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1’!’ EXPERIMENTAL AND THEORETICAL INVESTIGATION I
OF UNSTEADY SUPE RCAVITATING HYDROFOILS OF FINITE SPAN

by
Chen-Wen Jiang &
Patrick Leehey

ABSTRACT

Measurements of the forces , moment , and cavity pressure
fr:l on aspect ratio 3 and 5 supercavitating hydrof oils of

elliptical planform oscillating in pitch have been obtained
at frequencies from 5 to 20 Hz. A region of resonant
behavior was found, which corresponds to a natural frequency
of the cavity. A thermodynamic analysis of the cavity was
performed under the assumptions of a spherical cavity and
uniform cavity interior properties. The calculated damped
natural frequencies were compared with the results taken
from peak oscillatory lift experiments. The damping ratio
of the cavity depends upon the partial pressure of air,
temperature and cavity size. A numerical method was
developed for a supercavitating hydrofoil. Discrete
vortices and sources are used to formulate the equations.
The cavity length was iterated to get the desired cavitation
number over the cavitated planform. The numerical results

F of an unsteady two-dimensional finite cavity were compared
with zero cavitation number theory. The problem of
supercavitating hydrofoils of finite span in steady flow
was solved numerically and compared with analytical solutions

F I and with experiments. Results of these calculations
indicate that this method gave a more accurate prediction of
lift and moment coefficients than existing asymptotic
theories. The numerical solutions of unsteady hydrofoils
of finite span were also compared with experiments. The
amplitude of the forces was in good agreement , but the
phase ~iifferences between theory and experiment was large .
The effect of cavity pressure variation should be investi-
gated further.
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NOMENCLATU RE

a ai.il+t2

aspect ratio

CL,ACL lif t and oscillatory lif t coef f icients,
respectively

CDI
~
CD 

drag and oscillatory drag coefficients,
respectively

CM,~
CM moment and oscillatory moment coefficients,

respectively

C
0 

foil root chord

c damping coefficient

C,~, specific heat at constant volume

D thermal di ffus ivity of water

d dEx-x 1+tz 1-tz

F applied force

g y-coordinate of cavity foil combination

h instantenous y-coordirtate of the wetted surface - •

heaving amplitude

j  moment of inertia of the dy namometer system

k stif f n ess of the dyn ainometer system ; k~ wC0/U~

L latent head; steady state cavity length at
centroid of foil

£ mean cavity length measured from foil leading
edge at the mean chord

L(z,t) cavity lengths

m mass of the dynamometer system

M applied moment

- 
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NOMENCLATURE (CONTINUED)

p 0  upstream static pressure at the spanwise
position of the foil centroid

p static pressure

R equivalent radius of the cavity

tR. universal gas constant

r radius; distance

S foil semispan

T temperature

T
~ 

critical temperature of water

t time

U0, free stream velocity

u,v,w pertubation velocity along x ,y , z direction

V cavity volume; velocity

x displacement of the dynamometer; T
~

_T

x,y, z, coordinate system

xL(z) chordwise coordinate of leading edge

p density

a cavitation number

a angle of attack; geometric angle

pitching amplitude

B geometric angle

frequency of oscillation ; natural frequency

• phase angle; geometric angle

angular displacement

A coefficient of thermal conductivity
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NOMENCLATURE (CONTINUE D)

. 1 velocity potential

y,5 spanwise and chordwise vortex strength,
• respectively

q source strength
- 

~~~~~ dummy variables in the x ,y, z, directions

- Subscripts

V

- 
a gas

o mean properties

c cavity
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CHAPTER I INTRODUCTION

Considerable theoretical and experimental work has

been done on three-dimensional supercavitating hydrofoils,

but the agreement between the theory and experiments is not

fully satisfactory.

Unsteady two-dimensional linearized theories for

zero cavitation number have been developed by Parkin (1957)

and Woods (1957) . Leone (1968) developed a two dimensional

unsteady theory based on the method of matched asymptotic

expansions, and measured oscillating lift for two—dimensional

supercavitating hydrofoils. A recent review of supercavitat-

ing flows around lifting hydrof oils if that of Hsu (1975).

Leehey and Stellinger (1975) obtained theoretical predictions

of steady state forces and moments for hydrofoils of finite

span which compared well with experimental data. Widnall

• (1966), Tsen and Guilband (1973) and Unruh and Bass (1974)

studied linearized three-dimensional cavitating hydrof oils

using numerical lifting surface theory. The steady cavity

length in these studies is assumed to be relatively long so

that the variation of cavity length due to unsteady motion

can be neglected in the analysis. Unsteady force character-

istics were measured by Wetzel and Foerster (1967) for

naturally ventilated foils undergoing either a sinusoidal

heaving motion or a harmonic oscillation of a trailing edge

flap . Klose and Acosta (1969) carried out unsteady force 

_- 

• _ -  —  ~~ - _  — - —~~~~- • -  -• • - - -- .--•-— -•-
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measurements and flow observation on superventilated hydro—

foils in heaving motion. Their unsteady lift measurements

showed appreciable variation with changes in cavity length.

The present experimental work is concerned with non-

steady motion of cavitating hydrofoils under pitch oscilla-

tion. A region of resonant behavior near the reduced

frequency wI/U0, 2 was found , where I is the mean cavity

length measured from the leading edge of the foil. For a

fixed oscillation frequency , the amplitude of the oscillating

lift coefficient peaks sharply at a critical cavity length

(or volume). Microphone measurements of cavity pressure

show that it is not constant during the pitch oscillation.

The resonance of the air-vapor cavity has been studied

asssuming incompressible flow, uniform cavity interior proper—

ties and a spherical cavity. The liquid phase inside the

cavity , viscosity and gas di f fusion have been neglected in

this analysis. A damped natural frequency was found. The

oscillating amplitude depends on the damping ratio.

For long cavities, the oscillatory forces are away

from the region of resonant behavior. The unsteady forces

are compared with numerical results , obtained from a lif ting

surface theory. The discrete vortexes and source method

is adopted to formulate the equations. An iteration scheme

is used to alter the cavity length until the desired cavitation
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number is reached over the cavitated platform. The numerical

amplitude of the oscillatory lift compares well with the

experiment. However, the phase difference between theory

and experiment cannot be neglected.

Numerical results for lift and moment coefficients on

steady supercavitating hydrofoils are in good agreement with

steady flow experiments of Leehey & Stellinger (1975) and

Maixner (1977). The results show that the improvement has

been made after considering the lifting surface effects. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — • •  • •
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CHAPTER II EXPERIMENTAL STUDY

2.1 Experimental Apparatus

A) Variable Pressure Water Tunnel

The experimental work was conducted in the Recircul—

ating Variable Pressure Water Tunnel of the Department of

Ocean Engineering , Massachusetts Institute of Technology .

Test section velocity is variable between 0 and 30 feet

per second, static pressure is variable between atmospheric

• pressure and 3 inch Hg. The test section is 20 inches by

20 inches and 4.5 feet long. In order to get high oscillat-

ing forces and small cavitation numbers, the tunnel velocity

was run as high as practical ( ~ 30 ft/sec). The velocity

is indicated on a manometer which gives the differential

static head between two locations in the contraction section.

This reading was calibrated by using a pitot tube in the

test section. Figure 2.1 presents an overall view of the

working section. The dynamometer is mounted in the top

window of the test section. For these tests, two force and

one moment component were measured.

B) Models and Shaf ts

The foils used in this test were flat plate sections

with elliptic plan forms, the same used by Leehey and

Stellinger ( 1975) , with dimensions as shown in Figure 2.2.

Each foil and shaft  were constructed of Type 304 stainless

steel and joined together by two pins.

• • - - • •
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C) Dynamometer

The modified dynamometer was designed by Riva (1974)

to permit measurements of forces and moments on hydrofoils

oscillating in pitch. The pictures of this system are

shown in Figures 2.1 and 2.3.

The shaft is supported horizontally and vertically

by two Fafnir self-aligning bearings. These bearings are

mounted in a cylindrical-spherical housing attached to

the floating part of the dynamometer , which can be adjusted

to correct misalignment of the foil relative to the top

window.

The clamping and stopping system are constructed on

the cylindrical-spherical bearing housing. The clamping

system permits the use of the dynamometer in steady experi-

ments while the second one prevents the foil from going to

too large an attack angle in case of fa ilure during unsteady

tests.

The torque transducer was designed as an extension of

the shaft. It was mounted on the top of the shaft and with

set screws. The transducer is operated with two foil strain

gages BLH-FAED-06-12-S6.

The oscillatory movement of the foil is produced by

two arms set orthoganally on an imaginary horizontal plane,

and articulated by Fafnir rod-ends.

To provide lift and drag measurements without interfer-

ence of one with the other, the oscillatory arms can have

- .
~~~~~

