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EXPERIMENTAL AND THEORETICAL INVESTIGATION

OF UNSTEADY SUPERCAVITATING HYDROFOILS OF FINITE SPAN

by

Chen-Wen Jiang g
Patrick Leehey

ABSTRACT

Measurements of the forces, moment, and cavity pressure
on aspect ratio 3 and 5 supercavitating hydrofoils of
elliptical planform oscillating in pitch have been obtained
at frequencies from 5 to 20 Hz. A region of resonant
behavior was found, which corresponds to a natural frequency
of the cavity. A thermodynamic analysis of the cavity was
performed under the assumptions of a spherical cavity and
uniform cavity interior properties. The calculated damped
natural frequencies were compared with the results taken
from peak oscillatory lift experiments. The damping ratio
of the cavity depends upon the partial pressure of air,
temperature and cavity size. A numerical method was
developed for a supercavitating hydrofoil. Discrete
vortices and sources are used to formulate the equations.
The cavity length was iterated to get the desired cavitation
number over the cavitated planform. The numerical results
of an unsteady two-dimensional finite cavity were compared
with zero cavitation number theory. The problem of
supercavitating hydrofoils of finite span in steady flow
was solved numerically and compared with analytical solutions
and with experiments. Results of these calculations
indicate that this method gave a more accurate prediction of
lift and moment coefficients than existing asymptotic
theories. The numerical solutions of unsteady hydrofoils
of finite span were also compared with experiments. The
amplitude of the forces was in good agreement, but the
phase differences between theory and experiment was large.
The effect of cavity pressure variation should be investi-
gated further.
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NOMENCLATURE
a a-l+t2
R aspect ratio
CL,ACL lift and oscillatory lift coefficients,
respectively
CD,ACD drag and oscillatory drag coefficients,
respectively
CM,ACM moment and oscillatory moment coefficients,
respectively
CO foil root chord
c damping coefficient
Cv specific heat at constant volume
D thermal diffusivity of water
d dEx—x1+tzl—tz
F applied force
g y-coordinate of cavity foil combination
h instantenous y-coordinate of the wetted surface
Ah heaving amplitude
J moment of inertia of the dynamometer system
k stiffness of the dynamometer system; kEmCo/U°°
L latent head; steady state cavity length at
centroid of foil
L mean cavity length measured from foil leading
edge at the mean chord
L(z,t) cavity lengths
: m mass of the dynamometer system
: M applied moment
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NOMENCLATURE (CONTINUED)

upstream static pressure at the spanwise
position of the foil centroid

static pressure

equivalent radius of the cavity
universal gas constant

radius; distance

foil semispan

temperature

critical temperature of water

time

free stream velocity

pertubation velocity along x,y,z direction
cavity volume; velocity

displacement of the dynamometer; Tc-T
coordinate system

chordwise coordinate of leading edge
density

cavitation number

angle of attack; geometric angle
pitching amplitude

geometric angle

frequency of oscillation; natural frequency
phase angle; geometric angle

angular displacement

coefficient of thermal conductivity
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NOMENCLATURE (CONTINUED)

velocity potential

spanwise and chordwise vortex strength,
respectively

source strength

dummy variables in the x,y,z, directions

Subscripts
v vapor
a gas
o mean properties
c cavity
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CHAPTER I INTRODUCTION

Considerable theoretical and experimental work has
been done on three-dimensional supercavitating hydrofoils,
but the agreement between the theory and experiments is not

fully satisfactory.

Unsteady two-dimensional linearized theories for
zero cavitation number have been developed by Parkin (1957)
and Woods (1957). Leone (1968) developed a two dimensional
unsteady theory based on the method of matched asymptotic
expansions, and measured oscillating lift for two-dimensional
supercavitating hydrofoils. A recent review of supercavitat-
ing flows around lifting hydrofoils if that of Hsu (1975) .
Leehey and Stellinger (1975) obtained theoreticallpredictions
of steady state forces and moments for hydrofoils of finite
span which compared well with experimental data. Widnall
(1966) , Tsen and Guilband (1973) and Unruh and Bass (1974)
studied linearized three-dimensional cavitating hydrofoils
using numerical lifting surface theory. The steady cavity
length in these studies is assumed to be relatively long so
that the variation of cavity length due to unsteady motion
can be neglected in the analysis. Unsteady force character-
istics were measured by Wetzel and Foerster (1967) for
naturally ventilated foils undergoing either a sinusoidal
heaving motion or a harmonic oscillation of a trailing edge

flap. Klose and Acosta (1969) carried out unsteady force

o mxu.—.w.m.‘]
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measurements and flow observation on superventilated hydro-

foils in heaving motion. Their unsteady lift measurements

showed appreciable variation with changes in cavity length.

The present experimental work is concerned with non-
steady motion of cavitating hydrofoils under pitch oscilla-
tion. A region of resonant behavior near the reduced
frequency w2/U_ = 2 was found, where % is the mean cavity
length measured from the leading edge of the foil. For a
fixed oscillation frequency, the amplitude of the oscillating
lift coefficient peaks sharply at a critical cavity length
(or volume). Microphone measurements of cavity pressure

show that it is not constant during the pitch oscillation.

The resonance of the air-vapor cavity has been studied
asssuming incompressible flow, uniform cavity interior proper-
ties and a spherical cavity. The liguid phase inside the
cavity, viscosity and gas diffusion have been neglected in
this analysis. A damped natural frequency was found. The

oscillating amplitude depends on the damping ratio.

For long cavities, the oscillatory forces are away
from the region of resonant behavior. The unsteady forces
are compared with numerical results, obtained from a lifting
surface theory. The discrete vortexes and source method
is adopted to formulate the equations. An iteration scheme

is used to alter the cavity length until the desired cavitation
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number is reached over the cavitated platform. The numerical
amplitude of the oscillatory lift compares well with the
experiment. However, the phase difference between theory

and experiment cannot be neglected.

Numerical results for lift and moment coefficients on
steady supercavitating hydrofoils are in good agreement with
steady flow experiments of Leehey & Stellinger (1975) and
Maixner (1977). The results show that the improvement has

1

been made after considering the lifting surface effects.

s i, i it
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CHAPTER II EXPERIMENTAL STUDY

2.1 Experimental Apparatus

A) Variable Pressure Water Tunnel

The experimental work was conducted in the Recircul-
ating Variable Pressure Water Tunnel of the Department of
Ocean Engineering, Massachusetts Institute of Technology.
Test section velocity is variable between 0 and 30 feet
per second, static pressure is variable between atmospheric
pressure and 3 inch Hg. The test section is 20 inches by
20 inches and 4.5 feet long. 1In order to get high oscillat-
ing forces and small cavitation numbers, the tunnel velocity
was run as high as practical (= 30 ft/sec). The velocity
is indicated on a manometer which gives the differential
static head between two locations in the contraction section.
This reading was calibrated by using a pitot tube in the
test section. Figure 2.1 presents an overall view of the
working section. The dynamometer is mounted in the top
window of the test section. For these tests, two force and

one moment coumponent were measured.

B) Models and Shafts

The foils used in this test were flat plate sections
with elliptic plan forms, the same used by Leehey and
Stellinger (1975), with dimensions as shown in Figure 2.2.
Each foil and shaft were constructed of Type 304 stainless

steel and joined together by two pins.

S — — E— — e e A A A T
& > g el e . o
ey LANIEY e 8 — winiiia . .
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C) Dynamometer

The modified dynamometer was designed by Riva (1974)
to permit measurements of forces and moments on hydrofoils
oscillating in pitch. The pictures of this system are
shown in Figures 2.1 and 2.3.

The shaft is supported horizontally and vertically
by two Fafnir self-aligning bearings. These bearings are
mounted in a cylindrical-spherical housing attached to
the floating part of the dynamometer, which can be adjusted
to correct misalignment of the foil relative to the top
window.

The clamping and stopping system are constructed on
the cylindrical-spherical bearing housing. The clamping
system permits the use of the dynamometer in steady experi-
ments while the second one prevents the foil from going to
too large an attack angle in case of failure during unsteady
tests.

The torque transducer was designed as an extension of
the shaft. It was mounted on the top of the shaft and with

set screws. The transducer is operated with two foil strain

gages BLH-FAED-06-12-S6.
The oscillatory movement of the foil is produced by

two arms set orthoganally on an imaginary horizontal plane,

and articulated by Fafnir rod-ends.
To provide lift and drag measurements without interfer-

ence of one with the other, the oscillatory arms can have
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their positions changed, relative to the center line of the
tunnel, which is coincident with the center line of the

dynamometer.

D) Drive Syetem

The pitching apparatus consists of a crank arm which
is oscillated sinusoidally by means of an eccentric pin
arrangement driven by an electric motor. The motor speed
is controlled by a potentiometer.

A two level steel frame attached to the flange and

side window of the tunnel provides the necessary support

———

for the pulleys, eccentric wheel and motor. The eccentric

and two pulleys that drive the crank arm are mounted on the

upper level of this frame.

