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Section 1

Summary of Program for

Reporting Period

Program Objectives

To develop practical, real time methods for suppressing

noise which has been acoustically added to speech.

To demonstrate that through the 1incorporation of the
noise suppression methods, speech can be effectively
analyzed for narrow band digital transmission 1in practical

operating environments.

Summary of Tasks and Results

Introduction

This semi-annual technical report describes the current
status in five research areas for the period 1 April 1977

through 30 September 1977.

P

Application of the SABER method for Improved Spectral
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Analysis of Noisy Speech-Steven F. Boll.

A method 1is developed for reducing ¢the effect of
acoustically added background noise when spectrally
analyzing speech using Linear Prediction. Fundamental to
the method 1is the result that the spectral magnitude of
speech plus noise can be modeled as the sum of magnitudes of
speech and noise._ This phase independent model allows for
noise to be suppressed by subtracting the expected noise
spectrum from the locally averaged speech spectrum. Using
the Spectral Averaging for Bias Estimation and Removal, or
SABER method, a noise reduction and corresponding signal to
noise improvement of 15 dB is realized on both digitally
added white Gaussian noise and acoustically added helicopter

noise.

Current Results on Dual Input Nonstationary Noise
Suppression Using LMS Adaptive Noise Cancellation-Dennis

Pulsipher.

The previous Semi-Annval technical report described the
successful application of the two microphone Widrow-Hoff
Least Mean Square (LMS) algorithm for removing digitally
added noise from speech. The method is now being applied

for removing nonstationary acoustically added noise.




Preliminary results show that narrow band periodic noise can

be completely eliminated and broad band colored noise can be
reduced by at least 10 dB. When used in realistic operating
environments, a filter length on the order of 300 ms. is

required for broad band noise reduction.

Estimation of the Parameters of an Autoregressive-loving

Average Process in the Present of Noise-William Done.

This task considers an approach to parameter estimation
in the presence of noise which involves the construction of

a new model which explicity accounts for the effects of

noise.

An analysis method is developed for parameter
extraction which 1is significantly change from the standard
LPC methods used when no noise is present. It is shown that
the addition of noise to an all-pdle or autoregressive (AR)
process results 1in pole-zero or autoregressive-nmoving
average ARMA process. Methods for estimating the parameters

of the ARMA process are considered.

Multirate Signal Processing-H. Ravindra

The aim of this project is to simulate a system on a
digital -Eomputer, which <c¢an 1increase or decrease the

sampling rate of a digitized acoustic signal. These two




operations are called Interpolation and Decimation
respectively. This project is the first phase of a- larger
project which involves the simulation of a CVSD system, with
an idea of studving the problems of tandeming. Since the
CVSD performance (signal-to-noise ratio) is better at higher
sampling rates, an Interpolation/Decimation scheme is
reouired to translate the sampling rate from 6.67 KHz to

higher rates.

Simulation of Continuously Variable Slope

Delta Modulation (CVSD) H. Ravindra

A FORTRAN CVSD simulation was developed and implemented
using the specification defined by Joe Tieney in Network
Speech Compression note 15, April 23, 1974. Using the
Multirate Signal Processing program CVSD coded speech can be
generated at rates of 9.6, 16, 20, and 32 KBPS based on

input speech sampled at 6.67 KHZ.

Future Efforts

SABER Development: The SABER algorithm will be
modified to work in a "stand-alone" mode. In this
implementation the speech will be windowed and transformed.

The spectral magnitudes will be averaged and the noise bias

e A N AP



removed. Then using the saved phase a time signal will be

regenerated. This 1implementation will allow for noise
suppression without affecting the bandwidth compression
analyzer. Also 1intelligibility and quality measurements
using the DRT will be conducted on the processed =peech and

compared with scores having no noise suppression.

Adaptive Noise Cancelling: Fundemental performance

limits for the method's ability to reduce acoustically added

noise in realistic environment will be established.
Performance of the method in nonstationary noise
environments will be demonstrated. Requirements for real

time, practical implementation will be specified.

Parameter Estimation in Noise: Research will continue
towards development of effective parameter extraction
methods with consider noise as a fundamental component 1in

the modeling process.




APFLICATION OF THE SABER METHOD FOR

1IMPROVED SPECTRAl1 ANALYSIS OF NOISY SPEECH
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Chapter I

Abstract

A method 1is developed for reducing the effect of
acoustically added background noise when spectrally
analyzing speech using Linear Prediction. Fundamental to

the method 1is the result that the spectral magnitude of
speech plus noise can be modeled as the sum of magnitudes of
speech and noise. This phase independent model allows for
noise to be suppressed by subtracting the expected noise
spectrum from the locally averaged speech spectrum. Using
the Spectral Averaging for Bias Estimation and Removal, or
SABER method, a noise reduction and corresponding
signal-to-noise improvement of 15dB 1s realized on both
digitally added white Gaussian noise and acoustically added

helicopter noise.




Chapter 1II

Sumnary

This report descrites an integrated noise
suppression-speech analysis method for reducing the effect
of background noise when spectrally analyzing speech wusing
Linear Prediction. Basically it is shown that additive
noise exhibits itself as a bias added to the desired speech
spectrum. Through spectral averaging this bias will build
up allowing it to be effectively removed using its expected
value <calculated during non-speech activity. The method is
called SABER, an acronym for Spectral Averaging for Bias
Estimation and Removal. This chapter summarizes the
Objectives, Assumptions, Approach, and Kesults for the
method. Detailed developments are provided in subsequent

chapters.

Objectives

1, Develop and integrate a noise suppression algorithm
into the narrow band LPC speech analysis algorithm.

2. Insure that the algorithm's effectiveness should be
independent of any specific environment's noise
characteristics.

3. Require the algorithm to only need a single microphone.
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In implementing the algorithm, a minimal impact should
result on existing narrow band systems.

e.g. The same channel parameters should be used, thus
allowing for the new system to be compatible
with other LPC terminals.

In the absence of nocise the method should generate
synthetic speech equivalent in intelligibility and
quality to standard LPC systems.

The method should not only be able to improve spectral
resolution but also improve pitch and voicing
estimation.

The method should wuse standard, well understood
estimation techniques and be implementable 1in real

time.

Assumptions

The background noise is acoustically or electrically
added to the speech.

The background noise environment remains locally
stationary to the degree that its spectral magnitude
expected value just prior to speech activity equals its
expected value during speech activity.

If the environment changes to a new stationary state,
there exists enough time (on the order of 300 ms) to
estimate a new background noise spectral magnitude

expected value before speech activity commences.




1f the environment changes to a new =stationary state,
the alrorithm requires a speech activity detector to
signal the procgram that speech has ceased and a new

noise bias can be estimated.

Approach

The fundamental property is developed which
demonstrates that the spectral magnitude of the noisy
speech can be effectively modeled as the sum of
magnitudes of speech and noise. This result is called
the phase independent model.

Eased upon the phase independent model, an estimate of

the speech magnitude spectrum is calculated as follows:

a. The noisy speech mnagnitude is averaged over
stationary vocal tract intervals. Averaging yields
a low variance bias noise term added to the =speech
spectrum.

b. This sample mean is then removed by subtractineg the
expected noise spectrum from the averaged speech
spectrum.

c. Negative magnitude frequency components are then
removed to further increase noise rejection.

d. The resulting magnitude spectrum is then squared
and inverse transformed yielding autocorrelations.

e, From these autocorrelations predictor and
reflection coefficients are calculated using the

Levinson's recursion.

S A AN S
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In addition, pitch and voicing information are
calculated from the noise cancelled spectrum using a

cepstral pitch tracker.

Results

The method will suppress white noise up to the 1limit
allowed through reduction 1in variance of the sample
mean. As shown in Section VI, the expected value of
noise reduction equals approximate 15dB.

It is shown that the variance between actual speech
spectrum and the SABER estimate equals the variance of
the sample mean of the additive noise. This coupled
with the fact that a 15dB reduction in noise energy is
achievable suggested the following experiment for
measuring signal-to-noise 1improvement. Speech having
an average SNR of 25dB was processed with 1linear
prediction and compared with speech having a SNR of
10dB and processed with SABER. Both informal listening
tests and spectral comparisons demonstrate that the two
outputs are essentially equivalent. This experiment
suggests that a 15dB 1improvement in SNR is possible
using SABER.

Preliminary experiments demonstrate that correct pitch
values can be recovered when applying a cepstral pitch

tracker to the noise cancelled SABER spectral estimate.

-10 -
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Chapter III

System Description

Introduction

This chapter describes the various algorithm stages for
implementing the SABER method. Theoretical justification in

support of these procedures is provided 1in the subsequent

chapters.

Data Buffering

Data from the A/D converter 1is =stored in a buffer
system which 1is similar to standard vocoder designs. The
analysis frame length should be at least twice as 1large as
the maximum expected pitch period for adequate frequency
resolution [1]. The analysis frames are advanced in time by
overlapping by one-half the window length. As is shown in
Appendix A, the one-half overlap is optimum for minimizinge

the variance of the sample mean of the magnitude spectra.

Spectral Magnitude Calculation

The data in each analysis buffer 1is windowed with a
Hamming window. The buffer 1length 1is then doubled by
extending with zeros. Padding with zeros is necessary since

the autocorrelations required for the Levinson's recursion

« 11 »




are obtained by inverse transforming the squared magnitude
frequency spectrum. Therefore to prevent temporal aliasing
due to the circular convolutional property of the DFT, the
zero extension is necessary. Following augmentation the DFT

of the buffer is taken and the spectral magnitude is

computed:

X(k)| = (X3(K) + x?(k))”2 C% e

where

XR(k) + jXI(k) = DFT{x(Jj))

Magnitude Averaging

As is shown in Chapter V1, the variance of the noise
spectral estimate 1is reduced by averaging over as many
spectral magnitude sets as possible. However the
non-stationarity of the speech 1limits the total time
interval available for 1local averaging. The number of
averages 1is limited by the number of analysis windows which
can be fit into the stationary speech time interval. If
only reflection coefficients are to be estimated, a 128
point analysis can be used, resulting in a five set average
over a 384 point stationary speech time interval. If both

reflection coefficients and pitch are to be estimated from




the same analysis window, then a 256 point window must be

used, resulting in two set average.
Noise Bias Estimation

The SABER method reaquires an estimate of the expected

value of the noise magnitude spectrum,uN:

uN = E{ lNl}

This estimate is obtained by averaging the signal magnitude
spectrum [X| during non-speech activity. Estimating uy in
this manner places certain constraints when implementing the
method. If the noise remains stationary during the
subsequent speech activity, ¢then an initial startup or
calibration period of noise-only signal is required. During
this period (on the order of a third of a second) an
estimate of uy can be computed. If the noise environment
is nonstationary then a new estimate of uN must Dbe
calculated prior to bias removal each time the noise
spectrum changes. Since the estimate is computed using the
noise-only signal during non-speech activity, a voice switch
is required. When the voice switch is off an averaged noise
spectrum can be recomputed. If the noise magnitude spectrum
is changing faster than estimate of it can be computed, then
time averaging to estimate uN cannot be used. Likewise if
the expected value of the noise spectrum changes after an

estimate of it has been computed, then noise reduction

» 13 =
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through bias removal will be less effective or even harmful.

Thus in summary, an estimate of the expected noise
spectrum, UN» 1s calculated by averaging the noise signal
taken during non-speech activity. This approach not only
requires a speech activity, detector and a short segment of
noise only signal prior to speech activity, but requires
that the noise spectrum remain slowly varying with respect

to the bias estimation.

