AD-AO48 614 RADIATION RESEARCH ASSOCIATES INC FORT WORTH TEX Fr6 20/6
STUDIES IN APPLICATION OF DISCRETE ORDINATES TRANSPORT METHODS --ETctU)
SEP 77 D LINDSTROM F08606=77=C=0008

UNCLASSIFIED RRA=T7704 AFTAC=TR=78=1 NL

a




M

o A AS I IR AN T S T SR P (e S G sipiaiia=- 4

A N A

<
Y=

gg AFTAC-TR-78-1
by STup1ES IN APPLICATION OF DISCRETE 6}/

ORDINATES TRANSPORT METHODS TO
f

“ay

Q L1GHT TRANSPORT CALCULATIONS:
PrepARATION oF MiE THEORY CROSS
SECTIONS IN LEGENDRE POLYNOMIALS

Q
<<

Radiation Research Associates, Inc.
Fort Worth, Texas

1 September 1977

Approved for public release, distribution unlimited

\f .P

e
; :,j hyv 7"
- AIR FORCE TECHNICAL APPLICATIONS CENTER [
. HEADQUARTERS UNITED STATES AIR FORCE AN 12 1978
PATRICK AIR FORCE BASE, FLORIDA 32926 e
» o
2 ¢: JLH—J\._J;_. ‘ L\:

D

ot

DOC FILE COPY.

)

ko Ao e Mo as e L



ED
SECURITY CLASIIFICATION OF THIS PAGE (When Deate Bitered

R DOCUMENTATION PAGE ..,5.:‘,’&,‘.,._" 'm" 2. '°"° ,o..'
= : @m
AFTACHTR-78-1) V
~ s mree 0D COVERED
é IES IN_APPLICATION OF DISCRETE ORDINATES

JRANSPORT METHODS TO }IGHT SPORT ~CALCULA-
"TIONS:  SPREPARATION OF.MIE ORY CROSS _SECTIONS

)0 i)uainy‘ Lindst@ : @,LF{%’{&W-C IWD/

e
9. PERFORMING ORGANIZATION NAME AND ADDRESS RAM ELEMENT, PROJECT, TASK

e T A & WORK UNIT NUMBERS
RADIATION RESEARCH ASSOCIATES, INC.
3550 Hulen Street

‘ 6107
11. CONTROLLING OFFICE NAME AND ADDRESS :
AIR FORCE TECHNICAL APPLICATIONS CENTER Q 1 Sepummmm B77

Patrick Air Force Base, Florida 32925 i o '7:"

. MONITORING AGEN MAME & ADO t Siferant from mﬁn) 5. sEcum ASS.

Unclassified

ASSIFICATION RADING i
b e

et o e men e
18. DISTRIPUTION ST TEMENT (of thie Repert)

Approved for public release, distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetract entéved in Bleck 20, If different frem Repert)

19. SUSSLEMTMTARY NOTES

19. KEY WORDS (Continue on reverse side if recossasy and identily by bleck mumber)

Mie Theory

Discrete Ordinates Methods
\ Light Scattering
&.eqendre Polynomials

20. ‘gncv (Continue on revevee oide If necocsary and idontify by bleck mumber)

A study was performed to determine the applicability of discrete ordi-
nates codes to the transport of light through particulates. Light is scat-
tered with high anisotropy by particulates. This high anisotropy requires

. expansion in high Legendre order for accurate expression by discrete ordi-
nates codes,

Procedures for convenient and economical production of light scattering
data (Mie theory) in discrete ordinates format were developed and[sested. e

»‘ou W Pl ARG AT N
". r

- /Ll v d
- b
DD 20", 1473  eoimion oF unov () eve - SIFIED EZ e /! =,
@@ SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

A




UNCLASSIFIED
SSCUNTY CLaSHICATION o7 s Pagatiue B verye

One-dimensional time-dependent disgrete ord:lnates calculations were performed
using the TDA (Time Dependent ANISN) code with a simple cloud model. Com-
puter storage and time limitations are outlined.

Extension to largest particle sizes and a second space dimension can
best be accomplished using asymmetric discrete angle sets to conserve com-
puter resources. Further economies might be accomplished by normalization
of low-order data for problems dominated by multiple scattering. Relaxation
of the need to express data in Legendre series could offer further economy,
but may require significant development.

UNCLASSIFIED
SECUMTY CLASHPICATION OF THIS PAGE(When Date Snteredd




Section

I.

II.

III.

Iv.

v.
VI.

VI1I.

VIII.

TABLE OF CONTENTS

LIST OF FIGURES
LIST OF TABLES
INTRODUCTION
APPLICATION TO DISCRETE-ORDINATE TRANSPORT CODES
2.1 Geometry Limitations
2.1.1 One Dimension
2.1.2 Two Dimensions

THE USE OF LEGENDRE POLYNOMIALS IN THE BOLTZMANN
TRANSPORT EQUATION

CONVERSION OF MIE PARAMETERS TO LEGENDRE COEFFICIENT
DATA

4.1 Legendre Coefficients for MIE Data
4.2 Legendre Coefficient Data Required
4.3 Application of Mie Theory Legendre Coefficients

to ANISN
INFORMATION FLOW
CROSS-SECTION ANALYSIS
TEST EXPERIENCE - COMPUTER REQUIREMENTS
Cross-Section Generation

Angular Quadrature Order
Computer Storage Requirements

NN~
W=

TEST EXPERIENCE - CALCULATIONAL RESULTS

REFERENCES

APPENDIX A. MIELEG UTILIZATION INSTRUCTIONS
APPENDIX B. LEGEDIT UTILIZATION INSTRUCTIONS
APPENDIX C. MACRO UTILIZATION INSTRUCTIONS
APPENDIX D. MACEDIT UTILIZATION INSTRUCTIONS
APPENDIX E. TDA UTILIZATION INSTRUCTIONS
APPENDIX F. FILE NAME DIRECTORY

(= 00 S &

O

13
14
16
18
22
29
29

29
32




VDT L ANERERY L AT g A S04 % e oy 3N 2 i i e gl AL 5 e LT o R A i YO s

LIST OF FIGURES

Figure Page
1. Sample Case - Transmission from Point Source Through 5 3

a Planar Cloud

e T e T TS 3

2 One-Dimensional Representation of Sample Case 7 :
Two-Dimensional Representation of Sample Case 8
4, Information Flow, Mie Theory Data Applied to Discrete 19
Ordinates Transport
5. Mie Theory Legendre Coefficients 23
6. Effect of Coefficient Extraction by Refitting 24
Weighted Function
Zs Relative Phase Function, Complete and Truncated 25
Expansion
8. Effect of Smoothing in Coefficient Refit 27
9. Particle Density Function Assumed in Tests 30
10. Computer Time to Produce Coefficient Set on LEG File 31
11. Effect of S-Order on Error in P-35 TDA Calculation 33
12, COMMON Array Storage Requirements for TDA Test 35
Problem .
13. Running Time Requirements for TDA Test Problem 36
7
14, Comparison of MIELEG- and MACRO-Generated Legendre 39
Coefficients »
15. Effect of Coefficient Data Source on TDA-Calculated 41
Fluxes
16. Effect of Range of Particle Sizes on TDA-Calculated 42
Fluxes
17. Comparison of Cross-Section Normalizations, 46

0-4 Micron Particles

18. Comparison of Cross-Section Normalizationms, 47
0-6 Micron Particles




e U TR AL e L B a2

Table

II.

LIST OF TABLES

PARAMETERS OF MACROSCOPIC DATA USED IN TEST
CALCULATIONS

TEST CASES FOR LOW-ORDER REPRESENTATION OF
HIGH-ORDER SCATTER




I. INTRODUCTION

Discrete ordinates and other codes for radiative transfer calculations
require phase function information to be expressed in terms of Legendre
polynomials. A phase function, evaluated by Mie theory, can be expressed
directly in Legendre polynomials by

N
p(cosb) .nZO a_ P_(cos) 1)

where Pn(cose) is the Legendre polynomial of order n and N* is the maximum
order necessary to sufficiently express the phase function and a is the
agssociated Legendre coefficient.

The phase function p(cos®) is a function of scattering particle
size, radiation wavelength, and refractive index. Thus, sets of a can
be determined for each combination of size, wavelength, and refractive
index. Normally, one would wish to perform transport calculations for a
single wavelength and refractive index, but over a range of scattering

particle sizes. An additional parameter is defined:
a =21 r/A (2)

where
0 = size parameter
r = particle radius

A = radiation wavelength.

Then for a given refractive index and wavelength, a range of particle sizes
is translated into a range of a-values. Sets of Legendre coefficients, a
can then be determined for each combination of refractive index and size

parameter Q.

*Hathcnntics tradition generally dictates the use of n=0 for the lowest order
considered, but computer indexing usually does not allow the use of zero, so
equations related to computer programming generally indicate n=1,N. Thus,
the N of a computer-related equation may be 1 greater than N in an equivalent
equation in traditional form.

1
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There will generally be a different number of particles for each

size, r. The number per cm3 for any r is the particle size distribution

n(r) such that fn(t)dt is the density of particles, particles/cm3, in the

size range Ar.AtAppropriately averaged phase functions can be determined

by integration of single size phase functions over an appropriate distribution
n(r).

Transport codes require data in the form of interaction probability
per unit path length (macroscopic cross section) rather than the relative
fractional scatter per particle given by the phase function. This interaction
probability can be expressed in the same expansion form as the phase function:

N
Zs(coae)-nzo Ath(cose) (3)

where the coefficients, An are related to the phase function coefficients,

a, by

A = 1078 I 04(a,B)a_(a,B)n(r)dr 4)
Ar
and where Os(a,B) = microscopic scattering cross section
o = gize parameter, 2mr/A
B = a(m-ik)
m = index of refraction relative to the
surrounding medium
k = extinction coefficient of the particle
material
/-1, imaginary coefficient for the

complex number m

[
n

n(r) = particle number density function for

particles of size r

108 - cmzlnicronz.

A set of procedures for calculating interaction probability coeffi-
cients has been produced and tested with the Time-Dependent ANISN (TDA) one-
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space-dimension discrete ordinates code (Ref. 1). A description of the

procedures and recommendations based on the tests follows. The appendices

give utilization instructions for the computer codes used in this study
i and a file-name directory for the files stored on the Xerox Sigma-9 computer.
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II. APPLICATION TO DISCRETE-ORDINATE
TRANSPORT CODES

The use of Legendre expansions pf cross section is widely practiced
in computer calculations of radiation transport. Computer codes for large
radiation transport calculations can generally be grouped into two categories:
(1) Monte Carlo, based on random representation of natural processes, and (2)
Boltzmann balances, based on the Boltzmann equation. Generally, the Monte
Carlo method allows a wide choice of methods by which the cross-gection
data can be represented. The Boltzmann balance method codes, however,
usually use cross sections represented in Legendre polynomials. Praminent
among the Boltzmann balance codes are those using the Sn-discrete ordinate
numerical techniques.

The Sn-discrete ordinate codes are limited to either one or two
spatial dimensions, and the choice between them depends on the geometry

of the case being modeled.

2.1 Geometry Limitations
2.1.1 One Dimension

One-dimensional codes (ANISN (Ref. 2), TDA, DRF (see Ref. 2))
are severely limited in the extent to which they can be used to model
real situations (see Fig. 1).

Slab Geometry: If the scattering medium is considered as an
infinite slab, with the allowed dimension the slab thickness, then the
source must be an infinite plane source. Some code versions allow a choice

of source directions, but all require spatial infinity.

Spherical Geometry: If the scattering medium is a sphere, with the
allowed dimension the radial thickness of the increment, a point source is
possible. A point source, however, must be located at the center of the
sphere. Location at any radius greater than zero causes it to become a

shell source.

Cylindrical Geometry: If the scattering medium is an infinitely long
cylinder, with the allowed dimension the radial thickness of the medium, the

source can be an infinitely long line source at the center or a cylindrical

4
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shell source in any radial increment. The requirement of a point source
necessarily limits one-dimensional simulation to spherical geometry. This,
then, requires that the scattering medium have curvature equal to the
distance from the source. This further requires that all of the source
radiation be emitted normal to the incident cloud surface and that the
detector position be determined by the radial distance from the source
only. The real conditions of varying slant thickness and cloud-to-detector
distance might be approximated by choosing appropriate combinations of
interval thickness and leakage angle (see Fig. 2).

This approximation is probably best for relatively thin clouds,
since there would be fewer contributions from multi-scatters that varied
greatly from a path along the common thickness. The approximation is
aided by the general forward-scattering character of light. Where the
radiation path varies greatly from a straight line between the source and
detector, the approximate leakage angle 6' is much different from the real
leakage angle 6. If the difference between them is great, especially when
one of them approaches 0° (a 90° scatter change), the approximation may be

poor.

2.1.2 Two Dimensions

The limitations described for one-dimensional representations are
largely avoided by using a two-dimensional representation (DOT (Ref. 3),
TRANZIT (Ref. 4), and TWOTRAN (Ref. 5). The sample case (Fig. 1), can
be well-represented in cylindrical geometry (p,z) by describing a region

of cloud around a normal from the source (see Fig. 3). The source itself .
can be represented by intervals in p and z around p=0. Then the detector

response can be determined by integrating over all azimuthal positions 1
in the upper surface r-intervals. Intervals can be defined to values of

r as large as necessary to represent the detector response. The azimuthal

symmetry assumed in the two-dimensional case is not a severe limitation

as such symmetry can be reasonably assumed.
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III. THE USE OF LEGENDRE POLYNOMIALS IN
THE BOLTZMANN TRANSPORT EQUATION

Many analytical and most numerical applications of the Boltzmann
transport equation employ Legendre polynomials in some form. The reason
for this lies in the form of the scattering term, which gives the density of
particles (or photons) scattered into the direction § from all other

directions Q':

J Z Q@"+)e@') an' (5)
4
where ¢(§') is the flux in direction R'. The scattering cross section,
Zs(§'+§), is then expanded in Legendre polynomials; for instance, by:

1_’Z‘2n+1

Es(ﬂ'+ﬂ) = 2n —E——) zn Pn(uo) (6)

n=0

where Zn is the ntlst Legendre coefficient and Pn(uo) is the ntlst Legendre
polynomial. The argument, U, is the cosine of the angle between the two
vector directions, Q' and Q2. This expansion is very convenient for neutrons
because, in many cases, isotropic scatter predominates. In isotropic scatter,
the initial and final directions do not correlate and the probability of
scatter into any unit solid angle is a constant. In this case, only the
first term of the expansion needs to be used, where Pn(uo) is a constant
(Po(uo) = 1). While this simplified case is seldom exact, if often performs
well as a first approximation and good results are often obtained for

relatively low orders of expansion (P3 or Ps).

Scattering of gamma rays is not well-approximated by isotropic
scattering, but is of sufficiently low order that good results are usually
obtained by calculations employing only a few more terms than are used for
neutrons. Light scattering, however, can be of a very high order when
cross sections are expressed in Legendre polynomials. Orders of several
hundred may be required to express Mie theory phase functions for
relatively large aerosols (a few tens of microns in radius).




The convenience of the Legendre polynomial expansion in the scattering
term lies in the form of the polynomial Pn(uo). It can be written in terms of
the angles defining the initial and final directions, Q' and Q.

PGw) =P @, e)

i PGBy et o
; = Pn(u)Pn(u ) + 2821-{;;%%7 ) P (u )cosB(z-t'")

where B

a’p_(u)

PP = nfaaunf? ——
dy

u' and Y are the cosines of the polar angles describing the
directions Q' and @,

z' and T are the azimuthal angles describing the directions
Q' and Q.

Then the scattering term can be written in two parts:
2 1

Z Atz laz'|aw' 2 ) 2 0" 0@) ®

0 -1

- 21T 1

b, fa au'z ﬁ%}- 2P 2Pty cosBc-c )o@ ®

o -1

p
T

82

Assuming azimuthal symmetry in scattering, the first term becomes:
1

S Vi B0 [ du' B_(u")em") (10)
1

z (2n+1

n=0

The integral is simply a moment equivalent to a Legendre coefficient, ¢n in
the flux expansion:

$@") 'ﬁz &L P wh a1




Therefore the first part becomes simply,

Z (2n+1
n=0

)E e ¢, (12) |

The second part can be rewritten to contain the integral

ey

27

I dz' cosB(z-z'). (13)
0

Making the substitution,

a=B(z~z'), (14)
the integral can be rewritten as

-% cos ada --:BL [sina) = 0. 15)
B(z-2m)

B (g-2m)

Therefore the entire scattering term reduces to the simple form of expression
(12).

If it were desired to express the cross section, Zs(§'+§) in some
form other than Legendre polynomials, presumably one in which relatively
low order were possible, but continued to express flux in Legendre

polynomials, then the scattering term would take the form:

z (ﬁ'*ﬂ) 2“ z (2n+1)¢ P (u ) 1dQ! (16)
4
N
1— o' ] (]
. 'Zl_o (20+1)¢_ I @'+0) P_(u')dQ
4

11




The moments defined by the integral would be different for each
final direction considered. Thus, for instance, in a discrete-ordinate j
formulation using m quadratures, a total of m times n moments would be

necessary. If this could be shown to be less than the present n necessary

for Legendre expansion of cross section, the situation might be improved.

If a completely different orthogonal series were used to expand .
both cross section and flux, then an expression similar to (7) would have
to be found for the series used or the expansion in cross section carried .
for all combinations of initial and final direction. That is, if the
equivalent of Pn(uo) in the new polynomial were to be retained, then
instead of using polynomials in terms of a single set of directions u,
polynomials would have to be evaluated in terms of all combinations of
initial and final directiomns.

If m were the number of directions, m2 instead of m polynomials
would be used and n times m cross-section coefficients evaluated. As
before, if this could be shown to be less than the n presently used in

Legendre expansions, an improvement could result.