The pulleys have speed ratio 2 and 3 relative to the
motor. The motor is a Master DC motor with 1/2 HP output
at 2000 RPM. The eccentric is designed to provide in the
following amplitudes of dynamic angle of attack of the foil:

1.5%, 2.0, 2.5%, 3.0% yos?, jand 4097
2.2 Hydrofoil Test Procedure

Dynamic calibration of the force gages were carried
out with the aspect ratio 5 foil. The dynamometer, installed
in the water tunnel, was subjected to a sinusoidally oscilla-
ting force, generated by the B & K shaker. The force signals
from the force gages and the shaker were analyzed with the

Spectral Dynamics Analyzer, a heterodyning filter with 5 Hz
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bandwidth. The measurements covered the frequency range
from 5 Hz up to 20 Hz. The force ratio and phase difference
between the load cells and shaker show that the natural
frequency of the dynamometer is above the test range. It is
reasonable to represent the real system by the model with
mass-spring-dashpot. Damping is small in this mechanical
system so that the exact value is unimportant. Details of

this calibration are shown in Appendix A.

A piezoelectric pressure transducer was mounted at
the tunnel top window about 5" from midchord to measure the
dynamic pressure inside the cavity. The diaphgram of the
pressure transducer is at 1" below the root of the foil.
An accelerometer was mounted on the crank arm at 7" from the
foil shaft to count the frequency and to provide phase
difference relative to force, moment and cavity pressure.
Signals output of transducers were amplified and then analyzed
by the Spectral Dynamics Analyzer. A general arrangement of

the readout system is shown in Figure 2.4.

The dynamometer was aligned at the flow direction to
read lift and drag directly. Geometrical angle of attack
was set by aligning the flat side of each foil with a wedge
which against the test section side wall. Amplitude of
oscillation can be set by selecting the wheel eccentricity.
Oscillation frequency was adjustable from 5 Hz to 20 Hz by
changing the resistance in the field windings of the DC drive

motor.
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Static pressure in the test section was read from a
mercury manometer connected to taps in the tunnel wall at
the beginning and end of the test section, on the center
line, and corrected for hydrostatic head to give static
pressure at hydrofoil centroid. Static pressure in the cavity
was read from a mercury manometer connected to a tap on the
suction side of the foil. Test section static pressure was

variable between 3" Hg and 9.5" Hg absolute pressure.

: Measurements have been made for the forces and moments
on aspect ratio 3 and 5 hydrofoils oscillating in pitch.
Readings were taken of 1lift, drag, moment, static pressure,
cavity pressure, frequency, oscillatory forces, phase differ-
ence, water temperature and velocity. At each oscillation
frequency, the static pressure of the test section was
reduced in increments of 0.6" Hg in the supercavitating case.

Cavity length was photographed and confirmed with Leehey &

Stellinger (1975), and then the mean cavity length is taken

and used as the parameter in the reduced frequency.

The cavitation number, 0; , is defined as

e _I/ﬁ'-é{‘;—— (2-1)
2 ’

where f, is the pressure for upstream at the elevation of

the foil centroid, <, is the cavity pressure. The cavitation

[’wﬁ B —————
|
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number, (3g . based on vapor pressure is defined as

= .ﬁ'lv___

Che ™, o (2-2)
3 P

The vapor pressure, ‘F} , was calculated as a function of

water temperature according to the formulae of Smith, Keyes

and Gerry (1934).

In this experiment, the cavity pressure is taken from

the pressure tap on the foil.

2.3 Experimantal Results & Discussions

The comparisons of measured lift and moment for unsteady
fully wetted flow with analytic solutions are shown in Figures
2.5 and 2.6. The foils used in the analytic solutions are
flat plates which differ fro.i the foils we used in our test.
However, the agreement in both phase and amplitude is good
for lift. The torsional stiffness of the dynamometer was
changed when the tunnel pressure was reduced. In particular,
the stiffness of the rubber seal which clamps the shaft
depends upon the pressure difference between the atmosphere
and tunnel pressure. Therefore, the properties of the rubber
seal have been measured for different pressure differences
across it, permitting the data reduction to obtain the moment
coefficient based on the calibration of the torque transducer

under operational tunnel pressures.

Figures 2.7 and 2.8 present the oscillating lift force
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and the phase difference between the force and displacement.
There is evidence of a cavity resonance at reduced frequency
“L[/Uw==2- Resonance frequency decreases as the cavity
length increases. For longer cavities, the effect of this
kind of resonance is weak, because the damping of cavity
oscillation is greater for long cavities. An analysis of
this phenomena appears in the following chapter. From the
observation of high-speed motion pictures it appears that
the cavity length changed a lot at the resonance frequency.
The variation of cavity length depends on the oscillating
frequency and flow velocity. The phase difference between
lift force and angular displacement tends to decrease as

the oscillation approaches the resonance.

Figures 2.9 through 2.12 show the moment coefficients, drag
coefficients and phase differences. The oscillatory coeffi-
cients depend on the cavity length. The peak variations

occur near the resonant frequency.

Measurements of cavity pressure show that the cavity
pressure is not constant during the pitch oscillation. The
amplitude of cavity pressure oscillation depends on the
cavity length and oscillation frequency, being greatest at
high frequencies and short cavity lengths. The relationship

between unsteady cavity pressure and oscillatory lift cieffi-

cient at two different reduced frequencies for each foil is
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shown in Figures 2.13 and 2.14. The oscillating cavity
pressure has been non-dimentionalized by the dynamic head

so that a direct comparison can be made with the oscillatory
lift coefficient. Evidently the unsteady lift coefficient
is significantly affected by the oscillation in the cavity

pressure for short cavity lengths.

AT R R ki J
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CHAPTER III ANALYSIS OF BUBBLE RESONANCE

As mentioned in Chapter II, there is evidence of a
cavity resonance near the reduced frequency at 2. Determin-
ation of the natural frequency of the cavity flow system is
very complicated matters. For incompressible flow, the
complexity of the problem is greatly reduced by the assump-
tions of spherical symmetry and uniform cavity properties.
The viscosity is neglected in the following discussion.
Several cases of the bubble dynamics have been discussed by
Hsieh (1965). Evaporation is an important process in cavity
oscillation. The variation of cavity pressure in time can
not be neglected as it is in the growth of small cavities.
The thermodynamic effects are essential in the cavity
oscillation. The simplified linear governing equations of

the cavity oscillation about the mean quantities are

e e

err r v

L il s

dt ﬁ dr »

gt L& 40 24T L
dr {’.C.(Ar‘ * T dr) —
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The interfacial boundary conditions (r = R) are

T=T7,
\7=é, (3-2)
F -7

and

Aj——r=%( Flg +3p'SR )+36RG "” ""R (3-3)
In the foregoing set of equations, V is velocity, p is
pressure, T is temperature, e is density, C, is specific
heat at constant volume, X is the coefficient of thermal
conductivity. Primed symbols with subscript for pertur-
bation quantities, and with subscript (o) for the
equalibrium quantities within the cavity, curled symbol for
perturbation quantities outside the bubble, subscript (o)
for equilibrium values. 1In the last boundary condition
equation we neglect the heat conduction through the liquid

phase within the cavity.

When the cavity is undergoing harmonic oscillation,
the solutions of Eq. (3-1) subject to the boundary condition
Eg. (3-2) will be
RR,

Fo
wieRe (3-4)
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where K is the modified Bessel function and D (= 2/¢C, )
is the thermal diffusivity of water. The velocity and

temperature gradient at the cavity boundary are

!

4P

K= oea .
' df —_r(2)e™ Knl{B Re ™) (3-6)
i . i S )€ Kyz(fgk,ﬁ)m) ;

Since D is a small number ( :I.sxlo_‘-ﬁ"/scc ) the argument of
the Bessel function is large. The temperature gradient is

approximately

o jm/4
e

47 o hepa
E‘FLR o

(3-7)

Substituting (3-5), (3-7) into (3-3), we get the condition

I
“RwR,

(BL+BI P LORL wgac 2t T

+ LR, w e’ =0

3 i (3-8)

If the gases within the cavity satisfy the ideal gas
equation Pv=RT and we neglect the diffusion of gases

(i.e. "My, = constant),

/PA 7 ea.&aT.

After a simple calculation, and using (3-5), one can get the

variation of pressure ¥,

B = ORT + 2T P (3-9)

0 R,“O‘

|-
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We assume that the density of the vapor corresponds to its
temperature at the given pressure according to the equation

of state.

?V &) PVRVT
The variation of vapor pressure is

P = CR,T +RTE, (3-/0)

We assume the mass of gases inside the cavity is constant

PaV = Constant.

From this equation and Eq. (3.5) we get

ST | ‘
PO. . e.Rotw:. ? R

then
! i i ' 155 3!‘:
ﬁ/ 7 e f; 5 F e.&f“f‘r
Substitute the last equation into Eq. (3-10)

B =GR T +RT(E-ZE) T

The total variation of cavity pressure is the summation

of the variation of partial pressures.