Noise Bias Removal
The SABER spectral estimate §A is obtained by
subtracting the expected noise magnitude spectrum uN from

the averaged magnitude signal spectrum le. Thus:

§A(k)= |x(k)l'UN(k) k =0, 1, -"’L']

Where L=DFT buffer length.

After subtracting, the differenced values having
negative magnitudes are set to some small positive value
relative to the average energy. These negative differences
represent frequencies where the sum of speech plus local

noise is less than the expected noise. As 1is shown in

Chapter VI, replacing negative differences with small

positive values, results in an smaller spectral

approximation error.

- 14 -
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LPC Coefficient Calculation

The LPC coefficients corresponding to the spectrum >5A
are calculated by initially squaring the magnitude spectrum,
The inverse DFT of the resulting power spectrum is then

computed. The output of this transform 1is a set of

autocorrelations, R(k), k=0, 1, ..., L-1. A set of M LPC

predictor or reflection coefficients are calculated from the
first M+1 autocorrelations, using the Levinson's recursion

{21. The coefficients will represent an LPC all-pole

spectral fit to the spectrum Sp -

Gain Calculation

There are two . choices for the gain term needed for
synthesis. Either the rms of the noisv sienal, g or the
rms of the noise cancelled signal, € g These gain terms

can be computed as:

L
%" (% ) x*(k))!/2

9 = ({ R(0))'/2

where  x(k) = s(k) + n(k)

and R(K) = IDFT{°A21

- 18 .
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It was decided that when speech activity is present
that gx is used and when speech activity is absent that RS
is used. This choice has the desirable effect of amplifying
the synthesis output during speech activity and attenuating
the synthesis output during non-speech activity, since 8y
will be greater than gs. The procedure for determining
whether to use g, or gs was to examine the energy change
before and after noise removal. Let R equal the amount of
energy reduction in dB. Then:

Ix
R = 20 Iog]0 3.
s

Puring the non-speech noise bias estimation time
period, values of R taken each analysis frame are averaged
together giving an average estimate of noise power reduction
K. As is shown in Section VI, this average value for white,
Gaussian noise is about 15dB. Speech activity is detected
by comparing the current value of R with R. If the current
value of R is within 5dB of the average, the gs is picked as
the gain term. If the current value is smaller than the
average by 5dB or more, then 8y is used. Again the
reasoning behind this procedure is that in the absence of
speech activity the power reduction should be largest and

near its expected value. With speech present, a larger

o A5, s
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percentage of the spectrum is now speech, thus subtracting
off the noise bias will only slightly reduce the total

power. Thus 8 v gxand R<<R.

There are difficulties with this detection procedure
however. If the signal-to-noise ratio 1is low R<<R even
during speech activity. This results in the wrong gain term
being chosen and the speech synthesis is attentuated rather
than amplified. VLikewise at the other extreme if the noise

reduction value for the current frame drops 5dB below the

average during non-speech activity, the synthesis will be
amplified. The 65dB value was an empirically determined

threshold.
Pitch Detection

When the noise contains periodic components in the
frequency range used for pitch detection, the pitch tracker
can track the noise rather than the pitch. If these
harmonics are first removed by the SABER method, then a
pitch tracker which uses spectral magnitude information can
be used to extract the actual pitch period. One such pitch
detection scheme is the cepstral pitch tracker [3] After
computing §A the 1log 1s taken followed by a DFT. During
voiced speech, the real cepstrum will exhibit a spike at a
distance from the origin equal to the pitch period. 1If
pitch detection is to be done based on the SABER output

spectrum, then a sufficiently long analysis time window is

- 17 -
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required. A 256 point analysis window based on a

sampling rate was used for cepstral pitch tracking.

«18 -
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Chapter 1V

Results

Introduction

This chapter presents the results of three experiments
designed ¢to demonstrate the improvements in noise deduction
and spectral resolution solvine from the application of the
SABER alrorithm to =speech analysis. Two types of noisy
speech were used. In experiments one and two Gaussian noise
was digitally added to clean text to produce two data bases
having specified signal-to-noise ratios of 10dB and 25dB.
These controlled data bases allowed for access to both the
clean and noisy speech. In experiment three speech recorded
in a helicopter environment with acoustically added noise
was used [4]. Synthetic speech was generated from each data
base. Results consist of synthesis ¢time waveforms and
corresponding all-pole spectra when standard linear

prediction analysis and SABER analysis are used.

Experiment on 10dB SNR Data Base

To determine the improvement in spectral resolution
obtainable from the SABER algorithm, a controlled data base
was constructed. Broad band Gaussian noise was digitized
from a standard analog noise generator. Clean text was

recorded in an acoustically shielded sound proof room havine

- 19 -
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an ambient noise level of 27dB. Both speech and noise were
filtered as 3.2KkHz and sampled at 6.67KHz. The average
signal energy of each file was measured [4] and the noise
was scaled and added to the speech to give an average
signal-to-noise ratio of 10dB. The file energy calculation
was taken over both speech and silent intervals. The
vocoder analysis-synthesis program was modified to process
either the clean or noisy speech. Three types of synthetic
speech were generated: LPC on clean speech (LP?C on S); LpPC
on the noisy speech (LPC on S+N); and SABER on the noisy
speech (SABER on S+N). Note in the absence of noise, as
shown in Chapter VI, SABER reduces to a standard LPC
analysis, and therefore SABER on <clean speech was not

generated.

The first set of figures, Figure IV.1 A through D show
synthetic waveforms and their all-pole spectra analyzed from

the vowel in the word "dogs". Part P shows that second and
third formants are clearly resolved using SABER, while
considerably obscured using LPC. However, part D shows that
complete noise <cancellation was not achieved. This was to

be expected since the clean speech had a SNR in excess of

10+15 or 25dB.

Figures IV.2 A through D show synthetic waveforms and
their all-pole spectra analyzed from the fricative |sh| in
"shade". Again better but not perfect spectral resolution

is achieved by the SABER algorithm over standard LPC.

- 30
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Comparisons Between 10dB and 25dB SNR

A fundamental question when evaluatine the amount of
noise rejection is: "After processing, how much improvement
was there in the signal-to-noise ratio?"™ Since signal and
noise energies cannot be separated and measured after
processing, it is not possible to measure an SNR improvement
directly. However the following indirect method can be
used. If as is shown in Chapter VI, the amount of noise
rejection 1is 15dB for white Gaussian noise, then synthetic
speech generated by the SABER algorithm using the 10dB SNR
data base should sound approximately equal to the synthetic

speech generated by LPC using the 25dB SNR data base.

Such an experiment was conducted and the results are
given in Figure IV.3 A and B. Examining Figure B shows that
the all-pole spectra for LPC at 25dB has 1less overall
energy. This 1is to be expected since less noise was added
to the clean text to arrive at a 25dB SNR. Other than the
gain difference, the spectra are approximately equal.
Informal listening tests supported the results shown here,
in that LPC synthesis with a 25dB input SNR was essentially
indistinguishable to within a gain factor from SABER

synthesis with a 10 dB input.
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Experiments on helicopter Speech

An audio test tape used in the National Security
Agency's consortium testing, containing speech recorded in a
heiicopter environment was processed. The speech was
filtered at 3.2KHz and sampled at 6.67KHz. Synthesized
speech was generated using LPC and wusing SABER. This
experiment represents true field conditions since the noise
and speech are acoustically added at the microphone. Figure
IV.4 A and B show time and frequency functions for LPC and
SABER syntheses during noise only input. Figure A shows
synthetic waveforms wusing the same vertical scale. The
average energy difference was measured at 15.1dB. Figure B
shows the all-pole spectra. The periodic harmoniecs at
multiples of 750Hz are clearly evident in LPC spectrum
(upper trace) with the second and fourth harmonics dominant
at about 92dB. The all-pole spectrum corresponding to the

SABER spectral estimate is given in the lower trace.

Figure IV.5 A through D show time-frequency pairs for
the vowel |u| in "squirrels"™ and the fricative |sh| in
"bushy". Note in Figure B that the SABER spectral estimate
clearly separates the low first and second formants as well
as shapening the third formant at about 1800 Hz. Also the

noise peak at 3KHz present in the LPC spectrum is now absent

in the SABERK spectrum.
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Chapter V

Analysis of the Phase Independent Model
Introduction

Basic to the understanding of the SABER algorithm is
the result that magnitude of the noisy speech spectrum can
be accurately approximated by the sum of the magnitudes of
speech and noise. This chapter describes this phase
independent model and develops an error analysis for judging
the effectiveness of the approximation. For notational
convenience upper case symbols will denote Fourier

transforms and lower case symbols their inverse transforms.

Thus

X = x(el¥) = cf x(k)e Iuk

= =00

and

m™ M
x = x(k) = %" J X(e‘j“’)e Juk g,

-7
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Additive Noise Model and Zero Phase Approximation

Assume that a noise signal n, has been added to a

speech signal s, with their sum denoted as x. Then

Taking the Fourier transform gives

+ N

>
"
w

The desired speech spectral magnitude, |S| is given by

Is| =[x - N|

with its squared magnitude

1512 = 58" = [x1% + INI% - 20x][N|cos(o, - o)

where * denotes complex conjugate, ex the phase of X and eN

the phase of N.

The zero phase approximation Sz to |S| is given by

s, = Ix] - IN|

with its squared magnitude |Sz|2 = |X|2 + |N|2 - 2|X]IN]

o IR W ST
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Error Analysis of Zero Phase Approximation

The primary consideration of the speech analyzer is an
accurate estimation of the squared magnitude function.

Taking the difference D between |S|2 and |SZ|2 gives

D= Is)? - ISzl2 = 2|X|IN|(1 - cos(8y - 8))

or
* *
D=- XN - NX + 2|X||N|

A form for D which explicitly shows its relation to S

and N can be developed by noting that D can be written in

the form of a perfect square.

Thus

D = -[(XN*)]/Z . (Nx")”z]2

or

D= -[{fs+u)n‘ - As+N)"N Jz

‘ After some manipulation D can be written in the following

i form which exnlicitly shows its dependence on the

I8 <

o R e A e

!m



signal-to-noise ratio |S/N]| .
il T R e B
D = -|N|2[/IS/N|e s W 4 -y/|S/N|e L

In this wunfortunately complicated form, the zero phase
approximation error D, can be analyzed as a function of the

signal-to-noise ratio.
Extreme Error Values

Again remember that all symbols are functions of radian
frequency w. The error D will of course by zero whenever S

and or N are zero.

A worse case condition, that is when D is maximum, will

occur when

B, = 6. = + /2

Then

D=- |N|2[/l = 5IsN - /1 gIsN ]2




or after squaring
i e e |
D= 2|N|2 /IS/NI2 +1 - 1]
For
[S/N| << 1 DY 0

For
|S/N| >> 1 D% 2|N||S|

The relative error is
2
0/S| = 2[N|/|S] << 1

Finally, for [S| ~ |N|

D ¥ ZINIZ[?rE~S- 1]

This situation is depicted graphically as

- 27 -
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N

Here the relative error is given by

o/1s|? & 2[./'_2“ 3 1] " -6dB.

