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PREFACE

This paper is one of a series of IDA papers on combat
modeling, sponsored by the IDA Independent Research Program.
Mathematical attrition processes are fundamental to the com-
bat simulation models used in many studies cof defense problems.
The DOAE research on attrition processes is a significant body
of work, and the comments of this paper are intended to present
and evaluate the DOAE results in the context of other mathe-
matical, computational and applied work in combat modeling.
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1. INTRODUCTION

This paper is a review and summary of the following memo-
randa prepared by the Defence Operational Analysis Establishment
(DOAE) of the UK:

(1) The Mathematics of Battle I: A Bivariate Probability

Distribution, by T.G. Weale;

(2) The Mathematics of Battle II: The Moments of the
Distribution of Battle States, by T.G. Weale;

(3) The Mathematics of Battle III: Approximate Moments
of the Distribution of States of a Simple Hetero-
geneous Battle, by N. Jennings;

(4) The Mathematics of Battle IV: Stochastic "Linear
Law" Battles, by N. Jennings;

(5) The Mathematics of Battle-V:. Homogeneous Battles
with General Attrition Functions, by T.G. Weale;

(6) The Mathematics of Battle VI: The Distribution of
the Duration of Battle, by T.G. Weale;

(7) The Mathematics of Battle VII: Moments of the Dis-
tribution of States for a Battle with General
Attrition Functions, by T.G. Weale and E. Peryer.

These papers are hereafter cited as references [13], [14], [5],

(6], [15], [16], and [17], respectively.

Common to all seven papers is an attempt to deal on a
computational basis with certain stochastic attrition processes
of the sort discussed in [10]. Not all processes discussed in
the DOAE memoranda are mentioned explicitly in [10]; indeed some
of the work in [15, 16, 17], wherein essentially arbitrary
attrition functions are permitted, is not physically justified.
There is no doubt that Markov processes exist with the genera-
tors indicated (cf. Section 6 for details); whether such
processes correspond to physically plausible (or even

1
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physically definable) sets of assumptions is uncertain. Further
remarks concerning this point, which is of considerable impor-
tance, may be found in Sections 6 and 9; cf. also [10].

The emphasis in this review is on assumptions underlying
the attrition processes discussed, on mathematical computations
and approximations presented in the papers, and on probabilis-
tic derivations and interpretations of certain results that have
been derived in the DOAE papers using methods from the field of
different equations. In particular, we have not reviewed care-
fully the computer programs included in the papers, nor have we
analyzed either sample outputs included in the papers or (except
in preparation of the related papers [8] and [9]) a large number
of additional outputs generously provided to us by DOAE. The
few analyses performed have shown DOAE results to be consistent
with those the present author reported in [8] and [9].

We are aware that the main purpose of the DOAE work was to
produce computer programs with which numerical conclusions could
be obtained, and that much of our criticism is directed at other
aspects of the work. Even so, it is useful to have available a
careful discussion of the foundations of the processes under
analysis, which is what we have attempted to provide.

We wish, at the beginning of this review, to commend the
authors of all seven DOAE papers for uniformly high technical
and expository qualities of their work. The papers were a
pleasure to read.

Throughout this paper our notation and terminology
concerning Markov attrition processes are those of [10].

e
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2. REVIEW OF "A BIVARIATE PROBABILITY DISTRIBUTION"

This paper reports efforts to compute and approximate the
transition function of a stochastic attrition process that is
analogous to the homogeneous Lanchester square differential
equations of combat. That is, the author deals with Homogene-
ous Process 1 of [1U, p. 17], which has independent engagement
initiation and single kills. Referring to [10], we note that
this Markov attrition process, which is denoted by ((Bt’Rt))

t>0°
has infinitesimal generator A given by g

A((i,J)’(i,J'l)) 1CB
(1) AC(L,3),(1,)) = = (Legtiep)
A(<1,J)’<i'1:3)) JCR 3

where c_,,c, are positive constants, jump function A given by

B R
(2) x(1,3) = icB + JcR s
and transition matrix Q of the embedded Markov chain given by

e

. & B
Q((isJ):(isj—l)) b icB + JCR
(3)
Q((1,3),(1-1,3)) = ——42?3———
icB JcR

Rather than allow the combat to continue until one side
is annihilated, the author imposes termination levels My
for Blue and mg for Red. That is, all states of the forms
(1,mR) and (mB,J) are absorbing. For such states a,expressions

(1), (2), and (3) are not valid and one has, instead, that for

3




each state B

0

A(a,B)
A(a)
Q(a,B) = I(a,B)>

0

where I is the identity matrix. Observe that the state (mB,mR)
is almost surely never entered.

Let us denote by (Pt) the transition function of this
attrition process; cf. [10, p.10]. In [13], Weale is concerned
mainly with computation and approximation of the transition
function (Pt); that 1s, computation and approximation, for each
fixed t, of the Markov matrix Pt'
tion of the limit P_ = lim Pt’ which obviously exists and is

t>o

the distribution of the terminal state of the process.

Another interest is computa-

Weale begins by deriving, in a heuristic manner based on a

physical interpretation of the attrition coefficients cB and

CRs the forward equation for the process, namely

(4) PY((1,5),(k,2))

CRth((isJ)s(k‘i'l’g'))

+ cgkP, ((1,3),(k,2+1))

- (CBk"'CRRo)Pt((i’j):(k;R'))
= PLAC(L,3),(k,0))

The expression (4) is valid if (k,%) is not an absorbing state;
for absorbing states (k,mR) we have

(5a) Pé((i,J),(k,mR)) = cgkP ((1,5),(k,m+1)) ,
while for states of the form (mB,Q)
(5b)  PL((1,3),(mg,8)) = cpRP, ((1,1),(mg#1,2))

That these equations are valid i1s an immediate and rigorous
consequence of the probabilistic derivation appearing in [10];
cf. also the Appendix to [7], where a detailed proof is given.

ot




The author proceeds to note that for fixed initial condi-
tions (i,j) there apparently exists no simple closed-form solu-
tion to the forward equations (4)-(5). To the reviewer's
knowledge this is still so, although we note below some steps
in this direction hinted at, but not fully identified, by Weale.
That an explicit solution to (4)-(5) is hard to obtain is not,
of course, a new piece of knowledge. R.N. Snow, who originally
proposed this particular model [12], was aware of the difficulty.

With (i,j) fixed, certain of the forward equations can be
solved in closed form. For example, it is immediate that

-(c i+ec J)t
B Gy = e B 0 F

this follows from (2) and properties of confinuous time Markov
processes with finite state space; cf. [1] and [10, p.11]. The
author gives a nonprobabilistic derivation from the forward
equation, using differential equation methods.

