estimation [1], (ii). Figure 3a) shows

%s (k), the autocorrelation function for the frame of speech

being discussed. Plotted in Fig. 3b) are ~~ (k), the noise

aut000rrelation function , and R5~ (k), one of the

croascorrelatton functions . The abscissa in Fig. 3a) and

b) starts at lag k ~ 0 and is followed by 100 lags for

k ~ 1 , ..., 100. The last 100 points are the negative lags

in the order k = —100 , . . .,  — 1 . The noise used for Fig. 3

1 81



corresponds to a 10 dB SNH. It is obviou s that R sn (k)/ 0,

based on the estimation of R
~~

(k) from

R
~~
(k) = 

~~s(i)n(1+k). 38)

The spectral implications of this are shown in Fig. 3°),

which shows four spectral curves determi ned from LPC

coefficients calculated from the four autocorrelations:

i)

~~~~ 
R5~(k) = R (k) - R~~(k) - R

~~
(k) - R

~~
(k)

iii) R~~(k) = R
~~
(k) —

iv) R xx (k).

Note that 1) and ii) result in the same spectral plot. The

explicit assumption of uncorrelated signal and noise is used

in iii) , while iv) corresponds to LPC coefficients

determined from noisy data , with no correction attempted.

Fig. 3c), curve iii), shows the inadequacy of the

uncorre lated assumption for the autocorrelation correction

modeling approach. Even though curve iii) appears superior

to iv), in a large percentage of frames , the LPC algorithms

will fail , producing unstable inverse filters , when the

autocorrelations of Rss (k) are based on iii). An

autocorrelatjon matrix which is not positive definite causes

this.

8
The precedi ng results show LPC analysis procedures are

sensitive to additive white noise degradation . The

autocorre]atjon correction method , while appealing, is not
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Figure 3: Comparison of autocorrelation and crosscorrelatlon
sequences for the sample frame with a 10 dB SNR.
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(k)

b) R~~(k) and R~~
(k)

c) 10 pole LPC spectra based on autocorrelatlons i-lv
discussed In text.



successful if the uncorrelated signal—noise assumption is

made.

Preliminary Results of the ARMA

Model for Additive White Noise

In developing the A RMA model suggested for estimating

AR parameters when noise is present , the major components of

the procedure suggested by Pagano have been implemented.

Initial tests of the algorithm performed on speech samples

were unsuccessful in either proving or disproving the

technique or verifying the operation of the software. It is

this result that led to the used of synthetic AR processes

for testing of this approach. This will avoid the critical

assumption that the original undegraded time series , speech

in this case , can be modeled as an AR(q) process. It also

led to a perturbation analysis as a way of verifying the

correct operation of the nonlinear regression (NLR)

softwa re. The perturbation study of the NLR technique also

provide s information about the ability of NL.R to converge to
I

the correct parameter set when the initial parameters are in

error. The perturbation analysis is based on the following:

1) A set of q AR parameters and

variances and are selected to characterize

an AR process in additive noise.

2) Using equation 30) of the previous seotion , the

(R~~~( k ) )  are calculated from the q+2 parameters
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selected in step 1).

3) With z = t(O) + ! describing the nonlinear mapping

from 0 to z~ 
construct z from the (a(ifl? and

(R~~ (k)

1~ ) The parameters of 0 are the {a(iH? , and o~ .

The perturbation will be introduced into 0.

5 ) Prior to enter ing the NLR routine , some or all of

the parameters of 0 are perturbed.

6) The NLR iterative procedure then attempts to

correct 2..so that e+ 0.

For the q = 1 case , an analytical development of the NLR

technique is possible , and the results can be used to

predict the findings of the computer analysis.

The following points can be deduced from the

theoretical study:

1) For errors in either or both of
2 2the ~ and 

~ 
parameters of o ,  the errors are

corrected in one iteration without introducing

errors in any other component of 0.

2) Any error in the single AR parameter a(1), whether

accompanied by errors in or ~~~ or not , is

corrected in one iteration . The first iteration ,
2

however , produces an error in the ~ component

of ~~~, . It thus requires one additiona l iteration

to correct that error.

3) If the perturbation of the a(1) parameter results

in an initial value of a(1) = 0, then the



theoretical development predicts that the NLR

technique based on the Gauss—Newton method will

fail on the first iteration .

Computer simulation of the perturbation analysis for the

q = 1 case verified the above theoretical results with the

following qualification: the NLR Gauss—Newton technique

involves the inversion of a matrix which becomes

ill— conditioned as o~~, the actual noise variance , or ~~~~, the

estimate of that variance , get large . This observation

results from the finite word length and round— off effects

associated with computers. This is not predicted by the

theoretical analysis , though it is apparent from the matrix

equations associated with this technique why this would

happen . Its presence in the simulation is the justification

for using small variance sequences for c(k) and n(k)-- on

the order of 100. or less. To prevent the increase of the

effects of quantization noise , data must be stored on disk

in the unpacked format of 128 data points per disk block.

Tables I and II show perturbation effects for Ghe q = 1

case for the parameters listed in the tables. The examples

in these tables represent the worst case in which there are

errors in all three parameters. For demonstration purposes ,

the errors are +200% for each parameter. The value of ~~. at

each iteration is given to four decimal places.

I

_ _  
_ _ _ _ _  
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Table I

Perturbation Analysis , q = 1
2 2

a(I) °n 01st 
____

Desi gn Parameters 0.8 1 .0 1.95 -

Initial Estimates 2.4 3.0 5.85 2.56

Iteration #1 0.8000 18.3679 4.5499 7.52 x 10
_ li

#2 0.8000 1.0000 1.9500 8.44 x iO ”14

Tabl e II

Perturbation Analysis , q = 1
2 2

a(l) °
~ ~n 01st

Design Parameters -0.8 1.0 3.03 -

Init ial EstIma tes -2.4 3.0 9.09 2.56

Iteration #1 -0.8000 27.9869 7.0699 2.44 x io~~
#2 -0.8000 1.0000 3.0301 3.09 x 10

_ li



Another more interesting perturbation study is shown in

Table III. In this case , the AR coefficients are a(1) =

—2.3, a(2) = 2.~l , a(3) = — 1.6 , and a(1~) 0.6. For purposes

of dem onstration , the initial estimates are a(i) = —a(i), a

—200% error in estimating each coefficient. The actual

variances and their estimates are shown in Table III , which

illustrates the convergence of 0 to the correct solution .

From the table , it is evident that , to four decimal places ,

the convergence for the four AR coefficients is complete in

10 iterations. Note that in Tables I, II , and III , the

entry for “Dist” under each iteration is the 12 distance

between the {a(i)}? and the {à(i)}~~. The noise variance

in each of the three perturbation examples corresponds to

a 0 dB SNR when compared to the sample variance of the

respective AR process .

While the preceding discussion demonstrates the power

of the NLR technique , using a Gauss—Newton approach , the

following is an initial attempt at applying the entire

procedure to the synthetic AE (1) sequences. The results

seem to indicate two major problems:

1) The initial estimates for the ta (i)} are poor.

Hannan ’s method begins by estimating the AR

parameters by

a(i)R ,~ (1-k) - R
~~
(k), k = q+l, ... , 2q. 39)

Ill

The next step in Hannan ’s procedure is to
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calculate the approximate autocorrelatio n function

of the moving average sequence y(k):