P=p 47

o ——

DR e




T

or (_L_ 3R 3ﬁw6§;T )‘?
Te ‘RGLR w? eoR w f
f 6o (3-11)
et
where
P =0RT,

e"oa o e‘\h’ R"‘f ea &

The vapor within the cavity is not a superheated vapor.
A relationship between vapor pressure and temperature was

taken from the paper by Smith, Keyes and Gerry (1934)

/ ’ 13
_/&=1 a +bx+c'x ]
'10340 'Pv T[ I+ d'x s

where

S Vst O

?" = VG?OY' ?YQSSU."Q in tat n.fh.,
i P. = 218.167 int. atm.,
| T = ¢°F+25538,

T = 64127,

@ = 3.2437814 ,

b =5868x0">,

~

-8
1.1702377x 10 ~,

c
d =2.878462x107
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We can get the equation of variation of pressure and temp~

erature by taking the derivative of pressure with respect

to temperature

“CA8.TIT »

where

C =(§ﬂ"°) ?v{

a’+2px+4ac'x’
Te +(d'Te-) =%

(a'x+b'xa+clx")(d'T“"\’ZK)
[Te +d'Te-Dx-x]"

Combine Egs. (3-9) and(3-12)

(= ”’" e (B R+ CHT =

(3-12)

(3-13)

Equations (3-8), (3-11) and(3-13) constitute the eigenvalue

problem. The natural frequency of the system is determined

by

7o GL)  3RRGW-SYe
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or
- %
Aw' -B=je G (- w™, (3-14)
ypcioa IRC ® RG _ LR

A=537"® 3 L

i LC(E,I- ap’&VT) & /P‘.Cv’
D R e IR R

+BC RI+P _ Lt
R R GR, TR o

G =_§:_DV2€\, :

R
g i LR >

C =€ R+

v
The typical natural frequencies for a given T, ‘f’ao,

Ro’ are shown in Figure 3.1. We assume the gases in the

cavity are air. A damped natural frequency was found.

L]
At a fixed T’ao, the natural frequency decreases when the

cavity volume increases. The air content not only increases

the natural frequency but also reduces the damping ratio.
For the damped, single-degree of freedom case, the ratio of
damping to critical damping is equal to the ratio of Wi to &n,

where Wi is the imaginary part of natural frequency, and Wn

is the undamped natural frequency. The ratio of Wi to Wn will

give some idea of the damping for different cavities as shown

Sndaas - - bt e oo St o sin
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in Figure 3.2. This analysis will not only tell us the
natural frequency but will explain the qualitativety oscil-
lating amplitude of lift coefficient shown in Figures 2.7
and 2.8. The cavity pressure is always higher than the
vapor pressure. This result is to be expected as the gases
from the water contribute to the pressure within the cavity.
The discrepancy between cavity pressure and vapor pressure
decreases with decreasing cavitation number. Experimental
results of cavity pressure measurement are shown in figure
4.10. Further discussions appear in the next chapter.

Since the short cavaties have a higher partial pressure due
to non-water-vapor gases, damping ratio (damping/critical
damping) is small in short cavities. The stiffness of cavity
increases with increasing air pressure inside the cavity, so
we expect that they have higher natural frequencies and less
damping ratio. However, the reason for shorter cavities having a

higher gas content is not clear.

The cavity volumes are calculated from the numerical
lifting surface method. Under the assumption of spherical
volume and neglecting the surface tension effect, the .
natural frequency of the cavity calculated from Equation (3-14),
and the resonance frequency under test are shown in Figure
(3.2). In the present experiment, only a few points can be
plotted in the graph. The "loop" trajectories in Klose &

Acosta (1969) seems also associated with the natural frequency

of the cavity.
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CHAPTER IV NUMERICAL ANALYSIS

4.1 Linearized Theory for Three-Dimensional Supercavitating

Hydrofoils

The linearized problem for a cavitating hydrofoil of
finite span in unsteady flow can be represented by a set of
coupled integral equations. The derivation proceeds either
from Green's theorem or from the solution for the velocity
field induced by a distribution of vortices and sources.
This distribution must be chosen to satisfy the relevant
boundary conditions. The numerical model we are about to
describe is shown in Figure 4.1

The source distribution, q (x,z,t ), represents the
slope difference between the upper cavity surface and the
mean camber line of the foil or the lower cavity surface at
the point (x,0,z). The vortex distributions (y (x,z,t),
§(x,2z,t )) create the perturbation velocity differences in
the x and z components between the upper and lower surfaces
at the point (x,0,z). This leads to the result

f(ﬁ,a,f) = —Lt (vex,+0,3,¢) - er,—o,a,-t)) -

T (x50 =-L5.- (wix,-0,5¢)- U (%,+0,3,t)), 4-1)

S xyt) ET'J' (Wi, 40,3, t) - W (%0, ¥,¢)),
(]
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The boundary conditions specified are the normal
velocity on the wetted surface of the foil, a constant

pressure in the cavity, and closure of the cavity.
- =L O
V(%,-0,3) = e—tﬂ X,3.¢)+ U.-’?x-ﬂ(x,a,t),

P =Pwi+5t), (4-2)

0 =g £(5.540%d3

where h(x,z,t) is the instantaneous y-ordinate of the wetted
surface. Sc is the surface of the cavity as projected onto
the x-z plane. 0 is the cavitation number. P_ and Pc are
free-stream pressure and cavity pressure, respectively.
Geurst (1961) proved that for two-dimensional steady flow,’
the re-entrant jet and Riabouchinsky models for cavity term-
ination reduce upon linearization to a statement that the
cavity is closed at its end. The requirement that the source
strength be zero beyond the cavity trailing edge and the sum

of sources is zero are necessary to meet this condition.

Based on the boundary conditions, the integral

equations for three-dimensional unsteady flow can be written

as (The details of this derivation are shown in Appendix B)
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V(#,-0.5.¢t) .-Lgu 3.t)
oy H L(set)(*3] +§,(59¢)(3-%]
Tan (x-‘g) + (3-5) ]”t

d3a4s

Sw (%, 86(5-5]
Lok Sl i ;,,[ dvds  (4-3)
Lo-mrt+ (3-97"] ’

X
G = -J;cx,b,t) ‘u",.“g—tjﬂfﬂ'”“
-»m

ED IR oI J
+2"JJI U. §§S’ t) [(;;—g)"—f(}-g)l]v’

; > (4% §(5.5.2) d
5 ] &
+ [("_3)1"_(}_3-);]'/3} dg > (4 4)

g = JJ 3(5,8.©)43d83, (4-5)

Se
where Sa is the projection of the foil surface on to the x-2z
plane and Sw is the projection of the wake region on to the
same plane. Note that the projected cavity area, Sc, is
also time dependent. The unknowns are the source strength,

vortex strength and cavity surface location.

For steady flow at a given cavitation number, this set

of equations simplifies to

V(%-0.3) = -5 $04D

: Yal3,9)(x-%] +8a(5.9)[F-5]
iw 3 $d
+417 _U' [o-3)t + (3-9)* " e

sl.
i 4 ﬁ La03) (4-6)
5 {31+ 3-9)'] :
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A (%-%) }(3,3)
dsds, 4-7)
i ﬂ [(x~§)‘+ta-$)‘]“
0o = ﬂ §(5.8)d%4dS, @-8)

s
The solution of these integral equations will represent

the linearized, supercavatating hydrofoil of finite span in
steady flow. The forces and moments can be calculated using

the Bernoulli equation.

4.2 Linearized Theory for Two-Dimensional Supercavatating

Hydrofoils

In the two-dimensional theoretical model, with an
incompressible fluid, infinite pressures are necessary at
r+~ to generate a volume change in the cavity. However,
Benjamin (1964) pointed out that any real flow is necessarily
three-dimensional 'in the large'; thus the pressure singular-
ity is an artifact of the two~dimensional case. Based on
his discussion, the changing cavity volume of two—dimensional
foil is introduced by the three-dimensional outer solutions.
The overall solution can be obtained by matching the inner
and outer solutions. Theoretically, the two-dimensional
unsteady cavity can be treated as the inner solution of the

three dimensional case. This inner solution does not match

the boundary condition at infinity. The numerical method
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for unsteady flow appears in this section only for the inner

flow field.

The development of this problem proceeds from the
velocity or pressure field induced by a two-dimensional
distribution of vortices and sources. This velocity or
pressure field will satisfy the boundary conditions which
require a given normal velocity on the wetted surface, con-

stant cavity pressure and closure of the cavity.

The derivation of these integral equations is the same
as for three-dimensional cavity flow, except two-dimensional
sources and vortices are used. The potential due to two-

dimensional source distributed over the cavity region is
?

¢, e, 2,t)=;lﬁjg(§,t\ﬂn (=% + 4] d% (4-9)

The two~dimensional vortex potential will be

¢ ¢q.ty= -ZLT-rJ L5 fan_'( —,?—E—) ds. @-10)

The integral equations which satisfy the boundary

conditions are converted to

(%, 1)
V.- ot)_-—gut)+2"f &E d%

+_:_J Yw (S, t) 4% (4-11)
2m | x-% )
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ey 1
+_'1_‘__2@_EJ 3(;})-},”-‘5!&5, (4-12)
[z * |
0 = J‘g(s,tsdi_ 5

(4
These equations are sufficient to obtain the cavity

length, the source distribution and the vortex distribution.