Also, the author obtains the following explicit solutions
by nonprobabilistic reasoning. For mR <<,

J=2 T L
col (o d4e_R)% -c t
(6a) P ((1,1),(1,2)) = r37¢ .(%) T as (l—e R) ;
while for my < K iy
i-k i-k
cpd -(cgk+e i)t -cnt
(60) P ((1,3),(k,§)) = Ti—fﬂ,—(f—B) Al (l-—e e ) :

These equations, which correspond to one side's having suffered

no casualties, do not seem to have appeared elsewhere. Weale's
derivation, as noted abovc, 1s based on properties of the forward

equations as differential equations, so it seems worthwhile to
sketch a probabilistic derivation. For fixed initial conditions
(1,3) and a fixed time t




3 (7 Pt((i,J),(i,z)) = P(i’J){first j-2 transitions are kills of
E . Reds, (J-R.)th transition occurs

; before t, (J-R,+l)St transition
occurs after t}

- P(i’J)lfirst j-% transitions are kills
of Red}

X P(i’J) {time for (j-%) transitions is
< t, time for (j-%+1) transi-
tions is > t|first (j-%) transi-
tions are kills of Reds}

G s
c i+ec_p

p=4+1 "B R

t = (eilte_J)t
xf (cBi+cR,j)e i R 1 dt

0

1

-(cBi+cR(J-1))t2

dt

t-tl
f (cglteg(i-1))e 3

0
‘ t-u =(cpite (Jj=2))t
./. 2 (egitcg(y-2))e B B 3 at,

[ 0

(cgltcg(a+1))e

-(cyi+c,2) (t=-u )
Ko e e }dtd_n,

(1,3)

where P

to P(i’J){(BO,R0)=(1,J)} = 1and uj = (t,

+...4 !
tp)

./-t-uJ-Hl -(CB1+cR(2+1))tJ_Z
0

is the probability law of the attrition process subject

T




In arriving at this expression the first terms are obtailned

from the transition matrix Q of the embedded Markov chain and
the integral term arises from the jump function A. One must
invoke the characterization given in Corollary (8.3.11) of [1].
Tedious but straightforward calculations transform (7) to (6).

The author takes note of the further facts that for (k,%)
not an absorbing state there exists the representation

: % -(cgptepolt
(8) P ((1,3),(k,2)) = ] e((1,3),(k,2),(p,0))e .
p=k o0=%
where the c¢((i,j),(k,%),(p,0)) are constants, and that, for

my < k < 1,

(9) P ((1,3),0,m)) = P_((1,3),(k,mp)) +

i d —(ch+cRo)t
I ) el(1,3),0e,mp), (p,0)p
p=k o=mR+l

with an analogous expression holding for states of the form (mB,z).
These expressions are derived from general considerations about
solutions of systems of differential equations. If the constants
appearing in these expressions were known in closed form, compu-
tional problems would be solved. Weale asserts [13, p.1l1] that
the constants can be calculated recursively, but does not elabo-
rate; we sketch below a possible way of performing this computation.
For ease of exposition fix (i,j) and consider (k,2) = (i,j-1).

We need to calculate c¢((1,3),(1,j-1),(1,J)) and c((1,J),(1,j-1),
(1,3-1)), assuming that (i,j-1) is not an absorbing state. Dif-
ferentiating (8) and setting t = 0 yields, on the basis of the
fundamental relation A = Pb, the equation

A((i,.j),(i,j-l))= ‘(cBi"'cRJ)C((i,-j)9(1:3"1):(1:3))

(10a)
—(CB1+CR(J‘1))C((13J),(i:.j'l)’(133"1)) >




while setting t = 0 in (8) gives

(10b) C((i,J),(i,J-l),(i,j)) + C((isj)’(i,j-l))(isj‘l))
Po((isj),(i,J-l))

=0 ..

One may then solve (10) for c((1,3),(1,3-1),(1i,3)) and
c((1,3),(14,3-1),(1,3-1)). More equations are necessary when
(1,J) and (k,%) are not adjacent states; exactly how these are
to be obtained is not clear and is a problem worthy of further
research.

Concerning computation of the 1limit (and terminal) distri-

bution P°° the author obtains the recursion relations
y ch
k + dR(hR+l) P;((i:j);(k’mR+1))

(11a) P ((1.3)3(k,mg)) = <
B

ch

cB(mB+1) + ch

(11b) P, ((41,3);5(mg,2)) = PX((1,3);(mg+1,2)) ,

which are valid for my < k < and mp < & < J, where the asterisk
in the right-hand side of (11) implies that the probabilities in
question are computed with respect to termination levels (mB,mR+1)
in (1l1la) and (mB+l,mR) in (11b), respectively. The result in

(11) is not a closed-form solution but is certainly feasible for
numerical computations even though to compute the termination
distribution for one set of termination levels, the termination
distribution must first be computed for every set of higher
termination levels.

Two alternatives are available for performing numerical
computations. First, one can introduce transforms in the
following manner: define the resolvent (RA)A>0 of the transi-
tion function (Pt) by

B g SPTSNSRG0
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where matrix integration is performed componentwise. The matrix
Rx is called the A-potential matrix of the transition function
(Pt)' Then either directly from (8)-(9) or by virtue of a
standard Tauberian theorem [4, p. U421] it follows that

(12) P_ = 1lim AR

Ao A

It is known [1,2] that for each A > 0 the A-potential matrix RA
is given explicitly by

(13) R, = (AI-A)7F

and the infinitesimal generator A is known in closed form, so by
(12) for small A, ARA is a good approximation to P_. Second,
since all recurrent states are absorbing,

(14) Po=lim Q" ,

n
where Q is the transition matrix of the embedded Markov chain.
Hence large powers of Q are good approximations to P_ and,
indeed, the convergence in (14) takes place geometrically fast.
One could thus compute, for example, Q‘?,Qll = (Q2XQ2),Q s
to quickly obtain an approximation to Q°° & P+ Here, moreover,
the computational work is less than for the method based on
(13), for the latter requires a time-consuming matrix inversion,
while the method based on (14) requires relatively few matrix
multiplications. Neither of the above methods is, however,

numerically exact, whereas the method using (11) is.

The paper also deals with numerical solution of the forward
equations (4)-(5); this is a further useful contribution and we
believe that the associated computer program has received less
attention than it deserves. However, the usual difficulties
of extrapolating numerical results and of extracting theoretical

PO ——




b ? insight from empirical data remain. Nonetheless these programs FY
-51 : seem to represent a significant contribution to qualitative ]
i understanding of this stochastic attrition process. 4
.
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3. REVIEW OF "THE MOMENTS OF THE DISTRIBUTION 4
OF BATTLE STATES" 4

The principal objective of this paper [14] by T.G. Weale ]
is to study time-dependent behavior of moments of the stochas- ’
tic attrition process ((Bt’Rt)) with generator A given by 1

A((isj)’(is'j‘l)) CBi
(15) A((1,3),(1,3))
A((1,3),(1-1,3))

- (cBi+cRJ)

CRJ 5

i.e., the same homogeneous process discussed in [13], which was
reviewed in the preceding section.

For initial states (i,j), points (x,y) € R2, nonnegative
integers r,s, and times t > 0, let

(16) M (r,s(x,3)58) = B I (B -x) (R -y)°]

i J r s
= I I P ((1,3),36,00) (k=) (2-9) %,
k=mB 2=mR

where (Pt) is the transition function of the attrition process

and mB,m are the termination thresholds for Blue and Red,

respectisely. If the transition function (Pt) were known
explicitly or a good numerical approximation were available,
then (16) could be used directly to compute all moments desired.
In the absence of a closed-form expression for the transition
function, it is useful--from both theoretical and practical
points of view--to approximate moments, to derive relations

among moments, and to seek qualitative information about

11
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moments by studying (16) directly. Such is the author's main
goal and contribution; we now proceed to describe his work in
more detail.