Summary

This chapter investigated the spectral error induced by
usine a zero phase approximation to the magnitude spectrum.
The worse case condition occurs when the magnitudes of S and
N are equal and out of phase by ninety degrees. For other
situations the error was negligible or small compared to the
speech spectrum. Informal 1listening tests judged the LPC
synthesis based upon the zero phase power spectrum to be
essentially indistinguishable from LPC synthesis based upon
the actual power spectrum. Although differences <can be
detected, they become inconsequential compared to the noise
cancellation capabilities provided by using the zero phase
approximation. The application of the zero phase model to

noise suppression is developed in the next chapter.
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Chapter VI

Analysis and Reduction of Estimation

Error using the SABER Method

Introduction

Using the result of Section V that the magnitude of
speech plus noise can be accurately approximated by the sum
of the zero phase estimate of speech and noise magnitude,

the following linear model is implied:

x| = 5, + IN|

where
SZ = zero phase approximation to the magnitude of the
Fourier transform of the windowed speech, s(k)
IN] = Magnitude of the Fourier Transform of the Additive
windowed noise n(k).
and
|x| = Magnitude of the spectrum of s(k) + n(k)

Again upper case symbols denote Fourier transforms of lower
case symbols. This model shows that the noise spectrunm, |N|
enters in as a spectral bias added to the desired =speech
spectrum, Sz. The more accurate this bias can be estimated,
the more accurate will be the resulting estimated spectrum
obtained by subtracting the bias estimator from the noisy

speech magnitude, [X|. This section describes an approach

B
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to bias estimation and removal using short time averaging.

The Non-Averaged SABER Estimate

Assume that the additive noise n(k) is stationary and

thus that the expected value of the noise magnitude:
ECIN[Y = my

is constant over time. (In practice Uy is estimated by a

time average taken during non-speech activity.)

A spectral estimate Sp of S; can be defined as

Sp = 1X1 -y
The error ¢ in approximating S; by Sp is
€=S-SZ=|X|-11N-|X]+!N’

A

or

€= |N| - b

Using this estimate the value of the error equals the
difference between the magnitude of the noise spectrum and

its expected value.
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Reduction in Error Through Averaging:

The SABER Spectral Estimate

A straight forward method for reducing the spectral
error € is through averaging. Averaging magnitude spectra

'X(1)| taken from possibly overlapping time windows gives

k

X =g 1 X1 - . élsz(i) + NG|
or
T
The SABER spectral estimate is given by:
S
The spectral error ¢ in approximating §Z by §A is
P8y 5 T - BT o TAT
or

m)
n
=
L)
B




Assuming first that the zero phase approximation S; |is
an accurate approximation of |S | as argued in Chapter V and
second that during the total time segment over which the
averages are taken that the speech spectra Sz(i)remain

essentially constant, then

A o
IS| S, v S;

Thus the averaged spectral magnitude error €

represents

€= Nl - uy %Sy - I8l

Assuming stationarity this shows that as more
time-averaged spectra are used, the sample mean TNT will
converge to uy and §A will converge to |S|. Unfortunately
the nonstationarity of the speech limits the time interval
over which averages can be taken. Thus the error can only

be reduced to the extent to which the sample mean |N| has

converged to the mean

N
In terms of mean squared error, the variance of the

error
o Bt
e * var(e) = E((SA - SZ) )

equals the variance of the sample mean of the magnitude
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ncise spectrum:

. e 2
o2 = VAR(TN]) = ECCINI - uy)°)

IN]

The error will be minimized to the same extent that the

variance of the sample mean has been minimized.

In summary, the noise-suppression, signal estimation
problem, using the 2zero phase approximation linear model,
can be reduced to a spectral estimation problem.
Unfortunately due to the nonstationarity of the speech, only
a limited number of spectral time averages can be wused to
minimize the variance of the sample mean. Thus complete
noise cancellation 1is not possible. At this point
justification for the name SABER is apparent. The noise
spectrum shows up as a bias on the desired signal. To
remove the bias, averages are taken for as long as the
underlying speech remains stationary. Averaging will reduce
the variance of the 1local noise bias. The bias can be
partially removed by subtracting off the expected value of
noise bias. The smaller the variance, the better the noise

reduction.
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Expected Value of Noise Reduction

When the additive noise n(k) is zero mean, white, and
Gaussian, an estimate of the expected value of noise
reduction can be computed. In turn the amount of noise
reduction can be equated to the variance of the error
between the SABER estimate, and the speech spectrum.
Specifically, from the last chapter let

Fe5 -5, = TN -

A N

Define oﬁ as the variance or average power of the

additive noise. Then

of = En?(k))

Using the results of Appendix B, the expected value of the

noise magnitude, HN having a x distribution of order two

will equal:

e |

E{IN]} = T onJZL L = analysis window lenqth
The squared noise spectral magnitude, having a x2
distribution of order 2 will equal oﬁL:

E(IN|?} = oL

- 834 =




Therefore the variance of the magnitude will equal

2 2

4 2 2
ECCIND = i) = ECINISY - g = of (1 - )L

Without averaging, by simply subtracting the mean from
the magnitude spectrunm, the expected value of noise

reduction will equal 6.68dB:

10 Tog, E(NL) 5~ = 6.68 dB

Further Reduction in Variance Through Averaging

The noise variance can be reduced by averaging
magnitude spectra taken from possibly overlapping time
windows. This technique has been carefully investigated by
Welch [5). A summary of his variance analysis is described
in Appendix A. Again because of the nonstationarity of the
speech spectra, only a limited time interval is available
for averaging. Using Welch's formulation, the variance 1is
minimized by first specifying the type and length of window
required, second the time interval available for averaging,

and then averaging magnitude spectra based upon windowed

- 35 -

e S T——




data overlapped by one-half a window length. For this
implementation, a 19.2 ms Hamming window was used with a
time interval of 57.6 ms. This allowed for a total of five
windows to ©be used. The variance of the sample mean after

averaging equaled

EC(INT - uN)Z} = 0.275 Var{IN|} = (0.775)(.21){[
The expected value of noise reduction is

2
onL

10 Tog, 7, 12.4 d8

(0.275)(0.2])0n

Discussion

The choice of window 1length and averaging interval
values represent a compromise in conflicting requirements.
For acceptable spectral resolution a window 1length greater
than twice the expected 1largest pitch period is required
[1]. For minimum variance a large number of windows are
required for averaging. Finally, for acceptable time
resolution a narrow analysis interval is required. Using a
Hamming window the effective averaging time interval reduces

from 57.6 ms to approximately 39 ms due to the window edge

attenuation. A 19.2 ms window 1length has been found to
result in acceptable frequency resolution [6]. Thus to
s 35 »




achieve better noise reduction some compromise in both time

and frequency resolution was necessary.

Negative Magnitude Stripping

An additional technique for reducing the spectral error
is to replace EA with zero when ever the difference goes
negative. During non-speech activity ¢this will on the
average reduce the resulting noise power in half for an
additional 3dB improvement. When speech is present and “N

is larger then IX[ the spectral error betﬁeen SZ and §A will

be larger than if zero is used for the estimate. That 1is
for:
[X] < uy
have
-5, >0
A
ind

(s, - 5% > (s, - 0)2
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Summary

This section developed an equality between the error in
the SABER spectral estimate and the variance of the sample
mean of the additive noise spectral magnitude. For additive
noise which is white, zero mean, and Gaussian, the expected
value of noise reduction resulting from averaging,
subtracting off the mean and zeroing out negative difference

components was approximately 15dB.
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Appendix A

Variance Reduction Through Averacing Magnitude Spectra

Introduction

It was shown in Chapters V and VI that the noise
spectrum shows up as a bias on the desired signal. To
remove -the bias, averages are taken for as 1long as the

underlying speech remains stationary. Averaging will reduce

the variance of the local noise bias. The bias can be
partially removed by subtracting off the expected value of
noise bias. The smaller the variance, the better the noise
reduction. Due to the nonstationarity of the speech only a
limited time interval is available for averaging. This
appendix reviews an analysis published by Welch [5] for
determining the variance reduction possible as a function of
averaging 1interval, M, window 1length, L, window shape

w(j), § = 0,1, ..., L = 1, and overlap interval D.

Using the results of this analysis the amount of

variance reduction was calculated.
Data Segmentation

Define x(J) J =0, 1,..., M =1 to be samples of a
second order, stationary stochastic sequence. Data segments

xi(J). possibly overlapping of length L are defined with
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starting points D units apart. Thus define

XI(J) = x(j)
xZ(J)=x(J+D) Ji=E 0y Ny weey L=
xg(J) = x(J + (K - 1)D)

Assume there are K segments covering

interval:

(K-1)D+L=M

Magnitude Spectrum Calculation

Using a3 data window, w(j) (for th

window was selected), the windowed

formed:
(DU}, eee {2, (D

For each windowed data sequence,

transform is calculated:

( 5 i)w( )- . L=0
X o i = U,
k'”) izo x ()w(i)e
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w(j)}
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followed by the magnitude spectrum:

X ()] = (ReZ{X, (2)) + Tnéix (2)1)}/2

Averaging the spectral estimates gives

1 K
IDIEE SRENO]

Variance of I}T

bDefine the covariance of |X| as
d(3) = cov{|X (2)], IXk+j(2)|}

Then it can be shown that

. s o g
var([X(2)]} = %{1(0) A Ll d(j)}
j=
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Further, defining the correlation of !XT as

p(j) = correlation{|X (2)], |xk+j(q)|} . 'di"&);

then

var{X, (2)} K-1 :
var{|x(2)]} = ——l':—~ {l + 2] K—,.(J D(.’i)}
341

Assuming that the spectrum of x(j) 1is flat and

Gaussian, the correlation p(j) of |X| is given by

L-1 L-1
o(3) = § w(k)w(k + ju)/ T wl(k)
k=0

Minimum Variance Determination
For a fixed averaging interval, M, window 1length, L,

and window shape w(j), the optimal spacing D can be

calculated to minimize the express.on:

+ A2 -




1

K- ;
Pedfiez | Bdold)
=1
Note that o(j) is greater than or equal to =zero. For
B> L (no overlap) po(j) = 0 and the variance will reduce as

1/K. By overlapping segments, K increases at the expense of
an increasing op(j). After some calculation the minimum as
suggested by Welch, was found to occur for D = L/2, that is,

overlap by one-half a window length.

When using the following parameters imposed by the

speech analysis constraints:

M = 384
L = 128
D = 64

K =5

the resulting value for F was calculated to be 0.275.
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Appendix B

Calculation of the Mean and Variance

Introduction
This appendix develops estimates for the mean and variance
of the magnitude spectrum for white, zero-mean Gaussian
noise. Of course, this development is not original, with
this version taken in part from Ingebretsen [T7].

Mean and Variance of the Fourier Transform

Let x(k) be a zero mean, white Gaussian sequence with

X(er) its Fourier transform. Then

X(CJ’D) = XR(eJ(l)) + jxl(ejll)) 5 }:X(k)e'jk(l)
k

where XR and XI are the real and imaginary parts of X.

xRand XI will be normal since x(k) is normal. In addition

E{Xg) = E(X;} = 0

It can be shown [8]) that

T S
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N j :
i ] Ju‘z J(n J
COV{XR(e )g XR(e )} = COV{XI(E ])' XI(e (1)2)) - 0
for (.,\] f wz
jm] j(l)z
Thus the vector pairs (XR(e ) XR(e )) and

Juy Jup
(Xl(e )5 Xl(e )) are 1independent since X is Gaussian.

Likewise, X 2 and X, are independent of each other.