4.3 Numerical Method

The solution of the problem is obtained by reducing
the coupled integral equations to a set of simultaneous
algebraic equations. Since the method used in two-dimensional
flow and three-dimensional steady flow is a simplification
of the three-dimensional unsteady problem, the approach for

the latter case will be discussed here.

The surface is divided into small elements. The element
used in this model is one obtained by dividing the foil and
cavity semispan into strips with cosine spacing, while the
chord is divided into strips of constant spacing on the foil
and on the cavity behind the foil. In order to increase the
rate of convergence for the number of elements used, the
first two elements of each chordwise strip, near the leading

edge, have only one-half the chord spacing of the rest of
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the elements on the foil.

The model uses discrete vortices and sources to
represent the foil and cavity. Each element contains a
bound line vortex, a trailing vortex and a line source.

The quarter-chord line of each element contains the bound
vortex, and the induced velocities are calculated for all
elements at their midspan, three-quarter chord positions.
James (1972) showed that for the best efficiency the vortex
and control points should be arranged according to the
Pistolesi approximation, i.e., at the quarter and three-
quarter chord points on each element. The concentrated line
source is taken to be a constant distribution across each
element at its three-quarter chord position. Since the
source distribution is singular at the cavity leading edge
and termination point, these control points should be placed
away from the singularities. Therefore, the first control
point is located at the three-quarter chord and the source
is located at the quarter chord. The local vortex or source

strength divided by the element width.

Since the cavity length is unknown, the global closure
condition is not used in the calculation. If it is, the
variation of cavity length along the span cannot be iterated.
This difficulty is overcome by applying the closure condition
to individual spanwise strips. This approximation is exact
for a symmetric foil. The source integration along a strip

between z = - ¢ and z = { is

skt




the elements on the foil.

The model uses discrete vortices and sources to
represent the foil and cavity. Each element contains a
bound line vortex, a trailing vortex and a line source.

The quarter-chord line of each element contains the bound
vortex, and the induced velocities are calculated for all
elements at their midspan, three-quarter chord positions.
James (1972) showed that for the best efficiency the vortex
and control points should be arranged according to the
Pistolesi approximation, i.e., at the quarter and three-
quarter chord points on each element. The concentrated line
source is taken to be a constant distribution across each
element at its three-quarter chord position. Since the
source distribution is singular at the cavity leading edge
and termination point, these control points should be placed
away from the singqularities. Therefore, the first control
point is located at the three--quarter chord and the source
is located at the gquarter chord. The local vortex or source
strength is given by the discrete vortex or source strength

divided by the element width.

Since the cavity length is unknown, a closure condition
is applied to individual spanwise strips in the calculation.
Otherwise, the iteration technique does not converge. This
condition satisfies the overall global condition. It also
allows the variation of cavity length along the span to vary.

This method is exact for a symmetric foil. The source inte-

-z, and z = 2, is

gration along a strip between z 1
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where X(¢) and % (¢,t) are the spanwise profiles of the
leading edge and cavity termination points, respectively.
Let g4 (x,z,t) represent the profile of the cavity-foil

combination. Then the stripwise integration becomes
< Jist)

JJ (a&+a?+_a3._93-)é§dg

2% 28 2% 2%

43 i gee) o 30s)
.g
= J(Z,,li,*i)—}_(?,?)}‘ J‘3+j(§;(§,€)-j:(§,ﬁ))1 ds
=3 (8 Ao -5(5)
i @-15)

The first integral is zero if the cavity is closed
both at its leading edge and trailing edge. The second
integral is zero due to the symmetry of the cavity. This

integral therefore represents the stripwise closure condition.

The effect of all singularities must be calculated at
each control points (Appendices C and D). The Biot-Savart's
law is used to calculate the induced velocity at a control
point due to a constant strength discrete vortex segment.

The Kirchhoff's law and Kelvin's theorem must be satisfied

for the vortex distribution. Consider the vortex segment
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(xl,o,zl) ta(xz,o,zz) with strength Yy per unit length.
Defining (£,7) as the coord%nates of a general point on
the vortex, and (x,z) as the coordinates of a control point,

the induced velocity at (x,z) due to the bound vorticity,

Y is
ATT U (4,0,3,8) -
r = ;‘ (COS€ +C0$O‘)’ (4'(6)
a
where 7
= | + t ’

a

t = -0/ (h-&),
d = x-x+t§-t§,
A

= Aya((x,o, 3)-06,0,3), (4,0,§) (3,0, 3,)),

6 =Av3((x,°,»-(x,,o,a.), (%,0, i)~ (%2,0,3,))
(4-17)
The induced velocity due to the trailing vortex (x,o,zl) to

(x3,o,z3) with strength 8; is

4—“ U(",O, a’,t) iy x,_-% |
5 3-3, L7+ -33]"
=X, 3

(4-18)

The total velocity induced by a vortex distribution

is the sum of the influence of all the spanwise and chord-

wise vortices.

sk
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According to the Bernoulli equation, the pressure
induced by the source component contains two terms: the
space derivative and the time derivative.

%,
Poangl oty u at) (4-19)

The P_ due to the line source ((x,,0,z.,) - (x,,0,2,)) can
S 1 i 2 2

be calculated by line integration

it b e e ey aandl s oy
Ps ZTTJ[ LL atgm' i [(7{-'5)"+(}-§)’Jyz
_(A3) F(53.0) Id's'd?
[(xug )i+ (F-sy]h J

fan (F+4,)
Lan(Z+ ¢,)

Saslinl

o 35, S,t)[(wsp +dosol) * ¢ ts;n?-smd)] (4-20)
+ {for d>o :

- for d<0 .
where a, d. t. Y. and B are defined the same as in Eaq. (4-17).

¢, and ¢2 are the angles shown in Fiqure 4.2.

Equations (4-16) and (4-20) are not suitable for
numerical computation if d/va becomes small. Approximate

formulas are used for this special case.

An iteration is used to alter the cavity length until
the desired cavitation number is reached over the cavitated
planform. The steady flow solution is determined first,

then the unsteady problem is solved by a step-by-step
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procedure. Since the variation of the cavity length is
unknown, the use of the frequency domain is not suitable.

At each time step, a cavity length is assumed and the matrix
coefficients are calculated. Solving the matrix with approp-
iate boundary conditions, we can get the distribution of
vortices and sources, and the cavitation number on each strip.
Then a new cavity length is chosen using the calculated
cavitation number. The length is initially adjusted by one
percent of the steady state cavity length. Then either
extrapolation or Muller's iteration scheme (Kristiansen 1963)

is used to calculate cavity length.

The linear algebraic equations which satisfy the
boundary conditions are solved by using Gaussin elimination
with equilibration and partial pivoting (e.g. Isaacson and
Keller (1966)). The convergence test, both in space and time,

has been made. Table 4.1 gives the number of elements chosen

in the numerical calculation.

4.4 Comparison Between Theory and Experiment

Present numerical results for two-dimensional super-
cavitating flow are compared with Geurst's analytic solution
(1960) and Golden's numerical scheme (1975). Golden used a
uniform distribution of the singularity in each element and
the best choice of control points. Figure 4.3 simply confirms

that these methods of solution lead to identical results.
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The lift and moment calculation for supercavitating
hydrofoils of elliptic planform was performed and compared
with analytic solutions by Leehey (1973), experiments by
Leehey and Stellinger (1975) and experiments by Maixner
(1977). Leehey utilized the method of matched asymptotic-
expansions. The theory is valid to first order in angle
of attack and second order in the reciprocal of aspect ratio.
The experiments of Leehey and Stellinger measured forces,
moments and cavity length for aspect ratio 3 and 5 super-
cavitating hydrofoils of elliptic planform. Maixner
investigated the water tunnel wall effects on supercavitat-
ing hydrofoils of finite span by using a geometrically -
similar family of three hydrofoils (AR = 5). He showed
that the previous tests by Leehey and Stellinger were reli-
able. The standard wind tunnel wall correction is adequate
when the foil span is equal to or less than half of the
tunnel depth. It should be noted that the data of Leehey
and Stellinger was based on the cavitation number calculated
by using the vapor pressure rather than the measured cavity
pressure. In the comparison with present results, for the
aspect ratio 5 foil, experimental data for the medium foil
is taken from Maixner's results where measured cavity pres-

sure were used.

Figures 4.4 and 4.5 show the lift coefficient, C_ /x.
versus 0/x for the aspect ratio 5 and 3 hydrofoils, respect-

ively. The agreement between theory and experiment is good.
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For small values of O/x, there is much better agreement with
the present numerical theory than with Leehey's asymptotic
theory. The foil and cavity combination is no longer of
large aspect ratio at small O/t » so the asymptotic

theory is not valid.

The moment coefficient is taken about the mid-chord,
consistent with the right hand rule. Fiqures 4.6 and 4.7
show the moment coefficient for the aspect ratio 5 and 3
hydrofoils. Since Leehey's matched asymptotic expansion
theory neglects the lifting surface effect, it is expected
that the present numerical lifting surface theory would

show better agreement with experiments.