Assuming that (x,y) is not a function of t, one may

differentiate (16) to obtain

(17) M (r,s,(x,y)3t) = [ J PI((1,3),(k,2))(k-x)"(2-y)®
1. £ir <8

£ I PLAC(1,3),(k,2)) (k=x)" (£=3)°

& % AP, ((1,3),(k,2)) (k=x)" (2-y)% |

where A is given by (15) and where the second and third equali-
ties in (17) hold by virtue of the forward equation (4) and the
related backward equation (c¢f.[1l]), respectively. Direct sub-
stitution for A in either of the latter two equalities in (17)
does not lead to a tractable system of equations. Indeed, use
of APt produces a system that is not closed with respect to the
initial conditions (i,j); i.e., solutions for (i,j+1l) and
(i+1,j) are needed in order to obtain the solution for (i1,j).
Use of PtA leads to a closed system that, however, appears

very difficult to solve; in particular one does not obtain

a differential equation forlwi,fr,s,(x,y);-). The author cir-
cumvents these obstacles by introducing the truncated moments

(18) l‘~".'L,J(1"»°:,(x,y);t) = E(i’J)[(Bt'x)r(Rt-Y)s;!T>tH

where T is the random time of termination of the battle, at
which either BT = my and RT > mp or BT > my and RT = Mp.
The author obtains the following equation (equation (12) of

[(14]7), which 1is his main theoretical result:




(19) Mid(r,s,(x,y);t)

-
|
Il o~m

i CB (_l)o_l(cs,)[ﬁli,d(r-i'l,s-o"(x’y);t)-+ X;li J(r,s-o,(x,y);t)]

o=1

; (-l)p’l(ﬁ)tﬂihfr-p,s+l,(x,y);t)+ yiy {r-p,s,(x,y);¢)].

r
- cq )
p=
If r = 0 or s = 0 the corresponding summation (taken over an empty
index set) 1is zero. Except as a means of deriving relations among
moments and truncated moments, (19) seems to have little applica-
tion. From the standpoint of numerical calculations, truncated
moments are rather difficult to obtain and even then (19) involves
truncated moments of all lower orders and produces only the deriva-
tive M'. It might be better--if one's objective were numerical
{ results--first to produce numerical approximations to the transi-
tion function (Pt) and then to employ (16) directly.

This leaves the possibility that special cases of (19) may lead
f to relations among the moments M and truncated moments M that extend

one's understanding of the attrition process--at least in a qualita-
tive sense. The author, therefore, proceeds to consider several
special cases.

Taking r = 1, s = 0, x = 0, y = 0 leads to the equation

(20) : %E E(i’J)[Bt] - - cRE(i’J)[Rt;{T>t}]

This famous equation, derived originally by R.N. Snow [12] states
that for small values of t the expectations of the stochastic attri-
tion process approximately satisfy Lanchester's square-law differ-

ential model of combat, since an analogous expression 1s valid for

To our knowledge, a completely probabilistic derivation of (20)

has not been given before. The Theorem below is of interest, there-
fore, not only for its novelty, but also because it both simplifies
and extends the results obtained by Weale in [14].

13
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(21) THEOREM. Let f be a function on the state space E of the A
attrition process. Then for each t '

1’ 3
(22) gEE( J)[f(Bt,Rt)] - gl {)[Af(Bt,Rt); fT>t}] ,

where A is the infinitesimal generator given by (15).
PROOF. By virtue of the forward equation (4)

a ;

& d :

-g(anuJuwnm) |

;

= Z PtA((i,J);a)f(a) 1
o

= 1 I P ((1,5);B)A(B,a)f(a)
o B

=] P ((1,9;8) ] A(B,a)f(a)
B a

= 1 R ((1,0);00a2(8) ¢

[}

13 1ar(B, ,R,)]
But since Af(B) = 0 when B is an absorbing state,
(24) e arce, R )1 = B [ar(e R0

The proof follows by combination of (23) and (24). 1l

The reason for using the right-hand side of (24) in (22),
rather than the left-hand side, is that 1n particular cases the
function Af will have a closed-form expression for nonabsorb- %
ing states which 1s invalid for absorbing states. Use of the

14
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expression in the right-hand side of (24) is permissible, but
B one cannot do this on the left-hand side of (24). The examples
» below illustrate. ;

EXAMPLE. For f(i,j) = i1 one has for nonabsorbing (i,j),

Af(i,3) = - JcR

and (22) becomes (20). Similarly, for f(i,j) = j, one has

Af(1,3) = - icB

and obtains the corresponding equation for %% E(i’J)[Rt].

EXAMPLE. For f(i,j) = ij we have, provided (i,j) is not

absorbing, s :
Af(1i,3) = - cBi - ch
and (22) becomes
[ e T i (1:d)en2.
S E VR = - o 282 o))

- cRE(i’J)[Ri; {T>t}l ’

2

EXAMPLE. For f(i,j) = i and (i,j) nonabsorbing,

Af(1,]) = - 2cp1g + cgd

and one obtains the equation

4 540301821 = - 2, LR 6 S b
£ ¢

One may then derive expressions for derivatives of variances,
and so on.
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We remark--and this observation 1s of some importance--
that (22) is valid if T 1is replaced by any stopping time S such
that (Bt’Rt) = (BS,RS) on {S < t}. S need not be defined in
terms of absolute thresholds, for example.

One can also use Theorem (21) to derive the general equa-
tion (19) as well as expressions for derivatives of functions
not expressible in the form f(i,j) = (1-x)T(j-y)S. We plan to
report more fully on consequences of our Theorem in a forth-
coming paper [11].

Most of the remainder of the memorandum [14] 1is occupied
with computations similar to (19). Many of the author's results
are worked out in painstaking detail and in this respect he has
made a meaningful contribution. We know of no other reference
for many of these calculations.

In the very last part of the paper, Weale performs a simi-
lar analysis of an analogous heterogeneous attrition process.
The process considered is similar but not identical to Hetero-
geneous Process 1 of [10], with independent engagement initiation
and single kills. If there are M weapon types on the Blue side
and N weapon types on the Red side and if the states of the
process are represented as vectors of the form

(x,y) = (xl,...,xM; yl,...,yN) 3

then the infinitesimal generator A of the associated (vector-
valued) attrition process ((Bt’Rt)) is given by

M
A((xsy),(XEYI,'-'syJ'ls---,yN)) r 121 cB(i’j)xi
R T T R
2 A(( s ),(x, )) e 6] 3 X Cc J o y
(25) X5y y ey gy B i R J
N
A(<X,Y)’(x1,-..,xi-lgu.-,xm;y)) = ngcR(J,i)yJ

16




The reader 1s referred to [7] and [10] for details concerning
this process. Termination states are, not entirely reasonably,
taken to be states (x,y) for which either

M
(26a) o, X m
121 1*1 = T
or
N
(26b) JZlBJyJ <mg o,

where the o the BJ, m, and m_, are prescribed in advance. 1In

i B R

such states boundary conditions of the form (5) are valid, rather
than (25). Certain modifications are necessary because some of
the x, or yJ may be zero without either (26a) or (26b) being satis-

fied. The author then notes the forward equation |

for the transition function (Pt) of this attrition process, _

states (seemingly correctly) that it cannot easily be solved in i

closed form, and remarks about its general form; cf. equations
‘ (8) and (9) and associated comments in Section 2.

Finally, he derives equations analogous to (19) for various
moments. Appropriately extended, Theorem (21) may more easily
yield the same results. Nonetheless, the equations presented
stand as a contribution because of their explicitness and the
care used in their derivation.