R I
Using the inda2pendence of x(k), the variance of the

real and imaginary part of X(ej“) is given by

var{XR(ejm)} = E{Exz(k)cosz(km)}

or

var(Xp ()} - ozzcosz(kw)

where
E(x?(k)} = o

Assuming the transform is taken wusing a window of

length L samples then

- 45 -
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Lw

u)

):cosz(kw) = % +
k

N —
=
2=

Evaluating the transform at equally spaced

frequencies
results in:
o' Liket . (ke
Var{xR(e ))=—2' m=T k=0,],..,L“]
Likewise
var(X (ej"')l= Lo’ =8 P .g9 L -
l 2"‘ w L = ’ 9 ey -
- 46 -

a1
L




IR

Expected Value of Magnitude and

Squared Magnitude of the Fourier Transform

The frequency magnitude is equal to the square root

of

the sum of squares of ¢two independent, normal random

variables. It thus has a x distribution:

!X|=(X§+X§)]/2 m=k2l KE=E05 ol n il = ]

The expected value of |X| is found by evaluating

integral:

Evaluating gives

E{IX(eJm)I}=nJ-L:2—‘ w=£fi k% 0y Xy coun b~ 1

- Y ~

the

e ————— S — 557




The squared magnitude will have a x2 distribution. Its

expected value is given by

- 2
exi%) = Ly Jo ye YL gy

Lo

Evaluating gives:

ju k2 ¥
ixed®l D =te? o= k=01, .10

This 1last expression can also be obtained from

Parseval's relation for the Discrete Fourier Transform:

L-1 L-1
A2k = F 1 |x(e))?
2=0

k=0




(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

REFERENCES

Makhoul, J., Wolf, J. "Linear Prediction and the
Spectral Analysis of Speech," NTIS No. AD-749066, BBN
Report No. 2304, Bolt Beranek and Newman, Inc.,
Cambridge, Mass. 1972.

Markel, J., Gray, A. "Linear Prediction of Speech",
New York, Springer Vellag, 1976.

Noll, A.M., "Cepstrum Pitch Determination", J.
Acoust. Soc. Amer., Vol. 41, pp 293-309, Feb.
1967.

Boll, S.F., "Noise Suppression Methods for Robust
Speech Processing", Semi-Annual Technical Report,
UTEC-CSc-77-090, Computer Science Dept., University of
Utah, April 1977.

Welch, P., "The Use of the Fast Fourier Transform for
the Estimation of Power Spectra: A Method Based on
Time Averaging Over Short, Modified Periodograms",
IEEE Trans. Audio Electoacoust. Vol. AU-15, pp.
70-73, June 1967.

Cohen, D., "Specifications for the Network Voice
Protocol", ISI/RR-75-39, Information Sciences
Institute, Univ. of Southern California, March 1976.

Ingebretsen, R., "Log Spectral Estimation for
Stationary and Nonstationary Processes",
UTEC-CSc-75-118, Computer Science Dept., University of
Utah, Aug. 1976.

Jenkins, G.M., Watts, D.G., "Spectral Analysis and Its
Applications", San Francisco, Holden-Day, 1968.

-89 -




Section I1

Current Kesults on Dual Input Nonstationary

Noise Suppression Using LMS Adaptive Noise Cancellation

Dennis Pulsipher
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INTRODUCTION

1 The preceding semi-annual technical report
described a dual input noise suppression technique for audio
signals. It also described several experiments performed
successfully wusing synthetic data, data which was forced to
comply with all of the underlying assumptions. The results

of these experiments were quite encouraging.

Since that time the research has continued to apply
this technique to actual acoustically recorded noisy speech.
A brief description of recent results and conclusions

comprise this section.

OBSERVATIONS

As work with acoustically recorded data with high level
broad-band noise has progressed it has become increasingly
apparent that a factor of major importance is the length of
the required filter. A look at the impulse responses of
typical hard-walled rooms indicates that the duration of
significant energy frequently lasts half a second or more.
(Figure 1a). Since in practice the source of the noise n is
cseparated from both the 1location of the reference noise
pick~up and the noisy speech signal pick-up, it is apparent
that the situation is not completely described by a single

room impulse response.
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Let G1 be the response of the room from the noise
source to the noisy speech signal pick-up position and GZ be
the room's response from the noise source to the reference
noise pick up position. Then the filter to be estimated is
neither G nor G, but G, G;. (Figure 2). This filter may
be as 1long as the sum of the lengths of Gl and Gz(less one

point). (Figure 1b)

This affects significantly the estimation of the noise

samples uj.

%

The optimal noise estimate % is
o * . . .

u, = .z h (j-i)v(i)
1=

In actual practice, though, the filter estimated is

The error in this estimate is due to two factors, the
first 1is the difference caused by a finite length filter.
This error can be reduced by making the filter longer. The
cecond factor is the error in filter coefficient estimation.
by increasing the number of filter taps, the variance on our
noise estimate may in fact increase, and thus degrade our
systen performance. That is, if we increase the number of
filter coefficients we must also increase the accuracy of

estimation of the coefficients or the improvement in
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performance caused by 1lengthening ¢the filter may be
outweighed by the dersradation caused by miss-ectimation of

coefficients.

This increased accuracy required by longer filter
lengths may be achieved by decreasing the rate of

adaptation.

Since estimating long filters recuires more computation
and since a slow adapgation rate requires processing more
data, it has been found that performing such experiments 1is
a time consumineg prccess using the non-real time simulation.
Present results indicate, that for broadband noise, a
minimum of 10dB noise reduction using a .4 sec. adaption
filter is possible. For highly correlated noise much
shorter filters (on the order of 100 taps) can be
successfully used giving considerably better noise

rejection.

Additional experiments with 1longer filters and slow
adaptation rates are currently being performed. Effort is
also being put into determining the optimal filter 1length
and adaptation rates for different ¢types of noise and
different channels, and in the actual helicopter oneratinr

environment.
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SECTION II1

ESTIMATION OF THE PARAMETERS OF AN
AUTOREGRESSIVE-MOVING AVERAGE PROCESS
IN THE PRESENCE OF NOISE

William J. Done
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INTRODUCTION

Two important aspects of vocoder development have been
the achievement of high quality synthetic speech and the
development of low bit rate communications systems. Linear
prediction (LP) vocoders have gained importance in both of
these areas. However, evaluations of the quality and
intelligibility of LP and other vocoders are usually
performed with high quality speech 1inputs undegraded by
background noise. When noise is added to the speech signal
prior to analysis, the intelligibility and quality of the
synthetic speech derived from the vocoders are degraded, the
results often being unacceptable. In LP vocoders, the
addition of noise causes probtlems in four areas: 1) silence
detection, 2) voiced/unvoiced determination, 3) pitch period
calculation if voiced, and 4) spectral matching errors.
McAulay [10] has addressed problems 1), 2), &and 3%
Spectral matching errors, which result from the inaccurate
identification of the linear prediction parameters
(autoregressive parameters) due to the effects of noise,
will be the primary emphasis of this research. Results
illustrating the spectral degradation due to additive white

noise will be presented.

Given a time series that can be successfully modeled as
a parametric process, such as an autoregressive-moving
average (ARMA) process, there are primarily two approaches

that can be taken ¢to alleviate the distortion due to
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spectral matching errors caused by noisy data. The most
often used technique 1is to suppress the noise prior to
analysis, the analysis methods depending upon the parametric
model in use. This prefiltering technique is thus seen as a
two step process: noise removal followed by parameter
analysis. Usually the parameter analysis step remains
unchanged from the noiseless case. Examples of prefiltering
include the various applications of Wiener filtering,
adaptlve noise cancelling techniques, or 1linear filtering
techniques wused to eliminate frequency bands dominated by

noise.

The second approach to parameter estimation in the
presence of noise involves the construction of a new model
which explicitly accounts for the effects of the noise.
Rather than the two stage technique of noise
suppression--parameter extraction, the modeling approach
requires a one step system in which the analysis methods for
parameter extraction are significantly changed from the
analysis methods used . when no noise 1is present. The
modifications are required to account for the changes in the
parametric model as a consequence of adding the noise. 1In
the case of an autoregressive (AR) process corrupted by
additive Gaussian white noise, the modeling approach for

parameter estimation is especially appealing.




tcth approaches have advantages and disadvantages. 1f
a model is successful with high quality signal inputs and
algorithms for parametric estimation are well established,
then prefiltering may be desirable when noise is present.
It offers the advantage of retaining the original parameter
estimation algorithm with little or no alteration.
rrefiltering, however, may have a side effect of distorting
the characteristics of the desired signal in the process of
suppressing the noise. An example of this could be low pass
filtering of the noisy data in a situation where the noise
becomes dominant above some frequency fL. Although the
filtered signal may have an improved signal-to-noise ratio
(SNR), some information contained in the =signal is 1lost.
Another - possible disadvantage of the prefiltering approach
aricses when the system is to be used in an environment where
the noise characteristics are changing. here decisions must
be made about the structure of the prefilter: should
several types of filters, each matched to a type of noise,

be used or should an adaptive filter structure be used.

If the time series to be characterized is successfully
modeled by a parametric representation like the AR model,
then the modeling approach to parameter extraction may be
desirable 1if the effects of the noise can be included in a
modified model. The primary disadvantage of the modeling
approach 1is the need to change the parameter estimation
procedure, requiring the development of new algorithms., For

the signal-in-noise model discussed here, the addition of

- 5 7 -
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noise to an AR process results in an ARMA process. Because
of the nonlinear relationsips 1involved, the task of
identifying the parameters of an AKMA process is much more
difficult than identifying the parameters of an AR process.
In addition, there is the validity of the parametric model
for the time series being considered, which may pose a
limitation on the modeling technique. This approach also
shares the disadvantage that occurs in nonstationary noise

situations.

This section will describe a technique in which an
autoregressive process of order q, AR(q), with AR parameters
{a(i)}? is identified when corrupted by additive Gaussian
white noise. It will be shown that the additive noise
changes the time series from an AR process to an ARMA
process, from which ¢the q original AR parameters can be
identified. Preliminary results are given on the initial
efforts to implement the algorithms necessary for

determination of the desired AR coefficients.

As stated above, one limitation of the modeling
approach 1is the validity of the parametric model, an AR
process in this case. Voiced speech has been successfully
"modeled" by an all-pole LPC process. However, if voiced
speech is assumed to be an AR process and identification of
the AR parameters 1is desired, the periodic or seasonal
component can hinder the "identification" of the AR

parameters. The parametric model must be modified to




account for the presence of the periodic component,
introducing the concept of autoregressive- integrated moving
average (ARIMA) processes. Extensions of the parametric
model for the signal to include ARI, ARMA, and ARIMA forms
will be <considered. The ARI model for voiced speech
waveforms will be emphasized. This model will be studied in

both noiseless and noisy conditions.

SYSTEM DESCRIPTION

In this section, the procedures for parameter
estimation 1in the presence of noise will be discussed. The
effects of additive noise on LPC parameters will be
described and a detailed presentation of the mathematics
defining the ARMA model will be given. Of the four parts to
follow, part one will present the algorithm for linear
predictive coding. The effects of additive noise upon the
LPC parameters can then be observed. The popular LPC

approach can also be compared with the ARMA model technique.

Part two of the system description will present the
ARMA model algorithm suggested by Pagano [11]. The
mathematical details of this technique are given. In
developing the ARMA model approach, the initial step is a
stage for estimating the ARMA parameters. Once these
estimates are available, a nonlinear regression modifies the
initial estimates. Part three will discuss possible ARMA

estimation procedures and the nonlinear regression
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technique. The last part will include a discussion of
important software not included directly in the operation of
the LPC or ARMA model analysis systems. Also discussed in

this last part is the data base used for analysis.

Linear Predictive Coding

If s(k) is a time series which can be modeled as a

qth-order autoregressive process, AR(q), then

q
s(k) = - b ay()s(kei) + e(k), 1)
1:

where {a](i)}q are the AR parameters and e€(k) is a zero mean
white noise process. In developing the expressions
characterizing LPC and presenting only the autocorrelation
method of analysis, the equations are much more compact if
matrix notation is used. Refer to Makhoul (9] for
additional background and a 1list of references for LPC
development. The development of a notational convention for

LPC using a matrix formulation can be found in Boll [2].