~~~(k) = i(1)~(j)R (k+j-j), k 0, ..., q. 41~)

If the spectrum S~~ (w) correspondin g to R yy(k) is

non— negative , the spectrum can be factored to give
q

the {b(i))1 , initial estimates of the MA

parameters. This spectra l factorization

represents the solution of

I k Ik (k) = 
~ ~(i)E(i+k), b(o) = 1 , 41)

1=0
4

— a 2
for the (b(i))1 and o

~~ 
. This solution is

nonlinear in nature . The procedure proposed by

Hannan then uses an iterative stage to improve

these initial estimates. Presently, the only

steps of this technique beina~ used are the
q — q

calculation of the (1(i))1 and the 1R~y (k))0 using

equations 40) and 41). This would avoid the

nonlinear spectral factorization necessary to
— 

q 2
obtain the (b(i))1 and 

~ 
, which are then

recombined by ~1) to obtain the (R~~ (k)}~ for the

Gauss—Newton NLR routine . However , further

improvement on these parameters may be necessary

to prevent the NL.R technique from divergin g .
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SECTION IV

MtJ LTIRATE SIGNAL PROCE SS ING

H. R avindra

A bs t r a c t

The ai m of t hi s p ro ject  is to s imulate a s y s t e m  on a

Digital Computer , which can increase or decrease the

sam pling rate of an acoustic signal. These two operations

are calle d Interpolation and Decimation respectively. This

p ro ject  is the f irst  phase of a lar ger p ro ject  w hi ch

involves the simulat ion of a CVSD syste m , with an idea of

stu dying the problems of tandeming. Sinc€ the CVSD

performance (signal—to—noise ratio) is better at higher

sam pling ra tes , an Inter polation/Decimation scheme is

required to translate the sampling rate from the lower 6.67

KHz to higher rates.