-•------- ~~~~ — •- —-———•--•.-——-——•~-—.-- — - _~~ ~r ~f~ k ~~~~~~~~~~ ••..~~~~ .—-~~
_
~~~~~~~ ---~ -..

_ -.-.. ~~~~~~~~~~~~~~~~ • •_ -



-- - - — ----- ~~~~~~~~~~~~~~~~~~~~~~~~~ 
;~
- - -••V.••--~ . -  ~~~~~~ ~~~~~--— - - • • _ • —.-

—17—

their positions changed , relative to the center line of the

tunne l, which is coincident with the center line of the

dynamometer.

D) Drive Syetem

The pitching apparatus consists of a crank arm which

is oscillated sinusoidally by means of an eccentric pin

arrangement driven by an electric motor. The motor speed

is controlled by a potentiometer.

A two level steel frame attached to the flange and

side window of the tunnel provides the necessary support

for the pulleys, eccentric wheel and motor. The eccentric

and two pulleys that drive the crank arm are mounted on the

upper level of this frame.

The pulleys have speed ratio 2 and 3 relative to the

motor. The motor is a Master DC motor with 1/2 HP output

at 2000 RPM. The eccentric is designed to provide in the

following amplitudes of dynamic angle of attack of the foil:

1.50, 2.0°, 2.5°, 3.0°, 3.5°, and 4.0°.

2.2 Hydrofoil Test Procedure

Dynamic calibration of the force gages were carried

out with the aspect ratio 5 foil. The dynamometer, installed

in the water tunnel , was subjected to a sinusoidally oscilla-

ting force , generated by the B & K shaker. The force signals

from the force gages and the shaker were analyzed with the

Spectral Dynamics Analyzer, a heterodyning filter with 5 Hz
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bandwidth . The measurements covered the frequency range

from 5 Hz up to 20 Hz.  The force ratio and phase difference

between the load cells and shaker show that the natural

freqtv~ncy of the dynainometer is above the test range. It is

reasonable to represent the real system by the model with

mass-spring-dashpot. Damping is small in this mechanical

system so that the exact value is unimportant. Details of

this calibration are shown in Appendix A.

A piezoelectric pressure transducer was mounted at

the tunnel top window about 5” from midchord to measure the

dynamic pressure inside the cavity. The diaphgram of the

pressure transducer is at 1” below the root of the foil.

An accelerometer was mounted on the crank arm at 7” from the

foil shaf t to count the frequency and to provide phase

difference relative to force , moment and cavity pressure.

Signals output of transducers were amplif ied and then analyzed

by the Spectral Dynamics Analyzer. A general arrangement of

the readout system is shown in Figure 2.4.

The dynamometer was aligned at the flow direction to

read lift and drag directly. Geometrical angle of attack

was set by aligning the flat side of each foil with a wedge

which against the test section side wall. Amplitude of

oscillation can be set by selecting the wheel eccentricity .

Oscillation frequency was adjustable from 5 Hz to 20 Hz by

changing the resistance in the field windings of the DC drive

motor.

-
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Static pressure in the test section was read from a

mercury manometer connected to taps in the tunnel wall at

the beginning and end of the test section , on the center

line , and corrected for hydrostatic head to give static

pressure at hydrofoil centroid. Static pressure in the cavity

was read from a mercury manometer connected to a tap on the

suction side of the foil. Test section static pressure was

variable between 3” Hg and 9.5” Hg absolute pressure.

Measurements have been made for the forces and moments

on aspect ratio 3 and 5 hydrofoils oscillating in pitch.
— Readings were taken of lif t, drag , moment, static pressure,

cavity pressure, frequency , oscillatory forces , phase differ-

ence, water temperature and velocity. At each oscillation

frequency , the static pressure of the test section was

reduced in increments of 0.6” Hg in the supercavitating case.

Cavity length was photographed and confirmed with Leehey &

Stellinger (1975), and then the mean cavity length is taken

and used as the parameter in the reduced frequency .

The cavitation number , O~ , is defined as

G~-
.i.

e LL
Z 

( 2 — : )

where ~~ is the pressure for upstream at the elevation of

the foil centroid, f~ 
is the cavity pressure. The cavitation

• 
-. -.-- --- - ——
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number , O~, , based on vapor pressure is defined as

0-., (2 -2)

The vapor pressure , 
~~~ 

, was calculated as a function of

water temperature according to the formulae of Smith , Keyes

and Gerry (1934).

In this experiment , the cavity pressure is taken from

the pressure tap on the foil.

2 . 3  Experimantal Results & Discussions

The comparisons of measured l i f t  and moment for unsteady

fully wetted flow with analytic solutions are shown in Figures

2 .5  and 2 . 6 .  The foils used in the analytic solutions are

flat  plates which di f fer fro.~ the foils we used in our test.

However , the agreement in both phase and amplitude is good

for l i f t .  The torsional st iffness of the dynamometer was

changed when the tunnel pressure was reduced. In particular,

the stiffness of the rubber seal which clamps the shaf t

depends upon the pressure difference between the atmosphere

and tunnel pressure. Therefore , the properties of the rubber

seal have been measured for different  pressure differences

across it, permitting the data reduction to obtain the moment

coefficient based on the calibration of the torque transducer

under operational tunnel pressures.

Figures 2.7 and 2.8 present the oscillating lift force 
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and the phase difference between the force and displacement.

There is evidence of a cavity resonance at reduced frequency

w/ / t J~— Z .  Reson ance frequency decreases as the cavity

length increases. For longer cavities, the effect of this

kind of resonance is weak , because the damping of cavity

oscillation is greater for long cavities. An analysis of

this phenomena appears in the following chapter. From the

observation of high-speed motion pictures it appears that

the cavity length changed a lot at the resonance frequency .

The variation of cavity length depends on the oscillating

frequency and flow velocity. The phase difference between

l i f t  force and angular displacement tends to decrease as

the oscillation approaches the resonance.

Figures 2.9 through 2.12 show the moment coefficients , drag

coefficients and phase differences. The oscillatory coeff i-

cients depend on the cavity length. The peak variations

occur near the resonant frequency.

Measurements of cavity pressure show that the cavity

pressure is not constant during the pitch oscillation. The

amplitude of cavity pressure oscillation depends on the

cavity length and oscillation frequency , being greatest at

high frequencies and short cavity lengths. The relationship

between unsteady cavity pressure and oscillatory lif t cieff i-

cient at two different reduced frequencies for each foil is
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shown in Figures 2.13 and 2.14. The oscillating cavity

pressure has been non—dimentionalized by the dynamic head

so that a direct comparison can be made with the oscillatory

lift coefficient. Evidently the unsteady lift coefficient

is significantly affected by the oscillation in the cavity

pressure for short cavity lengths.

I 
__________ 

• - -~~~ --- ~~~~~~~~~~~~ 
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CHAPTER III ANALYSIS OF BUBBLE RE SONANCE

As mentioned in Chapter II, there is evidence of a

cavity resonance near the reduced frequency at 2. Determin—

ation of the natural frequency of the cavity flow system is

very complicated matters. For incompressible flow, the

complexity of the problem is greatly reduced by the assump-

tions of spherical symmetry and uniform cavity properties.

The viscosity is neglected in the following discussion.

Several cases of the bubble dynamics have been discussed by

Hsieh (1965). Evaporation is an important process in cavity

oscillation. The variation of cavity pressure in time can

not be neglected as it is in the growth of small cavities.

The thermodynamic effects are essential in the cavity

oscillation. The simplified linear governing equations of

the cavity oscillation about the mean quantities are

d~ 2~~ — o
dr + r

dV _ 1 d?
4t e~ dr~

. f ÷ 2 dr~ (3 .
~~)- 

. 
dr ‘ d r 2 r a r ) .

.—~~~ .~
_

~~~~~•~~~~~~~~- • •~~~ •• -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ :•• _ _ _ _ _ _ _
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The interfacial boundary conditions Cr = R) are

(3-2 )

and

$r ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(3 3)

In the foregoing set of equations , V is velocity, p is

pressure, T is temperature , e is density,  C~ is specific
heat at constant volume, ?~ is the coeff icient of thermal

• conductivity. Primed symbols with subscript for pertur-

bation quantities, and with subscript (o) for the

equalibrium quantities within the cavity , curled symbol for

perturbation quantities outside the bubble, subscript (0)

for equilibrium values. In the last boundary condition

equation we neglect the heat conduction through the liquid

phase within the cavity.

When the cavity is undergoing harmonic oscillation ,

the solutions of Eq. (3-1) subject to the boundary condition

Eq. (3—2) will be

~ . _ _ _v —  
~

= _ _ _ _ _ _  
(3-4-)

r
T = T 

~T~
’) 

~(J~ R.e~
4)

- - - - S C  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
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where K is the modified Bessel function and D (s ~~~~~~ )

is the thermal diffusivity of water. The velocity and

temperature gradient at the cavity boundary are

~~1\

i .’ ~~~~ “i• dT — 
,
~~~~~~ 

~ j¾ IS 1ia 11f~~ 
.e 

~ (3- 6)

Since D is a small number C 6.~io~ f ia/stc ) the argument of

the Bessel function is large. The temperature gradient is

approximately
Yz 117/4

~ 
= - T ’( - ~-) e (

~~ 7)
r=R.

Substituting (3—5) , (3—7) into (3—3) , we get the condition

LR .c)~
3 . (3~~ )

If the gases within the cavity satisfy the ideal gas

equation fv~~~T and we neglect the diffusion of gases

(i.e. 1~1g = constant),

= ?~L6~T.

After a simple calculation , and using (3-5), one can get the

variation of pressure

-- ~~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~~ .-•• -
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We assume that the density of the vapor corresponds to its

temperature at the given pressure according to the equation

of state.

The variation of vapor pressure is

1~ir 
= 1~~T’

~ ~~T 
~*r

’ . ( 3 -j o)

We assume the mass of gases inside the cavity is constant

= Consl~nt.