17 \
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4. REVIEW OF "APPROXIMATE MOMENTS OF THE DISTRIBUTION
OF STATES OF A SIMPLE HETEROGENEOUS BATTLE"

This paper [5] by N. Jennings is not of the same interest
or importance as the papers reviewed in the two preceding sec-
tions; much of it, indeed, concerns calculation of error bounds
whose theoretical and practical value is uncertain. In addition,
the author seems not to distinguish relatively important ideas
from essentially uninteresting (albeit involved and complicated)
computations.

Consider the heterogeneous stochastic attrition process
with the generator A given by expression (25) in Section 3;
this process is discussed in more detail there and in [7,10].
Instead of the unrealistic termination rule embodied in (26),
the author chooses the following rule: for each i =1, ..., M
there is a threshold mB(i) for Blue weapons of type i and for
each J = 1y .+ N there is a threshold mR(j) for Red weapons
of type j. The battle terminates if Bt(i) < mB(i) for any 1
or Rt(j) < mR(j) for any j. That is, the termination time T
is given by

(27) T = inf{t:Bt(i) = mB(i) for some i or Rt(j) = mR(j) for some j}

This termination rule also is subject to criticism, but seems

clearly more reasonable than that of (26).

The author begins with a heuristic derivation of the forward

equation

for this process; for a rigorous derivation from a set of care-
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fully stated hypotheses the reader is referred to the Appendix
of [7]. Jennings proceeds to consideration of moments of first
and second orders, namely the expectations and covariances of
numbers of survivors given by

(28a) Mg(a; 1,t) = E“[Bt(i)]
(28b) M (a3 J,t) = Ea[Rt(J)]

(28¢) Cplasi,1',t) = E*[(B, (1)-E*[B, (1)1) (B, (1")-E°[B,(1')])]

(28d) Cpla3d,3',t) = E°L(R (§)-E°[ (R, (J)I) (R (J")-E*[R (§') D]

and

(28e) Cppla31,j,t) = E°[(B,(1)-E®[B_(1)1) (R (1)-E*[R (D] ,

where 1,1' =1, ..., Mand J,J" = 1, ..., N. In particular,

CHETLEERLY Var“(Bt(i))

and
CR(G;J sJ 3t) 7= VaPa(Rt(J))

for each i and j.

Jennings obtains differential equations involving these
moments that resemble the Lanchester system of equations to
which the stochastic process is analogous. "Resemble" in this
case means that the equations derived in [5] are qualitatively
of the same form as the Lanchester equations, up to an error
term which in some sense is small if the time t is small.

For example, it follows from Theorem (21) that for the
function f given by f(a) = Xy




a a
ar E [f(Bt,Rt)]

(29) &= M (a31,t)

E“[Af(Bt,Rt);{T>t}]

N
o o
= E [- le cR(j,i)Rt(J),{T>t]]

N
- E“[JZl cR(J,i)Rt(J)]

N
+ EG[JZI cR(J,i)Rt(J);{Tgp}]

CR(J,i)MR(aiJ’t)

I
[}
e~z

3=1

+ Ea[ ? cg(3,1R (§)3{T<t 1.
571 ]
Similar, but more complicated, equations are valid for

variances and covariances; together these constitute expression
(10) of Jennings' paper. He gives no derivation, nor is there
explicit calculation of error terms, such as appears in (29);
we will treat probabilistic derivation of such equations--
based on Theorem (21)--and probabilistic error estimation, in
a forthcoming paper [11].

The author of [5] seems aware that the error

N

MB(a,i;t) . [-ng CR(Jsi)MR(a;J’t)]

A =

Q-IQ-
ct

is related to the termination probability Pa{Tgp}, a relation
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S

first observed in the homogeneous case by Snow [12], but seems

not to know the precise nature of the relation, which is given

in (29). He proceeds, nonetheless, to attempt to compute

Pa{Tgt} for each t or, actually, to approximate this probability.
From a computational standpoint, approximation of these probabil-
ities seems to us to be of limited value. Such approximations
can, at best, warn one about values of t for which that approxi-
mation

S

(30) E“[BO(i)] - E“[Bt(i)] o ] epld,1) ft E“[Ru(J)]du

: 0
is grossly invalid. While this constitutes useful information
for very detailed combat models in which the time increment is
small, it is precisely in such instances that still more care-
ful error estimation is necessary. At the other extreme, for
highly aggregated models of large scale combat, it is likely
that t will be sufficiently large that one incurs substantial
errors by use of (30), but no alternatives seem to exist. 1In
both cases, more accurate error estimates are required.

However, estimates of Pa{Tgp} are better than no error
estimates at all, so the author deserves credit at least for
having performed some preliminary work. There appears to be
a slight circularity to his method, which consists in the
following steps:

(1) Approximate MB(a;i,t) as in (30), and perform similar
approximations of other moments defined in (28);

(2) Assume that with respect to Pa, the random vector
(Bt’Rt) is normally distributed with mean vector given by
(28a,b) and covariance matrix given by (28c-e);

(3) Compute the mass of the joint normal distribution
specified in (2) that lies outside the set of absorbing states

22
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(1.e., in the set of transient states in which the battle con-
tinues) and take this as an approximation to P*{T>t}.

In truth, the author's approach is slightly different: he
fixes in advance an upper threshold value of Pa{Tgﬁ} and seeks
the minimal t at which the threshold is exceeded. He effects
this computation by calculating the mass of a normal distribu-
tion lying within an ellipsoid on which the joint normal density
is constant, finds the time-dependent constant density ellipsoid
corresponding to the threshold probability, and then calculates
the minimal time at which the ellipsoid intersects the termina-
tion set.

Virtually all these steps involve further approximations,
some of which appear unavoidable from a computational point of
view, at least given the author's objective. The circularity
alluded to above is that the assumption of a joint normal dis-
tribution for (Bt’Rt) is valid only if Pa{Tgﬁ} is already very
small, and so may not produce an accurate estimate of the ter-
mination probability. Nearly all of the paper is concerned with
computations arising in this approximation scheme; the reader is
referred there [5] for further details.
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5. REVIEW OF "STOCHASTIC 'LINEAR LAW' BATTLES

This paper [6], also by N. Jennings, provides a treatment
similar to that accorded stochastic "square law" battles in
the paper reviewed in Section 2. The particular stochastic
attrition process analyzed is Homogeneous Process 2 of [10],
with proportional engagement initiation and single kills. The
infinitesimal generator A is given by

A(L,3), (1,3-1)) = 1jcg
(31) A((isj), (i;J)) =1 = ij(cB+cR)
AlL1.0), (1-1,3)) = 1JCR s

where Cps cR again denote positive constants, but not with the
same dimensions as the constants appearing in Sections 2-4.
The jump function A is given by

b i D ij(cB+cR)

and the transition matrix Q of the embedded Markov chain is
given by

‘8
Q((19J)’ (isj‘l)) = c + c
(32) Ferond
(02,33, =1, 1)) °R
Q ’ ’ =41 b
G e B

In particular, the embedded Markov chain is a spatially homo-
geneous random walk, which is computationally tractable.

Boundary conditions in the form of thresholds my for Blue
and mg for Red are imposed.