Using the autocorrelation method, the sequence s(k) has
infinite extent but is nonzero only for 0 < k < N-1, where N
is the size of the analysis window. Form the (N+g) x 1

vector s, where

s=[s(0)s(1) ... s(N-1)0... 07", 2)

using D as a delay operator tor vector notation, Dig is an

(N+g) x 1 vector with the sequence s(0) ... 8(N=1) beginning




at the (1i+1)th position. The superscript i can take on the

values 1, ..., q. For example,

p's = [0 s(0) s(1) ... s(N-1) O ... 0]",
0% = [0 G s(0) s(1) ... s(N-1) 0 ... 0]7, and
D% = [00 ... 05(0) s(1) ... s(N-1)]".

Form the (N+q) x q matrix ﬂs by appending as columns the

«[ps 0y 0% ...0% 1. 3)

If an error sequence ¢ is defined as
e=[e(0) e(1) ...e(N-1) €&(N) ...e(N+q-1) ]T. a)

then 1) can be written as

5% 04 *e 5)
where 24 v [a](]) 31(2) e a](Q)]T is formed from the

prediction coefficients and the index k in 1) is confined to
the interval 0 < k X N+q-1. In LPC the measure of closeness
of fit 1is the least squares minimization of the energy in
the error signal ¢, as a function of the {a](i)}?. If the

loss function L¢ is defined as
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S Nt e

N+q-1
LC . Z ez(k) » ETEi
k=0 e

6)

Q
then the minimum of L. with respect to the {a](i)}] is

found. Using vector calculus,

alL
€ 29 T T 3¢
- iy =— [e'€] = 2¢ 2=,

The minimum of LE is obtained by setting this

equal to zero,

3 Bs T
Fro B, e d E ’
m ) -a_] H an € H 0 or
%
Hie = 0.

Substituting 5) into 7) gives

x

T T
H. s +H a =0

or

« §% =

expression

7)

8)




T s CRRE
e NS i

T T
Note that the matrix Hglii, and the vector Hss are equal to

r
' Rss(o) Rss(l) v a Rss (q-1)

t R__(1) R..(0) Sinte RSS (g9-2)

i
ss ss }
; |
Hy b- |
c ‘- § s é
Reo (q-1) Rss(q-2) SEu Rss(o) :
Rss(])
HTS = RSS (2)
_S_
B, Bl <
N-1- k|
where Rss(k) = Z s(1)s(i+|k|) . Equation 8) is a
matrix equation representation for the Yule-Walker
expressions
q
izla‘(i)kss(i-k) = -Rss(k). K% 3 vivy 8 10)

If the sequence s(k) is contaminated by additive noise to

produce the series x(k)

x(k) + s(k) + n(k) , 1)
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and an AR(q) model is forced on the noisy data, similar
results are obtained. The AR model forced on the noisy data

is

x(k) = - i)x(k- .
fgl az( )X(k i) + (k) ; 12)

where the {az(i)}? are the prediction coefficients and ¢ (k)
is the resulting error sequence. If the matrix ﬂx and the
vector x are formed from the data x(0), ..., x(N-=1) in a
manner similar to Hg and s, then the loss function LE for
the noisy data is

i =

3

N+g-1
... 1
kgo R s 13)

ettt  c*[d®) 1) ... €(W,q_”]T : Minimizing L. with

respect to the {az(i)}? results in

T T
Bia, = -Hx 14)

as the expression defining the least squares estimate for
the {az(i)}? defined in 12). The elements of the matrix
!ﬂh& and the vector gl; are formed from the autocorrelation
function of x(k) as in 9) with s(k) replaced by x(k). The
{a](i)ﬁ represent the LPC coefficients determined from the
undegraded signal, while the {lz(i)l? are the LPC parameters

obtained from noisy data, with no attempt made to eliminate

the effects of noise.




Constructing the matrix Eh and the vector n from the

additive noise sequence n(k), the following relationships

hold:

Ho 15)
R, (e T T

ﬂxﬂx ﬂsﬁs +HH + ﬂsﬂn + HH_. 16)

T

The ﬂw%1 term is a matrix formed of the autocorrelation
T : 1

terms of n(k) and the terms §$g1 and H HS contain the

crosscorrelation terms between n(k) and s(k). If it can be

assumed that s(k) and n(k) are uncorrelated, 16) becomes

Hs *+ Kl 17)

wWith 11), 15), and 17) substituted into 14), we have

HHg + HH 2, = [ + H17(s + n) = -(Hs + Wln] 18)

Where the assumption of uncorrelated signal and noise is
used to reduce the right hand side of 18). Solving

equations 8) and 18) for 54 and 3& , respectively,

v R
3y = -[HgHe) Hes 19) 1
y |
and £
;
:
:
- 65 -
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define the least squares estimates for a, and a,_. The
vector 12 can be related to a) by premultiplying 18) by

T, -1
[ﬁsﬂs] to give

[0+ (i)™ il = LR s - DT B
= 3, - (gH1™! Wi
or
2 7 [t WHT ay - 01 e 0™ Wl 1 Wi
ORI IR T A 21)

From 21) it is apparent that the addition of n(k) has
degraded the a_ in two wayse:

H + H'H ]'] ! has been

1) & bias term [ﬂ:_s ﬂn—

subtracted;
q
2) the relative magnitudes of the {az(i)}] have been

changed due to the matrix multiplying effect of

T

T T -1
the expression [ﬂsﬁs + ﬂnﬂn] ﬁsﬂs

The results of equations 18) through 21) are valuable 1in

showing the distortion possible when noise is added to a
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sequence that is to be the input to an LPC system. These
results are based on the explicit assumption that s(k) and
n(k) are unceorrelated and fail to account for nonzero

crossccrrelation terms (the terms etc.). Results

.I.!s.l_?" ’
showing the distortion introduced by n(k) on the inverse

spectrum derived from the laz(i)}? and the effects of

assumineg n(k) and s(k) are uncorrelated will be shown in the

section on Preliminary Results.




@
’%
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ARMA Model Approach

Inclusion of the effects of additive white noise upon
an AR(q) process 1is discused in (3], [11], and [14]. The
potential advantage of this approach is to include the noise
effects explicitly in a more general model than the original
AR(q) process. The model 1is developed on the following
assumptions:

1) s(k) is a proper AR(q) sequence described by

i)s(k-1) =
1,goa( )s(k-1) = e(k)

for a(0) = 1, a(q) #0, and q 2z 1, with €(k)
independent, identically distributed (i.i.d.)
N(O, oZ) and s(k) stationary;

2) s(k) 1is contaminated by n(k) to form the

observable data x(k),

x(k) = s(k) + n(k),

where s(k) and n(k) are independent and n(k) is

i.i.d. N(O, os).

The model has q+2 parameters--[a(i)}?, °E’ and o%. The data

available for analysis to determine estimates of these

parameters is the sequence x(0), ..., x(N=1).

22)

23)




s —

Combining 22) and 23), we have

q
.goa(i)x(k-i) » Xoa(i)n(k-i) +e(k), a(0) = 1.

1= = 24)

A sequence y(k) is defined as

y(k) = ga(i)X(kq’) 25)
i=0

or

y(k) = ? a(i)n(k-i) + e(k). 26)

i=0

If Ryy(li) e Ely(1)y(i+k)] , it can be shown, using 26),
that R, (k) = 0 for |k| > a. From 26), y(k) is seen to be
stationary. Combining this with the property that
Ryy(k) =0, |k| >a, shows y(k) to be a moving average
sequence MA(p), with P < Q. Also from 26),
Ryy(q) = crz'a(q) £0 y by the hypothesis under assumption 1)
above. As a result, y(k) is a MA(q) process, and there

2

exists a sequence of random variables n(k), i.i.d. N(O,On )

and constants {b(i)}? such that

y(k) = ? b(i)n(k-1), b(0) = 1,

=0

- §9 -
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Combining 25) and 27) gives

igoa(i)x(k-i) =izob(i)n(k-i), a(0) = b(0) = 1 o

and the sequence x(k) can be viewed as an AKliA(q,q) process.

khile the original model has g+2 parameters--{a(i)}q,dz,
1 3

and aﬁ--the new model has 2q+1 parameters--{a(i)}?, {b(i)}?,

and Gi. From 27),

R (K) = o qflkl b(i)b(i+k), b(0) = 1 29)
yy n ] k]

so the expanded parameter set could equivalently be

expressed as {a(i)}? and {Ryy(i)}g.

Using the definition for y(k) in 206),

-1k
R, () = o%8(K) + o2 Haatna, a -1, 30)

=

where §(k) = s ko p
0, k#0 -
Thus, the addition of n(k) to s(k) produces the fellowing

relationships between the parame ers:

1) equation 29) gives the autocorrelation function
Fyy(k) for any MA(q) process;

2) another definition for Kyy(k) given in 30) arises
as a result of the noise model defined by 22) and

23);
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3) the ARMA parameters {a(i)}? and {b(i)}? for the
process x(k) are related through the
autocorrelation function Ryy(k), the relationship

being expressed by 29) and 30).

A comparison of the ARMA model approach just described
with a forced LPC fit of the data, represented by the
solution of 20), shows two interesting facts. First, the
forced LPC model, from a spectral point of view, must match
the spectral characteristics of the input x(k) as closely as
possible. This spectral match includes those
characteristics introduced by the noise. The next section
will present examples illustrating the flattening effect
white noise has on a forced LPC fit. The second observation
involves the assumption of the model form. If the original
sequence s(k) is AR(q), then the addition of white noise
results in an ARMA(q,q) process, x(k). This process is
equivalently an AR(x) process. The forced LPC fit is
actually representative of the first step in the process
discussed in (5] for estimating ARMA parameters, that is,
underfitting the AR(~) process. The ARMA model approach can
then be viewed as a procedure by which the AR(q) and MA(q)

parameters are estimated from the AR(») parameters.

Having identified the mathematical relationships and
properties for the ARMA approach to parameter estimation in
the presence of noise, the next phase describes the

procedure for estimating the AR parameters of the original
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signal s(k). The first step requires the estimation of the
ARMA parameters of the expanded model--{i(i)}?, {5(1)}?,
and Sﬁ--the symbol "_" indicating estimate. This represents
the identification of the series x(k) according to 28).
This set of parameters is then transformed to the equivalent
set--{!(i)}? and {ﬁ&y(i)}g--by the relationship defined in
29). At this stage there are estimates for the original AR
parameters {a(i)}?. The efficiency of these estimates will
depend upon the technique used to estimate the parameters of
an ARMA process. The estimation procedure, however, has not
yet used the information available under assumption 2) of
the model. This information is carried in the relationship

q q
given by 3C) between {R y(i)lo, on one hand, and {a(i)}l,

2 2

¢+ and On?

y

o on the other.