12
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IV. CONVERSION OF MIE PARAMETERS TO
LEGENDRE COEFFICIENT DATA
4.1 Legendre Coefficients for MIE Data
Legendre coefficients are calculated by MIELEG using the equation

o il

2
n o xca,ijl k=1 TS5 ["jk"'jkn i ij"jkn:] (17)

from Ref. 6. The angular distribution function, £(0) is related to these by
1 [
£(0) = 3% nzo a P (x) (18)

where x = cos0 and Pn(x) = nth Legendre polynomial, £(6) = fraction
scattered per unit solid angle about 6; from which one should obtain
m

27|sinb® £(0)dO = |f(x)dx = 1 . (19)

It is also related to the total power scattered of Mie theory:

x2
1(8) = gz (1,+

2)

by the relation:
1(8)
9 mr“K { (21)

r = radius of the scattering particle
K = gcattering coefficient, as/aé

o scattering cross section

08- geometric cross section.

13




4.2 Legendre Coefficient Data Required

The differential scattering cross section, 0(6) is the probability
of scatter per unit solid angle about 6. Then the total probability of
scattering (of a unit light flux per scattering particle)is

m ™ &
o‘s = I g(0)dQ = 27w I d(0)sinbd¢
0 0
1
= 27 J o(8)dx . (22)
~1

It is desired that 0(9) be expressed in terms of Legendre polynomials and
a set of coefficients:

0
a(9) -nZOCn P_(x) (23)
or, to sufficient approximation,

N
o(®) =} c, P (x) . (24)
n=0

These coefficients can be evaluated from o(0) information by
integrating over appropriate polynomials:

1
Io(e) Pm(x)dx -nzo Cn [ Pn(x)Pm(x)dx % "
-1 ~1
- C_(s2— (25)
m" 2w+l Y

(by the orthogonality relationship
of the Legendre polynomials.)




T in

O . 1}

1

2o+l
Thus Cn - f-i—-) O(Q)Pn(x)d!- (26)

-1

Since the n=0 polynomial, Po(x)-l, from Eq. (26),

1
o] g
=1 g R
. Co 2 0(8)ax 22w 4 un
-1

A set of normalized coefficients o, can be defined by

> 2
o = 2m (2n+1) c (28)
where 0_ = 0 .
o s
Th a(8)= la-g &y, b ) (29)
- S 2 g n
n=0
1
where On =27 [ a(0) Pn(x)dx . (30)
-1
. Alternatively, the set could be defined by
. o' =4m C ; (31)
n n
' in which case
. N
! 3 1— ¥
! a(8) = o= Yop® (x) (32)
n=0
1
and o; = (2u+1)0n = 27(2n+l) O(G)Pn(x)dx. (33)
-1

This is the case assumed in ANISN and other Oak Ridge codes.

15




Thus, where the coefficients are defined by Eq.(28), they must be
: divided by (2n+l) for input to codes assuming definition (31). Generally,
Los Alamos codes (DTF, TRANZIT, TWOTRAN) assume definition (28).

F 4.3 Application of Mie Theory Legendre Coefficients to ANISN

In ANISN-related terms, the fraction of scattering in a solid
angle about 0 is

o(® . zo P(x) . (34)

Os 4‘"’0‘ n-O
This is equivalent to £f(0) of Mie theory. From Eq.(18),

£(0)= — 2 alP (x) . (35)
n-O

Therefore the coefficient required by ANISN, c;, can be determined by
equating the two relationships:

N
1
- aP (x) = o'P (x) (36)
4w E nn 4wcs E—O

The equality is satisfied if, for all n,

1] = .
5 % @7
b ‘ 2
Since K e 0 = Knr
T ”
WAFES Y .
so that o, = Kmr'a P (38)

®

For use in LASL-type codes using the DIF format (defined by Eq. (30)), Mie
theory coefficients must be divided by (2n+l). This operation is carried
out in the XSLA option of MACRO or MIELEG.
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The Mie Legendre coefficients, a, are a function of particle size; or

more correctly, of the size parameter, a -'2§£ » where A is the radiation
wavelength. Then for any distribution of particle sizes, n(r), the
coefficients used in the ANISN transport calculation must use appropriate
averages over the distribution. The dimensions of 0; are those of
microscopic cross section (distance)z. Ultimately, ANISN requires data

in dimensions of macroscopic cross section, (distance-l). This is achieved
by multiplying the microscopic cross section by scattering particle density.
If the distribution, n(r), is density per unit of particle size, such that

N = [ n(r)dr (39)
0

gives the total particle density, then the appropriate macroscopic coefficients

that ANISN can use directly in transport calculations are
o]

I = Oé(a)n(r)dr. (40)

Or, for calculation of Zn where values of o; are available for specific

values of a,

L = g o (@ )n(r,) br, (41)
where Ari is the range of sizes represented by T and
2mr
il
o £ ui R P

Expanded to angular cross section,

N
z () = %ﬂzozn P_ (cosb). (42)

e
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V. INFORMATION FLOW

In general, the phase function coefficients, a , can be used
to generate interaction probability coefficients, An’ for different
combinations of size and wavelength .through the size parameter, a.
Also, for large values of a, the computer time necessary to calculate
values of a, is sufficiently great that unnecessary recalculations
should be avoided. Therefore, the procedures for preparing input
data for a discrete ordinates code is built around a file of collected
values of a . This file, LEG, can contain all values previously cal-
culated and can be drawn upon to produce values of An for discrete
ordinates input data. A diagram of the information flow between codes
and files is shown in Fig. 4.

The MIELEG code is based on the MIE-2 code (Ref. 7) which cal-
culates Mie Theory cross sections and phase functions, and the Legendre
expansion expressions outlined by Clark, Chu, and Churchill (Ref. 8).
This code calculates from r, A, and B a set of values of a and adds
them to the LEG file. Any other set of r,A values leading to the same
size parameter, o, would produce the same set. For a range of values
of r, a number of sets can be produced, distributed across the range.
In addition to saving these sets on the LEG file, if the parameters
of a distribution function are input, MIELEG will produce a set of
macroscopic parameters, An. These will be calculated from the approxi-
mation to Eq. (4):

A =10"% lezs K(a,,8) r’ a_(a,,B) n(r,) Ar (43)
n " S s’ S b i B |
where i is the index of a single r,
NRS is the number of r values used,
Ari is the interval of r associated with value Ty

n(ri) is the relative density of particles of size r

i’

T ' T P Ty PR
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2
K is the cross-section ratio, oB/m:i , and

08 is the scattering cross section.

These values of An are written on the MAC file for use in making up

data sets for discrete ordinates transport calculations. (Values are

written on E12.5 format, so can be used directly in most codes,
including free-format ANISN and TDA.)

For many An sets of interest, it is unlikely that all contributing
a sets would be calculated in a single MIELEG run. It is far preferable
to generate the required macroscopic An set from the collection of micro-
scopic a, sets on the LEG file. This not only is more conservative of
computer resources, but should give better approximation of Eq. (43) to
Eq. (4) by allowing a finer definition of r-values. Macroscopic sets
can then be generated from the LEG file by the MACRO code, which is
essentially the last part of the MIELEG code.

All MIELEG runs automatically save a, values on the LEG file.
New sets are saved at the beginning of the file. (0ld values are copied
to a temporary file containing the new ones, then copied back to the
original file.) Since MACRO expects sets to be ordered by ascending

values of the size parameter o, the new LEG file must be reordered
after contributions. An ordering code, LEGEDIT, properly orders the
file and deletes old sets when new ones with the same value of a are
encountered. The LEGEDIT code is intended to be used separately or in
the same run string with MIELEG, thereby assuring that an unordered LEG

file never be encountered,

In general, one would need to have a values resulting from
different B-values on different files. The LEGEDIT code compares the
B-value of all sets with that of the last one on the file. Any set
whose value does not agree with that of the last set is deleted and
written on an auxiliary file, OTHERLEG. It is thus possible, by
changing file assignments in the LEGEDIT job control sequence, to

unfold a file containing sets with several B-values into several sets,

each with a single B-value.




In ordinary production of a set of A,n values for use in a
transport code, one would choose the LEG file containing the B-value
of interest and input to the MACRO code the wavelength and size dis-~
tribution required. MACRO will then produce a file, MAC, containing
the set in E12.5 format. This file can be edited by CRT terminal to
MERGE the A.n values into the transport code data file.

Mie theory Legendre coefficient sets are quite lengthy,
requiring a much higher order than is necessary for transport of
other radiations. Proper use of discrete ordinates codes generally
requires S-orders (angular quadrature) greater than or equal to P-orders
(Legendre). (Excessively large S-order may require very long computing
times.) Thus, for convenience in changing quadrature sets (weights
and cosines), a file, QUADS, has been established, into which all input

sets can be read for merging into transport code input files.

A short normalizing routine, MACEDIT, has been included for
data normalization in terms of the first-order coefficient Ab' This
is equivalent to the total scattering cross section and can be used
to normalize the entire set. The normalized set (along with the
original set from MAC) is saved on the MAC2 file.

All procedures were implemented on the SIGMA-9 computer at
Texas Christian University, accessed by CRT terminal. All discussion

is directed toward usage on this system.
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VI. CROSS-SECTION ANALYSIS

A significant characteristic of Legendre expansions of Mie theory
cross sections is the large order (i.e., number of coefficients) that is
necessary for adequate representation. The order needed is about 20, where
o is the size parameter, 2mR/A. (Some authors suggest 20+2.) If the

expansion is performed to produce angular-dependent from order-dependent
data (Eq. 1 or Eq. 3), a final term, N, greater than 20#+2 should not
contribute significantly to the result. As examples of this characteristic,
three sets of microscopic coefficients, a produced by MIELEG are shown in
Fig. 5.

An indication of the sufficiency of the expansion can be obtained
by refitting the expanded function by integrating, for each order, the
function multiplied by the Legendre polynomial of that order (in the manner
of Eq. 24), In Fig. 6 is a plot of a weighted average of coefficients from
0=8.46 to a = 25.22 (normalized to 1.0) and the coefficients obtained from
a refit of the expanded function.

The refitted coefficients become effectively constant when the
original coefficients become small. The calculation was performed using
two different recursion relations for generation of the Legendre polynomials,
and with both single and double precision in the polynomial. Since there
were no significant differences in the resulting coefficients, one must
agsume that the nearly-constant values result from the availability of

detail in the expanded function, rather than from round-off error.

Re-expansion from the refitted coefficients would result in little
contribution from the constant coefficients since the sum of several
polynomials is approximately zero. If the coefficients were to be obtained
by fitting, as from MIE-2 phase functions, rather than directly from Mie
Theory (Eq. 17), this "tail" of constant values would result. Judicious
truncation of a set of coefficients obtained by either technique results

in adequate representation of the function.

Early truncation of the series may give a greatly inadequate

representation of the function. Figure 7 is a comparison of a full
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expansion of 52 average coefficient terms with an expansion using only
the first 29. It is interesting to note that the number of peaks and
valleys in the truncated expansion is equal to the number of terms
used. (The valleys do not appear on a semi-log plot.) As larger
numbers of terms are used, the number of peaks and valleys increase

and gradually converge on the complete expansion.

The use of a high Legendre order imposes on a transport code
larger computer storage and running times than one with low order. It
is likely that the detail of the large forward scattering peak (the

—

phase function near zero degrees) more strongly affects tramsport
calculation results than the detail of the smaller peaks. A smoothing
option was added to the MIELEG and MACRO codes to determine whether

some of the non-forward detail might be dispensed with. The refitting
calculation discussed earlier performed the integration over function and
polynomial by summing one-degree increments. The smoothing option performed

the same integration using one-degree increments in the forward peak but

|
|
|

larger increments at other angles. A macroscopic set of coefficients was

determined for a range of a of 0.85 to 8.5. This was then expanded and
refitted with non-forward increments of 10 and 20 degrees. The resulting

SSU———

coefficients were then re-expanded to test the representation resulting

from the "smoothed" fits. The expanded functions (macroscopic cross sections)

are shown in Fig. 8.

Using 10-degree smoothing, the increments are narrower than the peaks
appearing in the function and re-expanding the coefficients gives results
comparable to the original function. Using 20-degree smoothing, however,

R (ST e W

the increments are comparable to the peak width and expansion of the

e

resulting coefficients shows a result similar to that observed with a
truncated expansion. The function resulting from smoothed fitting seems

to require higher order, rather than less. Consideration of the method by
which the coefficients are obtained —integration of the function over all
angles, weighted by Legendre polynomials— should lead one to recognize
that the predominant effect must result from the large forward-scatter peak.
Thus the characteristic periodicity of the function is determined by this
predominant peak, and its damping for higher angles is determined by the
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detail employed. In the same way that the order is related to the number of
peaks, the order must be related to the narrowness of the forward peak.

Adequate representation of the forward peak, therefore, requires a high

order and no "short-cut" is available in Legendre representations of highly
forward scattering.
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VII. TEST EXPERIENCE - COMPUTER REQUIREMENTS

7.1 Cross-Section Generation

A series of cross-section sets was produced and tested on the Time
Dependent ANISN (TDA) code. A case was modeled with a unit point source at
the center of a 0.5-km radius cloud. Time increments summing to more than
10 usec were specified. (The unscattered wave front would reach the edge
of the cloud in 1.67 usec). Early attempts to generate complete cross-
section sets, using particle sizes as would be expected in a cloud, required
long MIELEG running times (considerably more than the few minutes estimated).
In addition, the large orders involved appeared to require large computer
storage and CPU time with TDA. At this time it was determined to produce
the LEG file and LEGEDIT and MACRG codes to conserve cross-section
preparation time and to perform test calculations on ranges of particle

sizes.

The particle density function used in the tests was given by the
expression

2 -0.6R
n(R) = 27R" e (44)

where R is given in microns (10-4 cm) and n(R) has units of particles

cm.4. The density function is shown in Fig. 9.

Microscopic coefficients were produced by MIELEG for 47 size
parameters up to a value of 84, and saved on the LEG file. All assumed a
complex refractive index of (1.33, 0.0). For a light wavelength of 0.75
microns, the LEG file can provide data for particle sizes to 10 microms.
The CPU time as a function of size parameter, a, is shown on Fig. 10. All
times include a following LEGEDIT run to order the file.

7.2 Angular Quadrature Order

The cross-section order (P-order) necessary to reliably represent
Mie phase functions was determined earlier. A related parameter is the
angular quadrature order (S-order) necessary to adequately represent the

anisotropy of scattering in the balance equations of the discrete ordinates
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calculations. The '"quadratures" are the vector direction cosines, x,
along which angular fluxes are calculated. Associated with the cosines
are weights, w, representing the fractional solid angles around each
vector direction. Taken together, these represent discrete directions
(thus "discrete ordinates") that the radiation can take. Highly peaked
cross sections generally require the use of a large number of directions
(high S-order) to avoid loss of information in the calculation. A general
rule of thumb is that the S-order should be no less than the P-order.

Several TDA calculations were performed with particle sizes of
0-2 microns and a wavelength of 0.75microns (P-order of 35 for 2a+2
representation). S-orders of 16, 24, 32, and 48 were used. For the sake
of comparison, the results with S-48 were assumed to be exact. Fluxes at
the outer edge of the cloud (500 m) were compared for all time steps. Average
percent errors were calculated for 1-4 and 4-10 transit times (1 tramsit
time: 1.67 sec, time for unscattered wave front to reach the edge of the
cloud). The results are shown in Fig. 11. All errors were negative,
indicating that the fluxes at the outer edge were reduced by inadequate
angular representation of the radiation transport. The error was greater
for the longer times considered, and appeared to increase sharply below
S-24. It appears that the ''S-order greater than P-order" rule might be
broken for moderate error (V5%) but could lead to much larger error if

S-orders are allowed to fall much below the P-order.

All quadrature sets reported here were symmetric, having a negative
cosine to match each positive cosine. It is possible, exercising great
care, to use "asymmetric quadrature sets", which have a greater density of
directions considered near x=1.0 to better represent the forward scattering.
A single TDA run was made using such a quadrature set (of unknown origin).
These results are not reported except to say that the fluxes were 20-50%
greater than the S-48 fluxes, so should not be accepted as reliable without
further study.

7.3 Computer Storage Requirements

Several other TDA jobs were run, with maximum particle sizes up to

6 microns, with P-orders up to 95 and S-orders from 16 to 48. Core storage
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requirements are directly related to the S- and P-orders. The MAIN
routine of TDA contains a COMMON statement specifying the size of the
flexibly-dimensioned storage array. Load modules containing array sizes
of 20,000 (file name: TDA) and 30,000 (TDA30K) were used. It is likely
that the largest array size that can be used with the TDA code and the
SIGMA 9 computer is about 46,000 with a total core usage of 64,000.

Any change in the COMMON array must be matched by the value of the size
test variable LIM1. TDA prints the size of COMMON array necessary for
any problem at read-in time, so the requirements can be determined with-
out actually running a job by submitting a job with a very short run time
specification (<1 minute). For the TDA test case, COMMON array require-
ments for all P-S combinations tested are shown on Fig. 12. (The P-values
shown on Fig. 12 are the values for data stored. The P-values of the

calculation were often less as truncation to 20+2 was employed.)

Using the estimated errors in Fig. 11, it is possible to supply lines
of estimated error on Fig. 12, using 5% as the estimate for S-order equal to
P-order, and 20% for S-order equal P-order /2. Extrapolating these results
to an 8-micron truncated P-order of >130, with an S-order of 64, a storage
requirement of 42K would result for 20% error, near the maximum of 46K for

the Sigma-9 computer.

The other computer requirement of consideration is the running time
(CPU time). From the same test runs the times are shown on Fig. 13, again
cross-plotted with estimated 5% and 20% error. In this case, the values
were plotted against the P-order actually used in the calculation.
Extrapolation to a maximum particle size of 8 microns is more difficult for
CPU time than it was for COMMON storage, but it appears that a run time
of more than 100 minutes for 20% error is likely.

Successful use of asymmetric quadrature sets could reduce the
effective S-order by a factor of 3 or more while retaining the degree of
error. This could reduce the storage requirements to v1/2 and time to
v1/3 for the test cases reported here. It is likely, then, that use of
asymmetric quadrature sets could extend the range of solution to 12 microns

or more, effectively covering the particle size range.
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VIII. TEST EXPERIENCE - CALCULATIONAL RESULTS

Test calculations were performed with the TDA code for 0-1
micron, 0-2 micron, 0-4 micron, and 0-6 micron particle ranges with
a wavelength of 0.75 microns, complex refractive index of (1.33,0.0)
and a particle size distribution defined by the expression:

0.6R

n(R) = 27R% e~ (47)

where
R is the particle radius, microns
n(R) is the density distribution in particles cm-a.