The nondimensional cavity length versus the ratio of
cavitation number to angle of attack is shown in Figures 4.8
and 4.9. The cavity length is measured from the leading
edge at the spanwise location of the centroid of the foil
area. Generally speaking, the agreement between the theory

and experiments is very good.

In Maixner's experiment, the cavity pressure was
measured with a foil surface pressure tap. A noticeable
"hook" was found in the lift and moment data at higher angles
of attack (Figures 4.4 & 4.6 ). Ram effects on the cavity
pressure measurement, due to the dynamic pressure, Wwere
further investigated on the large foil used in Maixner's

test. The cavity pressure readings are taken both inside the

cavity, using a total-head tube, and on the foil surface. The
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L-shaped total head tube protuded downwards into the cavity
from the upper tunnel wall so that it was parallel to the
foil surface and pointed towards the leading edge, away
from the impinging re-entrant jet. Figure 4.10 shows that
the readings from the foil surface pressure tap are consis-
tently higher than the measured cavity pressure, especially
at higher angles of attack and shorter cavity lengths. If

the correct cavity pressure readings were taken in the

experiments of Maixner, the discrepancy from theory at higher

angles of attack and shorter cavities would probably have

been smaller.

The numerical results for an unsteady two-dimensional
hydrofoil with a finite cavity are shown in Figures 4.11 to
4.14. Lift and moment coefficients in heave and pitch about
the leading edge are compared with the results predicted by
Woods (1957). The cavitation number was zero in Wood's
calculation. At zero cavitation number, the cavity length
change was neglected, as was the cavity volume. However,
present two-dimensional solutions are the inner solution of
the three-dimensional case. The following definitions are

used for the unsteady force coefficients.

- Lift due to heave about LE
C r + C ¢ = X

[
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Lif+ due to pitch about LE
20U CA :

CLar el J’ C‘-df. a5

CMm— + 4 Cm..; £ Mmenf" abou‘!z‘ Lf. due fo heave
Ef?lJmeJ-Z 4)] ’

C + 3 Co = Moment about LE due o pitch
SR 2P Ui C ;

The phase angles are defined as the arc tangent of the imaginary

part to the real part in the last equations.

The effect of finite cavities tends to reduce the
amplitude of the oscillating force and moment coefficients.
The diversity of phase angles between finite cavity and
infinite cavity increases with decreasing reduced frequency
(WC/Up). One can expect this happens due to the variation

of cavity length, it increases as reduced frequency decreases.

At large cavity lengths (low cavitation numbers),
the oscillating lift force was away from the region of
resonant behavior. Experimental data and theoretical values
are compared with present numerical results in Figures 4.15-
4.18. The theoretical values for cavitating flow over
rectangular foils of aspect ratio 1 and 6 were taken from
Widnall (1966), by forming a linear comvination of heave and

pitch about the leading edge, resulting in pure pitch about

k h. B —— - et AL 4 gt 3 AT o
— ——ee
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the midchord. The maximum chord of the semi-eliptic foil was
taken as the chord of the rectangular foil. The moment
coefficient was based upon planform area and mean chord.
Figures 4.15 and 4.16 show the lift coefficient versus reduced
frequency (wco/q,) for the aspect ratio 5 and 3 hydrofoils,
respectively. The same conditions as in experiments were

used in the calculations. The agreement between numerical
values and experimental results is good for 1lift amplitude.
However, the phase angle predicted by theory is consistently
higher than experiment. This may be in part due to the
variation of cavity pressure, which is sensitive to the phase
angle. A&Although the cavity pressure variations were small at
long cavities, the cavity length is very sensitive to the
cavitation number (Figures 4.8 and 4.9). However, the explan-
ation of phase angle discrepancy is not fully satisfactory at
this moment. The difference of unsteady lift measurements
between these two hydrofoils is negligible. The finite span
effect is not noticable for the frequency range of the tests.
Figures 4.17 and 4.18 show the oscillatory moment coefficient.
for the aspect ratio 5 and 3 hydrofoils. At high reduced
frequencies, the present theory predicts larger moment coeffic-
ients that found by experiment. The difference of phase
angles between theory and experiment is large. One possible
reason is that the oscillatory moment of supervacitating flow
is a small quantity, which has the same order of magnitude as
the moment produced by the inertia force and spring force in

the mechanical system. The torsional system of the dynamo-

Yy -w'wl:--k_.‘v,b T b
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meter used in measuring the moments was not calibrated at
the conditions that the unsteady measurements were made. The
comparison between the present numerical method for a rectang-

ular hydrofoil and Widnall's results is shown in Appendix E.

Present numerical calculation also gives the variation
of cavity length and cavity volume. Figures 4.19 and 4.20
ahow these two variations decrease with reduced frequency
increases. The amplitude of the oscillatory cavity volume is
about 40% of the mean cavity volume when Aa/a = .167. If the
variations of cavity pressure were considered, the phase lag

should enlarge due to the heat transfer process.
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Chapter V. CONCLUSIONS AND RECOMMENDATIONS {

Measurements were made of forces and moments for
aspect ratio 3 and 5 supercavitating hydrofoils of ellip-
tical planform oscillating in pitch. For short cavities,
the natural frequency of the cavity plays an important role
in the oscillating forces. A pressure transducer was used
to measure the variation of cavity pressure. It showed
that the cavity pressure is not constant during the pitch
oscillation. The amplitude of cavity pressure oscillation
depends on the cavity length and oscillation frequency.

The thermodynamic analysis of the cavity was performed

by assuming spherical symmetry and uniform cavity interior

properties. Eigenvalues were calculated subject to the
given boundary conditions. The natural frequency decreases
when the cavity volume increases, which confirmed the
experimental results. The stiffness of the cavity results
from the air content inside the cavity. The calculated
ratio of imaginary part of the natural frequency to the
undamped natural frequency indicated that more air content

decreases the damping ratio. The temperature gradient

inside the cavity was neglected in the analysis. The
model used only describes general features of the process.
The entire unsteady analysis must be redone to account for
cavity pressure variations.

The discrete vortex and source method is developed for
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supercavitating hydrofoils. The cavity length was iterated
to get a uniform cavitation number over the cavity planform.
The numerical results for an unsteady two-dimensional
hydrofoil with a finite cavity were compared with the
theoretical results at zero cavitation number. The

appreciable difference of phase angles between non-zero

and zero cavitation numbers was found. The lift and
moment calculations for supercavitating hydrofoils of
elliptic planform in steady flow was performed and compared
well with previous experiments. A more accurate prediction

of lift and moment coefficients was obtained by the present

numerical method than with existing asymptotic theories.

For long cavities the numerical results of three-dimensional
unsteady flow were compared with experiment. Amplitude

of oscillatory forces compared well between theory and
experiment. However, noticeable difference of phase

angles was found. Since the cavity pressure was considered
as a constant during unsteady motion, one should find the

importance of cavity pressure variation.
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Table 4.1 Values of Vortex and Source Element

2-D Steady

3-D Steady

2-D Unsteady

3-D Unsteady

No. of vortex
element

25

No. of element
along the chord
on the foil

12

No. of vortex
element

20

No of element
along the chord
on the foil

10

No. of source
element

40

No. of element
in the cavity
behind the foil

8 to 14

No. of source
element

35 to 40

No. of element
in the cavity
behind the foil

8 to 14

No. of element
along the
semispan

6

No. of element
along the
semispan

4
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APPENDIX A

DYNAMIC CALIBRATION OF DYNAMOMETER

Dynamic calibrations of the water tunnel force gages

were carried outwith the aspect ratio 5 foil. The following

equipment was used to perform the calibration:

1)
2)

3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)

Vibration Exciter Body - Bruel & Kjaer Type 4801,

Vibration Exciter Head - Bruel & Kjaer Mode Study
Head Type 4814,

Power Amplifier - Bruel & Kjaer Type 2707,

Impedance Head - Wilcoxon Z-602 #252,

Sweep Oscillator - Spectral Dynamics SD 104A-5,

Dynamic Analyzer - Spectral Dynamics SD 101-A,

Buffer Attenuator - Home Made,

Ithaco Preamplifier - Model 255-A,

Accelerometer - Bruel & Kjaer Type 4332 #159861,

Phase Meter - Spectral Dynamics SD 110,

Oscilloscope - Tektronix Type 561B,

RMS Voltmeter - Bruel & Kjaer Type 2416,

DC Voltmeter - HP Type 405 CR,

Transducer Digital Indicator - Lebow Model 7521. .

The instrumentation arrangement is shown schematic-

ally in Fig. A.1l

The dynamometer, installed in the water tunnel, was
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subjected to a sinusaidally oscillating force, generated
from B & K Exciter Head Type 4814. The exciter was mounted
on a heavy table and was also fixed to the side flange of
the tunnel. The stiffness in the connections between the
exciter and the flange of the tunnel was sufficiently high
that the resonance frequency was out of the range of interest.
A pushrod was used to transfer the force from exciter head
to the pressure center of the foil: an impedance head was
attached between them. Figure A.2 shows a picture of the
exciter arrangement. The exciter was driven by the
Oscillator and B & K Power Amplifier, which is a high power,
low distortion vibration exciter driver, giving a highly

linear output and a selectable output impedance.