25
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The author first presents the forward equation for the

transition function (Pt) of this attrition process. He then
derives differential equations for moments of the stochastic
attrition process ((Bt’Rt))' For example, he presents the
equation

Gay © Lty g e o pthedlip e

+ mpe B9 B (R =m 1]

(143) oo
+ mge E [Rt,{Bt—qB}]

= - cRE(i’J)[Bth]
(1,3) :
+ ek [B.R,;{T<t?]

sk S E

£ st;{T>t}] ]

where T is the termination time of the‘edgagement. The author
provides only the first equality in (33); we have provided the
other two in order to show that this équation and similar equa-
tions for second moments can be obtaine¥ from Theorem (21),

since if (1,j) is not an absorbing state and f(k,%) = k, then
3 b2

Af(i’j) = cRiJ

The author's equations appear correct (except for typo-
graphical errors) and represent a useful set of facts. We
refer the reader to [6] for Jennings' actual results.

The author demonstrates that

(1,3) X
(34) E [egBy = epR.] = epl = e
for all t, a relation which indicates a plausible equilibrium
property of this stochastic attrition process. No analogous
property holds, however, for the independent engagement initi-

ation process discussed in Sections 2 and 3; cf. [11]. -
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Brief mention is made of a computer program developed to
solve the forward equation Pé = PtA numerically; when such a
solution is obtained, moments can be calculated at once. Of
course, this approach does not lead to a general understand-
ing of the process in the way that theoretical approaches may.
Nonetheless, existence of this program is a useful contribu-
tion, and, indeed, may stimulate and support further theoretical
developments.

2 e

Finally, the author considers the distribution of the termi-
nation state (BT’RT)‘ Let

a((1,3),(k,0)) = P m) = (001,

dependence of q on the termination thresholds My sMp exists but
is suppressed from the notation. Clearly q(-, (k,2)) = 0 unless
k = my or L = mes but not both. At this point the author's non-
probabilistic approach leads him to an unnecessarily complicated
derivation of this distribution. Let

°Rr

p=cB+cR

be the probability that each given casualty represents a Blue

{ loss. By (32) it is immediate that for fixed initial conditions
Xid)s (BT,RT) = (k,mR) if and only if the first (i-k+(j-mR)-1)
casualties represent i-k losses to Blue and (j-mR)-l losses to
Red and the next ( ((1-k)+(J-mR))St ) casualty is a loss to Red.
Since different casualties are Blue or Red with probabilities
p and (1-p), respectively, and are mutually independent by vir-
tue of the form of the embedded Markov chain, we see at once
that

27




(1-p)

; ((1-k)+(J-mR)—f)pi_k(l-p)J-mR—l

(35) q((1,3),(k,mg))
1-k

((i-k)+(J-mR)-

X4 J-m
)pi Wasnl A
i-k

and analogously, that

J=-2

-1
p B(1-p)

(1-m_)+(j-2)-1\ 1
(350) q((i,3),(m,,2)) =( g )

J=2

This agrees with the result obtained by the author--his
equation (42)--but provides more understanding. A probabilistic
derivation is illuminating not only in the result obtained but
: also in each step and in the overall pattern of reasoning, in a
% ! manner that an analytical derivation is not.

Let us return now to consideration of the terminal dis-
tribution. The distributions appearing in (35) are truncated
negative binomial distributions, further properties of which
are discussed, e.g., in [3]. Having derived the form of the
terminal distribution, the author calculates the most probable
numbers of survivors on each side, given that the other side has
E been forced to its threshold and then considers a normal approxi-
[ mation to the terminal distribution, which appears to be of
‘ limited value. In any case, cf. [3], a PToisson approximation
may be more appropriate. We refer the reader to Appendix A of
[6] for details of the results Jennings obtains. Although these
results are not discussed here, we do not intend to imply that

o

they are not useful in the practical sense.
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6. REVIEW OF "HOMOGENEOUS BATTLES WITH
GENERAL ATTRITION FUNCTIONS"

This paper [15] by T.G. Weale continues the line of devel-
opment represented by the four papers reviewed in Sections 2-5
by extending some results contained in the papers reviewed in
those sections to the case of "“general attrition functions," a
particular development he pursues in [16,17]. In our opinion,
this particular form of generalization has pitfalls and, indeed,
can be interpreted as an attitude which we have long criticized.
Except in particular cases such as those considered in [10]
that lead, for example, to the processes discussed in Sections
2-5, there need not exist a set of physical assumptions leading
to a given pair of attrition functions. Mathematical treatment
of processes not verifiably arising from physical assumptions
about individual weapons systems and their interactions may
create the (possibly) false impression that the resultant attri-
tion process is of value as a model of combat.

The author treats a homogeneous stochastic attrition pro-

cess ((Bt’Rt)) with infinitesimal generator A given by

£>0
AC(1,3),(1,3-1)) = ¢ (1,1)

(36) AC(1,3),(1,3)) = = [pg(1,0)+e3(1,0)]
A((1,3),5(4-1,4)) = ool1,1) ,

where 12 and $R are arbitrary nonnegative functions on the state
space of the attrition process. In addition, termination thres-

holds my for Blue and me for Red are prescribed in the manner of

Sections 2 and 5.
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That there exlsts a Markov process whose infinitesimal
generator is given by (36) is, of course, true. What <s
uncertain is existence of a plausible or even definable set
of assumptions concerning physical behavior of combatants--
both individually and interactively--that leads to an attrition
process with the generator A given by (36). For certain cases,
the author of this review has shown the existence of such sets
of assumptions; cf. [7,10]. These assumptions concern the quali-
tative and quantitative probabilistic nature of engagement
initiation by combatants and are stated in a form in which a
potential applier of stochastic attrition processes (to com-
puterized combat simulations, for example) can readily verify
their plausibility, or at least choose one process among several
alternatives.

Even from a mathematical standpoint, the arbitrary generator
approach is subject to criticism. Except for the restriction
that sample paths be componentwise nonincreasing and decrease
only by jumps of size one in one component, the infinitesimal
generator A given by (36) is perfectly general. Specific com-
putations are, therefore, likely to be impossible to perform,
as the main body of [15] confirms. Theoretical results of
sufficient specificity to be of interest are likewise difficult
to obtain. The role of (restrictive) assumptions in mathematics
is to sufficiently 1limit the class of objects under study that
nontrivial statements become possible. Furthermore, considera-
tion of problems that are too general denies one use of both
intuition and methods of analysis that exploit the special
structure of specific problems.

Finally, one does not deal in practice with an "arbitrary"
generator A but chooses some specific form. A set of physical
assumptions leading to a given form of generator contains with-
in itself the appropriate suggestions for generalization. If a
certain assumption is believed to be implausible, one can modify
it to be acceptable in physical terms and then derive--possibly
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not without difficulty--the generator resulting from the new

set of assumptions. On the other hand, a methodology based on
direct and arbitrary choice of the generator is inherently self-
limiting in that it admits no such potential for generalization.

For all these reasons, we believe that the research re-
ported by Weale in this paper has, in its present form, little
significant practical or mathematical implication. Therefore,
the following description of the contents of the paper is quite
brief.