Macroscopic Legendre coefficients were generated for each
range from individual particle size parameter data stored on the LEG
file. The MIELEG code was used to generate the individual particle
data and the MACRO code to process it into macroscopic data. Each
increase in particle size range requires an increase in the Legendre
order for adequate representation of the macroscopic function (phase
function integrated over particle size distribution). Also, as more
particles are considered, the total cross section* (the first Legendre
coefficient) increases. The necessary order and total cross section

are shown in Table I.

TABLE I. PARAMETERS OF MACROSCOPIC DATA USED IN TEST

CALCULATTONS
Particle Size Maximum Order Total Cross
. Range, microns Req'd (2a+2) Section, cm-l
0-1 18 1.72x10°°
0-2 35 5.59x10~%
0-4 70 5.84%107°
0-6 103 1.72x107%
0-8 136 3.00x10™%

*Actually, this is the total "scattering" cross section. If a non-zero
extinction coefficient were used, the particle density times extinction
coefficient would be the "absorption" cross section which, when added to
the total scattering cross section, would equal the total cross section.




While orders of 18, 35, and 70 were used for the 1l-, 2-, and 4-micron
calculations, microscopic particle size data up to only 5.5 microms
(but integrated to 6 microns) was used to estimate the cross sections
to 6 microns, thereby allowing an order of only 95 to be used. The
8-micron calculation was not performed, due to computer limitations,
but was included in the table to note that that rate of increase of
cross section decreases when the range of sizes extends well beyond the

density distribution peak.

The number of particle sizes considered influences the values
of the macroscopic coefficients to some extent. As a test of this,
the coefficients of the 0-4 micron range were generated with the MACRO
code from LEG file data, using 25 particle sizes, and directly with the
MIELEG code using four sizes (PARTS = 3.0). The more approximate
MIELEG results included a total cross section of 6.75x10-5cm-1, compared
to the MACRO result of 5.84x10_5. The coefficients obtained in these
cases are shown in Fig. 14. Whereas the MIELEG-calculated coefficients
are greater than the MACRO-calculated coefficients, it is expected that
some other choice of the four sizes used by MIELEG might have resulted
in smaller coefficients.

It was evident in Section VII that the number of significant
coefficients used in an expansion was approximately equal to the number
of peaks + valleys in the expanded function (cross section versus angle).
Since the peaks and valleys for any single particle size are located
at different angles from those for any other particle size, the summa-
tion for several particle sizes will result in a larger number of peaks
and valleys than there would be for the largest particle size con-
sidered. Since the order of the summation is equal to the order of
the largest particle size, the function detail will not be completely
represented by the summation. Evidence of this insufficiency may be
an irregular character of the coefficient distribution, as seen in
Fig. 14 for the MACRO-generated coefficients in the 40-60 order range.
The expanded function resulting from the MACRO-generated coefficients

showed some of the oscillations characteristic of underdetermination
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seen for insufficient order (Fig. 7) or loss of detail by smoothing
(Fig. 8). The oscillations were not so apparent in the expanded
function resulting from MIELEG-generated coefficients, where fewer

particle sizes were considered.

It is not necessarily detrimental to a reasonable transport
calculation to use coefficients which would lead to oscillatory : §

functions. The oscillations occur at angles for which the scattering

is relatively improbable. (For 0~4 micron particles, the oscillations

occur at ~10~%

of the forward peak value.) After a few scatters,
nearly forward scattering would mask any error resulting from the

oscillatory behavior.

TDA calculations were performed on the test case using both
sets of coefficients. The fluxes obtained at the edge of the 0.5-km
radius cloud from a point source at the center emitting a unit pulse
at time zero are shown in Fig. 15. Also shown is the case for which
the MIELEG coefficients are normalized so that the total cross section
(first coefficient) is the same as the total cross section from MACRO.
Except for shortest times (V1 usec after arrival of the unscattered
wave front at the edge of the cloud), the normalized result falls
between the MIELEG- and MACRO-based results. This indicates that, for
this case, the difference in values of total cross-section and the
difference between the angular details are about equally important in
determining the flux at the edge of the cloud. It is not known whether
the angular detail is better for the MIELEG data, based on few particle
sizes, or for the MACRO data, which appears underdetermined for low
probability scattering. The value of the peak flux is not reliable

as insufficient detail was used in spatial increments at the outer
edge and time increments when the wave front reaches the outer edge
to provide good definition.

The flux at the outer edge of the cloud is plotted versus the
time after the unit pulse in Fig. 16 for all particle ranges considered.

All results shown here were calculated with 2a+2 truncation of P-order
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and S48 quadratures. The error in the results from using insufficient

S-order is likely to be about 20% for the 0-6 micron case at longest
times and less for all other times and size ranges. It is clear that
a greater range needs to be considered to observe the effect of the
entire range of sizes in the distribution.

With the computer limitations of this study, extension to
sufficiently greater sizes would require a significant decrease in
P-order or S-order. The possibility of decreasing the S-order by the
use of asymmetric quadrature sets has already been mentioned (Section
VII). The separation of total cross section and angular detail, as
practiced in normalizing MIELEG-calculated coefficients to the total
cross section from MACRO, provides a possibility for modest reduction
in P-order.

For transport cases of sufficient depth so that the forward
direction of the initial pulse becomes greatly spread, a precise
definition of forward scattering might not be necessary for adequate
results. Less forward scattering, as represented by lower order repre-
sentation, would predict a longer path to locations of interest, so
lower order results might be corrected by multiplying the time scale
by a factor equal to the ratio of expected path lengths. As a brief
test of this possibility, two low-order angular distributions of
cross section were normalized to the total cross sections of two other

cases of higher order. The chosen cases are shown in Table II.

TABLE II. TEST CASES FOR LOW-ORDER REPRESENTATION OF
HIGH-ORDER SCATTER ;

Low~Order Cases High-Order Cases

Rayleigh scatter 0-4u (MACRO)
0-2u (MACRO) 0-6u (MACRO)




Rayleigh scattering represents a low-order limit of light

scattering and is given simply by the expression:

1+ cosze)

(48)

where 0(6) 1is the angular microscopic cross section and os is the total

microscopic cross section.

Their ratio is the phase function.

Legendre representation of this is obtained by integrating it over all

solid angles, weighted by the Legendre polynomial of order n, to obtain

the coefficient of order n

1

n
8

-1

The first three Legendre polynomials are (using computer

. Thus,

a =21 [ géﬂl Pn(cose)d(cose)

indices: 1, 2, 3 for the first three polynomials):

Pl(coae) =]

Pz(cose) = cosf

P3(cose) - % cos © -1

2
2

(49)

(50)

Then a = 1, a, = o, a, = %u All further terms are zero. That this

is an exact representation is confirmed by substituting the coefficients

into the expansion:

ue . L 3
Og bm =1

1
H[l

a Pn(cose)

1+ 0 ¢ cosb + =

1/3 2 1
2(Ecoae-z)
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the original expression. A Rayleigh scattering angular distribution
can, therefore, be used to represent a higher order case by a P3 data
(P2 in traditional indexing), where the first coefficient is the total
macroscopic cross section, the second is zero, and the third is one-
half of the total cross section. This was done for both 0-4 micron
and 0-6 micron cases. In addition, the 0-2 micron P35 angular distri-
bution was normalized to both the 0-4 micron and 0-6 micron cases,
using the MACEDIT code. The results of both representations of the
0-4 micron case, along with the original 0-4 micron results, are shown
in Fig. 17. Similarly, results for the 0-6 micron case are shown in
Fig. 18.

In Fig. 17, both normalized cases have initial peaks, probably
from local scatter of the passing wave front, followed by multi-scatter
contributions. The Rayleigh scatter case, however, is depressed for
times immediately after the passage of the front, lacking a large com-
ponent of strongly forward-scattered radiation. Thereafter, it has a
very strong delayed component from other scatters. The case normalized
from the 0-2 micron distribution is intermediate to the two others,
having more forward-scattering contribution than the Rayleigh and less
thai the true 0-4 micron case. Within about 4 usec of the pulse, the
flux then appears of the form of the true case, but delayed by longer

scattering paths.

In Fig. 18, the Rayleigh scatter case shows no initial peak at
all, indicating that the cross section is large enouéh so that the wave
front is very weak and local scattering from it near the edge of the
cloud is small. All Rayleigh scatter contributions are delayed by
relatively long multiple-scattering paths. The case normalized from
0~2 microns is similar in shape to the true 0-6 micron case, but
delayed. This shows some promise that the technique of using a nor-
malized lower-order cross section set and an adjusted time scale might

give reasonable approximation to the true higher-order case for large

numbers of scatters.
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Fig. 17. Comparison of Cross-Section Normalizations, 0-4 Micron Particles
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APPENDIX A. MIELEG UTILIZATION INSTRUCTIONS t

The MIELEG code calculates Legendre coefficients of interaction
probability per unit particle density (microscopic cross-section
coefficients, an) or interaction probability per unit path (macro-
scopic cross-section coefficients, An). Input data are particle size
range and distribution, radiation wavelength, and complex refractive
index. It is based on the MIE-2 code and direct evaluation of Legendre
coefficients (Refs. 7 and 8). It produces a file, LEG, of microscopic

coefficients and a file, MAC, of macroscopic coefficients.

A.l MIELEG Input Description

RMIN, RMAX, PARTS, PM (Complex), WAVEL, NEQ (6F10.0, I5)

RMIN - Minimum particle radius considered, microns
RMAX - Maximum particle radius considered, microns
PARTS - Number of intervals in range of considered radii.

If 0.0 used, only RMAX considered, no size dis-
tribution necessary, no MAC file produced.
PM - Complex refractive index, B, composed of two parts:
a) M, real index of refraction relative to the
surrounding material, and
b) K, extinction coefficient of the particle material.
WAVEL - Wavelength of the radiation, microns
NEQ - Number of equation describing particle size dis-
tribution, 0 or 1
0: N(R) = Pl*R**PZ*EXP(-P3*R*;P4)
1: N(R) = Pl for R £ P2
N(R) = P3*R**P4 for R > P2

P1l, P2, P3, P4 (4F10.0) (Ignored if PARTS = 0.0)

Parameters described by choice of NEQ, on previous input record.




Cutput Options 4(1X,A4) (Ignored if PARTS = 0.0)
Possible options:
XSOR or XSLA, TRUN, AGIN, SMOO

Output options are entered in Hollerith (alphabetic)form. They
can be in any order, but must be spaced as indicated by the 1X.
They can be conveniently input with a leading space, then
separated by commas.

XSOR or XSLA - MAC option. Most codes requiring Legendre
coefficient cross-section data are of the Oak Ridge (FIDO)

type or Los Alamos (DTF) type. The two generally differ by a
factor of (2N+l) where N is the order (initial order: zero)

of the N+lst coefficient. For a discussion of the evaluation

of coefficients from Mie theory and the type choice, see Section

IV: Conversion of Mie Parameters to Legendre Coefficient Data.

Option: XSOR XSLA
Type: Oak Ridge Los Alamos
Typical
Codes: ANISN, TDA DTF
DOT TWOTRAN
MORSE TRANZIT

TRUN - Truncation option.
The MIELEG code produces coefficients for a higher order (more
values) than is normally necessary. The MIELEG code uses all
of these coefficients to calculate the macroscopic cross-
section of equation (3) (labeled F on the printed output) for
0 through 180 degrees. It then truncates the series of coeffi-
cients and recalculates the cross-section values. Truncations
are chosen according to several criteria:

1) where the coefficients is first smaller than the

initial coefficient
2) where N is first greater than 20+2

3) at local minima in the coefficient sequence.




The cross sections resulting from each of these truncations

can be inspected to find an adequate order. Truncations that

TR

are too severe often result in a few negative cross-section

; values. Truncation at 2a+2 is generally adequate.

AGIN - Refitting option.

Test of the consistency of the Legendre polynomials and
expansions. This option integrated the expanded cross sections 3
over all angles, weighted by Legendre polynomials to recalcu-
late the coefficients. In general, the values agree with the
originals to about 3-place accuracy until Nv2a, after which the

o

original coefficients have contributed little to the cross

sections, so cannot be extracted from them.

SMOO - Smoothing option.

This option was added to refit cross-section data using smoothed
values for data at angles greater than those in the large %
forward-scattering peak. Tests with this option did not result
in significantly different coefficient sets, indicating that |

the Legendre order is determined by the forward-scatter peak.

THRESHF, WIDTH (2E10.0) i
Smoothing parameters. If the SMOO option is used, those para-

meters are used. Cross sections are averaged over WIDTH number
of degrees for all angles greater than the angle for which the
cross-section value falls to THRESH*F(l) where F(1) is the

cross-section value at zero degrees (the maximum of the forward

peak) .

A.2 MIELEG Output Description - Printout

The MIELEG code prints out all input data, then radii and rela-
tive densities if more than one calculated. For each radius, the size
parameter (ALPHA), cross-section ratio K(a,B) (SCKRO), and Legendre
order (LESS) are printed, followed by the actual Legendre coefficients.




If several sizes are considered, the macroscopic coefficients are

printed and these are expanded into the angular dependent cross sections,

which are also printed.

If the TRUN option is used, tﬁe expansion is printed for each
truncation. If the SMOO and AGIN options are used, the resulting
coefficients are printed along with the full expansion. The TRUN option,
along with SMOO or AGIN also causes the truncated expansions for these

cases to be printed.

A.3 MIELEG Output Description - Files

The MIELEG code produces two files, LEG, containing coefficients
for single particle sizes, and MAC, with coefficients integrated with
particle size distribution. Other files may be produced by a MIELEG
run. In case a run is interrupted, the LEG file existing before the
run would be found on BACKLEG. The new, partially completed file,
might be found on NEWLEG. If the run string were completed, and included
a run of the LEGEDIT code, any coefficients created which had a different
complex refractive index from those already on the LEG file would be
written on the OTHERLEG file.

A4 MIELEG FORTRAN Listing
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ROUTINE MIELEG - NEW (7/7/77) RECURSION SCHEME

eReNele]

CONE TO FIT MIE PHASE FUNCTIONS WITH LEGENDRE POLYNOMIALS
FOMPLEX A(500).B(500),PSIR(500).,PSIRC(500),BCA(2).,ACAPB,

1 BETAL.PM,PSRC, ZETA
: C
DIMENSION PSI(3),CHI(3),CO0EF(500),
1 RI(200),ENR(200)
COMMON ALPHA,PI1I v
TOMMON/POUT /RMIN:RMAX ,PM,»WAVEL :NEQ,P1,P2,P3,P4:NRS,
1 LESS,.ENTOT,COEFXS(500)
DIMENSION SUMW(500),SUMV(500)
C a
EQUIVALENCE(A(1),PSIR(1)),(B(1),PSIRC(1))
G(J,K) = (REAL(A(K))=REAL(A(J)) + AIMAG(A(K))=AIMAG(A(J)) +
1REAL (R(K))Y®REAL(B(J)) + AIMAG(B(K))#AIMAG(B(J)))
2 8(2.8J%1.)/(J5(J+1,))8(2.0K+1.)/ (K2 (K+1.))
F(J.K) =(REAL(A(K))SREAL(B(J))Y + AIMAG(A(K))=AIMAG(B(J)) +
LRFAL(B(K))SREAL (A(J)) + AIMAG(B(K))®#AIMAG(A(J)))
2 2l?2,.8d+%1,)720J05(J+1,))#(2.#K+1.)/ (Kas(K+1.,))
C
f(K,J) = (2aN+1)s(Ja(J+1)+Ka(K+1)=Ne(N+1))#u2/4,
C
REWIND 11
REWIND 12
PIl1 = 4.0 # ATAN(1.0)
Pl2 = 2.0 « P!
&
Do 2 1=1,500
CoEFXS(I) = 0.0
2 TONTINUE
C
READ (5.600) RMIN, RMAX, PARTS, PM, WAVEL. NEO
WRITE(6,610) RMIN, RMAX, PARTS, PM, WAVEL, NEQ
NRS - PARTS + 1.0
IF (PARTS.GT.0.0) GO TO 25
RI(1)=RMAX -
GO T0 72
c
C USE PARTS.EQ.0.0 TO GFT COEFS FOR SINGLF SIZE ONLY.
C TRUNCATING, REFITTING TESTS SUPPRESSED. RMIN TGNORED., -
C nNO SI1ZE nISTRIBUTION NDATA REQUIRED,
C
c -
25 DELR = 2,08 (RMAX=-RMIN)/(PARTS2(PARTS+1.0))
C
C sss CALCULATE PARTICLE RADI] wae
&
RI(1) = RMIN
n
po 28 1=2,NRS
1 # § = 3
28 RI(I)Y = RI(CI1) + 11 #DELR
C
c sss CALCULATE PARTICLE SIZE NISTRIBUTION aeea
€

2 READ(S5:620) P1,P?,P2,P4




oy e RIS

Qo (]

0 a0

a0oan

WRITE(6,630) P1,P2,P3,P4
NG 37 [=1.NRS

X/ ENR(1)Y=P1aRTI(1)2eP2#EXP(-P3#RI(])saPq)
Go T0 70

40 RFAD(S5,620) P1.P2,P3,P4

o 18 I1=1,NRS
IF(RT ¢1).6T.P2) GO To 57
ENR(I) = P2
GO 0 18
57 ENR(1) =P3sRI(l)=2P4
‘8 CONTINUE

70 WRITE(%4,650) NRS
WRITE(6,661)(RICI),ENR(I).I=1,NRS)

/72 ENTOT=0.0
CEXT =0.0
SHOF =0.0

No 500 KC=1,NRS

#e® CALCULATE MIE VARIABLES #an
EXKRO = 0.0
SCKRO = 0.0

ALPH = WAVEL/PI2
71 X = RI(KC)/ALPH

TEST TO AVOID SINGUI ARITY AT MULTIPLES OF PI
IF(ARS(SIN(X)).GT,.0.001 ) GO TO 73
RI(KC)=RI(KC)#»1.001

WRITE(6.74)KE
74 FORMAT(/,*R NUMRER',13.' FUDGED TO AVOID SINGULARITY
1 *AT MULT. OF PL*")