The force signals from the load cells and the impedance
head were analyzed with the Spectral Dynamics Analyzer, in
which a 5 Hz filter was used. The signal being analyzed
was compared internally to a signal of the same frequency
as the exciting frequency from the oscillator and filtered
with the 5 Hz Band Pass filter around that frequency. The
measurement covered the range from 5 Hz up to 30 Hz. Due
to problems of stabilization of the shaker output, the tests

were carried out for discrete frequencies.

The phase angle between the force outputs of the load
cell and the impedance head was measured. Both of these
signals come through the Spectral Dynamics Analyzer and were

compared in the Phase Meter. The three load cells on the

o
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steel rods that sustain the floating section of the
dynamometer were replaced by dummy load cells to increase

the stiffness.

The dynamic calibration of the torque transducer was
the most difficult calibration made. It was hard to calibrate
the moment gage under the same conditions that the unsteady
measurements were made. During the calibration, the top
part of the torque transducer was rigidly clamped to the base
of the dynamometer and the top window of the tunnel. The
moment input was obtained from the force on the impedance
head multiplied by the moment arm. The output of the torque
transducer was obtained from the Lebow Indicator. The
calibration showed that the moment from torque transducer

had a linear relation to the applied moment.

The dynamic system of the dynamometer in lift and drag
directions can be described by a model of three degrees of

freedom. The applicable equations of motion are

MK, + &, h-%3) + Ra Gh=%) + G0 (%, ~X3) + G 5= %2) =0,

& e jut
MK, + ks (Kamn) +G0a-%) = Fe”
¥y + Ry Ay + &, hy=K)+C3 %3 + Ci(% -%,) =0,

(A-Y)

e-on

i ey
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where
%— m, = mass of the base of the dynamometer L
| and top window of the tunnel, ?
m, = mass of the floating part of the. dynamometer 2
and 23% of the shaft mass, |
m, = mass of the foil and 77% of the shaft mass,
k4,5 = spring constant and damping coefficient : b
in the tunnel's window, respectively,
kl,c1 = spring constant and damping-coeffieient of
the load cell plus the linkage between the

load cell and the dynamometer, respectively,

kz,c2 = spring constant and damping coeffieient of

the shaft and foil combination, respectively,

The shaft mass was divided as described in Den Hartog

(1956) and based on Rayleigh's method.

A contilever beam EI, of length [ and mass m carries a

concentrated mass M at its end. The deformation of the beam

is approximated by a quarter cosine

1 «
= 4, (-« 12 —= >
L, e 1 ‘\‘\J$.

The total kinetic energy can be written as

_=L ry 2 0.23mM
K.E ij.(M-r 23m),
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The potential energy will be

K.E.= 5 w*4 (M+o0.23m),

Equating the kinetic energy to the potential energy and

solving for w? . we find

25 3.03EI
L3(M+023m)

w

Thus 23 percent of the mass of the beam is effectively

added to the end mass.

Equations (A-1) can be solved by assuming harmonic

motion for the displacements. The ratio of Lebow force to

exciter force can be obtained after the spring constants

and masses are known. The value of these constants are:

Mass of the base of dynamometer and top window of
the tunnel
my = 10 slug,

Mass of the floating section of dynamometer =
me = 1.2 slug,

Mass of the shaft

m, = 1.37 1bm 0.043 slug,

Mass of the floating part of the dynamometer and
a fraction of the shaft mass
m, = mg + 0.77 m, = 1.2 + 0.043 x 0.76=

1.23 slug:

N SRR b Nt L e
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Mass of the hydrofoil
m, = 0.157 slug,
Mass of the foil and a fraction of the shaft mass

m, = m + 0.23 x m, = 0.168 slug.

The load cells are coupled between the floating part
and the base of the dynamometer by screw rods and bolts.
The spring constant of the load cells was obtained from the
Lebow catalog. The spring constant of the rods are calcu-
lated from Hooke's law, neglecting the Poisson effect. The
equaivalent spring constant of the lift load cell system
(#125) is

kl = 66440 1lb/in.

The spring constant of the base dynamometer and top
window combination, k3, was obtained from the experimental
force-displacement curve. This work was done by W. T. Tan
as part of UROP project. This constant is

.k3 = 299,000 1b/in.

Spring constant of the shaft and foil is (Riva (1974))
k2 = 25,000 1b/in.
Damping is small in this mechanical system. 1% of

the individual critical damping of each spring-mass system

is

| -
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B L
Q

-
|

= 1.65 1bf-sec/in,

]

0.375 1bf sec/in,

Q
w
]

10 lbf sec/in .,

From the calibration, it is evident that the
natural frequency of the dynamometer is above the test
range. The results show that it is reasonable to represent
the real system by the model with three degrees of freedom.

It also shows that the damping is small in the system and

the dynamometer can be modeled as a mass-spring only. The
lowest natural frequency of the dynamometer with foil a
attached was about 80 Hz. The maximum frequency of the
pitching oscillation was about 20 Hz. The mass of the foil
system and of portions of the dynamometer produced a force
on the load cells when the apparatus was oscillated. The
magnitude of the force was determined by oscillating the
foil in air and measuring the resulting force. This force
was subtracted from the response of the supercavitating
foil, taking into consideration the phase relationship

between the two forces.

The torsional system can be represented by a model with

two degrees of freedom. Equations of motion are

p 7 g—z}+q%¥' + Ry (U-B)+ R W =M, ,

:); 37?: + ks (¥2-%) = Mz,

(A-2)
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where Jl and J2 are the moment of inertia of the foil and

shaft combination and crankarm respectively; My and Mz are
the moment applied at the foil and crankarm, respectively;

and k, are the damping coefficient and torsional

€4 4
spring constant due to the bearing and rubber sealing. The

moment meausred from the torque trandsucer will be
Me = ks (¥a-h).

Substituting this into the last set of equations. Using

the assumption of simple harmonic motion and ¥ =% , these

equations become

. : _n )(Wt‘&l)
3;.‘;.‘%6"“ + oW, e @ e
Jlwt-m) J(wt=6)
+ &4,.4'1.6- S M{oe ;
. jwt Jwt-¢,) Jiwi-¢3)
jaw 7/7-6) + Me € = M € A-3)

b

where the phase angles ﬂ,¢,,¢3 , are relative to the acceler-

ation. These equations can be simplified as

¢

2
>

=0 - i -4
Fr Yt Gyt - M +hy B = Mae

A4 ¥
T, ¥t Mo = M e (A-)

If the constants Jl' C4 and k4 are known, then the moment

applied at the foil Ml can be calculated from the equation

(A-4) after the torque transducer output Mt is measured.
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When the foil was oscillating in the air, the moment
applied to the foil, Ml was zero. The equations of motion

become

3,40 = o g0 W oleth = 2,
3_34{

ot My = My, (A-%)

The moment M, was measured by the force at the load cell

2
in the drag direction multiplied by the length of the

crankarm. Mt was measured by the torque transducer. The

phase relationship was measured with respect to the acceler-

ation. These equations can determine the characteristic
constants of the system. The results of the calibration
show the damping coefficient to be dependent on the

frequency. For the aspect ratio 3 hydrofoil, these constants

are
J, = 00024 £t- 1b-sect,
J, = 00033 £4+-1b-sec?,
Co, = 006365 +7. 92/,F= -2?-6/{5’ fi-lb-sec ,

Ry =4.63 fi-1b, ki

From the results of the calibration, it is reasonable to
represent the torsional system by a model with two degrees

of freedom.
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APPENDIX B

FORMULATION OF PROBLEM

In the following, the isentropic inviscid flow of
a incompressible, initially irrotational fluid is considered
for linearized supercavitating hydrofoils. Under this
hypothesis, the flow can be described by the velocity potent-
ial § . The linear equation of the velocity potential

exterior to the foil plus the cavity plus the vortex sheet
is

v'¢ = o, (B-1)
where ¢y? is the Laplacian operator. It is convenient to
introduce the perturbation potential ¢, such that

¢=Ux+¢, (B-2)
where U, is the undisturbed flow velocity in the direction
of the positive x-axis. Ccombining equations (B-1) and (B-2)
yeilds the equation for the perturbation potential

V'@ = o, (B-3)

The linearized Bernoulli equation for unsteady flow

is

Pt =-0( 3+ 3¥) (B-4)

which yields, for the pressure coefficient
f -t 2,1 29 2¢ c
Pe i R R & (B
2 (]
The perturbation pressure, P , also satisfies the Laplace

equation

v:pP =0, (B-¢)
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exterior to the foil plus the cavity plus the vortex sheet.
Let the source distribution, gl A, 3t) , represent the slope
difference between the upper and lower surface at point (4,0 3),
and the vortex distribution, {a (% ¥ t) represent the
difference in the x-component of perturbation velocity between
the upper and lower surface at point (%, 0, %). As shown

in Fig. B-1, this leads to the results,

¥ .t -0, 3.t VX, 3.¢) =
8'0‘.3.1:)51”“(}: §.t) _qu:a )2<___l1§_>’ (B8-7)
Loyt = uci.b.t) s u(x,aw..u) = uta,.}.tz >’ (B-8)

where (a) denotes the jump in "a" across the surface }§=o0.