From this equation and Eq. (3 .5 )  we get

3? .

then

= 
~~

‘ - 

~~~

‘ 

~~~

‘
- 

~~~~~~~~~~~~~

Substitute the last equation into Eq. (3-10)

~~~~~~~~~~~~~~ ~~~~~~~~~
The total variation of cavity pressure is the summation

of the variation of partial pressures.

j~~I

~r T  - F r¶7 
* 

~~~~• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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or 
3j~.’ ±C ~~~~

— —1--T’ - 0~ V 
~~~~

‘ = a c3- i ’)
—To ’

• 
where

-

~~~

‘ -=e.’~~ r ,

The vapor within the cavity is not a superheated vapor.

A relationship between vapor pressure and temperature was

taken from the paper by Smith, Keyes and Gerry (1934)

J = 
a

where

~ =T~—T ,
= ~~~~~~~~~~~~ ~~ t~~t .

= 215.167 tnt. atm.,

T —

T~ = 647.27

a = 3.24’78 14

b’ =S~ 68

-eC’ = ( .1 70237 ?Kfo  ,

d = 2. 1678462X(cf 3

-

~

-- - • 
- •~~~ 

~~~~~~
. - -

~~~~~
-
~~ ----- -- - - - - . —
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We can get the equation of variation of pressure and temp-

erature by taking the derivative of pressure with respect

to temperature

• 
1’

~ — c~~ ,-r)T ’ = 0 , (3-12 )

where ,

, a c a’+-zb’xt4C X 3 
—

C (_ in’°~~T -
1 

~~
( T~~ (d ’ Tc -’~~~~~

1

(a ’,~-4- b’,r~ -’- c5c ’) cdT~ ’ 
_
~*2J

— 

[~~c +(d~Tc - x 1}
2 

~~

Combine Eqs. (3-9) and(3-12)

( 1-  3
~~~~) 1’ - (

~~
’
~~~+C 1~~~~

’ = 0~ 
( 3- :) )

Equations (3-8), (3-11) and(3-13) constitute the eigenvalue

problem. The natural frequency of the system is determined

by 

- (e.
’
L + 

~. 
RbCV

’
~~ -i ~(* )‘~~~ -‘ r

to’ F~’(. R.~~t ~~ R,”I a,’) T0
’ r

( I 
~~~~~

•

~~~~~~~~~~~~~
‘- )  

-U~:~ +c)  0

— 0,

• • 1  - -- - -~~~~ •••~~~~~~~~~~~~ -
•.~~~~ 

- - - —
~~~ 

•- - -
~~~~
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or

(3- 14)

where 
— ~ — ~~~. ~~ — 

L R.

~~ 3 3 1 ’  ,

- 
LC( 1’~.

’- e~.’R~T) 
+ tRir 1’~,C~£1~ e.R0

~~~~~ ?.‘L+l’.’ — 
Lj ’.~

~R ?.‘ ~.R. 
-1’e.R.

~~~

Li _ _ _—

~~~~~~~~~~~~~ ÷c I .

The typical natural frequencies for a given T ,

are shown in Figure 3.1. We assume the gases in the

cavity are air. A damped natural frequency was found.

At a fixed ?ao, the natural frequency decreases when the

cavity volume increases. The air content not only increases

the natural frequency but also reduces the damping ratio.

For the damped , single-degree of freedom case , the ratio of

damping to critical damping is equal to the ratio of &‘i to 4)n,

where &i is the imaginary part of natural frequency, and 4~n

is the undamped natural frequency. The ratio of (IlL to (Jn will

give some idea of the damping for different cavities as shown

I
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in Figure 3.2. This analysis will not only tell us the

natural. frequency but will explain the qualitativety oscil-

lating amplitude of l i f t  coefficient shown in Figures 2 .7

• and 2.8. The cavity pressure is always higher than the

vapor pressure. This result is to be expected as the gases

from the water contribute to the pressure within the cavity.

The discrepancy between cavity pressure and vapor pressure

decreases with decreasing cavitation number. Experimental

results of cavity pressure measurement are shown in figure

4.10. Further discussions appear in the next chapter.

Since the short cavaties have a higher partial pressure due

to non-water-vapor gases, damping ratio (damping/critical

damping) is small in short cavities. The stiffness of cavity

increases with increasing air pressure inside the cavity, so

we expect that they have higher natural frequencies and less

damping ratio. However, the reason for shorter cavities having a

higher gas content is not clear .

The cavity volumes are calculated from the numerical

lifting surface method. Under the assumption of spherical

volume and neglecting the surface tension effect , the

natural frequency of the cavity calculated from Equation (3-14),

and the resonance frequency under test are shown in Figure

( 3 . 2 ) .  In the present experiment, only a few points can be

plotted in the graph. The “loop” trajectories in Kiose &

Acosta (1969) seems also associated with the natural frequency

of the cavity. 

~~~~~ - - ~~~~~~~— - -~ ------ . ~~~-~-—-—-~ - - ‘ -
~~~
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CHAPTER IV NUMERICAL ANALYSIS

4.1 Linearized Theory for Three-Dimensional Supercavitating

Hydrofoils

The linearized problem for a cavitating hydrofoil of

finite span in unsteady flow can be represented by a set of

coupled integral equations. The derivation proceeds either

from Green ’s theorem or from the solution for the velocity

field induced by a distribution of vortices and sources.

This distribution must be chosen to satisf y the relevant

boundary conditions. The numerical model we are about to

describe is shown in Figure 4.1

The source distribution , q (x,z,t ) ,  represents the

slope difference between the upper cavity surface and the

mean camber line of the foil or the lower cavity surface at

the point (x ,o , z ) .  The vortex distributions ( y  (x , z , t ) ,

cS (x ,z ,t ) )  create the perturbation velocity differences in

the x and z components between the upper and lower surfaces

at the point (x,o,z). This leads to the result

~ (
~~.L~~

) -j~~ ( v c ~,+o~~.e) — 1 J ( .’c— O ~~ ,-t ) ) ,

(4—I)

,s 

- - ~~~~~~~~~~~~~~~~~~~
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The boundary conditions specified are the normal

velocity on the wetted surface of the foil, a constant

pressure in the cavity, and closure of the cavity.

V( ~,-o ,~ ) 
~~~~~~~~~~~~~~~~~~~~~~~

= P(x,+o~~.t) , (4-2)

0

where h ( x , z ,t) is the instantaneous y-ordinate of the wetted

surface. S~ is the surface of the cavity as projected onto

the x—z plane. a is the cavitation number. P and P are
C

free-stream pressure and cavity pressure, respectively .

Geurst (l96l)proved that for two-dimensional steady flow,

the re-entrant jet and Riabouchinsky models for cavity term-

ination reduce upon linearization to a statement that the

cavity is closed at its end. The requirement that the source

strength be zero beyond the cavity trailing edge and the sum

of sources is zero are necessary to meet this condition.

Based on the boundary conditions , the integral

equations for three—dimensional unsteady flow can be written

as (The details of this derivation are shown in Appendix B) 

-~~~ - _•.~~~~~~~~~~ -~~~~S~~~~~•_ ~ -~~~ ,:r:~~.- ~~~~~~~~~~~~~~~~~~~~~~~~~~
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1f C$ , -o.~ - , t )  ~~_ -~_~~ (*,~~, -t)

CI ~~~~~~ {‘— ‘s) 
~~~~~~~~~~~~ f~4~j [o~

_ .
~ ’~~-,- (~~~.fl ’]

~~~~~ 

~~~~~ *)~x~~~*Sw (
~~

, 
4 3 )

J ¶ cx-~~’~~* (}-~~) ~
St,1

0- =

+

~~~~~~~~~ JJ ~ 

— -b- ~~~~~(~~~~~t) 

~~~~~~Sc 
~ ~f~Wi 

} 

cL ~ ~ (4-4)

= Jj ~~(‘~~&t )  ~~~ (4—5 )

where Sa is the projection of the foil surface on to the x-z

plane and S~ is the projection of the wake region on to the

same plane. Note that the projected cavity area, Sc’ is

also time dependent. The unknowns are the source strength ,

vortex strength and cavity surface location .

For steady flow at a given cavitation number , this set

of equations simplifies to

‘
~
J (&- °

~~~
) — - ~- “ .))

I If ~~~~~ 
4&a(L~

) [ 5J~~~~• t 4Tr Jj 
—

~T ~~~~~~~~~~~

4Tr JJ tL~
-
~~

)’* ()-!?1~
’t —

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - • • ..—~~~~—— — ---—-----~~~ •- — • - -



• — -,----•— • - — ------—---- -——— - •--—-•-- • 
—‘I’

1

—34—

0~

~~
_ .C) ~ rL s)

+ _ j J  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(4-- 7)

o = JJ ~~(~~~ l3) c~~3 Li~~

The solution of these integral equations will represent

the linearized, supercavatating hydrofoil of finite span in
• steady flow. The forces and moments can be calculated using

the Bernoulli equation.

4.2 Linearized Theory for Two-Dimensional Supercavatating

Hydrofoi is

In the two-dimensional theoretical model, with an

incompressible fluid, infinite pressures are necessary at

r-’~ to generate a volume change in the cavity. However,

Benjamin (1964) pointed out that any real flow is necessarily

three-dimensional ‘in the large’; thus the pressure singular-

ity is an artifact of the two-dimensional case . Based on

his discussion, the changing cavity volume of two-dimensional

foil is introduced by the three-dimensional outer solutions.

The overall solution can be obtained by matching the inner

and outer solutions. Theoretically , the two-dimensional

unsteady cavity can be treated as the inner solution of the

three dimensional case. This inner solution does not match

the boundary condition at infinity. The numerical method



- • _______ ••

—35—

for unsteady flow appears in this section only for the inner

flow field.

The development of this problem proceeds from the

velocity or pressure field induced by a two-dimensional

distribution of vortices and sources. This velocity or

pressure fie ld will satisfy the boundary conditions which

require a given normal velocity on the wetted surface, con-

stant cavity pressure and closure of the cavity.

The derivation of these integral equations is the same

as for three-dimensional cavity f low , except two-dimensional

sources and vortices are used. The potential due to two—

dimensional source distributed over the cavity region is

~~~~~~~~ ~~~ )~~~~~~~~~~~~~

J 

, t\~~[(~-~)2 +fl ~~~~. (4-f l

The two-dimensional vortex potential will be

~,t)~ a~~( ~~~~~ 
(4 1o)

The integral equations which satisfy the boundary

conditions are converted to

• - Uo .-o .t ) =_ - ~-~~:,t) +~ -~j j  ~~~

2-nj  _x- ’~

• -~~~~~~~~--- 
- - - - •- • - - -  _ _ _
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t)

~~- =-~~~~c~~t - ~~~~
J 

(
~~t a t +~~~j ~~~~~~ dc

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(4-12)

9 t)

Q = ~ ( t ’ ~cL’~ (4 :3)

These equations are sufficient to obtain the cavity

length , the source distribution and the vortex distribution.