Go 10 /1
FHANGE IN X TO AVOID ODD RESULT AT SINGULARITY,

-DE=08 *ALPHo#?2
COFPH=? ./ (XeaX)

IF(x.1.T.100.) GO T0 10
L =X*CABS(PM)
K1 =1.1sL
GO To 11
10 L=15.0SORT(1.40.01eXeXx)
K1 = 1.5 &
11 K?2 = Ki-q
IF(L.LT.501) GO T0 1?2




a0

12

15

WRITF(6,670) L

STOP

X1 =1.0/%

BETAI =1.,0/(PMxX)
PSR = 0.0

PSRC = CMPLX(0.0,0.0)

pe 15 1=1,K2

NRz=K1=1

1A =2aNR+1

PSR =1.0/(lAaXI=PSR)
PSRC=1.0/(1ABETAI=PSRC)
TF(NR.GT,L) GO 70 15
PSTR(NR) = CMPLX(PSR.,0.0)
PSIRC(NR) =PSRC

CONTINUE

CHIO
PSIN

cos(Xx)
SIN(X)

" u

DO S0 I=1,L
sas CALCULATE MIF SERIES COEFFICIENTS =#e

PSR = REAL(PSIR(I))
| B s R s
IF(I.GT,2) GO TO 30
IF(1.EQ.2) GO TQ 20
PS1(1)=PSR#PSIQ
PSI(2)=REAL(PSIR(2))2pS (1)
CHI(1)=X1eCHIO + PSIO
Cul(?) = 3.0°x1#CHI(1)-CcHIO
BCA(1)= =XI + 1.0/(XI1=-CMPLX(0.0,-1.0))

20 PSI(3)=PS1(1)

50
25

T
€

CHI(3)Y= CHIC(T)

GO YO 35

PS1(3)=PSRePSI(2)

CHI(3) = (2e]l=1)exlaCHI(2)=CHI(1)
ZETA = CMPLX(PSI1(3),CHI(3))

ACAPA = 1,0/PSR =-1eXI]

ACAPB = 1.0/PSIRC(1)=-12BETAI
BCA(?2)=<11#X1 4+ 1,0/(11aX1-BCA(1))

AC1)= PSI(3)2(ACAPB-PMaACAPA)Y / (ZETA=2(ACAPB =PMsBCA(1)))
B(ly = PSI(3)2(ACAPA=PM®ACAPB) 7/ (2ETAa(BCA(1)«PM*ACAPB ))
BCA(1) = BCA(2) .

ICONST = 2#] +1

EXKRO =ICONST » REAL(A(I)+B(])) + EXKRO

SCKRO = ICONST #(CABS(A(1)®#c2)+CARS(B(I)®ne?2)) + SCKRO
IF(I.LT.3) GO TO 50

PST(1) =Psl(2)

PSI(2)= pSI(3)

CHI(1) = CHI1(2)

CHI(?2)= CHI(3)

CONTINUE

EXKRO
SCKRO

EXKRO ® COEPH
SCKRO = COEPH

FUD = (2.0/(X»e2 s SCKRO ))
LAST = L

13

a1

S

EeY
I
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OOCO0O0

o

s REe ke Xel

49
51

T

100

120

LMAX = L « (L+1)/2
L = LENGTH OF MIE-? SERIES ON A AND B
sss CALCULATE LENGTH OF LEGENDRE SERIES #es

IF(X.LE.15.0) GO TO 49

LESS = 21.0#EXP(0.040611 # X)
GO T0 51

LESS = 2.0 « X + 11.0

IF(LESS.GT.2#L) LESS = 2#L

H1S 1S THE BEGINNING OF THE NEW RECURSTON SCHEME
(D, COLLINS, RRA, 7/7/77)

MAX = LESS + 1
N0 52 N=1,MAX
SUMW(N) = 0,0
DO 100 K=1,LAST
¥ =K

N0 190 J=K,LAST

J = G(KDJ)

= C(K,J)#2,0/(1.0+1FIX(KZJ))

IF (J.EQ.K) WJKO = 1.,0/(22Y+1)

IF (J.GT,K) WJUKO = WJKOsXa(2ax=2aY-1)/((2eX+1)8(X-Y))
WB4 = HWJUKO

M = JeK+1

SUMW(M) = BWKJ*WB4#CKJ+SUMW(M)

NL = J=K+3

NU = J+tK+1q

T00=2.0/(¢1.0+IF1X(K/J))

PO 100 M=NL,NU,2

N=M=1
Z = M-1

WBd = WB4#(X+Z-Y=1)a(Y+Z=X=1)a(X+Y+Z)a(X+Y=Z+2)/
& ((x+Y=Z+1)o(x+y+Z+1)a(x+Z-Y)a(Y+Z=X))
SUMW(M) = SUMW(M) + BWKJ3WB4aC(K,J)=T0O

CONTINUE

N0 120 N=1,MAX

SUMV(N) = 0.0

PO 200 K=1,LAST

Y = K
N0 200 J=K,LAST
X = J

BVKJ = F(KOJ)

IF (J.EOQ.K) VJKO
IF (JU.GT.K) VJKO
VB4 = VJUKO

N = J=K+?
SUMV(N) = SUMV(N)+BVKJaVB4s2 .0/ (1.0+1FIX(K/J))
IF (K.EQ.1) GO T0 200

NL = J-K+4

NU = J+K

100=2.0/(1.0+1F1X(K/J))

Jaya(Y+1l)/ (2eY+1)
VJKO® (28X=28Y+3)a(X+1)/((X=Y)a(2aX+1))

"




o Re N

loEeRe]

ana

Qo0

anNnann Ly |

N0 190 M=NL,NU.,2

Z = M1 :

VB4 = VB4uw(2aZ+1)a(X+Z2=-Y)a(Y+Z=X)u(X+Y+Z+1 )2 (X+Y=24+1)/
& ((287=-3) a( X+ 2=Y¥=1) 8(Y+2-%X=1) a( X+Y+72) a(X+Y-Z+2))
SUMV(M) = SUMV(M) + BVKJaVB42T00

CONTINUE

CONT INUE

D0 250 N=1:MAX

COEF (N) = FUD#(SUMW(N)+SUMVIN))

190
200

250
THIS 1S THE END OF THE NEW RECURSION SCHEME
IF(PARTIS.EQ.0.0) GO TO 402

a2 FOLD LEGENDRE COEFFICIENTS WITH PARTICLE DISTRIBUTION »za

TF(KC.GT.1.AND.KC.LT.NRS) GO 10O 310
IF(KC.EQ.NRS) DELR=(RI(KC)-RI(KC=1))/2.0
IF(KC.E@.1) DELR=(RI(KC+1)-RI(KC))/2.0
Gn 10 330

NELR:=(RI(KC+1)-RI(KC-1))/2.0

ENRR =ENR(KC)sDELR&RT (KC)#RI(KC)

CEXTY CEXT + EXKRO#EDRR

SCOE SCOE +SCKRO s EDRR

102 WRITE(6.680) PM,XYZ,SCKRO,LESS

WRITE(6,662) (COEF(N),N=1,LESS)
PUT COEFFICIENTS CON LIBRARY (TEH# ON NEWLEG, COPY TO LEG)

WRITE(12)XYZ,PM,SCKRO,LESS
WRITE(1?)(COEF(N),N=1,LESS)
IF (PAR1S.EQ.0.0) GO TO 570

DO 450 MM=1,LESS
COEFXS(MM)=COEFXS(MM)+COEF (MM)=SCKRO=PI1#RI(KC)®RI(KC)
1 “ENR(KC)#DELR#1.0F-08
450 CONTINUE
ENTOT=ENTOT + ENR(KC)&sDELR

500 CONTINUFE
WRITE(6,720) ENTOT, LESS
WRITE(6,555) (COEFXS(N),N=1,LESS)
555 FORMAT(/, 'MACROSCOPIC X-S COEFFICIENTS',./,(1P6E15.6))
CFXT = Pl1#CEXT&1,0E-08
SCOE = P]l » SCOE « 1.0E-08

ABOE=CEXT-SCOE
WRITE(6.710) CEXT,SCOE,»ABOE

COPY OL! LIBRARY




5720 L=0

580 READ(11.END=590) XYZ,PM,SCKRO,LESS?
RFEAD(11) (COEF(N),N=1,LESS2)
WRITE(12)XYZ,PM,SCKRO,LESS?
WRITE(12)(COEF(N),N=1,LESS2)
L=L+1
GO To 580

590 REWIND 11
RFWIND 12
WRITE(5,595) L -

595 FORMAT(/,'READ',I13,' SETS OF COEFFICIENTS FROM LIBRARY '
1 'FOR UPDATE.")

[F(PARTS.EQ.0.0)STOP 1

OUTPUT OPTIONS

eNelel (9]

599 CALL oUTOP

(o

A00 FORMAT(6F10.0,15)

A10 FORMAT(/,2X,'INPUT DATA',//+2X,'RMIN = ',F10.2,2X,'MICRONS"',
1/,2X,'RMAX = ',F10.2,2X, *MICRONS", /72X, 'PARTS = ',F10.2./,
P2X.'PM = ',2E15.6,/,2%X,"WAVEL = *,F10.2,2X,'MICRONS',
3/,2%x,*NEQ = ',15)

620 FORMAT(4F10.0)

630 FORMAT(/,2X,'P1 = ',1PE15.6.,/,2X%,'P2 = ',1PE15.6,/,2X,
1'P3 = ',1PE15.6.,/2X%,'P4 = 1,1PE15.6)

640 rORHAT(/|2Xv'P1 = ',1PEIS.6-/;2X-'P2 z *',1PE15.6.+/,
12X,'P3 = ',1PE15.6,/,2X,'P4 = ',1PE15.6)

650 FORMAT(/l2XI'NRS = "151/)

661 FORMAT(/,3X,RADIUS' ,6X.*'NDISTRIB. DENS.'/(1P2E15.5))

662 FORMAT(/,'LEGENCRE COEFFICIENTS. SINGLE SIZE'/(1P6F15.6))

470 FORMAT(/,2X,'DIMENSIONS TOO SMALL, L = '.I5)

680 FORMAT(/,2X,'PM = ' ,2F15.6:2X,'ALPHA = *,F15.2:/,

f 12X, 'SCKRD = ',1PE15.6,2X,'LESS = ',15,/)

{ 700 FORMAT(I10,5X,1P2E15.7)

‘ 710 FORMAT(/,2X,"MACROSCOPIC EXTINCTION CROSS SECTION = ',1PE12.5.

T T

1 /2% "MACROSCOP IC SCATTERING GCROSS SECTION = *',E12.5,
? /12X, "MACROSCOPIC ABSORPTION CROSS SECTION = ',E12.5.//)
770 FORMAT(/,2X,"AVERAGE LEGENDRE COEFFICIENTS',”/,
1 2X,'ENTOT = ', 1PEL15.6,2X,'LESS = ',15, /)
C
SToP
END
. SUBROUT INE OUTOP
COMMON/POUT/RMIN:RMAX ,PM>WAVEL,NEQ,P1,P2,P3,P4,NRS,_LESS,
1 EN,CQEFXS(500)
§ DATA TAQ,1A1,1A2,1A3,1A4/4HXSOR,4HXSLA, 4HSMOO0,4HAGIN,» AHTRUN/
DATA 11,12,13,14/7480/
COMMON ALPHA
COMMON/OUT/11,12,13,14
i COMPLEX PM
i C
i C OTHER OUTPUT
| C
; READ(5,302)I0UT1,10UT2,I0UT3,10UT4
i 302 FORMAT(4(1X,A4))
c
59
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C
C
c
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CHECK HOLLERITH VALUES

WRITE(6,303)10UT1,10UT2,10UT3,10UT4,1A0,1A1,1A2,1A3,1A4
303 FORMAT(/, 'OPTIONS CHOSEN: ',4(1X,A4),/,"AVAILABLE OPTIONS:'.
1 5(1x.4A4))

cccceceeccececaoeecececcecece
I1=1 IF x-S SET FOR ANISN (OR OTHER OAK RIDGE CODE) PRODUCED
IF(IOUT1,EQ.TA0.OR,IQUT2.EQ.TAD.OR.IOUT3.EQ.I1AD.
1 OR.IOUT4 ,EQ.1AD) 11=1
11WAS=I1
11=2 IF X-S SET FOR DTF (OR OTHER LOS ALAMOS CODE) PRODUCED
1F(IoUTY ,EQ.1A1.0R, IOUT2.EQ.TA2.0R.IOUT3I.EQ.1AL.
1 OR.IQUT4 EQ.IA1)T1=2
I?2=1 IF SMOQTHING TESTED
IFCIOUTL.EQ,1A2,0R.I0UT2,.EQ.T1A2,0R.I0UT3.EQ,1A2,
1 OR.IQUT4.EQ.1A2) [2=1
[3=1 IF REFITTING OF COEFS TO F TESTED
IF(IOUT1.EQ.IA3.0R.10UT2.EQ.TA3.0R.IOUT3I.EQ.IA3.
1 OR.I0UT4 EQ.IAS) 13=1
141 [F TRUNCATION TESTED
IFC(IOUT1.EQ.1A4.0R. IOUT2.EQ.TA4.0R.IOUTI.EQ.1A4.
1 OR.IOUT4.EQ.IA% 14=1
IF(I1.EQ.0) GO TO 288
ITF(T1WAS.EQ,1,AND.11.EQ.2) GO TO 270
GO 10 288
270 11=1

WRITE(6,272)
272 FORMAT(/, 'CANNOT PRODUCE O-R. AND L.A. FORMAT XS
1 'SETS IN THE SAME RUN., O.R. (E.G., ANISN) CHOSEN.")
287 FORMAT(' QUTPUT INDICFS:',15,5%,315)
289 FORMAT(' QUTPUT INDICES: '.5X,415)
288 IF(11.EQ.0) GO TO 305
IF(11.EQ.1) GO TO 285
Po 280 MM=1,LESS
COEFXS(MM)=COEFXS(MM)/(2.,aFLLOAT(MM)+1.)
280 CONTINUE
WRITE(6,289)11,12,13,14
GO 1O 2?81
285 WRITE(6,287)11,12,13,14
281 ZER0=0.0
MORDER=2.#ALPHA+3.
WRITE (15, 4)
4 FORMAT(/,'MAC DATA PRODUCED BY MIELEG") e ;
WRITE(15,291)RMIN,RMAX,PM, WAVEL,NEQO,P1,P2,P3,P4,NRS,LESS .EN,MORDER
291 FORMAT(/, ‘PARAMETERS' ,/ ,5E15.6,7/,14,4€15,6,/,215,E15.6,15)
WRITE(15,292)ZERO,ZERD,COEF XS(1),COEFXS ‘1),
1 (ZERO»ZERO,ZERO.,COEF XS (MM) ,MM=2,LESS)
292 FORMAT(/,'6E172.5 FORMAT CROSS-SECTIONS',/,'14e%",/2F12.1,
1 ?E12.5,/,(3F12.1,E12.5))
IF(11.EQ.1)WRITE(6,293)
2938 FORMAT(/,'MACR X=S DATA. WRITTEN ON MAC FILE (15).- OPTION XSOR')
IF(11.FQ.2) WRITE(6,294)
Y94 FORMAT(/,'MACR X=S DATA WRITTEN ON MAC FILE(15), « OPTION XSLA')

365 CALL TESTAN(O,COEFXS,LESS)
RFTURN
FND
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SUBROUTINE TESTAN(I,AN.,LESS)

DIMENSION X(181),AN(S00),AN2(500),AN3(500),P(500),
1 P2(500),P3(181),F(181),F2(181),F3(181),N(181)»TW(181),
2 FFIT(181)

COMMON ALPHA,PI,IP,IP2,1P3

nOMMON/0UT/11,12,13,14

IF(LESS.LT.501) GO TO 10
WRITE(6,5) LESS
5 FORMAT(/,'LESS = ',14,' MUST CHANGE DIMENSION IN TESTAN AND LEGCHK
1')
STOP
10 1¥(1.6T7.1) GO TO 42
T1=P1/180.
Dp 30 J=1,181
T=T1s(J=1)
X(J)=c0s(T)
30 CONTINUE

A L s T A RS

PRODUCE LEG. POLYS AND STORE WITH ALL ORDERS
FOR ONE ANGLE ON RECORD

1P=8

1P2:9

REWIND IP

REWIND 1P2

Do 41 J=1,181

P(1)=1.0

P(2)=X(J)

DO 40 L=3,LESS

FL=L

P(L)=((?,08FL=3.0)#(X(J)eP(L=1))=(FL=2.0)

1 *P(L=2))/(FL-1.0)
40 CONTINUE

WRITECIPI(P(L)L=1,LESS)
41 CONTINUE

REWIND I[P
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PRODUCE LEG. POLYS. AND STORE WITH ALL ANGLES FOR
ONE ORDER ON RECORD

1P3=10

REWIND IP3

DO 135 J=1,181

P(J)=1.0
WRITECIP3I)(P(J)»U=1,181)
No 136 J=1,181

P2(J) = P(J)

P(J) = X(J)
NRITE(IPSHP(J).J=1.181)
DO 141 L=3/,LESS

FL = L

Do 140 J=1,181
P3(J)=P2(J)

P2(J)=P ()
PlU)=((2.8FL=3,)2(X(J)8P2(J))=(FL=2.)eP3(J))/(FL=1,)
CONTINUE

£
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141

42

1
44

45

144

146
148

46
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CONTINUE

REWIND IP3

GO TO 46

JF(LESS.LE.LESWAS) GO TO 46

L1=LESWAS+1

NO 45 J=1,181

READCIP)I(P(L),L=1,L ESWAS)

DO 44 L=L1,LESS

FL=L

P(LYI=((2,08FL=-3.0)8(X(J)sP(L=-1))=(FL=-2.0)
#P(L=2))/(FL=1.0)

CONTINUE

WRITE(IP2)(P(L).L=1,LESS?