From the Bernoulli equation (B-5) and the distributions

of sources and vortices, one can see that

(39> =- LG EED +HE)

]
I
N

7) 2% B-9)
2t43h), <

Us
<Py =gl
(%

X
=&;-and§+2ﬂ. ( B-10)

o ————

s
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e A R e

: For the application of Green's theorem to the super-
cavitating hydrofoil of finite span, the pressure at the

point (%.4.3) is (e.g. Newman (1977))

P(X75¢) 1
. P rt)= —ﬁ(P:?St) n—'————a—n————)ds (B-11)
v where  is the distance between (% §.3) and dummy point (57, 8),

and S encompasses cavity, foil and wake.

\ The integral can be linearized for application to
thin wings at small angles of attack and rewritten as open-

surface integral

Py, ;;.*.)_—H(ﬂ»,7 23) r) J-S (B-12)
SutSe

where S, is the projection of the foil surface on to the

Xz pland and S, is the projection of cavity surface on to

the same plane.

é The partial derlvatlve,a? = is equal to zero everywhere

on the plane Y=o except at the point r=o . If we assume the

pressure distribution is continuous over the surface, then

the limiting case for r=0 can be solved as in the following,

Auﬁt)-ﬂ&)a,{r] ds= <?«xst>>jj oo 95

Jre W€

45
=<P(X.3.t)>j d B-13)
[("3)‘ + aa_‘_‘a-‘),.]\&. (

€ x-€

R AR AT 1 0 b € B A A T i S = e T T A

R

SR S e ’ ’ _]
' e e o
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If the point is on the surface d=0 , by introducing

temporary integration variables §’'=(x-%) %'=(}-3),we find
é¢

dy'ds’ .

(%,0,3,t) = o,3.¢) )i e . ;

-€é -€

= 'P(a‘ ) | =~ _.__6..:_.
< ¥ ,J:::[Z‘faﬂ (3{_———26‘*5‘ )

2 o e 4

2t (grmg)].  (B14)
The limiting process involved here shows that we must let

} and € approach zero in such a way that the ratio €¢/y

becomes indifinitely large which leads to

A (x,03t) =2nl{Pmx3.t)) (B-15)

Substituting equations (B-9), (B-10) and (B-15) into Eq.

(B-12) , the pressure on the surface becomes

f ((3 ai(:’f) 33’(?3&) ds

Pt4,0,3,¢t) =
Sa+3.

+ L b t) +é—:—;f&‘¥,m)d§. (B-16)

The second term in the first integral can be integrated

by parts

H 2§8.3¢) d5dS o e
@y ey eyIg-eyi ™

(%X-%)
. H J50 g P 4548, (6T)
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where we use the condition that the source distribution

is zero outside the cavity.

When the boundary condition of constant pressure
in the cavity is applied on the cavity surface, the follow-

ing result is obtained

0 = :Fa‘._f__z = - Paoy), (B-18)
7 s
By combining Egs. (B-16), (B-17) and (B-18), the integral

equation becomes

x
0 =_(r,,‘“)-u atjzra(;zwag

(x—s)g('set) __ofrsst) 1
” Uy at rJJS.
S‘+S‘ (5"/9)

This integral equation can also be derived by using

the vortex potential, source potential and Bernoulli equation.

Applying the Green's theorem to the Laplace equation
V?¢@=0 , the velocity potential at an arbitary field

point (X.4,3) is

Q(x.g,a,e)s—g(¢i?‘§g ',":)J (B-20)




oot

v =1L 3w

Again, the surface integral encompasses the cavity, foil
and wake. Since the operation of differentiation with
respect to X can be interchanged with ¥* in Eq. (B-3),

we may write

I 2. _2u ! y
uu.%.z,t)=4—"ﬁ(uﬁr an r)alS. (B-21)

In regard to the second term in Eg. (B-21), the

condition of irrotationality reveals that

24 _ 2u _ 2V

on top and
W e L BV
on ~ 24 2%, (B-23)

on the bottom surface. Eg. (B-20) can be rewritten as

open surface integral for linearized problem,

l 2 | s
U 3t) = — ﬂ {(u)-a—n-l;-(%) r]J.S
SeS.

"‘ﬁﬂ[ LB F 5P Pl

S.+S.
From the relation « =o2¢/aXx and v = 2Y¥/2}

Vg bt = g‘g[uw,z.mws, (B-25)
-0
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where the assumption that ¢ (-®,4,3,t) =0 has been
made without loss of generality. 1Inserting Eq. (B-~25) into
Eq. (B-24) and interchanging orders of differentiation and

integration, we get

B £ ] 2 1 t
VxYq. 5.t) 4WJJ[-<V>25 = + (55 ¢)

x
2 d¥’

2 4%dS  (B-26)
X ’ % .

24 | [(g -8)*+ g +(3-9)]

o
The integration of first term is zero everywhere on the plane

‘3=0 except at the point Yy = 0 . The limiting value of
this has been shown in Eq. (B-15). The result of the
second term in the integral is the Mangler's principal

value which is equal to (Ashley & Landall (1965))

[ ACERD (%-%) 3
(}—S)z [ |+ ((x‘ys)l_*(a_s)l)/ﬂ-]AEds‘ (5 27)

By combining Egs. (B-7), (B-15) and (B-27), the integral

equation which satisfies the tangential velocity on the

boundary becomes

! i %a (5.8.2)
VO038) =- 3 3500 ¥ 25 [ sy
(%-%) :
'[ i (<"-3>‘+(a-5)‘)"=] 443, (8-28)
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For the calculation of oscillatory forces and moments
due to small amplitude oscillation about the steady state,
the integral equations (B-19), (B-28) are solved for subject

to the closure condition

ﬂg(; $,t)ds dS = 0, (B-29)

S
A Kutta condition is also required to make the

problem well set.

The unknowns are the vortex strength, source strength

and cavity surface.

As mentioned before, the cavitating lifting surface
integral equations (B-19) and (B-28) can also be derived
by using vortex and source potentials. A sheet of source
spread continuously over the surface S, , having strength
gaigﬁ)per unit area in the neighborhood of the point (¥%,0,%)

possesses the perturbation potential

(B-30)

Gony.3) =--L 3(3.3,04:43&
41 || (x-sy+grecz-ey]® .

The vertical velocity at point (X ,-0, }) induced by

the source sheet is
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VA -05t) = 2H04-03.2)

24
_____ F(%5.8.¢)d5d$ j
:Majf [""53‘*3‘“5-:)‘]* :
+ens
=—’— m 203s.5.¢)ds dS
g ,._«["“?)“EI‘HJ-S’)‘]%
3-¢

/
By g”'&'t)- (B-31)

The pressure at point (#,+0,3%) induced by the source

sheet can be calculated from Bernoulli equation

el

i
- e abe - J O 2Ys
U.( U.E%J' 2 X )
) J’, R £(5.5¢))5dS
Z(E[ 4 atsc [(x—g)'-#f-rt;-g)‘]w] ﬁ
ok 3 £(%5.5.¢2d5d3S 1)
+{ 4Tr9><ﬂ [(x~‘§)‘+ :1‘#5—9‘]7"]}

{ ' 2 (ne) J
[(x-$)+ Y+ (3-£)']%

(53) $(5.8.¢) } Ixds. (B-32)

- [(x‘,; )I.* yz_'.(}_s)l]%




~-117-

Instead of solving the velocity potential directly,
we may distribute the vortices over the foil ,5,, and the
wake, Sw, to form the integral equation. The vertical
velocities induced by a vortex sheet are determined by

using the Biot-Savart law, (Bisplinghoff, et al (1957))

(5.84)[X-%) + 8a (5.8.6)(3-3]

[ox-%)+ §2+ (3-8 ]2 e

| xa
(X4Y3.t) = —
VxY3.t) 4_"f
s,

Y (5.8.0[x-%] + S (5.2¢)[3-3
+4—‘—ff g {, ]dSJs’,
m [(x\i)l_‘_ gl_._{}_g)l] /o
Sw
(86-33)

where [ and & are bound vortex strength and trailing
vortex strength, respectively. The Kirchhoff's law and
Kelvin's theorem must be satisfied for the vortex distri-

bution. The pressure due to the vortex distribution is

Pvz:;e'z‘: --—(i:(—dfg—fﬂ—%%-), (B -34)

where 2¥,/ox is the # - component velocity induced by the

vortex distribution

Yal($.5.t)
2%, %+0,3.¢) _ | ,!'-m gﬂ [(’(“)t"" :L'_(a__s);])/;ASJS
\4-’0

(
2X 4n

:’:—-ZL' r‘(”,&:t) (5-35)
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The term, 2%/a2¢ , can be derived from the definition of

the velocity potential

A
O, % 05,t) =[u(¥,o,5,t)d's’
e
=--Z£f2f.(§, 5.8)d%, (B-36)
then 10
2% oL %/o;(g,},t)ag. (B-37)
>

Sugstituting Egs. (B-35) and B-37) into Eq. (B-34)

A
)
'Pv(x,o,}lt)=£(X,b,t)+U;3€Jﬂ(§,b,t)JS. (5’38)
.’