I
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ifl~ roduction

In many digital signal processing systems , e.g .,

vocoders , m o dulat ion s y s t e m s  an d digi tal w a v e f o r m  co ding

systems , it is nec essary  to a l te r the sam pling ra te  of a

digital signal. In the present context , we are inte rested

in the last application. The multirate signal processing

syste m is actually the first phase of a larger project. The

main project involves studying the problems of tandeming a

CV SD system with a vocoder. This requires simulation of two

systems on a digita l computer. They are , the mult ira te

signal proce ssirg system and a CVSD encoder/decoder system.

In the present write up , the mult irate signal process ing

system is described. Firstly, inter polat ion and dec imat ion

of the sampling rate of a digital signal are shown to be

simple linear filtering processes. Later , it will be shown

that an interpolator or a decimator can be implement ed

optimally over several stages. Also , the s ui ta bi li ty  of FIR

filters over IIR filters for this application will be

di sc ussed . In the p resent wor k , both non— optimal

(single— stage) and optimal (multi— stage ) interpolators and

decimator s have been implemented and comparative results are

presented at the end of the write up.
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I. Interpolation and Decimation as Linear Filtering

Processes

Let x (t) be a continuous time signal and x(n)

the sampled version of x(t)

i.e.,

x(n) = x(nT ) where I is the sampling period .

It ca n be shown th at the Four ier Tran sform of x(t) an d

x(n) are related as follows:

X(e~~
T) = 

k=~ c= ~~ 
+

If i(t) is band limited , i.e., c c (  w ) = 0 for

~ and if I 
~~

- (to avo id al iasing ), then

X(e JWT ) = x (w) ~~~~~ ‘ii ~~. ~~~~.

(a) Sampling rate reduction ~~ integer factors:

Suppose that the desired sampling period is

= MT. If M is an integer , then ,

y(n) ~(nT’) = ~(nMT )
= x (Mn).

- go-

_________ 
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The Four ier transform of the original signal

padded with zeros can be shown to be ,

Y(e3wT ) = X (eJ wI’I~) = X ( e JWT )

and it is seen that it is periodic with a period of

2~/T . But the p roperly interpolate d signal shoul d be

periodic with a period of 21T/T’ . Therefore , low pass

filtering is needed , after padding with zeros , to keep

only the base band and attenuate the inner lobes.

Also , it is clear that the passband gain of the filter

should be equal to the interpolation ratio.

(c) Chan~ in~ ~.L 
non— integer factors:

Let the new sampl ing period be I’ = ~T , where M

an d L are integers. An interpolation or decimation by

a non- integer factor can be realized by first

interpolating by the factor L , an d then dec imat ing by

a factor M. If the overall factor by which the rate

is changed is less than unity , LP filtering is neede d

before the decimation step to avoid aliasing.

II. Selection ~~ ~~~~~ Tv~oe ~~ Filter;

The cho ice is between FIR and IIR filters. The

following advantages of the FIR filter make this class j
more suitable then the IIR filters.
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(i) FIR filters can be realized with

precisely linear phase and can be made to approach the

ideal magnitude response by reducing the stop band and

passband ripples , and also by reducing the transition

bandwidth. Of course , th is requires long filters.

T hough h R  f i l ters can be real ized w i th ex t re mel y goo d

m agnitu de res ponse , they suffer from non— l inear phase

characteristics.

(ii ) It can be shown that the post

filtering required for interpolation and prefiltering

required for decimation can be combined to form a

single filter. This filter accepts zero padded signal

an d generates the final output — (Interpolated and

decimated , to real ize a non— integer change in rate).