Weale takes note of the forward equation
1 =
(37) RE =i b

with suitable boundary conditions, for the transition function
(P+) of the attrition process. No derivation is required, for
Ma;kov process theory ensures the validity of the forward equa-
tion. For reasons that are obscure to us, the author of [15]
thereafter considers higher derivatives of the transition func-
tion and obtains various relations involving them. It is
evident from (37) that

2
PN = g =
PtA PtA
and that, more generally, for each n
(n) _ ,(k),n-k
(38) Pt = Pt A
& (k) th
for all t and k = 0, ..., n, where P is the k derivative
of the transition function and, by convention Péo) = Pt' The

utility of (38) in the context of stochastic attrition processes
is not apparent to us, as (37) is quite sufficient to specify
(Pt) uniquely. For general attrition functions further infor-
mation given by (38) is not sufficiently specific to be of
value. In special cases, of course, a useful Taylor expansion

Sl
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of Pt might be obtainable, but the expansion follows more easily 1

from the well-known property that Pt = exp (tA).

The author includes some remarks concerning the qualitative
form of the attrition functions wB,vR. For example, both should
be increasing in each variable separately and (possibly) strictly
increasing in the variable representing the opposition. For
example ¢R(1,J), which corresponds to Red kills of Blue weapons
should be nondecreasing in 1 (which represents the Blue side) and
strictly increasing in j. The author proposes that j - wR(i,j)
be a function with an S-shaped graph, a property not possessed by
any of the attrition functions so far derived from physical

assumptions (which are linear in j), but certainly plausible.

A discussion is given of the general form of the solution
to (37); cf. Section 2 for a similar treatment of a specific
case. Even in that specific case no concrete results are ob-
tained; in this general case nothing of interest is presented.

Weale mentions in the main text, and presents in Appendices,
computer programs for numerical integration of the forward equa-
tion (37) together with some results obtained therefrom. The
attrition functions used in the sample program are given by

ep(1,3) = 1(cg*el)

and
- 1

er(1,3) = J(cgptepi)
where CB’ cé, CR> cﬁ are constants. We emphasize that to our
knowledge no set of physic=21l assumptions leading to these attri-
tion functions exists. That such assumptions do exist is,
indeed, quite possible; verification of such matters is the
problem of interest and importance.
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Finally, the author treats the terminal distribution by
the same Tauberian methodology used in the paper reviewed in

Section 2. No specific analytical results are obtained,
although many numerical explorations are possible.
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7. REVIEW OF "THE DISTRIBUTION OF THE
DURATION OF BATTLE"

In this paper [16] T.G. Weale continues his analysis of
the homogeneous attrition process ((Bt’Rt))t>O introduced in
[15] (ef. Section 6 for a review thereof): namely, the Markov ;
attrition process with infinitesimal generator A given by

AC(1,3),(1,3-1)) = $5(1,7) 1
: (39) BLC3 305 64,30) = = Topfl,0) + 901,307 |
A((i’J),(i"l,J)) = rR(i,J) >
where @B, @R are arbitrary, but fixed, nonnegative functions.

, As we have observed in Section 6, this general approach has

1 difficulties: for most functions wB,wR there is no known .

set of underlying physical assumptions that leads in the manner

of [7,10] to an attrition process with the generator A given by

(39). Moreover the general approach represented by [15,16,17] ]
appears unlikely to yield results of sufficient specificity to {
be really useful. 4

Nonetheless the particular problem studied in [16] is of

! some interest--especially in physically justifiable special

f cases such as the processes discussed in the DOAE papers [13],
[(14], and [6] that are reviewed in Sections 2, 3, 5, respectively.
That problem is the following: 1let m, and m_ be termination

B R
levels (possibly but not necessarily zero) for the Blue and Red ;

sides, respectively, so that the combat ceases when Bt = my or

Rt = mg. Let T be the duration of the battle, given by

T = inf{t: Bt = m, or Rt = mR} . %
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One then wishes to compute, characterize, or approximate, for
each initial state (i,j), the distribution of T under the proba-
bility measure P(i’J), i.e., to study the function

(40) F(1,536) = PLad) i < ¢y

As observed in Section 4 (cf. page 21) such probabilities are
of interest in the context of the moment equations derived in
Theorem (21) in Section 3 and are also, of course, of intrinsic
interest as properties of the combat.

Weale's approach to the problem is the following: if BT
denotes the state of the process at the time of termination
and if i > mg» J>m then

R’
P(i’J){BT € D} =1,
where

D = {(k,mR): my < k} U {(mB,z): mg < 2}

Moreover, since each state in D is by definition an absorbing
state, it follows that

(41) F(1,35¢) = P I, €y

i =
. BUA Gy 30 Gt ) i 0 LRI ) , (e )
k:n‘:Bﬂ b = z%ﬂ . g

The expression given in (41) 1s valid in general, whether the
generator A arises from explicit physical assumptions or not.
Therefore, if the transition function (Pt) of the process were
known, then the functions F(i,j;*) would be completely deter-
mined. Unfortunately, however, this is not so even for the
special cases discussed in previous sections.
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Weale partitions the termination set D into three subsets
consisting of

= {(k,mg): k >

= {(mB,Z): £ %

D3 D-(DIUD2) s
where ﬁB > my and iR > mp are also prescribed in advance. States
in D1 are in Weale's terminology "Blue victory states," those
in D2 are "Red victory states," and those in D, are "draw states."
The intention and interpretations are apparent.

il

(1,3)
piomiip. € b Lo Pel(:0), Gomg))
_mB

Clearly

pltedlign. e ypim i P ((1,4),(mg,2))

=i,

(1,3) .
PRI O T P, ((1,3), (k,mp)

k=mB+l
me-1
Pm((i,J),(mB,l))

£=mR+1

(1,3)
=il e ip .{BT CDl UD2}9




and evidently exists provided that @B(i,J) + ¢R(1,J) > 0 when-

¥ ever 1 # mg
3 vant to numerical computation of Pm).

and j # mp (cf. pp. 8-9 above for some remarks rele-

Weale then proceeds to consider the distribution of T
conditioned on the termination state; that is, he considers
the conditional distribution functions

N R o B
Fl(isj,t) =P {T < thT (S Dl}

B Y T ;
F,o(1,§5t) = P {Pon tlBT £ D,}

i ks g
F3(i,J,t) =P {T < tIBT € D3}

Formally, these functions can be computed directly from (41)
and (42) using only elementary probability; for example

fL vl

P ){Bt c Dl}
EE,

B {8y £ Dl}

(43) By (1, a00) =

if O~~T
2

P ((1,3),(k,mp))

k mB

T
]

1 P, ((1,3),(k,mp)) |

Analogous expressions, which need not be included here, exist
for F2(1,3;t) and F3(i,J;t). From (43) it is clear that the
Fq(i,J;t) can be computed in closed form if the transition
function (Pt) is known, but seem inaccessible otherwise.

To continue our review of [16], Weale next discusses the
density functions of the distributions F(i,j;t). From (41) and i
the forward equation Weale derives the relation ‘
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-
=
.

J
d
(44) ==F(1,j;t) = P1((1,§),(k,mz)) + PI((1,5),(my,0))
gE el k=ift1 © = z:.é‘n . »

: 5
= =;+1PtA((i,J),(k,mR)) + P A((1,]),(mg,0))

k B l=mR+1
i
= 2 P ((1,3),(k,mv1))e (Kym_+1)
kém+l ROl

J
+ B ((1’ )s( +1,2«)) ( +192') 5
z=§R+1 it i

Analogous expressions are also given for the densities of the
conditional distributions Fl’ F2, F3. Like other relations
derived earlier in the paper these formulas give closed form
results if the transition function (Pt) is known in closed
form and not much information in other cases.