A linear superposition has been used to satisfy the
boundary conditions. By combining Eqs. (B-31) and (B-33),

we get the normal velocity on the foil

V(%-03,8) =-2 201.5,¢)

; JJ L (S58¢)[x-5] + 3 (5.8.)(3-3] fed8

o
4 Jo-vy+ gt + 3- s ]

Sa

+L [ %u(5.50[x-5] +48,(5.58)(3-3]
4u 2 2 3 EAI
[(x-'n 4 v -] .

w

(B-39)
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T K Al

This is equivalent to Eq. (B-28). The same expression will
be obtained if we apply the Kirchhoff's law and Kelvin's
Theorem over the surface and evaluate the integration. The
constant cavity pressure condition, Eq (B-18), is the result
of uniting Egs. (B-32) and (B-38), which is the same as

Eq. (B-19)

o =-fa("-8.t) - — —-JJX.(XJ t)dS

9 !
J b [(x it Y 63-87] %

(x-5)¥(%s,%, ¢) } €ds.
(o-r+ §2+3-9) )" :

(B-19)

Note that the cavity region, S_ , is also time dependent.

" ;‘_ B —
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APPENDIX C

VELOCITY INDUCED BY A DISCRETE VORTEX SEGMENT

Consider the vortex segment (#,3 ) = (#:3) with
strength ¥ per unit length. Defining (%, 5) as the
coordinates of a general point on the vortex, and (x,¥) as the
coordinates of a control point. The law of Biot-Savart is

applied to obtain the induced velocity at point

%2, %) .
4TTURY) _ *-3)d5-(3-5)48 (il
Va [-ort + g-s*]*
¢ % D)

Along the vortex, we have

£ ="_§- = ;;-7\'1 = GConstant
2~ %

and the geometrical relationships

Q=)+t

d =e-t§,

€ = x-X+t¥,

(%-8)d$ - (3-8)d§ = (%-X,+13,-t8)dS - (3-8)td§
= (e-t3)d%
=d-d%,

\d 1 /g sec¢ ,

i

[-%y*+ 3 -eb‘]y‘

dS = 1d1/a Aec’ddd | (C-2)
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Then the equation (C-1) becomes

h
ATIVRY) _ df 43
Va J [o-ore (3-53]"

___%_"(m@»,ma), c-3)

where K and @ are the angles shown in Fig. (C .1)

Equation (C-3)is not suitable for numerical computa-
tion if J becomes small (Kerwin & Oppenheim (1974)).
There are three special cases which require numerical approx-

imations for small d .

(1) for %< F< &

A = I———zd @: ___—-2‘{

2a3,+bl » 2a3,tbhl,

PR *
Masl=F = e
‘03% o= ’—-El = , - ___2_4.:_——

(243‘145)‘:
4TV _ d d c-4)
n =2q [ d (zaa,ﬂ,)" lza3,+b)'] (
(2) for 3 <},
‘2"3' +b‘ 4 "“3*5\
2d”

P =1- Gagorey

PSR L 3
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2d*
COSK = -C0SP = ~| + W :
4TV Yo o d
—_— - C—5)
Xa 2 a [ (ZQa"fb)l (ZD.a, +h)l] ’ (

(3) for 3>&:
& = | 2d/zagaw|, O=T-§ = |2d/agibdl,

csol = | = 2d’/(2ag+bY} |

cose = —wsP = -l + Zdz/(Zaz’z‘fb)z,
4TV % g ol (Cc-6)
¥a el [(zaé,q,)‘ (2ag,.+),)‘],

The induced velocity to the trailing vortex (x,,0, },)-

~ (X%3,0,3,) with strength &, is

0h,3,) 3
(3-8)>d%
T U"‘ e g 134
Sa [o=%)+ 3~ %) ]

&)

X=X,
p—1 X_S l

-3 [y geat

=X\

The total velocity induced by a vortex distribution

is the sum of all the spanwise and chordwise vortices.
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» X
(x,, 2,)
CP
(x,2)
7"
Zy (xz, 2,)

FIGURE C.I Coordinate Systems for Discrete
Vortex Segment and Control Point
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APPENDIX D

PRESSURE INDUCED BY A DISCRETE SOURCE SEGMENT

For unsteady supercavity flow, the pressure induced
by source component consists of two terms: the space

derivative 2Y;/ax and time derivative 2% /3¢ . Rewrite

the Bernoulli equation

b f(’_u% % (3 % s 79
2 (e

The velocity in the x - direction at ¢1,3) due to the

line source, g(¢) , along CA &) = (%2, %) is (Fig.D.1)

4nUs _ 50,/5%
% (X3, 8,)
= (X-E)d4
[(x-5) + (3-5)]"
*.3) 3‘

e-t%
a (Qg +b8+c)™

w d$

= “”‘ - (22eS +be +2£c+bt§)l
zd'(as *+bs+C) i
W ol e, 5o i . (D-1)
d (a8%bs+c)®l;,
where
= %x-%, ¥t} -
C=e'+3 (D-2)
and a,b, d are defined the same as Eq. (C-2)
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%
E Again, there are three special cases which require

numerical approximation for small d . Equation (D-1) can

be represented by the geometric angles (Fig. D.2)

B )

A;Ll, =L [aspebrem)s sin Y (451X ] (-3
+ for d >0
ik for d <0.

Then for small d ’

(1) for %<3<& 5
2
o(’=, ZZ;(.i—bl 2 Pz‘zagv.ﬂ,‘ )

wsoh = (- /2 = | - 2d /(2a3,+b)*,
Sint =X = |- 2dY/( ?-a}d'b)‘.

2d
5;,,(53 P zlza&.-&»b I»

d (2ag,+by:  (2Q3,+b)

4-77us,.2(___'_ d d )

g b

!
t(l 2a3|x+b| o l 2a}‘+b| ) (D-4)

(2) for § <3,

ke Z:J'iblf s i

wsBx=(-2d"/(2a3,+b)* ,
Gsa=-cos@=-|+ 2d/(2a¢+b)",

Sinpl =~ |2d/(zaa,+b)|, s;nﬁzlzdﬁzqa.ﬁ.)l
4w Us :
7 ° Zd(’/(zaa.-fb)z g ’/(2‘23':*")‘)

*2t([V/2ag a0~ | Viaag,+ey|, (D-5)

._ed__l
2a3,+b |l »
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(3) for 3>3
o = | 2d/faay+b)| , O=11-p = |od fr2ag.45)],
Cosot = | - 2d1/(2_a3.+b)z , Sinol =|2d /(2ap.+b)] .
sB =-cas® = - | + 2d /(2ag.+b)* ,
sin@=|2d/(2az,+b)|,

4T Us | |
=82 —
# d((zaa,n,)‘ (2a¥,+b)* )

.+2t(L2a;;+bJ _l (2;L+b)|>- (P-6)

The induced pressure due to time variation of the

source segment, EQ , is

‘”l,a')

am 2% __ d4
£ ot {(x-:)‘ﬂs-s)‘]y‘ 2 ®-7)
)

By using the definition of Eq. (C-2), we obtain
%

T 39 =.-,['ch¢ deé
ot
£, 4

fon (ZE+®)

(p-8)

=~ ‘/? Fan (2_11+¢') .




Once more, three special formulas are considered for

small d ,

(1) for 3, €3 <&,
4’::'(%"""()’ ¢2=%7"’F’

= | d " -gz

2a3,+b

(205.+l>)(2a3,+b)‘ >-9)

(2) for <%

(D-10)
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(3) for 3 >3
= Ar o),
b= ~(L —(T~p))=-(F-6),

is;:lg‘t’ém/? (cot E fan L)

=_/ ,2a},+b

(D-11
2a 3. tb )

Then the induced pressure due to source distribution
can be calculated by using these equations and Bernoulli's

equation.
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(x,,2,)

Z* (x5,2,)

FIGURE D.! Discrete Source Segment

3 X

2

FIGURE D.2 Coordinate Systems for Discrete Source
Segment and Control Point
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APPENDIX E
NUMERICAL RESULTS OF RECTANGULAR HYDROFOIL

The present numerical method was used to calculate the
unsteady forces on an aspect ratio 6, rectangular hydrofoil.
A comparison was made on heaving motion at /o = 2.0 and
wCo/Um = 3.1416. Eight elements were used along the chord
of the foil, six elements were used in the cavity behind the
foil and two elements were used along the semispan in the
calculation. The lift amplitude and phase angle were calcu-
lated after one cycle of oscillation and were found to be 2.71
and 108.6°, respectively. The lift amplitude and phase angle

of Widnall's results at wC_/U_ = 3.1416 are 3.4 and 115°.
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