CONTINUE

I1TEMP=IP

1P=1P2

1P2=1TEMP

REWIND [P

REWIND IP2

| WM=L ESWAS=2

DO 144 L=1,LWM

READ(IP3)

READCIP3)I(P2(J),J=1,181)

READ(IP3)(P(J),J=1,181)

DO 148 L=L1,LESS

Fl.=L

00 146 J=1,181

P3(J)Y=P2(J)

P2(J)Y=P(J)

T AN S B 35 450 2 - Nk i S S

P(J)=((2 8FL=3 ,)a(X(J)aP2(J))=(FL=2,)8P3(J))/(FL-1,)

CONTINUE
WRITEC(IP3)(P(J)»J=1,181)
CONTINUE

REWIND IP3

LLESWAS = LESS

CALL CALCF(ANsLESS,F)
IF(1.GT.0) RETURN

EVALUATE F USING TRUNCATED SERIES

IF(14 . EQ.1)CALL LEGCHK(AN,LESS)

JSE SMOOTHED VALUES OF F TO GET LOWER'ORDER FIT

163

165

IF(12.EQ.0)G0 TO 171

CALL SMOOTH(F N, TW,FFIT,NFIT)
L=1

SuUM= 0.0

READ(IP3) (P(J)rJ=1,181)

no 165 J2=1,NFI17

NPT =N (J2)

XJ=X(NPT)

SINJ=SQRT (1.-XJaX))
SUM=SUM+SINJ#FFIT(J2)eTW(J2)8P(NPT)
CONTINUE

ELM=L -1
SUM=SUMa (2, *ELM+1,) a2 8P|
AN2 (1 )=SUM
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L =L +1

IF(L.LE.LESS) GO TO 163

REWIND IP3

WRITE(6,170)(CAN2(L),L=1,LESS)
170 FORMAT(/,*'COEFS FROM SMOOTHED F',/,(1P6E15.6))

CALL CALCF(AN?2,LFSS,F?)

IF(14,EQ.1)CALL LEGCHK(AN2,LESS)

INTEGRATE F OVER ALL ANGLES., RECALCULATE AN(L) VALUES
(F NOT SMOOTHED)

(sReRe Ry

1/1 IF(13.EQ.0)RETURN

L=

WRITE(6,62)
62 FORMAT(/,'RECALCULATED COEFFICIENTS - OPTION AGIN.',/»

1 "(SIMILAR 1O 1 DEG SMOOTHING.)")
43 SuM=0.0

READCIP3)Y (P(J)»J=1,181)

no 65 J=1,180

COoSJ=(X(J)+Xx(J+1))/2.

SINJ=SQRT(1.-C0SJ#COSJ)

FUs(F(J)+F(J+1))/2.

ELM = L-1

PWT=(2.3ELLM+1 ) s (P(U)+P(J+1)) /2.

SUM=SUM+SINJeF juT1ePuT
65 CONTINUE

SUM= SUMa2,#P1

WRITE (6,70)L»SUM, AN(L)
70 FORMAT('L,SUM,AN(L) = *',15,1P2E15,6)

AN3 (L )=SUM

IFCI,NE.Q) RETURN

L=L+1

IF(L.LE.LESS) GO TO 63

REWIND IP3

CALL CALCF(AN3,LESS)

C TRY TRUNCATING THE RECALCULATED SERIES

IFC14,EQ,1)CALL LEGCHK(AN3,LESS)

RETURN

END

SUBROUTINE LEGCHK (AN, LESS)

COMMON ALPHA,PI,IP,IP2,1P3

NIMENSION FLO(181),LORDER(7),AN(500),LTEST(6),P(500)

CHECK FOR LOWER LEGENDRE ORDER ACCURACY

ano

WRITE(6,2)LESS

? FORMAT(/,*TRUNCATE TO LESS THAN',14,' TERMS. (OPTION TRUN)':./.

3 'TEST FOR')
LORNDER(1)=0

ceceeeccececccee

FIND TRUNCATION TEST POINTS
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an

a0

no 5 1=2,6

5 LTEST(1)=4
1TEST=1
LTEST(1)=2.2ALPHA+3J,
WRITE(6,8)LT1EST(1)

8 FORMAT(IS5,' (2uALPHA+2)')

LOOK FOR LOCAL MINJIMUM

L2=LESS/?
6 NO 10 L=L2,LESS

IF(AN(L).GT.AN(L=-1) ,AND,AN(L).GT.AN(L-2)) GO TO 12
10 CONTINUE

Go 10 15 3
12 ITEST=1TEST+1

LTEST(ITEST) =t

WRITE(6:13)L
13 FORMATCIS,' (LOCAL MINIMUM) ")

IF(CITEST.EQ.5) GO TO 15

L2=+1

GO T0 6

LOOK FOR FIRST COEFFICIENT.LT.AN(1)

15 DO 20 L=2,LESS
IFCAN(L).LT,ANC1)) GO TO 22
20 CONTINUE
22 ITEST=ITEST+1
LYEST(TITEST)=L
WRITE(6,23)L
23 FORMAT(Is,' (LT.FIRST COEF)")

PUT TEST PCINTS IN ORDER

IFCITEST.EQ.1) GO TO 27
ILOOP=0
ITESTM=ITEST-1
24 TF(ILOOP.GT.15) ST0OP
DO 26 1=1,ITESTM
IFCLTEST(I).LE.LTEST(I+1)) GO TO 26
ITEMP=LTEST(])
LTEST(I)=LTEST(I+1)
LTEST(1+41)=]TEMP
ILOOP=1L00P+1
GO To 24 .
26 CONTINUE

CALCULATE RESULTING PHASE FUNCTIONS

27 DO 28 1=21,1TEST
LORDER (I+41)=LTEST(I)
28 CONTINUE

Do 125 J=1.,181
175 FLO(J)Y=0,0

ro 140 Lo=1,1TES?
L1=LORDER(LO) +1
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L2=LORDER(LO+1)

Do 155 J=10181

READ(CIP) (P(L), L = 'LESS)

no 150 L=L1,L2
FIOCJ)SFLOCY)+ANCIYaP(L)/C4.8P1)
CONTINVE

CONTINUE

REWIND [P

n

s -
)
0o

WRITE (6,156)L2, (FLO(J)»J=1,181)
156 FORMATC(/,'L = ',14,/,1PE15.6,/,(1P6E15.6))
140 CONTINUE

RETURN
END
SUBROUTINE CALCF(AN,LESS.F)
COMMON XYZ,PI,!P,1P?2,IP3
NIMENSTON P(500).F(181),AN(500)
PO 55 J=1,181
F(J)=0.0
READCIP)(P(L),L=1,LESS)
F(J)=F(J)+ANCL) =P (L)
50 CONTINUE
F(JI=F(J)/(4.4P D)
=5 CONTINUE
REWIND TP
WRITE(6,60)(F(J),JU=1,181)
60 FORMAT(/,'F FROM LEG. POLYS., 0 TO 180 DEGREES',/,1PE15.6,
17,(1P6E15.,6))
RETURN
END
SUBROUTINE SMOOTH(F,N,TW,FFIT,NFIT)
NDIMENSION F(181),N(181),TW(181),FFIT(181)
7T1=3.1415926536/18¢.
WRITE(6,245)
215 FORMAT(/,'SMOO!HING PARAMETERS')
REAN(5:246) THRESHF ,WINTH
246 FORMAT(2E10.0)
WRITE (6,247 )THRESHF ,WIDTH
2?47 FORMAT(/,'THRESHF . WIDTH="',1P2E15.6)
¢ DO 248 J=2,90
F1=F (1) #*THRESHF
IF(F(J).LT.F1) GO TO 249
a 218 CONTINUE
WRITE (6,250)
250 FORMAT(/, *NO VALUE OF PHASE FUNCT IN FIRST 90 DEG ILESS THAN',/,
1 'F(*)*THRESHF TO BEGIN SMOOTHING'")
GO To 61
249 JWINDE=WIDTH
WIDTH=UNW] DE
NINT=180./WIDTH
N0 251 I=1,NINT
JLAST=13JWIDE+1
IF(J.LT.JLAST) GO TD 255
751 CONTINUE
WRITE(6:252) J
252 FORMAT(/, 'THRESHOLD ANGLE'»14,' NOT FOUND"')
GO 10 61

e
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255

253

287
57

258
~59

240
51

NFIT=J+v1+NINT=I

WRITE(6:253)

FORMAT(/,'REP. PT. INDEX WIDTH Fry
N(1)=1

TW(1)=T1/2.
FFIT(1)=F (1)

DO 256 K=2,J

N(K)=K

TW(K)=T1
FFIT(K)=F(K)

WRITE(6,254) (N(K),TW(K),FFIT(K).K=1,J)
FORMAT(I5,2E15.6)
N(J+1)S(JLAST+U)Y/2
FFITJ=0.0
JM=JL AST=1
IF(NC(J+1).EQ.JIN(J+1)=J+1
IF(J.EQ,JM)GO 10 357

DO 257 J2=J+1,JM
FFITJ=FFITJ+F (J2)
FRITU=FFITJ+F(JLAST) /2.
POINTS=FLOAT(JLAST-J)-0.5
FFIT(J+1)=FFITJ/POINTS
TWC(J+1)=POINTS*T1 £
WRITE(6+,254IN(J+1),TW(J+1).FFIT(J+1)
JMID=JLAST=JUWIDE/?

N0 260 K=J+2,NFIT
JMINz=JMID4JWIDE

N(K)=JMID

JFIRST=JLAST

JLAST=JF IRST4+JWINE
FFITK= (F(JFIRST)+F (JLAST)) /2.
IF(JWIDE.EQ.1) Go TO 259

JP=JF IRST+1

JM=JLAST=1

DO 258 J=JP,JM
FFITK=FFITK+F (J)
CONTINUE
FFIT(K)=FFITK/FLOAT(JWIDE)
TW(K)=T1#FLOAT(JWIDE)
WRITE(6+254)N(K), TW(K),FFIT(K)
CONTINUE

RETURN

END




I s A R a0 L o o e LA L i i

Legendre coefficients on the

MODE (I5)

3
-
H
;‘:
g

—— . e— L koA A o k0 A M o Wb N B A é o | ;"-:

APPENDIX B. LEGEDIT UTILIZATION INSTRUCTIONS

The LEGEDIT code lists, orderg, and deletes sets of microscopic

LEG file. It can be included in a run

after MIELEG to order the file produced from a pre-existing file and
the new MIELEG contributions, or it can be run by itself.

B.1 LEGEDIT Input Description

LEGEDIT input data consists of a single integer variable,
MODE. The options are:

MODE = 0 Identify entries on files LEG, NEWLEG, BACKLEG, OTHERLEG

LEG —
NEWLEG -

BACKLEG -

OTHERLEG -

Normal Legendre coefficient file

Temporary production LEG file during MIELEG
run.

Back-up LEG file, produced at beginning of
MIELEG run.

Overflow file for other refractive indices, B.
Contains entries edited from LEG file which
did not have same refractive index as ori-

ginally found on file.

MODE = 1 Ordering mode. Puts entries in order of ascending size

parameter,

a. Deletes old entry if value of a within

0.01 of new entry. Writes on OTHERLEG any entries with

refractive
file.

MODE = 2 List mode.

MODE = 12 Order, then

index, B, different from that originally on

List LEG file

1list.

MODE = 21 List, then order

MODE = 212 List, order, then list again.

MODE = 3 Deletes selected entries.




ALFOUT (E10.0) Ignored unless MODE = 3

Up to 10 selected deletions, input one per
record. Entries will be deleted if size parameter,
o, within 0.01 of ALFOUT.

B.2 LEGEDIT Output Description -~ Printout

Identification mode O prints size parameter (a,ALPHA), complex
refractive index (B,PM) cross-section ratio (K, SCKRO), and order
(N,LESS) for each entry of LEG, NEWLEG, BACKLEG, OTHERLEG. Ordering
mode 1 (or the ordering part of 12, 21, or 212) lists the size parameter,
complex refractive index, cross-section ratio, and Legendre order of
each entry on file LEG. This list is produced once before the size
parameter ordering and deletions occur, and again after they occur.

List mode 2 (or the listing part of 12, 21, or 212) lists the
size parameter, refractive index, cross-section ratio, and Legendre
order of each entry on LEG, followed by the set of coefficients asso-
ciated with these parameters. Mode 3 (selected deletions) operation
is followed by a list of the amended file.

B.3 LEGEDIT Output Description - Files

The purpose of the ordering mode of LEGEDIT is to produce a
LEG file in ascending order of the size parameter. In addition, the
LEGEDIT job (OR MIELEG followed by LEGEDIT) saves a backup file,
BACKLEG, which is a copy of the original LEG file. The updated LEG
file is produced on a file named NEWLEG, so an incomplete job might
have the required data on NEWLEG. A successfully completed LEGEDIT
job would produce identical LEG and NEWLEG files.

B.4 LEGEDIT FORTRAN Listing

68
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LEGEDIT -- cODE TO FNIT | IBRARY OF LEGENDRE COEFFICIENTS FROM MIELEG

e Eele Ne

READ(S,10) MODE
10 FORMAT(I5)

MODF PETERMINES EDITING TYPE
=0 To READ FILES 11,12,13,14 (LEG,NEWLEG,BACKLEG,0THERLFG)
=1 TO ORDER AND NELETE NDUPLICATES (ALWAYS DELETE WITH ORDER).,
WRITE ENTRIES WITH DIFFERENT REFR. IND. ON OTHERLEG
=2 TO LIST ENVIRE FILE
=12 70 ORDER THEN LIST
=?1 TO LIST THEN ORDER
=212 TO LIST, ORDER, THEN LIST AGAIN
= 3 T0 DELETE SFLECTEN ENTRIES

aooaoaaaonnon N

REWIND 11
REWIND 12
IF(MODE.EN.3)CALL SCRUB
IF(MODE.EQ.0) CALL READIT
IF(MOPE .EQ.1) CALL ORDER
IF(MODE .EQ.2) CALL LIST(11.12)
IF(MODE .NE.12) GO TO 21
CALL ORDER
CALL LIST(12,12)
21 IF(MODE.NE.21) GO TQ 217
CALL LIST(11,11)
- CALL ORDER
212 1F(MODE.NE.212) STOP
CALL LIST(11,11)
CALL ORDER
CALL LIST(¢12,12)
STOP
FND
SUBROUTINE REALIT
FILE 11 (LEG) - NORMAL LIBRARY (SINGLE IND. OF REFR.)
FILE 12 (NEWLEG) - NEW ADDITIONS TO LIBRARY, MAY NOT BE
OPEN (1F LAST APDITION EXITED NORMALLY)
FILE 13 (BACKLEG) - LEG BACKUP
fFILE 14 (OTHERLEG) - RECEPTACLE FOR NATA WITH OTHER INDICES OF REFR.
COMPLEX PM
Do 50 [=1,4
IN = 10 + | !
WRITE(6,19)IN .
19 FORMAT(/,'CONTENTS OF FILE'-13)
20 READ(IN,END=50)ALPHA,PM,SCKRO,LESS
WRITE(6,15)ALPHA,PM,SCKRO,LESS
15 FORMAT(/,F7.2,5%X,2F7,2,5X,1PE15.6,110)
REAICIN)
Go 10 290
50 CONTINUE
REWIND IN
RETURN
END
SUBROUTINE ORDER
COMPLEX PM(200),P,PLAST
NIMENSION ALPHA(200),LESS(200), IORDER(200),COEF(507),1TAG(200)

aoaaan




1 ,SCKRO(200)

REWIND 14
1=0
IOTHER = 0
INEWAS=O0
10 1 =1+ 1
READ(11,END=50) ALPHA(I),PM(1),SCKRO(I),LESS(I])
READ(11)
IF(I.LT.200)G0 70 10
WRITE (6,15)
'S5 FORMAT(/, 'NUMBER OF FILES EXCEEDS 200. DIMENSIONS TOO SMALL.")
RETURN

50 TLAST = 1 = 1
PLAST=PM(ILAST)
WRITE(6,55)(1,ALPHA(1),PM(I).SCKRO(I),LESS(I),1%1,ILAST)
55 FORMAT(/,11X, 'ALPHA*,4X," IND. OF REFR.'.,8X, 'X=S RATIO"', 4X
1 .'ORDER ON LIB FILE'/
2 (14,5%,0PF7.2,5X,2F7.2,5X, 1PE15.6,18))

Nno 57 I=1,ILAST
ITAG(T) =1
I0RDER( 1) =1

57 CONTINUE

ISAVE = ILAST
ILASTM=]LAST=-1
58[1:]_
59 p0 60 [=11,ILASTM
IF(PM(1).EQ . PLAST)GO 70 62
1IF(ITAG(I).EQ.0)GO YO 60
WRITE(14)ALPHAC]) ,PM(1),SCKROC(1),LESS(I])
WRITF(14)(COEF(N),N=1,LESS(I))
WRITE(6.,61)1]
61 FORMAT(' ENTRY NO,',14,' WRITTEN TO FILE OTHERLEG SINCE IND. OF'
1,' REFR DIFFERENT.")
I0THER=1
ITAG(1)=0
GO To 63
¢2 TFCARSCALPHACT)=-ALPHA(I+1)).LT.0.01)G0 TO 68
[F(ALPHA(T)=ALPHA(I+1))60,68,65
68 IF(ITAG(I+1).ER.D0)GO TO 60
ITAG(T1+1)=0

63 ISAVE=[SAVE-1

60 CONTINUE
IF(I1.6T.1) GO TO 58
GO TO 70

65 TTEMP = JORDERC(I)
ITAGT=1TAG(])
ATEMP=ALPHA(])
TORDER(I)=10RDER(I+1)
[TAG(I)=ITAG(I+1)
ALPHA(I)=ALPHA(]+1)
IORDER(I+1) = [TEMP
ITAG(T1+1)=ITAGT
ALPHA (T +1)=ATEMP
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70