Using nonlinear regression theory, refinements are made

on the estimates for the original parameter set according to

z = f(0) +e,

wnere 2= [a(1) 3(2) ... a(a) R (0) R (1) ... ﬁyy(an

and saf 3 %D ..o %) ¥ ¥ The {é’(i)}? and
q“ € n

{a(i)}y in 2z and 0, respectively, are estimates for the AR
parameters. The {3(1)}? result from the ARMA parameter
estimation step. Then the nonlinear regression stage
produces the {a(i)}?. In 31) the nonlinear functional
relationship f(:) represents that of 30), and e 1is a

(29+1) x 1 vector reflecting the error between the ARMA

e e A A 0 D T T




parameter estimates found in 2z and the theoretical
relationship to these estimates represented by 30). f(-)

maps from the original q+2 parameter set to the 2q+1

parameter set of the expanded model. The nonlinear
regression technique attempts to find the estimate
of O which will minimize e in the least squares sense. The

Gauss-Newton method is proposed for this task [11] and will

be discussed in the next part.
Algorithms

In developing the ARMA approach in the previous part,
two steps require major algorithms: the estimation of ARMA
parameters from a time series and a nonlinear regression
technique. The nonlinear regression (NLR) will be presented
first. Equation 31) describes the nonlinear relationship
between the parameter sets 2z and 0. The 2q+1 equations

comprising 31) can be written as
By ft(g) e, £l ... 2%,

The metric | 8] for evaluating the effectiveness of 0 in

minimizing e is given by
2q+1
8) = s 2

Using 30) to define the ft(-), t =1, ..., 2q+1, gives the

following set of equations:

32)

33)




a(i) = a(i) RS B

-1k
(k) -= &2 le l'a”(i)'a"(ﬂk) +e

R et 2 i & i
yy n i=0 q+k+1,

QL ineE E
where a(0) = 1. The {5(1)}], 02, and og are chosen to

minimize Q(Q),
2q+1

ae) = ) e2.
=1 1

An iterative procedure based on the Gauss-Newton method or
modified Gauss- Newton method will yield a solution 9 to 32)
having the properties of convergence for a finite number of
functional relationships fy (), and the © will be
asymptotically efficient [7]. The Gauss-Newton method is

based on the linearization of the nonlinear functions ft (+)

about the solution 9.

The second of the major algorithms to be discussed is
the method for obtaining estimates for the ARMA parameters
of a time series. The method used will probably be based on
one of following techniques: Hannan [6]); Graupe, Krause,
and Moore [5]; or Steiglitz [12]. Hannan's technique is a
three step procedure adaptable to iteration if desired. The

following is a brief summary of the procedure. Notation is

34)

35)




based on that used previously in this section.

1)

3)

Initial estimates for the AR parameters. Using
the property that Ryy(k) = 0 for Ik!> q for a
MA(q) ©process y(k), estimates of the AR

q
coefficients {a(i)l] are found from the solution

of
?‘(')R (i-k) = - R__(k) k = q+ 2
i¥]a ViR U RE S = ey 3 =gl 2q
N-1- k]|
with R (k) = x(i)x(i+k) 5 e e R T i
G i=0
Initial estimates tor the MA parameters.
q
Form R (k) = ? i )R (k+i-3).
yy(K) iZO ito a(i)a(JIR,, (k+i-j)

Note that this 1s the autocorrelation function of
y(k) obtained by using 25). If the power spectrum
estimate for y(k), Syy(m), is non-negative, it can
be factored to give {E(i)}1, estimates of the MA
parameters. This is essentially the
Autocorrelation Partial Realization method of

Atash £} oaE € .
ashroo ] Syy(w) $ 0 0

| A

IS Mt oy then
Hannan's technique proceeds to obtain the
{;ki)}? through several intermediate steps.

Refine the initial ARMA estimates. The initial
estimates {;(i)}? and {E}i)}? are modified by
calculating correction factors which are added to
the initial estimates found in step 2) above. The
procedure is to first modify the {E(i)}?, then the

- q
MA parameters {b(i)}], followed by a final




modification of the (5(1)}?. Step 3) can be
repeated to form an iterative approach.
The iterative procedure of Step 3) is associated with the
solution of equations 29) and 36), while the Gauss-Newton
NLR procedure 1is associated with the solution of 30).
Hannan's technique 1is based upon Fourier transformation of

the data and carries a large computational burden.

The technique presented by Graupe, et. al., [5], has
the advantage of using oﬂly linear operations. The process
is summarized as follows: :

1) Given an ARMA(q,p) process with AR parameters
{a(i)}? and MA parameters {b(i)ﬁ , consider this
to be an AR(®) process with parameteré~.{a§i)}?.
From the data, estimate the {8(1)}? for some large
integer value for N.

2) Using the expressions generated by the
relationship between the {3(1)}?, {a(i)}?, and
{b(i)}?, a process 1is obtained for estimating
first the (b(1))} and then the {a(i)}?. Both
stages involve the solution of a system of 1linear
equations.

This method is computationally more appealing than Hannan's
method. However, the value of N, which determines the order
of the 3(i) approximation, may be rather large for some
processes in which the zeros of the MA filter are near the

unit circle.




Steiglitz's [12]) method for identifying the AR and MA
parameters of a process is based on the mode 1 iterative
scheme for system identification by Steiglitz and McBride
E13 )k, Steiglitz's approach to identifying the ARMA
parameters is the following:

1) Assume the sequence to be identified, x(k), is the
output of the unknown system.

2) Assume the 1input to this system, u(k), is a
Kronecker delta function.

3) Minimize the error criterion
N-1
u 2 14 A
L. = T e(k) = _Zrly . B(z 2 dz
S kn 3 N E X(z) A (2) L

by the appropriate choice of A(z) and B(z), the
z-transforms of the denominator parameters
{a(i)}i and numerator parameters {b(i)}? .
respectively. U(z) and X(z) are the z-transforms
of the wunknown system's input and output
sequences, respectively. Ao(z) is the z-transform
of an initial“guess for the denominator filter.

4) By replacing A;(z) with the A(z) determined 1in
step 3), new estimates for A(z) and B(z) can be
found. This iterative procedure can then be
continued until the desired accuracy is obtained.

The solution of 37) for the {a(i)l? and the {b(i)lg involves

the solution of a system of q+p+1 linear equations.

37)




Software

The last part of this section describes the software
needed to generate the data base used for simulating an AR
process corrupted by additive white noise. The data derives
from two noise files obtained by digitizing the output of an
analog noise generator. The analog =signal 1is prefiltered
with a low pass filter having a 3.2 kHz cutoff frequency and
is sampled at 6667. Hz. From two files generated in this
manner, one 1is scaled so that 1its sample variance is
approximately 1.0. This sequence is e€(k), the excitation
sequence for the AR process to be simulated. The second
noise file n (k) is used to gcaerate n(k), the additive

noise.

A two step process generates the data base for a
particular AR process.

1) Design and generation of the AR process. Using
the program ARPGEN.SAV, the user designs an AR(q)
process, 12 q 2 20. The filter is checked for
stability by analyzing the partial correlation
coefficients derived from the AR parameters. The
power spectrum of the inverse filter corresponding
to the AR coefficients is calculated and
displayed. If the model is acceptable, the time
series s(k) corresponding to this process is
computed wusing the noise sequence ¢(k) mentioned

above as the excitation to the AR filter.

i A T I . 5o




2) Generation of the additive noise. After finding
approximations to the variances of s(k) generated
in 1) and the noise file no(k) described above,
the program SPLUSN.SAV can be used to generate

either of the outputs
n(k = C .
(k) no(k)

or

x(k) = s(k) +c - no(k).

The constant ¢ is computed by SPLUSN.SAV so that
the quantities c¢- n (k) and s(k) will have a
specified signal-to-noise ratio.
Using the above system of data and the two programs
discussed, various AR processes and additive noise sequences
can easily be synthesized in preparation for analysis by the

ARMA noise model approach.

e 23
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PRELIMINARY RESULTS

One of the objectives of this research is to
characterize the effects of additive white noise on LPC
analysis systems. The following data illustrate the
degradation caused by additive noise. Results are presented
for a speech waveform sample at varying 1levels of noise.
Figure 1 shows the speech frame used as the example for this
section. The time waveform is shown in Fig. 1a). Sampled
at 6667. Hz, this frame of 128 samples corresponds to about
19 msec. of speech. This frame represents a portion of the
schwa vowel /3/ in the word "rust". This particular vowel
was selected because of the nearly uniform distribution of
formants. Also, the formants drop in peak magnitude at a
constant rate as frequency increases (on a dB scale). Fig.
ib) shows the DFT of this frame of speech, after windowing
with a Hamming window. On the dB scale, the nearly uniform
formant structure of the schwa vowel 1is apparent.
Superimposed on Fig. 1b) is the spectrum corresponding to a
10 pole LPC fit of this frame. The LPC spectrum is smoother

and matches the formant peaks well.

Fig. 2, a)-e), show the effects of additive white
noise with progressively smaller signal-to-noise ratios:
40, 30, 20, 10, and 0 dB. The SNR is found by averaging the
energy in the speech and the noise sequences over several
seconds. The ratio of these energies is then used to

determine the SNR, defined as
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Figure 1: Example frame used as s(k)
a) 128 samples of the vowel /3/, sampled at 6667.
b) Spectrum of /3/ and a 10 pole LPC fit to that

spectrum.
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Figure 2: I1lustrations of the effects of additive white noise on
the example speech frame and 10 pole LPC approximations
to the resulting spectrum.

a) 40 dB SNR
b) 30 dB SNR
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Figure 2: c) 20 dB SNR
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an(k)

Superimposed on each spectral plot is the corresponding 10

SNR =

pole LPC fit. All spectral graphs in Figures 1 and 2 are on
the same scale and can be compared directly. The following
noise effects are noted:

1) with decreasing SNR, the noise "floor" rises,
obscuring more of the formant structure of the
speech;

2) the formants identified by LPC analysis in
increasingly poorer SNR's tend to be wider in
bandwidth and have their peaks at slightly higher
frequencies;

3) the formant structure identified by LPC is badly

degraded for SNR's below about 20 dB.

The importance of the assumption of uncorrelated signal
and noise 1is demonstrated in the next set of data. This
assumption is primary to the autocorrelation correction
methods of parameter estimation [1], [4]. Figure 3a) shows
Rs (k), the autocorrelation function for the frame of speech
being discussed. Plotted in Fig. 3b) are Rnn(k), the noise
autocorrelation function, and Rgn (k) one of the
crosscorrelation functions. The abscissa in Fig. 3a) and
b) starts at lag k = 0 and is followed by 100 lags for
K= 15 s0sy 100, The last 100 points are the negative lags

in the order k = -100, ..., =1. The noise used for Fig. 3
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corresponds to a 10 dB SNR. It is obvious that Rg,(k)# O,

based on the estimation of Rsn(k) from
~ N-1
Repik) = iZos(i)n(wk).

The spectral implications of this are shown in Fig. 3c),
which shows four spectral curves determined from LPC
coefficients calculated from the four autocorrelations:

i) Reg (k)

18)  Ryg(k) = Ry (k) - R (K) - R (K) - Ros (k)

141} R (k) = R (k) - R__(k),

iv)  Ryg (k).
Note that i) and ii) result in the same spectral plot. The
explicit assumption of uncorrelated signal and noise is used
in iii), while 1iv) corresponds to LpC coefficients
determined from noisy data, with no correction attempted.
Fig. 3¢), curve 1iii), shows the inadequacy of the
uncorrelated assumption for the autocorrelation correction
modeling approach. Even though curve iii) appears superior
to 1iv), in a large percentage of frames, the LPC algorithms
will fail, producing unstable inverse filters, when the
autocorrelations of Rgg (k) are based on iii). An

autocorrelation matrix which is not positive definite causes

this.

The preceding results show LPC analysis procedures are
sensitive to additive white noise degradation. The

autocorrelation correction method, while appealing, is not
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successful if the wuncorrelated signal-noise assumption is

made.