If FIR f i l ters are use d , the fact  that the f i lter sees

one nonzero sam ple in every L samples and produces an

output sam p le in every  M sam p les , results in re d uce d

com putational complexity. Also , during the decimation

p roc ess , the symmetry  of the f ilt er can b e ut ili ze d to

reduce computation by a factor of 2.

III. Optimal Design ~~ Interpoiptors g~g Decimators

Croohiere and Rabiner have shown that the post

filter required in the interpolation step and

prefilter required in the decimation step, can be

combined into a single filter to realize a non— integer

ratio of change of rate. Also , they show that the

— 
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- 
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amount of computa tion can be reduced considerably by

implementing interpo lators and decim ators in a

multistage configuration , and develop techniques for

their optimal design.

(a) The physical reason for reduced computatio n

when mult is ta ge implementat ion is used , is the

follow ing.

Since the FIR filter accepts a zero padded

signal , it sees one nonzero sample in every L samples.

Also s ince it is perform ing predecimation low pass

filtering , it need output one sample in every H

samples. Therefore , the computational complexity

(num ber of mult iplies and a dds: MADS) is p ro port ional

to N/(LM). That is , the num ber of MADS re q ui red to

generate each output point is N/(LM) . It can be seen

from Figure 4 that a multistage implementation of a

decimator requires the longest filter for the last

stage and relatively very short filters for the

earlier stages. The opposite is true of’

interpolators. For the same end results , the ripple

specifications on each state is more severe (by a

factor equal to number of stages) than in the case of

a single stage implementation . But it is shown that

this affects the total computation by a small amount.

Since the filter in the last stage (longest) of a

multistage decimator and the filter required by a
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single stage decimator compare as shown in Figures 1

and 2 , it is seen that the single stage filter is much

longer. So , by realizing a large amount of decimation

over the earlier stages and a small amount (so that

both L and H are large for the last stage) over the

last stage , the number of MADS can be reduced

cons iderably. Very large reduction in the number of

MADS re qui red , is realized when the interpolation or

decimation ratio is greater than about 20.

(b) Design procedure (optimal decimator )

The number of MADS required per second is shown

to be ,

= Dj~~~ ~~~~~~ S(MADS )

where , D( .~2, 6s) is a function of stopband

(65) and pasaband (6p) variances , and the number of

stages , K . 
~ro is the initial sampling rate and

S(MADS) is a function of the decimation ratios of the

K stages , and the transition bandwidth.

Croohiere and Rabiner have shown that D,, is not

very sensitive to the number of stages (Reference :

Table 1), but the function S(MADS) is. So , they have

developed various design curves which can be used to
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find the optimum number of stages and an optimal set

of values for the decimation ratios for the K stages~

For a two stage design , solution is available in

closed form as

D1 OPT = 20(1 - /D~f/ (2-Af))
2 - ~f(1 + 0 )

and

D 20~~~
1 

= D/ D 10~ 1~ where ~~ = 
fs

and D = required decimation ratio

The design procedure for a general K stage

decimator follows.

The s pec if icat ions are 6p , 6s , ~f, D and f’ro • It

has been shown that the use of more than four sta ges

will only increase the complexity of implementation

and will not reduce computation any further.

Therefore , the values of D,~ for the specified values

of 6p, 6s are found for K = 1 ,2 ,3 an d 4 from Table 1.

Referring to Figure 5, the value of S , for the

specified values of D and f , is found for each value

of K 1  through 4. The value of R
T 

is then computed

for each K. Obvious ly, the value of K , which results

-96 - 
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in minimum val ue for R T , is the optimal value. From

the graphs in Figure 6, the decimation ratio for each

sta ge can be found f rom the s pec i f ie d values for D an d

~f.

T h e same des ign curves may be use d for th e d esign

o f an o p t imal inter polator as t he p rocesses  of

interpolation and decimation are duals to each other .

IV . Pract ical Consideration in the Implementati on of

Mult istage Decimator and Interpolators:

An implementation strategy is described by

Croch iere and Rabiner which automatically takes care

of the presence of L— 1 zero samples between non— zero

samples in the input , w i thou t actu ally chec ki ng for

zeros and also generates onl y one out put po int fo r

every M sample s.