4.3 Numerical Method

The solution of the problem is obtained by reducing

the coupled integral equations to a set of simultaneous

algebraic equations. Since the method used in two-dimensional

flow and three-dimensional steady flow is a simplification

of the three—dimensional unsteady problem, the approach for

the latter case will be discussed here .

The surface is divided into small elements. The element

used in this model is one obtained by dividing the foil and

cavity semispan into strips with cosine spacing, while the

chord is divided into strips of constant spacing on the foil

and on the cavity behind the foil. In order to increase the

rate of convergence for the number of elements used, the

first two elements of each chordvise strip, near the leading

edge, have only one-half the chord spacing of the rest of

.~~~~~~~•.— •— ~~~ •— —•——-—-- —• 
.~ ~~~~~~~~~ ~~~~_ 

— ~~~~~~~ 4
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the elements on the foil.

The model uses discrete vortices and sources to

• represent the foil and cavity. Each element contains a

bound line vortex, a trailing vortex and a line source.

The quarter-chord line of each element contains the bound

vortex , and the induced velocities are calculated for all

elements at their midspan , three-quarter chord positions.

James ( 1972) showed that for the best efficiency the vortex

and control points should be arranged according to the

Pistolesi approximation , i.e., at the quarter and three—

quarter chord points on each element. The concentrated line

source is taken to be a constant distribution across each

element at its three-quarter chord position . Since the

• ~ource distribution is singular at the cavity leading edge

and termination point, these control points should be placed

away from the singularities. Therefore, the first control

- • 
point is located at the three-quarter chord and the source

• is located at the quarter chord. The local vortex or source

strength divided by the element width.

Since the cavity length is unknown , the global closure

condition is not used in the calculation . If it is, the

variation of cavity length along the span cannot be iterated.

This diff iculty is overcome by applying the closure condition

to individual spanwise strips. This approximation is exact

for a symmetric foil. The source integration along a strip

between z = - ~ and z = ~ is

hll_ _s._- __ -_ __•- - - __——--~ • •__ __ ~~~~ •_.~~~~_~• =-_ -~-•- t~~~~~ .Jt~ ~•r ~~~~~~~~~
_ ___. ~~ • • 

-



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - -

—38—

the elements on the foil.

The model uses discrete vortices and sources to

represent the foil and cavity. Each element contains a

bound line vortex , a trailing vortex and a line source.

The quarter-chord line of each element contains the bound

vortex , and the induced velocities are calculated for all

elements at their midspan , three-quarter chord positions.

James (1972) showed that for the best efficiency the vortex

• and control points should be arranged according to the

Pistolesi approximation, i.e., at the quarter and three-

quarter chord points on each element. The concentrated line

source is taken to be a constant distribution across each

element at its three-quarter chord position. Since the

source distribution is singular at the cavity leading edge

and termination point, these control points should be placed

away from the singularities. Therefore, the f i rst control

point is located at the three--quarter chord and the source

is located at the quarter chord. The local vortex or source

strength is given by the discrete vortex or source strength

divided by the element width.

Since the cavity length is unknown , a closure condition

is applied to indivi dual spanwise strips in the calculation.

Otherwise, the iteration technique does not converge. This

condition satisfies the overall global condition. It also

allows the variation of cavity length along the span to vary.

This method is exact for a symmetric foil. The source inte-

gration along a strip between z = -z1 
and z = is

I.. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • f la~- . ± . — ~ - — _ 
-— • —
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~~

i

-i’ 
~~~~~~~~~~~~~~~~~

—
~~

where X1( ~~) and 9. (~~,t) are the spanwise profiles of the

leading edge and cavity termination points , respectively .

Let g~ (x,z,t) represent the profile of the cavity-foil

combination. Then the stripwise integration becomes

~ 
l I lt)

I 1’ 
~~~~~+ 

~ — -~~~—~~~~~~~ d~J J  ~~~~~~~~~ ~~
-

~~~ 
9(f.t) 9(D,~~~)

- J(~
(
~)- ~~_ (~~~~~~)~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ct~

~%(~~) ‘~pto)

— 0 .  (4- 15)

The first integral is zero if the cavity is closed

both at its leading edge and trailing edge. The second

integral is zero due to the symmetry of the cavity. This

integral therefore represents the stripwise closure condItion.

The effect of all singularities must be calculated at

each control points (Appendices C and D). The Biot_Savart’s

law is used to calculate the induced velocity at a control

point due to a constant strength discrete vortex segment.

The Kirchhoff’s law and Kelvin ’s theorem must be satisfied

for the vortex distribution. Consider the vortex segment

•

. - - - - • -  ~~~~
-•

~~~



• —40—

(x11o,z1) ~o (x~ ,o,z2
) with strength y per unit length.

Defining (~~~~~, T~~) as the coordinates of a general point on

the vortex, and (x,z) as the coordinates of a control point,

the induced velocity at (x,z) due to the bound vorticity,

(4- 16)

where 2a~~~I + t ,

~~

~~~ ((~~o ~) — c~r,o . s,) , (~f,,o, ar,) — (*.~. o.

~ ~~~~~~~~~ ~ , o. i,)— c’c~ °. ~‘))~
c4- 7)

The induced velocity due to the trailing vortex (x,o,z1
) to

(x3,o,z3) with strength ~a 
is

4TT 1J(”,o,f r t )  ~~~~~ 
_______________

_ _ _ _ _ _ _ _ _ _  = 

~
-:ij~ [(x— ~~)

2+ (~~~~ )
a~Y* (4- 18)

The total velocity induced by a vortex distribution

is the sum of the influence of all the spanwise and chord-

wise vortices.

LA •
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According to the Bernoulli equation, the pressure

induced by the source component contains two terms: the

• space derivative and the time derivative.

--2~~~~~~ + -j_~~~~~• 15 — 
~ x U. ~t . (4- 1 9)

The P due to the line source ((x1,o,z.) - (x2,o,z2)) can

be calculated by line integration

T~ -_ L. IJ J —
~~~~~~~

- 9 (~~~~~~S t )  
I

— 

2 -rr J U ~ ((~_ 5)a~ -~-yj”~
— ~:x— )~~ ~~~~~~~~~~~~~ 1 d~ d~t oc—-’c )~~

-4- (~~~r )L~~I~a j
= I ‘2 fl _ _ _ _ _ _ _ _

2TT U~ ~~ tan(~~+c ~,)

.

~~~~~~~~~~ ~~~ ~f) { (a~ ÷ Caso~ ± -
~~ s;n~~_5s~oO]

, 
(4~ 2o)

+ for ~~~)O

— 4.~ ~~<o
where a, d. t. 1. and 8 are defined the same as in Eq. (4—17).

and 
~2 

are the anqies shown in Fiqure 4.2.

Eauations (4-16) and (4-20) are not suitable for

numerical computation if d/v’~ becomes small. Approximate

formulas are used for this special case.

An iteration is used to alter the cavity length until

the desired cavitation number is reached over the cavitated

planform. The steady flow solution is determined first,

then the unsteady problem is solved by a step-by-step

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ •  
~~~~~~~~~~~ - • - ~~ • •~~~~~ - - - - - • - • A
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procedure. Since the variation of the cavity length is

unknown, the use of the frequency domain is not suitable.

At each time step, a cavity length is assumed and the matrix

coefficients are calculated. Solving the matrix with approp-

iate boundary conditions, we can get the distribution of

vortices and sources, and the cavitation number on each strip.

Then a new cavity length is chosen using the calculated

cavitation number. The length is initially adjusted by one

percent of the steady state cavity length. Then either

extrapolation or Muller ’s iteration scheme (Kristiansen 1963)

is used to calculate cavity length.

The linear algebraic equation s which satisfy the

boundary conditions are solved by using Gaussin elimination

with equilibration and partial pivoting (e.g. Isaacson and

Keller (1966)). The convergence test, both in space and time,

has been made. Table 4.1 gives the number of elements chosen

in the numerical calculation.

4.4 Comparison Between Theory and Experiment

Present numerical results for two-dimensional super-

cavitating flow are compared with Geurst’s analytic solution

(1960) and Golden ’s numerical scheme (1975). Golden used a

uniform distribution of the singularity in each element and

the best choice of control points. Figure 4.3 simply confirms

that these methods of solution lead to identical results.

- — ~~~~~~~~~~~~~~~~~~ ~~~~ - ? ~~~~ SSS •~~~—~~~~ —
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The l i f t  and moment calculation for supercavitating

hydrofoils of elliptic planform was performed and compared

with analytic solutions by Leehey (1973), experiments by

Leehey and Stellinger (1975) and experiments by Maixner

(1977). Leehey utilized the method of matched asymptotic-

expansions. The theory is valid to first order in angle

of attack and second order in the reciprocal of aspect ratio.

The experiments of Leehey and Stellinger measured forces,

moments and cavity length for aspect ratio 3 and 5 super-

cavitating hydrofoils of elliptic planform. Maixner

investigated the water tunnel wall effects on supercavitat-

ing hydrofoils of finite span by using a geometrically

similar family of three hydrofoils (AR = 5). He showed

that the previous tests by Leehey and Stellinger were reli-

able. The standard wind tunnel wall correction is adequate

when the foi l span is equal to or less than half of the

tunnel depth. It should be noted that the data of Leehey

and Stellinger was based on the cavitation number calculated

by using the vapor pressure rather than the measured cavity

pressure. In the comparison with present results, for the

aspect ratio 5 foil , experimental data for the medium foil

is taken from Maixner ’s results where measured cavity pres—

sure were used.