One exception to the latter assertion is when the forward
equation is integrated numerically for given initial conditions
and attrition functions; this is a principal objective of the
computer programs that comprise the larger part of not only [16]
but also several of the papers reviewed in preceding sections of
this paper. 1In this situation the formulas (41), (42), (43),
and (44) are all applicable and yield good numerical approxi-
mations to the probabilities in question. The work and results
concerning numerical computations are, as we discuss further in
Section 9, a significant contribution of at least some of these
DOAE papers. This method of development for all its usefulness,
however, does not yield closed-form analytical expressions by
means of which one can fully understand and describe the attri-
tion processes under study. Neither does it produce qualitative
insights that can be extrapolated beyond the (necessarily
limited) numbers of numerical inputs that are actually treated;
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of course many useful qualitative insights result nevertheless.

Finally, Weale deals with expectations, medians, and modes
of the termination time distributions. Since, for example, for
each (1,J)

(45) g(1:3) 3 =Jf (1-F(1,;t))dt
0

~./'“ (1-F(1,3;t))dt
0

u
Sk i/. F(i,i;t)dt
0

for large values of u, one can use the first equality in (45)
to compute E(i’J (T] if F(1,j3+) is known 1in closed form or can
use the approximation contained in (45) if (as is the case in
[16])a numerical approximation to F(i,j;-) is available. Since

u
u - jﬂ F{1,3;t)dt < u,
0

in order that the approximation in (45) be even reasonably
accurate one must have

a > 83 m

This point 1is not mentioned in [16]; it is easy, however, to
estimate ESSWIED], 1P, as the physics of combat simost cer-

tainly require, the attrition functions ¢ v, are both nonin-

B 'R

creasing in each argument, then evidently
(i’J) - Y o =1
(46) E 04 (6, 4 (1-mB+j-mR 1)[WB(mB+1,mR+1)+4R(mB+1,mR+1)]

The reasoning underlying (46) 1s the following: at most (i-m
+ J—mR - 1) casualties can occur before termination and each

B

4o




interval between casualties is exponentially distributed with
expectation not exceeding [wB(mB+1,mR+1) + wR(mB+l,mR+l)]-1.
One may then use (46) to determine a sufficiently large value
of u for use in (45). In the computer program appended to

[(16] the integration in (45) is performed using Simpson's rule,
which seems eminently reasonable.

Computation of the median and mode of the distribution of
T is also considered in [16]. Also, the author provides simi-
lar treatments of the conditional distributions F F
further details are not necessary here.

1t 3

As we mentioned before, the distribution of the terminal
time T is of some interest, particularly in the context of the
differential equations discussed in Section 3; see also [11]
where we consider the problem in some detail. One approach
that may be superior to that of Weale not only for derivation
of analytical results but also for certain computational appli-
cations is the following recursive method.

(47) PROPOSITION. For each nonabsorbing state (i,j)

~Log(1,3)+45(1,3) Ju

t
(h8) F(i,3;¢) =wB(1,J) f Fll,)~1:t-u)e du

0

t “[go(1,3)+¢ (1,5)]u
+ ¢R(1,J)jﬂ F(i-1,j;t=-u)e B R
0

PROOF. Let Tl be the first change of state of the attrition

process ((Bt’Rt)) and Xl the state entered at time T, - By

Theorem (8.3.3) of [1],

du .




¢B(13J) "
wB(i,J)+wR(i,J)

: { (1’J) =
P {T,<t,X,=(1,5-1)}

-[wB(i,J)+4h(i,J)]u

t
fo [ (1,3)435(1,3) e du

‘[@ (isj)+ (isJ)]u
B ¥R s

t
¢B(1,J)f e
0

and, in the same way,

phad)n <b3x =(1-1,)) = wR(i,J)dgt Sleptialndg il
Hence,
F(1,33t) = PLod) fmet)
- 5D D freem % )] ;
N E(i’J)[le{Tgp-Tl}] _§
= (83 p(x 56-1 )] g
’ : o5 (1,0t (1,0 Tu |

t
wB(i’J)_[ F(i,j-1l3t-u)e
0

I D e e

—["I)B(i ,.j )+WR(1 ,J ) ]u

£
+¢R(i,J)~[ F(i-1,]3t-u)e du ,
0

where the third equality is by the strong Markov property;
ef. [1] or [2]. I
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To illustrate, we consider the process with

n
Q
[

e5(1,)

and

¢R(1,J) CRJ ’

namely the homogeneous square law process discussed in Sections
2 and 3 above. In this and other applications it is more con-
venient to use (48) in the equivalent form

“Log(1,3)+ep(1,3)]u

£
(49) p 1IN sty = e5(1,3) j’ p(1:3-1) tmspuje du
: 0

t -log(1,)+e (1,5)]u 1
+¢R(1,J)f P(i‘l’J){T>t—u}e B R du _
0

Lo (1,3)+e (1,3)1t
i g J °R J

For 1,3 < 2 we then have the following exact results:

p(0:0) tpsey = p(1s0) (pypy

= p(%D) (st
= p(2:0)(p>e)
= p(0:2) (st
G
while
LTS PR i i
Also,
S b RGO ;2 e-(cB+cR)t R (l-gg)e-(2cB+CR)t
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and by symmetry

¢ -(c *c_)t c -(e +2c_ )t
plleBligagy o Big TBURUWT, G By B TR
CR CR

Finally,

-(c +c )t c -(c +2c_ )t
S oratt v, Belpee Je (2R

B

p(2:2)(ms) = 2e

c ~(2c. +c)t
$at B iie B
°rR

-(2¢c +2cR)t

c c
+3-2(2 + Drze B

R B

The remainder of [16] contains descriptions and listings
of computer programs that implement various computations de-
scribed above; these are of significant practical value.
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8. REVIEW OF "MOMENTS OF THE DISTRIBUTION OF STATES
FOR A BATTLE WITH GENERAL ATTRITION FUNCTIONS"

This paper [17] by T.G. Weale and E. Peryer continues the
work of the first author on homogeneous battles with general £
attrition functions that is reported in [15] and [16], and are
reviewed in Sections 6 and 7 above, respectively. The general
comments made in those sections (in Section 6 in particular)
concerning possible lack of an underlying family of physical
assumptions remain relevant. In [17] Weale and Peryer deal
with results analogous to those obtained in [5] by Jennings gj

for the heterogeneous square law attrition process; namely,
differential equations for expectations of functionals of the
attrition process. Many of the comments and analyses presented
in Section 4 of this review, in which [5] is reviewed, will
also be germane to the discussion of [17].