7
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73

74
75

30

8?2
KA

90
92
95

110

IF(I.EQ.TLASTM)GO TO 58
L s 1.% ¢
GO TO 59

REWIND 114
REWIND 12
REWIND 14

ITNEW =1

WRITE(6,71)
FORMAT(//,'REORDERED AS FOLLOWS. (DELETIONS SKIPPED.)')
Do 80 I=1,ILAST
IFCIORDER(CINEW).NE,]) GO 70 75
IFCITAG(INEW) ,EQ.0) GO TO 73
READ(11)A,P,SK,L
REAN(11)(COEF(N) N=1,LESS(I))
WRITF(6,72)INEW,A,P,SK,L
FORMAT(14,5%,F7,2,5%,2F7.2:5X,1PE15.6,18)
WRITE(12) A,P,SK,L
WRITE(12)(COEF(N),N=1,LESSC(I))
INEW = INEW + 1

G0 TO 74

READ (11)

READ (11)

INEW = INEW + 1
IFCINEW.GT.ILAST) GO TO 90

50 TO 80

REAN(11)

READ(11)

CONTINUE

REWIND 11

IFCINEW,.GT.ILAST)GO TO 90
IFCINEW.EQ.INEWAS) GO TO 82
INEWAS=INEW

GO TO 69

WRITE(6,84) INEW

FORMAT(/, *CANNOT FIND NO.',[4,' STOP.")
RETURN

J=0

IFC(IOTHER.EQ.0)GO TO 110
WRITE(6:92)

FORMAT(/, 'ENTRIES ON OTHERLEG®)
READ(14'END=110)A-PaSKoL

J=J+1
READ(14)(COEF(N),N=1,LESS(]))
WRITE(6,72)J,A»P»SK,L

GO TO 95

REWIND 11

REWIND 12

REWIND 14

RETURN

END

SUBROUTINE LISTC(IN,IOUT)
COMPLEX PM

NIMENSION COEF(S500)

WRITE(6,10)

72
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10 FORMAT(/,*CONTENTS OF LEG LIBRARY FILE") ; %
1=0 v
4 12 READ(IN,END=30)ALPHA,PM,SCKRO.LESS 1
k READCIN)(COEF (N)»N=1,LESS) '
! I=1+1
IFCIN _EQ.IOUT) GO To 14
WRITE(IOUT)ALPHA,PM,SCKRO,LESS
WRITE(IOUT) (COEF(N),N=1,LESS) :
14 WRITE(5,15) 1,ALPHA,PM,SCKRO,LESS ¢
15 FORMAT(/, 'ENTRY ', 13,5X, 'ALPHA='F7.2,5X, '"PM=1,2F7.2,5X,
1 'SCKRO=',1PE15,.6,5X, 'LESS="'14)
WRITE (6,20) (COEF(N) ,N=1,LESS)
20 FORMAT(/,(1P6E15.6))
Go 1O 12
> 30 REWIND IN
REWIND 10yT
RETURN
END
SUBROUTINE SCRUB
DIMENSION ALFOQOUT(10),CcOEF (500)
COMPLEX PM
Do 10 I=1,10
READ(5,%,END=15)ALFOUT(])
0 CONTINUE .
5 FORMAT(E10.0)
15 IoUut=1~1
4 WRITE(6,16) (ALFOUTC(I),I=1,I0UT)
3 16 FORMAT(/.'SCRUB LEG ENTRIES WITH ALPHA:'/(F10,2))
: 20 READ(11,END=50)ALPHA,PM,SCKRO,LESS
READ( 11)(C°EF(N)-N:1'LESS)
no 25 I1=1,10UT
NDALF=zABS(ALFOUT (1)=ALPHA)
IFt{DALF .LT.0.01) GO TO 20
?5 CONTINUE
WRITE(12)ALPHA,PM,SCKRO,LESS
WRITE(12) (COEF(N),N=1,LESS)
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GO To 20 ;
50 REWIND 12 i
CALL LIST(12,12) '
sTop :
FND 4
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APPENDIX C. MACRO UTILIZATION INSTRUCTIONS

The MACRO code produces a set. of macroscopic Legendre coeffi-
cients from the microscopic sets on the LEG file. MACRO is essentially
identical to parts of the MIELEG code, which produces macroscopic
coefficients directly from basic parameters of wavelength, refractive

index, and particle size distribution and range.

C.1 MACRO Input Description

TITLE (20A4) Any descriptive alphanumeric information.

RMIN, RMAX, PM(Complex), WAVEL, NEQ (5F10.0, I5)

RMIN = Minimum particle radius considered, microns

RMAX - Maximum particle radius considered, microns

PM - Complex refractive index, B8, composed of two
parts:

a) M, real index of refraction relative to
the surrounding material, and
b) K, extinction coefficient of the particle

material.
WAVEL - Wavelength of the radiation, microns
NEQ - Number of equation describing particle size

distribution, 0 or 1
0: N(R) = P1*R**P2*EXP (-P3*R**P4)
1: N(R) = P1 for R < P2

N(R) = P3*R**P4 for R > P2

P1, P2, P3, P4 (4F10.0)

Parameters described by choice of NEQ, on previous

input record.
Output Options 4(1X, A4)

Possible options:
XSOR or XSLA, TRUN, AGIN, SMOO
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XSOR - Produces macroscopic Legendre coefficients

appropriately normalized for use in Oak Ridge
code (ANISN, TDA, DOT, MORSE).

XSLA - Produced macroscopic Legendre coefficients
appropriately normalized for use in Los
Alamos code (DTF, TRANZIT, TWOTRAN).

TRUN - Truncation option to test expansion of Legendre
series to fewer than total number of coefficients
available.

AGIN - Refitting option to reproduce coefficients from

expansion, testing consistency of method.
SMOO - Smoothing option to refit from smoothed data.

THRESHF, WIDTH (2E10.0) - Smoothing parameters, used
with SMOO option.

*
See MIELEG Utilization Instructions for a more complete discussion
of output options.

C.2 MACRO Output Description - Printout

The MACRO code prints out all input data. It then prints the
size parameters of all data from the LEG file appropriate to the wave-
length and size range of the problem, along with the particle size, range,
and relative density associated with each of the data points. It then
prints the complete LEG file entry for each of these data points.

If the TRUN option is used, the expansion is printed for each
truncation. If the SMOO and AGIN options are used, the resulting
coefficients are printed along with the full expansion. The TRUN option,
along with SMOO or AGIN also causes the truncated expansions for these
cases to be printed.




c.3 MACRO Output Description - Files

The MACRO code produces a file, MAC, containing Legendre coeffi-
cients integrated with particle size distribution. This file can be
manipulated by CRT, merging into input data files for transport codes.
Since other MACRO or MIELEG runs will write over the MAC file, MAC must
be copied to some other file if it 1s to be saved while other MAC data

are being produced.

C.4 MACRO FORTRAN Listing
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MACRO - CODE TO PROCUCE MACRO X-S COEF. FROM SIZE DISTRIBUTION AND
ILEGENDRE COEF ON FILF 11 (LEG) AND PUT X=-S ON FILE 15 (MAC)

oo ReXe]

RN e

COMPLEX P,PM _

DIMENSION COEF(500),CO0EFXS(500),RI(200),ENR(200),ALPHA(200), f

1 SCKRO(200),SI1G(200),L1¢200),DELR(200),TITLE(20) 3

DATA T1AO0,1A4,1A2,1A3,1A4/4HXSOR,4HXSLA,»4HSMOO,4HAGIN, 4HTRUN/

DATA 11,12,13,14/7480/

COMMON/OUT/11,12,13,14

COMMON ALPHER,PI1

P1=3.141592653%

READ(S,2)(TITLE(I),1=1,20) g

? FORMAT(20a4) " H

WRITE(6.,4)(TITLE(T),1=1,20) z
F
£
£

" FORMAT(/,20A4)
DO 10 MM=1,500
0 COEFXS(MM)=0.0

N"ETERMINE DATA REQUIRED

e NeNe]

§
i
READ(5»15)RMIN. RMAX ,PM, WAVEL, NEQ ¢
15 FORMAT(5F10.0,15) :
WRITE(6,16)RMIN,RMAX, PM,WAVEL E
16 FORMAT(/, 'RMIN,RMAX='2F7.2,' MICRONS (E-04 CM)',/
1 *INDEX OF REFR='2F7.2,' (COMPLEX)',/ l
> 'WAVELENGTH ='F7,2)
WAVEN=2.epI /WAVEL
AMIN = WAVEN @ RMIN
AMAX = WAVEN & RMAX
WRITE(6,20) AMIN, AMAX
70 FORMAT(/, "ALPHA RANGE =',2F7.2)

SEARCH LEG FILE FOR DATA

oo

REWIND 11
REWIND 12
LESS=0
1=0
7?5 READ(11,END=50) A,P,SK.,L
IF(A.GT.AMAX) GO TO 50 :
IF(A.LT.AMINY GO TO 35
IF(P.NE.PM) GO TO 35
1 =2 [+ ¢ :
ALPHA(I) = A 4
XYZ=A ,
ALPHER=A !
SCKRO(1)=2SK f
L1(l)y=L
IF(L.GT.LESS) LESS=L
READ(11) (COEF(MM),MM=1,L)
E 1 WRITE(12) (COFF(MM),MM=1,L)
E | GO Tn 25
25 REAN(1IY)
GO TO 25
50 NRS = I
MORNER=7., sALPHER+3.
REWIND 11

£
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REWIND 12

DETERMINE PARTICLE DISTRIBUTION AT DATA POINTS

ann

DO 6N I=1,NRS
RICI)=ALPHA(I)/WAVEN
60 CONTINUE
IF(NRS.GT,1)Gp 1O 62
NELR(1)=RMAX-RMIN
Go 10 72
6?7 DO 70 1311NRS
IF(1.GT.1.AND.I.LT.NRS) GO TO 110
IF(1.EQ,NRS)DELR(1)=RMAX=(RI(I=1)+RI1CI))/2,
IF(1.EQ.1)DELRCIV=(RI(I1+1)*RI(I))/2.-RMIN
GO 10 70
110 DELR(I)=(RIC(I+1)=RI(1=-1))/2.0
70 CONTINUE
72 WRITE(6,112)
112 FORMAT(/,'PARTICIE DISTRIBUTION PARAMETERS')
130 IF(NEQ)120.,132,140
132 READ(5.620)P1,P2,P3,P4
WRITE(6,630)P1,P2,P3,P4
NO 137 I=1,NKRS
137 ENR(1)=P1aRI(1)##P2+EXP(-P32RI(]1)528P4)
GO To 150
14C REAN(5,620)P1,P2,.P3,P4
WRITE(6,640)P1,P2,P3,P4
DO 118 I=1.NRS
IF(RI(1).GT.P2) GO T0 157
ENR(1)=P1
GO Tn 118
157 ENR(1)=P3sRI(])sapP4
118 CONTINUE
Go 70 150
120 WRI'TE(6:125)
125 FORMAT(/,'DO NOT KNOW WHAT TO DO WITH NEGATIVE NEQ. STOP.')

STOP

420 FORMAT(4F10.0)

630 FORMAT(/,2X,'P1 = ',1PE15.6,7,2X,'P2 = ',1PE15.6.,7.2X,
1 'P3 = ', 1PE15.6,/,2X,"'P4 = ',1PE15.6)

640 FORMAT(/,2X,'P1 = ',1PE15.6./,'P2 = *,1PE15.6,7.2X.
1 'P3 = '+ 1PE15.6,7,2X,"'P4 = ',1PE15.6)

150 WRITE(6,200)
200 FORMAT(/,'DATA POINTS'/,5X, 'ALPHA',8X,'R',8X, *DELR',13X,'ENR")
WRITE(6,220) (1 ,ALPHACI),RICI),DELRCI),ENRC(I).I=1,NRS)
220 FORMAT(13,F7.2:,F10.2,2€E15,6)
C
C CcALCULATE MEAN MACRO X=-S VALUES
C

e e T e e e e S e

EN=0.0

n0 250 I=1,NRS
SIG(I)=SCKRO(T)SENR(I)#PloRI(I)aR1(I)#DELR(])e1l,0E~08
ENSEN+ENR(I)#DELR(])

L=LICT)

READ(12) (COEF (MM) ,MM=1,L)

WRITE(6,225)]1 ,ALPHA(T),SCKROC(I).SIG(I)




225 FORMAT(/, *DATA FOR NO.' 3./, 'ALPHA3',F7.2,3X,'SCKRO=",
1 E15.6+:3X,"'SI1G=",E15.6) -
WRITE(6,230)(COEF (MM) ,MM=1,L)

230 FORMAT(/,'COEFFICIENTS',/,(1P6E15,6))

DO 240 MM=1,LESS
COEFXS(MM)=COEF XS (MM) +COFF(MM)®#SIG(])
240 CONTINUE
250 CONTINUE

C
C WRITE RFSULTS
C
WRITE (6,290)EN
290 FORMAT(/,'MACRO X=S COEFFICIENTS*,/,*PARTICLE DENSITY = 'E15.6)
WRITE(6,300)(COEFXS(MM),MM=1,1ESS)
300 FORMAT(/, (1P6E15.6))
C
C ONTHER OUTPUT
c
READ(5,302)I0UT1,10UT2,I0UT3,10UT4
IN? FORMAT(4(1X,A4))
o
C CHECK HOLLERITH VALUES
[

WRITE(6.303)I0UT1,10UT2,I0UT3,10UT4,1A0,1A1,1A2,1A3,1A4
303 FORMAT(/,'OPTIONS CHOSEN: ',4(1X,A4),/, ' AVAILABLE OPTIQONS:",
1 5(1X,A4))
ccceceeeececeegceeccecececceccee
c
C J3=1 IF X-S SET FOR ANISN (OR OTHER OAK RIDGE CODE) PRODUCED
IFC(IOYT1.EQ,TA0,0R.I0UT2.EQ,JA0.O0R.IOUT3.EQ,IAD.
1 OR.IQUT4.EQ.1A0) I1=1
I1WAS=11
C 11=2 IF X-S SET FOR DTF (OR OTHER LOS ALAMOS CODE) PRODUCED
IF(JOUT1.EQ.TAL.OR.I0OUT2.EQ.TA1L.0R.IOUT3.EQ.IAL,
1 OR.IQUT4.EQ.I1A1)I11=2
C 12=1 IF SMOOTHING TESTED
IF(IOUT1.EQ.1A2.0R, IOUT2.EQ.TA2.0R.IQUT3.EQ.IA2,
1 OR.ICUT4 .EQ.1A2) 12=1
C 13=1 1F REFITTING OF COEFS TO F TESTED
TFCIOUT1.EQ.1A3,0R. IOUT2.EQ,.1A3.0R. JOUTI.EQ.I1A3.,
1 OR.IOUT4.EQ,I1A3) 13=1
C 14=1 1If YRUNCATION TESTED
IF(IOUT1.EQ.,1A4.0R, IOUT2.EQ.T1A4,.0R.IOUT3I.EQ,]A4.
1 OR.TQUT4 EQ.TA4) 14:=1 i

IF(11.EQ.0) GO TO 288

TFCI1WAS.EQ.1.AND.11.EQ.?2) GO TO 270

Go 10 288
770 131=1

WRITF (6,272)
2?72 FORMAT(/,'CANNOT PRODUCE O.R. AND L.A. FORMAT XeS !

1 *SETS IN THE SAME RUN. O.R, (E.G.» ANISN) CHOSEN.')
287 FORMAT(' QUTPUT INDICES:',15,5Xx ,315)
<89 FORMAT(' OUTPUT INDICES: '»5%,415)
’BB8 IF(11.EQ.0) GO TO 305

IF(11.EQ.1)G0 TO 285

N0 280 MM=1.,LESS

COEFXS(MM)=COEF XS(MM)/(2.¢ FLOAT(MM)+1.)
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280 CONTINUE
WRITE(6,289)11,12,13,14
GO TO 284
?85 WRITE(6,287)11,12,13,14
281 ZER0=0.0
WRITEC15,4)(TITLEC(I),1=1,20)
WRITE(15.291)RMIN,RMAX, PM,WAVEL ,NEQ,P1,P2,P3,P4 ;NRS,LESS,EN,MORDER
4 291 FORMAT(/,'PARAMETERS',/,5E15.6,7,14,4E15.6.,/,215,E15.6,15) !
1 WRITE(15,292)ZERO,ZERO,COEFXS(1),COEFXS(1), ‘
3 1 (ZERO:ZERO,ZERO,COFFXS(MM) ,MM=2,| ESS) -
292 FORMAT(/,'6E12.5 FORMAT CROSS-SECTIONS',/,'14s=*,/2F12.1,
1 2€12.5,7/,(3F12,1,€12.5))
IFC(11.EQ.1)WRITE(6,293)
295 FORMAT(/,'MACR X-S DATA WRITTEN ON MAC FILE (15).- OPTION XSOR')
IF(11.F0.2) WRITF(6,294)
294 FORMAT(/,"MACR X-S DATA WRITTEN ON MAC FILE(15). = OPTION XSLA')

305 CALL TESTAN(O,COEFXS,LESS)
STOP
END
SUBROUTINE TESTAN(I,AN,LESS)
NIMENSION X(181),AN(500), AN2(500),AN3(500).P(500),
1 P2(500).,P3(181),F(181),F2(181),F3¢181),N(181),»TW(181),
2 FFIT(181)
COMMON ALPHER,PI1,I1P,IP2,1P3
COMMON/OUT/11,12,13,14

IF(LESS.LT.501) GO TO 10
WRITE(6.5) LESS
5 FORMAT(/,*LESS = ',14,' MUST CHANGE DIMENSIQN IN TESTAN AND LEGCHK
1)
SToP
t0 IF(I.GT.1) GO TO 42
T1=P1/180.
DO 30 J=1.,181
T=T1a(J-1)
X(J)=COS(T)
30 CONTINUE
c ;
C PRODUCE LEG. POLYS AND STORE WITH ALL ORDERS
c FOR ONE ANGLE ON RECORD

1P=8

1P2=9

REWIND TP

REWIND [P2

no 41 J=1.,181

P(1)=1.0

P(2)=X(J)

DN 40 L=3,LESS

FL=L
PL)=((2,0#FL=~3,0)a(X(J)sP(L=-1))~(F(.-2.0)
1 #P(L-2))/(FL=-1.0)

RECURSION WITH SMALLER ROUND-OFF ERROR TESTED:
XJ=x(J)
PL1=pP(L~1)
PL2=P(L=2)
P(L)=XJoPL1=PL2+XJOPL1=(XJoPL1=PL2)/(FL=1.0)

s EeNe e e Re)
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DID NQT APPRECIABLY REDUCE REFIT COEFFICIENTS PAST
?#ALPHA+2, THEREFORE NOT DUE TO ROUND~OFF

40 CONTINUE

WRITE(IP)(P(L)+L=1,LESS)

41 CONTINUE

REWIND IP

PRODUCE LEG. POLYS. AND STORE NITH'ALL ANGLES FOR

135

136

ONE ORDER ON RECORD

1P3=10

REWIND IP3

DO 135 J=1,181

P(J)=1.0
WRITE(IP3)Y(P(J),J=1,181)
Do 136 J=1,181

P2(J) = P(J)

P(J) = X(J) .
WRITE(IP3)Y(P(J),J=1,181)
DO 141 L=3,LESS

FlL = L

DO 140 J=1,181
P3(J)Y=P2(J)

P2(J)=P(J)
P(J)=((2,8FL=-3.,)#(X(J)aP2(J))=(FL=2.)8P3(J))/(FL-1.)