Figures 4.4 and 4.5 show the lift coefficient, CL/~,c.

versus O/o for the aspect ratio 5 and 3 hydrofoils, respect-

ively. The agreement between theory and experiment is good .

~~~~~~ • -
~~~ 

- -
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For small values of O/~y, there is much better agreement with

the present numerical theory than with Leehey’s asymptotic

theory. The foil and cavity combination is no longer of

large aspect ratio at small O/ o , so the asymptotic

theory is not valid.

The moment coefficient is taken about the mid-chord ,

consistent with the right hand rule. Figures 4.6 and 4.7

show the moment coefficient for the aspect ratio 5 and 3

hydrof oils. Since Leehey ’s matched asymptotic expansion

theory neglects the lif ting surface effect, it is expected

that the present numerical lifting surface theory would

show better agreement with experiments.

The nondimensional cavity length versus the ratio of

cavitation number to angle of attack is shown in Figures 4.8

and 4.9. The cavity length is measured from the leading

edge at the spanwise location of the centroid of the foil

area. Generally speaking , the agreement between the theory

and experiments is very good.

In Maixner ’s experiment, the cavity pressure was

measured with a foil surface pressure tap. A noticeable

“hook” was found in the lift and moment data at higher angles

of attack (Figures 4.4 & 4.6 ) .  Ram effects on the cavity

pressure measurement, due to the dynamic pressure, were

further investigated on the large foil used in Maixner’s

test. The cavity pressure readings are taken both inside the

cavity, using a total-head tube, and on the foil surface. The

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •
- —
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L-shaped total head tube protuded downwards into the cavity

f rom the upper tunnel wall so that it was parallel to the

foil surface and pointed towards the leading edge, away

from the impinging re-entrant jet. Figure 4.10 shows that

• 
- the readings from the toil surface pressure tap are consis—

tently higher than the measured cavity pressure , especially

at higher angles of attack and shorter cavity lengths. If

the correct cavity pressure readings were taken in the

experiments of Maixner , the discrepancy from theory at higher

angles of attack and shorter cavities would probably have

been smaller.

The numerical results for an unsteady two-dimensional

hydrofoil with a finite cavity are shown in Figures 4.11 to

4.14. Lift and moment coefficients in heave and pitch about

the leading edge are compared with the results predicted by

Woods (1957). The cavitation number was zero in Wood’s

calculation. At zero cavitation number, the cavity length

change was neglected, as was the cavity volume. However,

present two-dimensional solutions are the inner solution of

the three-dimensional case. The following definitions are

used for the unsteady force coefficients.

- Lft d~ue ±0 ~e&ve al ouf LE
CLhr~~~~CLht

2~~’-’~ ’-Ja
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The phase angles are defined as the arc t~ingent of the imaginary

part to the real part in the last equations.

The effect of finite cavities tends to reduce the

amplitude of the oscillating force and moment coefficients.

The diversity of phase angles between finite cavity and

infinite cavity increases with decreasing reduced frequency

(ct)C/U). One can expect this happens due to the variation

of cavity length , it increases as reduced frequency decreases.

At large cavity lengths (low cavitation numbers),

the oscillating lif t force was away from the region of

resonant behavior. Experimental data and theoretical values

are compared with present numerical results in Figures 4.15— H

4.18. The theoretical values for cavitating flow over

rectangular foils of aspect ratio 1 and 6 were taken from

Widnall (1966), by forming a linear comvination of heave and

pitch about the leading edge , resulting in pure pitch about

- 

- ~~ ~i:i~~~~~~



p • _ •  ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _••• _

the midchord. The maximum chord of the semi-eliptic foil was

taken as the chord of the rectangular foil. The moment

coefficient was based upon planform area and mean chord.

P Figures 4.15 and 4.16 show the lift coefficient versus reduced

frequency (‘t)C0/U_ ) for the aspect ratio 5 and 3 hydrofoils ,

respectively. The same conditions as in experiments were

used in the calculations. The agreement between numerical

• values and experimental results is good for lift amplitude.

However, the phase angle predicted by theory is consistently

higher than experiment. This may be in part due to the

variation of cavity pressure, which is sensitive to the phase

angle. Although the cavity pressure variations were small at

long cavities, the cavity length is very sensitive to the

cavitation number (Figures 4.8 and 4.9). However, the explan-

ation of phase angle discrepancy is not fully satisfactory at

this moment. The difference of unsteady lift measurements

between these two hydrofoils is negligible. The finite span

effect is not noticable for the frequency range of the tests.

Figures 4.17 and 4.18 show the oscillatory moment coefficient

for the aspect ratio 5 and 3 hydrof oils. At high reduced

frequencies, the present theory predicts larger moment coeffic-

ients that found by experiment. The difference of phase

angles between theory and experiment is large. One possible

reason is that the oscillatory moment of supervacitating flow

is a small quantity , which has the same order of magnitude as

the moment produced by the inertia force and spring force in

the mechanical system. The torsional system of the dynamo-
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meter used in measuring the moments was not calibrated at

the conditions that the unsteady measurements were made. The

comparison between the present numerical method for a rectang-

ular hydrofoil and Widnall’s results is shown in Appendix E.

Present numerical calculation also gives the variation

of cavity length and cavity volume. Figures 4.19 and 4.20

• ahow these two variations decrease with reduced frequency

increases. The amplitude of the oscillatory cavity volume is

about 40% of the mean cavity volume when &1/ct = .167. If the

variations of cavity pressure were considered, the phase lag

should enlarge due to the heat transfer process.
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Chapter V. CONCLUSIONS AND RECOMMENDATIONS

Measurements were made of forces and moments for
• 

- 
aspect ratio 3 and 5 supercavitating hydrofoils of ellip-

tical planform oscillating in pitch. For short cavities,

the natural frequency of the cavity plays an important role

in the oscillating forces. A pressure transducer was used

to measure the variation of cavity pressure. It showed

that the cavity pressure is not constant during the pitch

oscillation. The amplitude of cavity pressure oscillation

depends on the cavity length and oscillation frequency .

The thermodynamic analysis of the cavity was performed

by assuming spher ical symmetry and uniform cavity interior

properties. Eigerivalues were calculated subject to the

given boundary conditions. The natural frequency decreases

when the cavity volume increases , which confirmed the

experimental results. The stiffness of the cavity results

from the air content inside the cavity. The calculated

ratio of imaginary part of the natural frequency to the

undamped na tural frequency indicated that more air content

decreases the damping ratio. The temperature gradient

inside the cavity was neglected in the analysis. The

model used only describes general features of the process.

The entire unsteady analysis must be redone to account for

cavity pressure variations. —

The discrete vortex and source method is developed for
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supercavitating hydrofoils. The cavity length was iterated

to get a uniform cavitation number over the cavity planform.

The numerical results for an unsteady two—dimensional

hydrofoil with a finite cavity were compared with the -

•

theoretical results at zero cavitation number. The

appreciable difference of phase angles between non—zero

and zero cavitation numbers was f ound . The l i f t  and

moment calculations for supercavitating hydrofoils of

elliptic planforin in steady flow was performed and compared

well with previous experiments. A more accurate prediction

of lift and moment coefficients was obtained by the present

numerical method than with existing asymptotic theories.

For long cavities the numerical results of three-dimensional

unsteady flow were compared with experiment . Amplitude

of oscillatory forces compared well between theory and

experiment. However, noticeable difference of phase

angles was found. Since the cavity pressure was considered

as a constant during unsteady motion , one should find the

importance of cavity pressure variation.

I- - -  - -• - --- - -
•
--
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Table 4.1 Values of Vortex and Source Element

2—D Steady No. of vortex No. of source
element element

I 
- 

25 40

3-D Steady No. of element No. of element No. of element
along the chord in the cavity along the
on the foil behind the foi l semispan

12 8to 14 6

2-D Unsteady No. of vortex No. of source
element element

20 35 to 40

3-D Unsteady No of element No. of element No. of element
along the chord in the cavity along the
on the foil behind the foil semispan

- 10 8to l4 4

- — 

- - 
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I APPEN DI X A

DYNAMIC CALIBRATION OF DYNAMOMETER

• Dynamic calibrations of the water tunnel force gages

were carried out with the aspect ratio 5 foil. The following

• equipment was used to perform the calibration:

1) Vibration Exciter Body - Bruel & Kjaer Type 4801,

2) Vibration Exciter Head - Bruel & Kjaer Mode Study

Head Type 4814,

3) Power Amplifier - Bruel & Kjaer Type 2707,

4) Impedance Read - Wilcoxon Z-602 #252,

5) Sweep Oscillator - Spectral Dynamics SD 104A— 5,

6) Dynamic Analyzer - Spectral Dynamics SD 101-A,

7) Buffer Attenuator - Rome Made,

8) Ithaco Preamplifier - Model 255—A ,

9) Accelerometer - Bruel & Kjaer Type 4332 #159861,

10) Phase Meter - Spectral Dynamics SD 110,

11) Oscilloscope - Tektronix Type 561B,

12) RMS Voltmeter - Bruel & Kjaer Type 2416,

13) DC Voltmeter - HP Type 405 CR,

14) Transducer Digital Indicator - Lebow Model 7521.