For the sake of completeness we once again observe that
the attrition process treated in [17] 1s a Markov process 1
with infinitesimal generator A given by :

((Bt’Rt))tZO %
A((1,3)3(1,3-1)) = @5(1,9)
A((1,3)3(1,3)) = = [eg(1,5) + ¢p(1,1)]
AC(1,3)3(1-1,0)) = ¢o(1,9) , |

where vB and YR are nonnegative but otherwise arbitrary functions

defined on the state space E = N x N of the attrition process.
The authors first take note of the forward equation for the

transition function of the process, which in open form is given
for nonabsorbing states (k,%) by 4
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B (505 PL((1,3),(k,2)) = P.A((1,1),(k,2)) 4
= P ((1,3),(k,2+1))og(k,2+1) ;
+ P L((1,3),(k+1,2))ep(k+l,e)
J
for absorbing states (k,mR), where mR is the Red termination
level, by
(51a)  PL((1,3),(k,mp)) = P ((1,5),(k,me#1)) op(k,me#1) _-.
é and for absorbing states (mB,z), where My is the Blue termina-
@ tion level, by
(51b)  PL((1,3),(mg,8)) = P ((1,3), (mg+1,2))ep(m+1,8). 2
i It then follows that if f is a function on the state space
E of the attrition process,
d (1 L e t
(52) L& sJ)[f(Bt,Rt)] = QE’Z 2 f(k,2)P, ((1,5),(k,2)) 3
k=m_, 2£=m :
B R
i “,
s B )L eUe BYRI((1,1),(k,0))
k np Z—mR
i

J
Do D £k, R) g (AP ((1,9),(K,841))

k mB+1 2=mR+l

+ 05 (k+1,0)P, ((1,3),(k#1,2)) ]

d

+ f(ks ) (1’\, +1)P ((1, ),(k, +l))
k;%él me e (k,mat )P, ((1,5), (kymg

J
+ £lme s 2)en (M +1,2)P, ((1,1),(m+1,2)) .
2;%;1 Mg s ™ )ep\Mg t g

DT TT—

The expression (52) is essentially identical to equation (8) in g
[17] which is the main theoretical result therein. Observe that :
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the right-hand side of (52) involves no probabilities of the
forms Pt((i,j),(k,mR)) or Pt((i,j),(mB,R)). Indeed, elementary
calculations verify that (52) is equivalent to the result that
Theorem (21)--as suitably extended in [11] to apply to general
Markov attrition processes--would yield in this situation.

The authors then proceed to discuss the solution of (52)
for functions f of the form

£(k,2) = (k-1)(k-1+1) -+ (k-1+r)(&-]) -++ (R=j+s) ,

in which case the expectations involved are factorial moments.

They further assume that ¢_ and ¢_ are polynomials in their

arguments, but even so do Eot obtgin specific results. The
difficulty, the reviewer believes, is that the authors' point

of view and method of proceeding are analytic rather than
physical and probabilistic. From an analytic standpoint there
seems to be hope of solving (52) only if the ¢5 and ¢p are poly-
nomials, although useful approximations involving polynomials
can certainly be made. From the physical, probabilistic stand-
point one should attempt to solve (52) only for attrition
functions arising from well-defined physical hypotheses, in
which case the particular probabilistic structure of the process

at hand may aid in obtaining a solution.

Appendices to the paper describe computer programs designed
to approximate the solution of (52). There is no doubt that one
can solve (52) numerically for essentially any attrition func-
tions that can be programmed into a computer, although for
irregular functions the approximation may not be good. For
attrition functions verifiably arising from physically definable
and plausible assumptions, these computer programs constitute an
important analytical and descriptive tool.
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9. CONCLUSIONS

The first four papers presented here represent varying but
substantive contributions to the theory of stochastic attrition
processes. To the taste of the reviewer these contributions
are lessened and obscured by the authors' excessive reliance on
analytic approaches since, as we have several places demonstrated,
direct probabilistic approaches yield not only more illuminating
arguments but also, at least in some cases, more complete or
specific results. The computer programs associated with these
papers constitute a contribution whose current value, in view of
our lack of ability to deal with the processes on a reasonable
closed-form basis, is certainly understated by the scant atten-
tion devoted to them in this review. In a few places lengthy ;
and unenlightening computations interrupt the development of ]
worthwhile ideas, but in general the papers are of high techni- a

cal and expository quality, for which their respective authors
are to be commended.

On the other hand we believe that the last three papers
dealing with battles with general attrition functions make little
contribution in the mathematical sense. Since our criticisms are

rather strongly worded, let us once more attempt to be specific
about our grounds for criticism. The first of these is philo-
sophical but has important practical implications; we strongly
believe that one should not deal with attrition processes that
cannot be justified in terms of physical assumptions.

But our criticisms are also on mathematical grounds: the

great degree of generality involved prohibits the authors'

49




f' obtaining results that are sufficiently specific to be of mathe- »
‘ matical interest even without regard to possible physical interest
or applicability.

Of much greater importance and in much greater need, ir our
opinion, is work aimed at developing physical assumptions that
imply forms of attrition functions other than those previously
(in [10], e.g.) justified. Better yet, one should strive first
to develop plausible sets of physical assumptions and then to
derive from these attrition processes that are tractable in terms
of applications to combat models.

s i i

50




(1]

2]

3]

(4]

(5]

6]

(7]

(8]

(9]

(10]

(11]

(12]

REFERENCES
¢inlar, E. Introduction to Stochastic Processes. Prentice-
Hall, 1975.

Dygkin, E.B. Markov Processes. Vol. I. Springer-Verlag,
19 5-

Feller, W. An Introduction to Prcbability Theory and Its
Applications. Vol. I, 3rd ed. Wiley, 1968.

Feller, W. An Introduction to Probability Theory and Its
Applications. Vol. II. Wiley, 1966.

Jennings, N. Approximate Moments of the Distribution of
States of a Simple Heterogeneous Battle. The Mathematics

of Battle III: Memorandum M-7315. U.K.: Defence Operational
Analysis Establishment, 1973.

Jennings, N. Stochastic "Linear Law" Battles. The Mathema-
ties of Battle IV: Memorandum M-7316. U.K.: Defence
Operational Analysis Establishment, 1973.

Karr, A.F. Stochastie Attrition Processes of Lanchester
Type. P-1030. Arlington, VA.: Institute for Defense
Analyses, 19T74.

Karr, A.F. On Simulations of the Stochastic, Homogeneous
Lanchester Square-Law Attrition Process. P-1112. Arlington,
VA.: Institute for Defense Analyses, 1975.

Karr, A.F. On Simulations of the Stochastic, Homogeneous
Lanchester Linear-Law Attrition Process. P-1113. Arlington,
VA.: Institute for Defense Analyses, 1976

Karr, A.F. A Class of Lanchester Attrition Processes. P-1230.
Arlington, VA.: Institute for Defense Analyses, 1976.

Karr, A.F. On Differential Equations Arising from Markov
Attrition Processes. Forthcoming.

Snow, R.N. Contributions to Lanchester Attrition Theory.
RA-15078. Santa Monica, CA.: RAND Corporation, 1948.

51




e o 32 A Al s S b N i A s sy s g el A 250 L ‘-.

(13]

[14]

[15]

(16]

(171

i s S G 35

Weale, T.G. A Bivariate Probability Distribution. The
Mathematics of Battle I: Memorandum M-7129. U.K.: Defence
Operational Analysis Establishment, 1971.

Weale, T.G. The Moments of the Distribution of Battle
States. The Mathematics of Battle II: Memorandum M-7130.
U.K., Defence Operational Analysis Establishment, 1971.

Weale, T.G. Homogeneous Battles With General Attrition
Functions. The Mathematics of Battle V: Memorandum M-7511.
U.K.: Defence Operational Analysis Establishment, 1975.

Weale, T.G. The Distribution of the Duration of Battle.
The Mathematics of Battle VI: Memorandum H-76126. U.K.:
Defence Operational Analysis Establishment, 1976.

Weale, T.G. and E. Peryer. Moments of the Distribution
of States for a Battle With General Attrition Functions.
The Mathematics of Battle VII: Memorandum M-77105. U.K:
Defence Operational Analysis Establishment, 1977.

52