Preliminary Results of the ARMA

Model for Additive White Noise

In developing the ARMA model suggested for estimating

AR parameters when noise is present, the major components of
the procedure suggested by Pagano have been implemented.
Initial tests of the algorithm performed on speech samples
were unsuccessful in either proving or disproving the
technique or verifying the operation of the software. It is
this result that led to the used of synthetic AR processes
for testing of this approach. This will avoid the critical
assumption that the original undegraded time series, speech
in this case, can be modeled as an AR(q) process. It also
led to a perturbation analysis as a way of verifying the
correct operation of the nonlinear regression (NLR)
software. The perturbation study of the NLR technique also
provides information about the ability of NLR to converge to
the correct parameter set when the initial parameters are in
error. The perturbation analysis is based on the following:
1) A set of q AR parameters and

2 2

variances o¢ and o“ are selected to characterize
an AR process in additive noise.
2) Using equation 30) of the previous section, the

{Ryy(k)): are calculated from the q+2 parameters




= ST R T

selected in step 1).

3) With z = f(0) + e describing the nonlinear mapping
from O to 1z, construct 2z from the {a(i)}? and
(R, (KD -

4) The parameters of 6 are the {a(i)}?. 05 and
The perturbation will be introduced into o.

5) Prior to entering the NLR routine, some or all of
the parameters of O are perturbed.

6) The NLR iterative procedure then attempts to
correct 9 so that e » 0.

For the q = 1 case, an analytical development of the NLR

technique is possible, and the results can be used to

predict the findings of the computer analysis.

The following points can be deduced from the

theoretical study:

1) For errors in either or both of
2

the o, and °ﬁ parameters of ©, the errors are
corrected in one iteration without introducing
errors in any other component of 6.

2) Any error in the single AR parameter a(1), whether

accompanied by errors in oz or 02, or not, is

n
corrected in one iteration. The first iteration,
however, produces an error in the Ug component
of 6. It thus requires one additional iteration
to correct that error.

3) If the perturbation of the a(1) parameter results

in an initial value of a(1) = 0, then the

e R S—
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theoretical development predicts that the NLR
technique based on the Gauss-Newton method will
fail on the first iteration.

Computer simulation of the perturbation analysis for the

q = 1 case verified the above theoretical results with the
following qualification: the NLR Gauss-Newton technique
involves the inversion of a matrix which becomes

ill-conditioned as oi, the actual noise variance, or 5%, the
estimate of that variance, get 1large. This observation
results from the finite word length and round-off effects
associated with computers. This 1is not predicted by  the
theoretical analysis, though it is apparent from the matrix
equations associated with ¢this technique why this would
happen. Its presence in the simulation is the justification
for using small variance sequences for ¢ k) and n(k)-- on
the order of 100. or less. To prevent the increase of the
effects of quantization noise, data must be stored on disk

in the unpacked format of 128 data points per disk block.

Tables 1 and II show perturbation effects for the q = 1
case for the parameters listed in the tables. The examples
in these tables represent the worst case in which there are
errors in all three parameters. For demonstration purposes,
the errors are +200% for each parameter. The value of 0 at

each iteration is given to four decimal places.

——
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Design Parameters
Initial Estimates
Iteration #1

#2

Design Parameters
Initial Estimates
Iteration #1

#2

Table 1

Perturbation Analysis, q = 1

a(l) O og Dist X
0.8 1.0 1.95 :
2.4 3.0 5.85 2.56
0.8000 18.3679 4.5499 7.52 x 107!
0.8000  1.0000 1.9500 8.44 x 10714
Table I1I
Perturbation Analysis, q = 1
a(l) °E 0: Dist
-0.8 1.0 3.03 ?
2.4 3.0 9.09 2.56
-0.8000  27.9869 7.0699 2.44 x 10710
-0.8000  1.0000 3.0301 3.09 x 107"
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¥ Another more interesting perturbation study is shown in
Table III. In this case, the AR coefficients are a(1) =
-2.3, a(2) = 2.4, a(3) = -1.6, and a(4) = 0.6. For purposes
of demonstration, the initial estimates are a(i) = -a(i), a
-200% error in estimating each coefficient. The actual
variances and their estimates are shown in Table III, which
illustrates the convergence of © to the correct solution.
From the table, it is evident that, to four decimal places,
the convergence for the four AR coefficients is complete in
10 iterations. Note that in Tables I, II, and III, the
entry for "Dist"™ under each iteration 1is the 12 distance
between the {a(i)}? and the {5(1)}?. The noise variance
2

on in each of the three perturbation examples corresponds to

a 0 dB SNR when compared to the sample variance of the

respective AR process.

While the preceding discussion demonstrates the power
of the NLR technique, wusing a Gauss-Newton approach, the
following is an initial attempt at applying the entire
procedure to the synthetic AR(1) sequences. The results
seem to indicate two major problems:

1) The initial estimates for the ({a(i)} are poor.

Hannan's method begins by estimating the AR

parameters by

=R} & = = % 5 39)
iz‘a(i)kxx(i k) Rxx(k), k=q+l, ..., 2q
E The next step in Hannan's procedure is to
;
i B




calculate the approximate autocorrelation function

of the moving average sequence y(k):

e q ? 7l
R k % a(i j +i-1 =
oy (K iéo ito (1)a(j)R  (k+i-j), k=0, ..., q.
If the spectrum.gyy(w) corresponding to<ﬁyy(k) is
non-negative, the spectrum can be factored to give
q
the {b(i)}], initial estimates of the MA
parameters. This spectral factorization
represents the solution of
. Q'lkL_. ¥ i,
R (k) =g T 'B(i)b(i+k), B(0) =1,
¥y " =0
- Q 22
for the {b(1)}, and Op e This solution is
nonlinear 1in nature. The procedure proposed by

Hannan then uses an iterative stage to improve
these 1initial estimates. Presently, the only
steps of this technique beinz wused are the
calculation of the {E(i))? and the (E&Y(k)}g using
equations 40) and U41). This would avoid the
: nonlln;ar spectral factorization necessary to
obtain the {5(1)}? and aﬁ, which are then
recombined by 41) to obtain the {iyv(k)}g for the
Gauss-Newton NLR routine. However, further

improvement on these parameters may be necessary

to prevent the NLR technique from diverging.
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SECTION 1V

MULTIRATE SIGNAL PROCESSING

H. Ravindra

Abstract

The aim of this project is to simulate a system on a
Digital Computer, which <c¢an 1increase or decrease the
sampling rate of an acoustic signal. These two operations
are called Interpolation and Decimation respectively. This
project is the first phase of a 1larger project which
involves the simulation of a CVSD system, with an idea of
studying the problems of tandeming. Since the CVSD
performance (signal-to-noise ratio) is better at higher
sampling rates, an Interpolation/Decimation scheme is

required to translate the sampling rate from the lower 6.67

KHz to higher rates.




Introduction

——————— e ——

In many digital signal processing systems, I
vocoders, modulation systems and digital waveform coding
systems, it is necessary to alter the sampling rate of a
digital signal. In the present context, we are interested
in the last application. The multirate signal processing
system is actually the first phase of a larger project. The
main project involves studying the problems of tandeming a
CVSD system with a vocoder. This requires simulation of two
systems on a digital <computer. They are, the multirate
signal processing system and a CVSD encoder/decoder system.
In the present write up, the multirate signal processing
system 1is described. Firstly, interpolation and decimation
of the sampling rate of a digital signal are shown to be
simple 1linear filtering processes. Later, it will be shown
that an interpolator or a decimator can be implemented
optimally over several stages. Also, the suitability of FIR
filters over IIR filters for this application will be
discussed. In the present work, both non-optimal
(single-stage) and optimal (multi-stage) interpolators and
decimators have been implemented and comparative results are

presented at the end of the write up.
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Interpolation and Decimation as Linear Filtering
Processes

Let x(t) be a continuous time signal and x(n)
the sampled version of Q(t)

16805

x(n) = x(nT) where T is the sampling period.

It can be shown that the Fourier Transform of Q(t) and

x(n) are related as follows:

x(edoTy = 1 7 X(u + k2%)
IR T

If x(t) is band limited, i.e., x( w) = 0 for

o > @ and if T < (to avoid aliasing), then

e
9}

x(edoT) - } X(w)

—|=2

w <

<

-3

(a) Sampling rate reduction by integer factors:

Suppose that the desired sampling period is

T' = MT. If M is an integer, then,

y(n) = x(nT') = x(nMT)
= x (Mn).

i diin




So, decimation by an integer factor M is achieved
simply by "picking off"™ every Mth sample from the
original signal sampled at a rate of %.. Before
applying the -decimation process, it may be necessary
to perform low pass filtering of the original signal

x(n), to avoid aliasing, as shown below.

It is seen that the Fourier Transform of the

decimated signal is,

y(edoT'y = 1 Mf] x(ej(mT'-Zni)/H)
M=o
so, unless T' < %- iy T s ﬁQ). aliasing results

and it is not possible to recover the original signal
from the sampled (decimated) version. Hence,
prefiltering (lowpass) is needed when ' % w0
S ﬁg) to avoid aliasing. The 1low pass

filter must have a cutoff frequency of =n/Mo.

(b) Sampling rate increase by integer factors:

L8% T*' s V/L., If L is an integer, the new
sampling rate 1/T' would be equal to the original rate
1/T multiplied by the factor L. It has been shown
that interpolation involves two steps. In the first
step, L-1 zero samples are introduced between samples
of the original signal and in step 2, the resulting

signal is lowpass filtered.

e —
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The Fourier transform of the original signal

padded with zeros can be shown to be,

Y(eij') = x(eij'L) —~ x(eij)

and it is seen that it is periodic with a period of
2n/T . But the properly interpolated signal should be
periodic with a period of 2n/T'. Therefore, low pass
filtering is needed, after padding with zeros, to keep
only the base band and attenuate the inner 1lobes.
Also, it is clear that the passband gain of the filter

should be equal to the interpolation ratio.

(c) Changing by non-integer factors:

Let the new sampling period be T' = ﬁT, where M

L
and L are integers. An interpolation or decimation by
a non-integer factor <can be realized by first
interpolating by the factor L, and then dccimating by
a factor M. If the overall factor by which the rate
is changed is less than unity, LP filtering is needed

before the decimation step to avoid aliasing.

II. Selection of the Type of Filter:

The choice is between FIR and IIR filters. The
following advantages of the FIR filter make this class

more suitable then the IIR filters.




(i) FIR filters can be realized with
precisely linear phase and can be made to approach the
ideal magnitude response by reducing the stop band and
passband ripples, and also by reducing the transition
bandwidth. Of course, this requires 1long filters.
Though IIR filters can be realized with extremely good
magnitude response, they suffer from non-linear phase
characteristics.

(ii) It can be shown that the post
filtering required for interpolation and prefiltering
required for decimation can be combined to form a
single filter. This filter accepts zero padded signal
and generates the final output - (Interpolated and
decimated, to realize a non-integer change in rate).
If FIR filters are used, the fact that the filter sees
one nonzero sample in every L samples and produces an
output sample in every M samples, results in reduced
computational complexity. Also, during the decimation
process, the symmetry of the filter can be utilized to

reduce computation by a factor of 2.

III. Optimal Design of Interpolators and Decimators

Crochiere and Rabiner have shown that the post
filter required in the 1interpolation step and
prefilter required in the decimation step, can be
combined into a single filter to realize a non-integer

ratio of change of rate. Also, they show that the

D nee
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amount of computation can be reduced considerably by
implementing interpolators and decimators in a
multistage configuration, and develop techniques for

their optimal design.

(a) The physical reason for reduced computation

when multistage implementation is wused, 1is the

following.