• The instrumentation arrangement is shown schematic-

ally in Fig. A.l

The dynamometer, installed in the water tunnel, was 

---~~~~
- _•;~•._~•_ ___ _;•.-_• _

~~~ •_ —f-, -•- —~~~~ - —~- - — ~‘ •.
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subjected to a sinusoidally oscillating force, generated

from B & K Exciter Head Type 4814. The exciter was mounted

on a heavy table and was also fixed to the side flange of

the tunnel. The stiffness in the connections between the

exciter and the flange of the tunnel was sufficient ly high

that the resonance frequency was out of the range of interest.

A pushrod was used to transfer the force from exciter head

to the pressure center of the foil: ~n impedance head was

attached between them. Figure A.2 shows a picture of the

• exciter arrangement. The exciter was driven by the

Oscillator and B & K Power Amplifier , which is a high power,

low distortion vibration exciter driver , giving a highly

linear output and a selectable output impedance.

The force signals from the load cells and the impedance

head were analyzed with the Spectral Dynamics Analyzer, in

which a 5 Hz filter was used. The signal being analyzed

was compared internally to a signal of the same frequency

as the exciting frequency from the oscillator and filtered

with the 5 Hz Band Pass filter around that frequency. The

measurement covered the range from 5 Hz up to 30 Hz. Due

to problems of stabilization of the shaker output, the tests

were carried out for discrete frequencies.

The phase angle between the force outputs of the load

cell and the impedance head was measured. Both of these

signals come through the Spectral Dynamics Analyzer and were

compared in the Phase Meter. The three load cells on the
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steel rods that sustain the floating section of the

dynamoineter were replaced by dummy load cells to increase

the stiffness.

The dynamic calibration of the torque transducer was

the most difficult calibration made. It was hard to calibrate

the moment gage under the same conditions that the unsteady

• measurements were made. During the calibration, the top

• part of the torque transducer was rigidly clamped to the base

of the dynamometer and the top window of the tunnel. The

moment input was obtained from the force on the impedance

• head multiplied by the moment arm. The output of the torque

transducer was obtained from the Lebow Indicator. The

calibration showed that the moment from torque transducer

had a linear relation to the applied moment.

The dynamic system of the dynamometer in lift and drag

directions can be described by a model of three degrees of

freedom. The applicable equations of motion are

/1/11/ / / .~ / /

7)7, ~I, -I- *~, t ’C, - ,c3) + k~,. ~~~~ 
— X,,) 1. Cs 6c~ i- C.( S, — — 0 ,

—

) I~J ( ~ + ~~ ‘(~ + k, c~(, X 5) + ~ ~ 
+ CIO~3 

-.
~~~~~~) ~o,

(A- i)

• — ——--— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- --—— —~~~~~-
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where

= mass of the base of the dynamometer

and top window of the tunnel,

• 
- m1 = mass of the floating part of the. dynamometer

and 23% of the shaft mass,

= mass of the foil and 77% of the shaft mass ,

k3,c3 = spring constant and damping coefficient

• in the tunnel’s window , respectively ,

= spring constant and damping coeffieient of

• the load cell plus the linkage between the

load cell and the dynamometer , respectively,

k21c2 = spring constant and damping coeffieient of

• the shaft and foil combination, respectively ,

The shaft mass was divided as described in Den Hartog

(1956) and based on Rayleigh ’s method.

A contilever beam El, of length ~ and mass m carries a

concentrated mass M at its end. The deformation of the beam

is approximated by a quarter cosine

The total kinetic energy can be written as

fri f0  23 111)

• • _
~ •~~~

• • ••.~-‘_ •~-•-~--•• --~ ~~~~~~ — • • - •- - • •••
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The potential energy will be

K.E .=t~t,
2
~

Z
( f r 1 + o .2~ n~).

• Equating the kinetic energy to the potential energy and

• solving for W2 , we find

2 3.o3EX

Thus 23 percent of the mass of the beam is effectively

added to the end mass .

Equations (A-i) can be solved by assuming harmonic

motion for the displacements. The ratio of Lebow force to

exciter force can be obtained after the spring constants

and masses are known. The value of these constants are:

Mass of the base of dynamometer and top window of

the tunnel

m3 = 10 slug ,

Mass of the floating section of dynamometer =

mf = 1.2 slug ,

Mass of the shaft

in5 = 1.37 
~~m = 0.043 slug ,

Mass of the floating part of the dynamoineter and

a fraction of the shaft mass

in
1 

= inf + 0.77 in
5 

= 1.2 + 0.043 x 0.76—

1.23 slug ’
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Mass of the hydrofoil

flk~ = 0.157 slug,

• 

• Mass of the foil and a fraction of the shaft mass

zn2 = m ~~+ 0.23xm 8
= 0.168 s1ug.

The load cells are coupled between the floating part

and the base of the dynamometer by screw rods and bolts.

• The spring constant of the load cells was obtained from the

Lebow catalog. The spring constant of the rods are calcu-

-
• lated from Hooke ’s law, neglecting the Poisson effect. The

equaivalent spring constant of the lift load cell system

(#125) is

= 66440 lb/in.

The spring constant of the base dyn amometer and top

window combination , k3, was obtained from the experimental

force—displacement curve. This work was done by W. T. Tan

as part of UROP project. This constant is -

•

k3 
= 299 ,000 lb/in.

Spring constant of the shaft and foil is (Riva (1974))

k2 = 25,000 lb/in.

Damping is small in this mechanical system. [S of

the individual critical damping of each spring-mass system

is

— ---
- -
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c1 1.65 lbf—sec/in ,

C2 
= 0.375 lbf sec/in ,

C
3 

= 10 lb f sec/in .

From the calibration, it is evident that the

natural frequency of the dynaniometer is above the test

range. The results show that it is reasonable to represent

the real system by the model with three degrees of freedom.

It also shows that the damping is small in the system and

• the dynaxnometer can be modeled as a mass-spring only. The

lowest natural frequency of the dyn amometer with foil a

attached was about 80 Hz. The maximum frequency of the

pitching oscillation was about 20 Hz. The mass of the foil

system and of portions of the dynamometer produced a force

on the load cells when the apparatus was oscillated. The

magnitude of the force was determined by oscillating the

foil in air and measuring the resulting force. This force

was subtracted from the response of the supercavitating

foil, taking into consideration the phase relationship

between the two forces.

The torsional system can be represented by a model with

two degrees of freedom. Equations of motion are

L3, I’&M5
~~~d±l 

~~~(~~— 2 )
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where and are the moment of inertia of the foil and

shaft combination and crankarin respectively ; M1 and M2 are

the moment applied at the foil and crankarm, respectively ;

c4 and k4 are the damping coefficient and torsional

spring constant due to the bearing and rubber sealing. The

• moment meausred from the torque trandsucer will be

Substituting this into the last set of equations. Using

• the assumption of simple harmonic motion and 1~ ~~ ‘Ps. , these

equations become

~~~~~ +c4L4) 7l1~0 e 4 - M ~,e

+ =

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ = 
~~~~~~ ~~— 3)

where the phase angles 4~, #2, cA3 , are relative to the acceler-

ation. These equations can be simplified as

_ .! -A •

~~~~ + C + w~~~0e
J 2 _ Mt .c +~~~~~~~~~~ .

.&~~

1T
- I’1 1. e ,

? + M~ e — M,,, e (
~4 -4)

If the constants J~, c4 and k4 are known, then the moment

applied at the foil H1 can be calculated from the equation

(A-4) after the torque transducer output Mt is measured-.
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• When the foil was oscillating in the air, the moment

I applied to the foil, M1 was zero. The equations of motion

• become

4 M~ M2~ (A -s ’)

The moment was measured by the force at the load cell

in the drag direction multiplied by the length of the

- 
crankarm. Mt was measured by the torque transducer. The

I
phase relationship was measured with respect to the acce].er—

ation . These equations can determine the characteristic

constants of the system. The results of the calibration

show the damping coefficient to be dependent on the

frequency. For the aspect ratio 3 hydrofoil, these constants

are

0.00 24

0. 0033

• 
. 

C4 = ~~~~~ 
.9~9z/~l 2?.6/f ~ ç4.~~ _ s ec ,

~4. 4.~3 f~-tb~

From the results of the calibration, it is reasonable to

represent the torsional system by a model with two degrees

of freedom.

1

I 
___________

- ‘~ ——-—-—-- -
~--  L~~~~- - • - •  

~.• . • j- -  •-~-.~-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~••..-~--..— - - -
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APPENDIX B

FORMULATION OF PROBLEM

In the following, the isentropic inviscid flow of

a incompressible , initially irrotational fluid is considered

for linearized supercavitating hydrofoils. Under this

hypothesis , the flow can be described by the velocity potent-

ial ~ . The linear equation of the velocity potential

exterior to the foil plus the cavity plus the vortex sheet

is
(B- i)

where V2 is the Laplacian operator. It is convenient to

introduce the perturbation potential 9’, such that

(6-2)
where 1J,, is the undisturbed flow velocity in the direction

of the positive x-axis. Cembining equations (B-i) and (B-2) =
yeilds the equation for the perturbation potential

v2ç p = o . (6-3)
The linearized Bernoulli equation for unsteady flow

(6-4)

which yields, for the pressure coefficient

T —  -
~~~~~~~~~~~

“ - r L ~~~~ 3i’~ (e$ -5)r —  — u ’ u,at ~x _ / .
The perturbation pressure, 

~ 
, also satisfies the Laplace

equation

v2P = 0 , (5 —s)

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - -•
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3 exterior to the foil plus the cavity plus the vortex sheet.