If the leng th of the uni t sam p le res ponse of th e

LP filter , N , is chosen such that

N = QL (where L in the decimation or interpolation

ratio and Q is an integer),

then , exactly Q non— zero samples of the input sequence

(effect ively padded with zeros) are spanned by the unit

sam ple response.
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p
Then , the output sequence is given by

y(n) =
Q~ h (kL+ (nm) ® L)x([~~~] - k)
k=O

where h(n) is the filter impulse response , ( ) ® L implies

the quantity in parentheses modulo L and {~i!!) is the

integer value of nH/L. From this , it is seen that the input

se q uence is to be se quent ially address ed for Q of i ts

va lues , to generate one output point. Also , the f i l ter uni t

sample response must be addressed by (KL+(nM) ® L). But , if

h(n) is s to re d in a scram b le d or der : h ( O ) ,  h(L),. .

h((Q— 1)L), h (MØL ), h(L+MØL), ...,h((Q— 1)L+H®L ), 

,h(((L— 1)M) ® L), h(L+((L— 1)M) ~ L),

h ((Q— 1)L+((L—l )M) ® L), then it can be addressed

se q uent ia lly for Q of i ts values for com put ing eac h out put

sample.

_  
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V. Present Work

In the p resent  wor k , both non— optimal (single— stage)

and optimal (multi— stage) interpolator s and decimators have

been implemented for interpolation ratios of 3/2 , 3 an d 5 to

get at sa mp ling ra tes  of 10 KHz , 20 KHz , an d 33 KHz ,

starting from 6.67 KHz , and decimation ratios of 3/2 , 3 an d

5 to get back to sampling rates of 6.67 KHz .

From the design curves , it was determined that two

stage implementation was optimal for ratios of 3 and 5, and

one stage for a ratio of 3/2. Optimal values for the

inter polat ion ( dec imat ion) rat ios for both the sta ges a re

calc ulated and filters specified. The filters were designed

us ing the REMEZ exchange algorithm. In the multistage

imp lementat ion , the filters are scrambled as explained in

the previous section and stored on files. The two

implementations were tested for run times and results

follow.

Single stage Multistave
Integer ra t io interpola tor interpolator

3/2 70 seconds 20 sec onds

3 72 seconds 29 second s

5 150 seconds 34 second s
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T he s pec t ra  of or igi nal s peech an d inter polate d s pee ch

signals are presented in Figure 7 which clearly show the

frequency domain effects of interpolation. The language

used for implementation is FORTRAN. (Listings of

single— stage interpolator and multi— stage interpolator and

decimators are enclosed.)

VI . Suggestions ~~c Improvement

Goo dm an and Carey  p ro pose a set  of nine FIR f i l ters of

which eight are halfband filters , to be used in proper

se qu ence , alon g with resampling to real4 ze a w ide range of

acc urate interpolation and decimation ratios. It is claimed

that  th e f i l ters are eff ic ient in terms of num ber of

multiplications , s ince most of th e f i l ters in the set ar e

half band filters (in which nearly half of the impulse

res pon se co e f f i c ients are zero )  an d t hat the re quire d f i lter

sequence can be designed without a computer.
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SF~CF1ON V

CONTINUOUSLY VARIABLE SLOPE DELTA MODULATOR

H. Rav indra

I. Intro duction

Delta modulation Is a waveform encoding techn ique which

is cha rac te r ize d b y one bi t informat ion ov er eac h cloc k

period. In its simplest form , the m odulator cons is ts  of a

comparator (Ref. Figure 1), sampler and an accumulator.

The comparator compares the input signal and the accumalator

c o n t e n t s , an d produces an error signal at the data sampling

rate. The sampler generates a one bit output 1 or 0

depending on whether the error signal is positive or

negative respectively. A fixed step, ~~~, is either added to

or su btracted from the accumulator when the output bit is

a 1 or 0 res pect ively — t hen the accu mulator content  w ill be

an approximation to the original speech signal. So , the bit

stream out put by the encoder represents an approximation for

the original signal. The decoder is similar to the encoder

except for the absence of the comparator and the presence of

a LP filter at the output. It has been shown that a simple

scheme l ike this suffers from two main disadvantages. They

are:

(i) slope overload noise and

(ii) granular noise. 
j
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Slo pe over load resul ts i f the input speech s ignal to

th e encoder varies so fast that the encoder cannot track it

well an d granular noise results due to the alternation of 1

an d 0 to represent a constant level. These noises can be

reduced considerably by adapting the step size dynamically

so tha t when the slope is high , t h e s tep s ize increases an d

when the slope is very low , the step size decreases. In the

digital adaptive delta modulators , the p resent an d p rev ious

bits are compared and if they are the same (indicating slope

ov erloa d ) ,  the step size is increased and if they are

opposite , the step size is reduced. In a CVSD encoder , the

step size is adapted more smoothly in time , w ith a time

constan t that is of the order of 5 — 10 ms. to match the

syllabic rate of speech. It has been claimed that CVSD

processed speech sounds “cleaner ” at bi t ra tes of 25 K

bits/second and lower. Also , this metho d p rov id es for a n

increased resistance to bit errors. But the price paid is

increased slope overload distortion compared with

instantaneous compandors .

II. CVS.P Encoder ~~g Decoder [Reference: Figure JJ

The com parator compares the audio input with the output

of the integrator and produces an error signal. The sampler

produces a 1 or 0 depending on whether an error signal is

positive or negative respectively at that clock instant.

The algor ithm detects three like consecutive bits and

out puts a ‘1’ an d a ‘0’ otherw ise. The algorithm output is

- 102 -
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at clock rate. The slope command low pass filters the

al gorithm output and produces a signal which acts as the

mo dulating signal in the PAM. The slope command LP filter

is selected such that i ts t ime cons ta n t matches the syl la bi c

rate of speech. As can be seen , the modulating signal

increases exponentially if there is a slo pe over loa d , and

hence results in inoreasd step size. The PAM modulates the

sampler output with the slope command output . The

inte gra tor co ns t ruc ts  an ap p rox imat ion for the or iginal

audio signal. The decoder is similar to the encoder except

for the absence of the comparator . It is suggested that the

slope comman d filter should have a pass band width of 25 to

40 Hz and that the oompr ssion ratio should be 12:1.

III. Present Immi ementation

The CVSD system is simulated on a digital computer.

The algorithm is implemented by a 3 bit Shift Register which

stores the present bit and the past two bits and produces an

out put of ‘1’ if all the bits are alike and ‘0’ otherw ise.

The slope command filter is a digital LP filter with a

passband cutoff between 25 and 40 Hz and a roll off rate of

20dB per decade. The slope command filter is convolved with

the algorithm output to generate the slope command signal.

This signal modulat es the sampler output and is summed up

with the proper sign in the accumulator , and then low pass

filtered to generate an approximation for the original audio

signal. Since this is a feedback system , it is necessary to

_ _
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generate outputs from the slope command module , the PAM and

the Integrator one point at a time . So, the convolutions

mentioned earlier are carried out such that one point is

generated and output from the module at a time . Two

operations are to be performed on the slope command output

before it is sent to the PAM. They are ,

(i) Biasing : When the speech input is zero , the

sam p ler output w ill be a sequence of alternating l ’ s and

0’s. So , the modulating signal will be zero and this

requires the addition of a bias to the slope command signal

so that the approximation to a constant level is a train of

alternating l’ s and 0’s of small magnitude.

(ii) Amplification: When the slope of the input

signal is large over a long period of time , the slope

command output saturates at the maximum possible value.

Th is value may not be sufficient to provide for closer

trac king of the high slope signal. Therefore the slope

command out put must be amplified.

The biasing and amplification can be adjusted so that

the compression rat io is 12:1 as specified.

The FIR filters are designed using the REMEZ exchange

algorithm. The system reads in speech from a file , encodes

it and passes the eneoded output into the decoder which

decodes the encoded speech and produces the output speech

which is written onto a tile.

- 104 -
- ~~-



Results:

At this stage , the encoder and decoder are logically

working correctly. It looks as if it is necessary to design

and use separate slope command filters for the three

possible sampling rates. Each filter can then be tuned up

so that it matches the syllabic rate of speech and also the

slope command output can be properly biased and amplified.

The observation with a single filter designed for a passband

cut off at 32 Hz based on a sampling rate of 20 KHz leads to

heavy slope overload when the sampling rate is lower. The

integrator filter should be such that the base band of the

reconstructed speech passes through.

The output of each module is presented in Figure 3.
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(a) Input speech at 33 KHz (b) Encoder output at 33 KHz
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(c) Decoder output at 33 khz

Figure 3: Input and outputs of the CVSD System
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