Since the FIR filter accepts a zero padded
signal, it sees one nonzero sample in every L samples.
Also since it is performing predecimation 1low pass
filtering, it need output one sample in every M
samples. Therefore, the computational complexity
(number of multiplies and adds: MADS) is proportional
to N/(LM). That is, the number of MADS required to
generate each output point is N/(LM). It can be seen
from Figure 4 that a multistage implementation of a
decimator requires the 1longest filter for the last
stage and relatively very short filters for the
earlier stages. The opposite is true of
interpolators. For the same end results, the ripple
specifications on each state 1is more severe (by a
factor equal to number of stages) than in the case of
a single stage implementation. But it is shown that
this affects the total computation by a small amount.
Since the filter in the last stage (longest) of a

multistage decimator and the filter required by a
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single stage decimator compare as shown in Figures 1
and 2, it is seen that the single stage filter is much
longer. So, by realizing a large amount of decimation
over the earlier stages and a small amount (so that
both L and M are large for the last stage) over the
last stage, the number of MADS can be reduced
considerably. Very 1large reduction in the number of
MADS required, is realized when the 1interpolation or

decimation ratio is greater than about 20.

(b) Design procedure (optimal decimator)

The number of MADS required per second is shown

to be,

. (o)
Ry = Du(gR 85)F 5 s(mADS)

where, Dm(%a, §s) 4s a function of stopband
(ss) and passband (§p) variances, and the number of
stages, K. fro is the 1initial sampling rate and
S(MADS) 1is a function of the decimation ratios orf the

K stages, and the transition bandwidth.

Crochiere and Rabiner have shown that D, is not
very sensitive to the number of stages (Reference:
Table 1), but the function S(MADS) is. So, they have

developed various design curves which can be used to
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find the optimum number of stages and an optimal set
of values for the decimation ratios for the K stages.
For a two stage design, solution 1is available in

closed form as

D = 2D(1 - /Daf/(2-4F))
LgES %5 afll + D)
and
D, . = D/D . where of = 1S3 T°P
20PT 10PT s
and D = required decimation ratio

The design procedure for a general K stage

decimator follows.

The specifications are 6p, &8s, Af, D and fro. It
has been shown that the use of more than four stages
will only increase the complexity of implementation
and will not reduce computation any further.
Therefore, the values of D, for the specified values

of &p, 6s are found for K = 1,2,3 and 4 from Table 1.

et s <7

Referring to Figure 5, the value of S, for the
| specified values of D and f, is found for each value
] of K=1 through 4. The value of RT is then computed
‘ for each K. Obviously, the value of K, which results
'
|

1
-
M o O R L T on NIRRT 2 “" l;} s *}‘ ﬁ?{‘ s "Q‘ﬂ‘ :




g

in minimum value for RT' is the optimal value. From
the graphs in Figure 6, the decimation ratio for each
stage can be found from the specified values for D and

Af.

The same design curves may be used for the design
of an optimal interpolator as the processes of

interpolation and decimation are duals to each other.

Practical Consideration in the Implementation of

Multistage Decimator and Interpolators:

An implementation strategy is described by
Crochiere and Rabiner which automatically takes care
of the presence of L-1 zero samples between non-zero
samples in the input, without actvally checking for
zeros and also generates only one output point for

every M samples.

If the length of the unit sample response of the
LP filter, N, is chosen such that
N = QL (where L in the decimation or interpolation

ratio and Q is an integer),

then, exactly Q non-zero samples of the input sequence

(effectively padded with zeros) are spanned by the unit

sample response.




Then, the output sequence is given by

y(n) =5 h(kL+(nm) @ L)x([E"] - &)
k=0

where h(n) is the filter impulse response, ( ) (® L implies
the quantity in parentheses modulo L and [%ﬂ] is the
integer value of nM/L. From this, it is seen that the input
sequence is to be sequentially addressed for Q of its
values, to generate one output point. Also, the filter unit
sample response must be addressed by (KL+(nM) ®L). But, if
h(n) is stored in a scrambled order: h(0)s  HOL);esxy
h((Q-1)L.), h(iM@®L), h(L+M ® L), ces,h((Q=-1)L+M @ L),

ceeeea,h(((L-1)M) @ L), h(L+((L-1)M) ® L), SUs Riteiaris e oy
h((Q=1)L+((L=-1)M) ® L), then it can be addressed
sequentially for Q of its values for computing each output

sample.

—
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V. Present Work

In the present work, both non-optimal

(single-stage)

and optimal (multi-stage) interpolators and decimators have

been implemented for interpolation ratios of 3/2, 3 and 5 to

get at sampling rates of 10 KHz, 20

KHz, and 33 KHz,

starting from 6.67 KHz, and decimation ratios of 3/2, 3 and

5 to get back to sampling rates of 6.67 KHz.

From the design curves, it was determined that two

stage implementation was optimal for ratios of 3 and 5, and

one stage for a ratio of 3/2. Optimal

values for the

interpolation (decimation) ratios for both the stages are

calculated and filters specified. The filters were designed

using the REMEZ exchange algorithm. In

implementation, the filters are scrambled as

the multistage

explained in

the previous section and stored on files. The two

implementations were tested for run times and results

follow.
Single stage
Integer ratio interpolator
3/2 70 seconds
3 72 seconds
5 150 seconds

RPN

Multistage
interpolator

20 seconds ; ;
29 seconds

34 seconds : !




The spectra of original speech and interpolated speech
signals are presented in Figure 7 which clearly show the
frequency domain effects of interpolation. The language
used for implementation is FORTRAN. (Listings of
single-stage interpolator and multi-stage interpolator and

decimators are enclosed.)

VI. Suggestions for Improvement

Goodman and Carey propose a set of nine FIR filters of
which eight are halfband filters, to ©be used in proper
sequence, along with resampling to real‘ze a wide range of
accurate interpolation and decimation ratios. It is claimed
that the filters are efficient 1in terms of number of
multiplications, since most of the filters in the set are
half band filters (in which nearly half of the impulse
response coefficients are zero) and that the required filter

sequence can be designed without a computer.
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Figure 7: Input and output speech signals and their spectra
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SECTION V

CONTINUOUSLY VARIABLE SLOPE DELTA MODULATOR

H. Ravindra

1. Introduction

Delta modulation is a waveform encoding technique which
is characterized by one bit information over each clock
period. In its simplest form, the modulator consists of a
comparator (Ref. Figure 1), sampler and an accumulator.
The comparator compares the input signal and the accumalator
contents, and produces an error signal at the data sampling
rate. The sampler generates a one bit output 1 or 0
depending on whether tne error signal is positive or
negative respectively. A fixed step, A, is either added to
or subtracted from the accumulator when the output bit is
a 1 or 0 respectively - then the accumulator content will be
an approximation to the original speech signal. So, the bit
stream output by the encoder represents an approximation for
the original signal. The decoder is similar to the encoder
except for the absence of the comparator and the presence of
a LP filter at the output. It has been shown that a simple
scheme like this suffers from two main disadvantages. They
are:

(1) slope overload noise and

(ii) granular noise.

T —— A A A
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Slope overload results if the input speech signal to
the encoder varies so fast that the encoder cannot track it
well and granular noise results due to the alternation of 1
and 0 ¢to represent a constant level. These noises can be
reduced considerably by adapting the step size dynamically
so that when the slope is high, the step size increases and
when the slope is very low, the step size decreases. In the
digital adaptive delta modulators, the present and previous
bits are compared and if they are the =2=ame (indicating slope
overload), ¢the step size 1is 1increased and if they are
opposite, the step size is reduced. 1In a CVSD encoder, the
step size 1is adapted more smoothly in time, with a time
constant that is of the order of 5 - 10 ms. to match the
syllabic rate of speech. It has been claimed that CVSD
processed speech sounds "cleaner" at bit rates of 25 K
bits/second and 1lower. Also, this method provides for an
increased resistance to bit errors. But the price paid is
increased slope overload distortion compared with

instantaneous compandors.

II. CVSD Encoder and Decoder [Reference: Figure 1]

The comparator compares the audio input with the output
of the integrator and produces an error signal. The sampler
produces a 1 or 0 depending on whether an error signal is
positive or negative respectively at that clock instant.
The algorithm detects three 1like consecutive bits and

outputs a '1' and a '0' otherwise. The algorithm output is

B e
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at clock rate. The slope command 1low pass filters the
algorithm output and produces a signal which acts as the
modulating signal in the PAM. The slope command LP filter
is selected such that its time constant matches the syllabic
rate of speech. As can be seen, the modulating signal
increases exponentially if there is a slope overload, and
hence results in increasd step size. The PAM modulates the
sampler output with the slope command output. The
integrator constructs an approximation for the original
audio signal. The decoder is similar to the encoder except
for the absence of the comparator. It is suggested that the
slope command filter should have a pass band width of 25 to

40 Hz and that the compr _ssion ratio should be 12:1.

III. Present Imp;eggntétion

The CVSD system is simulated on a digital computer.
The algorithm is implemented by a 3 bit Shift Register which
stores the present bit and the past two bits and produces an
output of '1' if all the bits are alike and '0' otherwise.
The slope command filter is a digital LP filter with a
passband cutoff between 25 and 40 Hz and a roll off rate of
20dB per decade. The slope command filter is convolved with
the algorithm output to generate the slope command signal.
This signal modulates the sampler output and is summed up
with the proper sign in the accumulator, and then low pass
filtered to generate an approximation for the original audio

signal. Since this is a feedback system, it is necessary to
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generate outputs from the slope command module, the PAM and
the Integrator one point at a time. So, the convolutions
mentioned earlier are carried out such that one point is
generated and output from the module at a time. Two
operations are to be performed on the slope command output
before it is sent to the PAM. They are,

(i) Biasing: When the speech input 1is zero, the
sampler output will be a sequence of alternating 1's and
0's. So, the modulating signal will be zero and this
requires the addition of a bias to the slope command signal
so that the approximation to a constant level is a train of
alternating 1's and 0's of small magnitude.

(11) Amplification: When the slope of the input
signal 1is 1large over a 1long period of time, the slope
command output saturates at the maximum possible value.
This value may not be sufficient ¢to provide for closer
tracking of the high slope signal. Therefore the slope

command output must be amplified.

The biasing and amplification can be adjusted so that

the compression ratio is 12:1 as specified.

The FIR filters are designed using the REMEZ exchange
algorithm. The system reads in speech from a file, encodes
it and passes the encoded output into the decoder which

decodes the encoded speech and produces the output speech

which is written onto a file.
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Besults:

At this stage, the encoder and decoder are logically
working correctly. It looks as if it is necessary to design

and use separate slope command filters for the three

. possible sampling rates. Each filter can then be tuned up

so that it matches the syllabic rate of speech and also the
slope command output can be properly biased and amplified.
The observation with a single filter designed for a passband

cut off at 32 Hz based on a sampling rate of 20 KHz leads to
heavy slope overload when the sampling rate is 1lower. The
integrator filter should be such that the base band of the

reconstructed speech passes through.

The output of each module is presented in Figure 3.




1 240¢€+2 1 oo
LN ] A 1
-.“0....; ..-- -.! 9 onte
1 008C+0 =" a;’.oi 1 008C+0 2 Seer+2
(a) Input speech at 33 KHz (b) Encoder output at 33 KHz
t 110€42 iy 4
FARRER R
l TTTTTTH
-{r{é‘ fy+* J
R R R
oA
- |
X -+ 1 A‘—
"m’...i- ;--- » e
1 008L+0 " .:uol
(c) Decoder output at 33 Khz
4 Figure 3: Input and outputs of the CVSD System
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