Let the source distribution, 1(’~~
t) , represent the slope

difference between the upper and lower surface at point (*.D. J),

and the vortex distribution, T~ (~ , L t)  represent the

difference in the x-component of perturbation velocity between

the upper and lower surface at point ~~~~~~~~~~~ As shown

in Fig. B-i, this leads to the results,

_ _ _ _ _ _ _ _  - 
~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (8- 7)

~~ 
- 

tL c ’c ’o ,~~M ‘~4 > , (8- 8)

where < ‘a> denotes the jump in “a” across the surface ~~~~
From the Bernoulli equation (B-5) and the distributions

of sources and vortices, one can see that

—— 

~~~~~.j.~øt’~o~~’ ~x ’a~
— ( 1  ø , l 1

~~~+ ~~,iJ
L~, 

t
’

~~~U,
’ ~~~~~~~~~~

c •b- 9)
‘- u.at ø:~c ”

<p � ~~~~~~~~~~~~~~~~

( B-b )

L• - 

_
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For the application of Green ’s theorem to the super-

cavitating hydrofoil of finite span, the pressure at the

point (“ 4 ,~
) is (e.g. Newman (1977))

~~~~~~~~~~~~~~~~~ 
~~~~~~- ~~~~~~~~~~~~~~~~~~~~~ d5, ~~ - l I )

• - where r is the distance between (
~‘.~~~~ ) and dummy point (~ 17~,3),

and .5 encompasses cavity, foil and wake.

The integral can be linearized for application to

thin wings at small angles of attack and rewritten as open-

surface integral

-fr -<if > fr) c4S ,

where 5~ is the projection of the foil surface on to the

fl pland and 5~ is the projection of cavity surface on to

the same plane.

The partial derivative,~~-~ , is equal to zero everywhere

on the plane ~~o except at the point )~~ O . If we assume the

• pressure distribution is continuous over the surface, then

the limiting case for r~0 can be solved as in the following ,

A (‘~1.) .t)  _ JJ(? >~~~~~~ rI~ Q <~ ~~>JJ~ r I ’~Zo ~1S
• J4f C~~~

<P &J. t~~J I ~ 
(5~~3)

J 1(,_ .
~)a +~~

I
~.(a..1,aJ

‘(-I

.—-- • - _____ • - — •— - - • ——- -• •

~ 

•~• • 

— - 
~~~~~~~~

•—•• • •
~~~~~~~ --
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If the point is on the surface = 0 , by introducing

temporary integration variables 3’ = (X- 5 )~~5
’=~~~-3) We find

< P(*.~fl~!?~t 

~JJ ( + 1 ~ 1+ç ~~ )
½

= <F~
.}

~ ) JI~ [ 2  #
~~

‘(
~J2~~~~ 

)
• 

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(~~~4)

The limiting process involved here shows that we must let

and 6 approach zero in such a way that the ratio (/~

becomes indifinitely large which leads to

A ( ‘$ ,o,~ • 1)  217 <P M
~è.t )> ( b— I~ )

Substituting equations (B-9), (B-b ) and (B-15) into Eq.

(8-12) , the pressure on the surface becomes

= 

~iJj (&4JY~÷ ~-~~~-~1+d5

÷ ~~~~~~ø1.Lf) +
j~~~~~~~~J 

~~ ‘L (e- 16 )

The second term in the first integral can be integrated •

by parts

f c ~~~~~~~1L!~~~~~~~~~ — =

JJ ~~~~~~ ( * _ ~~~)
1
÷~~~* .p j -~~~)~

]

— Jj ~(~~~t) J~~I3 (~ -‘7) 
-

- L ______•

~

• - • I- ~~~~ — -•- --- •
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where we use the condition that the source distribution

• is zero outside the cavity.

When the boundary condition of constant pressure

in the cavity is applied on the cavity surface, the follow-

• 
ing result is obtained• I ‘~- 1 ’~ ~~~~~~~~~~ (e - i 8)

By combining Eqs. (B-16) , (B - l i)  and (B-l8) , the integral

equation becomes

= - ~~ f X .~~.t) 
-

i.. 1r r N-~
)
~

(
~ -~

) 
— 

a~r~~-t) L1j 5-
~ 271

)) L tJ~at rj
(~~— i • ?)

• This integral equation can also be derived by using

the vortex potential, source potential and Bernoulli equation.

• Applying the Green’s theorem to the Laplace equation

• c72 Lf~~o , the velocity potential at an arbitary field

point (%4~) is

f ( I ) Lf f ( (f 1~~~~~~~~ ) c15. (~~-2o)
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Again, the surface integral encompasses the cavity, foil

and wake. Since the operation of differentiation with

respect to X can be interchanged with V2 in Eq. (B-3),

we may write

~~~~~~~~~~ 
L~~ (u~~~ -

~~~
-
~-)dS. (8-2/)

In regard to the second term in Eq. (B-21), the

condition of irrotationality reveals that

~u _~~~u _~~ r
— ~~~~~~~ (8-22)

on top and

— ___ — - 
ølT

— — ~~~~~~~ 
(~~~~~~

-2.3)

on the bottom surface. Eq. (B-20) can be rewritten as

open surface integral for linearized problem,

L 5$ [ .
~ ~ ~ 

-<.
~f >  fl cJ5~ (6-24)

From the relation a = X and V a f,Q/a ~
(5-25)

• • -
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where the assumption that q(-~~~’,,~
’
,~~~~~~~~~~) = Q  has been

• made without loss of generality. Inserting Eq. (B-25) into

Eq. (B-24) and interchanging orders of differentiation and

integration, we get

• V (X,~)i~) 
~~

L $J <1f>~j 4r• + ö~
(
~~~t)

- 

~ J ((~
,1)L (

~~~ )?~~~~
3. (

~~-26

The integration of first term is zero everywhere on the plane

~=O except at the point r =  0 . The limiting value of

this has been shown in Eq. (B-iS). The result of the

second term in the integral is the Mangier’s principal

value which is equal to (Ashley & Landau (1965))

~~~~~~~~~~~~~~~~~ + ( - ÷ ~~~“1 à~ 4S~ (8-27)

By combining Eqs. (B-i), (B-is) and (B-27), the integral

equation which satisfies the tangential velocity on the

boundary becomes

f l ’ (~( ‘~,S. t)
tTC O~~~~~~~ t) T~~

?c
~
,t) ~~~~ (~~ .q) *

4. ~~~~~~~~~~~~~~~~~~~~~~~~~ 
(6 28 )

-L •~~~~~~~~~~~~~~~~~~~~~~~ . 
- • _ _ _ _
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For the calculation of oscillatory forces and moments

due to small amplitude oscillation about the steady state,

the integral equations (B-19) , (B-28) are solved for subject

to the closure condition

0. (B 29)

A Kutta condition is also required to make the

problem well set.

The unknowns are the vortex strength, source strength

and cavity surface.

As mentioned before, the cavitating lifting surface

integral equations (B-19) and (B-28) can also be derived

by using vortex and source potentials. A sheet of source

spread continuously over the surface S~ , having strength

unit area in the neighborhood of the point ~~a,5’) ,
possesses the perturbation potential

- i If ~ (8-3°)
417& [(x~~~)z +~ c~

_
~fl~ .

The vertical velocity at point (~~( ,-O, ~~~
) induced by

the source sheet is

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
_ •~~~ •~~~~~~~~~~~~ _ _

~~~~~~~V •  _ _ _ _
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= 
a~~c o . ~,)

— _L . 
, t) ~j~ d5

a0~’JJ ~~~~~~~~~~~~~~~~~~~~

I I 
_ _ _ _ _ _ _ _ _ _ _ _ _

V 
_ _ _ _ _ _ _ _ _ _ _ _

( 8-3:)

The pressure at point ~~~~~~~~~~ induced by the source
sheet can be calculated from Bernoulli equation

= --~_ f_ L !~~~ ?Y~J.’U ~~ t

~ ff _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ [~~
_~~)

t+~~~
1÷ c ~~_gy.}’k

r ‘ 0 f1~ ~~(~ , c, t)d~~d 5 ]
~+

~~~ ~~
-
~
jj ~~~~~~~~~~

~ 11 ~ ‘ _ _ _ _ _ _  

~1~~21T
JJ I LA~ ~t
3’

_ _ _ _ _ _ _ _  1. d~~L5 (~~~-3 Z) 

--~~~• - - - -  ~~~~~-~~ -- -
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Instead of solving the velocity potential directly,

we may distribute the vortices over the foil ~~~ and the

wakes 5w, to form the integral equation. The vertical

velocities induced by a vortex sheet are determined by

using the Biot—Savart law, (Bisplinghoff, et al (1957))

— ._!_. ff ~~~~~~~~~~~~~~~~~~~~
47) JJ (()(..S)z + 

~~~3’

-
~ 
._L rr Y~r~.~.* 1x-~3 +

JJ ~~~~ ~~~+(~~-g)1
St’, ( ô — 33 )

where r and g are bound vortex strength and trailing

vortex strength, respectively. The Kirchhoff’s law and

Kelvin ’s theorem must be satisfied for the vortex distri-

bution. The pressure due to the vortex distribution is

P ~~~~~~~~~~~~~~ 
=-

~~
(
~~~~~ + a)~~~ (~~~~34)v _

: UL~z (~~~ 
(~~~ t ~~X

where a~R~./ax is the ~ - component velocity induced by the

vortex distribution

___________  = 

~~ If [~~~~~~~~~
)
t
+ r +

(8 35 )

-- ~~~~~~~~~~~~~~~~~~~~~~~~~ - •--- ~~-- V T~~~~-- ~~~~~-
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The term, ~~/a* , can be derived from the definition of

the velocity potential

~~~~~~~~~~~~~ =f U(~~~~0. t)~~~~~

~~~~~~~~~ (8-36)

then

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (Ø 37)

Sugstituting Eqs. (B-35) and B-37) into Eq. (B-34)

~~~~~~~~~ ~~~~~~~~~~~~~~~ (8-3 8)

A linear superposition has been used to satisfy the

boundary conditions. By combining Eqs. (B-31) and (B-33),

we get the normal velocity on the foil

tr (~~-0.~~t) —~~~ ‘~3i!~)

C 1r ( ~.3,~
) (x-~3 #~~~( ,g,t) 1~

_)
~~+— t i4.~r j j  1(X.i) ’~

$. ‘
~~~ 
+