SECOND VERSION OF ALTERNATIVE RECURSION:

XJ=X(J)
P2JzP2(J)
P3J=P3(J)
P(J)=XJ8P2J=PIJ+XJ8P2 = (XJ*P2Y=P3J)/(FL-1,0)

EXPECT RESIDUALLY LARGE VALUES OF HIGH-ORDER REFITTED
COEFFICIENTS DUE TO INSUFFICIENT INFORMATION IN FUNCTION
140 CONTINUE

141

42

1

WRITE(IP3)(P(J),J=1,181)

CONTINUE

REWIND IP3

GO TO 46

IF(LESS.LE.LESWAS) GO TO 46

L1=LESWAS+1

DO 45 J=1,181

READ(IP)(P(L),L=1,LESWAS)

Do 44 L=L1,ESS

FL=L

P(L)=((2.08FL=3,0)a(X(J)aP(L=1))=(FL-2.0)
*P(L=2))/(FL=1.0)

44 CONTINUE

45

WRITE(IP2)(P(L),L.=1,LESS)

CONTINUE

ITEMP=IP

IP=IP2

1P2=1TEMP

REWIND IP !
REWIND IP2 g
LWM=LESWAS-2 |
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; DO 144 L=z1,LWM
E | 144 READCIP3)
, L REAND(IFP3) ¢(P2(Y),J=1,181)
READ(IP3)(P(J)),»J=1,181)
DO 148 L=L1,LESS
FlEzk
DO 146 J=1,181
PI(UY=P2()
P2(J)=P )y
P(J)=((2,8FL=-3.)8(X(J)aP2(J))~(FL=2.)8P3(J))/(FL~1.)
146 CONTINUE
WRITECIP3)(P(J),J=1,181)
148 CONTINUE
REWIND IPJ3
: : 46 LESWAS = LESS
E: ; ~“ALL CALCF(AN,LESS.,F)
; : IF(1.GT.0) RETURN :

EVALUATE F USING TRUNCATED SERTES
IF(14.EQ.1)CALL LEGCHK(AN,LESS)

USE SMOOTHED VALUES 0OF F TO GFT L.OWER ORDER FIT

aQOn aaQa

1IF(I2.EQ.0)GO YO 171
CALL SMOOTH(F ,N,TW,FFIT,NFIT)
L=1
163 SuyM= 0.0
READ(IP3)Y(P(J)»J=1,181)
N0 165 J2=1,NF1T7
NPT=N(J2)
XJ=X(NPT)
SINJ=SQRT(1.=XJaX))
SUM=SUM+SINJeFFIT(J2)#TH(J?2)4P(NPT)
165 CONTINUE
ELM=L~1
SUM=SUM= (2, 2ELM+1.) a2, 8P]
AN2(L)=SymM
L =L+
IF(L.LE.LESS) GO 10 163
REWINL 1P3
NRITE(6.170)(AN2(L).L=1,LESS)
170 FORMAT(/,'COEFS FROM SMOOTHED F*,/, (1P6E15.6))
CALL CALCF(AN2:LESS,F2) 1
. [F(]14.EQ.1)CALL LEGCHK(AN2,LESS)

INTEGRATE F OVER ALL ANGLES, RECALCULATE ANCL) VALUES
(F NOT SMOOTHED)

aaQoao N

3 171 IF(13.EQ.0)RETURN
L=1
WRITE(6.62)
62 FORMAT(/, 'RECALCULATED COEFFICIENTS - OPTION AGIN.',/,
+ *(SIMILAR TO 1 DEG SMOOTHING.)')
63 SuUM=0.0
READ(IP3)(P(J)»J=1,181)
DO 65 J=1,180

e ——
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COSJ=(X(J)y+x(J+1))/2.
SINJ=SQRT(1.-C0S.=COS )
FJs(F(J)+F(J+1))/2.
ELM = L-1
PWT=(2.8ELM+1.)e(P(Y)+P(J+1))/2.
SUM=SUM+SINJaF JeT1aPWT

65 CONTINUE
SUM= SUMas2,8P]
WRITE(6.,70)L»SUM,AN(L)

70 FORMATC'L,SUM,AN(L) = ',15,1P2E15.6)
AN3 (L )=SUM
iFCI.NE.O) RETURN
L=L+1
1F(L.LE.LESS) GO TQ 63
RFWIND IP3
rALL CALCF(AN3,LESS)

:
i
g
|
5

TRY TRUNTCATING THE RECALCULATED SERIFS

e NeoNe]

IF(14.EQ.1)CALL LEGCHK(AN3,LESS)

RETURN

END

SUBROUTINE LEGCHK (AN,LESS)

GOMMON ALPHER,PI.IP,IP2,1P3

DIMENSION FLO(181),LORDER(7),AN(500),LTEST(6),P(500)

a0

CHECK FOR LOWER LEGENDRE ORDER ACCURACY

WRITE(6,2)LESS

2 FORMAT(/,'TRUNCATE TO LESS THAN',14,' TERMS. (OPTION TRUN)',/,
1 *'TEST FOR')
LORDER(1)=0

c
ccccececececcececcee
C

C FIND TRUNCATJON TEST POINTS
C

Do S 1=2,6
5 LTEST(I)=1
ITEST =1
| TEST(1)=22.8ALPHER+3J.
WRITE(6,8)LTEST (1)
8 FORMAT(IS,' (22ALPHA+2)")

ILOOK FOR LOCAL MINIMUM

O aon

L2=LESS/2
6 N0 10 L=L2,LESS
TFCANCL).GT.ANCL.=1) ,AND,ANCL).GT.AN(L=2)) GO TO 12
10 CONTINUE
GO 10 15
12 ITEST=ITEST+1
LTEST(ITEST) =L
WRITE(6,13)L
15 FORMAT(15,' (LOCAL MINIMUM)')
IF(ITEST.EQ.5) GO TO 15
L2z +1 {
GO TO0 6 i




S ETATN

LOOK FOR FIRST COEFFICIENT.LT.AN(1)

100

15 DO 20 1.=2,LESS
IF(ANCL).LT.ANC1)) GO TO 22
20 CONTINUE
22 ITEST=ITEST+1
LTEST(ITEST) =L
WRITE(6.23)L
?3 FORMAT(IS,' (LT.FIRST COEF)")

PUT TEST POINTS IN ORDER

MDD

. IF(ITEST,EQ.1) GO TO 27

1L00P=0
ITESTM=1TEST~1

24 TFCILNOP.GT.15) STOP
nNo 26 I1=1,1TESTM
IFC(LTEST(I).LE.( TEST(I+1)) GO TO 26
1TEMP=LTEST(])
LTEST (D)= TEST(]+1)
LTEST(1+1)=ITEMP
11 00P=1L00P+1
GO TO 24

26 CONTINUE

CALCULATE RESULTING PHASE FUNCTIONS

o aa

27 DO 28 1=1,1TEST
LORDER (I+1)=LTEST(I)
28 CONTINVE

DO 125 J=1,181
125 FLO(J)=0.0

DO 140 LO=1,[TEST
L1=LORDER(LO)+1
L2=LORDER(LO+1)
no 155 J=s1,181
READ(IP)(P(L),L=1,LESS)
no 150 L=L1.,L2
FLOCU)=FLOCJI+AN(L)®P(L)/(4.8P])
150 CONTINUE
155 CONTINUE
. REWIND IP

WRITE(6,156)L2, (FLO(J)»J=1+181)
156 FORMAT(/,'L = ',14,/,1PE15.6,/,(1P6E15.6))
140 CONTINUE

RETURN
END {
SUBROUTINE CALCF(AN,LESS.F) !
COMMON ALPHER,PI,IP,IP2,1P3
NDIMENSION P(500Y,F(181),AN(500)
Do 55 J=1,181
E F(J)=0.0 ;
4 READ(IP)I(P(L) L=1,LESS)

8




50

55

60

245

247

248

2%0

249

251
252
255

253

256

254

Do 50 L=1,LESS

Feh)y=FCJ)«AN(L)aP (L)

CONTINUVE

F(J)=F(J)/(4,.aP])

CONTINUE

REWIND IP

WRITE(6,60)(F(J),J=1,181)

FORMAT(/,'F FROM LEG. POLYS., 0 Tp 180 DEGREES'.,/,1PE15.6,
17.01P6E15.6)) ;

RETURM

END

SUBROUTINE SMOOTH(F ,N,TW,FFIT,.NFIT)
NIMENSION F(181),N(181),TW(181),FFIT(181)
T71=23.1415926536/180.

WRITE(6,245)

FORMAT(/, 'SMOOTHING PARAMETERS')
REAN(5,246) THRESHF , WIDTH

FORMAT(2E10.0)

WRITE (6,247 )THRESHF ,WIDTH
FORMAT(/, 'THRESHF ,WIDTH=',1P2E15.6)

NO 248 J=2,90

F1=F (1)*THRESHF

TF(F(J).LT.F1) GO TO 249

CONTINUE

WRITE (6,250)

FORMAT(/, 'NO VALUE OF PHASE FUNCT IN FIRST 90 DEG LESS THAN',/,

1 *F(1)*THRESHF TO BEGIN SMOOTHING')

GO To 61
JWIDE=WIDTH
WIDTH=JWIDE
NINT=180,/WIDTH
DO 251 1=21,NINT
JLAST=12JWIDE+1
JF(J.LT.JLAST) Go TO 255
CONTINUE
WRITE(6:252) J
FORMAT(/, 'THRESHOLND ANGLF',»14,' NOT FOUND')
60 To 61 -
NFIT=U+14+NINT=]
WRITE(6:253)
FORMAT(/,'REP. PT. INDEX WIDTH F*)
N(1)=1
TW(1)=T1/2.
FFIT(1)=F (1)
DO 256 K=2,J
N(K)=K
TWiK)=T1
FFIT(K)=F(K)
WRITE (6,254 )(NC(K) ,TWIK) ,FFIT(K) ,K=1,J)
FORMAT(15,2E15.6)
N(J+1)=(JLAST+J)Y /2
FF1TJ=0.0
JM=JLLAST=1
IF(N(J+1) .EQ, JIN(J+1)J+1
[F(J.EQ,JMIGO TO 357
N0 257 J2=J+1,JM
FFITJI=FFITJ+F (J2)
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357 FFITJ=FFITJ+F(JLAST)/2.
POINTS=FLOAT(JLAST-J)=0,5
FFIT(J+1)=FFITJ/POINTS
TW(J+1) =POINTS=2T1
WRITE(6:254)I)N(J+1),THW(J+1),FFIT(J+1)
JMID=JLAST-JUWIDE/2
DO 260 K=JU+2,NFIT
JMID=JMID+JWIDE
N(K)=JMID
JFIRST=JLAST
JLAST=JF[RST+JWIDE
FFITK= (F(JFIRST)+F (JLAST))/2,

. IF(JWINE.EQ.1) GO TO 259
Jp=JF [RST4+1
JM=JLAST-1
Do 258 J=JUP,JM
FFITK=FFITK+F (D) v
58 CONTINUE
259 FFIT(K)=FFITK/FLOAT(JWIDE)
TWCK)=T1oFLOAT(JWIDE)
WRITE(5,254)N(K), TW(K) ,FFIT(K)
“40 CONTINUE
A1 RETURN
END
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APPENDIX D. MACEDIT UTILIZATION INSTRUCTIONS

The MACEDIT code produces a normalized set of macroscopic
Legendre coefficients from the values on the MAC file. All values
are normalized by the factor necessary to change the first coefficient
to some input value. The first value, Ao, is the total scattering cross -
section and can be used as a basis for manipulating the entire set.
As examples of such use, an approximate set of An values might be pro-
duced from an incomplete LEG file or a MIELEG run with a small number
of PARTS. This may be sufficient detail to produce relative values
(and determine the order necessary), but insufficient for absolute
magnitude. Separate information of the magnitude of the scattering
cross section (as, for instance, from a MIE-2 code run) could then
produce a complete macroscopic Legendre coefficient set for use in a

transport code.

D.1 MACEDIT Input Description
COEFG (E15.0)

MACEDIT input consists of a single value, COEF0, and the MAC
data file. The value, COEFQ, is the magnitude of the scattering cross
section to which the first coefficient is normalized and thus forms
the normalizing factor for all other coefficients.

D.2 MACEDIT Output Description -~ Printout

The MACEDIT printout consists of all of the parameters found on
the MAC file as well as the unnormalized and normalized coefficients
written on the MAC2 file.

D.3 MACEDIT Output Description - Files

The MACEDIT code reproduces the MAC-file coefficients on the
MAC2 file, then writes the normalized coefficients on the MAC2 file
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as well. Since any MACRO run or MIFLEG run (with XSOR or XSLA
options) will write over the MAC file, the MAC2 file can serve as a
preserve of the MAC data. (In general, any MAC or MAC2 data which
is to be saved indefinitely should be copied to some other file

to avoid inadvertant loss.)

D.4 MACEDIT FORTRAN Listing




MACEDIT CODE




RADIATION RESEARCH ASSOCIATES INC FORT WORTH TEX F/G 20/6

STUDIES IN APPLICATION OF DISCRETE ORDINATES TRANSPORT METHODS ==ETC(U)
SEP 77 D LINDSTROM F08606=77-C~0008 : .
UNCLASSIFIED RRA=T7704 AFTAC=TR=78=1 NL |

END

DATE
FILMED

2-78

AD=AQ48 614

DD




OMDNOD

MACEDIT - CODE TO NORMALIZE MACROSCOPIC LEGENDRE COEFFICIENTS ON THE
MAC FILE TO A KNOWN SCATTERING CROSS-SECTION (FIRST COEFFICIENT)

COMPLEX PM
DIMENSION COEFXS(500),TITLE(20),00EFX2(500),STUFF (8)
ZERQ =0.0 -
REWIND 15
READ(S»10)COEFO
‘0 FORMAT(E1S5.0 )
READ(15,4)(CTITLECT) 1
WRITE(16,4)(TITLE(I]),
4 FORMAT(/,20A4)
WRITE(6:104)(TITLF(1),1=1,20),COEFO
‘N4 FORMAT(/,'MACEDIT FOR COEFS. OF CASE:',/,20A4/
1 ' NORMALIZED T0',E15.,4)
READ(15,91)RMIN,RMAX,PM, WAVEL,NEQ,P1,P2,P3.P4,NRS,LESS,EN,MORDER
91 FORMAT(/,10%,/,5F15.6,/,14,4E15.6,/,215,E15.6,15)
WRITE(16,91)RMIN,RMAX,PM,WAVEL,NEQ,P1,P?,P3,P4,NRS,LESS,EN, MORDER
WRITE(6.92)RMIN,RMA X
92 FORMAT(/,1X,*'RMIN=',E15.6,5X, 'RMAX="',E15.6)
WRITE(6.93)PM,WAVEL
93 FORMAT(/,1X,"PM=',2E15.6,5X,'WAVEL="',E15,6)
WRITE(6,94)NEQ,P1,P2,P3.,P4
94 FORMAT(/,1X,*'NEQ="',14,/,'DISTRIB, PARAMETERS',5X,4E15.6)
WRITE(6,95)NRS: LESS,EN»MORDER
95 FORMAT(/.iX-'NRS:'.IS.SX.'LESS=',15-5X.'EN:'.EIS.O.
t * SUGG. P-QRDER="']5)
READ(15,200) (STUFF(]),1=1,8),DUM,DUM,COEFXS(1)»DUM,
1 (DUM.DUM,DUM,COEFXS(1),1=2.LESS)
200 FORMAT(/,7A4,/,A4,/7,(4E12.5))
WRITE(16,201) (STUFF(1)»1=1,8),ZER0O,»ZERO,COEFXS(1),COEFXS(1),
1 (ZERO.Z2gR0O,»ZERO,COEFXSC1)»1=22,LESS)
201 FORMAT(/,7A4,/.,A4,/,2F12.1.?E12.5,/,(3F12,1,E12.,5))
FACTOR = COEFO/COEFXS(1)
DO 210 1=1,LESS
COEFX2(1)=FACTOR#COEFXS(1)
710 CONTINUE
WRITE(6:,220)(STUFF(1),1=21,8)
270 FORMAT(/,1X,7A4,/,1X%,A4)
WRITE(6,240) (COEFXS(1),COEFX2(1),1=1,LESS) .
240 FORMAT(/,1X,'COEFFICIENTS'./,7X, 'ORIGINAL',7X, *NORMALTZED"/
1 (1X,?E15.5))
WRITE(16,250)COEFO0,STUFF(8),ZERO,7ERO,COEFX2(1),COEFX2(1),
1 (ZERO,ZERO,ZERO,COEFX2(1),1=2,LESS)
250 FORMAT(/,'COEFFICIENT NORMALIZED TO',E15.6,/,A4,7,2F12.1,2€E12.5,
1 /,(3F12.1,E12.5))
STOP
END

1,20)

; 1,20)

91
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APPENDIX E. TDA UTILIZATION INSTRUCTIONS

(From CCC-180, Time-Dependent Multigroup One-Dimensional
Discrete Ordinates Transport Code, RSIC, ORNL)

E.1l Source and Initial Conditions

Time-dependent ANISN offers a choice of two types of sources
and one initial condition specification. A space and energy distributed
source with a step function time distribution is available. This source
is set equal to zero by the program after the first time interval. An
analytic first-collision source provides an accurate representation of
delta function or time dependent, point (in space), isotropic sources
in spheres, infinite plane, mono-directional sources in slab geometry,
and infinite line, isotropic-perpendicular-to-the-line sources in
cylinders. All sources may have an arbitrary distribution in energy.
The complete, centered in space and angle, flux distribution at T=0
may be specified alone or in addition to one of the above sources. If
both a source and the initial condition are specified, the normalization

factor should be zero since only one of the arrays will be normalized.