5*

÷L IC ~~~~~~~~~~~~~~~~~~~~~~~~~
4 1711

Jj [O(—’F + 
~~~~+(~~

_ .
~)“}S.’,

V (e - 3? )

—_  _ V - V V  - • V -~~ ~ VV • • V •~ - - V •— - — V - V - V - V ~~ kV V .V ~~~~~~ V V V&VV - V~~~~~ ~ V V V SV • - V- VV;_.- V
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This is equivalent to Eq. (B-28). The same expression will

be obtained if we apply the Kirchhoff’s law and Kelvin ’s

Theorem over the surface and evaluate the integration. The

constant cavity pressure condition, Eq (B-18) , is the result

of uniting Eqs. (B-32) and (B-38), which is the same as

Eq. (B—19)

~~ 
_~~~ (X4 , t )  -& ~r1*~

.t)
~

~~~~~
_L IIi_ j... -2~q~~-t) J V

2rr JJ I. U1 at it

—F ~ -.~~)J-(’c - 9 , t) 
~~~~~ 

(
~-!9)

j(X—’
~~)
’-f ~~

2 .s.L~~~~UI] 
Z
j

Note that the cavity region , 5~ 
, is also time dependent.
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L APPENDIX C

VELOCITY INDUCED BY A DISCRETE VORTEX SEGMENT

V 
Consider the vortex segment 

~~~~~~~~~~~~~~~~ 
— 

~~~~~ 
with

strength ~ per unit length. Defining CL 5) as the

coordinates of a general point on the vortex, and (r ,~) as the

coordinates of a control point. The law of Biot-Savart is

applied to obtain the induced velocity at point

________ — 
1’ ~~~~~~~~~~~~~~ c~~— i)— J i~~~~~~~~~~~~ )

L 
+

Along the vortex , we have

-
~~ ~~E - ~~-1 = G7nstan+,cJ~

and the geometrical relationships

a

ci. — e - t ~~,

~
(~~~~~)c~~ ~~~~~~~~~~~ — c fl.:; 45

= (e-t~ )JS

I
,

Id i/a. .~ c zqSd9% 
. 

(C 2)
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Then the equation (C-i) becomes
K

4-rTV(’~~ ) I _ _ _ _ _ _ _ _ _ _ _ _ _

J (( *_~)~÷(;~c)*i~
(C-3)

where 0< and are the angles shown in Fig. (C .1)

Equation (C-3)is not suitable for numerical computa-

tion if d becomes small (Kerwin & Oppenheim (1974)).

There are three special cases which require numerical approx-

imations for small ~ ,

(1) for ~~~~~~~~~~~~~~~~~~~~~~~~~

c(~~ 
2a g~~

2a~-,+b aa~ 1tb ~
C03 oL 

~~~ 
— -

~~~~
- = I —2 (ZAè f— b)

B 
~~~~ 

— -
~~~~~~ 

= - 
2 d1

2 (2a~~*b)’’
4—rr1i~ =2a s

~Jl_!~ ‘~ — — } (C 4)
L~~ 

(2a~,+b)” t 2a~f,~s b t  . 
V

(2) for

—-- -

-V 
-V —- _ _ _
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zdCOS~( = - C0S 9 ~ — 1  + (Za~,+b)Z

41T11 af ci.. A 1 (c -i)I (2cZ~-,-i4~ 
(2a~~1 fh)zJ

(3) for

~ 24/(2Q,-t- b) I) 0 ~Tr- =

— CO5o~ ~~~~ I — 2dZ/(2~~~1*b)z ,

= ~~a.~59 = — I ÷

~~~~~~~~~~~ = 2 ~~~~~~~~ —- a ( c— 6 )
I (1a~~i~)1 (2a~-,-i.~,) )

The induced velocity to the trailing vortex

— with strength is
c*, 3r~ )

4i
~~

J — I
,s~. J ~~~~~~~~~~~~~

_ x-,s I
— 

~~~~~~~~~~~ 

~~~~~~~~~
The total velocity induced by a vortex distribution

is the sum of all the spanwise and chordwise vortices.

— V V V ‘V 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - V - V V -V~~~~~~~V_V V ~~~~ V VVV 

‘
~ii. -



~V ~~~~~~~~~~~~~~~~~~~~~~~~

— V 

•V~VV_ _~ _ -V~~~ •V~V~_~ _V •~
VV_VV V.V_~_ V.V~_

—123—

(x1, z,)

V ~~~~~~~~~~~~~~~~~~~~~~~~~ z)

Z’ (x 2, z2)

FIGURE C. I Coordinote Systems for Discrete
Vortex Segment and Control Point

V -~~~~~~~~~~~~ J
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APPENDIX D

PRESSURE INDUCED BY A DISCRETE SOURCE SEGMENT

For unsteady supercavity flow, the pressure induced

by source component consists of two terms: the space

derivative a(&/ax and time derivative a~s/at. Rewrite

the Bernoulli equation

_ _ _ _  
2 ø~~~~~ _ _15~~~ ‘ r 2 (4 ’~~ X ~~~~ 

a t ’ .
~~~~~~

The velocity in the ‘c—direction at 0rj) due to the

line source, , along CX. ,~~, )  — (*~~.~~rz ’) is (Fig.D.1)

4nU~

= f _ _ _ _ _ _ _ _ _ _ _

j ~cx ÷t J q~]~’2(“4’)
=

~~Ya
a,

= a± ~~~~~~~~~~~~ 
, (1 -a)

d (a~~~~
2
+~~~~~÷c) 6 

~,

where
— ~~~~~~~~~~ ,

(D-2)

and ~ ,b. ~L are defined the same as Eq. (C-2)
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Again, there are three special cases which require

numerical approximation for small d . Equation CD-i) can

V be represented by the geometric angles (Fig. D.2)

V 

~~~~~~~~~~~~~~~~~~~~~~~~~~ (D-
~~~~~

)

-
~~ ~~., a’

— 
~~~

Then for small d .
(1) for ~~- < : ~~~

4:
~~~~

’3

— 21
— 

~~~~~~ , r 2aJ~ -b

~~ I— / 2d/ (Z&3’,+b) ,

~ I 2 d7( 2..aJ~~÷b )Z

2d
I — za~~~+b ,

_ _ _  

d 
_ _ _ _

— d ~~~~~~~ (2aè~ bf

l 
— 

I

‘
~ 2a~~+b 24~~1-~, / .

(2) for 
~~~~~~~~~~~~~

2~~j 2a~
.1+b i , 

9~~°~
( 2:e~bI ,

Cosc -cos 9~~ j +  2d 2L/(2aJr1+ bf ,
S~no~~~ I2~

1/c2a~~÷b ) f ,  ~ I2d/ ~aEJ~÷ b I ,
4i~Us

~ 2 4 (h / ( 2~~~*b )Z —

42
~~ (( l/(2.a~~ *I)f_ ( ‘/ (2a}, -s.~) f .  (D-~)

- t_~ -t~~t _~ V ‘V — - ~‘V_ VVV • _V V •V_ VV~V~~ V — 4



- - - V - - V - - - - V - VV~~ V V~~~~~~~~~~~~~~~ V~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -V - - -V - -V
- ~~~V V V V- V ’V -VV -V -V V V~~~

__ 
— -~~ - -~.‘

V V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~V-V SV ~~-‘V~~~~~~_-_ ~~~~~~~~~~~~~~~~~~~~~~~

V 
—126—

(3) for ~~~~~~~

V cl . 
~ 

2~~~2c~~I+~, )j  ~~~~~ 121/2a6-1÷b)I ,

V ~~ I -  2d h/ (2a3,.*~~)
2 , s;nd

~~I�d/(�ab,i.LI)j ,
V 

— l + 2d~/(2a~~~.s -b ) ’

~sIn~~ I2 d/(2Q~~
.1
~)l ,

V _ _ _  
I 

— 
I 

—

V 

— 

(z Q~~~+b )1 (2.4~ , s~b)*

I 
~~~~~~~~~~~ 

I (P-6 )(~.~~~i-b) “ .

The induced pressure due to time variation of the

source segment, ~ is

4~7Ø C/’~~~~~( _ _ _ _ _ _ _ _

~~~~~ 

— 

J ~~~~~~~~~~~~~~~~~~~~ 
(TD 7)

- By using the definition of Eq. (C-2), we obtain
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Once more , three special formulas are considered for
V small d ,

(1) for ~~~~~~~~~

4 
-

~~~~~~~~ 

_ _

2 2a~~-t-b , 2 2a~~÷b

~~~~~~- j ( eot -~ t4~t-~~)

- 
(2a~I +t ~)( 2 a d~.a.b) 

~~ 9)(

(2) for

=

11 g
~~~~~ 2 -

~~~

4~TT 2(P5

= _~~~~ 
2 Q~~~+~~

~~~~~~ b • 
(D-:o)
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(3) for ~~‘>~~z

4i1 a~~
0
i_ ,

~ ~~~~ ~- V 

—
~~~~~

- 
~~~~~~~ — - .z~ . ~~ 2 ~~~~~ 2

~~Jo V4~
1t b C D - l i )

V J
Then the induced pressure due to source distribution

can be calculated by using these equations and Bernoulli’s

equation .
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V (x 1, z,

(x , z )
z

FIGURE D. I Discrete Source Segment
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(x 11z1)

\ d 
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(x z)

z

FIGURE D. 2 Cocr~ note Systems for Discrete Source
Segment and Control Point
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APPENDIX E

NUMERICAL RESULTS OF RECTANGULAR HYDROFOIL

V The present numerical method was used to calculate the

unsteady forces on an aspect ratio 6, rectangular hydrofoil.

A comparison was made on heaving motion at a/ce = 2.0 and

WC0/U,~c, = 3.1416. Eight elements were used along the chord

of the foi l, six elements were used in the cavity behind the

foil and two elements were used along the sentispan in the

calculation. The lift amplitude and phase angle were calcu-

lated after one cycle of oscillation and were found to be 2.71 
V

and 108.6°, respectively. The lift amplitude and phase angle

of Widnall ’s results at wC0/U = 3.1416 are 3.4 and 115°.
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