E.2 Output Edit

It is apparent that attempts to print all the information
generated by a time-dependent discrete ordinates program in each time
interval would be impractical and indeed useless. Time-dependent ANISN
generates a tape (or disk, etc.) which contains the scalar flux, the
out-going angular flux at both boundaries for each time interval, and
the fission neutron density. If the analytic first-collision source
option is used and the user desires, the uncollided flux is also written
on this tape. In addition, the user may specify that the complete angular
flux in each time interval be written on a separate tape. Subroutine
EDIT is designed so that it may be easily modified to suit the demands
of the user. All parameters and any ANISN data arrays which could




conceivably be used in an analysis of these data sets are available

for use in the subroutine.

The version of EDIT distributed with the program will, at the
users' option, print the scalar flux, the uncollided flux if available,

and compute activities from user-supplied activity cross sections.

E.3 Input Specifications

All numerical data is written in the FIDO format used in ANISN.
A complete description of the format and convenience options is found
in Appendix A. Since familiarity with ANISN is assumed, the following
data description is brief except for those parameters or arrays which
are now concerned with time dependence. As in ANISN, the quantity in
brackets is the array dimension and the expression in braces is the
condition requiring entry of an array or set of arrays. If no condi-
tion is specified, entry of the array or set is required. A T follows
each set which is entered.

A. Title card - format (12A4, 18X, I6)
A time limit in minutes may be entered in columns 67-72.
The case is terminated following the first time interval
in which the time limit is exceeded.

B. Parameters

15 Integer parameters [36]

1. 1ID problem identification number

2. ITH - O - forward solution
1 - adjoint solution

3. ISCT maximum order of Legendre polynomial approximation
to scattering cross sections

4. 18BN angular quadrature order

5. IGE 1 - slab
2 - cylinder

3 - sphere




17.

18.
19.

20.

21.

22,

23.

24,

25.

IBL

IBR
IZM

IEVT
IGM
IHT
IHS
IHM

MCR

IDFM

IPVT

QM

IPM

IPP

IIM

D1

left boundary condition

0 - vacuum

1 - reflection
2 - periodic
3 - white/albedo

right boundary condition,‘éame options as IBL
number of zones

number of mesh intervals

0

number of energy groups

position of © in cross-section table

total

position of 088 in cross-section table

length of cross-section table

length of cross-section mixing table

number of cross-section sets to be read from

cards

number of cross-section sets to be read from

library tape

total number of cross-section sets

0 - no effect

1 - enter density factors (21%)

0

0 - no effect

1 - enter distributed source to be used in
first time interval, only

0 - no effect

IM - enter complete centered.angulat flux
distribution at T=0, (IM, MM, IGM)

0

inner iteration maximum per group per outer

iteration

0 - no effect

1 - print scalar flux
2 - print uncollided flux if IFG 0
3 - both 1 and 2




26.
27.
28.
29.
30.

33.
34,
35.

36.

1.
2,
3.
4.
5.
6.
7.
8.
9.
10.
11.
12,
13.
14.

ID2
ID3
ID4
ICM
IDAT1
IDAT2
IFG

IFLU
IFN
IPRT

IXTR

EV
EVM
EPS
BF
DY
DZ

0

number of time intervals

number of activities

outer iteration maximum

0

0

0 - no effect

N - enter N source spectra (23%) for first-
collision source calculation

no. of time steps for first-collision source

- enter flux guess (3%)

- no effect

do not print cross sections

- no effect

H O - O H
'

- write angular flux tape for each time interval

16* Floating point parameters [14]

0.0

0.0

accuracy desired

buckling factor, normally 1.420892
cylinder

plane depth for buckling correction

transverse dimension for void streaming correction

normalization factor

0.0

0.5

point flux convergence criterion
0.0

0.0

0.0
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C. Cross Sections
13$ cross-section library ID numbers [MTP] {MTP>0}
14* MCR cross-section sets [IHM*IGM*MCR] {MCR>0}
T

D. Distributed source-centered flux distribution {IQM=1 or IPM=IM}
17* distributed source [IM*IGM] {IQM=1}
18*% centered angﬁlar flux distribution [IM*MM*IGM] {IPM=IM}
T

|
E,
‘

E. Flux guess {IFN=1}
3* flux guess [IM*IGM] {IFN=1}
T

F. Remainder of data

1* figsion spectrum [ICM]

4% radii [IM+1]

5% velocities [IGM]

6* angular quadrature weights [MM]

7* angular quadrature cosines [MM]

8$ zone numbers [IM]

9$ material numbers [IZM]
10$ mixture numbers [MS]

11$ component numbers [MS]
12* npumber of densities [MS] '
198 order of Legendre polynomial apptoxiqation to scattering

cross section [IZM]

20% activity cross sections [IGM*ID4] {ID4>0}

21* density factors [IM] {IDFM=1}

22* time interval boundaries [ID3+1]
! 23* IFG source spectra; source emission occurs at corres-
ponding times specified by 24* array; the first spectrum
is normalized to XNF (if XNF>0) and the other spectra are
scaled to maintain the same relative values [IGM*IFG]{IFG>0} |




24*

v S S TR

source emission time interval boundaries for first-
collision source spectra [IFLU+1] {IFG>0}

25% right boundary albedo [IGM] {IBR=3}
26* left boundary albedo [IGM] {IBL=3}
27$ source spectrum no. by time step [IFLU]
T
h ? E.4 Data Array Formats

All input data, with the exception of the title card, aré read
using the same format.

E.4.1 Type 1 Format

Bach card is divided up into six 12-digit data fields which are
in turn divided up into three subfields, illustrated in the following
figure. Only one data field is shown.

I |0 i1

/ 2

The first subfield is a two-digit integer; the second subfield contains
either a §, *, R, I, T, S, F, A, C, E, Q, L. N. M, ¢, U, V, Z, +, -, or
a blank. The third subfield contains either a fixed or floating point
number. The contents of the first two subfields wil%-define the opera-
tion to be performed on the third field.

Blank fields are ignored. Ome can use any or all fields on a
card. For example, a box of blank cards sandwiched anywhere in a data

array would be completely ignored.

Each data array is idsntified by a two-digit integer in a first
subfield. There are both fixed and floating point arrays; a fixed point




array is designated by a $ in the second subfield, a floating point

array by an *,

The second subfield contains an operator which specifies the

type of operation to be performed on the data. The possible operators

are listed below.

E.4.2 Array Operators

$ indicates the beginning of an integer array. The first sub~
field contains a one- or two-digit number identifying the array.

* indicates the beginning of a floating point array. The first
subfield identifies the array.

R indicates that the entry in the third subfield is to be
repeated the number of times specified in the first subfield.

I indicates linear interpolation between the entry in the
third subfield and the entry in the third subfield of the next data
field. The number in the first subfield gives the number of points
to be placed equally spaced in the specified range.

T indicates termination of data reading for a block. XLACS
can require several data blocks and each block must be ended with a T.
A block can contain any number of arrays. Data on a card after a T
will be ignored.

S indicates skip. The first subfield defines the number of
entries to be skipped. The third field can contain the first entry
following the skips. A blank third subfield would be ignored.

F is used to fill the remainder of an array with the item
given in the third subfield.

A is used to address a particular location in an array. This
location is specified in the third subfield; the first subfield is
blank.




C is used to obtain a count of the number of items read into

an array up to the point where the C is placed. An integer ZZ in front

S ——

% of the C will be used as identification in producing a message as

follows:

XX ENTRIES READ IN THE YY ARRAY at ZZC.

E may be used to end specifying data for an array. This option
is particularly useful when it is desired to replace only some items
. in a paricular array. The items in question are replaced, and the use

of an E prevents having to count and skip to the end of the array.

Q is used to repeat sequences of numbers. The length of the
sequence is defined in the third subfield. The number of times to
repeat the sequence is given in the first subfield.

L is similar to I except that a logarithmic interpolation is
performed between the entry points. This option is particularly useful
for defining energy structures equally spaced in lethargy.

N is used to repeat a sequence of numbers in reverse order.
The length of the sequence is defined in the third subfield. The
number of times to repeat a sequence is given in the first subfield.

M is used to negate and repeat an inverted sequence. The length
f of the sequence is given in the third subfield. The number of times to

repeat a sequence is given in the first subfield.

@ is used to turn on (or off) the card image edit of ANISN input
dara. As with the C option, an integer in front of the @ identifies
the particular entry. The default (starting) condition is not to edit
the data.

: U is used to replace the ANISN input format for an array. The

: array number is given in the first subfield. The format, written in

: normal FORTRAN, is specified on the card immediately following the card
containing a U. The parentheses normally capsulating a format should
be included.

D e P ——e——
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V specifies that the array identified in the first subfield
will be read according to the last variable format read in.

Z is used to specify a string of zeros; e.g., 49Z would

place forty-nine zeros into an array.

+ or - indicates exponentiation. The data in the third field
is multiplied by 103N, where N is an integer in the first subfield.
This option allows one to specify a number in up to nine significant
digits.

Integer data in the third subfield must be right adjusted.
Floating point data may be written with or without an exponent. If
the decimal is omitted, it is assumed to be immediately to the left of
the exponent field. If there is no exponent, the decimal point is

assumed to be to the extreme right of the nine-column subfield.

E.4.3 Input Restrictions

The following restrictions must be observed when using the

ANISN input format:

(1) Blank data fields are ignored.

(2) If the interpolation option (I) is used, the next data
field may not be either blank or an A entry.

(3) The third subfield of a data field containing a $ or an *
may contain an integer, N. The next data entry is assumed to be the
(N+1) th member of the array. Normally the third subfield is a blank
and is ignored.

(4) All data arrays must be filled with the correct number of
entries. A data array is ended by either starting a new data array or
by ending a data block.




E.4.4 Type 2 Format (Free Form)

The transferral of input data to input forms or punched cards
for a code requiring significant amounts of input is always a time

.E consuming, distasteful, and error-prone process. The original ANISN

formats were designed to help reduce these difficulties. The options

are convenience features. The usefulness of the "F" option which fills

T

an array is obvious, but it is somewhat harder to see the practical
uses for some of the more obscure ones like N, M and Q; however,
frequent use will turn up situations where these options are invaluable.
For example, the Sn cosines are negated and reflected about 90°, a fact

which suggests the use of the M option.

e e e——

There are justifiable complaints with the input formats; for
example, where convenience options are not applicable, data can be
hard to write because of the manner in which the data fields are spread
on the card. This is especially true of integer arrays, where the data
are right adjusted in 12-column fields. The ANISN input forms help

to some extent, but the actual keypunching is still troublesome.

_ The input format has been greatly improved by Ward Engle of
ri ORNL who has designed and implemented an all-FORTRAN free-form, ANISN
\ input scheme which has data items separated by blanks (as others do),

but still allows all of the important convenience features of the

earlier formats. The restrictions on the use of this input are essen-
tially that the user write the data in a form that he can interpret
within the context of the ANISN options. Data is easily written and

vz
.

keypunched, since there is no worry about which type character falls

in which columns or how many blanks are left between entries.

The free~form input can be interspersed with the fixed form

&

1

|

| !
input. To select free-form, an array is identified as either a $$ or f

a ** array, for integer and floating point arrays, respectively.
The restrictions are:

k (1) Any third subfield (data entry) must be followed by one i

101




or more blanks. This is an obvious restriction, otherwise data inter-

pretation would be impossible.
(2) Only columns 1-72 are used.

(3) Numbers with exponents must not have imbedded blanks;
e.g., use 1,0E+4, not 1.0 E+4 or 1.0E+ 4.

(4) The old + or - options (2nd subfield) are not operational.
Significance requirements which led to the development of this option
can be had directly.

(5) No more than 9 digits in a number can be entered. The
exponent is not counted; e.g., 9234+09, 923400000+1 will work, 9234000000
will not work. Nine-digit accuracy is clearly beyond the significance
available for single precision IBM 360 floating point operationms.

(6) A blank must not appear between items which fall in the
first and second subfields with the old format, e.g., 24R, not 24 R.
Note that the 99 restriction on the number of repeats, interpolations,
etc., has been eliminated.

(7) The Z-entry must be entered as 738Z, not Z738. The old
format allowed either.

(8) The Q, M, N entries must be specified as Q4, not 4Q. The
old format allows either. An entry like 3Q4 accomplishes the same as
Q4 Q4 Q4. This is now true for either format.

The character (') in column 1 of a card will cause the contents
of the card to be listed as comments, while the data is read in. Column
2 should contain the proper carriage control charactér; e.g., blank,0,1,2,
etc. This card is ignored as a data card. This option is also available
with the old formats.

Some examples of the new format are given below:

1$$25R1_0_4_3Q3_2$$3R42_E_T

The first 25 entries of the 1$ array are 1's followed by 0 and 4 and
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then data input to the array ends. The T terminates a data block.

42%*% 0.0 0.1666667_0.3333333_N2

43%* -1.0 -0.8819171_0.3333333 M2

s This example puts 0.0, 0.1666667, 0.3333333, 0.333333, 0.1666667 in
the 42* array and -1.0, -0.8819171, -0.3333333, 0.3333333, 0.8819171
in the 43*% array.
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SAMPLE TDA INPUT
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TDA. .5KM R CLOUD, .05-6.05(MACRO),P95,S48(G) ‘
157% 81777 0 95 48 X 3 0 1 27 01344096096 1000065010 39

¢ t0201¢s 100

16+: 2R0.0 ,0001 6RO,0 0.5 .0001 3RO.0 T

14+«

.17213E-03
.0
.0

.0
'n

.
(= =]

.

e ® e e o o
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.
-
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.
.
.
.
.
.
.
.
.
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0000000000000 0O00000000DO0O0O0O0O0O0OOOO0OOOO0COO

.
.
.
.
.
.
.
.
.
.
.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
G

.0
.0
.0
.0
.0
0
0
.0
.0
0
.0
8
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
0
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0
0
.0
.0
.0
.0
.0
.0
.0

0
]
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
/]
0
0
0
0
0
]
0
0
0
0
0
0

10'

«17213E-03
.43553E-03
.66264E-03
«77716E-03
.89232E-03
.99274E-03
.10876E-02
.11974€-02
.13072E-02
.14100E-02
.15331E-02
.16179E-02
.17311E-02
.18117€-02
.19017E~-02
.19821E-02
.20535€E-02
.21241E-02
.21952E-02
.22539E-02
«.23201E-02
.23698E-02
.24294E-02
.24708E-02
.25162E-02
.25520€E-02
.25810E-02
.26074E-02
.26260E-02
.26381E-02
.26464E-02
.26506E-02
.26486E-02
.26389E-02
.?6305E-0?
.26037E=~02
.25876E-02

.25558€E-02

.25269E-02
25374k =02
.25055€E-02
.25022E-02
«25278E-02
.24955€E-02
.24597E-02
.24186E-02
.23692€E-02
.23098E-02
.23090E-02
«23304E-02
.27702E=-02
.22270E-02
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«.21808E-02
.21517€E-02
.21130E-02
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APPENDIX F. FILE NAME DIRECTORY

MIELEG - FORTRAN source for MIELEG Code

LM:MIELEG - MIELEG load module

MIELEGM - Job module to compile, load MIELEG
MIELEGR - Job module to run MIELEG, including data

LEGEDIT - FORTRAN source for LEGEDIT Code

IM:LEGEDIT - LEGEDIT load module

LEGEDITM - Job module to compile, load LEGEDIT
LEGEDITR - Job module to run LEGEDIT, including data

MACRO - FORTRAN source for MACRO Code

LM:MACRO - MACRO load module

MACROM - Job moddle to compile, load MACRO
MACROR - Job module to run MACRO, including data

MACEDIT - FORTRAN source for MACEDIT Code

LM:MACEDIT - MACEDIT load module

MACEDITM - Job module to compile, load MACEDIT
MACEDITR - Job module to run MACEDIT, including data

LEG - Microscopic Legendre coefficient data file
BACKLEG - LEG backup file
NEWLEG - LEG production file

OTHERLEG - LEG overflow file for other refractive indices

MAC - Macroscopic Legendre coefficient data file, used to produce TDA

data files by MACRO.

MAC2 - Data file produced by MACEDIT from data found on MAC.
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TDA - Load module for Time-Dependent ANISN jobs requiring COMMON
storage of 20K or less

TDA30K - Load module for jobs requiring 30K or less.

TDA-IN - TDA job data file

TDARUN - TDA run module

TDAMAIN - TDA MAIN routine, specifies storage in COMMON and LIM1

* COMPFILE - Job module to compile TDAMAIN
EDITBO, TDABO, GUTSBO - Other modules making up TDA (FORTRAN sources:
. _ EDIT, TDASO, and GUTS on tape LT#R104/.9002007E)

TDAFILE - Job module to load TDA

LMANISN - Load module for steady-state ANISN (present version will not
accept free~-form data)

ANISNDATAX - ANISN job data file

RUNANISN - ANISN run module

QUADS - Angular quadrature data sets in free-form arrays (6*%* and 7%%),
Used to produce TDA data files.
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